WO2018012452A1 - Additive composition and rubber composition - Google Patents

Additive composition and rubber composition Download PDF

Info

Publication number
WO2018012452A1
WO2018012452A1 PCT/JP2017/025108 JP2017025108W WO2018012452A1 WO 2018012452 A1 WO2018012452 A1 WO 2018012452A1 JP 2017025108 W JP2017025108 W JP 2017025108W WO 2018012452 A1 WO2018012452 A1 WO 2018012452A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber composition
composition according
compound
formula
Prior art date
Application number
PCT/JP2017/025108
Other languages
French (fr)
Japanese (ja)
Inventor
泰生 上北
中野 貞之
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2018012452A1 publication Critical patent/WO2018012452A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention provides an additive composition capable of reducing the loss factor (tan ⁇ ) of a vulcanized rubber composition and suppressing an increase in the viscosity of the rubber composition, and the components of the additive composition, the rubber component, etc.
  • the present invention relates to a rubber composition obtained by kneading.
  • the olefinic double bond reacts with the olefinic double bond of the rubber component, and the amino group is carbon black. It reacts with a carboxy group present on the surface to bond a rubber component and carbon black.
  • the present invention is not limited to such an estimation mechanism.
  • a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black, such as compound (D), is described above.
  • the loss coefficient of the vulcanized rubber composition can be reduced, but the rubber composition containing the compound (C) has a problem that its viscosity increases.
  • the present invention has been made paying attention to such circumstances, and its purpose is to reduce the loss factor of the vulcanized rubber composition and to suppress the increase in the viscosity of the rubber composition. (I.e., an additive composition having a good balance between the effect of reducing the loss factor of the vulcanized rubber composition and the effect of suppressing the increase in viscosity of the rubber composition).
  • the present invention that can achieve the above object is as follows. [1] a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond, and a group or structure (B) capable of reacting or interacting with carbon black; An additive composition containing a fatty acid metal salt.
  • the group or structure (A) is an olefinic double bond, an amide group, a maleimide ring, a 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof, * -SS - *, * - C ⁇ N + -O -, * - C ⁇ N + -N - - *, structure represented by the formula (i), structural formula (ii) or formula, (iii) Structure represented by:
  • R 1 represents a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, or one or more substituents.
  • R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, one or more C 1-6 alkoxy group which may have one or more substituents, or one or more substituents.
  • R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, or —NR 5.
  • R 6 (wherein R 5 and R 6 each independently represents a hydrogen atom or a C 1-6 alkyl group optionally having one or more substituents).
  • X represents —NH— or —O—.
  • the compound represented by the formula (I) is represented by the formula (II):
  • R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents.
  • a solvent of the salt of the compound represented by the formula (I), wherein at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof The additive composition according to any one of [5] to [16], which is a Japanese product.
  • a carboxylate salt of the compound represented by formula (I), wherein at least one selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt thereof The additive composition according to any one of [5] to [16], which is a solvate of
  • the group or structure (A) is an olefinic double bond, an amide group, a maleimide ring, a 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof, * -SS - *, * - C ⁇ N + -O -, * - C ⁇ N + -N - - *, structure represented by the formula (i), the structure represented by formula (ii) or the formula,
  • the compound (C) is at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof.
  • the rubber composition as described.
  • R 4 is a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or a C 6-14 aryloxy group optionally having one or more substituents.
  • [46] The rubber composition according to any one of [37] to [44], wherein R 4 is a hydroxy group or a C 1-6 alkoxy group.
  • [47] The rubber composition according to any one of [37] to [44], wherein R 4 is a hydroxy group.
  • a solvent of the salt of the compound represented by formula (I), wherein at least one selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt thereof The rubber composition according to any one of [37] to [48], which is a Japanese product.
  • a carboxylate of the compound represented by the formula (I), wherein at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof, and a solvate of the salt The rubber composition according to any one of [37] to [48], which is a solvate of
  • the amount of the compound (C) is 0.05 to 20 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  • the amount of the compound (C) is 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  • the amount of the compound (C) is 0.3 to 8 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  • the rubber composition according to [68], wherein the amount of the diene rubber in the rubber component having an olefinic double bond is 80 to 100% by weight.
  • the loss factor of the vulcanized rubber composition can be reduced and the increase in the viscosity of the rubber composition can be suppressed.
  • the present invention is characterized by using a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black. I will. Only 1 type may be used for a compound (C) and it may use 2 or more types together.
  • any of the amide group, maleimide ring, 1H-imidazole ring, benzoxazole ring, and benzothiazole ring described above may be a monovalent group or a divalent group.
  • Examples of the amide group include * —CO—NH 2 — *, * —NHCO— *, * —CONH 2 (in the above formula, * represents a bonding position).
  • Examples of the maleimide ring include a 1-maleimidyl group.
  • Examples of the 1H-imidazole ring include a 1-imidazolyl group.
  • Examples of the benzoxazole ring include a benzoxazolyl group.
  • Examples of the benzothiazole ring include a benzothiazolyl group.
  • Examples of the group or structure (B) include an unsubstituted or monosubstituted amino group (preferably an unsubstituted amino group), a benzene ring, a furan ring, an oxazole ring, or a 1H-benzimidazole ring.
  • Any of the benzene ring, furan ring, oxazole ring and 1H-benzimidazole ring described above may be a monovalent group or a divalent group.
  • Examples of the benzene ring include a phenyl group and a 1,4-phenylene group.
  • Examples of the furan ring include 2-furyl group and 3-furyl group.
  • Examples of the oxazole ring include a 2-oxazolyl group.
  • Examples of the 1H-benzimidazole ring include a 2-benzimidazolyl group. These can react with the carboxy group of carbon black, or can interact with the aromatic ring of carbon black by ⁇ - ⁇ .
  • the compound (C) include the following compounds. However, the present invention is not limited to these compounds [In the following formula, A represents O, S or NH, m represents an integer of 1 to 6, n represents an integer of 1 to 6, and x represents 1 to Represents an integer of 4].
  • Compound (C) is preferably the formula (I):
  • R 1 in the formula (I) is a C 2-12 alkanediyl group optionally having one or more substituents, and a C 3-10 cycloalkanediyl group optionally having one or more substituents. It represents a divalent C 6-12 aromatic hydrocarbon group which may have one or more substituents, or a combination thereof.
  • C xy means that the number of carbon atoms is x or more and y or less (x, y: integer).
  • the alkanediyl group includes both a linear alkanediyl group and a branched alkanediyl group.
  • examples of the “C 2-12 alkanediyl group” include an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, propylene group, 1-methyltrimethylene group, 2-methyl group.
  • Trimethylene 1-ethyltrimethylene, 2-ethyltrimethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltetra Methylene group, 2-ethyltetramethylene group, 1-propyltetramethylene group, 2-propyltetramethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethylpentamethylene group Group, 2-ethylpentamethylene group, 3-ethylpentamethylene group, 1-propyl Rupentamethylene group, 2-propylpentamethylene group, 3-propylpentamethylene group, 1-methylhexamethylene group, 2-methylhexamethylene group, 3-methylhexamethylene group, 1-ethylhexamethylene group, 2-ethyl Examples include a hexamethylene group, a 3-ethylhexamethylene group, a 1-
  • Examples of the substituent that the C 2-12 alkanediyl group may have include, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, a C 1 1- 7 acyl-oxy group, C 6-14 aryl group optionally having one or more substituents.
  • a halogen atom etc. is mentioned later.
  • examples of the “C 3-10 cycloalkanediyl group” include cyclopropane-1,2-diyl group, cyclobutane-1,3-diyl group, cyclopentane-1,3-diyl group, cyclohexane -1,4-diyl group, cycloheptane-1,4-diyl group, cyclooctane-1,5-diyl group, cyclononane-1,5-diyl group, and cyclodecane-1,6-diyl group.
  • the C 3-10 cycloalkanediyl group may have, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C 1 A -7 acyl group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
  • examples of the “divalent C 6-12 aromatic hydrocarbon group” include a phenylene group (eg, 1,4-phenylene group), a naphthylene group (eg, 1,4-naphthylene group, 1 , 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group) and biphenyldiyl group (eg, 1,1′-biphenyl-4,4′-diyl group).
  • a phenylene group eg, 1,4-phenylene group
  • a naphthylene group eg, 1,4-naphthylene group, 1 , 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group
  • biphenyldiyl group eg, 1,1′-biphenyl-4,4′-diyl group
  • Examples of the substituent that the divalent C 6-12 aromatic hydrocarbon group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, and a C 1-6 alkoxy-carbonyl group.
  • the sulfo group is a group represented by —SO 3 H.
  • R 1 is preferably a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group, more preferably a C 2-12 alkanediyl group or a phenylene group, still more preferably a phenylene group. Particularly preferred is a 1,4-phenylene group.
  • R 2 and R 3 in formula (I) are each independently a hydrogen atom, a halogen atom, a hydroxy group, an optionally substituted C 1-6 alkoxy group, or one or more substituents.
  • halogen atom examples include fluorine, chlorine, bromine and iodine.
  • the alkoxy group includes both a linear alkoxy group and a branched alkoxy group.
  • examples of the “C 1-6 alkoxy group” include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, and a pentyloxy group. And hexyloxy group.
  • Examples of the substituent that the C 1-6 alkoxy group may have include, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7.
  • An acyl-oxy group, and a C 6-14 aryl group which may have one or more substituents.
  • the alkyl group includes both a linear alkyl group and a branched alkyl group.
  • examples of the “C 1-6 alkyl group” include a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, s-butyl group, t-butyl group, 2 -Methylbutyl group, 2-ethylbutyl group, 3-methylbutyl group, 3-ethylbutyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group.
  • Examples of the substituent that the C 1-6 alkyl group may have include, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, a C 1-7 An acyl-oxy group, and a C 6-14 aryl group which may have one or more substituents.
  • examples of the “C 6-14 aryl group” include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group.
  • Examples of the substituent that the C 6-14 aryl group may have include, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1-7.
  • Examples include an acyl group, a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group.
  • examples of the “C 1-7 acyl group” include a formyl group, a C 1-6 alkyl-carbonyl group (eg, acetyl group, pivaloyl group), and a benzoyl group.
  • examples of the “C 1-6 alkoxy group” contained in the C 1-6 alkoxy-carbonyl group and the “C 1-7 acyl group” contained in the C 1-7 acyl-oxy group include, for example, Can be mentioned.
  • Examples of the “C 3-10 cycloalkenediyl group formed by combining R 2 and R 3 together with the carbon atom to which they are bonded” include a cyclopropene-1,2-diyl group, Cyclobutene-1,2-diyl group, cyclopentene-1,2-diyl group, cyclohexene-1,2-diyl group, cycloheptene-1,2-diyl group, cyclooctene-1,2-diyl group, cyclononene-1, Examples thereof include 2-diyl group and cyclodecene-1,2-diyl group.
  • Examples of the substituent that the C 3-10 cycloalkenediyl group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1 A -7 acyl group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
  • R 2 and R 3 are each independently preferably a hydrogen atom or a C 1-6 alkyl group, more preferably a hydrogen atom.
  • examples of the “C 6-14 aryl group” contained in the C 6-14 aryloxy group include those described above.
  • R 4 is preferably a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or a C 6-14 aryloxy group optionally having one or more substituents. More preferably a hydroxy group or a C 1-6 alkoxy group, and still more preferably a hydroxy group.
  • X in the formula (I) represents —NH— or —O—.
  • X is preferably —NH—.
  • Compound (I) is preferably represented by the formula (II):
  • the salt of compound (I) includes (a) an amine salt formed by —NH 2 of compound (I) and another acid, and (b) —NH— of compound (I) when X is —NH—.
  • Examples include amine salts formed by-and other acids, and (c) carboxylates formed by -COOH of compound (I) and other bases when R 4 is a hydroxy group.
  • the other acid that forms the amine salt of (a) and (b) may be either an organic acid or an inorganic acid, and the base that forms the carboxylate salt of (c) is an organic base or an inorganic base. Either is acceptable.
  • the salt of compound (I) is preferably a carboxylate, more preferably at least one selected from the group consisting of an alkali metal carboxylate and an alkaline earth metal carboxylate, and more preferably an alkali carboxylate A metal salt, particularly preferably a sodium carboxylate.
  • the solvent that forms the solvate of compound (I) and the solvate of the salt of compound (I) may be water or an organic solvent (for example, methanol).
  • the solvent forming the solvate is preferably water or methanol, more preferably water.
  • Compound (I) or the like is preferably a solvate of a salt of compound (I), more preferably a solvate of a carboxylate salt of compound (I), and more preferably a carboxylic acid of compound (I).
  • Compound (I) and the like can be produced by the method described in Patent Document 1 or a method according to the method.
  • One feature of the present invention is that a fatty acid metal salt is used.
  • a fatty acid metal salt is used.
  • the compound (C) and the fatty acid metal salt it is possible to achieve both reduction in the loss factor of the vulcanized rubber composition and suppression of increase in the viscosity of the rubber composition.
  • Only one type of fatty acid metal salt may be used, or two or more types may be used in combination.
  • Examples of the metal cation constituting the fatty acid metal salt include a monovalent metal cation and a divalent metal cation.
  • Examples of monovalent metal cations include alkali metal ions (eg, Li + , Na + , K + ) and the like.
  • Examples of the divalent metal cation include alkaline earth metal ions (eg, Mg 2+ , Ca 2+ ), zinc ions (Zn 2+ ) and the like.
  • the loss factor of the vulcanized rubber composition can be further reduced by using a salt of a fatty acid anion and a monovalent metal cation together with the compound (C).
  • the metal cation constituting the fatty acid metal salt is preferably a monovalent metal cation, more preferably an alkali metal ion, and still more preferably a potassium ion (K + ).
  • the fatty acid anion constituting the fatty acid metal salt may be a saturated fatty acid anion or an unsaturated fatty acid anion. This anion is preferably a saturated fatty acid anion.
  • saturated fatty acids include caprylic acid (8 carbon atoms), pelargonic acid (9 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), pentadecylic acid ( 15 carbon atoms, palmitic acid (16 carbon atoms), margaric acid (17 carbon atoms), stearic acid (18 carbon atoms), tuberculostearic acid (19 carbon atoms), arachidic acid (20 carbon atoms), behenic acid ( Examples thereof include 22 carbon atoms, lignoceric acid (24 carbon atoms), serotic acid (26 carbon atoms), montanic acid (28 carbon atoms), and mellic acid (30 carbon atoms).
  • unsaturated fatty acids include palmitoleic acid (16 carbon atoms), oleic acid (18 carbon atoms), linoleic acid (18 carbon atoms), eleostearic acid (18 carbon atoms), arachidonic acid (20 carbon atoms), etc. Is mentioned.
  • the number of carbon atoms of the fatty acid anion constituting the fatty acid metal salt is preferably 8-30, more preferably 10-20, and still more preferably 12-16. It is.
  • the fatty acid anion constituting the fatty acid metal salt is preferably a C 8-30 saturated fatty acid anion, more preferably a C 10-20 saturated fatty acid anion, and still more preferably a C 12-16 saturated fatty acid anion.
  • the fatty acid metal salt is preferably a salt of a C 8-30 saturated fatty acid anion and a monovalent metal cation, more preferably a salt of a C 10-20 saturated fatty acid anion and an alkali metal ion, still more preferably C 12-16 saturated. It is a salt of a fatty acid anion and a potassium ion.
  • the additive composition of the present invention may contain another additive different from the compound (C) and the fatty acid metal salt.
  • the total amount of the compound (C) and the fatty acid metal salt is preferably 50 to 100% by weight, more preferably 80 to 100% by weight, based on the whole additive composition of the present invention.
  • the additive composition of the present invention is more preferably composed of the compound (C) and a fatty acid metal salt.
  • the amount of the fatty acid metal salt is preferably 10 to 1,000 parts by weight, more preferably 50 to 800 parts by weight, and still more preferably 80 to 500 parts by weight with respect to 100 parts by weight of the compound (C).
  • the present invention provides a rubber composition obtained by kneading the above-mentioned compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond, and carbon black, and a method for producing the same.
  • the present invention also provides a rubber composition (hereinafter referred to as “sulfur”) obtained by kneading the above-mentioned compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond, carbon black, and a sulfur component.
  • a rubber composition containing a component ") and a method for producing the same.
  • the present invention also provides a vulcanized rubber composition obtained by vulcanizing a rubber composition containing a sulfur component, and a method for producing the same.
  • the above-mentioned compound (C) may react with a rubber component having an olefinic double bond during kneading to form another compound. Moreover, the above-mentioned compound (C) decomposes during kneading, and this decomposition product may react with a rubber component having an olefinic double bond to form another compound.
  • this decomposition product may react with a rubber component having an olefinic double bond to form another compound.
  • the rubber composition of the present invention is obtained by kneading the above-mentioned compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond, and carbon black. Specified. The same applies to the vulcanized rubber composition.
  • the amount of the fatty acid metal salt is preferably 10 to 1,000 parts by weight, more preferably 50 to 800 parts by weight, and still more preferably 80 to 500 parts by weight with respect to 100 parts by weight of the compound (C).
  • Rubber components having an olefinic double bond include natural rubber (NR) and modified natural rubber (eg, epoxidized natural rubber, deproteinized natural rubber); polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR). ), Polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene / diene copolymer rubber (EPDM) and the like. . Only 1 type may be used for the rubber component which has an olefinic double bond, and 2 or more types may be used together.
  • NR natural rubber
  • modified natural rubber eg, epoxidized natural rubber, deproteinized natural rubber
  • IR polyisoprene rubber
  • SBR styrene-butadiene copolymer rubber
  • NBR acrylonitrile / butadiene cop
  • the rubber component having an olefinic double bond preferably contains a diene rubber.
  • the diene rubber means a rubber made from a diene monomer having a conjugated double bond.
  • the diene rubber include natural rubber, modified natural rubber, polyisoprene rubber, chloroprene rubber, styrene / butadiene copolymer rubber, polybutadiene rubber, and nitrile rubber.
  • the diene rubber is preferably highly unsaturated, and more preferably natural rubber. It is also effective to use natural rubber in combination with another rubber (for example, styrene / butadiene copolymer rubber or polybutadiene rubber).
  • the amount of the diene rubber in the rubber component having an olefinic double bond is preferably 50% by weight or more, more preferably 70 to 100% by weight, even more preferably. Is 80 to 100% by weight.
  • Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20.
  • examples of the epoxidized natural rubber include those having a degree of epoxidation of 10 to 60 mol% (for example, ENR25 and ENR50 manufactured by Kumphuran Gasley).
  • As the deproteinized natural rubber a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable.
  • Other modified natural rubbers include, for example, polar groups obtained by reacting natural rubber with 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (for example, N, N-diethylaminoethyl acrylate), 2-hydroxy acrylate, etc. Modified natural rubber.
  • SBR examples include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Among these, solution polymerization SBR is preferable for the rubber composition for treads.
  • the solution polymerization SBR examples include a modified solution polymerization SBR obtained by modification with a modifying agent and having at least one element of nitrogen, tin and silicon at the molecular end.
  • the modifier include lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, silane compounds having an alkoxy group, aminosilane compounds, tin compounds and silane compounds having an alkoxy group.
  • a combined modifier of an alkyl acrylamide compound and a silane compound having an alkoxy group may be used alone or in combination.
  • oil-extended SBR in which oil such as process oil or aroma oil is added to emulsion polymerization SBR and solution polymerization SBR is also preferable for the rubber composition for tread.
  • the BR may be either a solution polymerization BR having a low vinyl content or a solution polymerization BR having a high vinyl content, but a solution polymerization BR having a high vinyl content is preferred.
  • a modified solution polymerization BR having at least one element of nitrogen, tin, or silicon at the molecular end obtained by modification with a modifier is particularly preferred.
  • the modifier include 4,4′-bis (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N-dialkylacrylamide compound, isocyanate compound, imide compound, and alkoxy group.
  • Examples thereof include a silane compound having an alkoxy group (for example, a trialkoxysilane compound), an aminosilane compound, a tin compound and a silane compound having an alkoxy group, and a combined modifier having an alkylacrylamide compound and an silane compound having an alkoxy group. These modifiers may be used alone or in combination.
  • Examples of the modified solution polymerization BR include tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon.
  • BR can be preferably used for a rubber composition for a tread and a rubber composition for a sidewall.
  • BR may be used in a blend with SBR and / or natural rubber (NR).
  • NR natural rubber
  • the amount of SBR and / or NR is 60 to 100% by weight, and the amount of BR is 0 to 40% by weight.
  • the amount of SBR and / or NR is 10 to 70% by weight, and the amount of BR is 90 to 30% by weight. More preferably, the amount of NR is 40 to 60% by weight and the amount of BR is 60 to 40% by weight.
  • a blend of modified SBR and non-modified SBR, a blend of modified BR and non-modified BR, and the like can be preferably used.
  • the rubber component having an olefinic double bond uses SBR, which is excellent in wear resistance and hysteresis loss reduction performance, as a base material.
  • SBR wear resistance and hysteresis loss reduction performance
  • a higher strength NR is optionally used as a base material together with SBR, and it is possible to blend these base materials with BR as necessary to obtain a tread having excellent wear resistance, fatigue resistance, and rebound resilience. Since it is obtained, it is preferable.
  • NR and SBR are blended for passenger car tires, or NR and BR are blended, and NR and BR are blended for truck and bus tires. It is preferable to be used because bending resistance and crack growth resistance are obtained.
  • the rubber composition When the rubber composition is used as an inner liner of a tire, it is difficult to use a blend of IIR and SBR and NR or a blend of IIR and NR as a rubber component having an olefinic double bond. It is preferable because permeability and bending resistance can be obtained.
  • Examples of the carbon black include those described on page 494 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Carbon black may use only 1 type and may use 2 or more types together.
  • HAF High Ablation Furnace
  • SAF Super Abrasion Furnace
  • ISAF Intermediate SAF
  • ISAF-HM Intermediate SAF-HighFurgence
  • FEF FastEurFastGurP
  • SRF Semi-Reinforcing Furnace
  • the amount of carbon black is preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, and further preferably 30 to 60 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  • the sulfur component examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, morpholine disulfide, and tetramethylthiuram disulfide.
  • powdered sulfur is preferable, and insoluble sulfur is preferable when the rubber composition is used for manufacturing a tire member having a large amount of sulfur such as a belt member.
  • the amount of the sulfur component is preferably 0.01-30 parts by weight, more preferably 0.1-20 parts by weight, still more preferably 0.1-0.1 parts by weight, relative to 100 parts by weight of the rubber component having an olefinic double bond. 10 parts by weight.
  • fatty acid metal salt in addition to the compound (C), fatty acid metal salt, rubber component having an olefinic double bond, carbon black, and sulfur component, other components known in the rubber field may be used.
  • Other components include, for example, fillers other than carbon black, compounds capable of binding to silica, vulcanization accelerators, vulcanization accelerators, resins, viscoelasticity improvers, anti-aging agents, oils, waxes, and crackers.
  • all may use only 1 type and may use 2 or more types together.
  • fillers other than carbon black examples include silica (for example, hydrous silica), aluminum hydroxide, bituminous coal pulverized material, talc, clay (particularly, calcined clay), and titanium oxide.
  • silica examples include silica having a CTAB specific surface area of 50 to 180 m 2 / g and silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g.
  • examples of commercially available products of silica include “Nipsil (registered trademark) AQ” and “Nipsil (registered trademark) AQ-N” manufactured by Tosoh Silica Co., Ltd., “Ultrasil (registered trademark) VN3” and “Ultrasil” manufactured by Degussa.
  • silica having a pH of 6 to 8, (ii) silica containing 0.2 to 1.5% by weight of sodium, (iii) true spherical silica having a roundness of 1 to 1.3, (iv) ) Silicone oil (eg, dimethyl silicone oil), organosilicon compound containing ethoxysilyl group, silica surface-treated with alcohol (eg, ethanol, polyethylene glycol), etc. (v) two or more different nitrogen adsorption specific surface areas Mixtures of silica with can be used as fillers.
  • silicone oil eg, dimethyl silicone oil
  • organosilicon compound containing ethoxysilyl group silica surface-treated with alcohol (eg, ethanol, polyethylene glycol), etc.
  • two or more different nitrogen adsorption specific surface areas Mixtures of silica with can be used as fillers.
  • the amount of silica is preferably in the range of 10 to 120 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  • the silica / carbon black weight ratio is preferably 0.7 / 1 to 1 / 0.1.
  • aluminum hydroxide examples include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
  • the average particle size of the bituminous coal pulverized product is usually 0.1 mm or less, preferably 0.05 mm or less, more preferably 0.01 mm or less. Even if a bituminous coal pulverized product having an average particle size exceeding 0.1 mm is used, the hysteresis loss of the rubber composition may not be sufficiently reduced, and the fuel efficiency may not be sufficiently improved. Further, when the rubber composition is used as an inner liner composition, the air permeation resistance of the composition may not be sufficiently improved even when a bituminous coal pulverized product having an average particle size exceeding 0.1 mm is used. is there.
  • the lower limit of the average particle diameter of the bituminous coal pulverized product is not particularly limited, but is preferably 0.001 mm or more. If it is less than 0.001 mm, the cost tends to increase.
  • the average particle size of the bituminous coal pulverized product is a mass-based average particle size calculated from a particle size distribution measured according to JIS Z 8815-1994.
  • the specific gravity of the bituminous coal pulverized product is preferably 1.6 or less, more preferably 1.5 or less, and even more preferably 1.3 or less. When a bituminous coal pulverized product having a specific gravity exceeding 1.6 is used, the specific gravity of the entire rubber composition increases, and there is a possibility that the fuel efficiency of the tire cannot be sufficiently improved.
  • the specific gravity of the pulverized bituminous coal is preferably 0.5 or more, and more preferably 1.0 or more. If a bituminous coal pulverized product having a specific gravity of less than 0.5 is used, workability during kneading may be deteriorated.
  • the amount is usually 5 parts by weight or more, preferably 10 parts by weight or more, and usually 70 parts by weight or less, preferably 100 parts by weight of the rubber component having an olefinic double bond. Is 60 parts by weight or less. If this amount is less than 5 parts by weight, the effect of the pulverized bituminous coal may not be sufficiently obtained, and if it exceeds 70 parts by weight, the workability during kneading may be deteriorated.
  • silica When silica is used as the filler, it is preferable to use a compound capable of binding to silica such as a silane coupling agent.
  • the compound include bis (3-triethoxysilylpropyl) tetrasulfide (eg, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg, “Si— 75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, 3-octanoylthiopropyltriethoxysilane (also known as” octanethioic acid S- [3- ( Triethoxysilyl) propyl] ester ", for example," NXT silane "manufactured by General Electronic Silicons), octanethioic acid S- [3- ⁇ (2-methyl-1,
  • bis (3-triethoxysilylpropyl) tetrasulfide eg “Si-69” manufactured by Degussa
  • bis (3-triethoxysilylpropyl) disulfide eg “Si-75” manufactured by Degussa
  • 3-octanoylthiopropyltriethoxysilane for example, “NXT silane” manufactured by General Electronic Silicons
  • the addition timing of the compound capable of binding to silica is not particularly limited, but it is preferably blended with a rubber component having an olefinic double bond at the same time as silica.
  • the amount of the compound capable of binding to silica is preferably 2 to 10 parts by weight, more preferably 7 to 9 parts by weight with respect to 100 parts by weight of silica.
  • the blending temperature is preferably 80 to 200 ° C, more preferably 110 to 180 ° C.
  • silica when silica is used as a filler, in addition to compounds capable of binding to silica, monohydric alcohols such as ethanol, butanol and octanol; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, poly It is also preferable to use polyhydric alcohols such as ether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carboxy-modified or amine-modified.
  • monohydric alcohols such as ethanol, butanol and octanol
  • ethylene glycol diethylene glycol, triethylene glycol
  • polyethylene glycol, polypropylene glycol, pentaerythritol polypropylene glycol
  • polyhydric alcohols such as ether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carb
  • vulcanization accelerators include thiazole-based vulcanization accelerators described in pages 412 to 413 of Rubber Industry Handbook ⁇ Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994), Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.
  • vulcanization accelerator examples include N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), and N, N-dicyclohexene.
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • BSS N-tert-butyl-2-benzothiazolylsulfenamide
  • N N-dicyclohexene
  • DCBS 2-mercaptobenzothiazole
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BVS
  • vulcanization accelerators N-cyclohexyl-2-benzothiazolylsulfenamide
  • DCBS N-dicyclohexyl-2-benzothiazolylsulfenamide
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfene vulcanization accelerators
  • BBS amide
  • DCBS N-dicyclohexyl-2-benzothiazolylsulfenamide
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • the ratio of the sulfur component to the vulcanization accelerator is not particularly limited, but the weight ratio of the sulfur component / vulcanization accelerator is preferably 1/10 to 10/1, more preferably 1/5 to 5/1, A preferred range is 1/2 to 2/1.
  • EV vulcanization which is a method of improving heat resistance, in which the ratio of sulfur component / vulcanization accelerator is 1 or less, is preferably used in applications that particularly require improvement in heat resistance. It is done.
  • vulcanization accelerating aid examples include zinc oxide, stearic acid, citraconimide compound, alkylphenol / sulfur chloride condensate, organic thiosulfate compound, and formula (III): R 16 —S—S—R 17 —S—S—R 18 (III) (Wherein R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represents a monovalent organic group containing a nitrogen atom.) The compound represented by these is mentioned.
  • zinc oxide is included in the concept of a vulcanization
  • vulcanization acceleration aid zinc oxide, stearic acid, and citraconic imide compounds are preferable, and zinc oxide and stearic acid are more preferable.
  • the amount is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, still more preferably 100 parts by weight of the rubber component having an olefinic double bond. Is 0.1 to 10 parts by weight.
  • the amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, still more preferably 100 parts by weight of the rubber component having an olefinic double bond. Is 0.1 to 5 parts by weight.
  • biscitraconimides are preferable because they are thermally stable and have excellent dispersibility in a rubber component having an olefinic double bond.
  • citraconic imide compounds a vulcanized rubber composition that is particularly thermally stable, particularly excellent in dispersibility in a rubber component having an olefinic double bond, and having high hardness (Hs) can be obtained (for the reason of (reversion control), 1,3-biscitraconimidomethylbenzene represented by the following formula is preferable.
  • n is an integer of 0 to 10
  • each X is independently an integer of 2 to 4
  • each R 19 is independently a C 5-12 alkyl group.
  • N is preferably an integer of 1 to 9 because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
  • the alkylphenol-sulfur chloride condensate (IV) tends to become thermally unstable.
  • X is 1, the sulfur content (sulfur in the alkylphenol-sulfur chloride condensate (IV)) Less weight).
  • X is preferably 2 for the reason that high hardness can be expressed efficiently (reversion suppression).
  • R 19 is a C 5-12 alkyl group.
  • R 19 is preferably a C 6-9 alkyl group because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
  • n 0 to 10
  • X is 2
  • R 19 is an octyl group
  • sulfur content is 24% by weight.
  • the tack roll V200 is mentioned.
  • a vulcanized rubber composition having high hardness (Hs) can be obtained (reversion suppression).
  • Hs hardness
  • k is an integer of 3 to 10.
  • organic thiosulfate compound salt (V) An organic thiosulfate compound salt (V) containing crystal water may be used.
  • the organic thiosulfate compound salt (V) include lithium salt, potassium salt, sodium salt, magnesium salt, calcium salt, barium salt, zinc salt, nickel salt, cobalt salt, etc., potassium salt, sodium salt Is preferred.
  • K is an integer of 3 to 10, preferably an integer of 3 to 6.
  • k is 2 or less, there is a tendency that sufficient heat fatigue resistance cannot be obtained.
  • k is 11 or more, the effect of improving the heat fatigue resistance by the organic thiosulfate compound salt (V) may not be sufficiently obtained.
  • the organic thiosulfate compound salt (V) is preferably a sodium salt monohydrate or a sodium salt dihydrate from the viewpoint of being stable at normal temperature and pressure, and obtained from sodium thiosulfate from the viewpoint of cost.
  • the organic thiosulfate compound salt (V) is more preferable, and sodium 1,6-hexamethylenedithiosulfate dihydrate represented by the following formula is more preferable.
  • R 17 is a C 2-10 alkanediyl group, preferably a C 4-8 alkanediyl group, and more preferably a linear C 4-8 alkanediyl group.
  • R 17 is preferably linear.
  • the carbon number of R 17 is 1 or less, thermal stability may be poor. If the carbon number of R 17 is 11 or more, the distance between the polymers via the vulcanization accelerating aid becomes long, and the effect of adding the vulcanization accelerating aid may not be obtained.
  • R 16 and R 18 are each independently a monovalent organic group containing a nitrogen atom.
  • the monovalent organic group containing a nitrogen atom those containing at least one aromatic ring are preferred, and those containing an aromatic ring and a ⁇ N—C ( ⁇ S) — group (thiocarbamoyl group) are more preferred.
  • R 16 and R 18 may be the same or different, but are preferably the same for reasons such as ease of production.
  • Examples of the compound (III) include 1,2-bis (dibenzylthiocarbamoyldithio) ethane, 1,3-bis (dibenzylthiocarbamoyldithio) propane, 1,4-bis (dibenzylthiocarbamoyldithio) butane 1,5-bis (dibenzylthiocarbamoyldithio) pentane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane, 1,7-bis (dibenzylthiocarbamoyldithio) heptane, 1,8-bis (di Examples include benzylthiocarbamoyldithio) octane, 1,9-bis (dibenzylthiocarbamoyldithio) nonane, 1,10-bis (dibenzylthiocarbamoyldithio)
  • Examples of commercially available products of compound (III) include VULCUREN TRIAL PRODUCT KA9188 and VULCUREN VP KA9188 (1,6-bis (dibenzylthiocarbamoyldithio) hexane) manufactured by Bayer.
  • the rubber composition may contain an organic compound such as resorcinol, a resin such as a resorcinol resin, a modified resorcinol resin, a cresol resin, a modified cresol resin, a phenol resin, and a modified phenol resin.
  • an organic compound such as resorcinol
  • a resin such as a resorcinol resin, a modified resorcinol resin, a cresol resin, a modified cresol resin, a phenol resin, and a modified phenol resin.
  • resorcinol examples include resorcinol manufactured by Sumitomo Chemical Co., Ltd.
  • the resorcinol resin include resorcinol / formaldehyde condensate.
  • modified resorcinol resin examples include those obtained by alkylating a part of the resorcinol resin repeating unit.
  • Penacolite resins B-18-S and B-20 manufactured by India Spec, Sumikanol 620 manufactured by Taoka Chemical Industries, R-6 manufactured by Uniroyal, SRF1501 manufactured by Schenectady Chemical, Ash Examples include Arofine 7209 manufactured by Land.
  • cresol resin examples include a cresol / formaldehyde condensate.
  • modified cresol resin examples include those obtained by modifying the terminal methyl group of the cresol resin to a hydroxy group, and those obtained by alkylating some of the repeating units of the cresol resin. Specifically, Sumikanol 610 manufactured by Taoka Chemical Industry Co., Ltd., PR-X11061 manufactured by Sumitomo Bakelite Co., Ltd., and the like can be given.
  • phenolic resins include phenol / formaldehyde condensates.
  • modified phenolic resins include resins obtained by modifying phenolic resins with cashew oil, tall oil, linseed oil, various animal and vegetable oils, unsaturated fatty acids, rosin, alkylbenzene resins, aniline, melamine, and the like.
  • Examples of other resins include methoxylated methylol melamine resins such as “SUMIKANOL 507AP” manufactured by Sumitomo Chemical Co., Ltd .; Coumarone resin NG4 (softening point 81-100 ° C.) manufactured by Nippon Steel Chemical Co., Ltd.
  • Coumarone-indene resin such as “Process Resin AC5” (softening point 75 ° C.); Terpene resin such as terpene resin, terpene / phenol resin, and aromatic modified terpene resin; “Nicanol® A70” manufactured by Mitsubishi Gas Chemical Company ”(Softening point 70 to 90 ° C.) and the like; hydrogenated rosin derivatives; novolac alkylphenol resins; resol alkylphenol resins; C5 petroleum resins; liquid polybutadiene.
  • Process Resin AC5 softening point 75 ° C.
  • Terpene resin such as terpene resin, terpene / phenol resin, and aromatic modified terpene resin
  • hydrogenated rosin derivatives novolac alkylphenol resins
  • resol alkylphenol resins C5 petroleum resins
  • Examples of the viscoelasticity improver include N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (for example, “Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), Dithiouracil compounds described in JP-A-63-23942, “Tactrol (registered trademark) AP”, “Tactrol (registered trademark) V-200” manufactured by Taoka Chemical Co., Ltd., alkylphenols described in JP-A-2009-138148, Sulfur chloride condensate, bis (3-triethoxysilylpropyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa) ), Bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-dieth
  • N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine for example, “Sumifine® 1162” manufactured by Sumitomo Chemical Co., Ltd.
  • bis (3-triethoxysilyl) Propyl) tetrasulfide eg “Si-69” manufactured by Degussa
  • bis (3-triethoxysilylpropyl) disulfide eg “Si-75” manufactured by Degussa
  • 1,6-bis (dibenzylthiocarbamoyl) Dithio) hexane for example, “KA9188” manufactured by Bayer
  • hexamethylene bisthiosulfate disodium salt dihydrate for example, “Parkalink 900” manufactured by Flexis
  • Tecchiroll registered trademark
  • AP Tetrasulfide
  • Anti-aging agents include those described on pages 436 to 443 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association.
  • Anti-aging agents include N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (abbreviation “6PPD”, for example, “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical), reaction of aniline and acetone. Products (abbreviated as “TMDQ”), poly (2,2,4-trimethyl-1,2-) dihydroquinoline) (for example, “Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax, etc.), plant A wax is preferably used.
  • the amount thereof is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight of the rubber component having an olefinic double bond.
  • the amount is preferably 0.1 to 5 parts by weight.
  • Examples of the oil include process oil and vegetable oil.
  • Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Examples of commercially available products include aromatic oil (“NC-140” manufactured by Cosmo Oil Co., Ltd.) and process oil (“Diana Process PS32” manufactured by Idemitsu Kosan Co., Ltd.).
  • wax examples include “Sannok (registered trademark) wax” manufactured by Ouchi Shinsei Chemical Co., Ltd. and “OZOACE-0355” manufactured by Nippon Seiwa Co., Ltd.
  • the peptizer is not particularly limited as long as it is usually used in the rubber field. For example, it is described in pages 446 to 449 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. And aromatic mercaptan peptizers, aromatic disulfide peptizers, and aromatic mercaptan metal salt peptizers. Of these, dixylyl disulfide and o, o'-dibenzamide diphenyl disulfide ("Noctizer SS" manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) are preferable. Only one type of peptizer may be used, or two or more types may be used in combination.
  • the amount of peptizer is not particularly limited, but is preferably 0.01 to 1 part by weight, preferably 0.05 to 0.5 part by weight based on 100 parts by weight of the rubber component having an olefinic double bond. Part is more preferred.
  • retarder examples include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol diphosphite, and the like.
  • CTP Cyclohexylthio phthalimide
  • the amount of the retarder is not particularly limited, but is preferably 0.01 to 1 part by weight, and 0.05 to 0.5 part by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. More preferred.
  • q is preferably 2 or more, and more preferably 3 or more.
  • q is preferably 16 or less, and more preferably 14 or less. When q is 17 or more, compatibility with a rubber component having an olefinic double bond and reinforcing properties tend to be lowered.
  • the position of the oxyethylene unit in the compound having an oxyethylene unit may be a main chain, a terminal, or a side chain.
  • a compound having oxyethylene units at least in the side chain is preferred from the viewpoint of sustaining the effect of preventing static electricity accumulation on the obtained tire surface and reducing electric resistance.
  • Examples of the compound having an oxyethylene unit in the main chain include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, monoethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene Examples thereof include alkyl ethers, polyoxyethylene alkylamines, polyoxyethylene styrenated alkyl ethers, and polyoxyethylene alkyl amides.
  • the number of oxyethylene units is preferably 4 or more, more preferably 8 or more per 100 carbon atoms constituting the main chain.
  • the electrical resistance tends to increase.
  • the number of oxyethylene units is preferably 12 or less, and more preferably 10 or less.
  • the compatibility with the rubber component having an olefinic double bond and the reinforcing property tend to be lowered.
  • the main chain is preferably composed mainly of polyethylene, polypropylene or polystyrene.
  • the rubber composition of the present invention comprises the above compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond (hereinafter sometimes abbreviated as “rubber component”), carbon black, and, if necessary, It can be produced by kneading other components (for example, a vulcanization accelerator).
  • the rubber composition obtained by further kneading the sulfur component is first a step of kneading the rubber component and carbon black or the like (hereinafter sometimes abbreviated as “step 1”), and then a step. It is preferable to produce the rubber composition obtained in 1 through a step of kneading the rubber composition and the sulfur component (hereinafter sometimes abbreviated as “step 2”). Further, a pre-kneading step of kneading the rubber component may be provided before the step 1 (that is, kneading the rubber component with carbon black or the like) to facilitate processing of the rubber component.
  • the total amount of the compound (C) and the fatty acid metal salt may be kneaded with a rubber component or the like in either the preliminary kneading step, step 1 or step 2,
  • the compound (C) and the fatty acid metal salt may be divided and kneaded with a rubber component or the like in at least two steps of the preliminary kneading step to step 2.
  • a rubber component or the like When blending zinc oxide, it is preferable to knead with a rubber component or the like in step 1.
  • a vulcanization accelerator When blended, it is preferably kneaded with a rubber component or the like in step 2.
  • a peptizer When blending a peptizer, it is preferable to knead with a rubber component or the like in step 1.
  • knead When providing the preliminary kneading step, it is preferable to knead the entire amount of the peptizer in the preliminary kneading step or to separate the peptizer and knead the rubber component in both the preliminary kneading step and step 1. .
  • an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, or the like can be used.
  • the discharge temperature of the rubber composition after kneading in step 1 is preferably 200 ° C. or less, more preferably 120 to 180 ° C.
  • Step 2 For kneading in step 2, for example, an open roll, a calendar, or the like can be used.
  • the kneading temperature in Step 2 (the temperature of the rubber composition being kneaded) is preferably 60 to 120 ° C.
  • a vulcanized rubber composition can be produced by vulcanizing a rubber composition containing the above-described sulfur component. You may manufacture a vulcanized rubber composition by processing the rubber composition containing the above-mentioned sulfur component into a specific shape and then vulcanizing it.
  • the vulcanization temperature is preferably 120 to 180 ° C.
  • a person skilled in the art can appropriately set the vulcanization time according to the composition of the rubber composition. Vulcanization is usually carried out at normal pressure or under pressure.
  • the rubber composition and vulcanized rubber composition of the present invention are useful for producing various products.
  • a vulcanized tire and a tire member are preferable.
  • the tire member include a tire belt member including the vulcanized rubber composition of the present invention and a steel cord, a tire carcass member including the vulcanized rubber composition of the present invention and a carcass fiber cord, and a tire sidewall member. , A tire inner liner member, a tire cap tread member, or a tire under tread member.
  • the vulcanized tire is manufactured by first manufacturing a tire member, combining these to manufacture a raw tire, and vulcanizing the raw tire.
  • the tire manufactured using the rubber composition of the present invention has a low loss factor and can achieve low fuel consumption.
  • the vulcanized rubber composition of the present invention can be used not only for the tire applications described above but also as various anti-vibration rubbers.
  • anti-vibration rubbers include anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes, and exhaust hangers.
  • the anti-vibration rubber can be manufactured by first processing a rubber composition containing a sulfur component into a predetermined shape and then vulcanizing it.
  • Example 1 Using a Banbury mixer (600 ml Labo Plast Mill manufactured by Toyo Seiki), 100 parts of natural rubber (RSS # 1), 45 parts of carbon black (N220, ISAF), 3 parts of stearic acid, 5 parts of zinc oxide, anti-aging agent (N -Phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine, trade name "Antigen (registered trademark) 6C", manufactured by Sumitomo Chemical Co., Ltd.) 1 part, (2Z) -4-[(4-aminophenyl ) Amino] -4-oxo-2-butenoic acid sodium dihydrate (1 type of compound (C)) and 1 part of potassium palmitate were kneaded and mixed to obtain a rubber composition.
  • Example 2 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the amount of potassium palmitate was changed from 1 part to 1.4 parts in Step 1.
  • Example 3 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the blending amount of potassium palmitate in Step 1 was changed from 1 part to 1.6 parts.
  • Example 4 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the blending amount of potassium palmitate in Step 1 was changed from 1 part to 1.8 parts.
  • Example 5 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the blending amount of potassium palmitate in Step 1 was changed from 1 part to 2 parts.
  • Example 6 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 1 part of calcium palmitate was added in place of 1 part of potassium palmitate in Step 1.
  • Example 7 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of calcium palmitate was blended in place of 1 part of potassium palmitate in Step 1.
  • Example 8 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 4 parts of calcium palmitate was added in place of 1 part of potassium palmitate in Step 1.
  • Example 9 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of magnesium stearate was blended in place of 1 part of potassium palmitate in Step 1.
  • Example 10 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of zinc stearate was added in place of 1 part of potassium palmitate in Step 1.
  • Example 11 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of potassium laurate was added in place of 1 part of potassium palmitate in Step 1.
  • Comparative Example 1 A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that potassium palmitate was not blended in Step 1.
  • Compound Mooney viscosity and viscoelastic properties were measured as follows.
  • Compound Mooney Viscosity The compound Mooney viscosity of the rubber composition was measured at 125 ° C. in accordance with JIS-K6300-1. The smaller the value of the compound Mooney viscosity is, the less rubber scorch occurs and the better the processing stability of the rubber composition.
  • Viscoelastic properties The viscoelastic properties (tan ⁇ at 60 ° C.) of the vulcanized rubber composition were measured using a dynamic viscoelasticity measuring device, iplexer 500N, manufactured by GABO. Conditions: temperature 60 ° C., initial strain 10%, dynamic strain 0-2.5%, frequency 10 Hz
  • compound (C) ie, (2Z) -4-[(4-aminophenyl) amino] -4-oxo- is used as an additive for reducing the loss factor of the vulcanized rubber composition.
  • the compound Mooney viscosity of the rubber composition is reduced compared to Comparative Example 1 in which only 2-butenoate dihydrate is used. ing.
  • the combined use of the compound (C) and the fatty acid metal salt can suppress an increase in the viscosity of the rubber composition while maintaining a low loss factor (tan ⁇ ) of the vulcanized rubber composition.
  • the additive composition of the present invention is useful as an additive capable of reducing the loss factor of the vulcanized rubber composition and suppressing the increase in viscosity of the rubber composition.

Abstract

An additive composition is provided which contains: a compound (C) having a base or structure (A) which can react with an olefinic double bond and a base or structure (B) which can react to or interact with carbon black; and a fatty acid metal salt.

Description

添加剤組成物およびゴム組成物Additive composition and rubber composition
 本発明は、加硫ゴム組成物の損失係数(tanδ)を低減させるとともに、ゴム組成物の粘度増大を抑制することができる添加剤組成物、および前記添加剤組成物の成分とゴム成分等とを混練して得られるゴム組成物に関する。 The present invention provides an additive composition capable of reducing the loss factor (tan δ) of a vulcanized rubber composition and suppressing an increase in the viscosity of the rubber composition, and the components of the additive composition, the rubber component, etc. The present invention relates to a rubber composition obtained by kneading.
 近年、環境保護の要請から、自動車の燃費向上(すなわち、低燃費化)が求められている。そして、自動車用タイヤの分野においては、タイヤ製造に用いられる加硫ゴム組成物が有する損失係数を低減させることにより、自動車の燃費が向上することが知られている。 In recent years, there has been a demand for improving the fuel efficiency of automobiles (ie, reducing fuel consumption) in response to environmental protection requirements. In the field of automobile tires, it is known that the fuel efficiency of automobiles is improved by reducing the loss factor of the vulcanized rubber composition used for tire manufacture.
 例えば、特許文献1には、加硫ゴム組成物が有する損失係数を低減させるために、式(D): For example, in Patent Document 1, in order to reduce the loss factor of the vulcanized rubber composition, the formula (D):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(D)中の基の定義は特許文献1に記載された通りである。なお、式(D)は特許文献1において式(I)と記載されている。]
で表される化合物(以下、化合物(D)と略称することがある)、その塩、その溶媒和物およびその塩の溶媒和物の少なくとも一つを使用することが記載されている。
[Definition of groups in formula (D) is as described in Patent Document 1. In addition, Formula (D) is described in Patent Document 1 as Formula (I). ]
(Hereinafter sometimes abbreviated as compound (D)), a salt thereof, a solvate thereof, and a solvate of the salt thereof.
特開2013-209605号公報JP 2013-209605 A
 上述の化合物(D)が加硫ゴム組成物の損失係数を低減させるメカニズムとしては、例えば、そのオレフィン性二重結合がゴム成分のオレフィン性二重結合と反応し、そのアミノ基がカーボンブラックの表面に存在するカルボキシ基と反応し、ゴム成分とカーボンブラックとを結合させること等が挙げられる。但し、本発明はこのような推定メカニズムに限定されない。 As the mechanism by which the above compound (D) reduces the loss factor of the vulcanized rubber composition, for example, the olefinic double bond reacts with the olefinic double bond of the rubber component, and the amino group is carbon black. It reacts with a carboxy group present on the surface to bond a rubber component and carbon black. However, the present invention is not limited to such an estimation mechanism.
 化合物(D)のような、オレフィン性二重結合と反応し得る基または構造(A)、およびカーボンブラックと反応または相互作用し得る基または構造(B)を有する化合物(C)は、上述のように加硫ゴム組成物の損失係数を低減させることができるが、化合物(C)を含有するゴム組成物は、その粘度が増大するという問題がある。本発明はこのような事情に着目してなされたものであって、その目的は、加硫ゴム組成物の損失係数を低減させるとともに、ゴム組成物の粘度増大を抑制することができる添加剤組成物(即ち、加硫ゴム組成物の損失係数の低減効果およびゴム組成物の粘度増大の抑制効果のバランスが良好な添加剤組成物)を提供することにある。 A compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black, such as compound (D), is described above. Thus, the loss coefficient of the vulcanized rubber composition can be reduced, but the rubber composition containing the compound (C) has a problem that its viscosity increases. The present invention has been made paying attention to such circumstances, and its purpose is to reduce the loss factor of the vulcanized rubber composition and to suppress the increase in the viscosity of the rubber composition. (I.e., an additive composition having a good balance between the effect of reducing the loss factor of the vulcanized rubber composition and the effect of suppressing the increase in viscosity of the rubber composition).
 上記目的を達成し得る本発明は、以下の通りである。
 [1] オレフィン性二重結合と反応し得る基または構造(A)、およびカーボンブラックと反応または相互作用し得る基または構造(B)を有する化合物(C)と、
 脂肪酸金属塩と
を含有する添加剤組成物。
The present invention that can achieve the above object is as follows.
[1] a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond, and a group or structure (B) capable of reacting or interacting with carbon black;
An additive composition containing a fatty acid metal salt.
 [2] 基または構造(A)が、オレフィン性二重結合とラジカル反応または1,3-双極子付加反応し得る基または構造である前記[1]に記載の添加剤組成物。
 [3] 基または構造(A)が、オレフィン性二重結合、アミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、*-SSOH若しくはその塩、*-S-S-*、*-C≡N-O、*-C≡N-N-*、式(i)で表される構造、式(ii)で表される構造、または式(iii)で表される構造:
[2] The additive composition according to the above [1], wherein the group or structure (A) is a group or structure capable of undergoing radical reaction or 1,3-dipole addition reaction with an olefinic double bond.
[3] The group or structure (A) is an olefinic double bond, an amide group, a maleimide ring, a 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof, * -SS - *, * - C≡N + -O -, * - C≡N + -N - - *, structure represented by the formula (i), structural formula (ii) or formula, (iii) Structure represented by:
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[前記式中、*は結合位置を表す。]
である前記[1]に記載の添加剤組成物。
[In the above formula, * represents a bonding position. ]
The additive composition according to the above [1].
 [4] 基または構造(B)が、無置換または一置換アミノ基、ベンゼン環、フラン環、オキサゾール環または1H-ベンゾイミダゾール環である前記[1]~[3]のいずれか一つに記載の添加剤組成物。 [4] The structure according to any one of [1] to [3], wherein the group or structure (B) is an unsubstituted or monosubstituted amino group, a benzene ring, a furan ring, an oxazole ring, or a 1H-benzimidazole ring. Additive composition.
 [5] 化合物(C)が、式(I): [5] Compound (C) is represented by formula (I):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(I)中、
 Rは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。
 RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。
 Rは、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC6-14アリールオキシ基、または-NR(前記式中、RおよびRは、それぞれ独立に、水素原子、または1以上の置換基を有していてもよいC1-6アルキル基を表す。)を表す。
 Xは、-NH-または-O-を表す。]
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つである前記[1]に記載の添加剤組成物。
 [6] 式(I)で表される化合物が、式(II):
[In the formula (I),
R 1 represents a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, or one or more substituents. Represents a divalent C 6-12 aromatic hydrocarbon group which may have the above-mentioned or a combination thereof.
R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, one or more C 1-6 alkoxy group which may have one or more substituents, or one or more substituents. Represents a good C 1-6 alkyl group, or a C 6-14 aryl group optionally having one or more substituents, or R 2 and R 3 are bonded, and the carbon atom to which they are bonded; Together, they form a C 3-10 cycloalkenediyl group which may have one or more substituents.
R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, or —NR 5. R 6 (wherein R 5 and R 6 each independently represents a hydrogen atom or a C 1-6 alkyl group optionally having one or more substituents).
X represents —NH— or —O—. ]
The additive composition according to the above [1], which is at least one selected from the group consisting of a compound represented by the formula: salt thereof, solvate thereof, and solvate of the salt thereof.
[6] The compound represented by the formula (I) is represented by the formula (II):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(II)中、R~RおよびXは前記と同義である。]
で表される化合物である前記[5]に記載の添加剤組成物。
[In formula (II), R 1 to R 4 and X are as defined above. ]
The additive composition according to [5], which is a compound represented by the formula:
 [7] Rが、C2-12アルカンジイル基または2価のC6-12芳香族炭化水素基である前記[5]または[6]に記載の添加剤組成物。
 [8] Rが、C2-12アルカンジイル基またはフェニレン基である前記[5]または[6]に記載の添加剤組成物。
 [9] Rが、フェニレン基である前記[5]または[6]に記載の添加剤組成物。
 [10] Rが、1,4-フェニレン基である前記[5]または[6]に記載の添加剤組成物。
[7] The additive composition according to [5] or [6] above, wherein R 1 is a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group.
[8] The additive composition according to the above [5] or [6], wherein R 1 is a C 2-12 alkanediyl group or a phenylene group.
[9] The additive composition according to [5] or [6], wherein R 1 is a phenylene group.
[10] The additive composition according to the above [5] or [6], wherein R 1 is a 1,4-phenylene group.
 [11] RおよびRが、それぞれ独立に、水素原子またはC1-6アルキル基である前記[5]~[10]のいずれか一つに記載の添加剤組成物。
 [12] RおよびRが、共に水素原子である前記[5]~[10]のいずれか一つに記載の添加剤組成物。
[11] The additive composition according to any one of [5] to [10], wherein R 2 and R 3 are each independently a hydrogen atom or a C 1-6 alkyl group.
[12] The additive composition according to any one of [5] to [10], wherein R 2 and R 3 are both hydrogen atoms.
 [13] Rが、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基である前記[5]~[12]のいずれか一つに記載の添加剤組成物。
 [14] Rが、ヒドロキシ基またはC1-6アルコキシ基である前記[5]~[12]のいずれか一つに記載の添加剤組成物。
 [15] Rが、ヒドロキシ基である前記[5]~[12]のいずれか一つに記載の添加剤組成物。
[13] R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents. The additive composition according to any one of the above [5] to [12].
[14] The additive composition according to any one of [5] to [12], wherein R 4 is a hydroxy group or a C 1-6 alkoxy group.
[15] The additive composition according to any one of [5] to [12], wherein R 4 is a hydroxy group.
 [16] Xが、-NH-である前記[5]~[15]のいずれか一つに記載の添加剤組成物。 [16] The additive composition according to any one of [5] to [15], wherein X is —NH—.
 [17] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物の塩の溶媒和物である前記[5]~[16]のいずれか一つに記載の添加剤組成物。
 [18] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸塩の溶媒和物である前記[5]~[16]のいずれか一つに記載の添加剤組成物。
[17] A solvent of the salt of the compound represented by the formula (I), wherein at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof The additive composition according to any one of [5] to [16], which is a Japanese product.
[18] A carboxylate salt of the compound represented by formula (I), wherein at least one selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt thereof The additive composition according to any one of [5] to [16], which is a solvate of
 [19] 脂肪酸金属塩を構成する金属カチオンが、1価または2価の金属カチオンである前記[1]~[18]のいずれか一つに記載の添加剤組成物。 [19] The additive composition according to any one of [1] to [18], wherein the metal cation constituting the fatty acid metal salt is a monovalent or divalent metal cation.
 [20] 脂肪酸金属塩を構成する金属カチオンが、1価の金属カチオンである前記[1]~[18]のいずれか一つに記載の添加剤組成物。
 [21] 1価の金属カチオンが、アルカリ金属イオンである前記[20]に記載の添加剤組成物。
 [22] アルカリ金属イオンが、カリウムイオンである前記[21]に記載の添加剤組成物。
[20] The additive composition according to any one of [1] to [18], wherein the metal cation constituting the fatty acid metal salt is a monovalent metal cation.
[21] The additive composition according to [20], wherein the monovalent metal cation is an alkali metal ion.
[22] The additive composition according to [21], wherein the alkali metal ion is potassium ion.
 [23] 脂肪酸金属塩を構成する脂肪酸アニオンの炭素数が、8~30である前記[1]~[22]のいずれか一つに記載の添加剤組成物。
 [24] 脂肪酸金属塩を構成する脂肪酸アニオンの炭素数が、10~20である前記[1]~[22]のいずれか一つに記載の添加剤組成物。
 [25] 脂肪酸金属塩を構成する脂肪酸アニオンの炭素数が、12~16である前記[1]~[22]のいずれか一つに記載の添加剤組成物。
[23] The additive composition according to any one of [1] to [22], wherein the fatty acid anion constituting the fatty acid metal salt has 8 to 30 carbon atoms.
[24] The additive composition according to any one of [1] to [22], wherein the fatty acid anion constituting the fatty acid metal salt has 10 to 20 carbon atoms.
[25] The additive composition according to any one of [1] to [22], wherein the fatty acid anion constituting the fatty acid metal salt has 12 to 16 carbon atoms.
 [26] 脂肪酸金属塩を構成する脂肪酸アニオンが、飽和脂肪酸アニオンである前記[1]~[25]のいずれか一つに記載の添加剤組成物。 [26] The additive composition according to any one of [1] to [25], wherein the fatty acid anion constituting the fatty acid metal salt is a saturated fatty acid anion.
 [27] 脂肪酸金属塩の量が、化合物(C)100重量部に対して、10~1,000重量部である前記[1]~[26]のいずれか一つに記載の添加剤組成物。
 [28] 脂肪酸金属塩の量が、化合物(C)100重量部に対して、50~800重量部である前記[1]~[26]のいずれか一つに記載の添加剤組成物。
 [29] 脂肪酸金属塩の量が、化合物(C)100重量部に対して、80~500重量部である前記[1]~[26]のいずれか一つに記載の添加剤組成物。
[27] The additive composition according to any one of [1] to [26], wherein the amount of the fatty acid metal salt is 10 to 1,000 parts by weight with respect to 100 parts by weight of the compound (C). .
[28] The additive composition according to any one of [1] to [26], wherein the amount of the fatty acid metal salt is 50 to 800 parts by weight with respect to 100 parts by weight of the compound (C).
[29] The additive composition according to any one of [1] to [26], wherein the amount of the fatty acid metal salt is 80 to 500 parts by weight with respect to 100 parts by weight of the compound (C).
 [30] 化合物(C)および脂肪酸金属塩の合計量が、添加剤組成物全体を基準に、50~100重量%である前記[1]~[29]のいずれか一つに記載の添加剤組成物。
 [31] 化合物(C)および脂肪酸金属塩の合計量が、添加剤組成物全体を基準に、80~100重量%である前記[1]~[29]のいずれか一つに記載の添加剤組成物。
 [32] 化合物(C)および脂肪酸金属塩からなる前記[1]~[29]のいずれか一つに記載の添加剤組成物。
[30] The additive as described in any one of [1] to [29] above, wherein the total amount of the compound (C) and the fatty acid metal salt is 50 to 100% by weight based on the total additive composition Composition.
[31] The additive according to any one of the above [1] to [29], wherein the total amount of the compound (C) and the fatty acid metal salt is 80 to 100% by weight based on the whole additive composition Composition.
[32] The additive composition according to any one of [1] to [29], comprising the compound (C) and a fatty acid metal salt.
 [33] オレフィン性二重結合と反応し得る基または構造(A)、およびカーボンブラックと反応または相互作用し得る基または構造(B)を有する化合物(C)と、
 脂肪酸金属塩と、
 オレフィン性二重結合を有するゴム成分と、
 カーボンブラックと
を混練して得られるゴム組成物。
[33] Compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black;
Fatty acid metal salts,
A rubber component having an olefinic double bond;
A rubber composition obtained by kneading carbon black.
 [34] 基または構造(A)が、オレフィン性二重結合とラジカル反応または1,3-双極子付加反応し得る基または構造である前記[33]に記載のゴム組成物。
 [35] 基または構造(A)が、オレフィン性二重結合、アミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、*-SSOH若しくはその塩、*-S-S-*、*-C≡N-O、*-C≡N-N-*、前記式(i)で表される構造、前記式(ii)で表される構造、または前記式(iii)で表される構造である前記[33]に記載のゴム組成物。
[34] The rubber composition according to [33], wherein the group or structure (A) is a group or structure capable of undergoing radical reaction or 1,3-dipolar addition reaction with an olefinic double bond.
[35] The group or structure (A) is an olefinic double bond, an amide group, a maleimide ring, a 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof, * -SS - *, * - C≡N + -O -, * - C≡N + -N - - *, structure represented by the formula (i), the structure represented by formula (ii) or the formula, The rubber composition according to [33], which has a structure represented by (iii).
 [36] 基または構造(B)が、無置換または一置換アミノ基、ベンゼン環、フラン環、オキサゾール環または1H-ベンゾイミダゾール環である前記[33]~[35]のいずれか一つに記載のゴム組成物。 [36] The structure according to any one of [33] to [35], wherein the group or structure (B) is an unsubstituted or monosubstituted amino group, a benzene ring, a furan ring, an oxazole ring, or a 1H-benzimidazole ring. Rubber composition.
 [37] 化合物(C)が、前記式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つである前記[33]に記載のゴム組成物。
 [38] 式(I)で表される化合物が、前記式(II)で表される化合物である前記[37]に記載のゴム組成物。
[37] In the above [33], the compound (C) is at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof. The rubber composition as described.
[38] The rubber composition according to [37], wherein the compound represented by the formula (I) is a compound represented by the formula (II).
 [39] Rが、C2-12アルカンジイル基または2価のC6-12芳香族炭化水素基である前記[37]または[38]に記載のゴム組成物。
 [40] Rが、C2-12アルカンジイル基またはフェニレン基である前記[37]または[38]に記載のゴム組成物。
 [41] Rが、フェニレン基である前記[37]または[38]に記載のゴム組成物。
 [42] Rが、1,4-フェニレン基である前記[37]または[38]に記載のゴム組成物。
[39] The rubber composition according to [37] or [38], wherein R 1 is a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group.
[40] The rubber composition according to [37] or [38], wherein R 1 is a C 2-12 alkanediyl group or a phenylene group.
[41] The rubber composition according to [37] or [38], wherein R 1 is a phenylene group.
[42] The rubber composition according to the above [37] or [38], wherein R 1 is a 1,4-phenylene group.
 [43] RおよびRが、それぞれ独立に、水素原子またはC1-6アルキル基である前記[37]~[42]のいずれか一つに記載のゴム組成物。
 [44] RおよびRが、共に水素原子である前記[37]~[42]のいずれか一つに記載のゴム組成物。
[43] The rubber composition according to any one of [37] to [42], wherein R 2 and R 3 are each independently a hydrogen atom or a C 1-6 alkyl group.
[44] The rubber composition according to any one of [37] to [42], wherein R 2 and R 3 are both hydrogen atoms.
 [45] Rが、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基である前記[37]~[44]のいずれか一つに記載のゴム組成物。
 [46] Rが、ヒドロキシ基またはC1-6アルコキシ基である前記[37]~[44]のいずれか一つに記載のゴム組成物。
 [47] Rが、ヒドロキシ基である前記[37]~[44]のいずれか一つに記載のゴム組成物。
[45] R 4 is a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or a C 6-14 aryloxy group optionally having one or more substituents. The rubber composition according to any one of [37] to [44].
[46] The rubber composition according to any one of [37] to [44], wherein R 4 is a hydroxy group or a C 1-6 alkoxy group.
[47] The rubber composition according to any one of [37] to [44], wherein R 4 is a hydroxy group.
 [48] Xが、-NH-である前記[37]~[47]のいずれか一つに記載のゴム組成物。 [48] The rubber composition according to any one of [37] to [47], wherein X is —NH—.
 [49] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物の塩の溶媒和物である前記[37]~[48]のいずれか一つに記載のゴム組成物。
 [50] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸塩の溶媒和物である前記[37]~[48]のいずれか一つに記載のゴム組成物。
[49] A solvent of the salt of the compound represented by formula (I), wherein at least one selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt thereof The rubber composition according to any one of [37] to [48], which is a Japanese product.
[50] A carboxylate of the compound represented by the formula (I), wherein at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof, and a solvate of the salt The rubber composition according to any one of [37] to [48], which is a solvate of
 [51] 化合物(C)の量が、オレフィン性二重結合を有するゴム成分100重量部に対して、0.05~20重量部である前記[33]~[50]のいずれか一つに記載のゴム組成物。
 [52] 化合物(C)の量が、オレフィン性二重結合を有するゴム成分100重量部に対して、0.1~10重量部である前記[33]~[50]のいずれか一つに記載のゴム組成物。
 [53] 化合物(C)の量が、オレフィン性二重結合を有するゴム成分100重量部に対して、0.3~8重量部である前記[33]~[50]のいずれか一つに記載のゴム組成物。
[51] In any one of the above [33] to [50], the amount of the compound (C) is 0.05 to 20 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. The rubber composition as described.
[52] In any one of the above [33] to [50], the amount of the compound (C) is 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. The rubber composition as described.
[53] In any one of the above [33] to [50], the amount of the compound (C) is 0.3 to 8 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. The rubber composition as described.
 [54] 脂肪酸金属塩を構成する金属カチオンが、1価または2価の金属カチオンである前記[33]~[53]のいずれか一つに記載のゴム組成物。 [54] The rubber composition according to any one of [33] to [53], wherein the metal cation constituting the fatty acid metal salt is a monovalent or divalent metal cation.
 [55] 脂肪酸金属塩を構成する金属カチオンが、1価の金属カチオンである前記[33]~[53]のいずれか一つに記載のゴム組成物。
 [56] 1価の金属カチオンが、アルカリ金属イオンである前記[55]に記載のゴム組成物。
 [57] アルカリ金属イオンが、カリウムイオンである前記[56]に記載のゴム組成物。
[55] The rubber composition according to any one of [33] to [53], wherein the metal cation constituting the fatty acid metal salt is a monovalent metal cation.
[56] The rubber composition according to [55], wherein the monovalent metal cation is an alkali metal ion.
[57] The rubber composition according to [56], wherein the alkali metal ion is a potassium ion.
 [58] 脂肪酸金属塩を構成する脂肪酸アニオンの炭素数が、8~30である前記[33]~[57]のいずれか一つに記載のゴム組成物。
 [59] 脂肪酸金属塩を構成する脂肪酸アニオンの炭素数が、10~20である前記[33]~[57]のいずれか一つに記載のゴム組成物。
 [60] 脂肪酸金属塩を構成する脂肪酸アニオンの炭素数が、12~16である前記[33]~[57]のいずれか一つに記載のゴム組成物。
[58] The rubber composition according to any one of [33] to [57], wherein the fatty acid anion constituting the fatty acid metal salt has 8 to 30 carbon atoms.
[59] The rubber composition according to any one of [33] to [57], wherein the fatty acid anion constituting the fatty acid metal salt has 10 to 20 carbon atoms.
[60] The rubber composition according to any one of [33] to [57], wherein the fatty acid anion constituting the fatty acid metal salt has 12 to 16 carbon atoms.
 [61] 脂肪酸金属塩を構成する脂肪酸アニオンが、飽和脂肪酸アニオンである前記[33]~[60]のいずれか一つに記載のゴム組成物。 [61] The rubber composition according to any one of [33] to [60], wherein the fatty acid anion constituting the fatty acid metal salt is a saturated fatty acid anion.
 [62] 脂肪酸金属塩の量が、化合物(C)100重量部に対して、10~1,000重量部である前記[33]~[61]のいずれか一つに記載のゴム組成物。
 [63] 脂肪酸金属塩の量が、化合物(C)100重量部に対して、50~800重量部である前記[33]~[61]のいずれか一つに記載のゴム組成物。
 [64] 脂肪酸金属塩の量が、化合物(C)100重量部に対して、80~500重量部である前記[33]~[61]のいずれか一つに記載のゴム組成物。
[62] The rubber composition according to any one of [33] to [61], wherein the amount of the fatty acid metal salt is 10 to 1,000 parts by weight with respect to 100 parts by weight of the compound (C).
[63] The rubber composition according to any one of [33] to [61], wherein the amount of the fatty acid metal salt is 50 to 800 parts by weight with respect to 100 parts by weight of the compound (C).
[64] The rubber composition according to any one of [33] to [61], wherein the amount of the fatty acid metal salt is 80 to 500 parts by weight with respect to 100 parts by weight of the compound (C).
 [65] カーボンブラックの量が、オレフィン性二重結合を有するゴム成分100重量部に対して、20~80重量部である前記[33]~[64]のいずれか一つに記載のゴム組成物。
 [66] カーボンブラックの量が、オレフィン性二重結合を有するゴム成分100重量部に対して、30~70重量部である前記[33]~[64]のいずれか一つに記載のゴム組成物。
 [67] カーボンブラックの量が、オレフィン性二重結合を有するゴム成分100重量部に対して、30~60重量部である前記[33]~[64]のいずれか一つに記載のゴム組成物。
[65] The rubber composition according to any one of [33] to [64], wherein the amount of carbon black is 20 to 80 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. object.
[66] The rubber composition according to any one of [33] to [64], wherein the amount of carbon black is 30 to 70 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. object.
[67] The rubber composition according to any one of [33] to [64], wherein the amount of carbon black is 30 to 60 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. object.
 [68] オレフィン性二重結合を有するゴム成分が、ジエン系ゴムを含む前記[33]~[67]のいずれか一つに記載のゴム組成物。
 [69] オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量が、50重量%以上である前記[68]に記載のゴム組成物。
 [70] オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量が、70~100重量%である前記[68]に記載のゴム組成物。
 [71] オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量が、80~100重量%である前記[68]に記載のゴム組成物。
[68] The rubber composition according to any one of [33] to [67], wherein the rubber component having an olefinic double bond includes a diene rubber.
[69] The rubber composition according to [68], wherein the amount of the diene rubber in the rubber component having an olefinic double bond is 50% by weight or more.
[70] The rubber composition according to [68], wherein the amount of the diene rubber in the rubber component having an olefinic double bond is 70 to 100% by weight.
[71] The rubber composition according to [68], wherein the amount of the diene rubber in the rubber component having an olefinic double bond is 80 to 100% by weight.
 [72] さらに硫黄成分を混練して得られる前記[33]~[71]に記載のゴム組成物。
 [73] 硫黄成分の量が、オレフィン性二重結合を有するゴム成分100重量部に対して、0.01~30重量部である前記[72]に記載のゴム組成物。
 [74] 硫黄成分の量が、オレフィン性二重結合を有するゴム成分100重量部に対して、0.1~20重量部である前記[72]に記載のゴム組成物。
 [75] 硫黄成分の量が、オレフィン性二重結合を有するゴム成分100重量部に対して、0.1~10重量部である前記[72]に記載のゴム組成物。
 [76] 前記[72]~[75]のいずれか一つに記載のゴム組成物を加硫して得られる加硫ゴム組成物。
[72] The rubber composition according to [33] to [71], which is obtained by further kneading a sulfur component.
[73] The rubber composition according to [72], wherein the amount of the sulfur component is 0.01 to 30 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
[74] The rubber composition according to [72], wherein the amount of the sulfur component is 0.1 to 20 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
[75] The rubber composition according to [72], wherein the amount of the sulfur component is 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
[76] A vulcanized rubber composition obtained by vulcanizing the rubber composition according to any one of [72] to [75].
 [77] オレフィン性二重結合と反応し得る基または構造(A)、およびカーボンブラックと反応または相互作用し得る基または構造(B)を有する化合物(C)と、
 脂肪酸金属塩と、
 オレフィン性二重結合を有するゴム成分と、
 カーボンブラックと
を混練することを含むゴム組成物の製造方法。
 [78] さらに硫黄成分を混練することを含む前記[77]に記載の方法。
 [79] 前記[78]に記載の方法によって得られたゴム組成物を加硫することを含む加硫ゴム組成物の製造方法。
[77] a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black;
Fatty acid metal salts,
A rubber component having an olefinic double bond;
A method for producing a rubber composition, comprising kneading carbon black.
[78] The method according to [77], further comprising kneading a sulfur component.
[79] A method for producing a vulcanized rubber composition comprising vulcanizing a rubber composition obtained by the method according to [78].
 化合物(C)および脂肪酸金属塩を併用する本発明によれば、加硫ゴム組成物の損失係数を低減させるとともに、ゴム組成物の粘度増大を抑制することができる。 According to the present invention in which the compound (C) and the fatty acid metal salt are used in combination, the loss factor of the vulcanized rubber composition can be reduced and the increase in the viscosity of the rubber composition can be suppressed.
<化合物(C)>
 本発明は、オレフィン性二重結合と反応し得る基または構造(A)、およびカーボンブラックと反応または相互作用し得る基または構造(B)を有する化合物(C)を使用することを特徴の一つとする。化合物(C)は、1種のみを使用してもよく、2種以上を併用してもよい。
<Compound (C)>
The present invention is characterized by using a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black. I will. Only 1 type may be used for a compound (C) and it may use 2 or more types together.
 基または構造(A)としては、例えば、オレフィン性二重結合とラジカル反応または1,3-双極子付加反応し得る基または構造が挙げられる。より具体的には、基または構造(A)としては、例えば、オレフィン性二重結合、アミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、*-SSOH若しくはその塩、*-S-S-*、*-C≡N-O、*-C≡N-N-*、式(i)で表される構造、式(ii)で表される構造、または式(iii)で表される構造: Examples of the group or structure (A) include a group or structure capable of undergoing radical reaction or 1,3-dipole addition reaction with an olefinic double bond. More specifically, examples of the group or structure (A) include an olefinic double bond, an amide group, a maleimide ring, a 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof. , * —S—S— *, * —C≡N + —O , * —C≡N + —N — *, a structure represented by formula (i), a structure represented by formula (ii) Or a structure represented by formula (iii):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[前記式中、*は結合位置を表す。]
が挙げられる。上述のアミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、およびベンゾチアゾール環は、いずれも、1価の基でもよく、2価の基でもよい。アミド基としては、例えば、*-CO-NH-*、*-NHCO-*、*-CONH(前記式中、*は結合位置を表す)が挙げられる。マレイミド環としては、例えば、1-マレイミジル基が挙げられる。1H-イミダゾール環としては、例えば、1-イミダゾリル基が挙げられる。ベンゾオキサゾール環としては、例えばベンゾオキサゾリル基が挙げられる。ベンゾチアゾール環としては、例えば、ベンゾチアゾリル基が挙げられる。
[In the above formula, * represents a bonding position. ]
Is mentioned. Any of the amide group, maleimide ring, 1H-imidazole ring, benzoxazole ring, and benzothiazole ring described above may be a monovalent group or a divalent group. Examples of the amide group include * —CO—NH 2 — *, * —NHCO— *, * —CONH 2 (in the above formula, * represents a bonding position). Examples of the maleimide ring include a 1-maleimidyl group. Examples of the 1H-imidazole ring include a 1-imidazolyl group. Examples of the benzoxazole ring include a benzoxazolyl group. Examples of the benzothiazole ring include a benzothiazolyl group.
 基または構造(B)としては、例えば、無置換または一置換アミノ基(好ましくは無置換アミノ基)、ベンゼン環、フラン環、オキサゾール環または1H-ベンゾイミダゾール環が挙げられる。上述のベンゼン環、フラン環、オキサゾール環および1H-ベンゾイミダゾール環は、いずれも、1価の基でもよく、2価の基でもよい。ベンゼン環としては、例えば、フェニル基、1,4-フェニレン基が挙げられる。フラン環としては、例えば、2-フリル基、3-フリル基が挙げられる。オキサゾール環としては、例えば2-オキサゾリル基が挙げられる。1H-ベンゾイミダゾール環としては、例えば、2-ベンゾイミダゾリル基が挙げられる。これらは、カーボンブラックが有するカルボキシ基と反応し得るか、またはカーボンブラックの芳香環とπ-π相互作用し得る。 Examples of the group or structure (B) include an unsubstituted or monosubstituted amino group (preferably an unsubstituted amino group), a benzene ring, a furan ring, an oxazole ring, or a 1H-benzimidazole ring. Any of the benzene ring, furan ring, oxazole ring and 1H-benzimidazole ring described above may be a monovalent group or a divalent group. Examples of the benzene ring include a phenyl group and a 1,4-phenylene group. Examples of the furan ring include 2-furyl group and 3-furyl group. Examples of the oxazole ring include a 2-oxazolyl group. Examples of the 1H-benzimidazole ring include a 2-benzimidazolyl group. These can react with the carboxy group of carbon black, or can interact with the aromatic ring of carbon black by π-π.
 化合物(C)の具体例としては、以下の化合物が挙げられる。但し、本発明はこれら化合物に限定されない[下記式中、Aは、O、SまたはNHを表し、mは1~6の整数を表し、nは1~6の整数を表し、xは1~4の整数を表す]。 Specific examples of the compound (C) include the following compounds. However, the present invention is not limited to these compounds [In the following formula, A represents O, S or NH, m represents an integer of 1 to 6, n represents an integer of 1 to 6, and x represents 1 to Represents an integer of 4].
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 化合物(C)は、好ましくは式(I): Compound (C) is preferably the formula (I):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つである。なお、以下では、「式(I)で表される化合物」を「化合物(I)」と略称することがある。他の式で表される化合物も同様に略称することがある。また、「式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つ」を「化合物(I)等」と略称することがある。 Or a salt thereof, a solvate thereof, and a solvate of the salt thereof. Hereinafter, the “compound represented by the formula (I)” may be abbreviated as “compound (I)”. Similarly, compounds represented by other formulas may be abbreviated. “At least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt” may be abbreviated as “compound (I) etc.”. is there.
 式(I)中のRは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。 R 1 in the formula (I) is a C 2-12 alkanediyl group optionally having one or more substituents, and a C 3-10 cycloalkanediyl group optionally having one or more substituents. It represents a divalent C 6-12 aromatic hydrocarbon group which may have one or more substituents, or a combination thereof.
 本明細書中、「Cx-y」とは、炭素原子数がx以上y以下(x、y:整数)であることを意味する。 In the present specification, “C xy ” means that the number of carbon atoms is x or more and y or less (x, y: integer).
 本明細書中、アルカンジイル基は、直鎖状アルカンジイル基および分枝鎖状アルカンジイル基の両方を包含する。本明細書中、「C2-12アルカンジイル基」としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1-プロピルトリメチレン基、2-プロピルトリメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1-プロピルテトラメチレン基、2-プロピルテトラメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1-エチルペンタメチレン基、2-エチルペンタメチレン基、3-エチルペンタメチレン基、1-プロピルペンタメチレン基、2-プロピルペンタメチレン基、3-プロピルペンタメチレン基、1-メチルヘキサメチレン基、2-メチルヘキサメチレン基、3-メチルヘキサメチレン基、1-エチルヘキサメチレン基、2-エチルヘキサメチレン基、3-エチルヘキサメチレン基、1-プロピルヘキサメチレン基、2-プロピルヘキサメチレン基、3-プロピルヘキサメチレン基が挙げられる。 In the present specification, the alkanediyl group includes both a linear alkanediyl group and a branched alkanediyl group. In the present specification, examples of the “C 2-12 alkanediyl group” include an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, propylene group, 1-methyltrimethylene group, 2-methyl group. Trimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltetra Methylene group, 2-ethyltetramethylene group, 1-propyltetramethylene group, 2-propyltetramethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethylpentamethylene group Group, 2-ethylpentamethylene group, 3-ethylpentamethylene group, 1-propyl Rupentamethylene group, 2-propylpentamethylene group, 3-propylpentamethylene group, 1-methylhexamethylene group, 2-methylhexamethylene group, 3-methylhexamethylene group, 1-ethylhexamethylene group, 2-ethyl Examples include a hexamethylene group, a 3-ethylhexamethylene group, a 1-propylhexamethylene group, a 2-propylhexamethylene group, and a 3-propylhexamethylene group.
 C2-12アルカンジイル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。なお、ハロゲン原子等の説明は後述する。 Examples of the substituent that the C 2-12 alkanediyl group may have include, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, a C 1 1- 7 acyl-oxy group, C 6-14 aryl group optionally having one or more substituents. In addition, description of a halogen atom etc. is mentioned later.
 本明細書中、「C3-10シクロアルカンジイル基」としては、例えば、シクロプロパン-1,2-ジイル基、シクロブタン-1,3-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基、シクロノナン-1,5-ジイル基、シクロデカン-1,6-ジイル基が挙げられる。 In the present specification, examples of the “C 3-10 cycloalkanediyl group” include cyclopropane-1,2-diyl group, cyclobutane-1,3-diyl group, cyclopentane-1,3-diyl group, cyclohexane -1,4-diyl group, cycloheptane-1,4-diyl group, cyclooctane-1,5-diyl group, cyclononane-1,5-diyl group, and cyclodecane-1,6-diyl group.
 C3-10シクロアルカンジイル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 As the substituent that the C 3-10 cycloalkanediyl group may have, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C 1 A -7 acyl group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
 本明細書中、「2価のC6-12芳香族炭化水素基」としては、例えば、フェニレン基(例、1,4-フェニレン基)、ナフチレン基(例、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基)、ビフェニルジイル基(例、1,1’-ビフェニル-4,4’-ジイル基)が挙げられる。 In the present specification, examples of the “divalent C 6-12 aromatic hydrocarbon group” include a phenylene group (eg, 1,4-phenylene group), a naphthylene group (eg, 1,4-naphthylene group, 1 , 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group) and biphenyldiyl group (eg, 1,1′-biphenyl-4,4′-diyl group).
 2価のC6-12芳香族炭化水素基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、C6-14アリール基、スルホ基が挙げられる。なお、スルホ基は、-SOHで表される基である。 Examples of the substituent that the divalent C 6-12 aromatic hydrocarbon group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, and a C 1-6 alkoxy-carbonyl group. Group, C 1-7 acyl group, C 1-7 acyl-oxy group, C 6-14 aryl group, sulfo group. The sulfo group is a group represented by —SO 3 H.
 Rは、好ましくはC2-12アルカンジイル基または2価のC6-12芳香族炭化水素基であり、より好ましくはC2-12アルカンジイル基またはフェニレン基であり、さらに好ましくはフェニレン基であり、特に好ましくは1,4-フェニレン基である。 R 1 is preferably a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group, more preferably a C 2-12 alkanediyl group or a phenylene group, still more preferably a phenylene group. Particularly preferred is a 1,4-phenylene group.
 式(I)中のRおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。 R 2 and R 3 in formula (I) are each independently a hydrogen atom, a halogen atom, a hydroxy group, an optionally substituted C 1-6 alkoxy group, or one or more substituents. Represents a C 1-6 alkyl group optionally having C 1, or a C 6-14 aryl group optionally having one or more substituents, or R 2 and R 3 are bonded and they are bonded Together with the carbon atom to form a C 3-10 cycloalkenediyl group which may have one or more substituents.
 本明細書中、「ハロゲン原子」としては、フッ素、塩素、臭素、ヨウ素が挙げられる。 In the present specification, examples of the “halogen atom” include fluorine, chlorine, bromine and iodine.
 本明細書中、アルコキシ基は、直鎖状アルコキシ基および分枝鎖状アルコキシ基の両方を包含する。本明細書中、「C1-6アルコキシ基」としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基が挙げられる。 In the present specification, the alkoxy group includes both a linear alkoxy group and a branched alkoxy group. In the present specification, examples of the “C 1-6 alkoxy group” include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, and a pentyloxy group. And hexyloxy group.
 C1-6アルコキシ基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 1-6 alkoxy group may have include, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7. An acyl-oxy group, and a C 6-14 aryl group which may have one or more substituents.
 本明細書中、アルキル基は、直鎖状アルキル基および分枝鎖状アルキル基の両方を包含する。本明細書中、「C1-6アルキル基」としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、s-ブチル基、t-ブチル基、2-メチルブチル基、2-エチルブチル基、3-メチルブチル基、3-エチルブチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基が挙げられる。 In the present specification, the alkyl group includes both a linear alkyl group and a branched alkyl group. In the present specification, examples of the “C 1-6 alkyl group” include a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, s-butyl group, t-butyl group, 2 -Methylbutyl group, 2-ethylbutyl group, 3-methylbutyl group, 3-ethylbutyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group.
 C1-6アルキル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 1-6 alkyl group may have include, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, a C 1-7 An acyl-oxy group, and a C 6-14 aryl group which may have one or more substituents.
 本明細書中、「C6-14アリール基」としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基が挙げられる。 In the present specification, examples of the “C 6-14 aryl group” include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group.
 C6-14アリール基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、C6-14アリール基、スルホ基が挙げられる。 Examples of the substituent that the C 6-14 aryl group may have include, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1-7. Examples include an acyl group, a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group.
 本明細書中、「C1-7アシル基」としては、例えば、ホルミル基、C1-6アルキル-カルボニル基(例、アセチル基、ピバロイル基)、ベンゾイル基が挙げられる。 In the present specification, examples of the “C 1-7 acyl group” include a formyl group, a C 1-6 alkyl-carbonyl group (eg, acetyl group, pivaloyl group), and a benzoyl group.
 本明細書中、C1-6アルコキシ-カルボニル基に含まれる「C1-6アルコキシ基」およびC1-7アシル-オキシ基に含まれる「C1-7アシル基」としては、例えば、上記のものが挙げられる。 In the present specification, examples of the “C 1-6 alkoxy group” contained in the C 1-6 alkoxy-carbonyl group and the “C 1-7 acyl group” contained in the C 1-7 acyl-oxy group include, for example, Can be mentioned.
 「RおよびRが結合し、それらが結合している炭素原子と一緒になって形成されるC3-10シクロアルケンジイル基」としては、例えば、シクロプロペン-1,2-ジイル基、シクロブテン-1,2-ジイル基、シクロペンテン-1,2-ジイル基、シクロヘキセン-1,2-ジイル基、シクロヘプテン-1,2-ジイル基、シクロオクテン-1,2-ジイル基、シクロノネン-1,2-ジイル基、シクロデセン-1,2-ジイル基が挙げられる。 Examples of the “C 3-10 cycloalkenediyl group formed by combining R 2 and R 3 together with the carbon atom to which they are bonded” include a cyclopropene-1,2-diyl group, Cyclobutene-1,2-diyl group, cyclopentene-1,2-diyl group, cyclohexene-1,2-diyl group, cycloheptene-1,2-diyl group, cyclooctene-1,2-diyl group, cyclononene-1, Examples thereof include 2-diyl group and cyclodecene-1,2-diyl group.
 C3-10シクロアルケンジイル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 3-10 cycloalkenediyl group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1 A -7 acyl group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
 RおよびRは、それぞれ独立に、好ましくは水素原子またはC1-6アルキル基であり、より好ましくは水素原子である。 R 2 and R 3 are each independently preferably a hydrogen atom or a C 1-6 alkyl group, more preferably a hydrogen atom.
 式(I)中のRは、ヒドロキシ基(-OH)、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC6-14アリールオキシ基、または-NR(前記式中、RおよびRは、それぞれ独立に、水素原子、または1以上の置換基を有していてもよいC1-6アルキル基を表す。)を表す。 R 4 in formula (I), hydroxy groups (-OH), one or more substituents a C 1-6 alkoxy group optionally having one or more may have a substituent group C 6 -14 aryloxy group, or -NR 5 R 6 (wherein R 5 and R 6 are each independently a hydrogen atom or a C 1-6 alkyl group optionally having one or more substituents) Represents).
 本明細書中、C6-14アリールオキシ基に含まれる「C6-14アリール基」としては、例えば、上記のものが挙げられる。 In the present specification, examples of the “C 6-14 aryl group” contained in the C 6-14 aryloxy group include those described above.
 Rは、好ましくはヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基であり、より好ましくはヒドロキシ基またはC1-6アルコキシ基であり、さらに好ましくはヒドロキシ基である。 R 4 is preferably a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or a C 6-14 aryloxy group optionally having one or more substituents. More preferably a hydroxy group or a C 1-6 alkoxy group, and still more preferably a hydroxy group.
 式(I)中のXは、-NH-または-O-を表す。Xは、好ましくは-NH-である。 X in the formula (I) represents —NH— or —O—. X is preferably —NH—.
 化合物(I)は、好ましくは式(II): Compound (I) is preferably represented by the formula (II):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(II)中、R~RおよびXは上記と同義である。]
で表される化合物である。
[In the formula (II), R 1 to R 4 and X are as defined above. ]
It is a compound represented by these.
 化合物(I)の塩としては、(a)化合物(I)の-NHと他の酸とが形成するアミン塩、(b)Xが-NH-である場合、化合物(I)の-NH-と他の酸とが形成するアミン塩、および(c)Rがヒドロキシ基である場合、化合物(I)の-COOHと他の塩基とが形成するカルボン酸塩が挙げられる。前記(a)および(b)のアミン塩を形成する他の酸としては、有機酸および無機酸のいずれでもよく、前記(c)のカルボン酸塩を形成する塩基は、有機塩基および無機塩基のいずれでもよい。化合物(I)の塩は、好ましくはカルボン酸塩であり、より好ましくはカルボン酸アルカリ金属塩およびカルボン酸アルカリ土類金属塩からなる群から選ばれる少なくとも一つであり、さらに好ましくはカルボン酸アルカリ金属塩であり、特に好ましくはカルボン酸ナトリウム塩である。 The salt of compound (I) includes (a) an amine salt formed by —NH 2 of compound (I) and another acid, and (b) —NH— of compound (I) when X is —NH—. Examples include amine salts formed by-and other acids, and (c) carboxylates formed by -COOH of compound (I) and other bases when R 4 is a hydroxy group. The other acid that forms the amine salt of (a) and (b) may be either an organic acid or an inorganic acid, and the base that forms the carboxylate salt of (c) is an organic base or an inorganic base. Either is acceptable. The salt of compound (I) is preferably a carboxylate, more preferably at least one selected from the group consisting of an alkali metal carboxylate and an alkaline earth metal carboxylate, and more preferably an alkali carboxylate A metal salt, particularly preferably a sodium carboxylate.
 化合物(I)の溶媒和物および化合物(I)の塩の溶媒和物を形成する溶媒は、水でもよく、有機溶媒(例えば、メタノール)でもよい。溶媒和物を形成する溶媒は、好ましくは水またはメタノールであり、より好ましくは水である。 The solvent that forms the solvate of compound (I) and the solvate of the salt of compound (I) may be water or an organic solvent (for example, methanol). The solvent forming the solvate is preferably water or methanol, more preferably water.
 化合物(I)等は、好ましくは化合物(I)の塩の溶媒和物であり、より好ましくは化合物(I)のカルボン酸塩の溶媒和物であり、さらに好ましくは化合物(I)のカルボン酸アルカリ金属塩の水和物および化合物(I)のカルボン酸アルカリ土類金属塩の水和物からなる群から選ばれる少なくとも一つであり、特に好ましくは化合物(I)のカルボン酸ナトリウム塩の水和物である。 Compound (I) or the like is preferably a solvate of a salt of compound (I), more preferably a solvate of a carboxylate salt of compound (I), and more preferably a carboxylic acid of compound (I). At least one selected from the group consisting of hydrates of alkali metal salts and hydrates of carboxylic acid alkaline earth metal salts of compound (I), particularly preferably water of sodium salt of carboxylic acid of compound (I) It is a Japanese product.
 以下に化合物(I)またはその塩の具体例を示す。 Specific examples of compound (I) or a salt thereof are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 化合物(I)等は、特許文献1に記載されている方法または該方法に準じた方法によって製造することができる。 Compound (I) and the like can be produced by the method described in Patent Document 1 or a method according to the method.
<脂肪酸金属塩>
 本発明は、脂肪酸金属塩を使用することを特徴の一つとする。化合物(C)と脂肪酸金属塩との併用によって、加硫ゴム組成物の損失係数の低減およびゴム組成物の粘度増大の抑制を両立することができる。脂肪酸金属塩は、1種のみを使用してもよく、2種以上を併用してもよい。
<Fatty acid metal salt>
One feature of the present invention is that a fatty acid metal salt is used. By the combined use of the compound (C) and the fatty acid metal salt, it is possible to achieve both reduction in the loss factor of the vulcanized rubber composition and suppression of increase in the viscosity of the rubber composition. Only one type of fatty acid metal salt may be used, or two or more types may be used in combination.
 脂肪酸金属塩を構成する金属カチオンとしては、例えば、1価の金属カチオン、2価の金属カチオン等が挙げられる。1価の金属カチオンとしては、例えば、アルカリ金属イオン(例、Li、Na、K)等が挙げられる。2価の金属カチオンとしては、例えば、アルカリ土類金属イオン(例、Mg2+、Ca2+)、亜鉛イオン(Zn2+)等が挙げられる。 Examples of the metal cation constituting the fatty acid metal salt include a monovalent metal cation and a divalent metal cation. Examples of monovalent metal cations include alkali metal ions (eg, Li + , Na + , K + ) and the like. Examples of the divalent metal cation include alkaline earth metal ions (eg, Mg 2+ , Ca 2+ ), zinc ions (Zn 2+ ) and the like.
 脂肪酸金属塩の中でも、脂肪酸アニオンと1価の金属カチオンとの塩を、化合物(C)と併用することによって、加硫ゴム組成物の損失係数をさらに低減させ得る。従って、脂肪酸金属塩を構成する金属カチオンは、好ましくは1価の金属カチオンであり、より好ましくはアルカリ金属イオンであり、さらに好ましくはカリウムイオン(K)である。 Among the fatty acid metal salts, the loss factor of the vulcanized rubber composition can be further reduced by using a salt of a fatty acid anion and a monovalent metal cation together with the compound (C). Accordingly, the metal cation constituting the fatty acid metal salt is preferably a monovalent metal cation, more preferably an alkali metal ion, and still more preferably a potassium ion (K + ).
 脂肪酸金属塩を構成する脂肪酸アニオンは、飽和脂肪酸アニオンでもよく、不飽和脂肪酸アニオンでもよい。このアニオンは、好ましくは飽和脂肪酸アニオンである。 The fatty acid anion constituting the fatty acid metal salt may be a saturated fatty acid anion or an unsaturated fatty acid anion. This anion is preferably a saturated fatty acid anion.
 飽和脂肪酸としては、例えば、カプリル酸(炭素数8)、ペラルゴン酸(炭素数9)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、ペンタデシル酸(炭素数15)、パルミチン酸(炭素数16)、マルガリン酸(炭素数17)、ステアリン酸(炭素数18)、ツベルクロステアリン酸(炭素数19)、アラキジン酸(炭素数20)、ベヘン酸(炭素数22)、リグノセリン酸(炭素数24)、セロチン酸(炭素数26)、モンタン酸(炭素数28)、メリシン酸(炭素数30)等が挙げられる。 Examples of saturated fatty acids include caprylic acid (8 carbon atoms), pelargonic acid (9 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), pentadecylic acid ( 15 carbon atoms, palmitic acid (16 carbon atoms), margaric acid (17 carbon atoms), stearic acid (18 carbon atoms), tuberculostearic acid (19 carbon atoms), arachidic acid (20 carbon atoms), behenic acid ( Examples thereof include 22 carbon atoms, lignoceric acid (24 carbon atoms), serotic acid (26 carbon atoms), montanic acid (28 carbon atoms), and mellic acid (30 carbon atoms).
 不飽和脂肪酸としては、例えば、パルミトレイン酸(炭素数16)、オレイン酸(炭素数18)、リノール酸(炭素数18)、エレオステアリン酸(炭素数18)、アラキドン酸(炭素数20)等が挙げられる。 Examples of unsaturated fatty acids include palmitoleic acid (16 carbon atoms), oleic acid (18 carbon atoms), linoleic acid (18 carbon atoms), eleostearic acid (18 carbon atoms), arachidonic acid (20 carbon atoms), etc. Is mentioned.
 加硫ゴム組成物の損失係数の低減の観点から、脂肪酸金属塩を構成する脂肪酸アニオンの炭素数は、好ましくは8~30であり、より好ましくは10~20であり、さらに好ましくは12~16である。 From the viewpoint of reducing the loss factor of the vulcanized rubber composition, the number of carbon atoms of the fatty acid anion constituting the fatty acid metal salt is preferably 8-30, more preferably 10-20, and still more preferably 12-16. It is.
 脂肪酸金属塩を構成する脂肪酸アニオンは、好ましくはC8-30飽和脂肪酸アニオンであり、より好ましくはC10-20飽和脂肪酸アニオンであり、さらに好ましくはC12-16飽和脂肪酸アニオンである。 The fatty acid anion constituting the fatty acid metal salt is preferably a C 8-30 saturated fatty acid anion, more preferably a C 10-20 saturated fatty acid anion, and still more preferably a C 12-16 saturated fatty acid anion.
 脂肪酸金属塩は、好ましくはC8-30飽和脂肪酸アニオンと1価の金属カチオンとの塩、より好ましくはC10-20飽和脂肪酸アニオンとアルカリ金属イオンとの塩、さらに好ましくはC12-16飽和脂肪酸アニオンとカリウムイオンとの塩である。 The fatty acid metal salt is preferably a salt of a C 8-30 saturated fatty acid anion and a monovalent metal cation, more preferably a salt of a C 10-20 saturated fatty acid anion and an alkali metal ion, still more preferably C 12-16 saturated. It is a salt of a fatty acid anion and a potassium ion.
<添加剤組成物>
 本発明の添加剤組成物は、化合物(C)および脂肪酸金属塩とは異なる他の添加剤を含有していてもよい。化合物(C)および脂肪酸金属塩の合計量は、本発明の添加剤組成物全体を基準に、好ましくは50~100重量%、より好ましくは80~100重量%である。本発明の添加剤組成物は、化合物(C)および脂肪酸金属塩からなることがより好ましい。
<Additive composition>
The additive composition of the present invention may contain another additive different from the compound (C) and the fatty acid metal salt. The total amount of the compound (C) and the fatty acid metal salt is preferably 50 to 100% by weight, more preferably 80 to 100% by weight, based on the whole additive composition of the present invention. The additive composition of the present invention is more preferably composed of the compound (C) and a fatty acid metal salt.
 脂肪酸金属塩の量は、化合物(C)100重量部に対して、好ましくは10~1,000重量部、より好ましくは50~800重量部、さらに好ましくは80~500重量部である。 The amount of the fatty acid metal salt is preferably 10 to 1,000 parts by weight, more preferably 50 to 800 parts by weight, and still more preferably 80 to 500 parts by weight with respect to 100 parts by weight of the compound (C).
<ゴム組成物、加硫ゴム組成物、およびそれらの製造方法>
 本発明は、上述の化合物(C)と、脂肪酸金属塩と、オレフィン性二重結合を有するゴム成分と、カーボンブラックとを混練して得られるゴム組成物、およびその製造方法を提供する。また、本発明は、上述の化合物(C)と、脂肪酸金属塩と、オレフィン性二重結合を有するゴム成分と、カーボンブラックと、硫黄成分とを混練して得られるゴム組成物(以下「硫黄成分を含有するゴム組成物」と記載することがある。)、およびその製造方法を提供する。また、本発明は、硫黄成分を含有するゴム組成物を加硫して得られる加硫ゴム組成物、およびその製造方法を提供する。
<Rubber composition, vulcanized rubber composition, and production method thereof>
The present invention provides a rubber composition obtained by kneading the above-mentioned compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond, and carbon black, and a method for producing the same. The present invention also provides a rubber composition (hereinafter referred to as “sulfur”) obtained by kneading the above-mentioned compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond, carbon black, and a sulfur component. A rubber composition containing a component "), and a method for producing the same. The present invention also provides a vulcanized rubber composition obtained by vulcanizing a rubber composition containing a sulfur component, and a method for producing the same.
 上述の化合物(C)は、混練中にオレフィン性二重結合を有するゴム成分等と反応し、別の化合物を形成する可能性がある。また、上述の化合物(C)は、混練中に分解し、この分解物がオレフィン性二重結合を有するゴム成分等と反応し、別の化合物を形成する可能性がある。しかし、固体のゴム組成物を分析する現在の技術では、ゴム組成物中で形成される可能性がある前記化合物を、その構造または特性によって直接特定することは不可能であるか、またはおよそ実際的でない。そのため、本明細書および請求の範囲では、本発明のゴム組成物を「上述の化合物(C)と、脂肪酸金属塩と、オレフィン性二重結合を有するゴム成分と、カーボンブラックとを混練して得られる」と特定する。加硫ゴム組成物についても同様である。 The above-mentioned compound (C) may react with a rubber component having an olefinic double bond during kneading to form another compound. Moreover, the above-mentioned compound (C) decomposes during kneading, and this decomposition product may react with a rubber component having an olefinic double bond to form another compound. However, with current techniques for analyzing solid rubber compositions, it is not possible, or approximately practical, to directly identify the compounds that may be formed in the rubber composition by their structure or properties. Not right. Therefore, in the present specification and claims, the rubber composition of the present invention is obtained by kneading the above-mentioned compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond, and carbon black. Specified. The same applies to the vulcanized rubber composition.
 化合物(C)の量は、オレフィン性二重結合を有するゴム成分100重量部に対して、好ましくは0.05~20重量部、より好ましくは0.1~10重量部、さらに好ましくは0.3~8重量部である。 The amount of the compound (C) is preferably 0.05 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, and still more preferably 0.1 to 100 parts by weight of the rubber component having an olefinic double bond. 3 to 8 parts by weight.
 脂肪酸金属塩の量は、化合物(C)100重量部に対して、好ましくは10~1,000重量部、より好ましくは50~800重量部、さらに好ましくは80~500重量部である。 The amount of the fatty acid metal salt is preferably 10 to 1,000 parts by weight, more preferably 50 to 800 parts by weight, and still more preferably 80 to 500 parts by weight with respect to 100 parts by weight of the compound (C).
 オレフィン性二重結合を有するゴム成分としては、天然ゴム(NR)および変性天然ゴム(例えば、エポキシ化天然ゴム、脱蛋白天然ゴム);ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン・ジエン共重合ゴム(EPDM)等の各種の合成ゴム;が例示される。オレフィン性二重結合を有するゴム成分は、1種のみを使用してもよく、2種以上を併用してもよい。 Rubber components having an olefinic double bond include natural rubber (NR) and modified natural rubber (eg, epoxidized natural rubber, deproteinized natural rubber); polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR). ), Polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene / diene copolymer rubber (EPDM) and the like. . Only 1 type may be used for the rubber component which has an olefinic double bond, and 2 or more types may be used together.
 オレフィン性二重結合を有するゴム成分は、好ましくはジエン系ゴムを含む。ここで、ジエン系ゴムとは、共役2重結合を持つジエンモノマーを原料としたゴムを意味する。ジエン系ゴムとしては、例えば、天然ゴム、変性天然ゴム、ポリイソプレンゴム、クロロプレンゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム、ニトリルゴム等が挙げられる。ジエン系ゴムは、高不飽和性であることが好ましく、天然ゴムであることがより好ましい。また、天然ゴムと他のゴム(例えば、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム)とを併用することも有効である。 The rubber component having an olefinic double bond preferably contains a diene rubber. Here, the diene rubber means a rubber made from a diene monomer having a conjugated double bond. Examples of the diene rubber include natural rubber, modified natural rubber, polyisoprene rubber, chloroprene rubber, styrene / butadiene copolymer rubber, polybutadiene rubber, and nitrile rubber. The diene rubber is preferably highly unsaturated, and more preferably natural rubber. It is also effective to use natural rubber in combination with another rubber (for example, styrene / butadiene copolymer rubber or polybutadiene rubber).
 ジエン系ゴム(特に、天然ゴム)を使用する場合、オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量は、好ましくは50重量%以上、より好ましくは70~100重量%、さらに好ましくは80~100重量%である。 When a diene rubber (especially natural rubber) is used, the amount of the diene rubber in the rubber component having an olefinic double bond is preferably 50% by weight or more, more preferably 70 to 100% by weight, even more preferably. Is 80 to 100% by weight.
 天然ゴムの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、エポキシ化度10~60モル%のもの(例えば、クンプーラン ガスリー社製ENR25やENR50)が挙げられる。脱蛋白天然ゴムとしては、総窒素含有率が0.3重量%以下である脱蛋白天然ゴムが好ましい。その他の変性天然ゴムとしては、例えば、天然ゴムに4-ビニルピリジン、N,N-ジアルキルアミノエチルアクリレート(例えばN,N-ジエチルアミノエチルアクリレート)、2-ヒドロキシアクリレート等を反応させた極性基を含有する変性天然ゴムが挙げられる。 Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20. Examples of the epoxidized natural rubber include those having a degree of epoxidation of 10 to 60 mol% (for example, ENR25 and ENR50 manufactured by Kumphuran Gasley). As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable. Other modified natural rubbers include, for example, polar groups obtained by reacting natural rubber with 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (for example, N, N-diethylaminoethyl acrylate), 2-hydroxy acrylate, etc. Modified natural rubber.
 SBRとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の210~211頁に記載されている乳化重合SBRおよび溶液重合SBRが挙げられる。中でも、トレッド用ゴム組成物のためには、溶液重合SBRが好ましい。 Examples of the SBR include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Among these, solution polymerization SBR is preferable for the rubber composition for treads.
 溶液重合SBRとしては、変性剤で変性して得られる、分子末端に窒素、スズおよびケイ素の少なくとも一つの元素を有する、変性溶液重合SBRが挙げられる。変性剤としては、例えば、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。これらの変性剤は、単独で用いてもよいし、複数を用いてもよい。変性溶液重合SBRとしては、具体的には、日本ゼオン社製「Nipol(登録商標)NS116」等の4,4’-ビス(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、および旭化成社製「E10」および「E15」等のシラン変性溶液重合SBR等が挙げられる。 Examples of the solution polymerization SBR include a modified solution polymerization SBR obtained by modification with a modifying agent and having at least one element of nitrogen, tin and silicon at the molecular end. Examples of the modifier include lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, silane compounds having an alkoxy group, aminosilane compounds, tin compounds and silane compounds having an alkoxy group. And a combined modifier of an alkyl acrylamide compound and a silane compound having an alkoxy group. These modifiers may be used alone or in combination. Specific examples of the modified solution polymerization SBR include solution polymerization SBR and JSR in which molecular ends are modified using 4,4′-bis (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd. Examples thereof include solution polymerization SBR in which molecular ends are modified using a tin halide compound such as “SL574” manufactured by the company, and silane-modified solution polymerization SBR such as “E10” and “E15” manufactured by Asahi Kasei.
 また、乳化重合SBRおよび溶液重合SBRに、プロセスオイルやアロマオイル等のオイルを添加した油展SBRも、トレッド用ゴム組成物のために好ましい。 Also, oil-extended SBR in which oil such as process oil or aroma oil is added to emulsion polymerization SBR and solution polymerization SBR is also preferable for the rubber composition for tread.
 BRとしては、低ビニル含量の溶液重合BRおよび高ビニル含量の溶液重合BRのいずれでもよいが、高ビニル含量の溶液重合BRが好ましい。変性剤で変性して得られる、分子末端に窒素、スズ、ケイ素の少なくとも一つの元素を有する変性溶液重合BRが特に好ましい。変性剤としては、例えば、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(例えば、トリアルコキシシラン化合物)、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。これらの変性剤は、単独で用いてもよいし、複数を用いてもよい。変性溶液重合BRとしては、例えば、日本ゼオン製「Nipol(登録商標)BR 1250H」等のスズ変性BRが挙げられる。 The BR may be either a solution polymerization BR having a low vinyl content or a solution polymerization BR having a high vinyl content, but a solution polymerization BR having a high vinyl content is preferred. A modified solution polymerization BR having at least one element of nitrogen, tin, or silicon at the molecular end obtained by modification with a modifier is particularly preferred. Examples of the modifier include 4,4′-bis (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N-dialkylacrylamide compound, isocyanate compound, imide compound, and alkoxy group. Examples thereof include a silane compound having an alkoxy group (for example, a trialkoxysilane compound), an aminosilane compound, a tin compound and a silane compound having an alkoxy group, and a combined modifier having an alkylacrylamide compound and an silane compound having an alkoxy group. These modifiers may be used alone or in combination. Examples of the modified solution polymerization BR include tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon.
 BRは、トレッド用ゴム組成物、サイドウォール用ゴム組成物のために好ましく用いることができる。BRは、SBRおよび/または天然ゴム(NR)とのブレンドで使用してもよい。トレッド用ゴム組成物では、オレフィン性二重結合を有するゴム成分中、例えば、SBRおよび/またはNRの量が60~100重量%であり、BRの量が0~40重量%である。サイドウォール用ゴム組成物では、オレフィン性二重結合を有するゴム成分中、好ましくは、SBRおよび/またはNRの量が10~70重量%であり、BRの量が90~30重量%であり、より好ましくは、NRの量が40~60重量%であり、BRの量が60~40重量%である。トレッド用ゴム組成物およびサイドウォール用ゴム組成物のために、変性SBRと非変性SBRとのブレンド、変性BRと非変性BRとのブレンド等も好ましく使用することができる。 BR can be preferably used for a rubber composition for a tread and a rubber composition for a sidewall. BR may be used in a blend with SBR and / or natural rubber (NR). In the rubber composition for a tread, in the rubber component having an olefinic double bond, for example, the amount of SBR and / or NR is 60 to 100% by weight, and the amount of BR is 0 to 40% by weight. In the rubber composition for a sidewall, in the rubber component having an olefinic double bond, preferably, the amount of SBR and / or NR is 10 to 70% by weight, and the amount of BR is 90 to 30% by weight. More preferably, the amount of NR is 40 to 60% by weight and the amount of BR is 60 to 40% by weight. For the rubber composition for a tread and the rubber composition for a sidewall, a blend of modified SBR and non-modified SBR, a blend of modified BR and non-modified BR, and the like can be preferably used.
 ゴム組成物をタイヤのトレッド用に使用する場合、例えば乗用車用タイヤでは、オレフィン性二重結合を有するゴム成分として耐摩耗性やヒステリシスロス低減性能に優れるSBRをベース材料として用い、トラック・バス用タイヤではより高強度のNRを任意にSBRと共にベース材料として用い、これらベース材料に、必要に応じてBRをブレンドして用いることが、耐摩耗性、耐疲労性、反発弾性に優れたトレッドが得られるため好ましい。 When the rubber composition is used for tire treads, for example, in passenger car tires, the rubber component having an olefinic double bond uses SBR, which is excellent in wear resistance and hysteresis loss reduction performance, as a base material. In tires, a higher strength NR is optionally used as a base material together with SBR, and it is possible to blend these base materials with BR as necessary to obtain a tread having excellent wear resistance, fatigue resistance, and rebound resilience. Since it is obtained, it is preferable.
 ゴム組成物をタイヤのサイドウォール用に使用する場合、乗用車用タイヤではNRとSBRとをブレンドして、または、NRとBRとをブレンドして、トラック・バス用タイヤではNRとBRとをブレンドして使用することが、耐折曲げ屈曲性、耐き裂成長性が得られるため好ましい。 When rubber composition is used for tire sidewall, NR and SBR are blended for passenger car tires, or NR and BR are blended, and NR and BR are blended for truck and bus tires. It is preferable to be used because bending resistance and crack growth resistance are obtained.
 ゴム組成物をタイヤのベルト用に使用する場合、オレフィン性二重結合を有するゴム成分としてNRおよび/またはIRを使用することが、高弾性率や補強用繊維との良好な接着性が得られるため好ましい。 When the rubber composition is used for a tire belt, use of NR and / or IR as a rubber component having an olefinic double bond can provide high elasticity and good adhesion to reinforcing fibers. Therefore, it is preferable.
 ゴム組成物をタイヤのインナーライナーとして使用する場合、オレフィン性二重結合を有するゴム成分としてIIRとSBRおよびNRとをブレンドして、またはIIRとNRとをブレンドして使用することが、抵ガス透過性と耐屈曲性が得られるため好ましい。 When the rubber composition is used as an inner liner of a tire, it is difficult to use a blend of IIR and SBR and NR or a blend of IIR and NR as a rubber component having an olefinic double bond. It is preferable because permeability and bending resistance can be obtained.
 カーボンブラックとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の494頁に記載されるものが挙げられる。カーボンブラックは、1種のみを使用してもよく、2種以上を併用してもよい。カーボンブラックとしては、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、ISAF-HM(Intermediate SAF-High Modulus)、FEF(Fast Extrusion Furnace)、MAF、GPF(General Purpose Furnace)、SRF(Semi-Reinforcing Furnace)が好ましい。 Examples of the carbon black include those described on page 494 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Carbon black may use only 1 type and may use 2 or more types together. As carbon black, HAF (High Ablation Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), ISAF-HM (Intermediate SAF-HighFurgence), FEF (FastEurFastGurP). SRF (Semi-Reinforcing Furnace) is preferable.
 カーボンブラックの量は、オレフィン性二重結合を有するゴム成分100重量部に対して、好ましくは20~80重量部、より好ましくは30~70重量部、さらに好ましくは30~60重量部である。 The amount of carbon black is preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, and further preferably 30 to 60 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
 硫黄成分としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、および高分散性硫黄、モルフォリンジスルフィド、テトラメチルチウラムジスルフィドが挙げられる。通常は粉末硫黄が好ましく、ゴム組成物をベルト用部材等の硫黄量が多いタイヤ部材の製造に用いる場合には不溶性硫黄が好ましい。 Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, morpholine disulfide, and tetramethylthiuram disulfide. Usually, powdered sulfur is preferable, and insoluble sulfur is preferable when the rubber composition is used for manufacturing a tire member having a large amount of sulfur such as a belt member.
 硫黄成分の量は、オレフィン性二重結合を有するゴム成分100重量部に対して、好ましくは0.01~30重量部、より好ましくは0.1~20重量部、さらに好ましくは0.1~10重量部である。 The amount of the sulfur component is preferably 0.01-30 parts by weight, more preferably 0.1-20 parts by weight, still more preferably 0.1-0.1 parts by weight, relative to 100 parts by weight of the rubber component having an olefinic double bond. 10 parts by weight.
 本発明では、上述の化合物(C)、脂肪酸金属塩、オレフィン性二重結合を有するゴム成分、カーボンブラック、硫黄成分に加えて、ゴム分野で公知の他の成分を使用してもよい。他の成分としては、例えば、カーボンブラック以外の充填剤、シリカと結合可能な化合物、加硫促進剤、加硫促進助剤、樹脂、粘弾性改善剤、老化防止剤、オイル、ワックス、しゃく解剤、リターダー、オキシエチレンユニットを有する化合物、触媒(ナフテン酸コバルト等)が挙げられる。他の成分は、いずれも、1種のみを使用してもよく、2種以上を併用してもよい。 In the present invention, in addition to the compound (C), fatty acid metal salt, rubber component having an olefinic double bond, carbon black, and sulfur component, other components known in the rubber field may be used. Other components include, for example, fillers other than carbon black, compounds capable of binding to silica, vulcanization accelerators, vulcanization accelerators, resins, viscoelasticity improvers, anti-aging agents, oils, waxes, and crackers. Agents, retarders, compounds having an oxyethylene unit, and catalysts (such as cobalt naphthenate). As for another component, all may use only 1 type and may use 2 or more types together.
 カーボンブラック以外の充填剤としては、例えば、シリカ(例えば、含水シリカ)、水酸化アルミニウム、瀝青炭粉砕物、タルク、クレー(特に、焼成クレー)、酸化チタンが挙げられる。 Examples of fillers other than carbon black include silica (for example, hydrous silica), aluminum hydroxide, bituminous coal pulverized material, talc, clay (particularly, calcined clay), and titanium oxide.
 シリカとしては、CTAB比表面積50~180m/gのシリカ、窒素吸着比表面積50~300m/gのシリカが例示される。シリカの市販品としては、例えば、東ソー・シリカ社製「Nipsil(登録商標)AQ」、「Nipsil(登録商標)AQ-N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)VN3-G」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」が挙げられる。また、(i)pHが6~8であるシリカ、(ii)ナトリウムを0.2~1.5重量%含むシリカ、(iii)真円度が1~1.3の真球状シリカ、(iv)シリコーンオイル(例、ジメチルシリコーンオイル)、エトキシシリル基を含有する有機ケイ素化合物、アルコール(例、エタノール、ポリエチレングリコール)等で表面処理したシリカ、(v)二種類以上の異なった窒素吸着比表面積を有するシリカの混合物を、充填剤として使用してもよい。ゴム組成物を乗用車トレッドに使用する場合、シリカの量は、オレフィン性二重結合を有するゴム成分100重量部に対して、10~120重量部の範囲が好ましい。またシリカを配合する場合、シリカ/カーボンブラックの重量比は0.7/1~1/0.1が好ましい。 Examples of the silica include silica having a CTAB specific surface area of 50 to 180 m 2 / g and silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g. Examples of commercially available products of silica include “Nipsil (registered trademark) AQ” and “Nipsil (registered trademark) AQ-N” manufactured by Tosoh Silica Co., Ltd., “Ultrasil (registered trademark) VN3” and “Ultrasil” manufactured by Degussa. (Registered trademark) VN3-G "," Ultrasil (registered trademark) 360 "," Ultrasil (registered trademark) 7000 "," Zeosil (registered trademark) 115GR "," Zeosil (registered trademark) 1115MP "manufactured by Rhodia, “Zeosil (registered trademark) 1205MP”, “Zeosil (registered trademark) Z85MP” are mentioned. (I) silica having a pH of 6 to 8, (ii) silica containing 0.2 to 1.5% by weight of sodium, (iii) true spherical silica having a roundness of 1 to 1.3, (iv) ) Silicone oil (eg, dimethyl silicone oil), organosilicon compound containing ethoxysilyl group, silica surface-treated with alcohol (eg, ethanol, polyethylene glycol), etc. (v) two or more different nitrogen adsorption specific surface areas Mixtures of silica with can be used as fillers. When the rubber composition is used in a passenger car tread, the amount of silica is preferably in the range of 10 to 120 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. When silica is blended, the silica / carbon black weight ratio is preferably 0.7 / 1 to 1 / 0.1.
 水酸化アルミニウムとしては、窒素吸着比表面積5~250m/g、DOP給油量50~100ml/100gの水酸化アルミニウムが例示される。 Examples of the aluminum hydroxide include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
 瀝青炭粉砕物の平均粒径は、通常、0.1mm以下であり、好ましくは0.05mm以下、より好ましくは0.01mm以下である。平均粒径が0.1mmを超える瀝青炭粉砕物を使用しても、ゴム組成物のヒステリシスロスが充分に低減されず、低燃費性を充分に向上できない場合がある。また、ゴム組成物をインナーライナー用組成物として用いる場合には、平均粒径が0.1mmを超える瀝青炭粉砕物を使用しても、該組成物の耐空気透過性を充分に向上できない場合がある。 The average particle size of the bituminous coal pulverized product is usually 0.1 mm or less, preferably 0.05 mm or less, more preferably 0.01 mm or less. Even if a bituminous coal pulverized product having an average particle size exceeding 0.1 mm is used, the hysteresis loss of the rubber composition may not be sufficiently reduced, and the fuel efficiency may not be sufficiently improved. Further, when the rubber composition is used as an inner liner composition, the air permeation resistance of the composition may not be sufficiently improved even when a bituminous coal pulverized product having an average particle size exceeding 0.1 mm is used. is there.
 瀝青炭粉砕物の平均粒径の下限は特に限定されないが、好ましくは0.001mm以上である。0.001mm未満では、コストが高くなる傾向がある。なお、瀝青炭粉砕物の平均粒径は、JIS Z 8815-1994に準拠して測定される粒度分布から算出された質量基準の平均粒径である。 The lower limit of the average particle diameter of the bituminous coal pulverized product is not particularly limited, but is preferably 0.001 mm or more. If it is less than 0.001 mm, the cost tends to increase. The average particle size of the bituminous coal pulverized product is a mass-based average particle size calculated from a particle size distribution measured according to JIS Z 8815-1994.
 瀝青炭粉砕物の比重は、1.6以下が好ましく、1.5以下がより好ましく、1.3以下がさらに好ましい。比重が1.6を超える瀝青炭粉砕物を使用すると、ゴム組成物全体の比重が増加し、タイヤの低燃費性向上が充分に図れないおそれがある。瀝青炭粉砕物の比重は、0.5以上が好ましく、1.0以上がより好ましい。比重が0.5未満である瀝青炭粉砕物を使用すると、混練時の加工性が悪化するおそれがある。 The specific gravity of the bituminous coal pulverized product is preferably 1.6 or less, more preferably 1.5 or less, and even more preferably 1.3 or less. When a bituminous coal pulverized product having a specific gravity exceeding 1.6 is used, the specific gravity of the entire rubber composition increases, and there is a possibility that the fuel efficiency of the tire cannot be sufficiently improved. The specific gravity of the pulverized bituminous coal is preferably 0.5 or more, and more preferably 1.0 or more. If a bituminous coal pulverized product having a specific gravity of less than 0.5 is used, workability during kneading may be deteriorated.
 瀝青炭粉砕物を使用する場合、その量は、オレフィン性二重結合を有するゴム成分100重量部に対して、通常5重量部以上、好ましくは10重量部以上であり、通常70重量部以下、好ましくは60重量部以下である。この量が、5重量部未満であると、瀝青炭粉砕物による効果が充分に得られない場合があり、70重量部を超えると、混練時の加工性が悪化するおそれがある。 When using a bituminous coal pulverized product, the amount is usually 5 parts by weight or more, preferably 10 parts by weight or more, and usually 70 parts by weight or less, preferably 100 parts by weight of the rubber component having an olefinic double bond. Is 60 parts by weight or less. If this amount is less than 5 parts by weight, the effect of the pulverized bituminous coal may not be sufficiently obtained, and if it exceeds 70 parts by weight, the workability during kneading may be deteriorated.
 充填剤としてシリカを用いる場合には、シランカップリング剤等のシリカと結合可能な化合物を使用することが好ましい。該化合物の例としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)ジスルフィド、3-オクタノイルチオプロピルトリエトキシシラン(別名:「オクタンチオ酸S-[3-(トリエトキシシリル)プロピル]エステル」、例えば、ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)エトキシシリル}プロピル]エステル、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)メチルシリル}プロピル]エステル、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、(3-グリシドキシプロピル)トリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシランおよび3-イソシアナトプロピルトリエトキシシランが挙げられる。これらの中で、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、3-オクタノイルチオプロピルトリエトキシシラン(例えば、ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)が、好ましい。 When silica is used as the filler, it is preferable to use a compound capable of binding to silica such as a silane coupling agent. Examples of the compound include bis (3-triethoxysilylpropyl) tetrasulfide (eg, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg, “Si— 75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, 3-octanoylthiopropyltriethoxysilane (also known as" octanethioic acid S- [3- ( Triethoxysilyl) propyl] ester ", for example," NXT silane "manufactured by General Electronic Silicons), octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) ethoxysilyl} propyl] ester , Octanethioic acid S- [3-{(2-methyl-1,3 Propane dialkoxy) methylsilyl} propyl] ester, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (methoxyethoxy) silane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxy Propyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Liethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-isocyanato Mention may be made of propyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane. Among these, bis (3-triethoxysilylpropyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa) ), 3-octanoylthiopropyltriethoxysilane (for example, “NXT silane” manufactured by General Electronic Silicons) is preferable.
 シリカと結合可能な化合物の添加時期は特に限定されないが、シリカと同時期にオレフィン性二重結合を有するゴム成分に配合することが好ましい。シリカおよびシリカと結合可能な化合物を使用する場合、シリカと結合可能な化合物の量は、シリカ100重量部に対して、好ましくは2~10重量部、より好ましくは7~9重量部である。シリカと結合可能な化合物を配合する場合、その配合温度は80~200℃が好ましく、より好ましくは110~180℃である。 The addition timing of the compound capable of binding to silica is not particularly limited, but it is preferably blended with a rubber component having an olefinic double bond at the same time as silica. When silica and a compound capable of binding to silica are used, the amount of the compound capable of binding to silica is preferably 2 to 10 parts by weight, more preferably 7 to 9 parts by weight with respect to 100 parts by weight of silica. When a compound capable of binding to silica is blended, the blending temperature is preferably 80 to 200 ° C, more preferably 110 to 180 ° C.
 充填剤としてシリカを用いる場合には、シリカと結合可能な化合物に加えて、エタノール、ブタノール、オクタノール等の1価アルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ペンタエリスリトール、ポリエーテルポリオール等の多価アルコール;N-アルキルアミン;アミノ酸;分子末端がカルボキシ変性またはアミン変性された液状ポリブタジエン等を使用することも好ましい。 When silica is used as a filler, in addition to compounds capable of binding to silica, monohydric alcohols such as ethanol, butanol and octanol; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, poly It is also preferable to use polyhydric alcohols such as ether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carboxy-modified or amine-modified.
 加硫促進剤の例としては、ゴム工業便覧<第四版>(平成6年1月20日 社団法人 日本ゴム協会発行)の412~413頁に記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。 Examples of vulcanization accelerators include thiazole-based vulcanization accelerators described in pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994), Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.
 加硫促進剤の具体例としては、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、2-メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)が挙げられる。 Specific examples of the vulcanization accelerator include N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), and N, N-dicyclohexene. Xyl-2-benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), and diphenylguanidine (DPG).
 充填剤としてカーボンブラックのみを用いる場合には、加硫促進剤として、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)またはジベンゾチアジルジスルフィド(MBTS)のいずれかと、ジフェニルグアニジン(DPG)とを併用することが好ましい。充填剤としてシリカとカーボンブラックとを併用する場合には、加硫促進剤として、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)またはジベンゾチアジルジスルフィド(MBTS)のいずれかと、ジフェニルグアニジン(DPG)とを併用することが好ましい。 When only carbon black is used as the filler, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS) are used as vulcanization accelerators. ), N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG) are preferably used in combination. When silica and carbon black are used in combination as fillers, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfene as vulcanization accelerators It is preferable to use either amide (BBS), N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG).
 硫黄成分と加硫促進剤との比率は特に制限されないが、硫黄成分/加硫促進剤の重量比は、好ましくは1/10~10/1、より好ましくは1/5~5/1、さらに好ましくは1/2~2/1である。また天然ゴムを主成分とするゴム部材において、耐熱性を向上させる方法である硫黄成分/加硫促進剤の比を1以下にするEV加硫は、耐熱性向上が特に必要な用途において好ましく用いられる。 The ratio of the sulfur component to the vulcanization accelerator is not particularly limited, but the weight ratio of the sulfur component / vulcanization accelerator is preferably 1/10 to 10/1, more preferably 1/5 to 5/1, A preferred range is 1/2 to 2/1. In addition, in a rubber member mainly composed of natural rubber, EV vulcanization, which is a method of improving heat resistance, in which the ratio of sulfur component / vulcanization accelerator is 1 or less, is preferably used in applications that particularly require improvement in heat resistance. It is done.
 加硫促進助剤としては、例えば、酸化亜鉛、ステアリン酸、シトラコンイミド化合物、アルキルフェノール・塩化硫黄縮合物、有機チオスルフェート化合物および式(III):
 R16-S-S-R17-S-S-R18   (III)
(式中、R17は、C2-10アルカンジイル基を示し、R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基を示す。)
で表される化合物が挙げられる。なお、本発明において酸化亜鉛は、加硫促進助剤の概念に包含され、上述の充填剤の概念には包含されない。
Examples of the vulcanization accelerating aid include zinc oxide, stearic acid, citraconimide compound, alkylphenol / sulfur chloride condensate, organic thiosulfate compound, and formula (III):
R 16 —S—S—R 17 —S—S—R 18 (III)
(Wherein R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represents a monovalent organic group containing a nitrogen atom.)
The compound represented by these is mentioned. In addition, in this invention, zinc oxide is included in the concept of a vulcanization | cure acceleration | stimulation adjuvant, and is not included in the concept of the above-mentioned filler.
 加硫促進助剤としては、酸化亜鉛、ステアリン酸、シトラコンイミド化合物が好ましく、酸化亜鉛、ステアリン酸がより好ましい。 As the vulcanization acceleration aid, zinc oxide, stearic acid, and citraconic imide compounds are preferable, and zinc oxide and stearic acid are more preferable.
 酸化亜鉛を使用する場合、その量は、オレフィン性二重結合を有するゴム成分100重量部に対して、好ましくは0.01~20重量部、より好ましくは0.1~15重量部、さらに好ましくは0.1~10重量部である。ステアリン酸を使用する場合、その量は、オレフィン性二重結合を有するゴム成分100重量部に対して、好ましくは0.01~15重量部、より好ましくは0.1~10重量部、さらに好ましくは0.1~5重量部である。 When zinc oxide is used, the amount is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, still more preferably 100 parts by weight of the rubber component having an olefinic double bond. Is 0.1 to 10 parts by weight. When stearic acid is used, the amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, still more preferably 100 parts by weight of the rubber component having an olefinic double bond. Is 0.1 to 5 parts by weight.
 シトラコンイミド化合物としては、熱的に安定であり、オレフィン性二重結合を有するゴム成分中への分散性に優れるという理由から、ビスシトラコンイミド類が好ましい。具体的には、1,2-ビスシトラコンイミドメチルベンゼン、1,3-ビスシトラコンイミドメチルベンゼン、1,4-ビスシトラコンイミドメチルベンゼン、1,6-ビスシトラコンイミドメチルベンゼン、2,3-ビスシトラコンイミドメチルトルエン、2,4-ビスシトラコンイミドメチルトルエン、2,5-ビスシトラコンイミドメチルトルエン、2,6-ビスシトラコンイミドメチルトルエン、1,2-ビスシトラコンイミドエチルベンゼン、1,3-ビスシトラコンイミドエチルベンゼン、1,4-ビスシトラコンイミドエチルベンゼン、1,6-ビスシトラコンイミドエチルベンゼン、2,3-ビスシトラコンイミドエチルトルエン、2,4-ビスシトラコンイミドエチルトルエン、2,5-ビスシトラコンイミドエチルトルエン、2,6-ビスシトラコンイミドエチルトルエンなどが挙げられる。 As the citraconimide compound, biscitraconimides are preferable because they are thermally stable and have excellent dispersibility in a rubber component having an olefinic double bond. Specifically, 1,2-biscitraconimidomethylbenzene, 1,3-biscitraconimidomethylbenzene, 1,4-biscitraconimidomethylbenzene, 1,6-biscitraconimidomethylbenzene, 2,3-bis Citraconimidomethyltoluene, 2,4-biscitraconimidomethyltoluene, 2,5-biscitraconimidomethyltoluene, 2,6-biscitraconimidomethyltoluene, 1,2-biscitraconimidoethylbenzene, 1,3-biscitracon Imidoethylbenzene, 1,4-biscitraconimidoethylbenzene, 1,6-biscitraconimidoethylbenzene, 2,3-biscitraconimidoethyltoluene, 2,4-biscitraconimidoethyltoluene, 2,5-biscitraconimidoethyltoluene Emissions, such as 2,6-biscitraconimide ethyltoluene and the like.
 シトラコンイミド化合物のなかでも、熱的に特に安定であり、オレフィン性二重結合を有するゴム成分中への分散性に特に優れ、高硬度(Hs)の加硫ゴム組成物を得ることができる(リバージョン制御)という理由から、下記式で表される1,3-ビスシトラコンイミドメチルベンゼンが好ましい。 Among citraconic imide compounds, a vulcanized rubber composition that is particularly thermally stable, particularly excellent in dispersibility in a rubber component having an olefinic double bond, and having high hardness (Hs) can be obtained ( For the reason of (reversion control), 1,3-biscitraconimidomethylbenzene represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 加硫促進助剤として、高硬度(Hs)の加硫ゴム組成物を得ることができるという理由から、式(IV): Since a vulcanized rubber composition having high hardness (Hs) can be obtained as a vulcanization acceleration aid, the formula (IV):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式中、nは0~10の整数であり、各Xは、それぞれ独立に2~4の整数であり、各R19は、それぞれ独立にC5-12アルキル基である。]
で表されるアルキルフェノール・塩化硫黄縮合物を使用することが好ましい。
[Wherein n is an integer of 0 to 10, each X is independently an integer of 2 to 4, and each R 19 is independently a C 5-12 alkyl group. ]
It is preferable to use an alkylphenol-sulfur chloride condensate represented by
 オレフィン性二重結合を有するゴム成分中へのアルキルフェノール・塩化硫黄縮合物(IV)の分散性が良いという理由から、nは、好ましくは1~9の整数である。 N is preferably an integer of 1 to 9 because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
 Xが4を超えると、アルキルフェノール・塩化硫黄縮合物(IV)が熱的に不安定となる傾向があり、Xが1であるとアルキルフェノール・塩化硫黄縮合物(IV)中の硫黄含有率(硫黄の重量)が少ない。高硬度を効率よく発現させることができる(リバージョン抑制)という理由から、Xは2であることが好ましい。 When X exceeds 4, the alkylphenol-sulfur chloride condensate (IV) tends to become thermally unstable. When X is 1, the sulfur content (sulfur in the alkylphenol-sulfur chloride condensate (IV)) Less weight). X is preferably 2 for the reason that high hardness can be expressed efficiently (reversion suppression).
 R19は、C5-12アルキル基である。オレフィン性二重結合を有するゴム成分中へのアルキルフェノール・塩化硫黄縮合物(IV)の分散性が良いという理由から、R19は、好ましくはC6-9アルキル基である。 R 19 is a C 5-12 alkyl group. R 19 is preferably a C 6-9 alkyl group because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
 アルキルフェノール・塩化硫黄縮合物(IV)の具体例として、nが0~10であり、Xが2であり、R19がオクチル基であり、硫黄含有率が24重量%である田岡化学工業社製のタッキロールV200が挙げられる。 As a specific example of the alkylphenol / sulfur chloride condensate (IV), n is 0 to 10, X is 2, R 19 is an octyl group, and the sulfur content is 24% by weight. The tack roll V200 is mentioned.
 加硫促進助剤として、高硬度(Hs)の加硫ゴム組成物が得られる(リバージョン抑制)という理由から、式(V):
 HOS-S-(CH-S-SOH   (V)
[式中、kは3~10の整数である。]
で表される有機チオスルフェート化合物の塩(以下「有機チオスルフェート化合物塩(V)」と記載することがある。)を使用することが好ましい。結晶水を含有する有機チオスルフェート化合物塩(V)を使用してもよい。有機チオスルフェート化合物塩(V)としては、例えば、リチウム塩、カリウム塩、ナトリウム塩、マグネシウム塩、カルシウム塩、バリウム塩、亜鉛塩、ニッケル塩、コバルト塩等が挙げられ、カリウム塩、ナトリウム塩が好ましい。
As a vulcanization acceleration aid, a vulcanized rubber composition having high hardness (Hs) can be obtained (reversion suppression).
HO 3 S—S— (CH 2 ) k —S—SO 3 H (V)
[Wherein k is an integer of 3 to 10. ]
It is preferable to use a salt of an organic thiosulfate compound represented by the formula (hereinafter sometimes referred to as “organic thiosulfate compound salt (V)”). An organic thiosulfate compound salt (V) containing crystal water may be used. Examples of the organic thiosulfate compound salt (V) include lithium salt, potassium salt, sodium salt, magnesium salt, calcium salt, barium salt, zinc salt, nickel salt, cobalt salt, etc., potassium salt, sodium salt Is preferred.
 kは、3~10の整数であり、好ましくは3~6の整数である。kが2以下では、充分な耐熱疲労性が得られない傾向があり、kが11以上では、有機チオスルフェート化合物塩(V)による耐熱疲労性の改善効果が充分に得られない場合がある。 K is an integer of 3 to 10, preferably an integer of 3 to 6. When k is 2 or less, there is a tendency that sufficient heat fatigue resistance cannot be obtained. When k is 11 or more, the effect of improving the heat fatigue resistance by the organic thiosulfate compound salt (V) may not be sufficiently obtained. .
 有機チオスルフェート化合物塩(V)としては、常温常圧下で安定であるという観点から、そのナトリウム塩1水和物、ナトリウム塩2水和物が好ましく、コストの観点からチオ硫酸ナトリウムから得られる有機チオスルフェート化合物塩(V)がより好ましく、下記式で表される1,6-ヘキサメチレンジチオ硫酸ナトリウム・2水和物がさらに好ましい。 The organic thiosulfate compound salt (V) is preferably a sodium salt monohydrate or a sodium salt dihydrate from the viewpoint of being stable at normal temperature and pressure, and obtained from sodium thiosulfate from the viewpoint of cost. The organic thiosulfate compound salt (V) is more preferable, and sodium 1,6-hexamethylenedithiosulfate dihydrate represented by the following formula is more preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 オレフィン性二重結合を有するゴム成分中へ良好に分散すること、アルキルフェノール・塩化硫黄縮合物(IV)と併用した場合にアルキルフェノール・塩化硫黄縮合物(IV)の-S-架橋の中間に挿入されて、アルキルフェノール・塩化硫黄縮合物(IV)とのハイブリッド架橋を形成することが可能であるという理由から、式(III):
 R16-S-S-R17-S-S-R18   (III)
(式中、R17はC2-10アルカンジイル基を示し、R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基を示す。)
で表される化合物を、アルキルフェノール・塩化硫黄縮合物(IV)と共に、加硫促進助剤として使用することが好ましい。
Disperse well in the rubber component having an olefinic double bond and, when used in combination with alkylphenol / sulfur chloride condensate (IV), inserted in the middle of -S X -crosslink of alkylphenol / sulfur chloride condensate (IV) Because it is possible to form a hybrid bridge with the alkylphenol-sulfur chloride condensate (IV):
R 16 —S—S—R 17 —S—S—R 18 (III)
(Wherein R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represents a monovalent organic group containing a nitrogen atom.)
It is preferable to use the compound represented by these as a vulcanization | cure acceleration | stimulation adjuvant with alkylphenol and sulfur chloride condensate (IV).
 R17は、C2-10アルカンジイル基、好ましくはC4-8アルカンジイル基であり、より好ましくは直鎖状のC4-8アルカンジイル基である。R17は、直鎖状であることが好ましい。R17の炭素数が1以下では、熱的な安定性が悪い場合がある。また、R17の炭素数が11以上では、加硫促進助剤を介したポリマー間の距離が長くなり、加硫促進助剤を添加する効果が得られない場合がある。 R 17 is a C 2-10 alkanediyl group, preferably a C 4-8 alkanediyl group, and more preferably a linear C 4-8 alkanediyl group. R 17 is preferably linear. When the carbon number of R 17 is 1 or less, thermal stability may be poor. If the carbon number of R 17 is 11 or more, the distance between the polymers via the vulcanization accelerating aid becomes long, and the effect of adding the vulcanization accelerating aid may not be obtained.
 R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基である。窒素原子を含む1価の有機基としては、芳香環を少なくとも1つ含むものが好ましく、芳香環および=N-C(=S)-基(チオカルバモイル基)を含むものがさらに好ましい。R16およびR18は、それぞれ同一でも、異なっていてもよいが、製造の容易さなどの理由から、同一であることが好ましい。 R 16 and R 18 are each independently a monovalent organic group containing a nitrogen atom. As the monovalent organic group containing a nitrogen atom, those containing at least one aromatic ring are preferred, and those containing an aromatic ring and a ═N—C (═S) — group (thiocarbamoyl group) are more preferred. R 16 and R 18 may be the same or different, but are preferably the same for reasons such as ease of production.
 化合物(III)としては、例えば、1,2-ビス(ジベンジルチオカルバモイルジチオ)エタン、1,3-ビス(ジベンジルチオカルバモイルジチオ)プロパン、1,4-ビス(ジベンジルチオカルバモイルジチオ)ブタン、1,5-ビス(ジベンジルチオカルバモイルジチオ)ペンタン、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン、1,7-ビス(ジベンジルチオカルバモイルジチオ)ヘプタン、1,8-ビス(ジベンジルチオカルバモイルジチオ)オクタン、1,9-ビス(ジベンジルチオカルバモイルジチオ)ノナン、1,10-ビス(ジベンジルチオカルバモイルジチオ)デカンなどが挙げられる。なかでも、熱的に安定であり、オレフィン性二重結合を有するゴム成分中への分散性に優れるという理由から、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサンが好ましい。 Examples of the compound (III) include 1,2-bis (dibenzylthiocarbamoyldithio) ethane, 1,3-bis (dibenzylthiocarbamoyldithio) propane, 1,4-bis (dibenzylthiocarbamoyldithio) butane 1,5-bis (dibenzylthiocarbamoyldithio) pentane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane, 1,7-bis (dibenzylthiocarbamoyldithio) heptane, 1,8-bis (di Examples include benzylthiocarbamoyldithio) octane, 1,9-bis (dibenzylthiocarbamoyldithio) nonane, 1,10-bis (dibenzylthiocarbamoyldithio) decane. Of these, 1,6-bis (dibenzylthiocarbamoyldithio) hexane is preferred because it is thermally stable and has excellent dispersibility in a rubber component having an olefinic double bond.
 化合物(III)の市販品としては、例えば、バイエル社製のVULCUREN TRIAL PRODUCT KA9188、VULCUREN VP KA9188(1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン)が挙げられる。 Examples of commercially available products of compound (III) include VULCUREN TRIAL PRODUCT KA9188 and VULCUREN VP KA9188 (1,6-bis (dibenzylthiocarbamoyldithio) hexane) manufactured by Bayer.
 ゴム組成物は、レゾルシノール等の有機化合物、レゾルシノール樹脂、変性レゾルシノール樹脂、クレゾール樹脂、変性クレゾール樹脂、フェノール樹脂および変性フェノール樹脂等の樹脂を含んでよい。レゾルシノールやこれらの樹脂を含むことにより、加硫ゴム組成物の破断時伸び、複素弾性率を向上させることができる。また、ゴム組成物をコードと接触するゴム製品の製造に使用する場合、レゾルシノールや樹脂を含むことにより、コードとの接着性を高めることができる。 The rubber composition may contain an organic compound such as resorcinol, a resin such as a resorcinol resin, a modified resorcinol resin, a cresol resin, a modified cresol resin, a phenol resin, and a modified phenol resin. By including resorcinol and these resins, the elongation at break and the complex elastic modulus of the vulcanized rubber composition can be improved. Moreover, when using a rubber composition for manufacture of the rubber product which contacts a code | cord | chord, adhesiveness with a code | cord | chord can be improved by including resorcinol and resin.
 レゾルシノールとしては、例えば、住友化学社製のレゾルシノール等が挙げられる。レゾルシノール樹脂としては、例えば、レゾルシノール・ホルムアルデヒド縮合物が挙げられる。変性レゾルシノール樹脂としては、例えば、レゾルシノール樹脂の繰り返し単位の一部をアルキル化したものが挙げられる。具体的には、インドスペック社製のペナコライト樹脂B-18-S、B-20、田岡化学工業社製のスミカノール620、ユニロイヤル社製のR-6、スケネクタディー化学社製のSRF1501、アッシュランド社製のArofene7209等が挙げられる。 Examples of resorcinol include resorcinol manufactured by Sumitomo Chemical Co., Ltd. Examples of the resorcinol resin include resorcinol / formaldehyde condensate. Examples of the modified resorcinol resin include those obtained by alkylating a part of the resorcinol resin repeating unit. Specifically, Penacolite resins B-18-S and B-20 manufactured by India Spec, Sumikanol 620 manufactured by Taoka Chemical Industries, R-6 manufactured by Uniroyal, SRF1501 manufactured by Schenectady Chemical, Ash Examples include Arofine 7209 manufactured by Land.
 クレゾール樹脂としては、例えば、クレゾール・ホルムアルデヒド縮合物が挙げられる。変性クレゾール樹脂としては、例えば、クレゾール樹脂の末端のメチル基をヒドロキシ基に変性したもの、クレゾール樹脂の繰り返し単位の一部をアルキル化したものが挙げられる。具体的には、田岡化学工業社製のスミカノール610、住友ベークライト社製のPR-X11061等が挙げられる。 Examples of the cresol resin include a cresol / formaldehyde condensate. Examples of the modified cresol resin include those obtained by modifying the terminal methyl group of the cresol resin to a hydroxy group, and those obtained by alkylating some of the repeating units of the cresol resin. Specifically, Sumikanol 610 manufactured by Taoka Chemical Industry Co., Ltd., PR-X11061 manufactured by Sumitomo Bakelite Co., Ltd., and the like can be given.
 フェノール樹脂としては、例えば、フェノール・ホルムアルデヒド縮合物が挙げられる。また、変性フェノール樹脂としては、フェノール樹脂をカシューオイル、トールオイル、アマニ油、各種動植物油、不飽和脂肪酸、ロジン、アルキルベンゼン樹脂、アニリン、メラミンなどを用いて変性した樹脂が挙げられる。 Examples of phenolic resins include phenol / formaldehyde condensates. Examples of modified phenolic resins include resins obtained by modifying phenolic resins with cashew oil, tall oil, linseed oil, various animal and vegetable oils, unsaturated fatty acids, rosin, alkylbenzene resins, aniline, melamine, and the like.
 その他の樹脂としては、例えば、住友化学社製の「スミカノール507AP」等のメトキシ化メチロールメラミン樹脂;日鉄化学社製のクマロン樹脂NG4(軟化点81~100℃)、神戸油化学工業社製の「プロセスレジンAC5」(軟化点75℃)等のクマロン・インデン樹脂;テルペン樹脂、テルペン・フェノール樹脂、芳香族変性テルペン樹脂等のテルペン系樹脂;三菱瓦斯化学社製の「ニカノール(登録商標)A70」(軟化点70~90℃)等のロジン誘導体;水素添加ロジン誘導体;ノボラック型アルキルフェノール系樹脂;レゾール型アルキルフェノール系樹脂;C5系石油樹脂;液状ポリブタジエンが挙げられる。 Examples of other resins include methoxylated methylol melamine resins such as “SUMIKANOL 507AP” manufactured by Sumitomo Chemical Co., Ltd .; Coumarone resin NG4 (softening point 81-100 ° C.) manufactured by Nippon Steel Chemical Co., Ltd. Coumarone-indene resin such as “Process Resin AC5” (softening point 75 ° C.); Terpene resin such as terpene resin, terpene / phenol resin, and aromatic modified terpene resin; “Nicanol® A70” manufactured by Mitsubishi Gas Chemical Company ”(Softening point 70 to 90 ° C.) and the like; hydrogenated rosin derivatives; novolac alkylphenol resins; resol alkylphenol resins; C5 petroleum resins; liquid polybutadiene.
 粘弾性改善剤としては、例えば、N,N’-ビス(2-メチル-2-ニトロプロピル)-1,6-ヘキサンジアミン(例えば、住友化学社製「スミファイン(登録商標)1162」)、特開昭63-23942号公報記載のジチオウラシル化合物、田岡化学工業社製「タッキロール(登録商標)AP」、「タッキロール(登録商標)V-200」、特開2009-138148号公報記載のアルキルフェノール・塩化硫黄縮合物、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)ジスルフィド、オクタンチオ酸S-[3-(トリエトキシシリル)プロピル]エステル、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)エトキシシリル}プロピル]エステル、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)メチルシリル}プロピル]エステル、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、(3-グリシドキシプロピル)トリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン(例えば、バイエル社製「KA9188」)、1,6-ヘキサメチレンジチオサルフェート2ナトリウム塩2水和物、1,3-ビス(シトラコンイミドメチル)ベンゼン(例えば、フレキシス社製「パーカリンク900」)、1-ベンゾイル-2-フェニルヒドラジド、1-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、特開2004-91505号公報記載の1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド等のカルボン酸ヒドラジド誘導体、特開2000-190704号公報記載の3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジフェニルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、特開2006-328310号公報記載のビスメルカプトオキサジアゾール化合物、特開2009-40898号公報記載のピリチオン塩化合物、特開2006-249361号公報記載の水酸化コバルト化合物が挙げられる。 Examples of the viscoelasticity improver include N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (for example, “Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), Dithiouracil compounds described in JP-A-63-23942, “Tactrol (registered trademark) AP”, “Tactrol (registered trademark) V-200” manufactured by Taoka Chemical Co., Ltd., alkylphenols described in JP-A-2009-138148, Sulfur chloride condensate, bis (3-triethoxysilylpropyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa) ), Bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) Pyr) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester, octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) ethoxysilyl} propyl] ester, octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) methylsilyl} propyl] ester, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, Ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (methoxyethoxy) sila , Phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (3-glycine Sidoxypropyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane , 3-isocyana Topropyltriethoxysilane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane (for example, “KA9188” manufactured by Bayer), 1,6-hexamethylenedithiosulfate disodium salt dihydrate, 1,3- Bis (citraconimidomethyl) benzene (for example, “Parkalink 900” manufactured by Flexis), 1-benzoyl-2-phenylhydrazide, 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 3 -Hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide described in JP-A-2004-91505, 3 -Hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide, 1 Hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′ Carboxylic acid hydrazide derivatives such as-(2-furylmethylene) -2-naphthoic acid hydrazide, 3-hydroxy-N '-(2-furylmethylene) -2-naphthoic acid hydrazide, and the like described in JP 2000-190704 A -Hydroxy-N '-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N'-(1,3-diphenylethylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ' -(1-methylethylidene) -2-naphthoic acid hydrazide, bismercaptooxadi described in JP-A-2006-328310 Tetrazole compounds, pyrithione salt compounds described in JP-2009-40898, include cobalt hydroxide compounds described in JP-A No. 2006-249361.
 中でも、N,N’-ビス(2-メチル-2-ニトロプロピル)-1,6-ヘキサンジアミン(例えば、住友化学社製「スミファイン(登録商標)1162」)、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン(例えば、バイエル社製「KA9188」)、ヘキサメチレンビスチオサルフェート2ナトリウム塩2水和物、1,3-ビス(シトラコンイミドメチル)ベンゼン(例えば、フレキシス社製「パーカリンク900」)、田岡化学工業社製「タッキロール(登録商標)AP」、「タッキロール(登録商標)V-200」が好ましい。 Among them, N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (for example, “Sumifine® 1162” manufactured by Sumitomo Chemical Co., Ltd.), bis (3-triethoxysilyl) Propyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa), 1,6-bis (dibenzylthiocarbamoyl) Dithio) hexane (for example, “KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-bis (citraconimidomethyl) benzene (for example, “Parkalink 900” manufactured by Flexis) "Tacchiroll (registered trademark) AP", "Tacchiroll (registered trademark) V-20" manufactured by Taoka Chemical Industries, Ltd. "It is preferable.
 老化防止剤としては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の436~443頁に記載されるものが挙げられる。老化防止剤としては、N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン(略称「6PPD」、例えば住友化学社製「アンチゲン(登録商標)6C」)、アニリンとアセトンの反応生成物(略称「TMDQ」)、ポリ(2,2,4-トリメチル-1,2-)ジヒドロキノリン)(例えば、松原産業社製「アンチオキシダントFR」)、合成ワックス(パラフィンワックス等)、植物性ワックスが好ましく用いられる。 Examples of the anti-aging agent include those described on pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Anti-aging agents include N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (abbreviation “6PPD”, for example, “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical), reaction of aniline and acetone. Products (abbreviated as “TMDQ”), poly (2,2,4-trimethyl-1,2-) dihydroquinoline) (for example, “Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax, etc.), plant A wax is preferably used.
 老化防止剤を使用する場合、その量は、オレフィン性二重結合を有するゴム成分100重量部に対して、好ましくは0.01~15重量部、より好ましくは0.1~10重量部、さらに好ましくは0.1~5重量部である。 When an anti-aging agent is used, the amount thereof is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight of the rubber component having an olefinic double bond. The amount is preferably 0.1 to 5 parts by weight.
 オイルとしては、例えば、プロセスオイル、植物油脂等が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルが挙げられる。市販品としては、例えば、アロマチックオイル(コスモ石油社製「NC-140」)、プロセスオイル(出光興産社製「ダイアナプロセスPS32」)が挙げられる。 Examples of the oil include process oil and vegetable oil. Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil. Examples of commercially available products include aromatic oil (“NC-140” manufactured by Cosmo Oil Co., Ltd.) and process oil (“Diana Process PS32” manufactured by Idemitsu Kosan Co., Ltd.).
 ワックスとしては、大内新興化学工業社製の「サンノック(登録商標)ワックス」、日本精蝋社製の「OZOACE-0355」等が挙げられる。 Examples of the wax include “Sannok (registered trademark) wax” manufactured by Ouchi Shinsei Chemical Co., Ltd. and “OZOACE-0355” manufactured by Nippon Seiwa Co., Ltd.
 しゃく解剤としては、ゴム分野において通常用いられるものであれば特に限定されるものではないが、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の446~449頁に記載される、芳香族メルカプタン系しゃく解剤、芳香族ジスルフィド系しゃく解剤、芳香族メルカプタン金属塩系しゃく解剤が挙げられる。中でも、ジキシリルジスルフィド、o,o’-ジベンズアミドジフェニルジスルフィド(大内新興化学工業社製「ノクタイザーSS」)が好ましい。しゃく解剤は、1種のみを使用してもよく、2種以上を併用してもよい。 The peptizer is not particularly limited as long as it is usually used in the rubber field. For example, it is described in pages 446 to 449 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. And aromatic mercaptan peptizers, aromatic disulfide peptizers, and aromatic mercaptan metal salt peptizers. Of these, dixylyl disulfide and o, o'-dibenzamide diphenyl disulfide ("Noctizer SS" manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) are preferable. Only one type of peptizer may be used, or two or more types may be used in combination.
 しゃく解剤の量は、特に限定されるものではないが、オレフィン性二重結合を有するゴム成分100重量部に対して、0.01~1重量部が好ましく、0.05~0.5重量部がより好ましい。 The amount of peptizer is not particularly limited, but is preferably 0.01 to 1 part by weight, preferably 0.05 to 0.5 part by weight based on 100 parts by weight of the rubber component having an olefinic double bond. Part is more preferred.
 リターダーとしては、無水フタル酸、安息香酸、サリチル酸、N-ニトロソジフェニルアミン、N-(シクロヘキシルチオ)フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール ジホスファイト等が例示され、N-(シクロヘキシルチオ)フタルイミド(CTP)が好ましく用いられる。 Examples of the retarder include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol diphosphite, and the like. (Cyclohexylthio) phthalimide (CTP) is preferably used.
 リターダーの量は、特に限定されるものではないが、オレフィン性二重結合を有するゴム成分100重量部に対して、0.01~1重量部が好ましく、0.05~0.5重量部がより好ましい。 The amount of the retarder is not particularly limited, but is preferably 0.01 to 1 part by weight, and 0.05 to 0.5 part by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. More preferred.
 本発明では、式:-O-(CH-CH-O)-H[式中、qは1以上の整数である。]で表わされる構造を有するオキシエチレンユニットを有する化合物を使用してもよい。ここで、上記式中、qは、2以上が好ましく、3以上がより好ましい。また、qは16以下が好ましく、14以下がより好ましい。qが17以上では、オレフィン性二重結合を有するゴム成分との相溶性および補強性が低下する傾向がある。 In the present invention, the formula: —O— (CH 2 —CH 2 —O) q —H [wherein q is an integer of 1 or more. You may use the compound which has an oxyethylene unit which has a structure represented by this. Here, in the above formula, q is preferably 2 or more, and more preferably 3 or more. Moreover, q is preferably 16 or less, and more preferably 14 or less. When q is 17 or more, compatibility with a rubber component having an olefinic double bond and reinforcing properties tend to be lowered.
 オキシエチレンユニットを有する化合物中のオキシエチレンユニットの位置は、主鎖でも、末端でも、側鎖でもよい。得られるタイヤ表面における静電気の蓄積防止効果の持続性および電気抵抗の低減の観点から、オキシエチレンユニットを有する化合物の中でも、少なくとも側鎖にオキシエチレンユニットを有する化合物が好ましい。 The position of the oxyethylene unit in the compound having an oxyethylene unit may be a main chain, a terminal, or a side chain. Of the compounds having oxyethylene units, a compound having oxyethylene units at least in the side chain is preferred from the viewpoint of sustaining the effect of preventing static electricity accumulation on the obtained tire surface and reducing electric resistance.
 主鎖にオキシエチレンユニットを有する化合物としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、モノエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンスチレン化アルキルエーテル、ポリオキシエチレンアルキルアマイドなどが挙げられる。 Examples of the compound having an oxyethylene unit in the main chain include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, monoethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene Examples thereof include alkyl ethers, polyoxyethylene alkylamines, polyoxyethylene styrenated alkyl ethers, and polyoxyethylene alkyl amides.
 少なくとも側鎖にオキシエチレンユニットを有する化合物を使用する場合、オキシエチレンユニットの個数は、主鎖を構成する炭素数100個当たり4個以上が好ましく、8個以上がより好ましい。オキシエチレンユニットの個数が3個以下では、電気抵抗が増大する傾向がある。また、オキシエチレンユニットの個数は12個以下が好ましく、10個以下がより好ましい。オキシエチレンユニットの個数が13個以上では、オレフィン性二重結合を有するゴム成分との相溶性および補強性が低下する傾向がある。 When using a compound having an oxyethylene unit at least in the side chain, the number of oxyethylene units is preferably 4 or more, more preferably 8 or more per 100 carbon atoms constituting the main chain. When the number of oxyethylene units is 3 or less, the electrical resistance tends to increase. The number of oxyethylene units is preferably 12 or less, and more preferably 10 or less. When the number of oxyethylene units is 13 or more, the compatibility with the rubber component having an olefinic double bond and the reinforcing property tend to be lowered.
 少なくとも側鎖にオキシエチレンユニットを有する化合物を使用する場合、その主鎖としては、主としてポリエチレン、ポリプロピレンまたはポリスチレンから構成されるものが好ましい。 When using a compound having an oxyethylene unit at least in the side chain, the main chain is preferably composed mainly of polyethylene, polypropylene or polystyrene.
 本発明のゴム組成物は、上述の化合物(C)、脂肪酸金属塩、オレフィン性二重結合を有するゴム成分(以下「ゴム成分」と略称することがある)、カーボンブラック、および必要に応じて他の成分(例えば、加硫促進剤)を混練することによって製造することができる。 The rubber composition of the present invention comprises the above compound (C), a fatty acid metal salt, a rubber component having an olefinic double bond (hereinafter sometimes abbreviated as “rubber component”), carbon black, and, if necessary, It can be produced by kneading other components (for example, a vulcanization accelerator).
 前記成分に加えて、さらに硫黄成分を混練して得られるゴム組成物は、まず、ゴム成分とカーボンブラック等とを混練する工程(以下「工程1」と略称することがある。)、次いで工程1で得られたゴム組成物と硫黄成分とを混練する工程(以下「工程2」と略称することがある。)を経て製造することが好ましい。さらに、工程1(即ち、ゴム成分とカーボンブラック等との混練)の前に、ゴム成分を加工しやすくするため、ゴム成分を素練りする予備混練工程を設けてもよい。 In addition to the above components, the rubber composition obtained by further kneading the sulfur component is first a step of kneading the rubber component and carbon black or the like (hereinafter sometimes abbreviated as “step 1”), and then a step. It is preferable to produce the rubber composition obtained in 1 through a step of kneading the rubber composition and the sulfur component (hereinafter sometimes abbreviated as “step 2”). Further, a pre-kneading step of kneading the rubber component may be provided before the step 1 (that is, kneading the rubber component with carbon black or the like) to facilitate processing of the rubber component.
 硫黄成分を含有するゴム組成物の製造では、上述の化合物(C)および脂肪酸金属塩の全量を、予備混練工程、工程1または工程2のいずれかでゴム成分等と混練してもよく、上述の化合物(C)および脂肪酸金属塩をそれぞれ分割して、予備混練工程~工程2の少なくとも二つの工程でゴム成分等と混練してもよい。 In the production of a rubber composition containing a sulfur component, the total amount of the compound (C) and the fatty acid metal salt may be kneaded with a rubber component or the like in either the preliminary kneading step, step 1 or step 2, The compound (C) and the fatty acid metal salt may be divided and kneaded with a rubber component or the like in at least two steps of the preliminary kneading step to step 2.
 酸化亜鉛を配合するときは、工程1でゴム成分等と混練することが好ましい。加硫促進剤を配合するときは、工程2でゴム成分等と混練することが好ましい。しゃく解剤を配合するときは、工程1でゴム成分等と混練することが好ましい。予備混練工程を設ける時は、予備混練工程でしゃく解剤の全量をゴム成分と混練するか、またはしゃく解剤を分けて、予備混練工程および工程1の両方でゴム成分と混練することが好ましい。 When blending zinc oxide, it is preferable to knead with a rubber component or the like in step 1. When a vulcanization accelerator is blended, it is preferably kneaded with a rubber component or the like in step 2. When blending a peptizer, it is preferable to knead with a rubber component or the like in step 1. When providing the preliminary kneading step, it is preferable to knead the entire amount of the peptizer in the preliminary kneading step or to separate the peptizer and knead the rubber component in both the preliminary kneading step and step 1. .
 工程1における混練には、例えば、バンバリーミキサーを含むインターナルミキサー、オープン型ニーダー、加圧式ニーダー、押出機、および射出成型機等を使用することができる。工程1における混練後のゴム組成物の排出温度は、200℃以下が好ましく、120~180℃がより好ましい。 For the kneading in Step 1, for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, or the like can be used. The discharge temperature of the rubber composition after kneading in step 1 is preferably 200 ° C. or less, more preferably 120 to 180 ° C.
 工程2における混練には、例えば、オープンロール、カレンダー等を使用することができる。工程2における混練温度(混練しているゴム組成物の温度)は、60~120℃が好ましい。 For kneading in step 2, for example, an open roll, a calendar, or the like can be used. The kneading temperature in Step 2 (the temperature of the rubber composition being kneaded) is preferably 60 to 120 ° C.
 上述の硫黄成分を含有するゴム組成物を加硫することによって、加硫ゴム組成物を製造することができる。上述の硫黄成分を含有するゴム組成物を特定の形状に加工してから加硫することによって、加硫ゴム組成物を製造してもよい。 A vulcanized rubber composition can be produced by vulcanizing a rubber composition containing the above-described sulfur component. You may manufacture a vulcanized rubber composition by processing the rubber composition containing the above-mentioned sulfur component into a specific shape and then vulcanizing it.
 加硫温度は、120~180℃が好ましい。当業者であれば、ゴム組成物の組成に応じて、加硫時間を適宜設定することができる。加硫は、通常、常圧または加圧下で行われる。 The vulcanization temperature is preferably 120 to 180 ° C. A person skilled in the art can appropriately set the vulcanization time according to the composition of the rubber composition. Vulcanization is usually carried out at normal pressure or under pressure.
 本発明のゴム組成物および加硫ゴム組成物は、様々な製品を製造するために有用である。ゴム組成物および加硫ゴム組成物から得られる製品としては、加硫タイヤおよびタイヤ用部材が好ましい。タイヤ用部材としては、例えば、本発明の加硫ゴム組成物およびスチールコードを含むタイヤ用ベルト部材、本発明の加硫ゴム組成物およびカーカス繊維コードを含むタイヤ用カーカス部材、タイヤ用サイドウォール部材、タイヤ用インナーライナー部材、タイヤ用キャップトレッド部材またはタイヤ用アンダートレッド部材が挙げられる。 The rubber composition and vulcanized rubber composition of the present invention are useful for producing various products. As a product obtained from the rubber composition and the vulcanized rubber composition, a vulcanized tire and a tire member are preferable. Examples of the tire member include a tire belt member including the vulcanized rubber composition of the present invention and a steel cord, a tire carcass member including the vulcanized rubber composition of the present invention and a carcass fiber cord, and a tire sidewall member. , A tire inner liner member, a tire cap tread member, or a tire under tread member.
 加硫タイヤは、まずタイヤ用部材を製造し、これらを組み合わせて生タイヤを製造し、生タイヤを加硫することによって製造される。本発明のゴム組成物を用いて製造されたタイヤは、損失係数が低く、低燃費を達成することができる。 The vulcanized tire is manufactured by first manufacturing a tire member, combining these to manufacture a raw tire, and vulcanizing the raw tire. The tire manufactured using the rubber composition of the present invention has a low loss factor and can achieve low fuel consumption.
 本発明の加硫ゴム組成物は、上記したタイヤ用途のみならず、各種防振ゴムとしても使用できる。かかる防振ゴムとしては、例えば、エンジンマウント、ストラットマウント、ブッシュ、エグゾーストハンガー等の自動車用防振ゴムが挙げられる。防振ゴムは、まず硫黄成分を含有するゴム組成物を所定の形状に加工し、次いで加硫することによって、製造することができる。 The vulcanized rubber composition of the present invention can be used not only for the tire applications described above but also as various anti-vibration rubbers. Examples of such anti-vibration rubbers include anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes, and exhaust hangers. The anti-vibration rubber can be manufactured by first processing a rubber composition containing a sulfur component into a predetermined shape and then vulcanizing it.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下の実施例および比較例に記載の「部」は、特段の記載が無い限り、「重量部」を意味する。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. In the following examples and comparative examples, “parts” means “parts by weight” unless otherwise specified.
実施例1
<工程1>
 バンバリーミキサー(東洋精機製600mlラボプラストミル)を用いて、天然ゴム(RSS#1)100部、カーボンブラック(N220、ISAF)45部、ステアリン酸3部、酸化亜鉛5部、老化防止剤(N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン、商品名「アンチゲン(登録商標)6C」、住友化学株式会社製)1部、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウム・二水和物(化合物(C)の1種)0.5部およびパルミチン酸カリウム1部を混練配合し、ゴム組成物を得た。本工程では、上記成分をバンバリーミキサーに投入した後、5分間、50rpmの回転数で上記成分を混練し、その時のゴム温度は160~170℃であった。
<工程2>
 オープンロール機で60~80℃の温度にて、工程1により得られたゴム組成物と、加硫促進剤(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)1部および硫黄2部とを混練配合し、ゴム組成物を得た。
<加硫ゴムの製造>
 工程2で得たゴム組成物を145℃で加硫処理し、加硫ゴム組成物を得た。
Example 1
<Step 1>
Using a Banbury mixer (600 ml Labo Plast Mill manufactured by Toyo Seiki), 100 parts of natural rubber (RSS # 1), 45 parts of carbon black (N220, ISAF), 3 parts of stearic acid, 5 parts of zinc oxide, anti-aging agent (N -Phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine, trade name "Antigen (registered trademark) 6C", manufactured by Sumitomo Chemical Co., Ltd.) 1 part, (2Z) -4-[(4-aminophenyl ) Amino] -4-oxo-2-butenoic acid sodium dihydrate (1 type of compound (C)) and 1 part of potassium palmitate were kneaded and mixed to obtain a rubber composition. In this step, the components were put into a Banbury mixer and then kneaded for 5 minutes at a rotation speed of 50 rpm. The rubber temperature at that time was 160 to 170 ° C.
<Process 2>
The rubber composition obtained in the step 1, 1 part of a vulcanization accelerator (N-cyclohexyl-2-benzothiazolylsulfenamide) and 2 parts of sulfur at a temperature of 60 to 80 ° C. in an open roll machine. The rubber composition was obtained by kneading and blending.
<Manufacture of vulcanized rubber>
The rubber composition obtained in step 2 was vulcanized at 145 ° C. to obtain a vulcanized rubber composition.
実施例2
 工程1でパルミチン酸カリウムの配合量を1部から1.4部に変更したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 2
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the amount of potassium palmitate was changed from 1 part to 1.4 parts in Step 1.
実施例3
 工程1でパルミチン酸カリウムの配合量を1部から1.6部に変更したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 3
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the blending amount of potassium palmitate in Step 1 was changed from 1 part to 1.6 parts.
実施例4
 工程1でパルミチン酸カリウムの配合量を1部から1.8部に変更したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 4
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the blending amount of potassium palmitate in Step 1 was changed from 1 part to 1.8 parts.
実施例5
 工程1でパルミチン酸カリウムの配合量を1部から2部に変更したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 5
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that the blending amount of potassium palmitate in Step 1 was changed from 1 part to 2 parts.
実施例6
 工程1でパルミチン酸カリウム1部に代えてパルミチン酸カルシウム1部を配合したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 6
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 1 part of calcium palmitate was added in place of 1 part of potassium palmitate in Step 1.
実施例7
 工程1でパルミチン酸カリウム1部に代えてパルミチン酸カルシウム2部を配合したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 7
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of calcium palmitate was blended in place of 1 part of potassium palmitate in Step 1.
実施例8
 工程1でパルミチン酸カリウム1部に代えてパルミチン酸カルシウム4部を配合したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 8
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 4 parts of calcium palmitate was added in place of 1 part of potassium palmitate in Step 1.
実施例9
 工程1でパルミチン酸カリウム1部に代えてステアリン酸マグネシウム2部を配合したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 9
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of magnesium stearate was blended in place of 1 part of potassium palmitate in Step 1.
実施例10
 工程1でパルミチン酸カリウム1部に代えてステアリン酸亜鉛2部を配合したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 10
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of zinc stearate was added in place of 1 part of potassium palmitate in Step 1.
実施例11
 工程1でパルミチン酸カリウム1部に代えてラウリン酸カリウム2部を配合したこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Example 11
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that 2 parts of potassium laurate was added in place of 1 part of potassium palmitate in Step 1.
比較例1
 工程1でパルミチン酸カリウムを配合しなかったこと以外は実施例1と同様にして、ゴム組成物および加硫ゴム組成物を得た。
Comparative Example 1
A rubber composition and a vulcanized rubber composition were obtained in the same manner as in Example 1 except that potassium palmitate was not blended in Step 1.
 以下のようにして、コンパウンドムーニー粘度および粘弾性特性を測定した。
(1)コンパウンドムーニー粘度
 JIS-K6300-1に準拠し、125℃にて、ゴム組成物のコンパウンドムーニー粘度を測定した。
 コンパウンドムーニー粘度の値は、小さいほどゴム焼けが起こりにくく、ゴム組成物の加工安定性が良好であることを示す。
Compound Mooney viscosity and viscoelastic properties were measured as follows.
(1) Compound Mooney Viscosity The compound Mooney viscosity of the rubber composition was measured at 125 ° C. in accordance with JIS-K6300-1.
The smaller the value of the compound Mooney viscosity is, the less rubber scorch occurs and the better the processing stability of the rubber composition.
 比較例1で得たゴム組成物のコンパウンドムーニー粘度に対する、実施例1~11のいずれかで得たゴム組成物のコンパウンドムーニー粘度の相対値(=100×実施例1~11のいずれかで得たゴム組成物のコンパウンドムーニー粘度/比較例1で得たゴム組成物のコンパウンドムーニー粘度)を算出した。結果を表1に示す。この相対値が低いほど、ゴム組成物の粘度増大の抑制効果が良好である。 The relative value of the compound Mooney viscosity of the rubber composition obtained in any of Examples 1 to 11 with respect to the compound Mooney viscosity of the rubber composition obtained in Comparative Example 1 (= 100 × obtained in any of Examples 1 to 11) Compound Mooney viscosity of the rubber composition / Compound Mooney viscosity of the rubber composition obtained in Comparative Example 1) was calculated. The results are shown in Table 1. The lower the relative value, the better the effect of suppressing the increase in viscosity of the rubber composition.
(2)粘弾性特性
 GABO社の動的粘弾性測定装置イプレクサ―500Nを用いて、加硫ゴム組成物の粘弾性特性(60℃でのtanδ)を測定した。
 条件:温度60℃、初期歪10%、動的歪0~2.5%、周波数10Hz
(2) Viscoelastic properties The viscoelastic properties (tan δ at 60 ° C.) of the vulcanized rubber composition were measured using a dynamic viscoelasticity measuring device, iplexer 500N, manufactured by GABO.
Conditions: temperature 60 ° C., initial strain 10%, dynamic strain 0-2.5%, frequency 10 Hz
 比較例1で得たゴム組成物の粘弾性特性(60℃でのtanδ)に対する、実施例1~11のいずれかで得たゴム組成物の粘弾性特性の相対値(=100×実施例1~11のいずれかで得たゴム組成物の粘弾性特性/比較例1で得たゴム組成物の粘弾性特性)を算出した。結果を表1に示す。この相対値が低いほど、加硫ゴム組成物の損失係数(tanδ)の低減効果が良好である。 Relative value of the viscoelastic property of the rubber composition obtained in any of Examples 1 to 11 with respect to the viscoelastic property (tan δ at 60 ° C.) of the rubber composition obtained in Comparative Example 1 (= 100 × Example 1) The viscoelastic properties of the rubber composition obtained in any of 11 to 11 / viscoelastic properties of the rubber composition obtained in Comparative Example 1) were calculated. The results are shown in Table 1. The lower the relative value, the better the effect of reducing the loss factor (tan δ) of the vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1に示すように、加硫ゴム組成物の損失係数を低減させるための添加剤として化合物(C)(即ち、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウム・二水和物)のみを使用する比較例1に比べて、化合物(C)および脂肪酸金属塩を併用する実施例1~11では、ゴム組成物のコンパウンドムーニー粘度が低減している。以上のように、化合物(C)および脂肪酸金属塩の併用によって、加硫ゴム組成物の低い損失係数(tanδ)を維持しつつ、ゴム組成物の粘度増大を抑制することができる。 As shown in Table 1, compound (C) (ie, (2Z) -4-[(4-aminophenyl) amino] -4-oxo- is used as an additive for reducing the loss factor of the vulcanized rubber composition. In Examples 1 to 11 in which the compound (C) and the fatty acid metal salt are used in combination, the compound Mooney viscosity of the rubber composition is reduced compared to Comparative Example 1 in which only 2-butenoate dihydrate is used. ing. As described above, the combined use of the compound (C) and the fatty acid metal salt can suppress an increase in the viscosity of the rubber composition while maintaining a low loss factor (tan δ) of the vulcanized rubber composition.
 また、パルミチン酸カリウムを使用する実施例1~5、およびラウリン酸カリウムを使用する実施例11は、比較例1に比べて、ゴム組成物のコンパウンドムーニー粘度だけでなく、加硫ゴム組成物の損失係数(tanδ)も低下している。 Further, in Examples 1 to 5 using potassium palmitate and Example 11 using potassium laurate, not only the compound Mooney viscosity of the rubber composition but also the vulcanized rubber composition was compared with Comparative Example 1. The loss factor (tan δ) also decreases.
 本発明の添加剤組成物は、加硫ゴム組成物の損失係数を低減させるとともに、ゴム組成物の粘度増大を抑制することができる添加剤として有用である。 The additive composition of the present invention is useful as an additive capable of reducing the loss factor of the vulcanized rubber composition and suppressing the increase in viscosity of the rubber composition.
 本願は、日本で出願された特願2016-137129号を基礎としており、その内容は本願明細書に全て包含される。 This application is based on Japanese Patent Application No. 2016-137129 filed in Japan, the contents of which are incorporated in full herein.

Claims (18)

  1.  オレフィン性二重結合と反応し得る基または構造(A)、およびカーボンブラックと反応または相互作用し得る基または構造(B)を有する化合物(C)と、
     脂肪酸金属塩と、
     オレフィン性二重結合を有するゴム成分と、
     カーボンブラックと
    を混練して得られるゴム組成物。
    A compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black;
    Fatty acid metal salts,
    A rubber component having an olefinic double bond;
    A rubber composition obtained by kneading carbon black.
  2.  基または構造(A)が、オレフィン性二重結合とラジカル反応または1,3-双極子付加反応し得る基または構造である請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the group or structure (A) is a group or structure capable of undergoing radical reaction or 1,3-dipole addition reaction with an olefinic double bond.
  3.  基または構造(A)が、オレフィン性二重結合、アミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、*-SSOH若しくはその塩、*-S-S-*、*-C≡N-O、*-C≡N-N-*、式(i)で表される構造、式(ii)で表される構造、または式(iii)で表される構造:
    Figure JPOXMLDOC01-appb-C000001

    [前記式中、*は結合位置を表す。]
    である請求項1に記載のゴム組成物。
    The group or structure (A) is an olefinic double bond, an amide group, a maleimide ring, a 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof, * —S—S— *, * —C≡N + —O , * —C≡N + —N — *, a structure represented by formula (i), a structure represented by formula (ii), or a formula (iii) Structure:
    Figure JPOXMLDOC01-appb-C000001

    [In the above formula, * represents a bonding position. ]
    The rubber composition according to claim 1, wherein
  4.  基または構造(B)が、無置換または一置換アミノ基、ベンゼン環、フラン環、オキサゾール環または1H-ベンゾイミダゾール環である請求項1~3のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the group or structure (B) is an unsubstituted or monosubstituted amino group, a benzene ring, a furan ring, an oxazole ring, or a 1H-benzimidazole ring.
  5.  化合物(C)が、式(I):
    Figure JPOXMLDOC01-appb-C000002

    [式(I)中、
     Rは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。
     RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。
     Rは、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC6-14アリールオキシ基、または-NR(前記式中、RおよびRは、それぞれ独立に、水素原子、または1以上の置換基を有していてもよいC1-6アルキル基を表す。)を表す。
     Xは、-NH-または-O-を表す。]
    で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つである請求項1に記載のゴム組成物。
    Compound (C) is represented by formula (I):
    Figure JPOXMLDOC01-appb-C000002

    [In the formula (I),
    R 1 represents a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, or one or more substituents. Represents a divalent C 6-12 aromatic hydrocarbon group which may have the above-mentioned or a combination thereof.
    R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, one or more C 1-6 alkoxy group which may have one or more substituents, or one or more substituents. Represents a good C 1-6 alkyl group, or a C 6-14 aryl group optionally having one or more substituents, or R 2 and R 3 are bonded, and the carbon atom to which they are bonded; Together, they form a C 3-10 cycloalkenediyl group which may have one or more substituents.
    R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, or —NR 5. R 6 (wherein R 5 and R 6 each independently represents a hydrogen atom or a C 1-6 alkyl group optionally having one or more substituents).
    X represents —NH— or —O—. ]
    The rubber composition according to claim 1, wherein the rubber composition is at least one selected from the group consisting of a compound represented by the formula:
  6.  式(I)で表される化合物が、式(II):
    Figure JPOXMLDOC01-appb-C000003

    [式(II)中、R~RおよびXは前記と同義である。]
    で表される化合物である請求項5に記載のゴム組成物。
    The compound represented by formula (I) is represented by formula (II):
    Figure JPOXMLDOC01-appb-C000003

    [In formula (II), R 1 to R 4 and X are as defined above. ]
    The rubber composition according to claim 5, which is a compound represented by the formula:
  7.  Rが、フェニレン基である請求項5または6に記載のゴム組成物。 The rubber composition according to claim 5 or 6, wherein R 1 is a phenylene group.
  8.  RおよびRが、共に水素原子である請求項5~7のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 5 to 7, wherein R 2 and R 3 are both hydrogen atoms.
  9.  Rが、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基である請求項5~8のいずれか一項に記載のゴム組成物。 R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents. The rubber composition according to any one of 5 to 8.
  10.  Rが、ヒドロキシ基である請求項5~8のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 5 to 8, wherein R 4 is a hydroxy group.
  11.  Xが、-NH-である請求項5~10のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 5 to 10, wherein X is -NH-.
  12.  式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物の塩の溶媒和物である請求項5~11のいずれか一項に記載のゴム組成物。 At least one selected from the group consisting of a compound represented by formula (I), a salt thereof, a solvate thereof and a solvate of the salt is a solvate of a salt of the compound represented by formula (I) The rubber composition according to any one of claims 5 to 11.
  13.  脂肪酸金属塩を構成する金属カチオンが、1価または2価の金属カチオンである請求項1~12のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 12, wherein the metal cation constituting the fatty acid metal salt is a monovalent or divalent metal cation.
  14.  脂肪酸金属塩を構成する金属カチオンが、1価の金属カチオンである請求項1~12のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 12, wherein the metal cation constituting the fatty acid metal salt is a monovalent metal cation.
  15.  脂肪酸金属塩を構成する脂肪酸アニオンの炭素数が、8~30である請求項1~14のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 14, wherein the fatty acid anion constituting the fatty acid metal salt has 8 to 30 carbon atoms.
  16.  さらに硫黄成分を混練して得られる請求項1~15のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 15, which is obtained by further kneading a sulfur component.
  17.  請求項16に記載のゴム組成物を加硫して得られる加硫ゴム組成物。 A vulcanized rubber composition obtained by vulcanizing the rubber composition according to claim 16.
  18.  オレフィン性二重結合と反応し得る基または構造(A)、およびカーボンブラックと反応または相互作用し得る基または構造(B)を有する化合物(C)と、
     脂肪酸金属塩と
    を含有する添加剤組成物。
    A compound (C) having a group or structure (A) capable of reacting with an olefinic double bond and a group or structure (B) capable of reacting or interacting with carbon black;
    An additive composition containing a fatty acid metal salt.
PCT/JP2017/025108 2016-07-11 2017-07-10 Additive composition and rubber composition WO2018012452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016137129 2016-07-11
JP2016-137129 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012452A1 true WO2018012452A1 (en) 2018-01-18

Family

ID=60952968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025108 WO2018012452A1 (en) 2016-07-11 2017-07-10 Additive composition and rubber composition

Country Status (1)

Country Link
WO (1) WO2018012452A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156094A1 (en) * 2018-02-07 2019-08-15 株式会社ブリヂストン Rubber composition and tire
CN113980371A (en) * 2021-11-17 2022-01-28 山东新宝龙工业科技有限公司 Non-stick roller flame-retardant steel wire rope core glue and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322846A (en) * 1986-06-02 1988-01-30 ザ・フアイヤ−スト−ン・タイヤ・アンド・ラバ−・カンパニ− High modulus vulcanizable rubber composition
JPH02284935A (en) * 1989-04-27 1990-11-22 Toyoda Gosei Co Ltd Rubber composition
JP2011046795A (en) * 2009-08-26 2011-03-10 Bridgestone Corp Vibration-damping rubber composition and vibration-damping rubber
JP2011144320A (en) * 2010-01-18 2011-07-28 Bridgestone Corp Vibration-proof rubber composition and vibration-proof rubber
WO2012147984A1 (en) * 2011-04-26 2012-11-01 住友化学株式会社 Rubber composition
JP2013155292A (en) * 2012-01-30 2013-08-15 Bridgestone Corp Vibration-proof rubber composition, crosslinked vibration-proof rubber composition and vibration-proof rubber
JP2013181058A (en) * 2012-02-29 2013-09-12 Toyo Tire & Rubber Co Ltd Rubber composition for covering belt cord or carcass cord and pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322846A (en) * 1986-06-02 1988-01-30 ザ・フアイヤ−スト−ン・タイヤ・アンド・ラバ−・カンパニ− High modulus vulcanizable rubber composition
JPH02284935A (en) * 1989-04-27 1990-11-22 Toyoda Gosei Co Ltd Rubber composition
JP2011046795A (en) * 2009-08-26 2011-03-10 Bridgestone Corp Vibration-damping rubber composition and vibration-damping rubber
JP2011144320A (en) * 2010-01-18 2011-07-28 Bridgestone Corp Vibration-proof rubber composition and vibration-proof rubber
WO2012147984A1 (en) * 2011-04-26 2012-11-01 住友化学株式会社 Rubber composition
JP2013155292A (en) * 2012-01-30 2013-08-15 Bridgestone Corp Vibration-proof rubber composition, crosslinked vibration-proof rubber composition and vibration-proof rubber
JP2013181058A (en) * 2012-02-29 2013-09-12 Toyo Tire & Rubber Co Ltd Rubber composition for covering belt cord or carcass cord and pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156094A1 (en) * 2018-02-07 2019-08-15 株式会社ブリヂストン Rubber composition and tire
JPWO2019156094A1 (en) * 2018-02-07 2021-02-04 株式会社ブリヂストン Rubber composition and tires
JP7271445B2 (en) 2018-02-07 2023-05-11 株式会社ブリヂストン Rubber composition and tire
CN113980371A (en) * 2021-11-17 2022-01-28 山东新宝龙工业科技有限公司 Non-stick roller flame-retardant steel wire rope core glue and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101784018B1 (en) Use of s-(3-aminopropyl)thiosulfuric acid or metal salt thereof
JP5573883B2 (en) Rubber composition
RU2542271C2 (en) Vulcanised rubber and method for production thereof
US20140142217A1 (en) Method for lowering dynamic-to-static modulus ratio of vulcanized rubber
US11692088B2 (en) Rubber composition
JP2012012457A (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof, and method for suppressing generation of heat in vulcanized rubber composition
JP7377850B2 (en) Vulcanized rubber composition
WO2013015440A1 (en) Rubber composition
WO2018012452A1 (en) Additive composition and rubber composition
JP7033374B2 (en) Rubber composition
WO2019054290A1 (en) Rubber composition
WO2016186155A1 (en) Process for producing rubber composition
JPWO2016175272A1 (en) Rubber composition
WO2018012451A1 (en) Additive composition and rubber composition
JP5978043B2 (en) Rubber composition
WO2019031538A1 (en) Method for producing rubber composition
JP2017101132A (en) Rubber composition and vulcanized rubber composition
JP2018080290A (en) Rubber composition
JP2018204033A (en) Method for producing rubber composition
JP2019119784A (en) Manufacturing method of rubber composition
JP2018080289A (en) Rubber composition
JP6013823B2 (en) Compound
JP2012207149A (en) Method for producing rubber composition
JP2012153630A (en) Thiosulfuric acid compound or salt thereof and rubber composition including the same
JP2013047329A (en) Rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17827579

Country of ref document: EP

Kind code of ref document: A1