WO2019031538A1 - Method for producing rubber composition - Google Patents

Method for producing rubber composition Download PDF

Info

Publication number
WO2019031538A1
WO2019031538A1 PCT/JP2018/029710 JP2018029710W WO2019031538A1 WO 2019031538 A1 WO2019031538 A1 WO 2019031538A1 JP 2018029710 W JP2018029710 W JP 2018029710W WO 2019031538 A1 WO2019031538 A1 WO 2019031538A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
rubber composition
rubber
silica
Prior art date
Application number
PCT/JP2018/029710
Other languages
French (fr)
Japanese (ja)
Inventor
俊宏 信岡
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2019031538A1 publication Critical patent/WO2019031538A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a method for producing a rubber composition and the like.
  • Patent Document 1 describes the formula (D):
  • Patent Document 2 describes the formula (E):
  • the present invention has been made focusing on the above circumstances, and an object thereof is to produce a vulcanized rubber composition having a low loss coefficient using a rubber component having an olefinic double bond and silica. It is.
  • the present invention which can achieve the above object is as follows.
  • Step 1 Kneading a rubber component having an olefinic double bond and silica to obtain a kneaded product, and kneading the obtained kneaded product and a compound having a Si-O bond capable of binding to silica
  • a method of producing a rubber composition comprising:
  • the group or structure (A) is an olefinic double bond, an amido group, a maleimide ring, 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof, * -S-S - *, * - C ⁇ N + -O -, * - C ⁇ N + -N - - *, structure represented by the formula (i), structural formula (ii) or formula, (iii) Structure represented by:
  • the compound (C) is a compound of the formula (I):
  • R 1 is a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, one or more substituents And a divalent C 6-12 aromatic hydrocarbon group which may have the formula, or a combination thereof.
  • R 2 and R 3 each independently have a hydrogen atom, a halogen atom, a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or one or more substituents or represents a C 1-6 alkyl group or one or more may have a substituent group C 6-14 aryl group, or R 2 and R 3 are bonded, the carbon atom to which they are attached Taken together, form a C 3-10 cycloalkene diyl group which may have one or more substituents.
  • R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, or -NR 5 R 6 (wherein, R 5 and R 6 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents).
  • X represents -NH- or -O-. ] , A salt thereof, a solvate thereof and a solvate of the salt thereof, and a compound of the formula (II):
  • R 7 and R 8 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents, or R 7 and R 8 are bonded together, and one or more of them are substituted It forms a C 2-12 alkanediyl group which may have a group.
  • m represents an integer of 2 to 9;
  • n represents 1 or 2;
  • Mn + represents H + or n-valent metal ion.
  • R 4 is a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or a C 6-14 aryloxy group optionally having one or more substituents
  • the compound of the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof is a solvate of the salt of the compound represented by the formula (I) [5] The method according to any one of [16].
  • At least one member selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof is a carboxylate of a compound represented by the formula (I)
  • An alkali of carboxylic acid of a compound represented by the formula (I) at least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof
  • a sodium carboxylate of a compound represented by the formula (I), at least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof The method according to any one of the above [5] to [16], which is a salt solvate.
  • the compound represented by the formula (II) is S- (aminoalkyl) thiosulfate, S- (aminoalkyl) thiosulfate, S- (N, N-dialkylaminoalkyl) thiosulfate, S- ( At least one selected from the group consisting of N, N-dialkylaminoalkyl) thiosulfates, S- (N-monoalkylaminoalkyl) thiosulfates and S- (N-monoalkylaminoalkyl) thiosulfates
  • the method according to any one of [5] to [20].
  • Silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide and bis (3-di The method according to the above [30], which is at least one selected from the group consisting of ethoxymethylsilylpropyl) disulfide.
  • the amount of the compound having a Si-O bond capable of binding to silica is 0.1 to 20 parts by weight with respect to 100 parts by weight of the used amount of the rubber component having an olefinic double bond [ The method according to any one of [1] to [59].
  • the amount of the compound having a Si-O bond capable of binding to silica is 0.25 to 15 parts by weight with respect to 100 parts by weight of the used amount of the rubber component having an olefinic double bond [ The method according to any one of [1] to [59].
  • the amount of the compound having a Si-O bond capable of binding to silica is 0.5 to 10 parts by weight with respect to 100 parts by weight of the used amount of the rubber component having an olefinic double bond [ The method according to any one of [1] to [59].
  • a method for producing a rubber composition containing a sulfur component comprising kneading the rubber composition obtained by the method according to any one of the above [1] to [66] and the sulfur component. .
  • the method according to [67], wherein the amount of the sulfur component used is 0.1 to 20 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  • the method according to the above [67] wherein the amount of the sulfur component used is 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  • a method for producing a vulcanized rubber composition comprising vulcanizing a rubber composition containing a sulfur component obtained by the method according to any one of the above [67] to [70].
  • a rubber composition having an olefinic double bond and silica can be used to produce a vulcanized rubber composition having a low loss coefficient.
  • the present invention is a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond, and a group or structure (B) capable of reacting or interacting with silica and having no Si—O bond
  • One of the features is the use of As the compound (C), only one type may be used, or two or more types may be used in combination.
  • the group or structure (A) includes, for example, a group or structure capable of undergoing a radical reaction or 1,3-dipolar addition reaction with an olefinic double bond. More specifically, as the group or structure (A), for example, an olefinic double bond, an amido group, a maleimide ring, 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof , * - S-S - * , * - C ⁇ N + -O -, * - C ⁇ N + -N - - *, structure represented by the formula (i), the formula (ii) structure Or a structure represented by formula (iii):
  • furan ring, oxazole ring or 1H-benzoimidazole ring can be mentioned.
  • the above-mentioned furan ring, oxazole ring and 1H-benzoimidazole ring may all be a monovalent group or a divalent group.
  • the furan ring include 2-furyl group and 3-furyl group.
  • the oxazole ring include 2-oxazolyl group.
  • 1H-benzoimidazole ring include 2-benzoimidazolyl group.
  • the hydrogen atom in the unsubstituted or monosubstituted amino group that the compound (C) has and the oxygen atom in the hydroxy group that the silica has can form a hydrogen bond.
  • the nitrogen atom in the amino group which a compound (C) has, and the hydrogen atom in the hydroxyl group which silica has can form a hydrogen bond.
  • a nitrogen atom and an oxygen atom possessed by the furan ring, the oxazole ring or the 1H-benzoimidazole ring possessed by the compound (C) and a hydrogen atom in a hydroxy group possessed by silica can form a hydrogen bond.
  • A represents O, S or NH
  • x represents an integer of 1 to 4
  • y and z each independently represent an integer of 1 to 6 Represents.
  • the compound (C) is preferably of the formula (I):
  • R 1 is a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, one or more substituents And a divalent C 6-12 aromatic hydrocarbon group which may have the formula, or a combination thereof.
  • R 2 and R 3 each independently have a hydrogen atom, a halogen atom, a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or one or more substituents or represents a C 1-6 alkyl group or one or more may have a substituent group C 6-14 aryl group, or R 2 and R 3 are bonded, the carbon atom to which they are attached Taken together, form a C 3-10 cycloalkene diyl group which may have one or more substituents.
  • R 4 represents a hydroxy group (—OH), a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, Or -NR 5 R 6 (wherein, R 5 and R 6 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents).
  • X represents -NH- or -O-. ] , A salt thereof, a solvate thereof and a solvate of the salt thereof, and a compound of the formula (II):
  • R 7 and R 8 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents, or R 7 and R 8 are bonded together, and one or more of them are substituted It forms a C 2-12 alkanediyl group which may have a group.
  • m represents an integer of 2 to 9;
  • n represents 1 or 2;
  • Mn + represents H + or n-valent metal ion.
  • the "compound represented by the formula (I)” may be abbreviated as “the compound (I)”.
  • the compounds represented by other formulas may be abbreviated as well.
  • the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof may be abbreviated as "the compound (I) and the like”.
  • the compounds (I) and the like and the compound (II) may be used alone or in combination of two or more.
  • C x -y means that the number of carbon atoms is x or more and y or less (x, y: integer).
  • examples of the "halogen atom” include fluorine, chlorine, bromine and iodine.
  • an alkyl group includes both a linear alkyl group and a branched alkyl group.
  • examples of the "C 1-6 alkyl group” include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, sec-butyl group, t-butyl group, 2 And -methylbutyl group, 2-ethylbutyl group, 3-methylbutyl group, 3-ethylbutyl group, 2-methylpentyl group, 3-methylpentyl group and 4-methylpentyl group.
  • a substituent which a C 1-6 alkyl group may have, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, C 1-7
  • substituents include an acyl-oxy group and a C 6-14 aryl group which may have one or more substituents.
  • examples of the “C 6-14 aryl group” include a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group and 9-anthryl group.
  • the substituent which the C 6-14 aryl group may have is, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C 1-7
  • Examples include an acyl group, a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group.
  • an alkoxy group includes both a linear alkoxy group and a branched alkoxy group.
  • examples of the "C 1-6 alkoxy group” include, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group And hexyloxy group.
  • a substituent which a C 1-6 alkoxy group may have, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, C 1-7
  • substituents include an acyl-oxy group and a C 6-14 aryl group which may have one or more substituents.
  • examples of the "C 6-14 aryl group" included in the C 6-14 aryloxy group include the above-mentioned ones.
  • examples of the "C 1-7 acyl group” include a formyl group, a C 1-6 alkyl-carbonyl group (eg, an acetyl group, a pivaloyl group), and a benzoyl group.
  • examples of the “C 1-6 alkoxy group” included in the C 1-6 alkoxy-carbonyl group and the “C 1-7 acyl group” included in the C 1-7 acyl-oxy group include, for example, the above-mentioned The ones of
  • alkanediyl groups include both linear alkanediyl groups and branched alkanediyl groups.
  • examples of “C 2-12 alkanediyl group” include ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, propylene group, 1-methyltrimethylene group, 2-methyl group Trimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltetra Methylene group, 2-ethyltetramethylene group, 1-propyltetramethylene group, 2-propyltetramethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethylpentamethylene group Group, 2-ethylpentamethylene group, 3-ethylpentamethylene group Group, 2-e
  • Examples of the substituent that the C 2-12 alkanediyl group may have include a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1- group. Examples include 7 acyl-oxy groups and C 6-14 aryl groups which may have one or more substituents.
  • C 3-10 cycloalkanediyl group for example, cyclopropane-1,2-diyl group, cyclobutane-1,3-diyl group, cyclopentane-1,3-diyl group, cyclohexane
  • Examples thereof include a 1,4-diyl group, a cycloheptane-1,4-diyl group, a cyclooctane-1,5-diyl group, a cyclononane-1,5-diyl group, and a cyclodecane-1,6-diyl group.
  • Examples of the substituent that the C 3-10 cycloalkanediyl group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and C 1 -7 acyl group, C 1-7 acyl-oxy group, C 6-14 aryl group which may have one or more substituents.
  • examples of the "C 3-10 cycloalkene diyl group” include cyclopropene-1,2-diyl group, cyclobutene-1,2-diyl group, cyclopentene-1,2-diyl group, cyclohexene-. There may be mentioned 1,2-diyl group, cycloheptene-1,2-diyl group, cyclooctene-1,2-diyl group, cyclononene-1,2-diyl group and cyclodecene-1,2-diyl group.
  • the substituent which the C 3-10 cycloalkene diyl group may have, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C 1 -7 acyl group, C 1-7 acyl-oxy group, C 6-14 aryl group which may have one or more substituents.
  • examples of the “divalent C 6-12 aromatic hydrocarbon group” include a phenylene group (eg, 1,4-phenylene group) and a naphthylene group (eg, 1,4-naphthylene group, 1 And 5, 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group), biphenyldiyl group (eg, 1,1'-biphenyl-4,4'-diyl group).
  • a phenylene group eg, 1,4-phenylene group
  • a naphthylene group eg, 1,4-naphthylene group, 1 And 5, 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group
  • biphenyldiyl group eg, 1,1'-biphenyl-4,4'-diyl group
  • Examples of the substituent that the divalent C 6-12 aromatic hydrocarbon group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, and a C 1-6 alkoxy-carbonyl.
  • the sulfo group is a group represented by —SO 3 H.
  • R 1 is preferably a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group, more preferably a C 2-12 alkanediyl group or a phenylene group, still more preferably a phenylene group Particularly preferred is a 1,4-phenylene group.
  • R 2 and R 3 are each independently preferably a hydrogen atom or a C 1-6 alkyl group, and more preferably a hydrogen atom.
  • R 4 is preferably a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents. More preferably, it is a hydroxy group or a C 1-6 alkoxy group, more preferably a hydroxy group.
  • X is preferably -NH-.
  • the compound (I) is preferably of the formula (Ia):
  • salt of compound (I) As the salt of compound (I), (a) an amine salt formed by -NH 2 of compound (I) and another acid, (b) when X is -NH-, -NH of compound (I) Amine salts formed by-and other acids, and (c) when R 4 is a hydroxy group (-OH), carboxylic acid salts formed by -COOH of the compound (I) and other bases can be mentioned.
  • the other acid forming the amine salt of (a) and (b) may be either an organic acid or an inorganic acid, and the base forming the carboxylate of (c) is an organic base or an inorganic base Any one may be used.
  • the salt of compound (I) is preferably a carboxylic acid salt, more preferably at least one selected from the group consisting of carboxylic acid alkali metal salts and carboxylic acid alkaline earth metal salts, still more preferably carboxylic acid alkali Metal salts, particularly preferably sodium carboxylates.
  • the solvent for forming the solvate of Compound (I) and the solvate of the salt of Compound (I) may be water or an organic solvent (eg, methanol).
  • the solvent that forms a solvate is preferably water or methanol, more preferably water.
  • compound (I) etc. is preferably a solvate of a salt of compound (I), more preferably a solvate of a carboxylate of compound (I), and still more preferably It is a solvate of a carboxylic acid alkali metal salt, particularly preferably a solvate of a carboxylic acid sodium salt.
  • compound (I) is desirably compound (Ia).
  • Compound (I) etc. can be produced by the method described in Patent Document 1 or a method according to the method.
  • R 7 and R 8 are each independently preferably a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents, more preferably a hydrogen atom.
  • n is preferably 1.
  • n-valent metal ions examples include alkali metal ions (eg, lithium ion, sodium ion, potassium ion, cesium ion), alkaline earth metal ions (eg, magnesium ion, calcium ion, strontium ion, barium ion), Manganese ion, iron ion, copper ion, zinc ion and the like can be mentioned.
  • Mn + is preferably H + or an alkali metal ion, more preferably H + or a sodium ion, and still more preferably H + .
  • the compound (II) for example, S- (aminoalkyl) thiosulfuric acid, S- (aminoalkyl) thiosulfate, S- (N, N-dialkylaminoalkyl) thiosulfuric acid, S- (N, N-dialkyl) And aminoalkyl) thiosulfates, S- (N-monoalkylaminoalkyl) thiosulfates, S- (N-monoalkylaminoalkyl) thiosulfates and the like.
  • S- (aminoalkyl) thiosulfuric acid for example, S- (2-aminoethyl) thiosulfuric acid, S- (3-aminopropyl) thiosulfuric acid, S- (4-aminobutyl) thiosulfuric acid, S- (5) -Aminopentyl) thiosulfate, S- (6-aminohexyl) thiosulfate, S- (7-aminoheptyl) thiosulfate, S- (8-aminooctyl) thiosulfate, S- (9-aminononyl) thiosulfate etc. Can be mentioned.
  • S- (aminoalkyl) thiosulfates examples include sodium S- (2-aminoethyl) thiosulfate, sodium S- (3-aminopropyl) thiosulfate, sodium S- (4-aminobutyl) thiosulfate, Sodium S- (5-aminopentyl) thiosulfate, sodium S- (6-aminohexyl) thiosulfate, sodium S- (7-aminoheptyl) thiosulfate, sodium S- (8-aminooctyl) thiosulfate, S- Examples include sodium (9-aminononyl) thiosulfate and the like.
  • S- (N, N-dialkylaminoalkyl) thiosulfuric acid for example, S- (2-N, N-dimethylaminoethyl) thiosulfuric acid, S- (3-N, N-dimethylaminopropyl) thiosulfuric acid, S- (4-N, N-Dimethylaminobutyl) thiosulfate, S- (5-N, N-Dimethylaminopentyl) thiosulfate, S- (6-N, N-dimethylaminohexyl) thiosulfate, S- Examples thereof include (7-N, N-dimethylaminoheptyl) thiosulfuric acid, S- (8-N, N-dimethylaminooctyl) thiosulfuric acid, S- (9-N, N-dimethylaminononyl) thiosulfuric acid and the like.
  • S- (N, N-dialkylaminoalkyl) thiosulfates examples include sodium S- (2-N, N-dimethylaminoethyl) thiosulfate, S- (3-N, N-dimethylaminopropyl) thio Sodium sulfate, sodium S- (4-N, N-dimethylaminobutyl) thiosulfate, sodium S- (5-N, N-dimethylaminopentyl) thiosulfate, S- (6-N, N-dimethylaminohexyl) Sodium thiosulphate, sodium S- (7-N, N-dimethylaminoheptyl) thiosulphate, sodium S- (8-N, N-dimethylamino octyl) thiosulphate, S- (9-N, N-dimethylaminononyl) And sodium thiosulfate etc.
  • S- (N-monoalkylaminoalkyl) thiosulfuric acid examples include S- (2-N-methylaminoethyl) thiosulfuric acid, S- (3-N-methylaminopropyl) thiosulfuric acid, S- (4- N-methylaminobutyl) thiosulfuric acid, S- (5-N-methylaminopentyl) thiosulfuric acid, S- (6-N-methylaminohexyl) thiosulfuric acid, S- (7-N-methylaminoheptyl) thiosulfuric acid And S- (8-N-methylaminooctyl) thiosulfuric acid, S- (9-N-methylaminononyl) thiosulfuric acid and the like.
  • S- (N-monoalkylaminoalkyl) thiosulfates examples include sodium S- (2-N-methylaminoethyl) thiosulfate, sodium S- (3-N-methylaminopropyl) thiosulfate, S- Sodium (4-N-methylaminobutyl) thiosulfate, sodium S- (5-N-methylaminopentyl) thiosulfate, sodium S- (6-N-methylaminohexyl) thiosulfate, S- (7-N- Examples include sodium methylaminoheptyl) thiosulfate, sodium S- (8-N-methylaminooctyl) thiosulfate, sodium S- (9-N-methylaminononyl) thiosulfate and the like.
  • the compound (II) is preferably at least one selected from the group consisting of S- (aminoalkyl) thiosulfuric acid and S- (aminoalkyl) thiosulfate, more preferably S- (aminoalkyl) thiosulfuric acid More preferably S- (3-aminopropyl) thiosulfuric acid.
  • Compound (II) can be produced by the method described in Patent Document 2 or a method analogous to the method.
  • the amount of compound (C) used in the present invention is preferably 0.1 to 10 parts by weight, more preferably 0.25 to 8 parts by weight, per 100 parts by weight of the rubber component having an olefinic double bond. Part, more preferably 0.5 to 4 parts by weight.
  • the present invention is characterized by using a rubber component having an olefinic double bond.
  • the rubber component having an olefinic double bond may be used alone or in combination of two or more.
  • natural rubber and modified natural rubber (eg, epoxidized natural rubber, deproteinized natural rubber); styrene butadiene copolymer rubber (SBR), polybutadiene rubber (BR) And various synthetic rubbers such as acrylonitrile butadiene copolymer rubber (NBR) and ethylene propylene diene copolymer rubber (EPDM).
  • SBR styrene butadiene copolymer rubber
  • BR polybutadiene rubber
  • EPDM ethylene propylene diene copolymer rubber
  • the rubber component having an olefinic double bond preferably comprises a diene rubber.
  • a diene rubber means rubber which used the diene monomer which has a conjugated double bond as a raw material.
  • the diene rubber include natural rubber, modified natural rubber, chloroprene rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, nitrile rubber and the like.
  • the diene rubber is preferably highly unsaturated, and more preferably a natural rubber.
  • it is also effective to use natural rubber and another rubber (for example, styrene butadiene copolymer rubber, polybutadiene rubber) in combination.
  • natural rubber natural rubber of grades such as RSS # 1, RSS # 3, TSR20, SIR20 can be mentioned.
  • the epoxidized natural rubber include those having an epoxidation degree of 10 to 60% by mole (for example, ENR 25 and ENR 50 manufactured by Kumpulan Guthrie).
  • deproteinized natural rubber deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable.
  • Other modified natural rubbers include, for example, polar groups obtained by reacting natural rubber with 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (eg, N, N-diethylaminoethyl acrylate), 2-hydroxy acrylate, etc. And modified natural rubber.
  • SBR examples include emulsion-polymerized SBR and solution-polymerized SBR described on pages 210 to 211 of "Rubber Industry Handbook ⁇ Fourth Edition>” edited by The Japan Rubber Association. Among them, for the rubber composition for tread, solution polymerization SBR is preferable.
  • the solution-polymerized SBR includes a modified solution-polymerized SBR obtained by modifying with a modifier and having at least one element of nitrogen, tin and silicon at the molecular end.
  • modifiers include lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, silane compounds having an alkoxy group, aminosilane compounds, silane compounds having a tin compound and an alkoxy group
  • the combined use modifier of the alkyl acrylamide compound and the silane compound having an alkoxy group may be used alone or in combination of two or more.
  • modified solution-polymerized SBR solution-polymerized SBR, JSR in which the molecular terminal is modified with 4,4′-bis (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Zeon Corporation.
  • solutions-polymerized SBR in which the molecular terminal is modified with a halogenated tin compound such as "SL 574" manufactured by corporation, and silane-modified solution-polymerized SBR such as "E10" and "E15” manufactured by Asahi Kasei Corporation.
  • oil-extended SBR in which an oil such as a process oil or an aroma oil is added to the emulsion-polymerized SBR and solution-polymerized SBR is also preferable for the rubber composition for a tread.
  • BR either low vinyl content solution polymerization BR or high vinyl content solution polymerization BR may be used, but high vinyl content solution polymerization BR is preferable.
  • a modified solution-polymerized BR having at least one element of nitrogen, tin and silicon at its molecular end, which is obtained by modifying with a modifier.
  • the modifier include 4,4′-bis (dialkylamino) benzophenone, tin halide compounds, lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, and alkoxy groups.
  • Silane compounds for example, trialkoxysilane compounds
  • aminosilane compounds aminosilane compounds
  • combination modifiers of a tin compound and a silane compound having an alkoxy group combination modifiers of an alkylacrylamide compound and a silane compound having an alkoxy group, and the like.
  • These modifiers may be used alone or in combination of two or more.
  • the modified solution-polymerized BR include tin-modified BR such as "Nipol (registered trademark) BR 1250H" manufactured by Zeon Corporation.
  • BR can be preferably used for the rubber composition for treads and the rubber composition for sidewalls.
  • BR may be used in blends with SBR and / or natural rubber (NR).
  • NR natural rubber
  • the amount of SBR and / or NR is 60 to 100% by weight, and the amount of BR is 0 to 40% by weight in the rubber component having an olefinic double bond.
  • the amount of SBR and / or NR is 10 to 70% by weight, and the amount of BR is 90 to 30% by weight in the rubber component having an olefinic double bond, More preferably, the amount of NR is 40 to 60% by weight and the amount of BR is 60 to 40% by weight.
  • a blend of modified SBR and non-modified SBR, a blend of modified BR and non-modified BR, and the like can also be preferably used.
  • SBR which is excellent in wear resistance and hysteresis loss reduction performance as a rubber component having an olefinic double bond
  • a higher strength NR as a base material together with SBR, and optionally blend BR into these base materials, thereby providing a tread excellent in wear resistance, fatigue resistance and resilience. It is preferable because it can be obtained.
  • the rubber composition When used for the sidewall of a tire, it is a blend of NR and SBR in a passenger car tire, or a blend of NR and BR, and a blend of NR and BR in a truck and bus tire. It is preferable to use it as it is resistant to bending and bending and crack growth resistance.
  • the rubber composition When the rubber composition is used as an inner liner of a tire, it is preferable to blend IIR with SBR and NR as a rubber component having an olefinic double bond, or to use IIR with NR as a blend. It is preferable because permeability and bending resistance can be obtained.
  • the rubber component having an olefinic double bond preferably comprises a diene rubber.
  • the amount of diene rubber in the rubber component having an olefinic double bond is preferably 50% by weight or more, more preferably 60 to 100% by weight, still more preferably 75 to 100% by weight It is.
  • the rubber component having an olefinic double bond comprises a diene rubber.
  • the rubber component having an olefinic double bond more preferably contains a natural rubber.
  • the amount of natural rubber in the rubber component having an olefinic double bond is preferably 50% by weight or more, more preferably 60 to 100% by weight, still more preferably 70 to 100% by weight .
  • silica The present invention is characterized by using silica.
  • the silica include (i) silica having a pH of 6 to 8, (ii) silica containing 0.2 to 1.5% by weight of sodium, and (iii) a true spherical shape having a circularity of 1 to 1.3.
  • a mixture of silica having a surface area may, for example, be mentioned. These may use only 1 type and may use 2 or more types together.
  • Examples of commercially available products of silica include “Nipsil (registered trademark) AQ” manufactured by Tosoh Silica Corporation, “Nipsil (registered trademark) AQ-N”, “Ultrasil (registered trademark) VN 3” manufactured by Degussa, “Ultrasil” (Registered trademark) VN3-G, “Ultrasil (registered trademark) 360", “Ultrasil (registered trademark) 7000", “Zeosil (registered trademark) 115 GR” manufactured by Rhodia, “Zeosil (registered trademark) 1115 MP", “Zeosyl (registered trademark) 1205MP” and “Zeosyl (registered trademark) Z85MP" can be mentioned.
  • the BET specific surface area of the silica is preferably 20 to 400 m 2 / g, more preferably 20 to 350 m 2 / g, and still more preferably 20 to 300 m 2 / g.
  • This BET specific surface area can be measured by a multipoint nitrogen adsorption method (BET method).
  • the amount of silica used in the present invention is preferably 10 to 120 parts by weight, more preferably 22.5 to 100 parts by weight, still more preferably 100 parts by weight of the rubber component having an olefinic double bond. 35 to 80 parts by weight.
  • One of the features of the present invention is to use a compound having a Si-O bond capable of binding to silica.
  • the compound having a Si—O bond capable of binding to silica may be used alone or in combination of two or more.
  • Examples of compounds having a Si-O bond capable of binding to silica include, for example, bis (3-triethoxysilylpropyl) tetrasulfide (for example, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) Disulfide (eg, Degussa “Si-75”), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, 3-octanoylthiopropyltriethoxysilane (alias) “Octanethio acid S- [3- (triethoxysilyl) propyl] ester”, such as “NXT silane” manufactured by General Electronic Silicon's, octanethio acid S- [3- ⁇ (2-methyl-1,3-, Propanedialkoxy) ethoxysilyl ⁇ propyl] ester,
  • a silane coupling agent As a compound having a Si—O bond capable of binding to silica, a silane coupling agent is preferred.
  • the silane coupling agent may be used alone or in combination of two or more.
  • the silane coupling agent means a silane compound having a functional group capable of binding to an inorganic material (for example, silica) and a functional group capable of binding to an organic material (for example, a rubber component).
  • the functional group capable of binding to the inorganic material include, for example, a C1-6 alkoxy group bonded to a silicon atom, a hydroxy group bonded to a silicon atom and the like, and a C1-6 alkoxy group bonded to a silicon atom is preferable .
  • the silane coupling agent is preferably a silane coupling agent having a C 1-6 alkoxy group bonded to a silicon atom and a disulfide bond.
  • silane coupling agent for example, bis (3-triethoxysilylpropyl) tetrasulfide (for example, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (for example, Degussa) Company “Si-75”), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide and the like.
  • bis (3-triethoxysilylpropyl) tetrasulfide for example, “Si-69” manufactured by Degussa
  • bis (3-triethoxysilylpropyl) disulfide for example, Degussa) Company “Si-75”
  • bis (3-diethoxymethylsilylpropyl) tetrasulfide for example, bis (3-diethoxymethylsilylpropyl) disulfide and the like.
  • the amount of the compound having a Si-O bond capable of binding to silica in the present invention is preferably 0.1 to 20 parts by weight, preferably 100 parts by weight, based on 100 parts by weight of the rubber component having an olefinic double bond. Preferably, it is 0.25 to 15 parts by weight, more preferably 0.5 to 10 parts by weight.
  • Sulfur components that can be used in the present invention include, for example, powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur, morpholine disulfide, tetramethylthiuram disulfide. Powdered sulfur is usually preferred, and insoluble sulfur is preferred when the rubber composition is used for the production of tire components having a high sulfur content such as belt components.
  • the amount of the sulfur component used in the present invention is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the rubber component having an olefinic double bond. More preferably, it is 0.1 to 10 parts by weight.
  • ⁇ Other ingredients> other components different from the above-mentioned components (compound (C), rubber component having an olefinic double bond, silica, compound having a Si—O bond capable of binding to silica, and sulfur component) are used.
  • Other components include, for example, other fillers different from silica, monohydric alcohols, polyhydric alcohols, vulcanization accelerators, vulcanization accelerators, resins, anti-aging agents, oils, waxes, peptizers, A retarder, a compound having an oxyethylene unit, a catalyst (eg, cobalt naphthenate etc.) can be mentioned. All other components may be used alone or in combination of two or more.
  • fillers include, for example, carbon black, aluminum hydroxide, ground bituminous coal, talc, clay (especially calcined clay), titanium oxide.
  • the amount thereof is preferably 0 to 70% by weight, more preferably 5 to 50% by weight, based on the total amount of the silica used in the present invention and the other fillers used. More preferably, it is 10 to 25% by weight.
  • carbon black is preferable.
  • its amount is preferably 0 to 70% by weight, more preferably 5 to 50% by weight, still more preferably 10 based on the total amount of silica and carbon black used in the present invention. It is ⁇ 25% by weight.
  • Examples of carbon black include those described on page 494 of "Rubber Industry Handbook ⁇ Fourth Edition>” edited by The Japan Rubber Association. Carbon black may use only 1 type and may use 2 or more types together. Examples of carbon black include HAF (High Abrasion Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), ISAF-HM (Intermediate SAF-High Modulus), FEF (Fast Extrusion Furnace), MAF (Medium Abrasion Furnace) And GPF (General Purpose Furnace) and SRF (Semi-Reinforcing Furnace).
  • HAF High Abrasion Furnace
  • SAF Super Abrasion Furnace
  • ISAF Intermediate SAF
  • ISAF-HM Intermediate SAF-High Modulus
  • FEF Fluor Extrusion Furnace
  • MAF Medium Abrasion Furnace
  • GPF General Purpose Furnace
  • SRF Semi-Reinforcing Furnace
  • the BET specific surface area of carbon black is preferably 10 to 130 m 2 / g, more preferably 20 to 130 m 2 / g, and still more preferably 40 to 130 m 2 / g.
  • This BET specific surface area can be measured by a multipoint nitrogen adsorption method (BET method).
  • aluminum hydroxide examples include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
  • the average particle diameter of the bituminous coal pulverized material is usually 0.1 mm or less, preferably 0.05 mm or less, more preferably 0.01 mm or less. Even if a pulverized bituminous coal having an average particle size of more than 0.1 mm is used, the hysteresis loss of the rubber composition may not be sufficiently reduced, and the fuel economy may not be sufficiently improved. Moreover, when using a rubber composition as a composition for inner liners, even if it uses a bituminous coal pulverized material whose average particle diameter exceeds 0.1 mm, the air-permeability-proof property of this composition can not fully be improved. is there.
  • the average particle diameter of the bituminous coal pulverized material is not particularly limited, it is preferably 0.001 mm or more. If it is less than 0.001 mm, the cost tends to be high.
  • the average particle diameter of the bituminous coal pulverized material is a mass-based average particle diameter calculated from a particle size distribution measured in accordance with JIS Z 8815-1994.
  • 1.6 or less is preferable, as for the specific gravity of a bituminous coal grinding material, 1.5 or less is more preferable, and 1.3 or less is more preferable.
  • the specific gravity of a bituminous coal grinding material 1.5 or less is more preferable, and 1.3 or less is more preferable.
  • the specific gravity of the whole rubber composition may be increased, and the improvement of the fuel economy of the tire may not be sufficiently achieved.
  • 0.5 or more is preferable and, as for the specific gravity of a bituminous coal grinding material, 1.0 or more is more preferable.
  • the processability at the time of kneading may be deteriorated.
  • a monohydric alcohol and a polyhydric alcohol may be used together with a compound having a Si—O bond capable of binding to silica.
  • monohydric alcohols include ethanol, butanol, octanol and the like.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, and polyether polyols.
  • liquid polybutadiene or the like whose molecular terminal is carboxy- or amine-modified may be used.
  • a vulcanization accelerator As an example of a vulcanization accelerator, thiazole-based vulcanization accelerators and sulches described on pages 412 to 413 of the Rubber Industry Handbook ⁇ Fourth Edition> (issued by The Japan Rubber Association, January 20, 1994) There may be mentioned phenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators.
  • vulcanization accelerator examples include N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclo
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • BSS N-tert-butyl-2-benzothiazolylsulfenamide
  • N N-dicyclo
  • DCBS xyl-2-benzothiazolylsulfenamide
  • MTT 2-mercaptobenzothiazole
  • MBTS dibenzothiazyl disulfide
  • DPG diphenyl guanidine
  • the ratio of sulfur component to vulcanization accelerator is not particularly limited, but the weight ratio of sulfur component to vulcanization accelerator is preferably 1/10 to 10/1, more preferably 1/5 to 5/1, and further Preferably, it is 1/2 to 2/1. Also, in a rubber member containing natural rubber as a main component, EV vulcanization with a sulfur component / vulcanization accelerator ratio of 1 or less, which is a method of improving heat resistance, is preferably used in applications where heat resistance improvement is particularly required.
  • the accelerator for example, zinc oxide, stearic acid, citraconic imide compound, alkylphenol-sulfur chloride condensate, organic thiosulphate compound and formula (III): R 16 -S-S-R 17 -S-S-R 18 (III) (Wherein, R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represent a monovalent organic group containing a nitrogen atom).
  • R 17 represents a C 2-10 alkanediyl group
  • R 16 and R 18 each independently represent a monovalent organic group containing a nitrogen atom.
  • zinc oxide is included in the concept of a vulcanization acceleration coagent, and is not included in the concept of the filler described above.
  • vulcanization acceleration assistant zinc oxide, stearic acid and citraconic imide compounds are preferable, and zinc oxide and stearic acid are more preferable.
  • zinc oxide When zinc oxide is used, its amount is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, per 100 parts by weight of the rubber component having an olefinic double bond. Parts, more preferably 0.1 to 10 parts by weight.
  • stearic acid When stearic acid is used, its amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of the rubber component having an olefinic double bond. Part, more preferably 0.1 to 5 parts by weight.
  • biscitraconimides are preferable because they are thermally stable and are excellent in dispersibility in a rubber component having an olefinic double bond.
  • citraconic imide compounds it is particularly stable thermally, and particularly excellent in dispersibility in a rubber component having an olefinic double bond, and a vulcanized rubber composition having high hardness (Hs) can be obtained (
  • Hs hardness
  • 1,3-biscitraconimidomethylbenzene represented by the following formula is preferable.
  • the vulcanized rubber composition of high hardness (Hs) can be obtained as a vulcanization acceleration assistant.
  • n is an integer of 0 to 10
  • each X is independently an integer of 2 to 4
  • each R 19 is independently a C 5-12 alkyl group.
  • N is preferably an integer of 1 to 9 because the dispersibility of the alkylphenol-sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
  • the alkylphenol-sulfur chloride condensate (IV) tends to be thermally unstable, and when X is 1, the sulfur content in the alkylphenol-sulfur chloride condensate (IV) (sulfur Less weight). It is preferable that X is 2 because high hardness can be expressed efficiently (reversion suppression).
  • R 19 is a C 5-12 alkyl group.
  • R 19 is preferably a C 6-9 alkyl group because the dispersibility of the alkylphenol-sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
  • alkylphenol-sulfur chloride condensate (IV) A specific example of the alkylphenol-sulfur chloride condensate (IV): n is 0 to 10, X is 2, R 19 is an octyl group, and the sulfur content is 24% by weight; The tacky roll V200 is mentioned.
  • a vulcanized rubber composition of high hardness can be obtained as a vulcanization acceleration assistant (reversion suppression), formula (V): HO 3 S-S- (CH 2 ) k -S-SO 3 H (V) [Wherein, k is an integer of 3 to 10. ] It is preferable to use a salt of an organic thiosulfate compound represented by (hereinafter sometimes referred to as “organic thiosulfate compound salt (V)”). Organic thiosulfate compound salt (V) containing crystal water may be used.
  • organic thiosulfate compound salts examples include lithium salts, potassium salts, sodium salts, magnesium salts, calcium salts, barium salts, zinc salts, nickel salts, cobalt salts and the like, and potassium salts and sodium salts Is preferred.
  • K is an integer of 3 to 10, preferably an integer of 3 to 6.
  • k is 2 or less, sufficient thermal fatigue resistance tends not to be obtained, and when k is 11 or more, the improvement effect of thermal fatigue resistance by organic thiosulfate compound salt (V) may not be sufficiently obtained.
  • organic thiosulfate compound salt (V) from the viewpoint of being stable at normal temperature and pressure, its sodium salt monohydrate and sodium salt dihydrate are preferable, and they can be obtained from sodium thiosulfate from the viewpoint of cost
  • Organic thiosulfate compound salt (V) is more preferable, and sodium 1,6-hexamethylenedithiosulfate dihydrate represented by the following formula is more preferable.
  • R 17 is a C 2-10 alkanediyl group, preferably a C 4-8 alkanediyl group, more preferably a linear C 4-8 alkanediyl group.
  • R 17 is preferably linear. If the carbon number of R 17 is 1 or less, the thermal stability may be poor. In addition, when the carbon number of R 17 is 11 or more, the distance between the polymers via the vulcanization acceleration auxiliary may be long, and the effect of adding the vulcanization acceleration auxiliary may not be obtained.
  • R 16 and R 18 are each independently a monovalent organic group containing a nitrogen atom.
  • R 16 and R 18 may be the same as or different from each other, but are preferably the same for reasons of easiness of production and the like.
  • compound (III) for example, 1,2-bis (dibenzylthiocarbamoyldithio) ethane, 1,3-bis (dibenzylthiocarbamoyldithio) propane, 1,4-bis (dibenzylthiocarbamoyldithio) butane 1,5-bis (dibenzylthiocarbamoyldithio) pentane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane, 1,7-bis (dibenzylthiocarbamoyldithio) heptane, 1,8-bis (dibenzylthiocarbamoyldithio) heptane Examples include benzylthiocarbamoyldithio) octane, 1,9-bis (dibenzylthiocarbamoyldithio) nonane, 1,10-
  • Examples of commercially available products of compound (III) include VULCUREN TRIAL PRODUCT KA 9188 and VULCUREN VP KA 9188 (1, 6-bis (dibenzylthiocarbamoyldithio) hexane) manufactured by Bayer.
  • an organic compound such as resorcinol, resorcinol resin, modified resorcinol resin, cresol resin, modified cresol resin, phenolic resin, and modified phenolic resin may be used.
  • resorcinol or these resins By using resorcinol or these resins, the elongation at break and the complex elastic modulus of the vulcanized rubber composition can be improved.
  • adhesiveness with a cord can be improved by using resorcinol and resin.
  • resorcinol examples include resorcinol manufactured by Sumitomo Chemical Co., Ltd.
  • resorcinol resins include resorcinol-formaldehyde condensates.
  • modified resorcinol resin examples include those obtained by alkylating part of the repeating unit of resorcinol resin. Specifically, Penacolite resin B-18-S and B-20 manufactured by India Spec Co., Ltd., Sumikanol 620 manufactured by Taoka Chemical Industry Co., Ltd., R-6 manufactured by Uniroyal Co., Ltd., SRF 1501 manufactured by Schenectady Chemical Co., and Ash Examples include Arofene 7209 manufactured by Land Corporation.
  • cresol resins include cresol-formaldehyde condensates.
  • modified cresol resin include one in which the terminal methyl group of cresol resin is changed to a hydroxy group, and one in which a part of the repeating unit of cresol resin is alkylated. Specifically, Sumikanol 610 manufactured by Taoka Chemical Industry Co., Ltd., PR-X11061 manufactured by Sumitomo Bakelite Co., Ltd., etc. may be mentioned.
  • a phenol formaldehyde condensate is mentioned, for example.
  • modified phenolic resin include resins in which a phenolic resin is modified using cashew oil, tall oil, linseed oil, various animal and vegetable oils, unsaturated fatty acids, rosin, alkylbenzene resins, aniline, melamine and the like.
  • methoxylated methylol melamine resin such as "Sumikanol 507AP” manufactured by Sumitomo Chemical Co., Ltd .
  • Coumaron resin NG4 softening point: 81 to 100 ° C.
  • Coumarone-indene resin such as “process resin AC5” (softening point 75 ° C.)
  • terpene resin such as terpene resin, terpene / phenol resin, aromatic modified terpene resin
  • Rosin derivatives having a softening point of 70 to 90 ° C . hydrogenated rosin derivatives; novolak type alkylphenol resins; resol type alkylphenol resins; C5 petroleum resins; liquid polybutadiene.
  • anti-aging agent for example, those described on pages 436 to 443 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by The Japan Rubber Association are mentioned.
  • N-phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine (abbreviated "6PPD", for example, “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical Co., Ltd.)
  • reaction of aniline with acetone Product abbreviated "TMDQ”
  • poly (2,2,4-trimethyl-1,2-) dihydroquinoline eg, "Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.
  • synthetic wax paraffin wax etc.
  • the amount thereof used is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component having an olefinic double bond. Parts by weight, more preferably 0.1 to 5 parts by weight.
  • oil examples include process oil, vegetable oil and the like.
  • process oils include paraffinic process oils, naphthenic process oils, and aromatic process oils.
  • commercially available products include aromatic oils ("NC-140” manufactured by Cosmo Oil Co., Ltd.) and process oils ("Diana Process PS32” manufactured by Idemitsu Kosan Co., Ltd.).
  • wax examples include “Sanknock (registered trademark) wax” manufactured by Ouchi Emerging Chemical Industry Co., Ltd., “OZOACE-0355” manufactured by Nippon Seiwa Co., Ltd., and the like.
  • the peptizing agent is not particularly limited as long as it is commonly used in the rubber field, and is described, for example, on pages 446 to 449 of "Rubber Industry Handbook ⁇ Fourth Edition>” edited by The Japan Rubber Association. And aromatic mercaptan-type peptizers, aromatic disulfide-type peptizers and aromatic mercaptan metal salt-type peptizers. Among them, dixylyl disulfide and o, o'-dibenzamidodiphenyl disulfide (“NOCTIZER SS” manufactured by Ouchi Shinko Chemical Co., Ltd.) are preferable.
  • the peptizing agent may be used alone or in combination of two or more.
  • retarders examples include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol diphosphite and the like.
  • CTP Cyclohexylthio phthalimide
  • the compound which has an oxyethylene unit which has a structure represented by these may be used.
  • q is preferably 2 or more, and more preferably 3 or more.
  • 16 or less is preferable and 14 or less of q is more preferable.
  • q is 17 or more, the compatibility and reinforcement with the rubber component having an olefinic double bond tend to be lowered.
  • the position of the oxyethylene unit in the compound having an oxyethylene unit may be a main chain, an end, or a side chain.
  • a compound having an oxyethylene unit at least in a side chain is preferable from the viewpoint of durability of the effect of preventing accumulation of static electricity on the tire surface to be obtained and reduction of electrical resistance.
  • Examples of compounds having an oxyethylene unit in the main chain include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, monoethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene Alkyl ethers, polyoxyethylene alkylamines, polyoxyethylene styrenated alkyl ethers, polyoxyethylene alkylamides and the like can be mentioned.
  • the number of oxyethylene units is preferably 4 or more per 100 carbon atoms constituting the main chain, and more preferably 8 or more.
  • the number of oxyethylene units is 3 or less, the electrical resistance tends to increase.
  • 12 or less is preferable and, as for the number of objects of an oxyethylene unit, 10 or less are more preferable.
  • the number of oxyethylene units is 13 or more, the compatibility and reinforcement with the rubber component having an olefinic double bond tend to be lowered.
  • the main chain of the compound having an oxyethylene unit at least in the side chain is preferably one composed mainly of polyethylene, polypropylene or polystyrene.
  • Method of producing rubber composition and rubber composition containing sulfur comprises compound (C), a rubber component having an olefinic double bond, and silica.
  • the compound (C) (particularly, the compound (I) and the compound (II)) has an effect of reducing the loss coefficient (tan ⁇ ) of the vulcanized rubber composition.
  • compound (C) a rubber component having an olefinic double bond, silica, and a compound having a Si-O bond capable of binding to silica are kneaded at once.
  • a rubber composition is prepared, and the obtained rubber composition and the sulfur component are kneaded to prepare a rubber composition containing the sulfur component, and the obtained rubber composition containing the sulfur component is vulcanized.
  • the present inventors have found a problem that the loss coefficient of the obtained vulcanized rubber composition is not much reduced as compared to the loss coefficient of the vulcanized rubber composition obtained without using the compound (C).
  • step 1 compound (C), a rubber component having an olefinic double bond, and silica are kneaded to prepare a kneaded product (step 1), and then obtained.
  • step 2 the loss factor is sufficient as shown in the examples described later. It has been found that a vulcanized rubber composition is obtained which is reduced.
  • the amount of the compound (C) used in the present invention is preferably 0 to 25% by weight, more preferably 0 to 10% by weight, based on the amount used in the present invention.
  • step 1 From the viewpoint of reducing the loss coefficient (tan ⁇ ) of the vulcanized rubber composition, it is preferable to knead in step 1 the entire amount of the rubber component having an olefinic double bond in the present invention.
  • a part of the used amount of the rubber component having an olefinic double bond in the present invention may be kneaded in Step 2 within a range not significantly impairing the effects of the present invention.
  • the amount of the rubber component having an olefinic double bond to be kneaded in Step 2 is preferably 0 to 50% by weight, more preferably 0 to 40% by weight in the amount used in the present invention.
  • the amount of silica used in the present invention is preferably 0 to 75% by weight, more preferably 0 to 25% by weight, based on the amount used in the present invention.
  • step 2 From the viewpoint of reducing the loss coefficient (tan ⁇ ) of the vulcanized rubber composition, it is preferable to knead in step 2 the entire amount of the compound having a Si—O bond that can be bonded to silica in the present invention.
  • a part of the used amount of the compound having a Si—O bond that can be bonded to the silica in the present invention may be kneaded in Step 1 within a range that does not significantly impair the effects of the present invention.
  • the amount of the compound having a Si—O bond capable of binding to the silica to be kneaded in Step 1 is preferably 0 to 25% by weight, more preferably 0 to 10% by weight in the amount used in the present invention.
  • a preliminary kneading step of masticating the rubber component may be provided prior to step 1.
  • a peptizing agent it is preferable to knead all of the amount used in the present invention in the pre-kneading step, or knead a portion of the used amount in the pre-kneading step, and knead the rest in step 1 .
  • the sulfur component is kneaded with the rubber composition obtained in step 2.
  • the process of kneading the rubber composition and the sulfur component may be described as a pro process.
  • a vulcanization accelerator it is preferable to knead all of its use amount in the pro step.
  • a retarder it is preferable to knead
  • the other components e.g., stearic acid, zinc oxide, anti-aging agent
  • the vulcanization accelerator, the peptizer and the retarder may be kneaded in any of the pre-kneading step, step 1 and step 2.
  • compound (C) in order to cause compound (C) to sufficiently react or interact with the rubber component having an olefinic double bond and silica during kneading to sufficiently exhibit the loss coefficient reduction effect of compound (C), It is preferable to knead
  • the pre-kneading step, step 1, step 2 and pro step will be described in order.
  • a pre-kneading step of masticating a rubber component having an olefinic double bond may be performed prior to step 1.
  • an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, and the like can be used.
  • the rotational speed for mastication in the pre-kneading step is preferably 5 to 100 rpm, more preferably 10 to 80 rpm, and still more preferably 10 to 60 rpm.
  • the kneading time for mastication is preferably 0.5 to 15 minutes, more preferably 1 to 10 minutes, and still more preferably 1 to 4 minutes.
  • Step 1 Compound (C) in step 1, rubber component having an olefinic double bond, and kneading of silica, or compound in step 1, rubber component having an olefinic double bond, silica, and optionally other components
  • kneading for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, etc. It can be used.
  • Steps 1 and 2 in the present invention can be performed, for example, as in the following (i) or (ii):
  • step 1 After step 1, the kneaded material is discharged from the apparatus used in step 1, cooled, and then the obtained kneaded material, a compound having a Si-O bond capable of binding to silica, and, if necessary, The other components are introduced into the apparatus used in step 2 and kneading in step 2 is performed.
  • step 1 After step 1, without discharging the kneaded material from the apparatus used in step 1, the apparatus is charged with a compound having a Si-O bond capable of binding to silica, and other components as needed. Then, the kneading of step 2 is performed following the kneading of step 1. From the viewpoint of operation, the aspect of the above (i) is preferable.
  • step 2 it is preferable to perform the kneading in step 2 after the kneading in step 1 is sufficiently performed. It can be judged from the change of the torque of the apparatus used at the process 1 whether the kneading
  • the kneading in step 1 may be performed by changing the rotation speed. For example, first, kneading may be performed at a low first rotational speed, and then may be performed at a second rotational speed higher than the first rotational speed.
  • the first rotation speed is preferably 2 to 35 rpm, more preferably 4 to 25 pm, still more preferably 6 to 15 rpm, and the kneading time is preferably 0.5 to 5 minutes, more preferably 0.5 to 5 minutes. 3 minutes, preferably 0.5 to 2 minutes.
  • the second rotation speed is preferably 35 to 100 rpm, more preferably 40 to 90 pm, still more preferably 45 to 80 rpm, and the kneading time is preferably 1 to 10 minutes, more preferably 1.5 to 8 minutes. More preferably, it is 2 to 6 minutes.
  • the discharge temperature of the kneaded material is preferably 120 to 180 ° C., more preferably 130 to 170 ° C., still more preferably 140. It is ⁇ 160 ° C.
  • step 1 the kneaded material may be discharged from the apparatus used in step 1, and the kneaded material may be cooled.
  • the cooling operation from the apparatus used in Step 1 include cold cooling, water cooling, and forced air cooling. Among these, simple free standing is preferred.
  • the kneaded material obtained in Step 1 may be processed into a sheet or a board using an open roll.
  • the thickness of the kneaded material processed into a sheet or board is preferably 0.5 to 20 mm, more preferably 2 to 10 mm.
  • (D) Process 2 Kneading the above-mentioned kneaded product in step 2 and a compound having a Si-O bond capable of binding to silica, or the above-mentioned kneaded product in step 2, a compound having a Si-O bond capable of binding to silica and optionally other components for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, etc. Can be used.
  • the apparatus set temperature at the start of kneading in step 2 is preferably 40 to 200 ° C., more preferably 50 to 180 ° C., and still more preferably 60 to 160 ° C.
  • the cooling step it is preferable to knead only the kneaded material first in order to shear the rubber component in the kneaded material after cooling.
  • the rotational speed of kneading of this kneaded material alone is preferably 35 to 100 rpm, more preferably 40 to 90 pm, still more preferably 45 to 80 rpm, and the kneading time is preferably 0.5 to 10 minutes, more preferably 1 to 8 minutes, more preferably 2 to 5 minutes.
  • the kneading in step 2 may be performed by changing the rotation speed. For example, first, kneading may be performed at a low first rotational speed, and then may be performed at a second rotational speed higher than the first rotational speed.
  • the first rotation speed is preferably 2 to 35 rpm, more preferably 4 to 25 pm, still more preferably 6 to 15 rpm, and the kneading time is preferably 0.5 to 5 minutes, more preferably 0.5 to 5 minutes. 3 minutes, preferably 0.5 to 2 minutes.
  • the second rotation speed is preferably 35 to 100 rpm, more preferably 40 to 90 pm, still more preferably 45 to 80 rpm, and the kneading time is preferably 1 to 10 minutes, more preferably 1.5 to 8 minutes. More preferably, it is 2 to 6 minutes.
  • the rubber composition obtained in step 2 is discharged from the apparatus used in step 2, and the obtained rubber composition and the sulfur component are kneaded using an apparatus different from step 2 It is preferred to carry out the pro step.
  • the discharge temperature of the rubber composition from the apparatus used in step 2 is preferably 80 to 200 ° C., more preferably 90 to 190 ° C., still more preferably 100 to 180 ° C.
  • (E) Pro process In the kneading of the rubber composition obtained as described above and the sulfur component, for example, an open roll, a calendar or the like can be used.
  • the kneading temperature (temperature of the rubber composition being kneaded) in the pro step is preferably 20 to 100 ° C., more preferably 30 to 90 ° C., and still more preferably 40 to 80 ° C.
  • a vulcanized rubber composition can be produced by vulcanizing a rubber composition containing a sulfur component.
  • the vulcanization temperature is preferably 120 to 180.degree.
  • Those skilled in the art can appropriately set the vulcanization time according to the composition of the rubber composition.
  • Vulcanization is usually carried out under normal pressure or under pressure.
  • the present invention also provides a rubber composition, a rubber composition containing a sulfur component, and a vulcanized rubber composition obtained by the method described above.
  • the loss coefficient (tan ⁇ ) of the vulcanized rubber composition obtained by the method of the present invention including Step 1 and Step 2 is the compound (C) and the olefinic difunctional compound Obtained by a method including a step of kneading the rubber component having a heavy bond, silica, and a compound having a Si-O bond capable of binding to silica at one time (hereinafter sometimes abbreviated as "other method"). Very low compared to the loss factor of the vulcanized rubber composition.
  • the rubber composition obtained by the method of the present invention, the rubber composition containing a sulfur component and the vulcanized rubber composition are the rubber composition obtained by another method, the rubber composition containing a sulfur component and It is clear that the composition is different from the vulcanized rubber composition.
  • the rubber composition etc. obtained by the method of the present invention it is necessary to distinguish between the rubber composition etc. obtained by the method of the present invention and the rubber composition etc obtained by other methods in which only the operation is different and the components used are the same. Impossible or not nearly practical. In other words, in the present technology of analyzing a solid rubber composition, it is impossible or almost not practical to directly identify the rubber composition etc. obtained by the method of the present invention by its structure etc. . Therefore, in the present specification and claims, the rubber composition of the present invention, the rubber composition containing a sulfur component and the vulcanized rubber composition are specified by the method of the present invention.
  • ⁇ Component> The components and abbreviations used in the following examples are as follows.
  • SBR solution-polymerized styrene / butadiene copolymer rubber (Sumitomo Chemical Co., Ltd., trade name "SE-0212")
  • ⁇ BR Polybutadiene rubber (manufactured by JSR, trade name “BR01”)
  • Silica Tosoh Silica Corporation, trade name “Nipsil (registered trademark) AQ”
  • -CB carbon black ISAF (manufactured by Asahi Carbon Co., Ltd., trade name "Asahi # 80", BET specific surface area: 115 m 2 / g)
  • Pre-kneading step and step 1 (Reference Example 2, Examples 1 to 12, and Comparative Examples 1 and 2) Natural rubber was charged into a pressure-type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading was set to 140 ° C., and then two-component kneading was performed at a rotation number of 50 rpm. The components other than natural rubber are added thereto in the amount shown in step 1 of the following table, and kneading is performed for 2 minutes at 10 rpm, and then kneading is performed for 3 minutes at 50 rpm, Drained.
  • TD1-5MDX manufactured by Toshin Co., Ltd.
  • the time until the torque of the device is reduced after the addition of components other than natural rubber is about 2.5 minutes, and after the torque of the device is reduced, kneading for 2.5 minutes is further performed at 50 rpm. went. Moreover, the discharge temperature of the kneaded material of the process 1 was about 150 degreeC.
  • Cooling step (Reference Example 2, Examples 1 to 12, and Comparative Examples 1 and 2)
  • the kneaded product obtained in step 1 is processed into a sheet having a thickness of 3 to 5 mm using an open roll (laboratory mill manufactured by Kansai Roll Co., Ltd.) at a set temperature of 50 ° C., and then room temperature until it reaches room temperature
  • the sheet-like kneaded material was allowed to cool under the atmosphere atmosphere.
  • Step 2 The kneaded product after the above-mentioned cooling step (described as "kneaded product” in the following table) is put into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C. After applying shear for 1 minute at 50 rpm, add the components of the types and amounts shown in the following table, and perform kneading for 3 minutes at 50 rpm and 2 minutes at 10 rpm. The composition was obtained. The discharge temperature of the rubber composition was about 150 ° C.
  • the rubber composition obtained in step 2 is mixed with the sulfur component of the amount shown in the following table and the vulcanization accelerators 1 and 2 at a temperature of 60 to 80 ° C. in a pro step open roll to contain the sulfur component
  • the resulting rubber composition was obtained.
  • the vulcanization temperature is set to 145 ° C.
  • the vulcanization time is 10 minutes to the value of t (90) obtained by rheometer measurement according to JIS K 6300-2.
  • the vulcanized rubber composition was obtained by vulcanizing the rubber composition obtained in the pro step by setting the time for adding.
  • the rubber composition was manufactured by kneading the components other than the sulfur component and the vulcanization accelerators 1 and 2 in the above step 2 without performing the above step 1. Specifically, 100 parts by weight of natural rubber is introduced into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C., and the rotation speed is 50 rpm for 2 minutes After shearing, components of the types and amounts shown in the following table were charged, and kneading was performed at 10 rpm for 2 minutes and further at 50 rpm for 3 minutes to obtain a rubber composition. The discharge temperature of the rubber composition was about 150 ° C.
  • Examples 7 to 9 in which a part of the silica is kneaded in Step 2 and Examples 10 to 12 in which a part of the natural rubber is kneaded in Step 2 are all of the silica and the natural rubber.
  • a vulcanized rubber composition having a sufficiently reduced loss factor (tan ⁇ ) was obtained in the same manner as in Examples 1 to 6 in which kneading was carried out in step 1.
  • Step 2 shows that a vulcanized rubber composition having a sufficiently reduced loss factor can be obtained.
  • Example 13 and Comparative Example 3 The rubbers of Reference Examples 3 and 4, Example 13, and Comparative Example 3 are the same as Example 1 etc. except that natural rubber and solution-polymerized styrene / butadiene copolymer rubber were used in addition to natural rubber.
  • the composition, a rubber composition containing a sulfur component, and a vulcanized rubber composition were produced, and the loss coefficient (tan ⁇ ) at 60 ° C. of the vulcanized rubber composition was measured.
  • the types and amounts of ingredients used are shown in the following table.
  • the compound (Ia-1) was not used. Further, in Reference Example 3 and Comparative Example 3, the rubber composition was manufactured by kneading the components other than the sulfur component and the vulcanization accelerators 1 and 2 in the above step 2 without performing the above step 1. Specifically, rubber components of the types and amounts shown in the following table are charged into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C., and the rotation number is 50 rpm.
  • TD1-5MDX manufactured by Toshin Co., Ltd.
  • Example 13 As shown in the above table, even when natural rubber and solution-polymerized styrene / butadiene copolymer rubber are used as rubber components, in Example 13 satisfying the requirements of the present invention, the loss coefficient (tan ⁇ ) is sufficiently reduced. A vulcanized rubber composition was obtained.
  • Reference Examples 5 and 6, Example 14, and Comparative Example 4 The rubber compositions of Reference Examples 5 and 6, Example 14, and Comparative Example 4 in the same manner as in Example 1 and the like except that natural rubber and polybutadiene rubber were used in addition to natural rubber, and sulfur components The contained rubber composition and the vulcanized rubber composition were manufactured, and the loss factor (tan ⁇ ) at 60 ° C. of the vulcanized rubber composition was measured. The types and amounts of ingredients used are shown in the following table.
  • the compound (Ia-1) was not used. Further, in Reference Example 5 and Comparative Example 4, the rubber composition was manufactured by kneading the components other than the sulfur component and the vulcanization accelerators 1 and 2 in the above step 2 without performing the above step 1. Specifically, rubber components of the types and amounts shown in the following table are charged into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C., and the rotation number is 50 rpm.
  • TD1-5MDX manufactured by Toshin Co., Ltd.
  • Example 14 satisfying the requirements of the present invention provides a vulcanized rubber composition in which the loss coefficient (tan ⁇ ) is sufficiently reduced. It was done.
  • Reference Examples 7 and 8, Example 15, and Comparative Example 5 Reference Examples 7 and 8, Example 15, and Comparative Example 5 Reference Examples 7 and 8, Example 15, and Comparative Example 5 Reference Examples 7 and 8, Example 15, and Comparative Example 5 Reference Examples 7 and 8, Example 15, and Comparative Examples are carried out in the same manner as Example 1 etc. except that natural rubber, solution-polymerized styrene / butadiene copolymer rubber and polybutadiene rubber are used in addition to natural rubber.
  • the rubber composition of No. 5, the rubber composition containing a sulfur component, and the vulcanized rubber composition were produced, and the loss coefficient (tan ⁇ ) at 60 ° C. of the vulcanized rubber composition was measured.
  • the types and amounts of ingredients used are shown in the following table.
  • Example 15 As shown in the above table, even when natural rubber, solution-polymerized styrene / butadiene copolymer rubber and polybutadiene rubber are used as rubber components, the loss coefficient (tan ⁇ ) is sufficiently reduced in Example 15 satisfying the requirements of the present invention. The resulting vulcanized rubber composition was obtained.
  • a vulcanized rubber composition having a low loss factor can be produced.
  • the rubber composition obtained by the method of the present invention is useful for the production of various products (for example, vulcanized tires and tire components).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention provides a method for producing a rubber composition, which comprises: a step 1 wherein a kneaded product is obtained by kneading silica, a rubber component which has an olefinic double bond, and a compound (C) which has no Si-O bond, while having a group or structure (A) that is reactive with an olefinic double bond and a group or structure (B) that is reactive or interactive with silica; and a step 2 wherein a rubber composition is obtained by kneading the thus-obtained kneaded product with a compound which has an Si-O bond that is capable of forming a bond with silica.

Description

ゴム組成物の製造方法Method of producing rubber composition
 本発明は、ゴム組成物の製造方法等に関する。 The present invention relates to a method for producing a rubber composition and the like.
 近年、環境保護の要請から、自動車の燃費向上(すなわち、低燃費化)が求められている。そして、自動車用タイヤの分野においては、タイヤ製造に用いられる加硫ゴム組成物の損失係数(tanδ)を低減させることにより、自動車の燃費が向上することが知られている。 In recent years, from the request of environmental protection, fuel efficiency improvement (that is, fuel efficiency improvement) of a car is required. And, in the field of automobile tires, it is known that the fuel efficiency of automobiles can be improved by reducing the loss coefficient (tan δ) of a vulcanized rubber composition used for manufacturing tires.
 例えば、特許文献1には、加硫ゴム組成物の損失係数を低減させるために、式(D): For example, in order to reduce the loss factor of a vulcanized rubber composition, Patent Document 1 describes the formula (D):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(D)中の基の定義は特許文献1に記載された通りである。なお、式(D)は特許文献1において式(I)と記載されている。]
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物の少なくとも一つを使用することが記載されている。
[The definition of the group in the formula (D) is as described in Patent Document 1. Formula (D) is described in Patent Document 1 as Formula (I). ]
It is described that at least one of a compound represented by the formula, a salt thereof, a solvate thereof and a solvate of the salt thereof is used.
 また、特許文献2には、加硫ゴム組成物の損失係数を低減させるために、式(E): In addition, in order to reduce the loss factor of the vulcanized rubber composition, Patent Document 2 describes the formula (E):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(E)中の基の定義は特許文献2に記載された通りである。なお、式(E)は特許文献2において式(I)と記載されている。]
で表される化合物を使用することが記載されている。
[The definition of the group in the formula (E) is as described in Patent Document 2. Formula (E) is described in Patent Document 2 as Formula (I). ]
It is described to use the compound represented by
特開2013-209605号公報JP, 2013-209605, A 特開2013-159678号公報JP, 2013-159678, A
 オレフィン性二重結合を有するゴム成分およびシリカを用いて、損失係数(tanδ)が低い加硫ゴム組成物を製造することが求められている。しかし、従来技術では、オレフィン性二重結合を有するゴム成分(特に、天然ゴム)およびシリカを用いると、加硫ゴム組成物の損失係数を充分に低減させることが困難であった。 There is a need to produce a vulcanized rubber composition having a low loss factor (tan δ) using a rubber component having an olefinic double bond and silica. However, in the prior art, it was difficult to sufficiently reduce the loss factor of the vulcanized rubber composition when using a rubber component having an olefinic double bond (particularly, natural rubber) and silica.
 本発明は上記のような事情に着目してなされたものであって、その目的は、オレフィン性二重結合を有するゴム成分およびシリカを用いて、損失係数が低い加硫ゴム組成物を製造することにある。 The present invention has been made focusing on the above circumstances, and an object thereof is to produce a vulcanized rubber composition having a low loss coefficient using a rubber component having an olefinic double bond and silica. It is.
 上記目的を達成し得る本発明は、以下の通りである。
 [1] オレフィン性二重結合と反応し得る基または構造(A)、およびシリカと反応または相互作用し得る基または構造(B)を有し、Si-O結合を有さない化合物(C)と、オレフィン性二重結合を有するゴム成分と、シリカとを混練して、混練物を得る工程1、および
 得られた混練物と、シリカと結合可能なSi-O結合を有する化合物とを混練して、ゴム組成物を得る工程2、
を含むゴム組成物の製造方法。
The present invention which can achieve the above object is as follows.
[1] Compound (C) having a group or structure (A) capable of reacting with an olefinic double bond, and a group or structure (B) capable of reacting or interacting with silica (C) having no Si-O bond Step 1: Kneading a rubber component having an olefinic double bond and silica to obtain a kneaded product, and kneading the obtained kneaded product and a compound having a Si-O bond capable of binding to silica To obtain a rubber composition,
A method of producing a rubber composition comprising:
 [2] 基または構造(A)が、オレフィン性二重結合とラジカル反応または1,3-双極子付加反応し得る基または構造である前記[1]に記載の方法。
 [3] 基または構造(A)が、オレフィン性二重結合、アミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、*-SSOH若しくはその塩、*-S-S-*、*-C≡N-O、*-C≡N-N-*、式(i)で表される構造、式(ii)で表される構造、または式(iii)で表される構造:
[2] The method according to [1] above, wherein the group or structure (A) is a group or structure capable of undergoing a radical reaction or a 1,3-dipolar addition reaction with an olefinic double bond.
[3] The group or structure (A) is an olefinic double bond, an amido group, a maleimide ring, 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof, * -S-S - *, * - C≡N + -O -, * - C≡N + -N - - *, structure represented by the formula (i), structural formula (ii) or formula, (iii) Structure represented by:
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[前記式中、*は結合位置を表す。]
である前記[1]に記載の方法。
[In the above formula, * represents a bonding position. ]
The method according to [1] above, which is
 [4] 基または構造(B)が、無置換または置換アミノ基、フラン環、オキサゾール環または1H-ベンゾイミダゾール環である前記[1]~[3]のいずれか一つに記載の方法。 [4] The method according to any one of the above [1] to [3], wherein the group or the structure (B) is an unsubstituted or substituted amino group, a furan ring, an oxazole ring or a 1H-benzoimidazole ring.
 [5] 化合物(C)が、式(I): [5] The compound (C) is a compound of the formula (I):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(I)中、
 Rは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。
 RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。
 Rは、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC6-14アリールオキシ基、または-NR(前記式中、RおよびRは、それぞれ独立に、水素原子、または1以上の置換基を有していてもよいC1-6アルキル基を表す。)を表す。
 Xは、-NH-または-O-を表す。]
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物、並びに式(II):
[In the formula (I),
R 1 is a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, one or more substituents And a divalent C 6-12 aromatic hydrocarbon group which may have the formula, or a combination thereof.
R 2 and R 3 each independently have a hydrogen atom, a halogen atom, a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or one or more substituents or represents a C 1-6 alkyl group or one or more may have a substituent group C 6-14 aryl group, or R 2 and R 3 are bonded, the carbon atom to which they are attached Taken together, form a C 3-10 cycloalkene diyl group which may have one or more substituents.
R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, or -NR 5 R 6 (wherein, R 5 and R 6 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents).
X represents -NH- or -O-. ]
, A salt thereof, a solvate thereof and a solvate of the salt thereof, and a compound of the formula (II):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(II)中、
 RおよびRは、それぞれ独立に、水素原子または1以上の置換基を有していてもよいC1-6アルキル基を表すか、或いはRおよびRが結合し、1以上の置換基を有していてもよいC2-12アルカンジイル基を形成する。
 mは、2~9の整数を表す。
 nは、1または2を表す。
 Mn+は、Hまたはn価の金属イオンを表す。]
で表される化合物からなる群から選ばれる少なくとも一つである前記[1]に記載の方法。
[In the formula (II),
R 7 and R 8 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents, or R 7 and R 8 are bonded together, and one or more of them are substituted It forms a C 2-12 alkanediyl group which may have a group.
m represents an integer of 2 to 9;
n represents 1 or 2;
Mn + represents H + or n-valent metal ion. ]
The method according to the above [1], which is at least one selected from the group consisting of compounds represented by
 [6] 式(I)で表される化合物が、式(Ia): [6] The compound represented by the formula (I) is a compound represented by the formula (Ia):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(Ia)中、R~RおよびXは前記と同義である。]
で表される化合物である前記[5]に記載の方法。
[In the formula (Ia), R 1 to R 4 and X are as defined above. ]
The method according to [5] above, which is a compound represented by
 [7] Rが、C2-12アルカンジイル基または2価のC6-12芳香族炭化水素基である前記[5]または[6]に記載の方法。
 [8] Rが、C2-12アルカンジイル基またはフェニレン基である前記[5]または[6]に記載の方法。
 [9] Rが、フェニレン基である前記[5]または[6]に記載の方法。
 [10] Rが、1,4-フェニレン基である前記[5]または[6]に記載の方法。
[7] The method according to the above [5] or [6], wherein R 1 is a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group.
[8] The method according to [5] or [6] above, wherein R 1 is a C 2-12 alkanediyl group or a phenylene group.
[9] The method according to the above [5] or [6], wherein R 1 is a phenylene group.
[10] The method according to the above [5] or [6], wherein R 1 is a 1,4-phenylene group.
 [11] RおよびRが、それぞれ独立に、水素原子またはC1-6アルキル基である前記[5]~[10]のいずれか一つに記載の方法。
 [12] RおよびRが、共に、水素原子である前記[5]~[10]のいずれか一つに記載の方法。
[11] The method according to any one of the above-mentioned [5] to [10], wherein R 2 and R 3 are each independently a hydrogen atom or a C 1-6 alkyl group.
[12] The method according to any one of the above [5] to [10], wherein R 2 and R 3 are both hydrogen atoms.
 [13] Rが、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基である前記[5]~[12]のいずれか一つに記載の方法。
 [14] Rが、ヒドロキシ基またはC1-6アルコキシ基である前記[5]~[12]のいずれか一つに記載の方法。
 [15] Rが、ヒドロキシ基である前記[5]~[12]のいずれか一つに記載の方法。
[13] R 4 is a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or a C 6-14 aryloxy group optionally having one or more substituents The method according to any one of the above [5] to [12].
[14] The method according to any one of the above [5] to [12], wherein R 4 is a hydroxy group or a C 1-6 alkoxy group.
[15] The method according to any one of the above [5] to [12], wherein R 4 is a hydroxy group.
 [16] Xが、-NH-である前記[5]~[15]のいずれか一つに記載の方法。 [16] The method according to any one of the above-mentioned [5] to [15], wherein X is -NH-.
 [17] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物が、式(I)で表される化合物の塩の溶媒和物である前記[5]~[16]のいずれか一つに記載の方法。
 [18] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸塩の溶媒和物である前記[5]~[16]のいずれか一つに記載の方法。
 [19] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸アルカリ金属塩の溶媒和物である前記[5]~[16]のいずれか一つに記載の方法。
 [20] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸ナトリウム塩の溶媒和物である前記[5]~[16]のいずれか一つに記載の方法。
[17] The compound of the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof is a solvate of the salt of the compound represented by the formula (I) [5] The method according to any one of [16].
[18] At least one member selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof is a carboxylate of a compound represented by the formula (I) The method according to any one of the above [5] to [16], which is a solvate of
[19] An alkali of carboxylic acid of a compound represented by the formula (I), at least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof The method according to any one of the above [5] to [16], which is a solvate of a metal salt.
[20] A sodium carboxylate of a compound represented by the formula (I), at least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof The method according to any one of the above [5] to [16], which is a salt solvate.
 [21] RおよびRが、それぞれ独立に、好ましくは水素原子または1以上の置換基を有していてもよいC1-6アルキル基である前記[5]~[20]のいずれか一つに記載の方法。
 [22] RおよびRが、共に、水素原子である前記[5]~[20]のいずれか一つに記載の方法。
[21] Any one of the above [5] to [20], wherein R 7 and R 8 are each independently preferably a hydrogen atom or a C 1-6 alkyl group optionally having one or more substituents. The method described in one.
[22] The method according to any one of the above [5] to [20], wherein R 7 and R 8 are both hydrogen atoms.
 [23] mが、2~7の整数である前記[5]~[22]のいずれか一つに記載の方法。
 [24] mが、2~5の整数である前記[5]~[22]のいずれか一つに記載の方法。
 [25] nが、1である前記[5]~[24]のいずれか一つに記載の方法。
[23] The method according to any one of the above [5] to [22], wherein m is an integer of 2 to 7.
[24] The method according to any one of the above [5] to [22], wherein m is an integer of 2 to 5.
[25] The method according to any one of the above [5] to [24], wherein n is 1.
 [26] 式(II)で表される化合物が、S-(アミノアルキル)チオ硫酸、S-(アミノアルキル)チオ硫酸塩、S-(N,N-ジアルキルアミノアルキル)チオ硫酸、S-(N,N-ジアルキルアミノアルキル)チオ硫酸塩、S-(N-モノアルキルアミノアルキル)チオ硫酸およびS-(N-モノアルキルアミノアルキル)チオ硫酸塩からなる群から選ばれる少なくとも一つである前記[5]~[20]のいずれか一つに記載の方法。
 [27] 式(II)で表される化合物が、S-(アミノアルキル)チオ硫酸およびS-(アミノアルキル)チオ硫酸塩からなる群から選ばれる少なくとも一つである前記[5]~[20]のいずれか一つに記載の方法。
 [28] 式(II)で表される化合物が、S-(アミノアルキル)チオ硫酸である前記[5]~[20]のいずれか一つに記載の方法。
 [29] 式(II)で表される化合物が、S-(3-アミノプロピル)チオ硫酸である前記[5]~[20]のいずれか一つに記載の方法。
[26] The compound represented by the formula (II) is S- (aminoalkyl) thiosulfate, S- (aminoalkyl) thiosulfate, S- (N, N-dialkylaminoalkyl) thiosulfate, S- ( At least one selected from the group consisting of N, N-dialkylaminoalkyl) thiosulfates, S- (N-monoalkylaminoalkyl) thiosulfates and S- (N-monoalkylaminoalkyl) thiosulfates The method according to any one of [5] to [20].
[27] The compound of the above [5] to [20], wherein the compound represented by the formula (II) is at least one selected from the group consisting of S- (aminoalkyl) thiosulfuric acid and S- (aminoalkyl) thiosulfate ] The method as described in any one.
[28] The method according to any one of the above [5] to [20], wherein the compound represented by the formula (II) is S- (aminoalkyl) thiosulfuric acid.
[29] The method according to any one of the above [5] to [20], wherein the compound represented by the formula (II) is S- (3-aminopropyl) thiosulfuric acid.
 [30] シリカと結合可能なSi-O結合を有する化合物が、シランカップリング剤である前記[1]~[29]のいずれか一つに記載の方法。
 [31] シランカップリング剤が、ケイ素原子に結合したC1-6アルコキシ基およびジスルフィド結合を有するシランカップリング剤である前記[30]に記載の方法。
 [32] シランカップリング剤が、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィドおよびビス(3-ジエトキシメチルシリルプロピル)ジスルフィドからなる群から選ばれる少なくとも一つである前記[30]に記載の方法。
[30] The method according to any one of the above [1] to [29], wherein the compound having a Si—O bond capable of binding to silica is a silane coupling agent.
[31] The method according to the above [30], wherein the silane coupling agent is a silane coupling agent having a C 1-6 alkoxy group bonded to a silicon atom and a disulfide bond.
[32] Silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide and bis (3-di The method according to the above [30], which is at least one selected from the group consisting of ethoxymethylsilylpropyl) disulfide.
 [33] オレフィン性二重結合を有するゴム成分が、ジエン系ゴムを含む前記[1]~[32]のいずれか一つに記載の方法。
 [34] オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量が、50重量%以上である前記[33]に記載の方法。
 [35] オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量が、60~100重量%である前記[33]に記載の方法。
 [36] オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量が、75~100重量%である前記[33]に記載の方法。
 [37] オレフィン性二重結合を有するゴム成分が、ジエン系ゴムからなる前記[1]~[32]のいずれか一つに記載の方法。
[33] The method according to any one of the above [1] to [32], wherein the rubber component having an olefinic double bond comprises a diene rubber.
[34] The method according to [33] above, wherein the amount of diene rubber in the rubber component having an olefinic double bond is 50% by weight or more.
[35] The method according to the above [33], wherein the amount of diene rubber in the rubber component having an olefinic double bond is 60 to 100% by weight.
[36] The method according to the above [33], wherein the amount of diene rubber in the rubber component having an olefinic double bond is 75 to 100% by weight.
[37] The method according to any one of the above [1] to [32], wherein the rubber component having an olefinic double bond comprises a diene rubber.
 [38] オレフィン性二重結合を有するゴム成分が、天然ゴムを含む前記[1]~[37]のいずれか一つに記載の方法。
 [39] オレフィン性二重結合を有するゴム成分中の天然ゴムの量が、50重量%以上である前記[38]に記載の方法。
 [40] オレフィン性二重結合を有するゴム成分中の天然ゴムの量が、60~100重量%である前記[38]に記載の方法。
 [41] オレフィン性二重結合を有するゴム成分中の天然ゴムの量が、70~100重量%である前記[38]に記載の方法。
[38] The method according to any one of the above-mentioned [1]-[37], wherein the rubber component having an olefinic double bond contains a natural rubber.
[39] The method according to the above [38], wherein the amount of natural rubber in the rubber component having an olefinic double bond is 50% by weight or more.
[40] The method according to the above [38], wherein the amount of natural rubber in the rubber component having an olefinic double bond is 60 to 100% by weight.
[41] The method according to the above [38], wherein the amount of natural rubber in the rubber component having an olefinic double bond is 70 to 100% by weight.
 [42] 前記方法におけるオレフィン性二重結合を有するゴム成分の使用量の全部を、工程1で混練する前記[1]~[41]のいずれか一つに記載の方法。
 [43] 前記方法におけるオレフィン性二重結合を有するゴム成分の使用量の一部を、工程2で混練してもよい前記[1]~[41]のいずれか一つに記載の方法。
 [44] 工程2で混練するオレフィン性二重結合を有するゴム成分の量が、前記方法におけるその使用量中、0~50重量%である前記[43]に記載の方法。
 [45] 工程2で混練するオレフィン性二重結合を有するゴム成分の量が、前記方法におけるその使用量中、0~40重量%である前記[43]に記載の方法。
[42] The method according to any one of the above [1] to [41], wherein the entire use amount of the rubber component having an olefinic double bond in the above method is kneaded in Step 1.
[43] The method according to any one of the above [1] to [41], wherein a part of the amount of the rubber component having an olefinic double bond in the above method may be kneaded in Step 2.
[44] The method according to [43], wherein the amount of the rubber component having an olefinic double bond to be kneaded in Step 2 is 0 to 50% by weight based on the amount used in the method.
[45] The method according to the above [43], wherein the amount of the rubber component having an olefinic double bond to be kneaded in Step 2 is 0 to 40% by weight based on the amount used in the method.
 [46] 化合物(C)の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.1~10重量部である前記[1]~[45]のいずれか一つに記載の方法。
 [47] 化合物(C)の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.25~8重量部である前記[1]~[45]のいずれか一つに記載の方法。
 [48] 化合物(C)の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.5~4重量部である前記[1]~[45]のいずれか一つに記載の方法。
[46] Any of the above-mentioned [1] to [45], wherein the amount of the compound (C) used is 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond Or the method described in one.
[47] Any of the above-mentioned [1] to [45], wherein the amount of the compound (C) used is 0.25 to 8 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond Or the method described in one.
[48] Any of the above-mentioned [1] to [45], wherein the amount of the compound (C) used is 0.5 to 4 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond Or the method described in one.
 [49] 前記方法における化合物(C)の使用量の全部を、工程1で混練する前記[1]~[48]のいずれか一つに記載の方法。
 [50] 前記方法における化合物(C)の使用量の一部を、工程2で混練してもよい前記[1]~[48]のいずれか一つに記載の方法。
 [51] 工程2で混練する化合物(C)の量が、前記方法におけるその使用量中、0~25重量%である前記[50]に記載の方法。
 [52] 工程2で混練する化合物(C)の量が、前記方法におけるその使用量中、0~10重量%である前記[50]に記載の方法。
[49] The method according to any one of the above [1] to [48], wherein the entire use amount of the compound (C) in the method is kneaded in Step 1.
[50] The method according to any one of the above [1] to [48], wherein a part of the amount of the compound (C) used in the method may be kneaded in Step 2.
[51] The method according to [50] above, wherein the amount of compound (C) to be kneaded in Step 2 is 0 to 25% by weight in the amount used in the method.
[52] The method according to [50], wherein the amount of the compound (C) to be kneaded in Step 2 is 0 to 10% by weight in the amount used in the method.
 [53] シリカの使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、10~120重量部である前記[1]~[52]のいずれか一つに記載の方法。
 [54] シリカの使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、22.5~100重量部である前記[1]~[52]のいずれか一つに記載の方法。
 [55] シリカの使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、35~80重量部である前記[1]~[52]のいずれか一つに記載の方法。
[53] The method according to any one of the above [1] to [52], wherein the amount of silica used is 10 to 120 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. the method of.
[54] Any one of the above [1] to [52], wherein the amount of silica used is 22.5 to 100 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond The method described in.
[55] The method according to any one of the above [1] to [52], wherein the amount of silica used is 35 to 80 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond. the method of.
 [56] 前記方法におけるシリカの使用量の全部を、工程1で混練する前記[1]~[55]のいずれか一つに記載の方法。
 [57] 前記方法におけるシリカの使用量の一部を、工程2で混練してもよい前記[1]~[55]のいずれか一つに記載の方法。
 [58] 工程2で混練するシリカの量が、前記方法におけるその使用量中、0~75重量%である前記[57]に記載の方法。
 [59] 工程2で混練するシリカの量が、前記方法におけるその使用量中、0~25重量%である前記[57]に記載の方法。
[56] The method according to any one of the above [1] to [55], wherein the entire amount of silica used in the method is kneaded in Step 1.
[57] The method according to any one of the above [1] to [55], wherein a part of the amount of silica used in the method may be kneaded in Step 2.
[58] The method according to the above [57], wherein the amount of silica to be kneaded in step 2 is 0 to 75% by weight of the amount used in the method.
[59] The method according to the above [57], wherein the amount of silica to be kneaded in step 2 is 0 to 25% by weight of the amount used in the method.
 [60] シリカと結合可能なSi-O結合を有する化合物の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.1~20重量部である前記[1]~[59]のいずれか一つに記載の方法。
 [61] シリカと結合可能なSi-O結合を有する化合物の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.25~15重量部である前記[1]~[59]のいずれか一つに記載の方法。
 [62] シリカと結合可能なSi-O結合を有する化合物の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.5~10重量部である前記[1]~[59]のいずれか一つに記載の方法。
[60] The amount of the compound having a Si-O bond capable of binding to silica is 0.1 to 20 parts by weight with respect to 100 parts by weight of the used amount of the rubber component having an olefinic double bond [ The method according to any one of [1] to [59].
[61] The amount of the compound having a Si-O bond capable of binding to silica is 0.25 to 15 parts by weight with respect to 100 parts by weight of the used amount of the rubber component having an olefinic double bond [ The method according to any one of [1] to [59].
[62] The amount of the compound having a Si-O bond capable of binding to silica is 0.5 to 10 parts by weight with respect to 100 parts by weight of the used amount of the rubber component having an olefinic double bond [ The method according to any one of [1] to [59].
 [63] 前記方法におけるシリカと結合可能なSi-O結合を有する化合物の使用量の全部を、工程2で混練する前記[1]~[62]のいずれか一つに記載の方法。
 [64] 前記方法におけるシリカと結合可能なSi-O結合を有する化合物の使用量の一部を、工程1で混練してもよい前記[1]~[62]のいずれか一つに記載の方法。
 [65] 工程1で混練するシリカと結合可能なSi-O結合を有する化合物の量が、前記方法におけるその使用量中、0~25重量%である前記[64]に記載の方法。
 [66] 工程1で混練するシリカと結合可能なSi-O結合を有する化合物の量が、前記方法におけるその使用量中、0~10重量%である前記[64]に記載の方法。
[63] The method according to any one of the above [1] to [62], wherein the entire use amount of the compound having a Si—O bond capable of binding to silica in the above method is kneaded in Step 2.
[64] A part of the used amount of the compound having a Si-O bond capable of binding to silica in the above method may be kneaded in step 1 according to any one of the above [1] to [62] Method.
[65] The method according to [64] above, wherein the amount of the compound having a Si—O bond capable of binding to the silica to be kneaded in Step 1 is 0 to 25% by weight based on the amount used in the method.
[66] The method according to [64] above, wherein the amount of the compound having a Si—O bond capable of binding to the silica to be kneaded in Step 1 is 0 to 10% by weight based on the amount used in the method.
 [67] 前記[1]~[66]のいずれか一つに記載の方法で得られたゴム組成物と、硫黄成分とを混練することを含む、硫黄成分を含有するゴム組成物の製造方法。
 [68] 硫黄成分の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.01~30重量部である前記[67]に記載の方法。
 [69] 硫黄成分の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.1~20重量部である前記[67]に記載の方法。
 [70] 硫黄成分の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.1~10重量部である前記[67]に記載の方法。
[67] A method for producing a rubber composition containing a sulfur component, comprising kneading the rubber composition obtained by the method according to any one of the above [1] to [66] and the sulfur component. .
[68] The method according to [67], wherein the amount of the sulfur component used is 0.01 to 30 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
[69] The method according to [67], wherein the amount of the sulfur component used is 0.1 to 20 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
[70] The method according to the above [67], wherein the amount of the sulfur component used is 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
 [71] 前記[67]~[70]のいずれか一つに記載の方法で得られた硫黄成分を含有するゴム組成物を加硫することを含む、加硫ゴム組成物の製造方法。 [71] A method for producing a vulcanized rubber composition, comprising vulcanizing a rubber composition containing a sulfur component obtained by the method according to any one of the above [67] to [70].
 [72] 前記[1]~[66]のいずれか一つに記載の方法で得られたゴム組成物。
 [73] 前記[67]~[70]のいずれか一つに記載の方法で得られた硫黄成分を含有するゴム組成物。
 [74] 前記[71]に記載の方法で得られた加硫ゴム組成物。
[72] A rubber composition obtained by the method according to any one of the above [1] to [66].
[73] A rubber composition containing a sulfur component obtained by the method according to any one of the above [67] to [70].
[74] A vulcanized rubber composition obtained by the method according to [71].
 本発明によれば、オレフィン性二重結合を有するゴム成分およびシリカを用いて、損失係数が低い加硫ゴム組成物を製造することができる。 According to the present invention, a rubber composition having an olefinic double bond and silica can be used to produce a vulcanized rubber composition having a low loss coefficient.
<化合物(C)>
 本発明は、オレフィン性二重結合と反応し得る基または構造(A)、およびシリカと反応または相互作用し得る基または構造(B)を有し、Si-O結合を有さない化合物(C)を使用することを特徴の一つとする。化合物(C)は、1種のみを使用してもよく、2種以上を併用してもよい。
<Compound (C)>
The present invention is a compound (C) having a group or structure (A) capable of reacting with an olefinic double bond, and a group or structure (B) capable of reacting or interacting with silica and having no Si—O bond One of the features is the use of As the compound (C), only one type may be used, or two or more types may be used in combination.
 基または構造(A)としては、例えば、オレフィン性二重結合とラジカル反応または1,3-双極子付加反応し得る基または構造が挙げられる。より具体的には、基または構造(A)としては、例えば、オレフィン性二重結合、アミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、*-SSOH若しくはその塩、*-S-S-*、*-C≡N-O、*-C≡N-N-*、式(i)で表される構造、式(ii)で表される構造、または式(iii)で表される構造: The group or structure (A) includes, for example, a group or structure capable of undergoing a radical reaction or 1,3-dipolar addition reaction with an olefinic double bond. More specifically, as the group or structure (A), for example, an olefinic double bond, an amido group, a maleimide ring, 1H-imidazole ring, a benzoxazole ring, a benzothiazole ring, * -SSO 3 H or a salt thereof , * - S-S - * , * - C≡N + -O -, * - C≡N + -N - - *, structure represented by the formula (i), the formula (ii) structure Or a structure represented by formula (iii):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[前記式中、*は結合位置を表す。]
が挙げられる。上述のアミド基、マレイミド環、1H-イミダゾール環、ベンゾオキサゾール環、およびベンゾチアゾール環は、いずれも、1価の基でもよく、2価の基でもよい。アミド基としては、例えば、*-CO-NH-*、*-NHCO-*、*-CONH(前記式中、*は結合位置を表す)が挙げられる。マレイミド環としては、例えば、1-マレイミジル基が挙げられる。1H-イミダゾール環としては、例えば、1-イミダゾリル基が挙げられる。ベンゾオキサゾール環としては、例えばベンゾオキサゾリル基が挙げられる。ベンゾチアゾール環としては、例えば、ベンゾチアゾリル基が挙げられる。
[In the above formula, * represents a bonding position. ]
Can be mentioned. The above-mentioned amido group, maleimide ring, 1H-imidazole ring, benzoxazole ring and benzothiazole ring may all be monovalent or divalent groups. Examples of the amide group include * -CO-NH 2- *, * -NHCO- *, * -CONH 2 (wherein, * represents a bonding position). Examples of the maleimide ring include 1-maleimidyl group. As the 1H-imidazole ring, for example, 1-imidazolyl group can be mentioned. Examples of the benzoxazole ring include benzoxazolyl group. As a benzothiazole ring, a benzothiazolyl group is mentioned, for example.
 基または構造(B)としては、例えば、無置換または置換アミノ基(好ましくは無置換アミノ基)、フラン環、オキサゾール環または1H-ベンゾイミダゾール環が挙げられる。上述のフラン環、オキサゾール環および1H-ベンゾイミダゾール環は、いずれも、1価の基でもよく、2価の基でもよい。フラン環としては、例えば、2-フリル基、3-フリル基が挙げられる。オキサゾール環としては、例えば2-オキサゾリル基が挙げられる。1H-ベンゾイミダゾール環としては、例えば、2-ベンゾイミダゾリル基が挙げられる。化合物(C)が有する無置換または一置換アミノ基中の水素原子と、シリカが有するヒドロキシ基中の酸素原子とは、水素結合を形成し得る。また、化合物(C)が有するアミノ基中の窒素原子と、シリカが有するヒドロキシ基中の水素原子とは、水素結合を形成し得る。また、化合物(C)が有するフラン環、オキサゾール環または1H-ベンゾイミダゾール環が有する窒素原子および酸素原子と、シリカが有するヒドロキシ基中の水素原子とは、水素結合を形成し得る。 As the group or the structure (B), for example, unsubstituted or substituted amino group (preferably, unsubstituted amino group), furan ring, oxazole ring or 1H-benzoimidazole ring can be mentioned. The above-mentioned furan ring, oxazole ring and 1H-benzoimidazole ring may all be a monovalent group or a divalent group. Examples of the furan ring include 2-furyl group and 3-furyl group. Examples of the oxazole ring include 2-oxazolyl group. Examples of the 1H-benzoimidazole ring include 2-benzoimidazolyl group. The hydrogen atom in the unsubstituted or monosubstituted amino group that the compound (C) has and the oxygen atom in the hydroxy group that the silica has can form a hydrogen bond. Moreover, the nitrogen atom in the amino group which a compound (C) has, and the hydrogen atom in the hydroxyl group which silica has can form a hydrogen bond. In addition, a nitrogen atom and an oxygen atom possessed by the furan ring, the oxazole ring or the 1H-benzoimidazole ring possessed by the compound (C) and a hydrogen atom in a hydroxy group possessed by silica can form a hydrogen bond.
 化合物(C)の具体例としては、以下の化合物が挙げられる。但し、本発明はこれら化合物に限定されない[下記式中、Aは、O、SまたはNHを表し、xは1~4の整数を表し、yおよびzは、それぞれ独立に1~6の整数を表す]。 The following compounds may be mentioned as specific examples of the compound (C). However, the present invention is not limited to these compounds [In the following formula, A represents O, S or NH, x represents an integer of 1 to 4 and y and z each independently represent an integer of 1 to 6 Represents.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 化合物(C)は、好ましくは式(I): The compound (C) is preferably of the formula (I):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(I)中、
 Rは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。
 RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。
 Rは、ヒドロキシ基(-OH)、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC6-14アリールオキシ基、または-NR(前記式中、RおよびRは、それぞれ独立に、水素原子、または1以上の置換基を有していてもよいC1-6アルキル基を表す。)を表す。
 Xは、-NH-または-O-を表す。]
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物、並びに式(II):
[In the formula (I),
R 1 is a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, one or more substituents And a divalent C 6-12 aromatic hydrocarbon group which may have the formula, or a combination thereof.
R 2 and R 3 each independently have a hydrogen atom, a halogen atom, a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or one or more substituents or represents a C 1-6 alkyl group or one or more may have a substituent group C 6-14 aryl group, or R 2 and R 3 are bonded, the carbon atom to which they are attached Taken together, form a C 3-10 cycloalkene diyl group which may have one or more substituents.
R 4 represents a hydroxy group (—OH), a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, Or -NR 5 R 6 (wherein, R 5 and R 6 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents). .
X represents -NH- or -O-. ]
, A salt thereof, a solvate thereof and a solvate of the salt thereof, and a compound of the formula (II):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(II)中、
 RおよびRは、それぞれ独立に、水素原子または1以上の置換基を有していてもよいC1-6アルキル基を表すか、或いはRおよびRが結合し、1以上の置換基を有していてもよいC2-12アルカンジイル基を形成する。
 mは、2~9の整数を表す。
 nは、1または2を表す。
 Mn+は、Hまたはn価の金属イオンを表す。]
で表される化合物からなる群から選ばれる少なくとも一つである。
[In the formula (II),
R 7 and R 8 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents, or R 7 and R 8 are bonded together, and one or more of them are substituted It forms a C 2-12 alkanediyl group which may have a group.
m represents an integer of 2 to 9;
n represents 1 or 2;
Mn + represents H + or n-valent metal ion. ]
And at least one selected from the group consisting of compounds represented by
 以下では、「式(I)で表される化合物」を「化合物(I)」と略称することがある。他の式で表される化合物も同様に略称することがある。また、「式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物」を「化合物(I)等」と略称することがある。化合物(I)等および化合物(II)は、いずれも、1種のみを使用してもよく、2種以上を併用してもよい。 Hereinafter, the "compound represented by the formula (I)" may be abbreviated as "the compound (I)". The compounds represented by other formulas may be abbreviated as well. Also, "the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof" may be abbreviated as "the compound (I) and the like". The compounds (I) and the like and the compound (II) may be used alone or in combination of two or more.
 以下では、まず基の定義について説明する。
 本明細書中、「Cx-y」とは、炭素原子数がx以上y以下(x、y:整数)であることを意味する。
 本明細書中、「ハロゲン原子」としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
In the following, the definition of groups will be described first.
In the present specification, "C x -y " means that the number of carbon atoms is x or more and y or less (x, y: integer).
In the present specification, examples of the "halogen atom" include fluorine, chlorine, bromine and iodine.
 本明細書中、アルキル基は、直鎖状アルキル基および分枝鎖状アルキル基の両方を包含する。本明細書中、「C1-6アルキル基」としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、sec-ブチル基、t-ブチル基、2-メチルブチル基、2-エチルブチル基、3-メチルブチル基、3-エチルブチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基が挙げられる。 In the present specification, an alkyl group includes both a linear alkyl group and a branched alkyl group. In the present specification, examples of the "C 1-6 alkyl group" include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, sec-butyl group, t-butyl group, 2 And -methylbutyl group, 2-ethylbutyl group, 3-methylbutyl group, 3-ethylbutyl group, 2-methylpentyl group, 3-methylpentyl group and 4-methylpentyl group.
 C1-6アルキル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 As a substituent which a C 1-6 alkyl group may have, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, C 1-7 Examples include an acyl-oxy group and a C 6-14 aryl group which may have one or more substituents.
 本明細書中、「C6-14アリール基」としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基が挙げられる。 In the present specification, examples of the “C 6-14 aryl group” include a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group and 9-anthryl group.
 C6-14アリール基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、C6-14アリール基、スルホ基が挙げられる。 The substituent which the C 6-14 aryl group may have is, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C 1-7 Examples include an acyl group, a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group.
 本明細書中、アルコキシ基は、直鎖状アルコキシ基および分枝鎖状アルコキシ基の両方を包含する。本明細書中、「C1-6アルコキシ基」としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基が挙げられる。 In the present specification, an alkoxy group includes both a linear alkoxy group and a branched alkoxy group. In the present specification, examples of the "C 1-6 alkoxy group" include, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group And hexyloxy group.
 C1-6アルコキシ基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 As a substituent which a C 1-6 alkoxy group may have, for example, a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, C 1-7 Examples include an acyl-oxy group and a C 6-14 aryl group which may have one or more substituents.
 本明細書中、C6-14アリールオキシ基に含まれる「C6-14アリール基」としては、例えば、上記のものが挙げられる。 In the present specification, examples of the "C 6-14 aryl group" included in the C 6-14 aryloxy group include the above-mentioned ones.
 本明細書中、「C1-7アシル基」としては、例えば、ホルミル基、C1-6アルキル-カルボニル基(例、アセチル基、ピバロイル基)、ベンゾイル基が挙げられる。 In the present specification, examples of the "C 1-7 acyl group" include a formyl group, a C 1-6 alkyl-carbonyl group (eg, an acetyl group, a pivaloyl group), and a benzoyl group.
 本明細書中、C1-6アルコキシ-カルボニル基に含まれる「C1-6アルコキシ基」およびC1-7アシル-オキシ基に含まれる「C1-7アシル基」としては、例えば、上記のものが挙げられる。 In the present specification, examples of the “C 1-6 alkoxy group” included in the C 1-6 alkoxy-carbonyl group and the “C 1-7 acyl group” included in the C 1-7 acyl-oxy group include, for example, the above-mentioned The ones of
 本明細書中、アルカンジイル基は、直鎖状アルカンジイル基および分枝鎖状アルカンジイル基の両方を包含する。本明細書中、「C2-12アルカンジイル基」としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1-プロピルトリメチレン基、2-プロピルトリメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1-プロピルテトラメチレン基、2-プロピルテトラメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1-エチルペンタメチレン基、2-エチルペンタメチレン基、3-エチルペンタメチレン基、1-プロピルペンタメチレン基、2-プロピルペンタメチレン基、3-プロピルペンタメチレン基、1-メチルヘキサメチレン基、2-メチルヘキサメチレン基、3-メチルヘキサメチレン基、1-エチルヘキサメチレン基、2-エチルヘキサメチレン基、3-エチルヘキサメチレン基、1-プロピルヘキサメチレン基、2-プロピルヘキサメチレン基、3-プロピルヘキサメチレン基が挙げられる。 As used herein, alkanediyl groups include both linear alkanediyl groups and branched alkanediyl groups. In the present specification, examples of “C 2-12 alkanediyl group” include ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, propylene group, 1-methyltrimethylene group, 2-methyl group Trimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltetra Methylene group, 2-ethyltetramethylene group, 1-propyltetramethylene group, 2-propyltetramethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethylpentamethylene group Group, 2-ethylpentamethylene group, 3-ethylpentamethylene group, 1-propyl Lupentamethylene, 2-propylpentamethylene, 3-propylpentamethylene, 1-methylhexamethylene, 2-methylhexamethylene, 3-methylhexamethylene, 1-ethylhexamethylene, 2-ethyl Examples include hexamethylene, 3-ethylhexamethylene, 1-propylhexamethylene, 2-propylhexamethylene and 3-propylhexamethylene.
 C2-12アルカンジイル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 2-12 alkanediyl group may have include a halogen atom, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1- group. Examples include 7 acyl-oxy groups and C 6-14 aryl groups which may have one or more substituents.
 本明細書中、「C3-10シクロアルカンジイル基」としては、例えば、シクロプロパン-1,2-ジイル基、シクロブタン-1,3-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基、シクロノナン-1,5-ジイル基、シクロデカン-1,6-ジイル基が挙げられる。 In the present specification, as the "C 3-10 cycloalkanediyl group", for example, cyclopropane-1,2-diyl group, cyclobutane-1,3-diyl group, cyclopentane-1,3-diyl group, cyclohexane Examples thereof include a 1,4-diyl group, a cycloheptane-1,4-diyl group, a cyclooctane-1,5-diyl group, a cyclononane-1,5-diyl group, and a cyclodecane-1,6-diyl group.
 C3-10シクロアルカンジイル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 3-10 cycloalkanediyl group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and C 1 -7 acyl group, C 1-7 acyl-oxy group, C 6-14 aryl group which may have one or more substituents.
 本明細書中、「C3-10シクロアルケンジイル基」としては、例えば、シクロプロペン-1,2-ジイル基、シクロブテン-1,2-ジイル基、シクロペンテン-1,2-ジイル基、シクロヘキセン-1,2-ジイル基、シクロヘプテン-1,2-ジイル基、シクロオクテン-1,2-ジイル基、シクロノネン-1,2-ジイル基、シクロデセン-1,2-ジイル基が挙げられる。 In the present specification, examples of the "C 3-10 cycloalkene diyl group" include cyclopropene-1,2-diyl group, cyclobutene-1,2-diyl group, cyclopentene-1,2-diyl group, cyclohexene-. There may be mentioned 1,2-diyl group, cycloheptene-1,2-diyl group, cyclooctene-1,2-diyl group, cyclononene-1,2-diyl group and cyclodecene-1,2-diyl group.
 C3-10シクロアルケンジイル基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 As the substituent which the C 3-10 cycloalkene diyl group may have, for example, a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C 1 -7 acyl group, C 1-7 acyl-oxy group, C 6-14 aryl group which may have one or more substituents.
 本明細書中、「2価のC6-12芳香族炭化水素基」としては、例えば、フェニレン基(例、1,4-フェニレン基)、ナフチレン基(例、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基)、ビフェニルジイル基(例、1,1’-ビフェニル-4,4’-ジイル基)が挙げられる。 In the present specification, examples of the “divalent C 6-12 aromatic hydrocarbon group” include a phenylene group (eg, 1,4-phenylene group) and a naphthylene group (eg, 1,4-naphthylene group, 1 And 5, 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group), biphenyldiyl group (eg, 1,1'-biphenyl-4,4'-diyl group).
 2価のC6-12芳香族炭化水素基が有していてもよい置換基としては、例えば、ハロゲン原子、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、C6-14アリール基、スルホ基が挙げられる。なお、スルホ基は、-SOHで表される基である。 Examples of the substituent that the divalent C 6-12 aromatic hydrocarbon group may have include a halogen atom, a C 1-6 alkyl group, a C 1-6 alkoxy group, and a C 1-6 alkoxy-carbonyl. Groups, C 1-7 acyl groups, C 1-7 acyl-oxy groups, C 6-14 aryl groups, and sulfo groups. The sulfo group is a group represented by —SO 3 H.
 次に、式(I)中の好ましい基等について説明する。
 Rは、好ましくはC2-12アルカンジイル基または2価のC6-12芳香族炭化水素基であり、より好ましくはC2-12アルカンジイル基またはフェニレン基であり、さらに好ましくはフェニレン基であり、特に好ましくは1,4-フェニレン基である。
Next, preferable groups and the like in the formula (I) will be described.
R 1 is preferably a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group, more preferably a C 2-12 alkanediyl group or a phenylene group, still more preferably a phenylene group Particularly preferred is a 1,4-phenylene group.
 RおよびRは、それぞれ独立に、好ましくは水素原子またはC1-6アルキル基であり、より好ましくは水素原子である。 R 2 and R 3 are each independently preferably a hydrogen atom or a C 1-6 alkyl group, and more preferably a hydrogen atom.
 Rは、好ましくはヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基であり、より好ましくはヒドロキシ基またはC1-6アルコキシ基であり、さらに好ましくはヒドロキシ基である。
 Xは、好ましくは-NH-である。
R 4 is preferably a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents. More preferably, it is a hydroxy group or a C 1-6 alkoxy group, more preferably a hydroxy group.
X is preferably -NH-.
 化合物(I)は、好ましくは式(Ia): The compound (I) is preferably of the formula (Ia):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(Ia)中、R~RおよびXは上記と同義である。]
で表される化合物である。
[In the formula (Ia), R 1 to R 4 and X are as defined above. ]
It is a compound represented by
 化合物(I)の塩としては、(a)化合物(I)の-NHと他の酸とが形成するアミン塩、(b)Xが-NH-である場合、化合物(I)の-NH-と他の酸とが形成するアミン塩、および(c)Rがヒドロキシ基(-OH)である場合、化合物(I)の-COOHと他の塩基とが形成するカルボン酸塩が挙げられる。前記(a)および(b)のアミン塩を形成する他の酸としては、有機酸および無機酸のいずれでもよく、前記(c)のカルボン酸塩を形成する塩基は、有機塩基および無機塩基のいずれでもよい。化合物(I)の塩は、好ましくはカルボン酸塩であり、より好ましくはカルボン酸アルカリ金属塩およびカルボン酸アルカリ土類金属塩からなる群から選ばれる少なくとも一つであり、さらに好ましくはカルボン酸アルカリ金属塩であり、特に好ましくはカルボン酸ナトリウム塩である。 As the salt of compound (I), (a) an amine salt formed by -NH 2 of compound (I) and another acid, (b) when X is -NH-, -NH of compound (I) Amine salts formed by-and other acids, and (c) when R 4 is a hydroxy group (-OH), carboxylic acid salts formed by -COOH of the compound (I) and other bases can be mentioned. . The other acid forming the amine salt of (a) and (b) may be either an organic acid or an inorganic acid, and the base forming the carboxylate of (c) is an organic base or an inorganic base Any one may be used. The salt of compound (I) is preferably a carboxylic acid salt, more preferably at least one selected from the group consisting of carboxylic acid alkali metal salts and carboxylic acid alkaline earth metal salts, still more preferably carboxylic acid alkali Metal salts, particularly preferably sodium carboxylates.
 化合物(I)の溶媒和物および化合物(I)の塩の溶媒和物を形成する溶媒は、水でもよく、有機溶媒(例えば、メタノール)でもよい。溶媒和物を形成する溶媒は、好ましくは水またはメタノールであり、より好ましくは水である。 The solvent for forming the solvate of Compound (I) and the solvate of the salt of Compound (I) may be water or an organic solvent (eg, methanol). The solvent that forms a solvate is preferably water or methanol, more preferably water.
 本発明の一態様において、化合物(I)等は、好ましくは化合物(I)の塩の溶媒和物であり、より好ましくは化合物(I)のカルボン酸塩の溶媒和物であり、さらに好ましくはカルボン酸アルカリ金属塩の溶媒和物であり、特に好ましくはカルボン酸ナトリウム塩の溶媒和物である。この態様において、化合物(I)は化合物(Ia)であることが望ましい。 In one aspect of the present invention, compound (I) etc. is preferably a solvate of a salt of compound (I), more preferably a solvate of a carboxylate of compound (I), and still more preferably It is a solvate of a carboxylic acid alkali metal salt, particularly preferably a solvate of a carboxylic acid sodium salt. In this aspect, compound (I) is desirably compound (Ia).
 以下に化合物(I)またはその塩の具体例を示す。 Specific examples of the compound (I) or a salt thereof are shown below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 化合物(I)等は、特許文献1に記載されている方法または該方法に準じた方法によって製造することができる。 Compound (I) etc. can be produced by the method described in Patent Document 1 or a method according to the method.
 次に、式(II)中の好ましい基等について説明する。
 RおよびRは、それぞれ独立に、好ましくは水素原子または1以上の置換基を有していてもよいC1-6アルキル基であり、より好ましくは水素原子である。
Next, preferable groups and the like in the formula (II) will be described.
R 7 and R 8 are each independently preferably a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents, more preferably a hydrogen atom.
 mは、好ましくは2~7の整数、より好ましくは2~5の整数である。
 nは、好ましくは1である。
m is preferably an integer of 2 to 7, more preferably an integer of 2 to 5.
n is preferably 1.
 n価の金属イオンとしては、例えば、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン)、アルカリ土類金属イオン(例、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン)、マンガンイオン、鉄イオン、銅イオン、亜鉛イオン等が挙げられる。Mn+は、好ましくはHまたはアルカリ金属イオンであり、より好ましくはHまたはナトリウムイオンであり、さらに好ましくはHである。 Examples of n-valent metal ions include alkali metal ions (eg, lithium ion, sodium ion, potassium ion, cesium ion), alkaline earth metal ions (eg, magnesium ion, calcium ion, strontium ion, barium ion), Manganese ion, iron ion, copper ion, zinc ion and the like can be mentioned. Mn + is preferably H + or an alkali metal ion, more preferably H + or a sodium ion, and still more preferably H + .
 化合物(II)としては、例えば、S-(アミノアルキル)チオ硫酸、S-(アミノアルキル)チオ硫酸塩、S-(N,N-ジアルキルアミノアルキル)チオ硫酸、S-(N,N-ジアルキルアミノアルキル)チオ硫酸塩、S-(N-モノアルキルアミノアルキル)チオ硫酸、S-(N-モノアルキルアミノアルキル)チオ硫酸塩等が挙げられる。 As the compound (II), for example, S- (aminoalkyl) thiosulfuric acid, S- (aminoalkyl) thiosulfate, S- (N, N-dialkylaminoalkyl) thiosulfuric acid, S- (N, N-dialkyl) And aminoalkyl) thiosulfates, S- (N-monoalkylaminoalkyl) thiosulfates, S- (N-monoalkylaminoalkyl) thiosulfates and the like.
 S-(アミノアルキル)チオ硫酸としては、例えば、S-(2-アミノエチル)チオ硫酸、S-(3-アミノプロピル)チオ硫酸、S-(4-アミノブチル)チオ硫酸、S-(5-アミノペンチル)チオ硫酸、S-(6-アミノヘキシル)チオ硫酸、S-(7-アミノヘプチル)チオ硫酸、S-(8-アミノオクチル)チオ硫酸、S-(9-アミノノニル)チオ硫酸等が挙げられる。 As S- (aminoalkyl) thiosulfuric acid, for example, S- (2-aminoethyl) thiosulfuric acid, S- (3-aminopropyl) thiosulfuric acid, S- (4-aminobutyl) thiosulfuric acid, S- (5) -Aminopentyl) thiosulfate, S- (6-aminohexyl) thiosulfate, S- (7-aminoheptyl) thiosulfate, S- (8-aminooctyl) thiosulfate, S- (9-aminononyl) thiosulfate etc. Can be mentioned.
 S-(アミノアルキル)チオ硫酸塩としては、例えば、S-(2-アミノエチル)チオ硫酸ナトリウム、S-(3-アミノプロピル)チオ硫酸ナトリウム、S-(4-アミノブチル)チオ硫酸ナトリウム、S-(5-アミノペンチル)チオ硫酸ナトリウム、S-(6-アミノヘキシル)チオ硫酸ナトリウム、S-(7-アミノヘプチル)チオ硫酸ナトリウム、S-(8-アミノオクチル)チオ硫酸ナトリウム、S-(9-アミノノニル)チオ硫酸ナトリウム等が挙げられる。 Examples of S- (aminoalkyl) thiosulfates include sodium S- (2-aminoethyl) thiosulfate, sodium S- (3-aminopropyl) thiosulfate, sodium S- (4-aminobutyl) thiosulfate, Sodium S- (5-aminopentyl) thiosulfate, sodium S- (6-aminohexyl) thiosulfate, sodium S- (7-aminoheptyl) thiosulfate, sodium S- (8-aminooctyl) thiosulfate, S- Examples include sodium (9-aminononyl) thiosulfate and the like.
 S-(N,N-ジアルキルアミノアルキル)チオ硫酸としては、例えば、S-(2-N,N-ジメチルアミノエチル)チオ硫酸、S-(3-N,N-ジメチルアミノプロピル)チオ硫酸、S-(4-N,N-ジメチルアミノブチル)チオ硫酸、S-(5-N,N-ジメチルアミノペンチル)チオ硫酸、S-(6-N,N-ジメチルアミノヘキシル)チオ硫酸、S-(7-N,N-ジメチルアミノヘプチル)チオ硫酸、S-(8-N,N-ジメチルアミノオクチル)チオ硫酸、S-(9-N,N-ジメチルアミノノニル)チオ硫酸等が挙げられる。 As S- (N, N-dialkylaminoalkyl) thiosulfuric acid, for example, S- (2-N, N-dimethylaminoethyl) thiosulfuric acid, S- (3-N, N-dimethylaminopropyl) thiosulfuric acid, S- (4-N, N-Dimethylaminobutyl) thiosulfate, S- (5-N, N-Dimethylaminopentyl) thiosulfate, S- (6-N, N-dimethylaminohexyl) thiosulfate, S- Examples thereof include (7-N, N-dimethylaminoheptyl) thiosulfuric acid, S- (8-N, N-dimethylaminooctyl) thiosulfuric acid, S- (9-N, N-dimethylaminononyl) thiosulfuric acid and the like.
 S-(N,N-ジアルキルアミノアルキル)チオ硫酸塩としては、例えば、S-(2-N,N-ジメチルアミノエチル)チオ硫酸ナトリウム、S-(3-N,N-ジメチルアミノプロピル)チオ硫酸ナトリウム、S-(4-N,N-ジメチルアミノブチル)チオ硫酸ナトリウム、S-(5-N,N-ジメチルアミノペンチル)チオ硫酸ナトリウム、S-(6-N,N-ジメチルアミノヘキシル)チオ硫酸ナトリウム、S-(7-N,N-ジメチルアミノヘプチル)チオ硫酸ナトリウム、S-(8-N,N-ジメチルアミノオクチル)チオ硫酸ナトリウム、S-(9-N,N-ジメチルアミノノニル)チオ硫酸ナトリウム等が挙げられる。 Examples of S- (N, N-dialkylaminoalkyl) thiosulfates include sodium S- (2-N, N-dimethylaminoethyl) thiosulfate, S- (3-N, N-dimethylaminopropyl) thio Sodium sulfate, sodium S- (4-N, N-dimethylaminobutyl) thiosulfate, sodium S- (5-N, N-dimethylaminopentyl) thiosulfate, S- (6-N, N-dimethylaminohexyl) Sodium thiosulphate, sodium S- (7-N, N-dimethylaminoheptyl) thiosulphate, sodium S- (8-N, N-dimethylamino octyl) thiosulphate, S- (9-N, N-dimethylaminononyl) And sodium thiosulfate etc.
 S-(N-モノアルキルアミノアルキル)チオ硫酸としては、例えば、S-(2-N-メチルアミノエチル)チオ硫酸、S-(3-N-メチルアミノプロピル)チオ硫酸、S-(4-N-メチルアミノブチル)チオ硫酸、S-(5-N-メチルアミノペンチル)チオ硫酸、S-(6-N-メチルアミノヘキシル)チオ硫酸、S-(7-N-メチルアミノヘプチル)チオ硫酸、S-(8-N-メチルアミノオクチル)チオ硫酸、S-(9-N-メチルアミノノニル)チオ硫酸等が挙げられる。 Examples of S- (N-monoalkylaminoalkyl) thiosulfuric acid include S- (2-N-methylaminoethyl) thiosulfuric acid, S- (3-N-methylaminopropyl) thiosulfuric acid, S- (4- N-methylaminobutyl) thiosulfuric acid, S- (5-N-methylaminopentyl) thiosulfuric acid, S- (6-N-methylaminohexyl) thiosulfuric acid, S- (7-N-methylaminoheptyl) thiosulfuric acid And S- (8-N-methylaminooctyl) thiosulfuric acid, S- (9-N-methylaminononyl) thiosulfuric acid and the like.
 S-(N-モノアルキルアミノアルキル)チオ硫酸塩としては、例えば、S-(2-N-メチルアミノエチル)チオ硫酸ナトリウム、S-(3-N-メチルアミノプロピル)チオ硫酸ナトリウム、S-(4-N-メチルアミノブチル)チオ硫酸ナトリウム、S-(5-N-メチルアミノペンチル)チオ硫酸ナトリウム、S-(6-N-メチルアミノヘキシル)チオ硫酸ナトリウム、S-(7-N-メチルアミノヘプチル)チオ硫酸ナトリウム、S-(8-N-メチルアミノオクチル)チオ硫酸ナトリウム、S-(9-N-メチルアミノノニル)チオ硫酸ナトリウム等が挙げられる。 Examples of S- (N-monoalkylaminoalkyl) thiosulfates include sodium S- (2-N-methylaminoethyl) thiosulfate, sodium S- (3-N-methylaminopropyl) thiosulfate, S- Sodium (4-N-methylaminobutyl) thiosulfate, sodium S- (5-N-methylaminopentyl) thiosulfate, sodium S- (6-N-methylaminohexyl) thiosulfate, S- (7-N- Examples include sodium methylaminoheptyl) thiosulfate, sodium S- (8-N-methylaminooctyl) thiosulfate, sodium S- (9-N-methylaminononyl) thiosulfate and the like.
 化合物(II)は、好ましくはS-(アミノアルキル)チオ硫酸およびS-(アミノアルキル)チオ硫酸塩からなる群から選ばれる少なくとも一つであり、より好ましくはS-(アミノアルキル)チオ硫酸であり、さらに好ましくはS-(3-アミノプロピル)チオ硫酸である。 The compound (II) is preferably at least one selected from the group consisting of S- (aminoalkyl) thiosulfuric acid and S- (aminoalkyl) thiosulfate, more preferably S- (aminoalkyl) thiosulfuric acid More preferably S- (3-aminopropyl) thiosulfuric acid.
 化合物(II)は、特許文献2に記載されている方法または該方法に準じた方法によって製造することができる。 Compound (II) can be produced by the method described in Patent Document 2 or a method analogous to the method.
 本発明における化合物(C)の使用量は、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.25~8重量部、さらに好ましくは0.5~4重量部である。 The amount of compound (C) used in the present invention is preferably 0.1 to 10 parts by weight, more preferably 0.25 to 8 parts by weight, per 100 parts by weight of the rubber component having an olefinic double bond. Part, more preferably 0.5 to 4 parts by weight.
<オレフィン性二重結合を有するゴム成分>
 本発明は、オレフィン性二重結合を有するゴム成分を使用することを特徴の一つとする。オレフィン性二重結合を有するゴム成分は、1種のみを使用してもよく、2種以上を併用してもよい。
<Rubber component having an olefinic double bond>
The present invention is characterized by using a rubber component having an olefinic double bond. The rubber component having an olefinic double bond may be used alone or in combination of two or more.
 オレフィン性二重結合を有するゴム成分としては、天然ゴム(NR)および変性天然ゴム(例えば、エポキシ化天然ゴム、脱蛋白天然ゴム);スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、エチレン・プロピレン・ジエン共重合ゴム(EPDM)等の各種の合成ゴム;が例示される。 As rubber components having an olefinic double bond, natural rubber (NR) and modified natural rubber (eg, epoxidized natural rubber, deproteinized natural rubber); styrene butadiene copolymer rubber (SBR), polybutadiene rubber (BR) And various synthetic rubbers such as acrylonitrile butadiene copolymer rubber (NBR) and ethylene propylene diene copolymer rubber (EPDM).
 オレフィン性二重結合を有するゴム成分は、好ましくはジエン系ゴムを含む。ここで、ジエン系ゴムとは、共役2重結合を持つジエンモノマーを原料としたゴムを意味する。ジエン系ゴムとしては、例えば、天然ゴム、変性天然ゴム、クロロプレンゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム、ニトリルゴム等が挙げられる。ジエン系ゴムは、高不飽和性であることが好ましく、天然ゴムであることがより好ましい。また、天然ゴムと他のゴム(例えば、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム)とを併用することも有効である。 The rubber component having an olefinic double bond preferably comprises a diene rubber. Here, a diene rubber means rubber which used the diene monomer which has a conjugated double bond as a raw material. Examples of the diene rubber include natural rubber, modified natural rubber, chloroprene rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, nitrile rubber and the like. The diene rubber is preferably highly unsaturated, and more preferably a natural rubber. In addition, it is also effective to use natural rubber and another rubber (for example, styrene butadiene copolymer rubber, polybutadiene rubber) in combination.
 天然ゴムの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、エポキシ化度10~60モル%のもの(例えば、クンプーラン ガスリー社製ENR25やENR50)が挙げられる。脱蛋白天然ゴムとしては、総窒素含有率が0.3重量%以下である脱蛋白天然ゴムが好ましい。その他の変性天然ゴムとしては、例えば、天然ゴムに4-ビニルピリジン、N,N-ジアルキルアミノエチルアクリレート(例えばN,N-ジエチルアミノエチルアクリレート)、2-ヒドロキシアクリレート等を反応させた極性基を含有する変性天然ゴムが挙げられる。 As an example of natural rubber, natural rubber of grades such as RSS # 1, RSS # 3, TSR20, SIR20 can be mentioned. Examples of the epoxidized natural rubber include those having an epoxidation degree of 10 to 60% by mole (for example, ENR 25 and ENR 50 manufactured by Kumpulan Guthrie). As the deproteinized natural rubber, deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable. Other modified natural rubbers include, for example, polar groups obtained by reacting natural rubber with 4-vinylpyridine, N, N-dialkylaminoethyl acrylate (eg, N, N-diethylaminoethyl acrylate), 2-hydroxy acrylate, etc. And modified natural rubber.
 SBRとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の210~211頁に記載されている乳化重合SBRおよび溶液重合SBRが挙げられる。中でも、トレッド用ゴム組成物のためには、溶液重合SBRが好ましい。 Examples of SBR include emulsion-polymerized SBR and solution-polymerized SBR described on pages 210 to 211 of "Rubber Industry Handbook <Fourth Edition>" edited by The Japan Rubber Association. Among them, for the rubber composition for tread, solution polymerization SBR is preferable.
 溶液重合SBRとしては、変性剤で変性して得られる、分子末端に窒素、スズおよびケイ素の少なくとも一つの元素を有する、変性溶液重合SBRが挙げられる。変性剤としては、例えば、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。これらの変性剤は、単独で用いてもよいし、複数を用いてもよい。変性溶液重合SBRとしては、具体的には、日本ゼオン社製「Nipol(登録商標)NS116」等の4,4’-ビス(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、および旭化成社製「E10」および「E15」等のシラン変性溶液重合SBR等が挙げられる。 The solution-polymerized SBR includes a modified solution-polymerized SBR obtained by modifying with a modifier and having at least one element of nitrogen, tin and silicon at the molecular end. Examples of modifiers include lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, silane compounds having an alkoxy group, aminosilane compounds, silane compounds having a tin compound and an alkoxy group And the combined use modifier of the alkyl acrylamide compound and the silane compound having an alkoxy group. These modifiers may be used alone or in combination of two or more. Specifically, as the modified solution-polymerized SBR, solution-polymerized SBR, JSR in which the molecular terminal is modified with 4,4′-bis (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Zeon Corporation. Examples thereof include solution-polymerized SBR in which the molecular terminal is modified with a halogenated tin compound such as "SL 574" manufactured by corporation, and silane-modified solution-polymerized SBR such as "E10" and "E15" manufactured by Asahi Kasei Corporation.
 また、乳化重合SBRおよび溶液重合SBRに、プロセスオイルやアロマオイル等のオイルを添加した油展SBRも、トレッド用ゴム組成物のために好ましい。 In addition, oil-extended SBR in which an oil such as a process oil or an aroma oil is added to the emulsion-polymerized SBR and solution-polymerized SBR is also preferable for the rubber composition for a tread.
 BRとしては、低ビニル含量の溶液重合BRおよび高ビニル含量の溶液重合BRのいずれでもよいが、高ビニル含量の溶液重合BRが好ましい。変性剤で変性して得られる、分子末端に窒素、スズ、ケイ素の少なくとも一つの元素を有する変性溶液重合BRが特に好ましい。変性剤としては、例えば、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(例えば、トリアルコキシシラン化合物)、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。これらの変性剤は、単独で用いてもよいし、複数を用いてもよい。変性溶液重合BRとしては、例えば、日本ゼオン製「Nipol(登録商標)BR 1250H」等のスズ変性BRが挙げられる。 As BR, either low vinyl content solution polymerization BR or high vinyl content solution polymerization BR may be used, but high vinyl content solution polymerization BR is preferable. Particularly preferred is a modified solution-polymerized BR having at least one element of nitrogen, tin and silicon at its molecular end, which is obtained by modifying with a modifier. Examples of the modifier include 4,4′-bis (dialkylamino) benzophenone, tin halide compounds, lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, and alkoxy groups. Silane compounds (for example, trialkoxysilane compounds), aminosilane compounds, combination modifiers of a tin compound and a silane compound having an alkoxy group, combination modifiers of an alkylacrylamide compound and a silane compound having an alkoxy group, and the like. These modifiers may be used alone or in combination of two or more. Examples of the modified solution-polymerized BR include tin-modified BR such as "Nipol (registered trademark) BR 1250H" manufactured by Zeon Corporation.
 BRは、トレッド用ゴム組成物、サイドウォール用ゴム組成物のために好ましく用いることができる。BRは、SBRおよび/または天然ゴム(NR)とのブレンドで使用してもよい。トレッド用ゴム組成物では、オレフィン性二重結合を有するゴム成分中、例えば、SBRおよび/またはNRの量が60~100重量%であり、BRの量が0~40重量%である。サイドウォール用ゴム組成物では、オレフィン性二重結合を有するゴム成分中、好ましくは、SBRおよび/またはNRの量が10~70重量%であり、BRの量が90~30重量%であり、より好ましくは、NRの量が40~60重量%であり、BRの量が60~40重量%である。トレッド用ゴム組成物およびサイドウォール用ゴム組成物のために、変性SBRと非変性SBRとのブレンド、変性BRと非変性BRとのブレンド等も好ましく使用することができる。 BR can be preferably used for the rubber composition for treads and the rubber composition for sidewalls. BR may be used in blends with SBR and / or natural rubber (NR). In the rubber composition for tread, for example, the amount of SBR and / or NR is 60 to 100% by weight, and the amount of BR is 0 to 40% by weight in the rubber component having an olefinic double bond. In the rubber composition for a sidewall, preferably, the amount of SBR and / or NR is 10 to 70% by weight, and the amount of BR is 90 to 30% by weight in the rubber component having an olefinic double bond, More preferably, the amount of NR is 40 to 60% by weight and the amount of BR is 60 to 40% by weight. For the rubber composition for tread and the rubber composition for sidewalls, a blend of modified SBR and non-modified SBR, a blend of modified BR and non-modified BR, and the like can also be preferably used.
 ゴム組成物をタイヤのトレッド用に使用する場合、例えば乗用車用タイヤでは、オレフィン性二重結合を有するゴム成分として耐摩耗性やヒステリシスロス低減性能に優れるSBRをベース材料として用い、トラック・バス用タイヤではより高強度のNRを任意にSBRと共にベース材料として用い、これらベース材料に、必要に応じてBRをブレンドして用いることが、耐摩耗性、耐疲労性、反発弾性に優れたトレッドが得られるため好ましい。 When the rubber composition is used for the tread of a tire, for example, in a passenger car tire, SBR, which is excellent in wear resistance and hysteresis loss reduction performance as a rubber component having an olefinic double bond, is used as a base material for truck and bus In the tire, it is possible to optionally use a higher strength NR as a base material together with SBR, and optionally blend BR into these base materials, thereby providing a tread excellent in wear resistance, fatigue resistance and resilience. It is preferable because it can be obtained.
 ゴム組成物をタイヤのサイドウォール用に使用する場合、乗用車用タイヤではNRとSBRとをブレンドして、または、NRとBRとをブレンドして、トラック・バス用タイヤではNRとBRとをブレンドして使用することが、耐折曲げ屈曲性、耐き裂成長性が得られるため好ましい。 When the rubber composition is used for the sidewall of a tire, it is a blend of NR and SBR in a passenger car tire, or a blend of NR and BR, and a blend of NR and BR in a truck and bus tire. It is preferable to use it as it is resistant to bending and bending and crack growth resistance.
 ゴム組成物をタイヤのベルト用に使用する場合、オレフィン性二重結合を有するゴム成分としてNRおよび/またはIRを使用することが、高弾性率や補強用繊維との良好な接着性が得られるため好ましい。 When the rubber composition is used for a belt of a tire, using NR and / or IR as a rubber component having an olefinic double bond provides high elasticity and good adhesion to reinforcing fibers. Because it is preferable.
 ゴム組成物をタイヤのインナーライナーとして使用する場合、オレフィン性二重結合を有するゴム成分としてIIRとSBRおよびNRとをブレンドして、またはIIRとNRとをブレンドして使用することが、抵ガス透過性と耐屈曲性が得られるため好ましい。 When the rubber composition is used as an inner liner of a tire, it is preferable to blend IIR with SBR and NR as a rubber component having an olefinic double bond, or to use IIR with NR as a blend. It is preferable because permeability and bending resistance can be obtained.
 上述したように、オレフィン性二重結合を有するゴム成分は、好ましくはジエン系ゴムを含む。ジエン系ゴムを使用する場合、オレフィン性二重結合を有するゴム成分中のジエン系ゴムの量は、好ましくは50重量%以上、より好ましくは60~100重量%、さらに好ましくは75~100重量%である。オレフィン性二重結合を有するゴム成分は、ジエン系ゴムからなることが最も好ましい。 As mentioned above, the rubber component having an olefinic double bond preferably comprises a diene rubber. When a diene rubber is used, the amount of diene rubber in the rubber component having an olefinic double bond is preferably 50% by weight or more, more preferably 60 to 100% by weight, still more preferably 75 to 100% by weight It is. Most preferably, the rubber component having an olefinic double bond comprises a diene rubber.
 オレフィン性二重結合を有するゴム成分は、より好ましくは天然ゴムを含む。天然ゴムを使用する場合、オレフィン性二重結合を有するゴム成分中の天然ゴムの量は、好ましくは50重量%以上、より好ましくは60~100重量%、さらに好ましくは70~100重量%である。 The rubber component having an olefinic double bond more preferably contains a natural rubber. When natural rubber is used, the amount of natural rubber in the rubber component having an olefinic double bond is preferably 50% by weight or more, more preferably 60 to 100% by weight, still more preferably 70 to 100% by weight .
<シリカ>
 本発明は、シリカを使用することを特徴の一つとする。シリカとしては、例えば、(i)pHが6~8であるシリカ、(ii)ナトリウムを0.2~1.5重量%含むシリカ、(iii)真円度が1~1.3の真球状シリカ、(iv)シリコーンオイル(例、ジメチルシリコーンオイル)、エトキシシリル基を含有する有機ケイ素化合物、アルコール(例、エタノール、ポリエチレングリコール)等で表面処理したシリカ、(v)二種類以上の異なった表面積を有するシリカの混合物等が挙げられる。これらは、1種のみを使用してもよく、2種以上を併用してもよい。
<Silica>
The present invention is characterized by using silica. Examples of the silica include (i) silica having a pH of 6 to 8, (ii) silica containing 0.2 to 1.5% by weight of sodium, and (iii) a true spherical shape having a circularity of 1 to 1.3. Silica, (iv) Silicone oil (eg, dimethyl silicone oil), organosilicon compound containing ethoxysilyl group, silica surface-treated with alcohol (eg, ethanol, polyethylene glycol), etc., (v) two or more different types A mixture of silica having a surface area may, for example, be mentioned. These may use only 1 type and may use 2 or more types together.
 シリカの市販品としては、例えば、東ソー・シリカ社製「Nipsil(登録商標)AQ」、「Nipsil(登録商標)AQ-N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)VN3-G」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」が挙げられる。 Examples of commercially available products of silica include “Nipsil (registered trademark) AQ” manufactured by Tosoh Silica Corporation, “Nipsil (registered trademark) AQ-N”, “Ultrasil (registered trademark) VN 3” manufactured by Degussa, “Ultrasil” (Registered trademark) VN3-G, "Ultrasil (registered trademark) 360", "Ultrasil (registered trademark) 7000", "Zeosil (registered trademark) 115 GR" manufactured by Rhodia, "Zeosil (registered trademark) 1115 MP", "Zeosyl (registered trademark) 1205MP" and "Zeosyl (registered trademark) Z85MP" can be mentioned.
 シリカのBET比表面積は、好ましくは20~400m/g、より好ましくは20~350m/g、さらに好ましくは20~300m/gである。このBET比表面積は、多点窒素吸着法(BET法)によって測定することができる。 The BET specific surface area of the silica is preferably 20 to 400 m 2 / g, more preferably 20 to 350 m 2 / g, and still more preferably 20 to 300 m 2 / g. This BET specific surface area can be measured by a multipoint nitrogen adsorption method (BET method).
 本発明におけるシリカの使用量は、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、好ましくは10~120重量部、より好ましくは22.5~100重量部、さらに好ましくは35~80重量部である。 The amount of silica used in the present invention is preferably 10 to 120 parts by weight, more preferably 22.5 to 100 parts by weight, still more preferably 100 parts by weight of the rubber component having an olefinic double bond. 35 to 80 parts by weight.
<シリカと結合可能なSi-O結合を有する化合物>
 本発明は、シリカと結合可能なSi-O結合を有する化合物を使用することを特徴の一つとする。シリカと結合可能なSi-O結合を有する化合物は、1種のみを使用してもよく、2種以上を併用してもよい。
<Compound having Si—O bond that can bind to silica>
One of the features of the present invention is to use a compound having a Si-O bond capable of binding to silica. The compound having a Si—O bond capable of binding to silica may be used alone or in combination of two or more.
 シリカと結合可能なSi-O結合を有する化合物としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)ジスルフィド、3-オクタノイルチオプロピルトリエトキシシラン(別名:「オクタンチオ酸S-[3-(トリエトキシシリル)プロピル]エステル」、例えば、ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)エトキシシリル}プロピル]エステル、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)メチルシリル}プロピル]エステル、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、(3-グリシドキシプロピル)トリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシランおよび3-イソシアナトプロピルトリエトキシシランが挙げられる。 Examples of compounds having a Si-O bond capable of binding to silica include, for example, bis (3-triethoxysilylpropyl) tetrasulfide (for example, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) Disulfide (eg, Degussa “Si-75”), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, 3-octanoylthiopropyltriethoxysilane (alias) “Octanethio acid S- [3- (triethoxysilyl) propyl] ester”, such as “NXT silane” manufactured by General Electronic Silicon's, octanethio acid S- [3-{(2-methyl-1,3-, Propanedialkoxy) ethoxysilyl} propyl] ester, ok N-thioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) methylsilyl} propyl] ester, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxy Silane, ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (methoxyethoxy) silane, phenyltriethoxysilane Methoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyl Trimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, (3- Cidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Examples include triethoxysilane, 3-isocyanatopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane.
 シリカと結合可能なSi-O結合を有する化合物としては、シランカップリング剤が好ましい。シランカップリング剤は、1種のみを使用してもよく、2種以上を併用してもよい。ここでシランカップリング剤とは、無機材料(例えば、シリカ)と結合し得る官能基および有機材料(例えば、ゴム成分)と結合し得る官能基を有するシラン系化合物を意味する。無機材料と結合し得る官能基としては、例えば、ケイ素原子に結合したC1-6アルコキシ基、ケイ素原子に結合したヒドロキシ基等が挙げられ、ケイ素原子に結合したC1-6アルコキシ基が好ましい。有機材料と結合し得る官能基としては、例えば、ジスルフィド結合(S-S)、アミノ基等が挙げられ、ジスルフィド結合が好ましい。シランカップリング剤としては、ケイ素原子に結合したC1-6アルコキシ基およびジスルフィド結合を有するシランカップリング剤が好ましい。このようなシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)ジスルフィド等が挙げられる。 As a compound having a Si—O bond capable of binding to silica, a silane coupling agent is preferred. The silane coupling agent may be used alone or in combination of two or more. Here, the silane coupling agent means a silane compound having a functional group capable of binding to an inorganic material (for example, silica) and a functional group capable of binding to an organic material (for example, a rubber component). Examples of the functional group capable of binding to the inorganic material include, for example, a C1-6 alkoxy group bonded to a silicon atom, a hydroxy group bonded to a silicon atom and the like, and a C1-6 alkoxy group bonded to a silicon atom is preferable . Examples of the functional group capable of binding to the organic material include, for example, a disulfide bond (S-S), an amino group and the like, and a disulfide bond is preferable. The silane coupling agent is preferably a silane coupling agent having a C 1-6 alkoxy group bonded to a silicon atom and a disulfide bond. As such a silane coupling agent, for example, bis (3-triethoxysilylpropyl) tetrasulfide (for example, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (for example, Degussa) Company “Si-75”), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide and the like.
 本発明におけるシリカと結合可能なSi-O結合を有する化合物の使用量は、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.25~15重量部、さらに好ましくは0.5~10重量部である。 The amount of the compound having a Si-O bond capable of binding to silica in the present invention is preferably 0.1 to 20 parts by weight, preferably 100 parts by weight, based on 100 parts by weight of the rubber component having an olefinic double bond. Preferably, it is 0.25 to 15 parts by weight, more preferably 0.5 to 10 parts by weight.
<硫黄成分>
 本発明で使用し得る硫黄成分としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、および高分散性硫黄、モルフォリンジスルフィド、テトラメチルチウラムジスルフィドが挙げられる。通常は粉末硫黄が好ましく、ゴム組成物をベルト用部材等の硫黄量が多いタイヤ部材の製造に用いる場合には不溶性硫黄が好ましい。
<Sulfur component>
Sulfur components that can be used in the present invention include, for example, powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur, morpholine disulfide, tetramethylthiuram disulfide. Powdered sulfur is usually preferred, and insoluble sulfur is preferred when the rubber composition is used for the production of tire components having a high sulfur content such as belt components.
 本発明における硫黄成分の使用量は、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、好ましくは0.01~30重量部、より好ましくは0.1~20重量部、さらに好ましくは0.1~10重量部である。 The amount of the sulfur component used in the present invention is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the rubber component having an olefinic double bond. More preferably, it is 0.1 to 10 parts by weight.
<他の成分>
 本発明では、上述の成分(化合物(C)、オレフィン性二重結合を有するゴム成分、シリカ、シリカと結合可能なSi-O結合を有する化合物、および硫黄成分)とは異なる他の成分を使用してもよい。他の成分としては、例えば、シリカとは異なる他の充填剤、1価アルコール、多価アルコール、加硫促進剤、加硫促進助剤、樹脂、老化防止剤、オイル、ワックス、しゃく解剤、リターダー、オキシエチレンユニットを有する化合物、触媒(例えば、ナフテン酸コバルト等)が挙げられる。他の成分は、いずれも、1種のみを使用してもよく、2種以上を併用してもよい。
<Other ingredients>
In the present invention, other components different from the above-mentioned components (compound (C), rubber component having an olefinic double bond, silica, compound having a Si—O bond capable of binding to silica, and sulfur component) are used You may Other components include, for example, other fillers different from silica, monohydric alcohols, polyhydric alcohols, vulcanization accelerators, vulcanization accelerators, resins, anti-aging agents, oils, waxes, peptizers, A retarder, a compound having an oxyethylene unit, a catalyst (eg, cobalt naphthenate etc.) can be mentioned. All other components may be used alone or in combination of two or more.
 他の充填剤としては、例えば、カーボンブラック、水酸化アルミニウム、瀝青炭粉砕物、タルク、クレー(特に、焼成クレー)、酸化チタンが挙げられる。他の充填剤を使用する場合、その使用量は、本発明におけるシリカの使用量および他の充填剤の使用量の合計あたり、好ましくは0~70重量%、より好ましくは5~50重量%、さらに好ましくは10~25重量%である。 Other fillers include, for example, carbon black, aluminum hydroxide, ground bituminous coal, talc, clay (especially calcined clay), titanium oxide. When other fillers are used, the amount thereof is preferably 0 to 70% by weight, more preferably 5 to 50% by weight, based on the total amount of the silica used in the present invention and the other fillers used. More preferably, it is 10 to 25% by weight.
 他の充填剤としては、カーボンブラックが好ましい。カーボンブラックを使用する場合、その使用量は、本発明におけるシリカの使用量およびカーボンブラックの使用量の合計あたり、好ましくは0~70重量%、より好ましくは5~50重量%、さらに好ましくは10~25重量%である。 As another filler, carbon black is preferable. When carbon black is used, its amount is preferably 0 to 70% by weight, more preferably 5 to 50% by weight, still more preferably 10 based on the total amount of silica and carbon black used in the present invention. It is ̃25% by weight.
 カーボンブラックとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の494頁に記載されるものが挙げられる。カーボンブラックは、1種のみを使用してもよく、2種以上を併用してもよい。カーボンブラックとしては、例えば、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、ISAF-HM(Intermediate SAF-High Modulus)、FEF(Fast Extrusion Furnace)、MAF(Medium Abrasion Furnace)、GPF(General Purpose Furnace)、SRF(Semi-Reinforcing Furnace)が挙げられる。 Examples of carbon black include those described on page 494 of "Rubber Industry Handbook <Fourth Edition>" edited by The Japan Rubber Association. Carbon black may use only 1 type and may use 2 or more types together. Examples of carbon black include HAF (High Abrasion Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), ISAF-HM (Intermediate SAF-High Modulus), FEF (Fast Extrusion Furnace), MAF (Medium Abrasion Furnace) And GPF (General Purpose Furnace) and SRF (Semi-Reinforcing Furnace).
 カーボンブラックのBET比表面積は、好ましくは10~130m/g、より好ましくは20~130m/g、さらに好ましくは40~130m/gである。このBET比表面積は、多点窒素吸着法(BET法)によって測定することができる。 The BET specific surface area of carbon black is preferably 10 to 130 m 2 / g, more preferably 20 to 130 m 2 / g, and still more preferably 40 to 130 m 2 / g. This BET specific surface area can be measured by a multipoint nitrogen adsorption method (BET method).
 水酸化アルミニウムとしては、窒素吸着比表面積5~250m/g、DOP給油量50~100ml/100gの水酸化アルミニウムが例示される。 Examples of aluminum hydroxide include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
 瀝青炭粉砕物の平均粒径は、通常、0.1mm以下であり、好ましくは0.05mm以下、より好ましくは0.01mm以下である。平均粒径が0.1mmを超える瀝青炭粉砕物を使用しても、ゴム組成物のヒステリシスロスが充分に低減されず、低燃費性を充分に向上できない場合がある。また、ゴム組成物をインナーライナー用組成物として用いる場合には、平均粒径が0.1mmを超える瀝青炭粉砕物を使用しても、該組成物の耐空気透過性を充分に向上できない場合がある。 The average particle diameter of the bituminous coal pulverized material is usually 0.1 mm or less, preferably 0.05 mm or less, more preferably 0.01 mm or less. Even if a pulverized bituminous coal having an average particle size of more than 0.1 mm is used, the hysteresis loss of the rubber composition may not be sufficiently reduced, and the fuel economy may not be sufficiently improved. Moreover, when using a rubber composition as a composition for inner liners, even if it uses a bituminous coal pulverized material whose average particle diameter exceeds 0.1 mm, the air-permeability-proof property of this composition can not fully be improved. is there.
 瀝青炭粉砕物の平均粒径の下限は特に限定されないが、好ましくは0.001mm以上である。0.001mm未満では、コストが高くなる傾向がある。なお、瀝青炭粉砕物の平均粒径は、JIS Z 8815-1994に準拠して測定される粒度分布から算出された質量基準の平均粒径である。 Although the lower limit of the average particle diameter of the bituminous coal pulverized material is not particularly limited, it is preferably 0.001 mm or more. If it is less than 0.001 mm, the cost tends to be high. The average particle diameter of the bituminous coal pulverized material is a mass-based average particle diameter calculated from a particle size distribution measured in accordance with JIS Z 8815-1994.
 瀝青炭粉砕物の比重は、1.6以下が好ましく、1.5以下がより好ましく、1.3以下がさらに好ましい。比重が1.6を超える瀝青炭粉砕物を使用すると、ゴム組成物全体の比重が増加し、タイヤの低燃費性向上が充分に図れないおそれがある。瀝青炭粉砕物の比重は、0.5以上が好ましく、1.0以上がより好ましい。比重が0.5未満である瀝青炭粉砕物を使用すると、混練時の加工性が悪化するおそれがある。 1.6 or less is preferable, as for the specific gravity of a bituminous coal grinding material, 1.5 or less is more preferable, and 1.3 or less is more preferable. When the bituminous coal pulverized material having a specific gravity of more than 1.6 is used, the specific gravity of the whole rubber composition may be increased, and the improvement of the fuel economy of the tire may not be sufficiently achieved. 0.5 or more is preferable and, as for the specific gravity of a bituminous coal grinding material, 1.0 or more is more preferable. When using a bituminous coal pulverized material having a specific gravity of less than 0.5, the processability at the time of kneading may be deteriorated.
 シリカを使用する本発明では、シリカと結合可能なSi-O結合を有する化合物と共に、1価アルコールおよび多価アルコールを使用してもよい。1価アルコールとしては、例えば、エタノール、ブタノール、オクタノール等が挙げられる。多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ペンタエリスリトール、ポリエーテルポリオール等が挙げられる。また、本発明では、分子末端がカルボキシ変性またはアミン変性された液状ポリブタジエン等を使用してもよい。 In the present invention using silica, a monohydric alcohol and a polyhydric alcohol may be used together with a compound having a Si—O bond capable of binding to silica. Examples of monohydric alcohols include ethanol, butanol, octanol and the like. Examples of polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, and polyether polyols. Further, in the present invention, liquid polybutadiene or the like whose molecular terminal is carboxy- or amine-modified may be used.
 加硫促進剤の例としては、ゴム工業便覧<第四版>(平成6年1月20日 社団法人 日本ゴム協会発行)の412~413頁に記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。 As an example of a vulcanization accelerator, thiazole-based vulcanization accelerators and sulches described on pages 412 to 413 of the Rubber Industry Handbook <Fourth Edition> (issued by The Japan Rubber Association, January 20, 1994) There may be mentioned phenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators.
 加硫促進剤の具体例としては、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、2-メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)が挙げられる。 Specific examples of the vulcanization accelerator include N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), N, N-dicyclo These include xyl-2-benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), diphenyl guanidine (DPG).
 硫黄成分と加硫促進剤との比率は特に制限されないが、硫黄成分/加硫促進剤の重量比は、好ましくは1/10~10/1、より好ましくは1/5~5/1、さらに好ましくは1/2~2/1である。また天然ゴムを主成分とするゴム部材において、耐熱性を向上させる方法である硫黄成分/加硫促進剤の比を1以下にするEV加硫は、耐熱性向上が特に必要な用途において好ましく用いられる。 The ratio of sulfur component to vulcanization accelerator is not particularly limited, but the weight ratio of sulfur component to vulcanization accelerator is preferably 1/10 to 10/1, more preferably 1/5 to 5/1, and further Preferably, it is 1/2 to 2/1. Also, in a rubber member containing natural rubber as a main component, EV vulcanization with a sulfur component / vulcanization accelerator ratio of 1 or less, which is a method of improving heat resistance, is preferably used in applications where heat resistance improvement is particularly required. Be
 加硫促進助剤としては、例えば、酸化亜鉛、ステアリン酸、シトラコンイミド化合物、アルキルフェノール・塩化硫黄縮合物、有機チオスルフェート化合物および式(III):
 R16-S-S-R17-S-S-R18   (III)
(式中、R17は、C2-10アルカンジイル基を示し、R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基を示す。)
で表される化合物が挙げられる。なお、本発明において酸化亜鉛は、加硫促進助剤の概念に包含され、上述の充填剤の概念には包含されない。
As the accelerator, for example, zinc oxide, stearic acid, citraconic imide compound, alkylphenol-sulfur chloride condensate, organic thiosulphate compound and formula (III):
R 16 -S-S-R 17 -S-S-R 18 (III)
(Wherein, R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represent a monovalent organic group containing a nitrogen atom).
The compound represented by these is mentioned. In the present invention, zinc oxide is included in the concept of a vulcanization acceleration coagent, and is not included in the concept of the filler described above.
 加硫促進助剤としては、酸化亜鉛、ステアリン酸、シトラコンイミド化合物が好ましく、酸化亜鉛、ステアリン酸がより好ましい。 As the vulcanization acceleration assistant, zinc oxide, stearic acid and citraconic imide compounds are preferable, and zinc oxide and stearic acid are more preferable.
 酸化亜鉛を使用する場合、その使用量は、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、好ましくは0.01~20重量部、より好ましくは0.1~15重量部、さらに好ましくは0.1~10重量部である。ステアリン酸を使用する場合、その使用量は、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、好ましくは0.01~15重量部、より好ましくは0.1~10重量部、さらに好ましくは0.1~5重量部である。 When zinc oxide is used, its amount is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, per 100 parts by weight of the rubber component having an olefinic double bond. Parts, more preferably 0.1 to 10 parts by weight. When stearic acid is used, its amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of the rubber component having an olefinic double bond. Part, more preferably 0.1 to 5 parts by weight.
 シトラコンイミド化合物としては、熱的に安定であり、オレフィン性二重結合を有するゴム成分中への分散性に優れるという理由から、ビスシトラコンイミド類が好ましい。具体的には、1,2-ビスシトラコンイミドメチルベンゼン、1,3-ビスシトラコンイミドメチルベンゼン、1,4-ビスシトラコンイミドメチルベンゼン、1,6-ビスシトラコンイミドメチルベンゼン、2,3-ビスシトラコンイミドメチルトルエン、2,4-ビスシトラコンイミドメチルトルエン、2,5-ビスシトラコンイミドメチルトルエン、2,6-ビスシトラコンイミドメチルトルエン、1,2-ビスシトラコンイミドエチルベンゼン、1,3-ビスシトラコンイミドエチルベンゼン、1,4-ビスシトラコンイミドエチルベンゼン、1,6-ビスシトラコンイミドエチルベンゼン、2,3-ビスシトラコンイミドエチルトルエン、2,4-ビスシトラコンイミドエチルトルエン、2,5-ビスシトラコンイミドエチルトルエン、2,6-ビスシトラコンイミドエチルトルエンなどが挙げられる。 As the citraconic imide compound, biscitraconimides are preferable because they are thermally stable and are excellent in dispersibility in a rubber component having an olefinic double bond. Specifically, 1,2-biscitraconimidomethylbenzene, 1,3-biscitraconimidomethylbenzene, 1,4-biscitraconimidomethylbenzene, 1,6-biscitraconimidomethylbenzene, 2,3-bis Citraconimidomethyltoluene, 2,4-biscitraconimidomethyltoluene, 2,5-biscitraconimidomethyltoluene, 2,6-biscitraconimidomethyltoluene, 1,2-biscitraconimidoethylbenzene, 1,3-biscitracon Imidoethylbenzene, 1,4-biscitraconimidoethylbenzene, 1,6-biscitraconimidoethylbenzene, 2,3-biscitraconimidoethyltoluene, 2,4-biscitraconimidoethyltoluene, 2,5-biscitraconimidoethyltoluene Emissions, such as 2,6-biscitraconimide ethyltoluene and the like.
 シトラコンイミド化合物のなかでも、熱的に特に安定であり、オレフィン性二重結合を有するゴム成分中への分散性に特に優れ、高硬度(Hs)の加硫ゴム組成物を得ることができる(リバージョン制御)という理由から、下記式で表される1,3-ビスシトラコンイミドメチルベンゼンが好ましい。 Among the citraconic imide compounds, it is particularly stable thermally, and particularly excellent in dispersibility in a rubber component having an olefinic double bond, and a vulcanized rubber composition having high hardness (Hs) can be obtained ( For the reason of reversion control, 1,3-biscitraconimidomethylbenzene represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 加硫促進助剤として、高硬度(Hs)の加硫ゴム組成物を得ることができるという理由から、式(IV): Formula (IV): The vulcanized rubber composition of high hardness (Hs) can be obtained as a vulcanization acceleration assistant.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式中、nは0~10の整数であり、各Xは、それぞれ独立に2~4の整数であり、各R19は、それぞれ独立にC5-12アルキル基である。]
で表されるアルキルフェノール・塩化硫黄縮合物を使用することが好ましい。
[Wherein, n is an integer of 0 to 10, each X is independently an integer of 2 to 4, and each R 19 is independently a C 5-12 alkyl group. ]
It is preferable to use an alkylphenol-sulfur chloride condensate represented by
 オレフィン性二重結合を有するゴム成分中へのアルキルフェノール・塩化硫黄縮合物(IV)の分散性が良いという理由から、nは、好ましくは1~9の整数である。 N is preferably an integer of 1 to 9 because the dispersibility of the alkylphenol-sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
 Xが4を超えると、アルキルフェノール・塩化硫黄縮合物(IV)が熱的に不安定となる傾向があり、Xが1であるとアルキルフェノール・塩化硫黄縮合物(IV)中の硫黄含有率(硫黄の重量)が少ない。高硬度を効率よく発現させることができる(リバージョン抑制)という理由から、Xは2であることが好ましい。 When X is more than 4, the alkylphenol-sulfur chloride condensate (IV) tends to be thermally unstable, and when X is 1, the sulfur content in the alkylphenol-sulfur chloride condensate (IV) (sulfur Less weight). It is preferable that X is 2 because high hardness can be expressed efficiently (reversion suppression).
 R19は、C5-12アルキル基である。オレフィン性二重結合を有するゴム成分中へのアルキルフェノール・塩化硫黄縮合物(IV)の分散性が良いという理由から、R19は、好ましくはC6-9アルキル基である。 R 19 is a C 5-12 alkyl group. R 19 is preferably a C 6-9 alkyl group because the dispersibility of the alkylphenol-sulfur chloride condensate (IV) in the rubber component having an olefinic double bond is good.
 アルキルフェノール・塩化硫黄縮合物(IV)の具体例として、nが0~10であり、Xが2であり、R19がオクチル基であり、硫黄含有率が24重量%である田岡化学工業社製のタッキロールV200が挙げられる。 A specific example of the alkylphenol-sulfur chloride condensate (IV): n is 0 to 10, X is 2, R 19 is an octyl group, and the sulfur content is 24% by weight; The tacky roll V200 is mentioned.
 加硫促進助剤として、高硬度(Hs)の加硫ゴム組成物が得られる(リバージョン抑制)という理由から、式(V):
 HOS-S-(CH-S-SOH   (V)
[式中、kは3~10の整数である。]
で表される有機チオスルフェート化合物の塩(以下「有機チオスルフェート化合物塩(V)」と記載することがある。)を使用することが好ましい。結晶水を含有する有機チオスルフェート化合物塩(V)を使用してもよい。有機チオスルフェート化合物塩(V)としては、例えば、リチウム塩、カリウム塩、ナトリウム塩、マグネシウム塩、カルシウム塩、バリウム塩、亜鉛塩、ニッケル塩、コバルト塩等が挙げられ、カリウム塩、ナトリウム塩が好ましい。
Because a vulcanized rubber composition of high hardness (Hs) can be obtained as a vulcanization acceleration assistant (reversion suppression), formula (V):
HO 3 S-S- (CH 2 ) k -S-SO 3 H (V)
[Wherein, k is an integer of 3 to 10. ]
It is preferable to use a salt of an organic thiosulfate compound represented by (hereinafter sometimes referred to as “organic thiosulfate compound salt (V)”). Organic thiosulfate compound salt (V) containing crystal water may be used. Examples of organic thiosulfate compound salts (V) include lithium salts, potassium salts, sodium salts, magnesium salts, calcium salts, barium salts, zinc salts, nickel salts, cobalt salts and the like, and potassium salts and sodium salts Is preferred.
 kは、3~10の整数であり、好ましくは3~6の整数である。kが2以下では、充分な耐熱疲労性が得られない傾向があり、kが11以上では、有機チオスルフェート化合物塩(V)による耐熱疲労性の改善効果が充分に得られない場合がある。 K is an integer of 3 to 10, preferably an integer of 3 to 6. When k is 2 or less, sufficient thermal fatigue resistance tends not to be obtained, and when k is 11 or more, the improvement effect of thermal fatigue resistance by organic thiosulfate compound salt (V) may not be sufficiently obtained. .
 有機チオスルフェート化合物塩(V)としては、常温常圧下で安定であるという観点から、そのナトリウム塩1水和物、ナトリウム塩2水和物が好ましく、コストの観点からチオ硫酸ナトリウムから得られる有機チオスルフェート化合物塩(V)がより好ましく、下記式で表される1,6-ヘキサメチレンジチオ硫酸ナトリウム・2水和物がさらに好ましい。 As the organic thiosulfate compound salt (V), from the viewpoint of being stable at normal temperature and pressure, its sodium salt monohydrate and sodium salt dihydrate are preferable, and they can be obtained from sodium thiosulfate from the viewpoint of cost Organic thiosulfate compound salt (V) is more preferable, and sodium 1,6-hexamethylenedithiosulfate dihydrate represented by the following formula is more preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 オレフィン性二重結合を有するゴム成分中へ良好に分散すること、アルキルフェノール・塩化硫黄縮合物(IV)と併用した場合にアルキルフェノール・塩化硫黄縮合物(IV)の-S-架橋の中間に挿入されて、アルキルフェノール・塩化硫黄縮合物(IV)とのハイブリッド架橋を形成することが可能であるという理由から、式(III):
 R16-S-S-R17-S-S-R18   (III)
(式中、R17はC2-10アルカンジイル基を示し、R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基を示す。)
で表される化合物を、アルキルフェノール・塩化硫黄縮合物(IV)と共に、加硫促進助剤として使用することが好ましい。
Good dispersion in rubber component with olefinic double bond, insertion in the middle of -S X -crosslinking of alkylphenol sulfur chloride condensate (IV) when used in combination with alkylphenol sulfur chloride condensate (IV) Because it is possible to form a hybrid bridge with the alkylphenol-sulfur chloride condensate (IV), formula (III):
R 16 -S-S-R 17 -S-S-R 18 (III)
(Wherein, R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represent a monovalent organic group containing a nitrogen atom).
It is preferable to use the compound represented by the above as an accelerator for promoting vulcanization together with the alkylphenol-sulfur chloride condensate (IV).
 R17は、C2-10アルカンジイル基、好ましくはC4-8アルカンジイル基であり、より好ましくは直鎖状のC4-8アルカンジイル基である。R17は、直鎖状であることが好ましい。R17の炭素数が1以下では、熱的な安定性が悪い場合がある。また、R17の炭素数が11以上では、加硫促進助剤を介したポリマー間の距離が長くなり、加硫促進助剤を添加する効果が得られない場合がある。 R 17 is a C 2-10 alkanediyl group, preferably a C 4-8 alkanediyl group, more preferably a linear C 4-8 alkanediyl group. R 17 is preferably linear. If the carbon number of R 17 is 1 or less, the thermal stability may be poor. In addition, when the carbon number of R 17 is 11 or more, the distance between the polymers via the vulcanization acceleration auxiliary may be long, and the effect of adding the vulcanization acceleration auxiliary may not be obtained.
 R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基である。窒素原子を含む1価の有機基としては、芳香環を少なくとも1つ含むものが好ましく、芳香環および=N-C(=S)-基(チオカルバモイル基)を含むものがさらに好ましい。R16およびR18は、それぞれ同一でも、異なっていてもよいが、製造の容易さなどの理由から、同一であることが好ましい。 R 16 and R 18 are each independently a monovalent organic group containing a nitrogen atom. The monovalent organic group containing a nitrogen atom is preferably one containing at least one aromatic ring, and more preferably one containing an aromatic ring and NN—C (= S) — group (thiocarbamoyl group). R 16 and R 18 may be the same as or different from each other, but are preferably the same for reasons of easiness of production and the like.
 化合物(III)としては、例えば、1,2-ビス(ジベンジルチオカルバモイルジチオ)エタン、1,3-ビス(ジベンジルチオカルバモイルジチオ)プロパン、1,4-ビス(ジベンジルチオカルバモイルジチオ)ブタン、1,5-ビス(ジベンジルチオカルバモイルジチオ)ペンタン、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン、1,7-ビス(ジベンジルチオカルバモイルジチオ)ヘプタン、1,8-ビス(ジベンジルチオカルバモイルジチオ)オクタン、1,9-ビス(ジベンジルチオカルバモイルジチオ)ノナン、1,10-ビス(ジベンジルチオカルバモイルジチオ)デカンなどが挙げられる。なかでも、熱的に安定であり、オレフィン性二重結合を有するゴム成分中への分散性に優れるという理由から、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサンが好ましい。 As compound (III), for example, 1,2-bis (dibenzylthiocarbamoyldithio) ethane, 1,3-bis (dibenzylthiocarbamoyldithio) propane, 1,4-bis (dibenzylthiocarbamoyldithio) butane 1,5-bis (dibenzylthiocarbamoyldithio) pentane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane, 1,7-bis (dibenzylthiocarbamoyldithio) heptane, 1,8-bis (dibenzylthiocarbamoyldithio) heptane Examples include benzylthiocarbamoyldithio) octane, 1,9-bis (dibenzylthiocarbamoyldithio) nonane, 1,10-bis (dibenzylthiocarbamoyldithio) decane and the like. Among them, 1,6-bis (dibenzylthiocarbamoyldithio) hexane is preferable because it is thermally stable and excellent in dispersibility in a rubber component having an olefinic double bond.
 化合物(III)の市販品としては、例えば、バイエル社製のVULCUREN TRIAL PRODUCT KA9188、VULCUREN VP KA9188(1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン)が挙げられる。 Examples of commercially available products of compound (III) include VULCUREN TRIAL PRODUCT KA 9188 and VULCUREN VP KA 9188 (1, 6-bis (dibenzylthiocarbamoyldithio) hexane) manufactured by Bayer.
 本発明において、レゾルシノール等の有機化合物、レゾルシノール樹脂、変性レゾルシノール樹脂、クレゾール樹脂、変性クレゾール樹脂、フェノール樹脂および変性フェノール樹脂等の樹脂を使用してもよい。レゾルシノールやこれらの樹脂を使用することにより、加硫ゴム組成物の破断時伸び、複素弾性率を向上させることができる。また、ゴム組成物をコードと接触するゴム製品の製造に使用する場合、レゾルシノールや樹脂を使用することにより、コードとの接着性を高めることができる。 In the present invention, an organic compound such as resorcinol, resorcinol resin, modified resorcinol resin, cresol resin, modified cresol resin, phenolic resin, and modified phenolic resin may be used. By using resorcinol or these resins, the elongation at break and the complex elastic modulus of the vulcanized rubber composition can be improved. Moreover, when using a rubber composition for manufacture of a rubber product which contacts cords, adhesiveness with a cord can be improved by using resorcinol and resin.
 レゾルシノールとしては、例えば、住友化学社製のレゾルシノール等が挙げられる。レゾルシノール樹脂としては、例えば、レゾルシノール・ホルムアルデヒド縮合物が挙げられる。変性レゾルシノール樹脂としては、例えば、レゾルシノール樹脂の繰り返し単位の一部をアルキル化したものが挙げられる。具体的には、インドスペック社製のペナコライト樹脂B-18-S、B-20、田岡化学工業社製のスミカノール620、ユニロイヤル社製のR-6、スケネクタディー化学社製のSRF1501、アッシュランド社製のArofene7209等が挙げられる。 Examples of resorcinol include resorcinol manufactured by Sumitomo Chemical Co., Ltd. Examples of resorcinol resins include resorcinol-formaldehyde condensates. Examples of the modified resorcinol resin include those obtained by alkylating part of the repeating unit of resorcinol resin. Specifically, Penacolite resin B-18-S and B-20 manufactured by India Spec Co., Ltd., Sumikanol 620 manufactured by Taoka Chemical Industry Co., Ltd., R-6 manufactured by Uniroyal Co., Ltd., SRF 1501 manufactured by Schenectady Chemical Co., and Ash Examples include Arofene 7209 manufactured by Land Corporation.
 クレゾール樹脂としては、例えば、クレゾール・ホルムアルデヒド縮合物が挙げられる。変性クレゾール樹脂としては、例えば、クレゾール樹脂の末端のメチル基をヒドロキシ基に変更したもの、クレゾール樹脂の繰り返し単位の一部をアルキル化したものが挙げられる。具体的には、田岡化学工業社製のスミカノール610、住友ベークライト社製のPR-X11061等が挙げられる。 Examples of cresol resins include cresol-formaldehyde condensates. Examples of the modified cresol resin include one in which the terminal methyl group of cresol resin is changed to a hydroxy group, and one in which a part of the repeating unit of cresol resin is alkylated. Specifically, Sumikanol 610 manufactured by Taoka Chemical Industry Co., Ltd., PR-X11061 manufactured by Sumitomo Bakelite Co., Ltd., etc. may be mentioned.
 フェノール樹脂としては、例えば、フェノール・ホルムアルデヒド縮合物が挙げられる。また、変性フェノール樹脂としては、フェノール樹脂をカシューオイル、トールオイル、アマニ油、各種動植物油、不飽和脂肪酸、ロジン、アルキルベンゼン樹脂、アニリン、メラミンなどを用いて変性した樹脂が挙げられる。 As a phenol resin, a phenol formaldehyde condensate is mentioned, for example. Further, examples of the modified phenolic resin include resins in which a phenolic resin is modified using cashew oil, tall oil, linseed oil, various animal and vegetable oils, unsaturated fatty acids, rosin, alkylbenzene resins, aniline, melamine and the like.
 その他の樹脂としては、例えば、住友化学社製の「スミカノール507AP」等のメトキシ化メチロールメラミン樹脂;日鉄化学社製のクマロン樹脂NG4(軟化点81~100℃)、神戸油化学工業社製の「プロセスレジンAC5」(軟化点75℃)等のクマロン・インデン樹脂;テルペン樹脂、テルペン・フェノール樹脂、芳香族変性テルペン樹脂等のテルペン系樹脂;三菱瓦斯化学社製の「ニカノール(登録商標)A70」(軟化点70~90℃)等のロジン誘導体;水素添加ロジン誘導体;ノボラック型アルキルフェノール系樹脂;レゾール型アルキルフェノール系樹脂;C5系石油樹脂;液状ポリブタジエンが挙げられる。 As other resins, for example, methoxylated methylol melamine resin such as "Sumikanol 507AP" manufactured by Sumitomo Chemical Co., Ltd .; Coumaron resin NG4 (softening point: 81 to 100 ° C.) manufactured by Nittetsu Chemical Co., Ltd .; Coumarone-indene resin such as “process resin AC5” (softening point 75 ° C.); terpene resin such as terpene resin, terpene / phenol resin, aromatic modified terpene resin; “Nicanol (registered trademark) A70” manufactured by Mitsubishi Gas Chemical Co. Rosin derivatives having a softening point of 70 to 90 ° C .; hydrogenated rosin derivatives; novolak type alkylphenol resins; resol type alkylphenol resins; C5 petroleum resins; liquid polybutadiene.
 老化防止剤としては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の436~443頁に記載されるものが挙げられる。老化防止剤としては、N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン(略称「6PPD」、例えば住友化学社製「アンチゲン(登録商標)6C」)、アニリンとアセトンの反応生成物(略称「TMDQ」)、ポリ(2,2,4-トリメチル-1,2-)ジヒドロキノリン)(例えば、松原産業社製「アンチオキシダントFR」)、合成ワックス(パラフィンワックス等)、植物性ワックスが好ましく用いられる。 As the anti-aging agent, for example, those described on pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by The Japan Rubber Association are mentioned. As an antiaging agent, N-phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine (abbreviated "6PPD", for example, "Antigen (registered trademark) 6C" manufactured by Sumitomo Chemical Co., Ltd.), reaction of aniline with acetone Product (abbreviated "TMDQ"), poly (2,2,4-trimethyl-1,2-) dihydroquinoline (eg, "Antioxidant FR" manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax etc.), plant Waxes are preferably used.
 老化防止剤を使用する場合、その使用量は、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、好ましくは0.01~15重量部、より好ましくは0.1~10重量部、さらに好ましくは0.1~5重量部である。 When an antioxidant is used, the amount thereof used is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component having an olefinic double bond. Parts by weight, more preferably 0.1 to 5 parts by weight.
 オイルとしては、例えば、プロセスオイル、植物油脂等が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルが挙げられる。市販品としては、例えば、アロマチックオイル(コスモ石油社製「NC-140」)、プロセスオイル(出光興産社製「ダイアナプロセスPS32」)が挙げられる。 Examples of the oil include process oil, vegetable oil and the like. Examples of process oils include paraffinic process oils, naphthenic process oils, and aromatic process oils. Examples of commercially available products include aromatic oils ("NC-140" manufactured by Cosmo Oil Co., Ltd.) and process oils ("Diana Process PS32" manufactured by Idemitsu Kosan Co., Ltd.).
 ワックスとしては、大内新興化学工業社製の「サンノック(登録商標)ワックス」、日本精蝋社製の「OZOACE-0355」等が挙げられる。 Examples of the wax include "Sanknock (registered trademark) wax" manufactured by Ouchi Emerging Chemical Industry Co., Ltd., "OZOACE-0355" manufactured by Nippon Seiwa Co., Ltd., and the like.
 しゃく解剤としては、ゴム分野において通常用いられるものであれば特に限定されるものではないが、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の446~449頁に記載される、芳香族メルカプタン系しゃく解剤、芳香族ジスルフィド系しゃく解剤、芳香族メルカプタン金属塩系しゃく解剤が挙げられる。中でも、ジキシリルジスルフィド、o,o’-ジベンズアミドジフェニルジスルフィド(大内新興化学工業社製「ノクタイザーSS」)が好ましい。しゃく解剤は、1種のみを使用してもよく、2種以上を併用してもよい。 The peptizing agent is not particularly limited as long as it is commonly used in the rubber field, and is described, for example, on pages 446 to 449 of "Rubber Industry Handbook <Fourth Edition>" edited by The Japan Rubber Association. And aromatic mercaptan-type peptizers, aromatic disulfide-type peptizers and aromatic mercaptan metal salt-type peptizers. Among them, dixylyl disulfide and o, o'-dibenzamidodiphenyl disulfide ("NOCTIZER SS" manufactured by Ouchi Shinko Chemical Co., Ltd.) are preferable. The peptizing agent may be used alone or in combination of two or more.
 リターダーとしては、無水フタル酸、安息香酸、サリチル酸、N-ニトロソジフェニルアミン、N-(シクロヘキシルチオ)フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール ジホスファイト等が例示され、N-(シクロヘキシルチオ)フタルイミド(CTP)が好ましく用いられる。 Examples of retarders include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol diphosphite and the like. (Cyclohexylthio) phthalimide (CTP) is preferably used.
 本発明では、式:-O-(CH-CH-O)-H[式中、qは1以上の整数である。]で表される構造を有するオキシエチレンユニットを有する化合物を使用してもよい。ここで、上記式中、qは、2以上が好ましく、3以上がより好ましい。また、qは16以下が好ましく、14以下がより好ましい。qが17以上では、オレフィン性二重結合を有するゴム成分との相溶性および補強性が低下する傾向がある。 In the present invention, the formula: —O— (CH 2 —CH 2 —O) q —H [wherein, q is an integer of 1 or more. The compound which has an oxyethylene unit which has a structure represented by these may be used. Here, in the above formula, q is preferably 2 or more, and more preferably 3 or more. Moreover, 16 or less is preferable and 14 or less of q is more preferable. When q is 17 or more, the compatibility and reinforcement with the rubber component having an olefinic double bond tend to be lowered.
 オキシエチレンユニットを有する化合物中のオキシエチレンユニットの位置は、主鎖でも、末端でも、側鎖でもよい。得られるタイヤ表面における静電気の蓄積防止効果の持続性および電気抵抗の低減の観点から、オキシエチレンユニットを有する化合物の中でも、少なくとも側鎖にオキシエチレンユニットを有する化合物が好ましい。 The position of the oxyethylene unit in the compound having an oxyethylene unit may be a main chain, an end, or a side chain. Among the compounds having an oxyethylene unit, a compound having an oxyethylene unit at least in a side chain is preferable from the viewpoint of durability of the effect of preventing accumulation of static electricity on the tire surface to be obtained and reduction of electrical resistance.
 主鎖にオキシエチレンユニットを有する化合物としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、モノエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンスチレン化アルキルエーテル、ポリオキシエチレンアルキルアマイドなどが挙げられる。 Examples of compounds having an oxyethylene unit in the main chain include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, monoethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene Alkyl ethers, polyoxyethylene alkylamines, polyoxyethylene styrenated alkyl ethers, polyoxyethylene alkylamides and the like can be mentioned.
 少なくとも側鎖にオキシエチレンユニットを有する化合物を使用する場合、オキシエチレンユニットの個数は、主鎖を構成する炭素数100個当たり4個以上が好ましく、8個以上がより好ましい。オキシエチレンユニットの個数が3個以下では、電気抵抗が増大する傾向がある。また、オキシエチレンユニットの個数は12個以下が好ましく、10個以下がより好ましい。オキシエチレンユニットの個数が13個以上では、オレフィン性二重結合を有するゴム成分との相溶性および補強性が低下する傾向がある。 When a compound having an oxyethylene unit at least in the side chain is used, the number of oxyethylene units is preferably 4 or more per 100 carbon atoms constituting the main chain, and more preferably 8 or more. When the number of oxyethylene units is 3 or less, the electrical resistance tends to increase. Moreover, 12 or less is preferable and, as for the number of objects of an oxyethylene unit, 10 or less are more preferable. When the number of oxyethylene units is 13 or more, the compatibility and reinforcement with the rubber component having an olefinic double bond tend to be lowered.
 少なくとも側鎖にオキシエチレンユニットを有する化合物の主鎖としては、主としてポリエチレン、ポリプロピレンまたはポリスチレンから構成されるものが好ましい。 The main chain of the compound having an oxyethylene unit at least in the side chain is preferably one composed mainly of polyethylene, polypropylene or polystyrene.
<製造方法>
(1)ゴム組成物および硫黄を含有するゴム組成物の製造方法
 本発明のゴム組成物の製造方法は、化合物(C)と、オレフィン性二重結合を有するゴム成分と、シリカとを混練して、混練物を得る工程1、および得られた混練物と、シリカと結合可能なSi-O結合を有する化合物とを混練して、ゴム組成物を得る工程2、を含むことを特徴とする。
<Manufacturing method>
(1) Method of producing rubber composition and rubber composition containing sulfur The method of producing the rubber composition of the present invention comprises compound (C), a rubber component having an olefinic double bond, and silica. A process of obtaining a kneaded product, and a process of kneading the obtained kneaded product and a compound having a Si-O bond capable of binding to silica to obtain a rubber composition. .
 本発明では、化合物(C)(特に化合物(I)、化合物(II))が、加硫ゴム組成物の損失係数(tanδ)を低減させる作用を有すると推定される。しかし、後述の比較例で示すように、化合物(C)と、オレフィン性二重結合を有するゴム成分と、シリカと、シリカと結合可能なSi-O結合を有する化合物とを一度に混練してゴム組成物を調製し、得られたゴム組成物と硫黄成分とを混練して硫黄成分を含有するゴム組成物を調製し、得られた硫黄成分を含有するゴム組成物を加硫することによって得られる加硫ゴム組成物の損失係数が、化合物(C)を使用せずに得られる加硫ゴム組成物の損失係数に比べて、あまり低減しないという問題を、本発明者は見出した。 In the present invention, it is presumed that the compound (C) (particularly, the compound (I) and the compound (II)) has an effect of reducing the loss coefficient (tan δ) of the vulcanized rubber composition. However, as shown in a comparative example described later, compound (C), a rubber component having an olefinic double bond, silica, and a compound having a Si-O bond capable of binding to silica are kneaded at once. A rubber composition is prepared, and the obtained rubber composition and the sulfur component are kneaded to prepare a rubber composition containing the sulfur component, and the obtained rubber composition containing the sulfur component is vulcanized. The present inventors have found a problem that the loss coefficient of the obtained vulcanized rubber composition is not much reduced as compared to the loss coefficient of the vulcanized rubber composition obtained without using the compound (C).
 本発明者が鋭意検討を重ねた結果、まず、化合物(C)と、オレフィン性二重結合を有するゴム成分と、シリカとを混練して、混練物を調製し(工程1)、次いで得られた混練物と、シリカと結合可能なSi-O結合を有する化合物とを混練して、ゴム組成物を調製することによって(工程2)、後述の実施例で示されるように、損失係数が充分に低減された加硫ゴム組成物が得られることを見出した。 As a result of intensive investigations conducted by the present inventor, first, compound (C), a rubber component having an olefinic double bond, and silica are kneaded to prepare a kneaded product (step 1), and then obtained. By kneading the mixture and the compound having a Si-O bond capable of binding to silica to prepare a rubber composition (Step 2), the loss factor is sufficient as shown in the examples described later. It has been found that a vulcanized rubber composition is obtained which is reduced.
 加硫ゴム組成物の損失係数(tanδ)の低減の観点から、本発明における化合物(C)の使用量の全部を、工程1で混練することが好ましい。但し、本発明の効果を大きく損なわない範囲で、本発明における化合物(C)の使用量の一部を、工程2で混練してもよい。工程2で混練する化合物(C)の量は、本発明におけるその使用量中、好ましくは0~25重量%、より好ましくは0~10重量%である。 From the viewpoint of reducing the loss coefficient (tan δ) of the vulcanized rubber composition, it is preferable to knead all of the amount of the compound (C) used in the present invention in step 1. However, a part of the used amount of the compound (C) in the present invention may be kneaded in Step 2 as long as the effects of the present invention are not significantly impaired. The amount of compound (C) to be kneaded in step 2 is preferably 0 to 25% by weight, more preferably 0 to 10% by weight, based on the amount used in the present invention.
 加硫ゴム組成物の損失係数(tanδ)の低減の観点から、本発明におけるオレフィン性二重結合を有するゴム成分の使用量の全部を、工程1で混練することが好ましい。但し、本発明の効果を大きく損なわない範囲で、本発明におけるオレフィン性二重結合を有するゴム成分の使用量の一部を、工程2で混練してもよい。工程2で混練するオレフィン性二重結合を有するゴム成分の量は、本発明におけるその使用量中、好ましくは0~50重量%、より好ましくは0~40重量%である。 From the viewpoint of reducing the loss coefficient (tan δ) of the vulcanized rubber composition, it is preferable to knead in step 1 the entire amount of the rubber component having an olefinic double bond in the present invention. However, a part of the used amount of the rubber component having an olefinic double bond in the present invention may be kneaded in Step 2 within a range not significantly impairing the effects of the present invention. The amount of the rubber component having an olefinic double bond to be kneaded in Step 2 is preferably 0 to 50% by weight, more preferably 0 to 40% by weight in the amount used in the present invention.
 加硫ゴム組成物の損失係数(tanδ)の低減の観点から、本発明におけるシリカの使用量の全部を、工程1で混練することが好ましい。但し、本発明の効果を大きく損なわない範囲で、本発明におけるシリカの使用量の一部を、工程2で混練してもよい。工程2で混練するシリカの量は、本発明におけるその使用量中、好ましくは0~75重量%、より好ましくは0~25重量%である。 From the viewpoint of reducing the loss coefficient (tan δ) of the vulcanized rubber composition, it is preferable to knead all of the amount of silica used in the present invention in step 1. However, a part of the amount of silica used in the present invention may be kneaded in Step 2 as long as the effects of the present invention are not significantly impaired. The amount of silica to be kneaded in step 2 is preferably 0 to 75% by weight, more preferably 0 to 25% by weight, based on the amount used in the present invention.
 加硫ゴム組成物の損失係数(tanδ)の低減の観点から、本発明におけるシリカと結合可能なSi-O結合を有する化合物の使用量の全部を、工程2で混練することが好ましい。但し、本発明の効果を大きく損なわない範囲で、本発明におけるシリカと結合可能なSi-O結合を有する化合物の使用量の一部を、工程1で混練してもよい。工程1で混練するシリカと結合可能なSi-O結合を有する化合物の量は、本発明におけるその使用量中、好ましくは0~25重量%、より好ましくは0~10重量%である。 From the viewpoint of reducing the loss coefficient (tan δ) of the vulcanized rubber composition, it is preferable to knead in step 2 the entire amount of the compound having a Si—O bond that can be bonded to silica in the present invention. However, a part of the used amount of the compound having a Si—O bond that can be bonded to the silica in the present invention may be kneaded in Step 1 within a range that does not significantly impair the effects of the present invention. The amount of the compound having a Si—O bond capable of binding to the silica to be kneaded in Step 1 is preferably 0 to 25% by weight, more preferably 0 to 10% by weight in the amount used in the present invention.
 本発明において、オレフィン性二重結合を有するゴム成分を加工しやすくするため、工程1の前に、前記ゴム成分を素練りする予備混練工程を設けてもよい。しゃく解剤を使用する場合、本発明におけるその使用量の全部を予備混練工程で混練するか、またはその使用量の一部を予備混練工程で混練し、残りを工程1で混練することが好ましい。 In the present invention, in order to facilitate processing of the rubber component having an olefinic double bond, a preliminary kneading step of masticating the rubber component may be provided prior to step 1. When a peptizing agent is used, it is preferable to knead all of the amount used in the present invention in the pre-kneading step, or knead a portion of the used amount in the pre-kneading step, and knead the rest in step 1 .
 本発明において、硫黄成分は、工程2で得られたゴム組成物と混練する。なお、以下では、ゴム組成物と硫黄成分とを混練する工程をpro工程と記載することがある。加硫促進剤を使用する場合、その使用量の全部を、pro工程で混練することが好ましい。また、リターダーを使用する場合、その使用量の全部を、pro工程で混練することが好ましい。 In the present invention, the sulfur component is kneaded with the rubber composition obtained in step 2. In the following, the process of kneading the rubber composition and the sulfur component may be described as a pro process. When a vulcanization accelerator is used, it is preferable to knead all of its use amount in the pro step. Moreover, when using a retarder, it is preferable to knead | mix all of the usage-amount at a pro process.
 加硫促進剤、しゃく解剤およびリターダーを除く他の成分(例えば、ステアリン酸、酸化亜鉛、老化防止剤)は、予備混練工程、工程1および工程2のいずれで混練してもよい。但し、混練中に、化合物(C)を、オレフィン性二重結合を有するゴム成分およびシリカと充分に反応または相互作用させて、化合物(C)の損失係数低減効果を充分に発揮させるために、加硫促進剤、しゃく解剤およびリターダーを除く他の成分の使用量の全部を、工程2で混練することが好ましい。
 以下、予備混練工程、工程1、工程2およびpro工程等について順に説明する。
The other components (e.g., stearic acid, zinc oxide, anti-aging agent) other than the vulcanization accelerator, the peptizer and the retarder may be kneaded in any of the pre-kneading step, step 1 and step 2. However, in order to cause compound (C) to sufficiently react or interact with the rubber component having an olefinic double bond and silica during kneading to sufficiently exhibit the loss coefficient reduction effect of compound (C), It is preferable to knead | mix in step 2 all the usage-amount of other components except a vulcanization accelerator, a peptizer, and a retarder.
Hereinafter, the pre-kneading step, step 1, step 2 and pro step will be described in order.
(a)予備混練工程
 上述したように、本発明の方法では、工程1の前に、オレフィン性二重結合を有するゴム成分を素練りする予備混練工程を行ってもよい。予備混練工程における素練りには、例えば、バンバリーミキサーを含むインターナルミキサー、オープン型ニーダー、加圧式ニーダー、押出機、および射出成型機等を使用することができる。
(A) Pre-kneading step As described above, in the method of the present invention, a pre-kneading step of masticating a rubber component having an olefinic double bond may be performed prior to step 1. For mastication in the pre-kneading step, for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, and the like can be used.
 予備混練工程における素練りのための回転速度は、好ましくは5~100rpm、より好ましくは10~80rpm、さらに好ましくは10~60rpmである。素練りのための混練時間は、好ましくは0.5~15分、より好ましくは1~10分、さらに好ましくは1~4分である。 The rotational speed for mastication in the pre-kneading step is preferably 5 to 100 rpm, more preferably 10 to 80 rpm, and still more preferably 10 to 60 rpm. The kneading time for mastication is preferably 0.5 to 15 minutes, more preferably 1 to 10 minutes, and still more preferably 1 to 4 minutes.
(b)工程1
 工程1における化合物(C)、オレフィン性二重結合を有するゴム成分、およびシリカの混練、または工程1における化合物、オレフィン性二重結合を有するゴム成分、シリカ、および必要に応じて他の成分の混練(本明細書中、「工程1の混練」と略称することがある)には、例えば、バンバリーミキサーを含むインターナルミキサー、オープン型ニーダー、加圧式ニーダー、押出機、および射出成型機等を使用することができる。
(B) Step 1
Compound (C) in step 1, rubber component having an olefinic double bond, and kneading of silica, or compound in step 1, rubber component having an olefinic double bond, silica, and optionally other components For kneading (which may be abbreviated as “kneading in step 1” in this specification), for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, etc. It can be used.
 本発明における工程1および工程2を、例えば、下記(i)または(ii)のようにして行うことができる:
 (i)工程1の後、工程1で使用した装置から混練物を排出し、冷却してから、得られた混練物、シリカと結合可能なSi-O結合を有する化合物、および必要に応じて他の成分を工程2で使用する装置に投入し、工程2の混練を行う。
 (ii)工程1の後、工程1で使用した装置から混練物を排出せずに、該装置にシリカと結合可能なSi-O結合を有する化合物、および必要に応じて他の成分を投入して、工程1の混練に続けて、工程2の混練を行う。
 作業上の観点から、上記(i)の態様が好ましい。
Steps 1 and 2 in the present invention can be performed, for example, as in the following (i) or (ii):
(I) After step 1, the kneaded material is discharged from the apparatus used in step 1, cooled, and then the obtained kneaded material, a compound having a Si-O bond capable of binding to silica, and, if necessary, The other components are introduced into the apparatus used in step 2 and kneading in step 2 is performed.
(Ii) After step 1, without discharging the kneaded material from the apparatus used in step 1, the apparatus is charged with a compound having a Si-O bond capable of binding to silica, and other components as needed. Then, the kneading of step 2 is performed following the kneading of step 1.
From the viewpoint of operation, the aspect of the above (i) is preferable.
 上記(i)および(ii)の態様のいずれでも、工程1の混練を充分に行ってから、工程2の混練を行うことが好ましい。工程1の混練を充分に行ったか否かは、工程1で使用した装置のトルクの変化から判断することができる。詳しくは、混練が不充分である間は装置のトルクは上昇し、その後に装置のトルクは低下していく。装置のトルクが低下する時間以上の時間(例えば、装置のトルクが低下した後、さらに1~5分経過するまでの時間)、工程1の混練を行うことが好ましい。 In any of the embodiments (i) and (ii), it is preferable to perform the kneading in step 2 after the kneading in step 1 is sufficiently performed. It can be judged from the change of the torque of the apparatus used at the process 1 whether the kneading | mixing of the process 1 was fully performed. Specifically, while the kneading is insufficient, the torque of the device increases, and then the torque of the device decreases. It is preferable to carry out the kneading of step 1 for a time longer than the time for which the torque of the device is reduced (for example, the time until 1 to 5 minutes have elapsed after the torque of the device is reduced).
 工程1の混練は、その回転速度を変更して行ってもよい。例えば、まず、低速の第1の回転速度で混練してから、次いで第1の回転速度より速い第2の回転速度で混練を行ってもよい。第1の回転速度は、好ましくは2~35rpm、より好ましくは4~25pm、さらに好ましくは6~15rpmであり、その混練時間は、好ましくは0.5~5分、より好ましくは0.5~3分、さらに好ましくは0.5~2分である。第2の回転速度は、好ましくは35~100rpm、より好ましくは40~90pm、さらに好ましくは45~80rpmであり、その混練時間は、好ましくは1~10分、より好ましくは1.5~8分、さらに好ましくは2~6分である。 The kneading in step 1 may be performed by changing the rotation speed. For example, first, kneading may be performed at a low first rotational speed, and then may be performed at a second rotational speed higher than the first rotational speed. The first rotation speed is preferably 2 to 35 rpm, more preferably 4 to 25 pm, still more preferably 6 to 15 rpm, and the kneading time is preferably 0.5 to 5 minutes, more preferably 0.5 to 5 minutes. 3 minutes, preferably 0.5 to 2 minutes. The second rotation speed is preferably 35 to 100 rpm, more preferably 40 to 90 pm, still more preferably 45 to 80 rpm, and the kneading time is preferably 1 to 10 minutes, more preferably 1.5 to 8 minutes. More preferably, it is 2 to 6 minutes.
 上記(i)の態様のように、工程1で使用した装置から混練物を排出する場合、混練物の排出温度は、好ましくは120~180℃、より好ましくは130~170℃、さらに好ましくは140~160℃である。 When the kneaded material is discharged from the apparatus used in step 1 as in the embodiment of the above (i), the discharge temperature of the kneaded material is preferably 120 to 180 ° C., more preferably 130 to 170 ° C., still more preferably 140. It is ~ 160 ° C.
(c)冷却工程
 上述したように、本発明の方法では、工程1の後に、工程1で使用した装置から混練物を排出し、混練物を冷却してもよい。工程1で使用した装置からの冷却操作としては、例えば、放冷、水冷、強制空冷が挙げられる。これらの中で、簡便な放冷が好ましい。
(C) Cooling step As described above, in the method of the present invention, after step 1, the kneaded material may be discharged from the apparatus used in step 1, and the kneaded material may be cooled. Examples of the cooling operation from the apparatus used in Step 1 include cold cooling, water cooling, and forced air cooling. Among these, simple free standing is preferred.
 冷却(特に放冷)を促進するために、工程1で得られた混練物を、オープンロールを使用して、シート状またはボード状に加工してもよい。シート状またはボード状に加工された混練物の厚さは、好ましくは0.5~20mm、より好ましくは2~10mmである。 In order to promote cooling (in particular, cooling), the kneaded material obtained in Step 1 may be processed into a sheet or a board using an open roll. The thickness of the kneaded material processed into a sheet or board is preferably 0.5 to 20 mm, more preferably 2 to 10 mm.
(d)工程2
 工程2における上記混練物およびシリカと結合可能なSi-O結合を有する化合物の混練、または工程2における上記混練物、シリカと結合可能なSi-O結合を有する化合物および必要に応じて他の成分の混練(本明細書中、「工程2の混練」と略称することがある)には、例えば、バンバリーミキサーを含むインターナルミキサー、オープン型ニーダー、加圧式ニーダー、押出機、および射出成型機等を使用することができる。
(D) Process 2
Kneading the above-mentioned kneaded product in step 2 and a compound having a Si-O bond capable of binding to silica, or the above-mentioned kneaded product in step 2, a compound having a Si-O bond capable of binding to silica and optionally other components (Sometimes abbreviated as “kneading in step 2” in the present specification), for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, etc. Can be used.
 工程2の混練開始時の装置設定温度は、好ましくは40~200℃、より好ましくは50~180℃、さらに好ましくは60~160℃である。 The apparatus set temperature at the start of kneading in step 2 is preferably 40 to 200 ° C., more preferably 50 to 180 ° C., and still more preferably 60 to 160 ° C.
 冷却工程を行った場合、冷却後の混練物中のゴム成分をせん断させるために、まず、この混練物のみを混練することが好ましい。この混練物のみの混練の回転速度は、好ましくは35~100rpm、より好ましくは40~90pm、さらに好ましくは45~80rpmであり、その混練時間は、好ましくは0.5~10分、より好ましくは1~8分、さらに好ましくは2~5分である。 When the cooling step is performed, it is preferable to knead only the kneaded material first in order to shear the rubber component in the kneaded material after cooling. The rotational speed of kneading of this kneaded material alone is preferably 35 to 100 rpm, more preferably 40 to 90 pm, still more preferably 45 to 80 rpm, and the kneading time is preferably 0.5 to 10 minutes, more preferably 1 to 8 minutes, more preferably 2 to 5 minutes.
 工程2の混練は、その回転速度を変更して行ってもよい。例えば、まず、低速の第1の回転速度で混練してから、次いで第1の回転速度より速い第2の回転速度で混練を行ってもよい。第1の回転速度は、好ましくは2~35rpm、より好ましくは4~25pm、さらに好ましくは6~15rpmであり、その混練時間は、好ましくは0.5~5分、より好ましくは0.5~3分、さらに好ましくは0.5~2分である。第2の回転速度は、好ましくは35~100rpm、より好ましくは40~90pm、さらに好ましくは45~80rpmであり、その混練時間は、好ましくは1~10分、より好ましくは1.5~8分、さらに好ましくは2~6分である。 The kneading in step 2 may be performed by changing the rotation speed. For example, first, kneading may be performed at a low first rotational speed, and then may be performed at a second rotational speed higher than the first rotational speed. The first rotation speed is preferably 2 to 35 rpm, more preferably 4 to 25 pm, still more preferably 6 to 15 rpm, and the kneading time is preferably 0.5 to 5 minutes, more preferably 0.5 to 5 minutes. 3 minutes, preferably 0.5 to 2 minutes. The second rotation speed is preferably 35 to 100 rpm, more preferably 40 to 90 pm, still more preferably 45 to 80 rpm, and the kneading time is preferably 1 to 10 minutes, more preferably 1.5 to 8 minutes. More preferably, it is 2 to 6 minutes.
 本発明では、工程2で得られたゴム組成物を、工程2で使用した装置から排出し、工程2とは別の装置を使用して、得られたゴム組成物と硫黄成分とを混練するpro工程を行うことが好ましい。工程2で使用した装置からのゴム組成物の排出温度は、好ましくは80~200℃、より好ましくは90~190℃、さらに好ましくは100~180℃である。 In the present invention, the rubber composition obtained in step 2 is discharged from the apparatus used in step 2, and the obtained rubber composition and the sulfur component are kneaded using an apparatus different from step 2 It is preferred to carry out the pro step. The discharge temperature of the rubber composition from the apparatus used in step 2 is preferably 80 to 200 ° C., more preferably 90 to 190 ° C., still more preferably 100 to 180 ° C.
(e)pro工程
 上述のようにして得られたゴム組成物と、硫黄成分との混練には、例えば、オープンロール、カレンダー等を使用することができる。pro工程の混練温度(混練しているゴム組成物の温度)は、好ましくは20~100℃、より好ましくは30~90℃、さらに好ましくは40~80℃である。
(E) Pro process In the kneading of the rubber composition obtained as described above and the sulfur component, for example, an open roll, a calendar or the like can be used. The kneading temperature (temperature of the rubber composition being kneaded) in the pro step is preferably 20 to 100 ° C., more preferably 30 to 90 ° C., and still more preferably 40 to 80 ° C.
(2)加硫ゴム組成物の製造方法
 硫黄成分を含有するゴム組成物を加硫することによって、加硫ゴム組成物を製造することができる。加硫温度は、120~180℃が好ましい。当業者であれば、ゴム組成物の組成に応じて、加硫時間を適宜設定することができる。加硫は、通常、常圧または加圧下で行われる。
(2) Method of producing a vulcanized rubber composition A vulcanized rubber composition can be produced by vulcanizing a rubber composition containing a sulfur component. The vulcanization temperature is preferably 120 to 180.degree. Those skilled in the art can appropriately set the vulcanization time according to the composition of the rubber composition. Vulcanization is usually carried out under normal pressure or under pressure.
<ゴム組成物、硫黄成分を含有するゴム組成物および加硫ゴム組成物>
 本発明は、上述の方法によって得られた、ゴム組成物、硫黄成分を含有するゴム組成物、および加硫ゴム組成物も提供する。
<Rubber composition, rubber composition containing sulfur component and vulcanized rubber composition>
The present invention also provides a rubber composition, a rubber composition containing a sulfur component, and a vulcanized rubber composition obtained by the method described above.
 後述の実施例および比較例で示されるように、工程1および工程2を含む本発明の方法で得られた加硫ゴム組成物の損失係数(tanδ)は、化合物(C)と、オレフィン性二重結合を有するゴム成分と、シリカと、シリカと結合可能なSi-O結合を有する化合物とを一度に混練する工程を含む方法(以下「他の方法」と略称することがある。)で得られた加硫ゴム組成物の損失係数に比べて、非常に低い。そのため、本発明の方法で得られたゴム組成物、硫黄成分を含有するゴム組成物および加硫ゴム組成物は、他の方法で得られたゴム組成物、硫黄成分を含有するゴム組成物および加硫ゴム組成物と異なる物であることは明らかである。 As shown in the following Examples and Comparative Examples, the loss coefficient (tan δ) of the vulcanized rubber composition obtained by the method of the present invention including Step 1 and Step 2 is the compound (C) and the olefinic difunctional compound Obtained by a method including a step of kneading the rubber component having a heavy bond, silica, and a compound having a Si-O bond capable of binding to silica at one time (hereinafter sometimes abbreviated as "other method"). Very low compared to the loss factor of the vulcanized rubber composition. Therefore, the rubber composition obtained by the method of the present invention, the rubber composition containing a sulfur component and the vulcanized rubber composition are the rubber composition obtained by another method, the rubber composition containing a sulfur component and It is clear that the composition is different from the vulcanized rubber composition.
 しかし、本発明の方法で得られたゴム組成物等と、操作のみが異なり、使用成分が同じである他の方法で得られたゴム組成物等とを区別することは、現在の分析技術では不可能であるか、またはおよそ実際的でない。言い換えると、固体のゴム組成物を分析する現在の技術では、本発明の方法で得られたゴム組成物等を、その構造等によって直接特定することは不可能であるか、またはおよそ実際的でない。そのため、本明細書および特許請求の範囲では、本発明のゴム組成物、硫黄成分を含有するゴム組成物および加硫ゴム組成物を、本発明の方法によって特定する。 However, it is necessary to distinguish between the rubber composition etc. obtained by the method of the present invention and the rubber composition etc obtained by other methods in which only the operation is different and the components used are the same. Impossible or not nearly practical. In other words, in the present technology of analyzing a solid rubber composition, it is impossible or almost not practical to directly identify the rubber composition etc. obtained by the method of the present invention by its structure etc. . Therefore, in the present specification and claims, the rubber composition of the present invention, the rubber composition containing a sulfur component and the vulcanized rubber composition are specified by the method of the present invention.
 以下、実施例等を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下の実施例等に記載の「部」は「重量部」を意味する。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples and the like. However, the present invention is not limited by the following examples, and appropriate modifications may be made as long as it can conform to the above It is of course also possible to carry out the present invention, and all of them are included in the technical scope of the present invention. In addition, "part" as described in the following Example etc. means a "weight part."
<成分>
 以下の実施例等で使用した成分および略号は以下の通りである。
・NR:天然ゴム(RSS#1)
・SBR:溶液重合スチレン・ブタジエン共重合ゴム(住友化学社製、商品名「SE-0212」)
・BR:ポリブタジエンゴム(JSR社製、商品名「BR01」)
・シリカ(東ソー・シリカ社製、商品名「Nipsil(登録商標)AQ」、BET比表面積:190m/g)
・CB:カーボンブラックISAF(旭カーボン社製、商品名「旭#80」、BET比表面積:115m/g)
・化合物(Ia-1):(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウム・二水和物
・化合物(II-1):S-(3-アミノプロピル)チオ硫酸
・シランカップリング剤(ビス(3-トリエトキシシリルプロピル)ジスルフィド、デグッサ社製、商品名「Si-75」)
・酸化亜鉛(ZnO)
・ステアリン酸(花王社製、商品名「ルナックS20」)
・老化防止剤:N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン(住友化学社製、商品名「アンチゲン(登録商標)6C」)
・硫黄成分:粉末硫黄(S
・加硫促進剤1:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)
・加硫促進剤2:ジフェニルグアニジン(DPG)
<Component>
The components and abbreviations used in the following examples are as follows.
・ NR: Natural rubber (RSS # 1)
SBR: solution-polymerized styrene / butadiene copolymer rubber (Sumitomo Chemical Co., Ltd., trade name "SE-0212")
· BR: Polybutadiene rubber (manufactured by JSR, trade name "BR01")
Silica (Tosoh Silica Corporation, trade name “Nipsil (registered trademark) AQ”, BET specific surface area: 190 m 2 / g)
-CB: carbon black ISAF (manufactured by Asahi Carbon Co., Ltd., trade name "Asahi # 80", BET specific surface area: 115 m 2 / g)
Compound (Ia-1): (2Z) -4-[(4-aminophenyl) amino] -4-oxo-2-butenoate sodium dihydrate Compound (II-1): S- (3) -Aminopropyl) thiosulfuric acid / silane coupling agent (bis (3-triethoxysilylpropyl) disulfide, manufactured by Degussa, trade name "Si-75")
・ Zinc oxide (ZnO)
・ Stearic acid (manufactured by Kao Corporation, trade name "Lunack S20")
Anti-aging agent: N-phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine (manufactured by Sumitomo Chemical Co., Ltd., trade name "Antigen (registered trademark) 6C")
-Sulfur component: Powdered sulfur (S 8 )
Vulcanization accelerator 1: N-cyclohexyl-2-benzothiazolylsulfenamide (CBS)
Vulcanization accelerator 2: diphenyl guanidine (DPG)
<参考例1および2、実施例1~12、並びに比較例1および2>
 以下のようにして、参考例1および2、実施例1~12、並びに比較例1および2のゴム組成物、硫黄成分を含有するゴム組成物、および加硫ゴム組成物を製造した。
<Reference Examples 1 and 2, Examples 1 to 12, and Comparative Examples 1 and 2>
The rubber compositions of Reference Examples 1 and 2, Examples 1 to 12, and Comparative Examples 1 and 2, the rubber composition containing a sulfur component, and the vulcanized rubber composition were produced as follows.
予備混練工程および工程1(参考例2、実施例1~12、並びに比較例1および2)
 混練開始時の温度を140℃に設定した加圧式ニーダー((株)トーシン製TD1-5MDX)に、天然ゴムを投入後、回転数50rpmにて2分素練りした。そこへ、下記表の工程1に示す量で天然ゴム以外の成分を加えて、回転数10rpmにて2分の混練を行い、その後に回転数50rpmにて3分の混練を行い、混練物を排出した。なお、天然ゴム以外の成分を加えてから装置のトルクが低下するまでの時間は約2.5分であり、装置のトルクが低下した後、さらに回転数50rpmにて2.5分の混練を行った。また、工程1の混練物の排出温度は約150℃であった。
Pre-kneading step and step 1 (Reference Example 2, Examples 1 to 12, and Comparative Examples 1 and 2)
Natural rubber was charged into a pressure-type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading was set to 140 ° C., and then two-component kneading was performed at a rotation number of 50 rpm. The components other than natural rubber are added thereto in the amount shown in step 1 of the following table, and kneading is performed for 2 minutes at 10 rpm, and then kneading is performed for 3 minutes at 50 rpm, Drained. The time until the torque of the device is reduced after the addition of components other than natural rubber is about 2.5 minutes, and after the torque of the device is reduced, kneading for 2.5 minutes is further performed at 50 rpm. went. Moreover, the discharge temperature of the kneaded material of the process 1 was about 150 degreeC.
冷却工程(参考例2、実施例1~12、並びに比較例1および2)
 工程1で得られた混練物を設定温度50℃のオープンロール(関西ロール社製ラボラトリーミル)を用いて、混練物を厚さ3~5mmのシート状に加工した後、室温になるまで、室温の大気雰囲気下でシート状の混練物を放冷した。
Cooling step (Reference Example 2, Examples 1 to 12, and Comparative Examples 1 and 2)
The kneaded product obtained in step 1 is processed into a sheet having a thickness of 3 to 5 mm using an open roll (laboratory mill manufactured by Kansai Roll Co., Ltd.) at a set temperature of 50 ° C., and then room temperature until it reaches room temperature The sheet-like kneaded material was allowed to cool under the atmosphere atmosphere.
工程2
 混練開始時の温度を140℃に設定した加圧式ニーダー((株)トーシン製TD1-5MDX)に、上記冷却工程後の混練物(下記表では「混練物」と記載する。)を投入して、回転数50rpmにて1分のせん断をかけた後に、下記表に示す種類および量の成分を投入し、回転数10rpmにて2分、さらに回転数50rpmにて3分混練を行って、ゴム組成物を得た。ゴム組成物の排出温度は約150℃であった。
Step 2
The kneaded product after the above-mentioned cooling step (described as "kneaded product" in the following table) is put into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C. After applying shear for 1 minute at 50 rpm, add the components of the types and amounts shown in the following table, and perform kneading for 3 minutes at 50 rpm and 2 minutes at 10 rpm. The composition was obtained. The discharge temperature of the rubber composition was about 150 ° C.
pro工程
 オープンロールで60~80℃の温度にて、工程2で得られたゴム組成物と、下記表に示す量の硫黄成分並びに加硫促進剤1および2とを混練し、硫黄成分を含有するゴム組成物を得た。
The rubber composition obtained in step 2 is mixed with the sulfur component of the amount shown in the following table and the vulcanization accelerators 1 and 2 at a temperature of 60 to 80 ° C. in a pro step open roll to contain the sulfur component The resulting rubber composition was obtained.
加硫工程
 加硫プレス機を用いて、加硫温度を145℃に設定し、加硫時間をJIS K 6300-2に準拠したレオメーター測定にて得られたt(90)の値に10分を加えた時間に設定して、pro工程で得られたゴム組成物を加硫することによって、加硫ゴム組成物を得た。
Vulcanization process Using a vulcanization press, the vulcanization temperature is set to 145 ° C., and the vulcanization time is 10 minutes to the value of t (90) obtained by rheometer measurement according to JIS K 6300-2. The vulcanized rubber composition was obtained by vulcanizing the rubber composition obtained in the pro step by setting the time for adding.
 下記表に示すように、参考例1および2では、化合物(Ia-1)および化合物(II-1)を使用しなかった。
 比較例1では、工程1で化合物(Ia-1)および化合物(II-1)の代わりにシランカップリング剤を混練した。
 比較例2では、工程1でシリカを混練しなかった。
As shown in the following table, in Reference Examples 1 and 2, the compound (Ia-1) and the compound (II-1) were not used.
In Comparative Example 1, a silane coupling agent was kneaded instead of compound (Ia-1) and compound (II-1) in step 1.
In Comparative Example 2, the silica was not kneaded in Step 1.
 下記表に示すように、参考例1では、上記工程1を行わず、硫黄成分並びに加硫促進剤1および2以外の成分を上記工程2で混練してゴム組成物を製造した。具体的には、混練開始時の温度を140℃に設定した加圧式ニーダー((株)トーシン製TD1-5MDX)に、100重量部の天然ゴムを投入して、回転数50rpmにて2分のせん断をかけた後に、下記表に示す種類および量の成分を投入し、回転数10rpmにて2分、さらに回転数50rpmにて3分混練を行って、ゴム組成物を得た。ゴム組成物の排出温度は約150℃であった。 As shown in the following table, in Reference Example 1, the rubber composition was manufactured by kneading the components other than the sulfur component and the vulcanization accelerators 1 and 2 in the above step 2 without performing the above step 1. Specifically, 100 parts by weight of natural rubber is introduced into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C., and the rotation speed is 50 rpm for 2 minutes After shearing, components of the types and amounts shown in the following table were charged, and kneading was performed at 10 rpm for 2 minutes and further at 50 rpm for 3 minutes to obtain a rubber composition. The discharge temperature of the rubber composition was about 150 ° C.
tanδの相対値の算出
 以下の条件で株式会社上島製作所製の粘弾性アナライザを用いて、実施例、比較例および参考例で得られた加硫ゴム組成物の粘弾性特性を測定し、それらの60℃での損失係数(tanδ)を求めた。
 測定温度:60℃
 初期歪:10%
 動的歪:2.5%
 周波数:10Hz
Calculation of the relative value of tan δ Under the following conditions, the visco-elastic properties of the vulcanized rubber compositions obtained in Examples, Comparative Examples and Reference Examples are measured using a visco-elastic analyzer manufactured by Uejima Mfg. Co., Ltd. The loss factor (tan δ) at 60 ° C. was determined.
Measurement temperature: 60 ° C
Initial strain: 10%
Dynamic strain: 2.5%
Frequency: 10Hz
 参考例1および2、実施例1~12、並びに比較例1および2では、参考例2の加硫ゴム組成物のtanδを基準にして、tanδの相対値を算出した。具体的には、上記のようにして測定した加硫ゴム組成物のtanδを使用し、次式:
 tanδの相対値=100×(加硫ゴム組成物のtanδ)/(参考例2の加硫ゴム組成物のtanδ)
から、tanδの相対値を算出した。結果を下記表に示す。
In Reference Examples 1 and 2 and Examples 1 to 12 and Comparative Examples 1 and 2, relative values of tan δ were calculated based on tan δ of the vulcanized rubber composition of Reference Example 2. Specifically, tan δ of the vulcanized rubber composition measured as described above is used, and the following formula:
Relative value of tan δ = 100 × (tan δ of vulcanized rubber composition) / (tan δ of vulcanized rubber composition of Reference Example 2)
The relative value of tan δ was calculated from The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記表で示されるように、本発明の要件を満たす実施例1~12では、tanδの相対値が、化合物(Ia-1)および化合物(II-1)を使用しない参考例1および2に比べて大幅に低減した。一方、化合物(Ia-1)および化合物(II-1)の代わりにシランカップリング剤を使用する比較例1では、tanδの相対値が、参考例1および2に比べて増大した。また、工程1で天然ゴムおよび化合物(Ia-1)を混練するが、シリカを混練しない比較例2では、tanδの相対値が参考例1および2と同等であった。 As shown in the above table, in Examples 1 to 12 satisfying the requirements of the present invention, relative values of tan δ are compared with those of Reference Examples 1 and 2 in which Compound (Ia-1) and Compound (II-1) are not used. Significantly reduced. On the other hand, in Comparative Example 1 in which a silane coupling agent was used instead of the compound (Ia-1) and the compound (II-1), the relative value of tan δ was increased compared to Reference Examples 1 and 2. Further, in Comparative Example 2 in which natural rubber and compound (Ia-1) were kneaded in Step 1 but silica was not kneaded, the relative value of tan δ was equivalent to that of Reference Examples 1 and 2.
 上記表で示されるように、シリカの一部を工程2で混練する実施例7~9、および天然ゴムの一部を工程2で混練する実施例10~12でも、シリカおよび天然ゴムの全部を工程1で混練する実施例1~6と同様に、損失係数(tanδ)が充分に低減された加硫ゴム組成物が得られた。 As shown in the above table, Examples 7 to 9 in which a part of the silica is kneaded in Step 2 and Examples 10 to 12 in which a part of the natural rubber is kneaded in Step 2 are all of the silica and the natural rubber. A vulcanized rubber composition having a sufficiently reduced loss factor (tan δ) was obtained in the same manner as in Examples 1 to 6 in which kneading was carried out in step 1.
 上記の結果から、化合物(C)(=化合物(Ia-1)または化合物(II-1))と、オレフィン性二重結合を有するゴム成分(=天然ゴム)と、シリカとを混練して、混練物を調製し(工程1)、次いで得られた混練物と、シリカと結合可能なSi-O結合を有する化合物(=シランカップリング剤)とを混練して、ゴム組成物を調製することによって(工程2)、損失係数が充分に低減された加硫ゴム組成物が得られることが示される。 From the above results, it is possible to knead compound (C) (= compound (Ia-1) or compound (II-1)), a rubber component having an olefinic double bond (= natural rubber), and silica, Preparing a rubber composition by preparing a kneaded product (Step 1), and then kneading the obtained kneaded product and a compound (= silane coupling agent) having a Si-O bond capable of binding to silica (Step 2) shows that a vulcanized rubber composition having a sufficiently reduced loss factor can be obtained.
<参考例3および4、実施例13、並びに比較例3>
 天然ゴムのみではなく、天然ゴムおよび溶液重合スチレン・ブタジエン共重合ゴムを使用したこと以外は上記の実施例1等と同様にして、参考例3および4、実施例13、並びに比較例3のゴム組成物、硫黄成分を含有するゴム組成物、および加硫ゴム組成物を製造し、加硫ゴム組成物の60℃での損失係数(tanδ)を測定した。使用した成分の種類および量を下記表に示す。
<Reference Examples 3 and 4, Example 13 and Comparative Example 3>
The rubbers of Reference Examples 3 and 4, Example 13, and Comparative Example 3 are the same as Example 1 etc. except that natural rubber and solution-polymerized styrene / butadiene copolymer rubber were used in addition to natural rubber. The composition, a rubber composition containing a sulfur component, and a vulcanized rubber composition were produced, and the loss coefficient (tan δ) at 60 ° C. of the vulcanized rubber composition was measured. The types and amounts of ingredients used are shown in the following table.
 下記表に示すように、参考例3および4では、化合物(Ia-1)を使用しなかった。
 また、参考例3および比較例3では、上記工程1を行わず、硫黄成分並びに加硫促進剤1および2以外の成分を上記工程2で混練してゴム組成物を製造した。具体的には、混練開始時の温度を140℃に設定した加圧式ニーダー((株)トーシン製TD1-5MDX)に、下記表に示す種類および量のゴム成分を投入して、回転数50rpmにて2分のせん断をかけた後に、下記表に示す種類および量の他の成分を投入し、回転数10rpmにて2分、さらに回転数50rpmにて3分混練を行って、ゴム組成物を得た。ゴム組成物の排出温度は約150℃であった。
As shown in the following table, in Reference Examples 3 and 4, the compound (Ia-1) was not used.
Further, in Reference Example 3 and Comparative Example 3, the rubber composition was manufactured by kneading the components other than the sulfur component and the vulcanization accelerators 1 and 2 in the above step 2 without performing the above step 1. Specifically, rubber components of the types and amounts shown in the following table are charged into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C., and the rotation number is 50 rpm. After shearing for 2 minutes, other components of the types and amounts shown in the following table are added, and kneading is performed for 2 minutes at 10 rpm and further for 3 minutes at 50 rpm to obtain a rubber composition. Obtained. The discharge temperature of the rubber composition was about 150 ° C.
 参考例3および4、実施例13、並びに比較例3では、参考例3の加硫ゴム組成物のtanδを基準にして、tanδの相対値を算出した。具体的には、上記のようにして測定した加硫ゴム組成物のtanδを使用し、次式:
 tanδの相対値=100×(加硫ゴム組成物のtanδ)/(参考例3の加硫ゴム組成物のtanδ)
から、tanδの相対値を算出した。結果を下記表に示す。
In Reference Examples 3 and 4, Example 13, and Comparative Example 3, the relative value of tan δ was calculated based on tan δ of the vulcanized rubber composition of Reference Example 3. Specifically, tan δ of the vulcanized rubber composition measured as described above is used, and the following formula:
Relative value of tan δ = 100 × (tan δ of vulcanized rubber composition) / (tan δ of vulcanized rubber composition of Reference Example 3)
The relative value of tan δ was calculated from The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 上記表に示すように、ゴム成分として天然ゴムおよび溶液重合スチレン・ブタジエン共重合ゴムを使用する場合も、本発明の要件を満たす実施例13では、損失係数(tanδ)が充分に低減された加硫ゴム組成物が得られた。 As shown in the above table, even when natural rubber and solution-polymerized styrene / butadiene copolymer rubber are used as rubber components, in Example 13 satisfying the requirements of the present invention, the loss coefficient (tan δ) is sufficiently reduced. A vulcanized rubber composition was obtained.
 実施例13と比較例3との対比から、化合物(C)(=化合物(Ia-1))と、オレフィン性二重結合を有するゴム成分(=天然ゴムおよび溶液重合スチレン・ブタジエン共重合ゴム)と、シリカと、シリカと結合可能なSi-O結合を有する化合物(=シランカップリング剤)とを一度に混練してゴム組成物を製造する場合に比べて、これらを工程1および2に分けて混練する本発明によって、損失係数が充分に低減された加硫ゴム組成物が得られることが示される。 From the comparison between Example 13 and Comparative Example 3, a compound (C) (= compound (Ia-1)) and a rubber component having an olefinic double bond (= natural rubber and solution-polymerized styrene / butadiene copolymer rubber) Compared to the case where rubber composition is manufactured by kneading at once, silica and a compound having Si-O bond that can bond to silica (= silane coupling agent), these are divided into steps 1 and 2 It is shown that the present invention of kneading and kneading gives a vulcanized rubber composition having a sufficiently reduced loss factor.
<参考例5および6、実施例14、並びに比較例4>
 天然ゴムのみではなく、天然ゴムおよびポリブタジエンゴムを使用したこと以外は上記の実施例1等と同様にして、参考例5および6、実施例14、並びに比較例4のゴム組成物、硫黄成分を含有するゴム組成物、および加硫ゴム組成物を製造し、加硫ゴム組成物の60℃での損失係数(tanδ)を測定した。使用した成分の種類および量を下記表に示す。
Reference Examples 5 and 6, Example 14, and Comparative Example 4
The rubber compositions of Reference Examples 5 and 6, Example 14, and Comparative Example 4 in the same manner as in Example 1 and the like except that natural rubber and polybutadiene rubber were used in addition to natural rubber, and sulfur components The contained rubber composition and the vulcanized rubber composition were manufactured, and the loss factor (tan δ) at 60 ° C. of the vulcanized rubber composition was measured. The types and amounts of ingredients used are shown in the following table.
 下記表に示すように、参考例5および6では、化合物(Ia-1)を使用しなかった。
 また、参考例5および比較例4では、上記工程1を行わず、硫黄成分並びに加硫促進剤1および2以外の成分を上記工程2で混練してゴム組成物を製造した。具体的には、混練開始時の温度を140℃に設定した加圧式ニーダー((株)トーシン製TD1-5MDX)に、下記表に示す種類および量のゴム成分を投入して、回転数50rpmにて2分のせん断をかけた後に、下記表に示す種類および量の他の成分を投入し、回転数10rpmにて2分、さらに回転数50rpmにて3分混練を行って、ゴム組成物を得た。ゴム組成物の排出温度は約150℃であった。
As shown in the following table, in Reference Examples 5 and 6, the compound (Ia-1) was not used.
Further, in Reference Example 5 and Comparative Example 4, the rubber composition was manufactured by kneading the components other than the sulfur component and the vulcanization accelerators 1 and 2 in the above step 2 without performing the above step 1. Specifically, rubber components of the types and amounts shown in the following table are charged into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C., and the rotation number is 50 rpm. After shearing for 2 minutes, other components of the types and amounts shown in the following table are added, and kneading is performed for 2 minutes at 10 rpm and further for 3 minutes at 50 rpm to obtain a rubber composition. Obtained. The discharge temperature of the rubber composition was about 150 ° C.
 参考例5および6、実施例14、並びに比較例4では、参考例5の加硫ゴム組成物のtanδを基準にして、tanδの相対値を算出した。具体的には、上記のようにして測定した加硫ゴム組成物のtanδを使用し、次式:
 tanδの相対値=100×(加硫ゴム組成物のtanδ)/(参考例5の加硫ゴム組成物のtanδ)
から、tanδの相対値を算出した。結果を下記表に示す。
In Reference Examples 5 and 6, Example 14, and Comparative Example 4, the relative value of tan δ was calculated based on tan δ of the vulcanized rubber composition of Reference Example 5. Specifically, tan δ of the vulcanized rubber composition measured as described above is used, and the following formula:
Relative value of tan δ = 100 × (tan δ of vulcanized rubber composition) / (tan δ of vulcanized rubber composition of Reference Example 5)
The relative value of tan δ was calculated from The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上記表に示すように、ゴム成分として天然ゴムおよびポリブタジエンゴムを使用する場合も、本発明の要件を満たす実施例14では、損失係数(tanδ)が充分に低減された加硫ゴム組成物が得られた。 As shown in the above table, even when natural rubber and polybutadiene rubber are used as the rubber component, Example 14 satisfying the requirements of the present invention provides a vulcanized rubber composition in which the loss coefficient (tan δ) is sufficiently reduced. It was done.
 実施例14と比較例4との対比から、化合物(C)(=化合物(Ia-1))と、オレフィン性二重結合を有するゴム成分(=天然ゴムおよびポリブタジエンゴム)と、シリカと、シリカと結合可能なSi-O結合を有する化合物(=シランカップリング剤)とを一度に混練してゴム組成物を製造する場合に比べて、これらを工程1および2に分けて混練する本発明によって、損失係数が充分に低減された加硫ゴム組成物が得られることが示される。 From the comparison between Example 14 and Comparative Example 4, compound (C) (= compound (Ia-1)), rubber component having olefinic double bond (= natural rubber and polybutadiene rubber), silica, silica And the compound having a bondable Si-O bond (= silane coupling agent) are kneaded at one time to produce a rubber composition, these are divided into steps 1 and 2 according to the present invention. It is shown that a vulcanized rubber composition having a sufficiently reduced loss factor can be obtained.
<参考例7および8、実施例15、並びに比較例5>
 天然ゴムのみではなく、天然ゴム、溶液重合スチレン・ブタジエン共重合ゴムおよびポリブタジエンゴムを使用したこと以外は上記の実施例1等と同様にして、参考例7および8、実施例15、並びに比較例5のゴム組成物、硫黄成分を含有するゴム組成物、および加硫ゴム組成物を製造し、加硫ゴム組成物の60℃での損失係数(tanδ)を測定した。使用した成分の種類および量を下記表に示す。
Reference Examples 7 and 8, Example 15, and Comparative Example 5
Reference Examples 7 and 8, Example 15, and Comparative Examples are carried out in the same manner as Example 1 etc. except that natural rubber, solution-polymerized styrene / butadiene copolymer rubber and polybutadiene rubber are used in addition to natural rubber. The rubber composition of No. 5, the rubber composition containing a sulfur component, and the vulcanized rubber composition were produced, and the loss coefficient (tan δ) at 60 ° C. of the vulcanized rubber composition was measured. The types and amounts of ingredients used are shown in the following table.
 下記表に示すように、参考例7および8では、化合物(Ia-1)を使用しなかった。
 また、参考例7および比較例5では、上記工程1を行わず、硫黄成分並びに加硫促進剤1および2以外の成分を上記工程2で混練してゴム組成物を製造した。具体的には、混練開始時の温度を140℃に設定した加圧式ニーダー((株)トーシン製TD1-5MDX)に、下記表に示す種類および量のゴム成分を投入して、回転数50rpmにて2分のせん断をかけた後に、下記表に示す種類および量の他の成分を投入し、回転数10rpmにて2分、さらに回転数50rpmにて3分混練を行って、ゴム組成物を得た。ゴム組成物の排出温度は約150℃であった。
As shown in the following table, in Reference Examples 7 and 8, the compound (Ia-1) was not used.
Further, in Reference Example 7 and Comparative Example 5, a rubber composition was manufactured by kneading the components other than the sulfur component and the vulcanization accelerators 1 and 2 in the above step 2 without performing the above step 1. Specifically, rubber components of the types and amounts shown in the following table are charged into a pressure type kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose temperature at the start of kneading is set to 140 ° C., and the rotation number is 50 rpm. After shearing for 2 minutes, other components of the types and amounts shown in the following table are added, and kneading is performed for 2 minutes at 10 rpm and further for 3 minutes at 50 rpm to obtain a rubber composition. Obtained. The discharge temperature of the rubber composition was about 150 ° C.
 参考例7および8、実施例15、並びに比較例5では、参考例7の加硫ゴム組成物のtanδを基準にして、tanδの相対値を算出した。具体的には、上記のようにして測定した加硫ゴム組成物のtanδを使用し、次式:
 tanδの相対値=100×(加硫ゴム組成物のtanδ)/(参考例7の加硫ゴム組成物のtanδ)
から、tanδの相対値を算出した。結果を下記表に示す。
In Reference Examples 7 and 8, Example 15, and Comparative Example 5, the relative value of tan δ was calculated based on the tan δ of the vulcanized rubber composition of Reference Example 7. Specifically, tan δ of the vulcanized rubber composition measured as described above is used, and the following formula:
Relative value of tan δ = 100 × (tan δ of vulcanized rubber composition) / (tan δ of vulcanized rubber composition of Reference Example 7)
The relative value of tan δ was calculated from The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 上記表に示すように、ゴム成分として天然ゴム、溶液重合スチレン・ブタジエン共重合ゴムおよびポリブタジエンゴムを使用する場合も、本発明の要件を満たす実施例15では、損失係数(tanδ)が充分に低減された加硫ゴム組成物が得られた。 As shown in the above table, even when natural rubber, solution-polymerized styrene / butadiene copolymer rubber and polybutadiene rubber are used as rubber components, the loss coefficient (tan δ) is sufficiently reduced in Example 15 satisfying the requirements of the present invention. The resulting vulcanized rubber composition was obtained.
 実施例15と比較例5との対比から、化合物(C)(=化合物(Ia-1))と、オレフィン性二重結合を有するゴム成分(=天然ゴム、溶液重合スチレン・ブタジエン共重合ゴムおよびポリブタジエンゴム)と、シリカと、シリカと結合可能なSi-O結合を有する化合物(=シランカップリング剤)とを一度に混練してゴム組成物をする場合に比べて、これらを工程1および2に分けて混練する本発明によって、損失係数が充分に低減された加硫ゴム組成物が得られることが示される。 From the comparison between Example 15 and Comparative Example 5, a compound (C) (= compound (Ia-1)) and a rubber component having an olefinic double bond (= natural rubber, solution-polymerized styrene / butadiene copolymer rubber, and Steps 1 and 2 compared to the case where a rubber composition is prepared by kneading a polybutadiene rubber), silica, and a compound having an Si—O bond capable of binding to silica (= silane coupling agent) at once. It is shown that the present invention, in which the composition is divided and kneaded, provides a vulcanized rubber composition having a sufficiently reduced loss factor.
 本発明の方法によれば、損失係数が低い加硫ゴム組成物を製造することができる。本発明の方法によって得られたゴム組成物は、様々な製品(例えば、加硫タイヤおよびタイヤ用部材)の製造に有用である。 According to the method of the present invention, a vulcanized rubber composition having a low loss factor can be produced. The rubber composition obtained by the method of the present invention is useful for the production of various products (for example, vulcanized tires and tire components).
 本願は、日本で出願された特願2017-155364号を基礎としており、その内容は本願明細書に全て包含される。 This application is based on patent application No. 2017-155364 filed in Japan, the contents of which are incorporated in full herein.

Claims (14)

  1.  オレフィン性二重結合と反応し得る基または構造(A)、およびシリカと反応または相互作用し得る基または構造(B)を有し、Si-O結合を有さない化合物(C)と、オレフィン性二重結合を有するゴム成分と、シリカとを混練して、混練物を得る工程1、および
     得られた混練物と、シリカと結合可能なSi-O結合を有する化合物とを混練して、ゴム組成物を得る工程2、
    を含むゴム組成物の製造方法。
    Compound (C) having a group or structure (A) capable of reacting with an olefinic double bond, and a group or structure (B) capable of reacting or interacting with silica, and having no Si-O bond, and an olefin Step 1: Kneading a rubber component having an anionic double bond and silica to obtain a kneaded product, and kneading the obtained kneaded product and a compound having a Si-O bond capable of binding to silica, Step 2 of obtaining a rubber composition
    A method of producing a rubber composition comprising:
  2.  化合物(C)が、式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、
     Rは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。
     RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。
     Rは、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC6-14アリールオキシ基、または-NR(前記式中、RおよびRは、それぞれ独立に、水素原子、または1以上の置換基を有していてもよいC1-6アルキル基を表す。)を表す。
     Xは、-NH-または-O-を表す。]
    で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物、並びに式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、
     RおよびRは、それぞれ独立に、水素原子または1以上の置換基を有していてもよいC1-6アルキル基を表すか、或いはRおよびRが結合し、1以上の置換基を有していてもよいC2-12アルカンジイル基を形成する。
     mは、2~9の整数を表す。
     nは、1または2を表す。
     Mn+は、Hまたはn価の金属イオンを表す。]
    で表される化合物からなる群から選ばれる少なくとも一つである請求項1に記載の方法。
    The compound (C) is a compound of formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I),
    R 1 is a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, one or more substituents And a divalent C 6-12 aromatic hydrocarbon group which may have the formula, or a combination thereof.
    R 2 and R 3 each independently have a hydrogen atom, a halogen atom, a hydroxy group, a C 1-6 alkoxy group optionally having one or more substituents, or one or more substituents or represents a C 1-6 alkyl group or one or more may have a substituent group C 6-14 aryl group, or R 2 and R 3 are bonded, the carbon atom to which they are attached Taken together, form a C 3-10 cycloalkene diyl group which may have one or more substituents.
    R 4 is a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, a C 6-14 aryloxy group which may have one or more substituents, or -NR 5 R 6 (wherein, R 5 and R 6 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents).
    X represents -NH- or -O-. ]
    , A salt thereof, a solvate thereof and a solvate of the salt thereof, and a compound of the formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (II),
    R 7 and R 8 each independently represent a hydrogen atom or a C 1-6 alkyl group which may have one or more substituents, or R 7 and R 8 are bonded together, and one or more of them are substituted It forms a C 2-12 alkanediyl group which may have a group.
    m represents an integer of 2 to 9;
    n represents 1 or 2;
    Mn + represents H + or n-valent metal ion. ]
    The method according to claim 1, which is at least one selected from the group consisting of compounds represented by
  3.  式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物が、式(I)で表される化合物の塩の溶媒和物である請求項2に記載の方法。 The method according to claim 2, wherein the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof is a solvate of a salt of the compound represented by the formula (I) .
  4.  シリカと結合可能なSi-O結合を有する化合物が、シランカップリング剤である請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the compound having a Si-O bond capable of binding to silica is a silane coupling agent.
  5.  オレフィン性二重結合を有するゴム成分が、ジエン系ゴムを含む請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the rubber component having an olefinic double bond comprises a diene rubber.
  6.  オレフィン性二重結合を有するゴム成分が、天然ゴムを含む請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the rubber component having an olefinic double bond comprises natural rubber.
  7.  化合物(C)の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.1~10重量部である請求項1~6のいずれか一項に記載の方法。 The amount of the compound (C) used is 0.1 to 10 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond, according to any one of claims 1 to 6. Method.
  8.  シリカの使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、10~120重量部である請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the amount of silica used is 10 to 120 parts by weight with respect to 100 parts by weight of the rubber component having an olefinic double bond.
  9.  シリカと結合可能なSi-O結合を有する化合物の使用量が、オレフィン性二重結合を有するゴム成分の使用量100重量部に対して、0.1~20重量部である請求項1~8のいずれか一項に記載の方法。 The use amount of the compound having a Si—O bond capable of binding to silica is 0.1 to 20 parts by weight with respect to 100 parts by weight of the use amount of the rubber component having an olefinic double bond. The method according to any one of the preceding claims.
  10.  請求項1~9のいずれか一項に記載の方法で得られたゴム組成物と、硫黄成分とを混練することを含む、硫黄成分を含有するゴム組成物の製造方法。 A method for producing a rubber composition containing a sulfur component, comprising kneading the rubber composition obtained by the method according to any one of claims 1 to 9 with a sulfur component.
  11.  請求項10に記載の方法で得られた硫黄成分を含有するゴム組成物を加硫することを含む、加硫ゴム組成物の製造方法。 A method for producing a vulcanized rubber composition, comprising vulcanizing a rubber composition containing a sulfur component obtained by the method according to claim 10.
  12.  請求項1~9のいずれか一項に記載の方法で得られたゴム組成物。 A rubber composition obtained by the method according to any one of claims 1 to 9.
  13.  請求項10に記載の方法で得られた硫黄成分を含有するゴム組成物。 A rubber composition containing a sulfur component obtained by the method according to claim 10.
  14.  請求項11に記載の方法で得られた加硫ゴム組成物。 A vulcanized rubber composition obtained by the method according to claim 11.
PCT/JP2018/029710 2017-08-10 2018-08-08 Method for producing rubber composition WO2019031538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-155364 2017-08-10
JP2017155364A JP2019034988A (en) 2017-08-10 2017-08-10 Manufacturing method of rubber composition

Publications (1)

Publication Number Publication Date
WO2019031538A1 true WO2019031538A1 (en) 2019-02-14

Family

ID=65272461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029710 WO2019031538A1 (en) 2017-08-10 2018-08-08 Method for producing rubber composition

Country Status (3)

Country Link
JP (1) JP2019034988A (en)
TW (1) TW201917150A (en)
WO (1) WO2019031538A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7333491B1 (en) * 2022-03-31 2023-08-24 日本板硝子株式会社 Aqueous treatment agent, method for producing rubber reinforcing member, rubber reinforcing member, and rubber product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202819A (en) * 2009-03-05 2010-09-16 Sumitomo Rubber Ind Ltd Rubber composition for tire, and tire
JP2011038034A (en) * 2009-08-17 2011-02-24 Sumitomo Rubber Ind Ltd System for kneading and method for kneading silica compounded rubber
WO2012002517A1 (en) * 2010-06-30 2012-01-05 住友化学株式会社 Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof
JP2013043900A (en) * 2011-08-22 2013-03-04 Sumitomo Rubber Ind Ltd Rubber composition for tire, method for producing the same and pneumatic tire
JP2013159678A (en) * 2012-02-03 2013-08-19 Sumitomo Chemical Co Ltd Manufacturing method of vulcanized rubber
JP2013159628A (en) * 2012-02-01 2013-08-19 Sumitomo Rubber Ind Ltd Method for producing rubber composition
JP2013159679A (en) * 2012-02-03 2013-08-19 Sumitomo Chemical Co Ltd Method of manufacturing vulcanized rubber
JP2013209605A (en) * 2011-04-26 2013-10-10 Sumitomo Chemical Co Ltd Rubber composition
JP2014009265A (en) * 2012-06-28 2014-01-20 Sumitomo Rubber Ind Ltd Rubber composition for high performance wet tire tread, and high performance wet tire
JP2014094987A (en) * 2012-11-07 2014-05-22 Toyo Tire & Rubber Co Ltd Tire member and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202819A (en) * 2009-03-05 2010-09-16 Sumitomo Rubber Ind Ltd Rubber composition for tire, and tire
JP2011038034A (en) * 2009-08-17 2011-02-24 Sumitomo Rubber Ind Ltd System for kneading and method for kneading silica compounded rubber
WO2012002517A1 (en) * 2010-06-30 2012-01-05 住友化学株式会社 Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof
JP2013209605A (en) * 2011-04-26 2013-10-10 Sumitomo Chemical Co Ltd Rubber composition
JP2013043900A (en) * 2011-08-22 2013-03-04 Sumitomo Rubber Ind Ltd Rubber composition for tire, method for producing the same and pneumatic tire
JP2013159628A (en) * 2012-02-01 2013-08-19 Sumitomo Rubber Ind Ltd Method for producing rubber composition
JP2013159678A (en) * 2012-02-03 2013-08-19 Sumitomo Chemical Co Ltd Manufacturing method of vulcanized rubber
JP2013159679A (en) * 2012-02-03 2013-08-19 Sumitomo Chemical Co Ltd Method of manufacturing vulcanized rubber
JP2014009265A (en) * 2012-06-28 2014-01-20 Sumitomo Rubber Ind Ltd Rubber composition for high performance wet tire tread, and high performance wet tire
JP2014094987A (en) * 2012-11-07 2014-05-22 Toyo Tire & Rubber Co Ltd Tire member and method for producing the same

Also Published As

Publication number Publication date
TW201917150A (en) 2019-05-01
JP2019034988A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
KR101784018B1 (en) Use of s-(3-aminopropyl)thiosulfuric acid or metal salt thereof
EP2450402B1 (en) Vulcanized rubber and process for manufaturing same
JP2012012456A (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof
JP2014084312A (en) Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound
US9796831B2 (en) Process for producing particles
JP2012012457A (en) Method for using s-(3-aminopropyl)thiosulfuric acid and/or metal salt thereof, and method for suppressing generation of heat in vulcanized rubber composition
JP2012012458A (en) Method of manufacturing vulcanized rubber composition
WO2013015440A1 (en) Rubber composition
JPWO2016175272A1 (en) Rubber composition
WO2018012452A1 (en) Additive composition and rubber composition
WO2019031538A1 (en) Method for producing rubber composition
JPWO2016186155A1 (en) Method for producing rubber composition
JP5978043B2 (en) Rubber composition
JP2012116813A (en) Thiosulfuric acid compound or salt thereof, and rubber composition containing the same
WO2018012451A1 (en) Additive composition and rubber composition
JP2017101132A (en) Rubber composition and vulcanized rubber composition
JP2018080290A (en) Rubber composition
JP2018204033A (en) Method for producing rubber composition
JP5310609B2 (en) Use of S- (5-aminopentyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP5310608B2 (en) Use of S- (4-aminobutyl) thiosulfuric acid or a metal salt thereof for improving viscoelastic properties of vulcanized rubber
JP2019119784A (en) Manufacturing method of rubber composition
JP2018080289A (en) Rubber composition
JP6013823B2 (en) Compound
JP2012153630A (en) Thiosulfuric acid compound or salt thereof and rubber composition including the same
JP2012207149A (en) Method for producing rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844147

Country of ref document: EP

Kind code of ref document: A1