WO2016186155A1 - Process for producing rubber composition - Google Patents

Process for producing rubber composition Download PDF

Info

Publication number
WO2016186155A1
WO2016186155A1 PCT/JP2016/064820 JP2016064820W WO2016186155A1 WO 2016186155 A1 WO2016186155 A1 WO 2016186155A1 JP 2016064820 W JP2016064820 W JP 2016064820W WO 2016186155 A1 WO2016186155 A1 WO 2016186155A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rubber composition
production method
formula
examples
Prior art date
Application number
PCT/JP2016/064820
Other languages
French (fr)
Japanese (ja)
Inventor
泰生 上北
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2017519391A priority Critical patent/JPWO2016186155A1/en
Publication of WO2016186155A1 publication Critical patent/WO2016186155A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive

Definitions

  • the present invention relates to a method for producing a rubber composition.
  • the present invention has been made paying attention to the circumstances as described above, and is selected from the group consisting of a compound represented by the following formula (I), a salt thereof, a solvate thereof, and a solvate of the salt. It is to suppress an increase in the viscosity of the rubber composition due to the use of at least one.
  • the present invention that can achieve the above object is as follows.
  • R 1 represents a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, or one or more substituents.
  • R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, one or more C 1-6 alkoxy group which may have one or more substituents, or one or more substituents.
  • R 4 represents a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents.
  • X represents —NH— or —O—.
  • Step 1 for preparing a kneaded product by kneading at least one selected from the group consisting of a compound represented by the formula: salt thereof, solvate thereof and solvate of the salt thereof, a rubber component, and carbon black;
  • Step 2 for preparing the cooled kneaded product by subjecting the obtained kneaded product to a cooling operation, and Step 3 for kneading the obtained cooled kneaded product Manufacturing method.
  • step 1 The production method according to any one of [1] to [10], wherein the kneading in step 1 is performed for 1 minute or more at a rotation speed of 5 rpm or more.
  • the rubber composition to be produced contains at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt.
  • the rubber composition to be produced contains at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt.
  • the production method according to any one of [1] to [36] wherein the amount is 0.01 to 20 parts by weight per 100 parts by weight of the rubber component.
  • the rubber composition to be produced contains at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt
  • the production method according to any one of [1] to [36], wherein the amount is 0.1 to 10 parts by weight per 100 parts by weight of the rubber component.
  • a carboxylate of the compound represented by the formula (I), wherein at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof The production method according to any one of [1] to [57], which is a solvate of [60] At least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt is an alkali carboxylate of the compound represented by the formula (I) Any one of the above [1] to [57], which is at least one selected from the group consisting of hydrates of metal salts and hydrates of alkaline earth metal carboxylates of the compounds represented by formula (I) The manufacturing method as described in one.
  • a method for producing a rubber composition containing a sulfur component wherein the rubber composition obtained by the production method according to any one of [1] to [64] and a sulfur component are kneaded. Manufacturing method.
  • a rubber composition containing no sulfur component obtained by the production method according to any one of [1] to [64].
  • a rubber composition containing a sulfur component obtained by the production method according to any one of [65] to [68].
  • a vulcanized rubber composition obtained by vulcanizing the rubber composition containing the sulfur component according to [70].
  • a vulcanized tire including the vulcanized rubber composition according to [71].
  • a tire belt member comprising the vulcanized rubber composition according to [71] and a steel cord.
  • a tire carcass member comprising the vulcanized rubber composition according to [71] and a carcass fiber cord.
  • a tire member comprising the vulcanized rubber composition according to [71].
  • the tire member according to [75] which is a tire sidewall member, a tire inner liner member, a tire cap tread member, or a tire undertread member.
  • a method for producing a vulcanized rubber composition comprising vulcanizing a rubber composition containing a sulfur component obtained by the production method according to any one of [65] to [68] .
  • the viscosity of the rubber composition is increased by using at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt. Can be suppressed.
  • R 1 in the formula (I) is a C 2-12 alkanediyl group optionally having one or more substituents, and a C 3-10 cycloalkanediyl group optionally having one or more substituents. It represents a divalent C 6-12 aromatic hydrocarbon group which may have one or more substituents, or a combination thereof.
  • C xy means that the number of carbon atoms is x or more and y or less (x, y: integer).
  • the alkanediyl group includes both a linear alkanediyl group and a branched alkanediyl group.
  • examples of the “C 2-12 alkanediyl group” include an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, propylene group, 1-methyltrimethylene group, 2-methyl group.
  • Trimethylene 1-ethyltrimethylene, 2-ethyltrimethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltetra Methylene group, 2-ethyltetramethylene group, 1-propyltetramethylene group, 2-propyltetramethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethylpentamethylene group Group, 2-ethylpentamethylene group, 3-ethylpentamethylene group, 1-propyl Rupentamethylene group, 2-propylpentamethylene group, 3-propylpentamethylene group, 1-methylhexamethylene group, 2-methylhexamethylene group, 3-methylhexamethylene group, 1-ethylhexamethylene group, 2-ethyl Examples include a hexamethylene group, a 3-ethylhexamethylene group, a 1-
  • Examples of the substituent that the C 2-12 alkanediyl group may have include a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7 acyl- Examples thereof include an oxy group and a C 6-14 aryl group which may have one or more substituents.
  • the explanation of the C 1-6 alkoxy group will be given later.
  • examples of the “C 3-10 cycloalkanediyl group” include cyclopropane-1,2-diyl group, cyclobutane-1,3-diyl group, cyclopentane-1,3-diyl group, cyclohexane -1,4-diyl group, cycloheptane-1,4-diyl group, cyclooctane-1,5-diyl group, cyclononane-1,5-diyl group, and cyclodecane-1,6-diyl group.
  • Examples of the substituent that the C 3-10 cycloalkanediyl group may have include a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1-7 acyl. Group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
  • examples of the “divalent C 6-12 aromatic hydrocarbon” include a phenylene group (eg, 1,4-phenylene group), a naphthylene group (eg, 1,4-naphthylene group, 1, 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group) and biphenyldiyl group (eg, 1,1′-biphenyl-4,4′-diyl group).
  • a phenylene group eg, 1,4-phenylene group
  • a naphthylene group eg, 1,4-naphthylene group, 1, 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group
  • biphenyldiyl group eg, 1,1′-biphenyl-4,4′-diyl group
  • Examples of the substituent that the divalent C 6-12 aromatic hydrocarbon group may have include, for example, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C Examples thereof include a 1-7 acyl group, a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group.
  • the sulfo group is a group represented by —SO 3 H.
  • R 1 is preferably a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group, more preferably a C 2-12 alkanediyl group or a phenylene group, still more preferably a phenylene group. Particularly preferred is a 1,4-phenylene group.
  • R 2 and R 3 in formula (I) are each independently a hydrogen atom, a halogen atom, a hydroxy group, an optionally substituted C 1-6 alkoxy group, or one or more substituents.
  • halogen atom examples include fluorine, chlorine, bromine and iodine.
  • the alkoxy group includes both a linear alkoxy group and a branched alkoxy group.
  • examples of the “C 1-6 alkoxy group” include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, and a pentyloxy group. And hexyloxy group.
  • Examples of the substituent that the C 1-6 alkoxy group may have include a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7 acyl-oxy group.
  • Group, and a C 6-14 aryl group which may have one or more substituents.
  • the alkyl group includes both a linear alkyl group and a branched alkyl group.
  • examples of the “C 1-6 alkyl group” include a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, s-butyl group, t-butyl group, 2 -Methylbutyl group, 2-ethylbutyl group, 3-methylbutyl group, 3-ethylbutyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group.
  • Examples of the substituent that the C 1-6 alkyl group may have include a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7 acyl-oxy group.
  • Group, and a C 6-14 aryl group which may have one or more substituents.
  • examples of the “C 6-14 aryl group” include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group.
  • Examples of the substituent that the C 6-14 aryl group may have include, for example, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, Examples thereof include a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group.
  • examples of the “C 1-7 acyl group” include a formyl group, a C 1-6 alkyl-carbonyl group (eg, acetyl group, pivaloyl group), and a benzoyl group.
  • examples of the “C 1-6 alkoxy group” contained in the C 1-6 alkoxy-carbonyl group and the “C 1-7 acyl group” contained in the C 1-7 acyl-oxy group include, for example, Can be mentioned.
  • Examples of the “C 3-10 cycloalkenediyl group formed by combining R 2 and R 3 together with the carbon atom to which they are bonded” include a cyclopropene-1,2-diyl group, Cyclobutene-1,2-diyl group, cyclopentene-1,2-diyl group, cyclohexene-1,2-diyl group, cycloheptene-1,2-diyl group, cyclooctene-1,2-diyl group, cyclononene-1, Examples thereof include 2-diyl group and cyclodecene-1,2-diyl group.
  • Examples of the substituent that the C 3-10 cycloalkenediyl group may have include a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1-7 acyl. Group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
  • R 2 and R 3 are each independently preferably a hydrogen atom or a C 1-6 alkyl group, more preferably a hydrogen atom.
  • R 4 in formula (I) is a hydroxy group (—OH), a C 1-6 alkoxy group optionally having one or more substituents, or a C optionally having one or more substituents. Represents a 6-14 aryloxy group.
  • examples of the “C 6-14 aryl group” contained in the C 6-14 aryloxy group include those described above.
  • R 4 is preferably a hydroxy group or a C 1-6 alkoxy group, more preferably a hydroxy group.
  • X in the formula (I) represents —NH— or —O—.
  • X is preferably —NH—.
  • Compound (I) is preferably represented by the formula (II):
  • the salt of compound (I) includes (a) an amine salt formed by —NH 2 of compound (I) and another acid, and (b) —NH— of compound (I) when X is —NH—.
  • Examples include amine salts formed by-and other acids, and (c) carboxylates formed by -COOH of compound (I) and other bases when R 4 is a hydroxy group.
  • the other acid that forms the amine salt of (a) and (b) may be either an organic acid or an inorganic acid, and the base that forms the carboxylate salt of (c) is an organic base or an inorganic base. Either is acceptable.
  • the salt of compound (I) is preferably a carboxylate, more preferably at least one selected from the group consisting of an alkali metal carboxylate and an alkaline earth metal carboxylate, and more preferably an alkali carboxylate A metal salt, particularly preferably a sodium carboxylate.
  • the solvent that forms the solvate of compound (I) and the solvate of the salt of compound (I) may be water or an organic solvent (for example, methanol).
  • the solvent forming the solvate is preferably water or methanol, more preferably water.
  • Compound (I) or the like is preferably a solvate of a salt of compound (I), more preferably a solvate of a carboxylate salt of compound (I), and more preferably a carboxylic acid of compound (I).
  • Compound (I) and the like can be produced by the method described in Patent Document 1 or a method according to the method.
  • the amount of compound (I) and the like used (that is, at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof and a solvate of the salt)
  • the amount is preferably 0.01 to 100 parts by weight, more preferably 0.01 to 20 parts by weight, still more preferably 0.1 to 10 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Part.
  • Rubber component As the rubber component, natural rubber (NR) and modified natural rubber (for example, epoxidized natural rubber, deproteinized natural rubber); polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), Various synthetic rubbers such as polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene / diene copolymer rubber (EPDM), halogenated butyl rubber (HR), etc. Is illustrated. Only 1 type may be used for a rubber component and it may use 2 or more types together.
  • NR natural rubber
  • modified natural rubber for example, epoxidized natural rubber, deproteinized natural rubber
  • IR polyisoprene rubber
  • SBR styrene / butadiene copolymer rubber
  • BR polybutadiene rubber
  • NBR
  • the rubber component preferably contains a diene rubber.
  • the diene rubber means a rubber made from a diene monomer having a conjugated double bond.
  • the diene rubber include natural rubber, modified natural rubber, polyisoprene rubber, chloroprene rubber, styrene / butadiene copolymer rubber, polybutadiene rubber, and nitrile rubber.
  • the diene rubber is preferably highly unsaturated, and more preferably natural rubber. It is also effective to use natural rubber in combination with another rubber (for example, styrene / butadiene copolymer rubber or polybutadiene rubber).
  • the amount of the diene rubber in the rubber component is preferably 50% by weight or more, more preferably 70 to 100% by weight, still more preferably 80 to 100% by weight. is there.
  • Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20.
  • examples of the epoxidized natural rubber include those having a degree of epoxidation of 10 to 60 mol% (for example, ENR25 and ENR50 manufactured by Kumphuran Guthrie).
  • As the deproteinized natural rubber a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable.
  • Other modified natural rubbers include, for example, polar groups obtained by reacting natural rubber with 4-vinylpyridine, N, N, -dialkylaminoethyl acrylate (eg, N, N, -diethylaminoethyl acrylate), 2-hydroxy acrylate, and the like. Modified natural rubber containing
  • SBR examples include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Among these, solution polymerization SBR is preferable for the rubber composition for treads.
  • the solution polymerization SBR examples include a modified solution polymerization SBR obtained by modification with a modifying agent and having at least one element of nitrogen, tin and silicon at the molecular end.
  • the modifier include lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, silane compounds having an alkoxy group, aminosilane compounds, tin compounds and silane compounds having an alkoxy group.
  • a combined modifier of an alkyl acrylamide compound and a silane compound having an alkoxy group may be used alone or in combination.
  • modified solution polymerization SBR examples include solution polymerization SBR and JSR in which molecular ends are modified using 4,4′-bis (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd.
  • solutions polymerization SBR in which molecular ends are modified using a tin halide compound such as “SL574” manufactured by the company, and silane-modified solution polymerization SBR such as “E10” and “E15” manufactured by Asahi Kasei.
  • oil-extended SBR in which oil such as process oil or aroma oil is added to emulsion polymerization SBR and solution polymerization SBR is also preferable for the rubber composition for tread.
  • the BR may be either a solution polymerization BR having a low vinyl content or a solution polymerization BR having a high vinyl content, but a solution polymerization BR having a high vinyl content is preferred.
  • a modified solution polymerization BR having at least one element of nitrogen, tin, or silicon at the molecular end obtained by modification with a modifier is particularly preferred.
  • the modifier include 4,4′-bis (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N-dialkylacrylamide compound, isocyanate compound, imide compound, and alkoxy group.
  • Examples thereof include a silane compound having an alkoxy group (for example, a trialkoxysilane compound), an aminosilane compound, a tin compound and a silane compound having an alkoxy group, and a combined modifier having an alkylacrylamide compound and an silane compound having an alkoxy group. These modifiers may be used alone or in combination.
  • Examples of the modified solution polymerization BR include tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon.
  • BR can be preferably used for a rubber composition for a tread and a rubber composition for a sidewall.
  • BR may be used in a blend with SBR and / or natural rubber (NR).
  • NR natural rubber
  • the amount of SBR and / or NR in the rubber component is 60 to 100% by weight, and the amount of BR is 0 to 40% by weight.
  • the amount of SBR and / or NR in the rubber component is preferably 10 to 70% by weight, the amount of BR is 90 to 30% by weight, and more preferably the amount of NR. Is 40 to 60% by weight, and the amount of BR is 60 to 40% by weight.
  • a blend of modified SBR and non-modified SBR, a blend of modified BR and non-modified BR, and the like can be preferably used.
  • SBR which is excellent in wear resistance and hysteresis loss reduction performance
  • SBR is used as a base material in rubber components, and in truck and bus tires.
  • Higher strength NR is optionally used as a base material together with SBR, and these base materials can be blended with BR as necessary to obtain a tread excellent in wear resistance, fatigue resistance and impact resilience. Therefore, it is preferable.
  • NR and SBR are blended in a passenger car tire, or NR and BR are blended, and NR in a truck / bus tire. It is preferable to use a blend of BR and BR since bending resistance and crack growth resistance can be obtained.
  • the rubber composition produced in the present invention is used for a tire belt, it is preferable to use NR and / or IR as a rubber component because a high elastic modulus and good adhesion to reinforcing fibers can be obtained. .
  • the rubber composition produced in the present invention is used as an inner liner of a tire, it is preferable to blend IIR, SBR, and NR as a rubber component, or blend IIR and NR. And bending resistance is preferable.
  • Carbon Black examples include those described on page 494 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. Carbon black may use only 1 type and may use 2 or more types together. Examples of carbon black include HAF (High Absorption Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), ISAF-HM (Intermediate SAF-High Fur, and FEF (Fast East Fur, FAS ), SRF (Semi-Reinforcing Furnace) is preferable.
  • HAF High Absorption Furnace
  • SAF Super Abrasion Furnace
  • ISAF Intermediate SAF
  • ISAF-HM Intermediate SAF-High Fur
  • FEF Flust East Fur, FAS
  • SRF Semi-Reinforcing Furnace
  • the amount of carbon black used is preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, still more preferably 30 to 60 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Part.
  • Sulfur component examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur, morpholine disulfide, and tetramethylthiuram disulfide. Usually, powdered sulfur is preferred, and insoluble sulfur is preferred when the rubber composition produced in the present invention is used for producing tire members having a large amount of sulfur such as belt members.
  • the amount of the sulfur component used is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, still more preferably 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. 0.1 to 10 parts by weight.
  • Other components in addition to the above-mentioned compound (I) and the like, rubber components, carbon black, and sulfur components.
  • Other components include fillers other than carbon black, compounds capable of binding to silica, vulcanization accelerators, vulcanization accelerators, resins, viscoelasticity improvers, anti-aging agents, oils, waxes, peptizers, Examples thereof include a retarder, a compound having an oxyethylene unit, and a catalyst (such as cobalt naphthenate).
  • a retarder such as cobalt naphthenate
  • all may use only 1 type and may use 2 or more types together.
  • fillers other than carbon black examples include silica (for example, hydrous silica), aluminum hydroxide, bituminous coal pulverized material, talc, clay (particularly, calcined clay), and titanium oxide.
  • silica examples include silica having a CTAB specific surface area of 50 to 180 m 2 / g and silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g.
  • examples of commercially available silica products include “Nipsil (registered trademark) AQ” and “Nipsil (registered trademark) AQ-N” manufactured by Tosoh Silica Co., Ltd., “Ultrazil (registered trademark) VN3” and “Ultrazil” manufactured by Degussa.
  • silica having a pH of 6 to 8, (ii) silica containing 0.2 to 1.5% by weight of sodium, (iii) true spherical silica having a roundness of 1 to 1.3, (iv) ) Silicone oil (eg, dimethyl silicone oil), organosilicon compound containing ethoxysilyl group, silica surface-treated with alcohol (eg, ethanol, polyethylene glycol), etc. (v) two or more different nitrogen adsorption specific surface areas Mixtures of silica with can be used as fillers.
  • silicone oil eg, dimethyl silicone oil
  • organosilicon compound containing ethoxysilyl group silica surface-treated with alcohol (eg, ethanol, polyethylene glycol), etc.
  • two or more different nitrogen adsorption specific surface areas Mixtures of silica with can be used as fillers.
  • the amount of silica used is preferably in the range of 10 to 120 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention.
  • the silica / carbon black weight ratio is preferably 0.7 / 1 to 1 / 0.1.
  • aluminum hydroxide examples include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
  • the average particle size of the bituminous coal pulverized product is usually 0.1 mm or less, preferably 0.05 mm or less, more preferably 0.01 mm or less. Even if a bituminous coal pulverized product having an average particle size exceeding 0.1 mm is used, the hysteresis loss of the rubber composition may not be sufficiently reduced, and the fuel efficiency may not be sufficiently improved. Further, when the rubber composition produced in the present invention is used as a composition for an inner liner, even if a bituminous coal pulverized product having an average particle size of more than 0.1 mm is used, the air permeability of the composition is sufficient. May not be improved.
  • the lower limit of the average particle diameter of the bituminous coal pulverized product is not particularly limited, but is preferably 0.001 mm or more. If it is less than 0.001 mm, the cost tends to increase.
  • the average particle size of the bituminous coal pulverized product is a mass-based average particle size calculated from a particle size distribution measured according to JIS Z 8815-1994.
  • the specific gravity of the bituminous coal pulverized product is preferably 1.6 or less, more preferably 1.5 or less, and even more preferably 1.3 or less. When a bituminous coal pulverized product having a specific gravity exceeding 1.6 is used, the specific gravity of the entire rubber composition increases, and there is a possibility that the fuel efficiency of the tire cannot be sufficiently improved.
  • the specific gravity of the pulverized bituminous coal is preferably 0.5 or more, and more preferably 1.0 or more. If a bituminous coal pulverized product having a specific gravity of less than 0.5 is used, workability during kneading may be deteriorated.
  • the amount is usually 5 parts by weight or more, preferably 10 parts by weight or more, and usually 70 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention.
  • it is preferably 60 parts by weight or less. If this amount is less than 5 parts by weight, the effect of the pulverized bituminous coal may not be sufficiently obtained, and if it exceeds 70 parts by weight, the workability during kneading may be deteriorated.
  • silica When silica is used as the filler, it is preferable to use a compound capable of binding to silica such as a silane coupling agent.
  • the compound include bis (3-triethoxysilylpropyl) tetrasulfide (eg, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg, “Si— 75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, 3-octanoylthiopropyltriethoxysilane (also known as” octanethioic acid S- [3- ( Triethoxysilyl) propyl] ester ", for example," NXT silane "manufactured by General Electronic Silicons), octanethioic acid S- [3- ⁇ (2-methyl-1,
  • bis (3-triethoxysilylpropyl) tetrasulfide eg “Si-69” manufactured by Degussa
  • bis (3-triethoxysilylpropyl) disulfide eg “Si-75” manufactured by Degussa
  • 3-octanoylthiopropyltriethoxysilane for example, “NXT silane” manufactured by General Electronic Silicons
  • the addition timing of the compound capable of binding to silica is not particularly limited, but it is preferably blended with the rubber component at the same time as silica.
  • the amount of the compound capable of binding to silica is preferably 2 to 10 parts by weight, more preferably 7 to 9 parts by weight per 100 parts by weight of silica.
  • the blending temperature is preferably 80 to 200 ° C, more preferably 110 to 180 ° C.
  • silica when silica is used as a filler, in addition to compounds capable of binding to silica, monohydric alcohols such as ethanol, butanol and octanol; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, poly It is also preferable to use polyhydric alcohols such as ether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carboxy-modified or amine-modified.
  • monohydric alcohols such as ethanol, butanol and octanol
  • ethylene glycol diethylene glycol, triethylene glycol
  • polyethylene glycol, polypropylene glycol, pentaerythritol polypropylene glycol
  • polyhydric alcohols such as ether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carb
  • vulcanization accelerators include thiazole-based vulcanization accelerators described in pages 412 to 413 of Rubber Industry Handbook ⁇ Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994), Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.
  • vulcanization accelerator examples include N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), and N, N-dicyclohexene.
  • CBS N-cyclohexyl-2-benzothiazolylsulfenamide
  • BSS N-tert-butyl-2-benzothiazolylsulfenamide
  • N N-dicyclohexene
  • DCBS 2-mercaptobenzothiazole
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfenamide BVS
  • vulcanization accelerators N-cyclohexyl-2-benzothiazolylsulfenamide
  • DCBS N-dicyclohexyl-2-benzothiazolylsulfenamide
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • N-cyclohexyl-2-benzothiazolylsulfenamide CBS
  • N-tert-butyl-2-benzothiazolylsulfene vulcanization accelerators
  • BBS amide
  • DCBS N-dicyclohexyl-2-benzothiazolylsulfenamide
  • MBTS dibenzothiazyl disulfide
  • DPG diphenylguanidine
  • the ratio of the sulfur component to the vulcanization accelerator is not particularly limited, but the weight ratio of the sulfur component / vulcanization accelerator is preferably 1/10 to 10/1, more preferably 1/5 to 5/1, A preferred range is 1/2 to 2/1.
  • EV vulcanization which is a method of improving heat resistance, in which the ratio of sulfur component / vulcanization accelerator is 1 or less, is preferably used in applications that particularly require improvement in heat resistance. It is done.
  • vulcanization accelerating aid examples include zinc oxide, stearic acid, citraconimide compound, alkylphenol / sulfur chloride condensate, organic thiosulfate compound, and formula (III): R 16 —S—S—R 17 —S—S—R 18 (III) (Wherein R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represents a monovalent organic group containing a nitrogen atom.) The compound represented by these is mentioned.
  • zinc oxide is included in the concept of a vulcanization
  • vulcanization acceleration aid zinc oxide, stearic acid, and citraconic imide compounds are preferable, and zinc oxide and stearic acid are more preferable.
  • the amount thereof is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. More preferably, it is 0.1 to 10 parts by weight.
  • the amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. More preferably, it is 0.1 to 5 parts by weight.
  • biscitraconimides are preferable because they are thermally stable and have excellent dispersibility in the rubber component.
  • citraconimide compounds it is particularly stable thermally, particularly excellent in dispersibility in the rubber component, and can provide a vulcanized rubber composition having high hardness (Hs) (reversion control).
  • Hs high hardness
  • 1,3-biscitraconimidomethylbenzene represented by the following formula is preferred.
  • n is an integer of 0 to 10
  • X is an integer of 2 to 4
  • R 19 is a C 5-12 alkyl group.
  • N is preferably an integer of 1 to 9 because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component is good.
  • the alkylphenol-sulfur chloride condensate (IV) tends to become thermally unstable.
  • X is 1, the sulfur content (sulfur in the alkylphenol-sulfur chloride condensate (IV)) Less weight).
  • X is preferably 2 for the reason that high hardness can be expressed efficiently (reversion suppression).
  • R 19 is a C 5-12 alkyl group.
  • R 19 is preferably a C 6-9 alkyl group because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component is good.
  • n 0 to 10
  • X is 2
  • R 19 is an octyl group
  • sulfur content is 24% by weight.
  • the tack roll V200 is mentioned.
  • a vulcanized rubber composition having high hardness (Hs) can be obtained (reversion suppression).
  • Hs hardness
  • m is an integer of 3 to 10.
  • organic thiosulfate compound salt (V) An organic thiosulfate compound salt (V) containing crystal water may be used.
  • the organic thiosulfate compound salt (V) include lithium salt, potassium salt, sodium salt, magnesium salt, calcium salt, barium salt, zinc salt, nickel salt, cobalt salt, etc., potassium salt, sodium salt Is preferred.
  • M is an integer of 3 to 10, preferably an integer of 3 to 6.
  • m is 2 or less, there is a tendency that sufficient heat fatigue resistance cannot be obtained.
  • m is 11 or more, the effect of improving the heat fatigue resistance by the organic thiosulfate compound salt (V) may not be sufficiently obtained.
  • the organic thiosulfate compound salt (V) is preferably a sodium salt monohydrate or a sodium salt dihydrate from the viewpoint of being stable at normal temperature and pressure, and obtained from sodium thiosulfate from the viewpoint of cost.
  • the organic thiosulfate compound salt (V) is more preferable, and sodium 1,6-hexamethylenedithiosulfate dihydrate represented by the following formula is more preferable.
  • R 17 is a C 2-10 alkanediyl group, preferably a C 4-8 alkanediyl group, and more preferably a linear C 4-8 alkanediyl group.
  • R 17 is preferably linear.
  • the carbon number of R 17 is 1 or less, thermal stability may be poor. If the carbon number of R 17 is 11 or more, the distance between the polymers via the vulcanization accelerating aid becomes long, and the effect of adding the vulcanization accelerating aid may not be obtained.
  • R 16 and R 18 are each independently a monovalent organic group containing a nitrogen atom.
  • the monovalent organic group containing a nitrogen atom those containing at least one aromatic ring are preferred, and those containing an aromatic ring and a ⁇ N—C ( ⁇ S) — group are more preferred.
  • R 16 and R 18 may be the same or different, but are preferably the same for reasons such as ease of production.
  • Examples of the compound (III) include 1,2-bis (dibenzylthiocarbamoyldithio) ethane, 1,3-bis (dibenzylthiocarbamoyldithio) propane, 1,4-bis (dibenzylthiocarbamoyldithio) butane 1,5-bis (dibenzylthiocarbamoyldithio) pentane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane, 1,7-bis (dibenzylthiocarbamoyldithio) heptane, 1,8-bis (di Examples include benzylthiocarbamoyldithio) octane, 1,9-bis (dibenzylthiocarbamoyldithio) nonane, 1,10-bis (dibenzylthiocarbamoyldithio)
  • Examples of commercially available products of compound (III) include VULCUREN TRIAL PRODUCT KA9188 and VULCUREN VP KA9188 (1,6-bis (dibenzylthiocarbamoyldithio) hexane) manufactured by Bayer.
  • the rubber composition may contain an organic compound such as resorcinol, a resin such as a resorcinol resin, a modified resorcinol resin, a cresol resin, a modified cresol resin, a phenol resin, and a modified phenol resin.
  • an organic compound such as resorcinol
  • a resin such as a resorcinol resin, a modified resorcinol resin, a cresol resin, a modified cresol resin, a phenol resin, and a modified phenol resin.
  • resorcinol examples include resorcinol manufactured by Sumitomo Chemical Co., Ltd.
  • the resorcinol resin include resorcinol / formaldehyde condensate.
  • modified resorcinol resin examples include those obtained by alkylating a part of the resorcinol resin repeating unit.
  • Penacolite resins B-18-S and B-20 manufactured by India Spec, Sumikanol 620 manufactured by Taoka Chemical Industries, R-6 manufactured by Uniroyal, SRF1501 manufactured by Schenectady Chemical, Ash Examples include Arofine 7209 manufactured by Land.
  • cresol resin examples include a cresol / formaldehyde condensate.
  • modified cresol resin examples include those obtained by modifying the terminal methyl group of the cresol resin to a hydroxy group, and those obtained by alkylating some of the repeating units of the cresol resin. Specifically, Sumikanol 610 manufactured by Taoka Chemical Industry Co., Ltd., PR-X11061 manufactured by Sumitomo Bakelite Co., Ltd., and the like can be given.
  • phenolic resins include phenol / formaldehyde condensates.
  • modified phenolic resins include resins obtained by modifying phenolic resins with cashew oil, tall oil, linseed oil, various animal and vegetable oils, unsaturated fatty acids, rosin, alkylbenzene resins, aniline, melamine, and the like.
  • Examples of other resins include methoxylated methylol melamine resins such as “SUMIKANOL 507AP” manufactured by Sumitomo Chemical Co., Ltd .; Coumarone resin NG4 (softening point 81-100 ° C.) manufactured by Nippon Steel Chemical Co., Ltd., manufactured by Kobe Oil Chemical Co., Ltd.
  • Coumarone-indene resin such as “Process Resin AC5” (softening point 75 ° C.); Terpene resin such as terpene resin, terpene / phenol resin, and aromatic modified terpene resin; “Nicanol® A70” manufactured by Mitsubishi Gas Chemical Company ”(Softening point 70 to 90 ° C.) and the like; hydrogenated rosin derivatives; novolac alkylphenol resins; resol alkylphenol resins; C5 petroleum resins; liquid polybutadiene.
  • Process Resin AC5 softening point 75 ° C.
  • Terpene resin such as terpene resin, terpene / phenol resin, and aromatic modified terpene resin
  • hydrogenated rosin derivatives novolac alkylphenol resins
  • resol alkylphenol resins C5 petroleum resins
  • Examples of the viscoelasticity improver include N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (for example, “Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), Dithiouracil compounds described in JP-A-63-23942, “Tactrol (registered trademark) AP”, “Tactrol (registered trademark) V-200” manufactured by Taoka Chemical Co., Ltd., alkylphenols described in JP-A-2009-138148, Sulfur chloride condensate, bis (3-triethoxysilylpropyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa) ), Bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-dieth
  • N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine for example, “Sumifine® 1162” manufactured by Sumitomo Chemical Co., Ltd.
  • bis (3-triethoxysilyl) Propyl) tetrasulfide eg “Si-69” manufactured by Degussa
  • bis (3-triethoxysilylpropyl) disulfide eg “Si-75” manufactured by Degussa
  • 1,6-bis (dibenzylthiocarbamoyl) Dithio) hexane for example, “KA9188” manufactured by Bayer
  • hexamethylene bisthiosulfate disodium salt dihydrate for example, “Parkalink 900” manufactured by Flexis
  • Tecchiroll registered trademark
  • AP Tetrasulfide
  • Anti-aging agents include those described on pages 436 to 443 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association.
  • Anti-aging agents include N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (abbreviation “6PPD”, for example, “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical), reaction of aniline and acetone. Products (abbreviated as “TMDQ”), poly (2,2,4-trimethyl-1,2-) dihydroquinoline) (for example, “Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax etc.) A wax is preferably used.
  • the amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Parts, more preferably 0.1 to 5 parts by weight.
  • Examples of the oil include process oil and vegetable oil.
  • Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil.
  • Examples of commercially available products include aromatic oil (“NC-140” manufactured by Cosmo Oil Co., Ltd.) and process oil (“Diana Process PS32” manufactured by Idemitsu Kosan Co., Ltd.).
  • wax examples include “Sannok (registered trademark) wax” manufactured by Ouchi Shinsei Chemical Co., Ltd. and “OZOACE-0355” manufactured by Nippon Seiwa Co., Ltd.
  • the peptizer is not particularly limited as long as it is usually used in the rubber field. For example, it is described in pages 446 to 449 of “Rubber Industry Handbook ⁇ Fourth Edition>” edited by the Japan Rubber Association. And aromatic mercaptan peptizers, aromatic disulfide peptizers, and aromatic mercaptan metal salt peptizers. Of these, dixylyl disulfide and o, o'-dibenzamide diphenyl disulfide ("Noctizer SS" manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) are preferable. Only one type of peptizer may be used, or two or more types may be used in combination.
  • the amount of peptizer used is not particularly limited, but is preferably 0.01 to 1 part by weight, preferably 0.05 to 0, per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. More preferably, 5 parts by weight.
  • retarder examples include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol diphosphite, and the like.
  • CTP Cyclohexylthio phthalimide
  • the amount of the retarder used is not particularly limited, but is preferably 0.01 to 1 part by weight, preferably 0.05 to 0.5 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Part is more preferred.
  • q is preferably 2 or more, and more preferably 3 or more.
  • q is preferably 16 or less, and more preferably 14 or less. When q is 17 or more, the compatibility with the rubber component and the reinforcing property tend to decrease.
  • the position of the oxyethylene unit in the compound having an oxyethylene unit may be a main chain, a terminal, or a side chain.
  • a compound having oxyethylene units at least in the side chain is preferred from the viewpoint of sustaining the effect of preventing static electricity accumulation on the obtained tire surface and reducing electric resistance.
  • Examples of the compound having an oxyethylene unit in the main chain include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, monoethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene Examples thereof include alkyl ethers, polyoxyethylene alkylamines, polyoxyethylene styrenated alkyl ethers, and polyoxyethylene alkyl amides.
  • the number of oxyethylene units is preferably 4 or more, more preferably 8 or more per 100 carbon atoms constituting the main chain.
  • the electrical resistance tends to increase.
  • the number of oxyethylene units is preferably 12 or less, and more preferably 10 or less.
  • the number of oxyethylene units is 13 or more, the compatibility with the rubber component and the reinforcing property tend to be lowered.
  • the main chain is preferably composed mainly of polyethylene, polypropylene or polystyrene.
  • the production method of the present invention includes step 1 of preparing a kneaded product by kneading compound (I) and the like, a rubber component, and carbon black.
  • the rubber component and carbon black such as compound (I) may all be kneaded in the total amount used in step 1, and they are divided and part of them is kneaded in step 1, and then The remaining kneaded product and the cooled kneaded product obtained in step 2 may be kneaded in step 3.
  • Step 1 an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, or the like can be used.
  • an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, or the like can be used.
  • the rotational speed of kneading in step 1 is preferably 5 rpm or more, more preferably 10 rpm or more, further preferably 10 to 100 rpm, and particularly preferably 10 to 90 rpm.
  • the kneading time in step 1 is preferably 1 minute or more, more preferably 1 to 10 minutes, and further preferably 2 to 8 minutes.
  • the kneading may be continued by first kneading at a low rotation speed (for example, 10 rpm) and then increasing the rotation speed (for example, 50 rpm).
  • the apparatus set temperature at the start of kneading in step 1 is preferably 100 to 180 ° C., more preferably 120 to 180 ° C., still more preferably 140 to 180 ° C., and particularly preferably 150 to 170 ° C.
  • the discharge temperature of the kneaded product after kneading in step 1 is preferably 150 ° C. or higher, more preferably 155 to 200 ° C., and further preferably 160 to 185 ° C.
  • the production method of the present invention includes step 2 of preparing the cooled kneaded product by subjecting the obtained kneaded product to a cooling operation.
  • the kneaded product is preferably cooled to 120 ° C. or lower, more preferably 100 ° C. or lower, and still more preferably 80 ° C. or lower.
  • the temperature lower limit of the kneaded product after cooling is not particularly limited, but the temperature of the kneaded product after cooling is preferably 0 ° C. or higher, more preferably 5 ° C. or higher.
  • Examples of the cooling operation include (i) forced cooling of the kneaded product (for example, water cooling or forced air cooling), and (ii) processing the kneaded product into a sheet or board using, for example, an open roll. (The kneaded product is cooled when it comes into contact with an open roll or the like), (iii) After the kneaded product is processed into a sheet or board, the sheet or board kneaded product is forcibly cooled or allowed to cool. And the like. In order to efficiently and uniformly cool the kneaded material, it is preferable that the cooling operation includes processing the kneaded material into a sheet shape or a board shape.
  • the thickness of the kneaded material processed into a sheet or board is preferably 1 to 500 mm, more preferably 1 to 400 mm, and still more preferably 1 to 100 mm.
  • the cooling operation in the present invention does not include that the obtained kneaded product is simply left to stand and the temperature is naturally lowered (ie, allowed to cool) without performing the above-described operation.
  • paragraph [0057] of Patent Document 2 first, the rubber component, carbon black, and compound I described in Patent Document 2 (ie, (2Z) -4-[(4-aminophenyl) amino] -4 -Oxo-2-butenoate) is kneaded with a Banbury mixer (first kneading) and discharged to prepare a master batch, and then the master batch and other components are kneaded with a Banbury mixer (second kneading). That is, two-stage kneading is described.
  • Patent Document 2 does not describe performing a cooling operation on the master batch obtained by the first kneading.
  • the manufacturing method of this invention includes the process 3 which knead
  • the kneaded product containing the rubber component and carbon black, such as compound (I) is once cooled, and the resulting kneaded kneaded product is kneaded to shear the rubber component (low rubber component).
  • the present invention is not limited to such estimation.
  • an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, and an injection molding machine can be used.
  • the rotational speed of the initial kneading in the step 3 is preferably 40 to 100 rpm, more preferably 45 to 90 rpm, and further preferably 46 to 80 rpm. Preferably it is 0.5 to 10 minutes, more preferably 0.5 to 8 minutes, and still more preferably 0.5 to 6 minutes. After first kneading at such a rotational speed and sufficiently shearing the rubber component, the rotational speed is decreased (for example, 10 rpm) to sufficiently knead the rubber component and other components.
  • the rotational speed may be increased again (for example, 50 rpm) and kneading may be performed.
  • the apparatus set temperature at the start of kneading in step 3 is preferably 100 to 180 ° C, more preferably 120 to 170 ° C, and still more preferably 140 to 170 ° C.
  • the cooled and kneaded product obtained in step 2 is charged into the kneading apparatus while maintaining the temperature after cooling, and heated after the start of kneading in step 3.
  • the discharge temperature of the kneaded product after kneading in step 3 is preferably 100 to 180 ° C, more preferably 100 to 175 ° C, and still more preferably 100 to 170 ° C.
  • the present invention also provides a production method including kneading the rubber composition obtained as described above and a sulfur component.
  • a sulfur component for example, an open roll, a calendar, or the like can be used.
  • the kneading temperature of the sulfur component is preferably 60 to 120 ° C.
  • a vulcanized rubber composition can be produced by vulcanizing a rubber composition containing a sulfur component.
  • the vulcanization temperature is preferably 120 to 180 ° C.
  • a person skilled in the art can appropriately set the vulcanization time according to the composition of the rubber composition.
  • Vulcanization is usually carried out at normal pressure or under pressure.
  • kneading of other ingredients may be performed in any one of step 1, step 3 and other steps (for example, a kneading step).
  • the anti-aging agent in the kneaded product acts on the compound (I) or the like in the step 1, and the compound (I) or the like In some cases, the effect of reducing tan ⁇ is weakened.
  • the components other than the antioxidant and the vulcanization accelerator are preferably kneaded with the rubber component or the like before the sulfur component kneading step, that is, in either the mastication step, step 1 or step 3. .
  • Components other than the anti-aging agent and the vulcanization accelerator may be divided and kneaded with a rubber component or the like in two or more steps of the mastication step, step 1 and step 3.
  • the present invention also provides a rubber composition containing no sulfur component, a rubber composition containing a sulfur component, and a vulcanized rubber composition obtained by the above-described production method.
  • the rubber composition and vulcanized rubber composition of the present invention are useful for producing various products.
  • a vulcanized tire and a tire member are preferable.
  • the tire member include a tire belt member including the vulcanized rubber composition of the present invention and a steel cord, a tire carcass member including the vulcanized rubber composition of the present invention and a carcass fiber cord, and a tire sidewall member. , A tire inner liner member, a tire cap tread member, or a tire under tread member.
  • the vulcanized tire is manufactured by first manufacturing a tire member, combining these to manufacture a raw tire, and vulcanizing the raw tire.
  • the tire manufactured using the rubber composition of the present invention has a low loss coefficient (tan ⁇ ) and can achieve low fuel consumption.
  • the vulcanized rubber composition of the present invention can be used not only for the tire applications described above but also as various anti-vibration rubbers.
  • anti-vibration rubbers include anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes, and exhaust hangers.
  • the anti-vibration rubber can be manufactured by first processing a rubber composition containing a sulfur component into a predetermined shape and then vulcanizing it.
  • NR Natural rubber (RSS # 1)
  • CB1 Carbon black HAF (Asahi Carbon Co., Ltd., trade name “Asahi # 70”)
  • CB2 Carbon Black ISAF (Asahi Carbon Co., Ltd., trade name “Asahi # 80”)
  • CB3 Carbon black FEF (Asahi Carbon Co., Ltd., trade name “Asahi # 60”)
  • Compound (I-1) (2Z) -4-[(4-aminophenyl) amino] -4-oxo-2-butenoate sodium dihydrate
  • Stearic acid “Lunac S20” manufactured by Kao Corporation
  • Anti-aging agent “Antigen (registered trademark) 6C” (N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd. - sulfur
  • step 1 in the present invention is referred to as “non-pro first step”, step 2 as “cooling step”, step 3 as “non-pro second step”, and sulfur component kneading step as “pro”. Step ".
  • ⁇ Non-pro first step> The natural rubber was put into a pressure kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose apparatus set temperature at the start of kneading was 155 ° C., and then kneaded for 2 minutes at a rotation speed of 50 rpm. To this, components other than the rubber component were added in the amounts shown in Tables 1 to 5 below, and kneading was performed at the rotational speeds and times shown in Tables 1 to 5 below, and the kneaded product was discharged. The discharge temperatures are shown in Tables 1 to 5 below.
  • ⁇ Cooling process> The kneaded product obtained in the first step of non-pro was processed into a sheet having a thickness of 3 to 5 mm using an open roll (laboratory mill manufactured by Kansai Roll Co., Ltd.) having a set temperature of 50 ° C.
  • the sheet-like kneaded material was allowed to cool in an air atmosphere at room temperature until the temperature after cooling shown in 1 to 5 was reached.
  • ⁇ Non-pro second step> The rubber composition obtained in the above cooling process is put into a pressure kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose apparatus set temperature at the start of kneading is 155 ° C., and sheared for 1 minute at a rotation speed of 50 rpm. Then, the components are added in the amounts shown in Tables 1 to 5 below, and kneaded for 1 minute at a rotational speed of 10 rpm and further for 1 minute at a rotational speed of 50 rpm, to obtain a rubber composition containing no sulfur component. It was. The discharge temperatures are shown in Tables 1 to 5 below.
  • ⁇ Vulcanization process> Using a vulcanizing press, the vulcanization temperature was set to 145 ° C., and the vulcanization time was 90% vulcanization time (tc (90)) obtained by rheometer measurement according to JIS K 6300-2. A vulcanized rubber composition was obtained by vulcanizing the rubber composition obtained by the pro process at a value obtained by adding 5 minutes to the value.
  • ⁇ Non-pro first step> The natural rubber was put into a pressure kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose apparatus set temperature at the start of kneading was 155 ° C., and then kneaded for 2 minutes at a rotation speed of 50 rpm. To this, components other than the rubber component were added in the amounts shown in Tables 1 to 5 below, and kneading was performed at the rotational speeds and times shown in Tables 1 to 5 below, and the kneaded product was discharged. The discharge temperatures are shown in Tables 1 to 5 below.
  • ⁇ Vulcanization process> Using a vulcanizing press, the vulcanization temperature was set to 145 ° C, and the vulcanization time was added to the value of tc (90) obtained by rheometer measurement in accordance with JIS K 6300-2 by 5 minutes. By setting the time and vulcanizing the rubber composition obtained by the pro process, a vulcanized rubber composition was obtained.
  • Examples 1 to 4, Comparative Examples 1 and 2, and Reference Examples 1 and 2 The rubber compositions and vulcanized rubber compositions of Examples 1 to 4, Comparative Examples 1 and 2, and Reference Examples 1 and 2 were produced using the above-described operations and the components and conditions shown in Table 1 below.
  • the relative viscosity values and the relative tan ⁇ values of Examples 1 and 2 and Comparative Example 1 shown in Table 1 below are the Mooney of the rubber composition of Reference Example 1 in Formula (1) and Formula (2), respectively.
  • the viscosity and the tan ⁇ value of the vulcanized rubber composition were calculated, and the relative viscosity values and the relative tan ⁇ values of Examples 3 and 4 and Comparative Example 2 were calculated using the equations (1) and (2), respectively.
  • the value was calculated using the Mooney viscosity of the rubber composition of Reference Example 2 and the value of tan ⁇ of the vulcanized rubber composition.
  • Examples 5 to 7, Comparative Example 3, and Reference Example 3 The rubber compositions and vulcanized rubber compositions of Examples 5 to 7, Comparative Example 3, and Reference Example 3 were produced by the above operation and the components and conditions shown in Table 2 below.
  • the relative viscosity values and the relative tan ⁇ values of Examples 5 to 7 and Comparative Example 3 shown in Table 2 below are the Mooney values of the rubber composition of Reference Example 3 in Formula (1) and Formula (2), respectively.
  • the viscosity and tan ⁇ value of the vulcanized rubber composition were used for calculation.
  • Example 5 kneading was carried out at 50 rpm for 1 to 3 minutes after kneading at 10 rpm for 2 minutes in the non-pro first step. Even in Example 5 in which kneading was performed at 10 rpm for 2 minutes and at 50 rpm for 1 minute in the non-pro first step, the relative value of the viscosity was 1, and the increase and decrease in viscosity could be suppressed. From this result, it is estimated that the suppression of the increase in viscosity is caused by performing the second step of non-pro after cooling.
  • Examples 8 to 15, Comparative Examples 4 and 5, and Reference Examples 4 and 5 The rubber compositions and vulcanized rubber compositions of Examples 8 to 15, Comparative Examples 4 and 5, and Reference Examples 4 and 5 were produced using the above-described operations and the components and conditions shown in Table 3 below.
  • the relative values of the viscosity and the tan ⁇ of Examples 8 to 12 and Comparative Example 4 shown in Table 3 below are the Mooney of the rubber composition of Reference Example 4 in Formula (1) and Formula (2), respectively.
  • the viscosity and the tan ⁇ value of the vulcanized rubber composition were calculated, and the relative viscosity values and the tan ⁇ values of Examples 13 to 15 and Comparative Example 5 were calculated using the formulas (1) and (2), respectively.
  • the value was calculated using the Mooney viscosity of the rubber composition of Reference Example 5 and the tan ⁇ value of the vulcanized rubber composition.
  • Examples 16 to 21, Comparative Examples 6 to 8, and Reference Examples 6 to 8 The rubber compositions and vulcanized rubber compositions of Examples 16 to 21, Comparative Examples 6 to 8, and Reference Examples 6 to 8 were produced using the above-described operations and the components and conditions shown in Table 4 below.
  • the relative values of viscosity and tan ⁇ of Examples 16 and 17 and Comparative Example 6 shown in Table 4 below are the Mooney of the rubber composition of Reference Example 6 in Formula (1) and Formula (2), respectively.
  • the viscosity and the tan ⁇ value of the vulcanized rubber composition were calculated, and the relative viscosity values and the relative tan ⁇ values of Examples 18 and 19 and Comparative Example 7 were calculated using the equations (1) and (2), respectively.
  • Example 2 the Mooney viscosity of the rubber composition of Reference Example 7 and the tan ⁇ value of the vulcanized rubber composition were calculated, and the relative values of the viscosity and tan ⁇ of Examples 20 and 21 and Comparative Example 8 were In the formulas (1) and (2), the Mooney viscosity of the rubber composition of Reference Example 8 and the tan ⁇ value of the vulcanized rubber composition were used.
  • Examples 22 and 23, Comparative Examples 9 and 10, and Reference Example 9 The rubber compositions and vulcanized rubber compositions of Examples 22 and 23, Comparative Examples 9 and 10, and Reference Example 9 were produced using the above-described operations and the components and conditions shown in Table 5 below.
  • the relative viscosity values and the relative tan ⁇ values of Examples 22 and 23 and Comparative Examples 9 and 10 shown in Table 5 below are the rubber composition of Reference Example 9 in Formula (1) and Formula (2), respectively.
  • the Mooney viscosity and the tan ⁇ value of the vulcanized rubber composition were used for calculation.
  • the rubber composition obtained by the production method of the present invention is useful for production of various products (for example, vulcanized tires and tire members).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention provides a process for producing a rubber composition that contains no sulfur ingredient, the process comprising: step 1 in which at least one substance selected from the group consisting of compounds represented by formula (I), salts thereof, and solvates thereof and solvates of the salts, a rubber ingredient, and carbon black are kneaded to prepare a kneaded mixture; step 2 in which the obtained kneaded mixtue is cooled to prepare a cooled kneaded mixture; and step 3 in which the obtained cooled kneaded mixture is kneaded. (The definitions of the groups in formula (I) are as described in the description.)

Description

ゴム組成物の製造方法Method for producing rubber composition
 本発明は、ゴム組成物の製造方法等に関する。 The present invention relates to a method for producing a rubber composition.
 近年、環境保護の要請から、自動車の燃費向上(すなわち、低燃費化)が求められている。そして、自動車用タイヤの分野においては、タイヤ製造に用いられる加硫ゴム組成物が有する損失係数(tanδ)を低減させることにより、自動車の燃費が向上することが知られている。 In recent years, there has been a demand for improving the fuel efficiency of automobiles (ie, reducing fuel consumption) in response to environmental protection requirements. In the field of automobile tires, it is known that the fuel efficiency of automobiles is improved by reducing the loss factor (tan δ) of the vulcanized rubber composition used for tire manufacture.
 特許文献1には、加硫ゴム組成物が有する損失係数(tanδ)を低減させるために、式(A): In Patent Document 1, in order to reduce the loss factor (tan δ) of the vulcanized rubber composition, the formula (A):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(A)中の基の定義は特許文献1に記載された通りである。なお、式(A)は特許文献1において式(I)と記載されている。]
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物の少なくとも一つを使用することが記載されている。式(A)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物として、特許文献1の実施例では、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウム・二水和物等が使用されている。
[Definition of the group in the formula (A) is as described in Patent Document 1. The formula (A) is described as the formula (I) in Patent Document 1. ]
And the use of at least one of the salt, the solvate thereof, and the solvate of the salt thereof. As the compound represented by the formula (A), a salt thereof, a solvate thereof, and a solvate of the salt, in the example of Patent Document 1, (2Z) -4-[(4-aminophenyl) amino]- Sodium 4-oxo-2-butenoate dihydrate is used.
 また、特許文献2には、加硫ゴム組成物が有する損失係数(tanδ)を低減させるために、式(B): In Patent Document 2, in order to reduce the loss factor (tan δ) of the vulcanized rubber composition, the formula (B):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(B)中の基の定義は特許文献2に記載された通りである。なお、式(B)は特許文献2において式(I)と記載されている。]
で表される化合物を使用することが記載されている。式(B)で表される化合物として、特許文献2の実施例では、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウムが使用されている。
[Definition of the group in the formula (B) is as described in Patent Document 2. The formula (B) is described as the formula (I) in Patent Document 2. ]
It is described that the compound represented by these is used. In the examples of Patent Document 2, sodium (2Z) -4-[(4-aminophenyl) amino] -4-oxo-2-butenoate is used as the compound represented by the formula (B).
特開2013-209605号公報JP 2013-209605 A 特開2014-95014号公報JP 2014-95014 A
 上述の特許文献1および2に記載されるような化合物、その塩、その溶媒和物、およびその塩の溶媒和物(例えば、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウムおよびその二水和物)は、加硫ゴム組成物の損失係数(tanδ)の低減に有効である。しかし、該化合物等を使用すると、ゴム組成物の粘度が増大し、加工性が低下するという問題があった。 Compounds as described in Patent Documents 1 and 2 above, salts thereof, solvates thereof, and solvates of salts thereof (for example, (2Z) -4-[(4-aminophenyl) amino] -4 -Sodium oxo-2-butenoate and its dihydrate) are effective in reducing the loss factor (tan δ) of the vulcanized rubber composition. However, when such a compound is used, there is a problem that the viscosity of the rubber composition increases and the processability decreases.
 本発明は上述のような事情に着目してなされたものであって、下記式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つを使用することによるゴム組成物の粘度増大を抑制することにある。 The present invention has been made paying attention to the circumstances as described above, and is selected from the group consisting of a compound represented by the following formula (I), a salt thereof, a solvate thereof, and a solvate of the salt. It is to suppress an increase in the viscosity of the rubber composition due to the use of at least one.
 上記目的を達成することができる本発明は、以下の通りである。 The present invention that can achieve the above object is as follows.
 [1] 硫黄成分を含有しないゴム組成物の製造方法であって、
 式(I):
[1] A method for producing a rubber composition containing no sulfur component,
Formula (I):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式(I)中、
 Rは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。
 RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。
 Rは、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基を表す。
 Xは、-NH-または-O-を表す。]
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つと、ゴム成分と、カーボンブラックとを混練して、混練物を調製する工程1、
 得られた混練物に冷却操作を施して、冷却混練物を調製する工程2、および
 得られた冷却混練物を混練する工程3
を含む製造方法。
[In the formula (I),
R 1 represents a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, or one or more substituents. Represents a divalent C 6-12 aromatic hydrocarbon group which may have the above-mentioned or a combination thereof.
R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, one or more C 1-6 alkoxy group which may have one or more substituents, or one or more substituents. Represents a good C 1-6 alkyl group, or a C 6-14 aryl group optionally having one or more substituents, or R 2 and R 3 are bonded, and the carbon atom to which they are bonded; Together, they form a C 3-10 cycloalkenediyl group which may have one or more substituents.
R 4 represents a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents.
X represents —NH— or —O—. ]
Step 1 for preparing a kneaded product by kneading at least one selected from the group consisting of a compound represented by the formula: salt thereof, solvate thereof and solvate of the salt thereof, a rubber component, and carbon black;
Step 2 for preparing the cooled kneaded product by subjecting the obtained kneaded product to a cooling operation, and Step 3 for kneading the obtained cooled kneaded product
Manufacturing method.
 [2] 工程2において、混練物を120℃以下に冷却する前記[1]に記載の製造方法。
 [3] 工程2において、混練物を100℃以下に冷却する前記[1]に記載の製造方法。
 [4] 工程2において、混練物を80℃以下に冷却する前記[1]に記載の製造方法。
[2] The production method according to [1], wherein in step 2, the kneaded product is cooled to 120 ° C. or lower.
[3] The production method according to [1], wherein in step 2, the kneaded product is cooled to 100 ° C. or lower.
[4] The production method according to [1], wherein in step 2, the kneaded product is cooled to 80 ° C. or lower.
 [5] 工程2における冷却後の混練物の温度が0℃以上である前記[1]~[4]のいずれか一つに記載の製造方法。
 [6] 工程2における冷却後の混練物の温度が5℃以上である前記[1]~[4]のいずれか一つに記載の製造方法。
[5] The production method according to any one of [1] to [4], wherein the temperature of the kneaded product after cooling in step 2 is 0 ° C. or higher.
[6] The production method according to any one of [1] to [4], wherein the temperature of the kneaded product after cooling in Step 2 is 5 ° C. or higher.
 [7] 工程2における冷却操作が、混練物をシート状またはボード状に加工することを含む前記[1]~[6]のいずれか一つに記載の製造方法。 [7] The manufacturing method according to any one of [1] to [6], wherein the cooling operation in step 2 includes processing the kneaded material into a sheet shape or a board shape.
 [8] シート状またはボード状に加工された混練物の厚さが、1~500mmである前記[7]に記載の製造方法。
 [9] シート状またはボード状に加工された混練物の厚さが、1~400mmである前記[7]に記載の製造方法。
 [10] シート状またはボード状に加工された混練物の厚さが、1~100mmである前記[7]に記載の製造方法。
[8] The production method according to [7], wherein the kneaded material processed into a sheet or board has a thickness of 1 to 500 mm.
[9] The production method according to [7], wherein the kneaded material processed into a sheet shape or a board shape has a thickness of 1 to 400 mm.
[10] The production method according to [7], wherein the kneaded material processed into a sheet or board has a thickness of 1 to 100 mm.
 [11] 工程1における混練を、5rpm以上の回転速度で1分以上行う前記[1]~[10]のいずれか一つに記載の製造方法。 [11] The production method according to any one of [1] to [10], wherein the kneading in step 1 is performed for 1 minute or more at a rotation speed of 5 rpm or more.
 [12] 工程1における混練の回転速度が10rpm以上である前記[11]に記載の製造方法。
 [13] 工程1における混練の回転速度が10~100rpmである前記[11]に記載の製造方法。
 [14] 工程1における混練の回転速度が10~90rpmである前記[11]に記載の製造方法。
[12] The production method according to [11], wherein the kneading rotation speed in step 1 is 10 rpm or more.
[13] The production method according to [11], wherein the rotational speed of kneading in step 1 is 10 to 100 rpm.
[14] The production method according to [11], wherein the rotational speed of kneading in step 1 is 10 to 90 rpm.
 [15] 工程1における混練時間が1~10分である前記[11]~[14]のいずれか一つに記載の製造方法。
 [16] 工程1における混練時間が2~8分である前記[11]~[14]のいずれか一つに記載の製造方法。
[15] The production method according to any one of [11] to [14], wherein the kneading time in step 1 is 1 to 10 minutes.
[16] The production method according to any one of [11] to [14], wherein the kneading time in step 1 is 2 to 8 minutes.
 [17] 工程1における混練開始時の装置設定温度が100~180℃である前記[1]~[16]のいずれか一つに記載の製造方法。
 [18] 工程1における混練開始時の装置設定温度が120~180℃である前記[1]~[16]のいずれか一つに記載の製造方法。
 [19] 工程1における混練開始時の装置設定温度が140~180℃である前記[1]~[16]のいずれか一つに記載の製造方法。
 [20] 工程1における混練開始時の装置設定温度が150~170℃である前記[1]~[16]のいずれか一つに記載の製造方法。
[17] The production method according to any one of [1] to [16], wherein the apparatus set temperature at the start of kneading in step 1 is 100 to 180 ° C.
[18] The production method according to any one of [1] to [16], wherein the apparatus setting temperature at the start of kneading in step 1 is 120 to 180 ° C.
[19] The production method according to any one of [1] to [16], wherein the apparatus set temperature at the start of kneading in step 1 is 140 to 180 ° C.
[20] The production method according to any one of [1] to [16], wherein the apparatus set temperature at the start of kneading in step 1 is 150 to 170 ° C.
 [21] 工程1における混練後の混練物の排出温度が150℃以上である前記[1]~[20]のいずれか一つに記載の製造方法。
 [22] 工程1における混練後の混練物の排出温度が155~200℃である前記[1]~[20]のいずれか一つに記載の製造方法。
 [23] 工程1における混練後の混練物の排出温度が160~185℃である前記[1]~[20]のいずれか一つに記載の製造方法。
[21] The production method according to any one of [1] to [20], wherein the discharge temperature of the kneaded product after kneading in step 1 is 150 ° C. or higher.
[22] The production method according to any one of [1] to [20], wherein the discharge temperature of the kneaded product after kneading in step 1 is 155 to 200 ° C.
[23] The production method according to any one of [1] to [20], wherein the discharge temperature of the kneaded product after kneading in step 1 is 160 to 185 ° C.
 [24] 工程3における混練を、回転速度を変更して行う前記[1]~[23]のいずれか一つに記載の製造方法。 [24] The production method according to any one of [1] to [23], wherein the kneading in the step 3 is performed by changing a rotation speed.
 [25] 工程3における最初の混練の回転速度が40~100rpmである前記[24]に記載の製造方法。
 [26] 工程3における最初の混練の回転速度が45~90rpmである前記[24]に記載の製造方法。
 [27] 工程3における最初の混練の回転速度が46~80rpmである前記[24]に記載の製造方法。
[25] The production method according to [24], wherein the rotational speed of the first kneading in step 3 is 40 to 100 rpm.
[26] The production method according to [24], wherein the rotational speed of the first kneading in step 3 is 45 to 90 rpm.
[27] The production method according to [24], wherein the rotational speed of the first kneading in the step 3 is 46 to 80 rpm.
 [28] 工程3における最初の混練時間が0.5~10分である前記[24]~[27]のいずれか一つに記載の製造方法。
 [29] 工程3における最初の混練時間が0.5~8分である前記[24]~[27]のいずれか一つに記載の製造方法。
 [30] 工程3における最初の混練時間が0.5~6分である前記[24]~[27]のいずれか一つに記載の製造方法。
[28] The production method according to any one of [24] to [27], wherein the initial kneading time in step 3 is 0.5 to 10 minutes.
[29] The production method according to any one of [24] to [27], wherein the initial kneading time in step 3 is 0.5 to 8 minutes.
[30] The production method according to any one of [24] to [27], wherein the initial kneading time in step 3 is 0.5 to 6 minutes.
 [31] 工程3における混練開始時の装置設定温度が100~180℃である前記[1]~[30]のいずれか一つに記載の製造方法。
 [32] 工程3における混練開始時の装置設定温度が120~170℃である前記[1]~[30]のいずれか一つに記載の製造方法。
 [33] 工程3における混練開始時の装置設定温度が140~170℃である前記[1]~[30]のいずれか一つに記載の製造方法。
[31] The production method according to any one of [1] to [30], wherein the apparatus set temperature at the start of kneading in step 3 is 100 to 180 ° C.
[32] The production method according to any one of [1] to [30], wherein the apparatus set temperature at the start of kneading in step 3 is 120 to 170 ° C.
[33] The production method according to any one of [1] to [30], wherein the apparatus set temperature at the start of kneading in step 3 is 140 to 170 ° C.
 [34] 工程3における混練後の混練物の排出温度が100~180℃である前記[1]~[33]のいずれか一つに記載の製造方法。
 [35] 工程3における混練後の混練物の排出温度が100~175℃である前記[1]~[33]のいずれか一つに記載の製造方法。
 [36] 工程3における混練後の混練物の排出温度が100~170℃である前記[1]~[33]のいずれか一つに記載の製造方法。
[34] The production method according to any one of [1] to [33], wherein the discharge temperature of the kneaded material after kneading in step 3 is 100 to 180 ° C.
[35] The production method according to any one of [1] to [33], wherein the discharge temperature of the kneaded material after kneading in step 3 is 100 to 175 ° C.
[36] The production method according to any one of [1] to [33], wherein the discharge temperature of the kneaded product after kneading in step 3 is 100 to 170 ° C.
 [37] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つの合計の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.01~100重量部である前記[1]~[36]のいずれか一つに記載の製造方法。
 [38] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つの合計の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.01~20重量部である前記[1]~[36]のいずれか一つに記載の製造方法。
 [39] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つの合計の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.1~10重量部である前記[1]~[36]のいずれか一つに記載の製造方法。
[37] The rubber composition to be produced contains at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt. The production method according to any one of [1] to [36], wherein the amount is 0.01 to 100 parts by weight per 100 parts by weight of the rubber component.
[38] The rubber composition to be produced contains at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt. The production method according to any one of [1] to [36], wherein the amount is 0.01 to 20 parts by weight per 100 parts by weight of the rubber component.
[39] The rubber composition to be produced contains at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt The production method according to any one of [1] to [36], wherein the amount is 0.1 to 10 parts by weight per 100 parts by weight of the rubber component.
 [40] カーボンブラックの使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、20~80重量部である前記[1]~[39]のいずれか一つに記載の製造方法。
 [41] カーボンブラックの使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、30~70重量部である前記[1]~[39]のいずれか一つに記載の製造方法。
 [42] カーボンブラックの使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、30~60重量部である前記[1]~[39]のいずれか一つに記載の製造方法。
[40] The production according to any one of [1] to [39], wherein the amount of carbon black used is 20 to 80 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition to be produced. Method.
[41] The production according to any one of [1] to [39], wherein the amount of carbon black used is 30 to 70 parts by weight per 100 parts by weight of the rubber component contained in the produced rubber composition. Method.
[42] The production according to any one of [1] to [39], wherein the amount of carbon black used is 30 to 60 parts by weight per 100 parts by weight of the rubber component contained in the produced rubber composition. Method.
 [43] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つの合計の全量およびカーボンブラックの全量を、工程1で混練する前記[1]~[42]のいずれか一つに記載の製造方法。 [43] The total amount of at least one total selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt and the total amount of carbon black are kneaded in Step 1 The production method according to any one of [1] to [42].
 [44] 製造されるゴム組成物が老化防止剤を含有し、老化防止剤の全量と工程2で得られた冷却混練物とを工程3において混練する前記[1]~[5]のいずれか一つに記載の製造方法。 [44] Any one of [1] to [5] above, wherein the rubber composition to be produced contains an anti-aging agent, and the total amount of the anti-aging agent and the cooled kneaded product obtained in step 2 are kneaded in step 3. The manufacturing method as described in one.
 [45] 老化防止剤の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.01~15重量部である前記[44]に記載の製造方法。
 [46] 老化防止剤の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.1~10重量部である前記[44]に記載の製造方法。
 [47] 老化防止剤の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.1~5重量部である前記[44]に記載の製造方法。
[45] The production method according to the above [44], wherein the amount of the anti-aging agent used is 0.01 to 15 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition to be produced.
[46] The production method according to [44], wherein the amount of the anti-aging agent used is 0.1 to 10 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition to be produced.
[47] The production method according to [44], wherein the amount of the anti-aging agent used is 0.1 to 5 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition to be produced.
 [48] 式(I)で表される化合物が、式(II): [48] The compound represented by the formula (I) is represented by the formula (II):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(II)中、R~RおよびXは上記と同義である。]
で表される化合物である前記[1]~[47]のいずれか一つに記載の製造方法。
[In the formula (II), R 1 to R 4 and X are as defined above. ]
The production method according to any one of [1] to [47], which is a compound represented by the formula:
 [49] Rが、C2-12アルカンジイル基または2価のC6-12芳香族炭化水素基である前記[1]~[48]のいずれか一つに記載の製造方法。
 [50] Rが、C2-12アルカンジイル基またはフェニレン基である前記[1]~[48]のいずれか一つに記載の製造方法。
 [51] Rが、フェニレン基である前記[1]~[48]のいずれか一つに記載の製造方法。
 [52] Rが、1,4-フェニレン基である前記[1]~[48]のいずれか一つに記載の製造方法。
[49] The production method according to any one of [1] to [48], wherein R 1 is a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group.
[50] The production method according to any one of [1] to [48], wherein R 1 is a C 2-12 alkanediyl group or a phenylene group.
[51] The production method according to any one of [1] to [48], wherein R 1 is a phenylene group.
[52] The production method according to any one of [1] to [48], wherein R 1 is a 1,4-phenylene group.
 [53] RおよびRが、それぞれ独立に、水素原子またはC1-6アルキル基である前記[1]~[52]のいずれか一つに記載の製造方法。
 [54] RおよびRが、水素原子である前記[1]~[52]のいずれか一つに記載の製造方法。
[53] The production method according to any one of [1] to [52], wherein R 2 and R 3 are each independently a hydrogen atom or a C 1-6 alkyl group.
[54] The production method according to any one of [1] to [52], wherein R 2 and R 3 are hydrogen atoms.
 [55] Rが、ヒドロキシ基またはC1-6アルコキシ基である前記[1]~[54]のいずれか一つに記載の製造方法。
 [56] Rが、ヒドロキシ基である前記[1]~[54]のいずれか一つに記載の製造方法。
[55] The production method according to any one of [1] to [54], wherein R 4 is a hydroxy group or a C 1-6 alkoxy group.
[56] The production method according to any one of [1] to [54], wherein R 4 is a hydroxy group.
 [57] Xが、-NH-である前記[1]~[56]のいずれか一つに記載の製造方法。 [57] The production method according to any one of [1] to [56], wherein X is -NH-.
 [58] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物の塩の溶媒和物である前記[1]~[57]のいずれか一つに記載の製造方法。
 [59] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸塩の溶媒和物である前記[1]~[57]のいずれか一つに記載の製造方法。
 [60] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸アルカリ金属塩の水和物および式(I)で表される化合物のカルボン酸アルカリ土類金属塩の水和物からなる群から選ばれる少なくとも一つである前記[1]~[57]のいずれか一つに記載の製造方法。
 [61] 式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物のカルボン酸ナトリウム塩の水和物である前記[1]~[57]のいずれか一つに記載の製造方法。
[58] The solvent of the salt of the compound represented by formula (I), wherein at least one selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof, and a solvate of the salt thereof The production method according to any one of [1] to [57], which is a Japanese product.
[59] A carboxylate of the compound represented by the formula (I), wherein at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt thereof The production method according to any one of [1] to [57], which is a solvate of
[60] At least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt is an alkali carboxylate of the compound represented by the formula (I) Any one of the above [1] to [57], which is at least one selected from the group consisting of hydrates of metal salts and hydrates of alkaline earth metal carboxylates of the compounds represented by formula (I) The manufacturing method as described in one.
[61] Sodium carboxylate of the compound represented by the formula (I), wherein at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof, and a solvate of the salt thereof The production method according to any one of [1] to [57], which is a salt hydrate.
 [62] ゴム成分の50重量%以上がジエン系ゴムである前記[1]~[61]のいずれか一つに記載の製造方法。
 [63] ゴム成分の70~100重量%がジエン系ゴムである前記[1]~[61]のいずれか一つに記載の製造方法。
 [64] ゴム成分の80~100重量%がジエン系ゴムである前記[1]~[61]のいずれか一つに記載の製造方法。
[62] The production method according to any one of [1] to [61], wherein 50% by weight or more of the rubber component is a diene rubber.
[63] The production method according to any one of [1] to [61], wherein 70 to 100% by weight of the rubber component is a diene rubber.
[64] The production method according to any one of [1] to [61], wherein 80 to 100% by weight of the rubber component is a diene rubber.
 [65] 硫黄成分を含有するゴム組成物の製造方法であって、前記[1]~[64]のいずれか一つに記載の製造方法により得られたゴム組成物と、硫黄成分とを混練することを含む製造方法。 [65] A method for producing a rubber composition containing a sulfur component, wherein the rubber composition obtained by the production method according to any one of [1] to [64] and a sulfur component are kneaded. Manufacturing method.
 [66] 硫黄成分の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.01~30重量部である前記[65]に記載の製造方法。
 [67] 硫黄成分の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.1~20重量部である前記[65]に記載の製造方法。
 [68] 硫黄成分の使用量が、製造されるゴム組成物が含有するゴム成分100重量部あたり、0.1~10重量部である前記[65]に記載の製造方法。
[66] The production method according to [65], wherein the amount of the sulfur component used is 0.01 to 30 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition to be produced.
[67] The production method according to [65], wherein the amount of the sulfur component used is 0.1 to 20 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition to be produced.
[68] The production method according to [65], wherein the amount of the sulfur component used is 0.1 to 10 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition to be produced.
 [69] 前記[1]~[64]のいずれか一つに記載の製造方法により得られた、硫黄成分を含有しないゴム組成物。
 [70] 前記[65]~[68]のいずれか一つに記載の製造方法により得られた、硫黄成分を含有するゴム組成物。
 [71] 前記[70]に記載の硫黄成分を含有するゴム組成物を加硫することによって得られた加硫ゴム組成物。
[69] A rubber composition containing no sulfur component, obtained by the production method according to any one of [1] to [64].
[70] A rubber composition containing a sulfur component, obtained by the production method according to any one of [65] to [68].
[71] A vulcanized rubber composition obtained by vulcanizing the rubber composition containing the sulfur component according to [70].
 [72] 前記[71]に記載の加硫ゴム組成物を含む加硫タイヤ。
 [73] 前記[71]に記載の加硫ゴム組成物およびスチールコードを含むタイヤ用ベルト部材。
 [74] 前記[71]に記載の加硫ゴム組成物およびカーカス繊維コードを含むタイヤ用カーカス部材。
 [75] 前記[71]に記載の加硫ゴム組成物を含むタイヤ用部材。
 [76] タイヤ用サイドウォール部材、タイヤ用インナーライナー部材、タイヤ用キャップトレッド部材またはタイヤ用アンダートレッド部材である前記[75]に記載のタイヤ用部材。
[72] A vulcanized tire including the vulcanized rubber composition according to [71].
[73] A tire belt member comprising the vulcanized rubber composition according to [71] and a steel cord.
[74] A tire carcass member comprising the vulcanized rubber composition according to [71] and a carcass fiber cord.
[75] A tire member comprising the vulcanized rubber composition according to [71].
[76] The tire member according to [75], which is a tire sidewall member, a tire inner liner member, a tire cap tread member, or a tire undertread member.
 [77] 前記[65]~[68]のいずれか一つに記載の製造方法により得られた、硫黄成分を含有するゴム組成物を加硫することを含む、加硫ゴム組成物の製造方法。 [77] A method for producing a vulcanized rubber composition, comprising vulcanizing a rubber composition containing a sulfur component obtained by the production method according to any one of [65] to [68] .
 本発明によれば、式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つを使用することによるゴム組成物の粘度増大を抑制することができる。 According to the present invention, the viscosity of the rubber composition is increased by using at least one selected from the group consisting of the compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt. Can be suppressed.
<成分>
 まず本発明で使用し得る成分を説明する。
<Ingredients>
First, components that can be used in the present invention will be described.
(1)式(I)で表される化合物等
 本発明は、式(I):
(1) Compound represented by formula (I), etc. The present invention provides a compound of formula (I):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つを使用することを特徴とする。本明細書では、「式(I)で表される化合物」を「化合物(I)」と略称することがある。他の式で表される化合物も同様に略称することがある。また、「式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つ」を「化合物(I)等」と略称することがある。 Or at least one selected from the group consisting of a salt, a solvate thereof, and a solvate of the salt thereof. In the present specification, the “compound represented by the formula (I)” may be abbreviated as “compound (I)”. Similarly, compounds represented by other formulas may be abbreviated. “At least one selected from the group consisting of a compound represented by the formula (I), a salt thereof, a solvate thereof and a solvate of the salt” may be abbreviated as “compound (I) etc.”. is there.
 式(I)中のRは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。 R 1 in the formula (I) is a C 2-12 alkanediyl group optionally having one or more substituents, and a C 3-10 cycloalkanediyl group optionally having one or more substituents. It represents a divalent C 6-12 aromatic hydrocarbon group which may have one or more substituents, or a combination thereof.
 本明細書中、「Cx-y」とは、炭素原子数がx以上y以下(x、y:整数)であることを意味する。 In the present specification, “C xy ” means that the number of carbon atoms is x or more and y or less (x, y: integer).
 本明細書中、アルカンジイル基は、直鎖状アルカンジイル基および分枝鎖状アルカンジイル基の両方を包含する。本明細書中、「C2-12アルカンジイル基」としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1-プロピルトリメチレン基、2-プロピルトリメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1-プロピルテトラメチレン基、2-プロピルテトラメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1-エチルペンタメチレン基、2-エチルペンタメチレン基、3-エチルペンタメチレン基、1-プロピルペンタメチレン基、2-プロピルペンタメチレン基、3-プロピルペンタメチレン基、1-メチルヘキサメチレン基、2-メチルヘキサメチレン基、3-メチルヘキサメチレン基、1-エチルヘキサメチレン基、2-エチルヘキサメチレン基、3-エチルヘキサメチレン基、1-プロピルヘキサメチレン基、2-プロピルヘキサメチレン基、3-プロピルヘキサメチレン基が挙げられる。 In the present specification, the alkanediyl group includes both a linear alkanediyl group and a branched alkanediyl group. In the present specification, examples of the “C 2-12 alkanediyl group” include an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, propylene group, 1-methyltrimethylene group, 2-methyl group. Trimethylene, 1-ethyltrimethylene, 2-ethyltrimethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1-ethyltetra Methylene group, 2-ethyltetramethylene group, 1-propyltetramethylene group, 2-propyltetramethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethylpentamethylene group Group, 2-ethylpentamethylene group, 3-ethylpentamethylene group, 1-propyl Rupentamethylene group, 2-propylpentamethylene group, 3-propylpentamethylene group, 1-methylhexamethylene group, 2-methylhexamethylene group, 3-methylhexamethylene group, 1-ethylhexamethylene group, 2-ethyl Examples include a hexamethylene group, a 3-ethylhexamethylene group, a 1-propylhexamethylene group, a 2-propylhexamethylene group, and a 3-propylhexamethylene group.
 C2-12アルカンジイル基が有していてもよい置換基としては、例えば、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。なお、C1-6アルコキシ基等の説明は後述する。 Examples of the substituent that the C 2-12 alkanediyl group may have include a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7 acyl- Examples thereof include an oxy group and a C 6-14 aryl group which may have one or more substituents. The explanation of the C 1-6 alkoxy group will be given later.
 本明細書中、「C3-10シクロアルカンジイル基」としては、例えば、シクロプロパン-1,2-ジイル基、シクロブタン-1,3-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基、シクロノナン-1,5-ジイル基、シクロデカン-1,6-ジイル基が挙げられる。 In the present specification, examples of the “C 3-10 cycloalkanediyl group” include cyclopropane-1,2-diyl group, cyclobutane-1,3-diyl group, cyclopentane-1,3-diyl group, cyclohexane -1,4-diyl group, cycloheptane-1,4-diyl group, cyclooctane-1,5-diyl group, cyclononane-1,5-diyl group, and cyclodecane-1,6-diyl group.
 C3-10シクロアルカンジイル基が有していてもよい置換基としては、例えば、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 3-10 cycloalkanediyl group may have include a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1-7 acyl. Group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
 本明細書中、「2価のC6-12芳香族炭化水素」としては、例えば、フェニレン基(例、1,4-フェニレン基)、ナフチレン基(例、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基)、ビフェニルジイル基(例、1,1’-ビフェニル-4,4’-ジイル基)が挙げられる。 In the present specification, examples of the “divalent C 6-12 aromatic hydrocarbon” include a phenylene group (eg, 1,4-phenylene group), a naphthylene group (eg, 1,4-naphthylene group, 1, 5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group) and biphenyldiyl group (eg, 1,1′-biphenyl-4,4′-diyl group).
 2価のC6-12芳香族炭化水素基が有していてもよい置換基としては、例えば、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、C6-14アリール基、スルホ基が挙げられる。なお、スルホ基は、-SOHで表される基である。 Examples of the substituent that the divalent C 6-12 aromatic hydrocarbon group may have include, for example, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, C Examples thereof include a 1-7 acyl group, a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group. The sulfo group is a group represented by —SO 3 H.
 Rは、好ましくはC2-12アルカンジイル基または2価のC6-12芳香族炭化水素基であり、より好ましくはC2-12アルカンジイル基またはフェニレン基であり、さらに好ましくはフェニレン基であり、特に好ましくは1,4-フェニレン基である。 R 1 is preferably a C 2-12 alkanediyl group or a divalent C 6-12 aromatic hydrocarbon group, more preferably a C 2-12 alkanediyl group or a phenylene group, still more preferably a phenylene group. Particularly preferred is a 1,4-phenylene group.
 式(I)中のRおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。 R 2 and R 3 in formula (I) are each independently a hydrogen atom, a halogen atom, a hydroxy group, an optionally substituted C 1-6 alkoxy group, or one or more substituents. Represents a C 1-6 alkyl group optionally having C 1, or a C 6-14 aryl group optionally having one or more substituents, or R 2 and R 3 are bonded and they are bonded Together with the carbon atom to form a C 3-10 cycloalkenediyl group which may have one or more substituents.
 本明細書中、「ハロゲン原子」としては、フッ素、塩素、臭素、ヨウ素が挙げられる。 In the present specification, examples of the “halogen atom” include fluorine, chlorine, bromine and iodine.
 本明細書中、アルコキシ基は、直鎖状アルコキシ基および分枝鎖状アルコキシ基の両方を包含する。本明細書中、「C1-6アルコキシ基」としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基が挙げられる。 In the present specification, the alkoxy group includes both a linear alkoxy group and a branched alkoxy group. In the present specification, examples of the “C 1-6 alkoxy group” include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, and a pentyloxy group. And hexyloxy group.
 C1-6アルコキシ基が有していてもよい置換基としては、例えば、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 1-6 alkoxy group may have include a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7 acyl-oxy group. Group, and a C 6-14 aryl group which may have one or more substituents.
 本明細書中、アルキル基は、直鎖状アルキル基および分枝鎖状アルキル基の両方を包含する。本明細書中、「C1-6アルキル基」としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、s-ブチル基、t-ブチル基、2-メチルブチル基、2-エチルブチル基、3-メチルブチル基、3-エチルブチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基が挙げられる。 In the present specification, the alkyl group includes both a linear alkyl group and a branched alkyl group. In the present specification, examples of the “C 1-6 alkyl group” include a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, s-butyl group, t-butyl group, 2 -Methylbutyl group, 2-ethylbutyl group, 3-methylbutyl group, 3-ethylbutyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group.
 C1-6アルキル基が有していてもよい置換基としては、例えば、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 1-6 alkyl group may have include a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, and a C 1-7 acyl-oxy group. Group, and a C 6-14 aryl group which may have one or more substituents.
 本明細書中、「C6-14アリール基」としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基が挙げられる。 In the present specification, examples of the “C 6-14 aryl group” include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, and a 9-anthryl group.
 C6-14アリール基が有していてもよい置換基としては、例えば、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、C6-14アリール基、スルホ基が挙げられる。 Examples of the substituent that the C 6-14 aryl group may have include, for example, a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, a C 1-7 acyl group, Examples thereof include a C 1-7 acyl-oxy group, a C 6-14 aryl group, and a sulfo group.
 本明細書中、「C1-7アシル基」としては、例えば、ホルミル基、C1-6アルキル-カルボニル基(例、アセチル基、ピバロイル基)、ベンゾイル基が挙げられる。 In the present specification, examples of the “C 1-7 acyl group” include a formyl group, a C 1-6 alkyl-carbonyl group (eg, acetyl group, pivaloyl group), and a benzoyl group.
 本明細書中、C1-6アルコキシ-カルボニル基に含まれる「C1-6アルコキシ基」およびC1-7アシル-オキシ基に含まれる「C1-7アシル基」としては、例えば、上記のものが挙げられる。 In the present specification, examples of the “C 1-6 alkoxy group” contained in the C 1-6 alkoxy-carbonyl group and the “C 1-7 acyl group” contained in the C 1-7 acyl-oxy group include, for example, Can be mentioned.
 「RおよびRが結合し、それらが結合している炭素原子と一緒になって形成されるC3-10シクロアルケンジイル基」としては、例えば、シクロプロペン-1,2-ジイル基、シクロブテン-1,2-ジイル基、シクロペンテン-1,2-ジイル基、シクロヘキセン-1,2-ジイル基、シクロヘプテン-1,2-ジイル基、シクロオクテン-1,2-ジイル基、シクロノネン-1,2-ジイル基、シクロデセン-1,2-ジイル基が挙げられる。 Examples of the “C 3-10 cycloalkenediyl group formed by combining R 2 and R 3 together with the carbon atom to which they are bonded” include a cyclopropene-1,2-diyl group, Cyclobutene-1,2-diyl group, cyclopentene-1,2-diyl group, cyclohexene-1,2-diyl group, cycloheptene-1,2-diyl group, cyclooctene-1,2-diyl group, cyclononene-1, Examples thereof include 2-diyl group and cyclodecene-1,2-diyl group.
 C3-10シクロアルケンジイル基が有していてもよい置換基としては、例えば、C1-6アルキル基、C1-6アルコキシ基、C1-6アルコキシ-カルボニル基、C1-7アシル基、C1-7アシル-オキシ基、1以上の置換基を有していてもよいC6-14アリール基が挙げられる。 Examples of the substituent that the C 3-10 cycloalkenediyl group may have include a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-6 alkoxy-carbonyl group, and a C 1-7 acyl. Group, a C 1-7 acyl-oxy group, and a C 6-14 aryl group optionally having one or more substituents.
 RおよびRは、それぞれ独立に、好ましくは水素原子またはC1-6アルキル基であり、より好ましくは水素原子である。 R 2 and R 3 are each independently preferably a hydrogen atom or a C 1-6 alkyl group, more preferably a hydrogen atom.
 式(I)中のRは、ヒドロキシ基(-OH)、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基を表す。 R 4 in formula (I) is a hydroxy group (—OH), a C 1-6 alkoxy group optionally having one or more substituents, or a C optionally having one or more substituents. Represents a 6-14 aryloxy group.
 本明細書中、C6-14アリールオキシ基に含まれる「C6-14アリール基」としては、例えば、上記のものが挙げられる。 In the present specification, examples of the “C 6-14 aryl group” contained in the C 6-14 aryloxy group include those described above.
 Rは、好ましくはヒドロキシ基またはC1-6アルコキシ基であり、より好ましくはヒドロキシ基である。 R 4 is preferably a hydroxy group or a C 1-6 alkoxy group, more preferably a hydroxy group.
 式(I)中のXは、-NH-または-O-を表す。Xは、好ましくは-NH-である。 X in the formula (I) represents —NH— or —O—. X is preferably —NH—.
 化合物(I)は、好ましくは式(II): Compound (I) is preferably represented by the formula (II):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(II)中、R~RおよびXは上記と同義である。]
で表される化合物である。
[In the formula (II), R 1 to R 4 and X are as defined above. ]
It is a compound represented by these.
 化合物(I)の塩としては、(a)化合物(I)の-NHと他の酸とが形成するアミン塩、(b)Xが-NH-である場合、化合物(I)の-NH-と他の酸とが形成するアミン塩、および(c)Rがヒドロキシ基である場合、化合物(I)の-COOHと他の塩基とが形成するカルボン酸塩が挙げられる。前記(a)および(b)のアミン塩を形成する他の酸としては、有機酸および無機酸のいずれでもよく、前記(c)のカルボン酸塩を形成する塩基は、有機塩基および無機塩基のいずれでもよい。化合物(I)の塩は、好ましくはカルボン酸塩であり、より好ましくはカルボン酸アルカリ金属塩およびカルボン酸アルカリ土類金属塩からなる群から選ばれる少なくとも一つであり、さらに好ましくはカルボン酸アルカリ金属塩であり、特に好ましくはカルボン酸ナトリウム塩である。 The salt of compound (I) includes (a) an amine salt formed by —NH 2 of compound (I) and another acid, and (b) —NH— of compound (I) when X is —NH—. Examples include amine salts formed by-and other acids, and (c) carboxylates formed by -COOH of compound (I) and other bases when R 4 is a hydroxy group. The other acid that forms the amine salt of (a) and (b) may be either an organic acid or an inorganic acid, and the base that forms the carboxylate salt of (c) is an organic base or an inorganic base. Either is acceptable. The salt of compound (I) is preferably a carboxylate, more preferably at least one selected from the group consisting of an alkali metal carboxylate and an alkaline earth metal carboxylate, and more preferably an alkali carboxylate A metal salt, particularly preferably a sodium carboxylate.
 化合物(I)の溶媒和物および化合物(I)の塩の溶媒和物を形成する溶媒は、水でもよく、有機溶媒(例えば、メタノール)でもよい。溶媒和物を形成する溶媒は、好ましくは水またはメタノールであり、より好ましくは水である。 The solvent that forms the solvate of compound (I) and the solvate of the salt of compound (I) may be water or an organic solvent (for example, methanol). The solvent forming the solvate is preferably water or methanol, more preferably water.
 化合物(I)等は、好ましくは化合物(I)の塩の溶媒和物であり、より好ましくは化合物(I)のカルボン酸塩の溶媒和物であり、さらに好ましくは化合物(I)のカルボン酸アルカリ金属塩の水和物および化合物(I)のカルボン酸アルカリ土類金属塩の水和物からなる群から選ばれる少なくとも一つであり、特に好ましくは化合物(I)のカルボン酸ナトリウム塩の水和物である。 Compound (I) or the like is preferably a solvate of a salt of compound (I), more preferably a solvate of a carboxylate salt of compound (I), and more preferably a carboxylic acid of compound (I). At least one selected from the group consisting of hydrates of alkali metal salts and hydrates of carboxylic acid alkaline earth metal salts of compound (I), particularly preferably water of sodium salt of carboxylic acid of compound (I) It is a Japanese product.
 以下に化合物(I)またはその塩の具体例を示す。 Specific examples of compound (I) or a salt thereof are shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 化合物(I)等は、特許文献1に記載されている方法または該方法に準じた方法によって製造することができる。 Compound (I) and the like can be produced by the method described in Patent Document 1 or a method according to the method.
 化合物(I)等の使用量(即ち、式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つの合計の使用量)は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり、好ましくは0.01~100重量部、より好ましくは0.01~20重量部、さらに好ましくは0.1~10重量部である。 The amount of compound (I) and the like used (that is, at least one total amount selected from the group consisting of the compound represented by formula (I), a salt thereof, a solvate thereof and a solvate of the salt) The amount is preferably 0.01 to 100 parts by weight, more preferably 0.01 to 20 parts by weight, still more preferably 0.1 to 10 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Part.
(2)ゴム成分
 ゴム成分としては、天然ゴム(NR)および変性天然ゴム(例えば、エポキシ化天然ゴム、脱蛋白天然ゴム);ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン・ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)等の各種の合成ゴム;が例示される。ゴム成分は、1種のみを使用してもよく、2種以上を併用してもよい。
(2) Rubber component As the rubber component, natural rubber (NR) and modified natural rubber (for example, epoxidized natural rubber, deproteinized natural rubber); polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), Various synthetic rubbers such as polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene / diene copolymer rubber (EPDM), halogenated butyl rubber (HR), etc. Is illustrated. Only 1 type may be used for a rubber component and it may use 2 or more types together.
 ゴム成分は、好ましくはジエン系ゴムを含む。ここで、ジエン系ゴムとは、共役2重結合を持つジエンモノマーを原料としたゴムを意味する。ジエン系ゴムとしては、例えば、天然ゴム、変性天然ゴム、ポリイソプレンゴム、クロロプレンゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム、ニトリルゴム等が挙げられる。ジエン系ゴムは、高不飽和性であることが好ましく、天然ゴムであることがより好ましい。また、天然ゴムと他のゴム(例えば、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム)とを併用することも有効である。 The rubber component preferably contains a diene rubber. Here, the diene rubber means a rubber made from a diene monomer having a conjugated double bond. Examples of the diene rubber include natural rubber, modified natural rubber, polyisoprene rubber, chloroprene rubber, styrene / butadiene copolymer rubber, polybutadiene rubber, and nitrile rubber. The diene rubber is preferably highly unsaturated, and more preferably natural rubber. It is also effective to use natural rubber in combination with another rubber (for example, styrene / butadiene copolymer rubber or polybutadiene rubber).
 ジエン系ゴム(特に、天然ゴム)を使用する場合、ゴム成分中のジエン系ゴムの量は、好ましくは50重量%以上、より好ましくは70~100重量%、さらに好ましくは80~100重量%である。 When a diene rubber (especially natural rubber) is used, the amount of the diene rubber in the rubber component is preferably 50% by weight or more, more preferably 70 to 100% by weight, still more preferably 80 to 100% by weight. is there.
 天然ゴムの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、エポキシ化度10~60モル%のもの(例えば、クンプーラン ガスリー社製ENR25やENR50)が挙げられる。脱蛋白天然ゴムとしては、総窒素含有率が0.3重量%以下である脱蛋白天然ゴムが好ましい。その他の変性天然ゴムとしては、例えば、天然ゴムに4-ビニルピリジン、N,N,-ジアルキルアミノエチルアクリレート(例えばN,N,-ジエチルアミノエチルアクリレート)、2-ヒドロキシアクリレート等を反応させた極性基を含有する変性天然ゴムが挙げられる。 Examples of natural rubber include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, and SIR20. Examples of the epoxidized natural rubber include those having a degree of epoxidation of 10 to 60 mol% (for example, ENR25 and ENR50 manufactured by Kumphuran Guthrie). As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable. Other modified natural rubbers include, for example, polar groups obtained by reacting natural rubber with 4-vinylpyridine, N, N, -dialkylaminoethyl acrylate (eg, N, N, -diethylaminoethyl acrylate), 2-hydroxy acrylate, and the like. Modified natural rubber containing
 SBRとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の210~211頁に記載されている乳化重合SBRおよび溶液重合SBRが挙げられる。中でも、トレッド用ゴム組成物のためには、溶液重合SBRが好ましい。 Examples of the SBR include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Among these, solution polymerization SBR is preferable for the rubber composition for treads.
 溶液重合SBRとしては、変性剤で変性して得られる、分子末端に窒素、スズおよびケイ素の少なくとも一つの元素を有する、変性溶液重合SBRが挙げられる。変性剤としては、例えば、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。これらの変性剤は、単独で用いてもよいし、複数を用いてもよい。変性溶液重合SBRとしては、具体的には、日本ゼオン社製「Nipol(登録商標)NS116」等の4,4’-ビス(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、および旭化成社製「E10」および「E15」等のシラン変性溶液重合SBR等が挙げられる。 Examples of the solution polymerization SBR include a modified solution polymerization SBR obtained by modification with a modifying agent and having at least one element of nitrogen, tin and silicon at the molecular end. Examples of the modifier include lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, silane compounds having an alkoxy group, aminosilane compounds, tin compounds and silane compounds having an alkoxy group. And a combined modifier of an alkyl acrylamide compound and a silane compound having an alkoxy group. These modifiers may be used alone or in combination. Specific examples of the modified solution polymerization SBR include solution polymerization SBR and JSR in which molecular ends are modified using 4,4′-bis (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd. Examples thereof include solution polymerization SBR in which molecular ends are modified using a tin halide compound such as “SL574” manufactured by the company, and silane-modified solution polymerization SBR such as “E10” and “E15” manufactured by Asahi Kasei.
 また、乳化重合SBRおよび溶液重合SBRに、プロセスオイルやアロマオイル等のオイルを添加した油展SBRも、トレッド用ゴム組成物のために好ましい。 Also, oil-extended SBR in which oil such as process oil or aroma oil is added to emulsion polymerization SBR and solution polymerization SBR is also preferable for the rubber composition for tread.
 BRとしては、低ビニル含量の溶液重合BRおよび高ビニル含量の溶液重合BRのいずれでもよいが、高ビニル含量の溶液重合BRが好ましい。変性剤で変性して得られる、分子末端に窒素、スズ、ケイ素の少なくとも一つの元素を有する変性溶液重合BRが特に好ましい。変性剤としては、例えば、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(例えば、トリアルコキシシラン化合物)、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。これらの変性剤は、単独で用いてもよいし、複数を用いてもよい。変性溶液重合BRとしては、例えば、日本ゼオン製「Nipol(登録商標)BR 1250H」等のスズ変性BRが挙げられる。 The BR may be either a solution polymerization BR having a low vinyl content or a solution polymerization BR having a high vinyl content, but a solution polymerization BR having a high vinyl content is preferred. A modified solution polymerization BR having at least one element of nitrogen, tin, or silicon at the molecular end obtained by modification with a modifier is particularly preferred. Examples of the modifier include 4,4′-bis (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N-dialkylacrylamide compound, isocyanate compound, imide compound, and alkoxy group. Examples thereof include a silane compound having an alkoxy group (for example, a trialkoxysilane compound), an aminosilane compound, a tin compound and a silane compound having an alkoxy group, and a combined modifier having an alkylacrylamide compound and an silane compound having an alkoxy group. These modifiers may be used alone or in combination. Examples of the modified solution polymerization BR include tin-modified BR such as “Nipol (registered trademark) BR 1250H” manufactured by Nippon Zeon.
 BRは、トレッド用ゴム組成物、サイドウォール用ゴム組成物のために好ましく用いることができる。BRは、SBRおよび/または天然ゴム(NR)とのブレンドで使用してもよい。トレッド用ゴム組成物では、ゴム成分中、例えば、SBRおよび/またはNRの量が60~100重量%であり、BRの量が0~40重量%である。サイドウォール用ゴム組成物では、ゴム成分中、好ましくは、SBRおよび/またはNRの量が10~70重量%であり、BRの量が90~30重量%であり、より好ましくは、NRの量が40~60重量%であり、BRの量が60~40重量%である。トレッド用ゴム組成物およびサイドウォール用ゴム組成物のために、変性SBRと非変性SBRとのブレンド、変性BRと非変性BRとのブレンド等も好ましく使用することができる。 BR can be preferably used for a rubber composition for a tread and a rubber composition for a sidewall. BR may be used in a blend with SBR and / or natural rubber (NR). In the rubber composition for a tread, for example, the amount of SBR and / or NR in the rubber component is 60 to 100% by weight, and the amount of BR is 0 to 40% by weight. In the rubber composition for a sidewall, the amount of SBR and / or NR in the rubber component is preferably 10 to 70% by weight, the amount of BR is 90 to 30% by weight, and more preferably the amount of NR. Is 40 to 60% by weight, and the amount of BR is 60 to 40% by weight. For the rubber composition for a tread and the rubber composition for a sidewall, a blend of modified SBR and non-modified SBR, a blend of modified BR and non-modified BR, and the like can be preferably used.
 本発明で製造するゴム組成物をタイヤのトレッド用に使用する場合、例えば乗用車用タイヤでは、ゴム成分として耐摩耗性やヒステリシスロス低減性能に優れるSBRをベース材料として用い、トラック・バス用タイヤではより高強度のNRを任意にSBRと共にベース材料として用い、これらベース材料に、必要に応じてBRをブレンドして用いることが、耐摩耗性、耐疲労性、反発弾性に優れたトレッドが得られるため好ましい。 When the rubber composition produced in the present invention is used for tire treads, for example, in passenger car tires, SBR, which is excellent in wear resistance and hysteresis loss reduction performance, is used as a base material in rubber components, and in truck and bus tires. Higher strength NR is optionally used as a base material together with SBR, and these base materials can be blended with BR as necessary to obtain a tread excellent in wear resistance, fatigue resistance and impact resilience. Therefore, it is preferable.
 本発明で製造するゴム組成物をタイヤのサイドウォール用に使用する場合、乗用車用タイヤではNRとSBRとをブレンドして、または、NRとBRとをブレンドして、トラック・バス用タイヤではNRとBRとをブレンドして使用することが、耐折曲げ屈曲性、耐き裂成長性が得られるため好ましい。 When the rubber composition produced in the present invention is used for a tire sidewall, NR and SBR are blended in a passenger car tire, or NR and BR are blended, and NR in a truck / bus tire. It is preferable to use a blend of BR and BR since bending resistance and crack growth resistance can be obtained.
 本発明で製造するゴム組成物をタイヤのベルト用に使用する場合、ゴム成分としてNRおよび/またはIRを使用することが、高弾性率や補強用繊維との良好な接着性が得られるため好ましい。 When the rubber composition produced in the present invention is used for a tire belt, it is preferable to use NR and / or IR as a rubber component because a high elastic modulus and good adhesion to reinforcing fibers can be obtained. .
 本発明で製造するゴム組成物をタイヤのインナーライナーとして使用する場合、ゴム成分としてIIRとSBRおよびNRとをブレンドして、またはIIRとNRとをブレンドして使用することが、抵ガス透過性と耐屈曲性が得られるため好ましい。 When the rubber composition produced in the present invention is used as an inner liner of a tire, it is preferable to blend IIR, SBR, and NR as a rubber component, or blend IIR and NR. And bending resistance is preferable.
(3)カーボンブラック
 カーボンブラックとしては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の494頁に記載されるものが挙げられる。カーボンブラックは、1種のみを使用してもよく、2種以上を併用してもよい。カーボンブラックとしては、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)、ISAF-HM(Intermediate SAF-High Modulus)、FEF(Fast Extrusion Furnace)、MAF、GPF(General Purpose Furnace)、SRF(Semi-Reinforcing Furnace)が好ましい。
(3) Carbon Black Examples of the carbon black include those described on page 494 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Carbon black may use only 1 type and may use 2 or more types together. Examples of carbon black include HAF (High Absorption Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate SAF), ISAF-HM (Intermediate SAF-High Fur, and FEF (Fast East Fur, FAS ), SRF (Semi-Reinforcing Furnace) is preferable.
 カーボンブラックの使用量は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり、好ましくは20~80重量部、より好ましくは30~70重量部、さらに好ましくは30~60重量部である。 The amount of carbon black used is preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, still more preferably 30 to 60 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Part.
(4)硫黄成分
 硫黄成分としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、および高分散性硫黄、モルフォリンジスルフィド、テトラメチルチウラムジスルフィドが挙げられる。通常は粉末硫黄が好ましく、本発明で製造するゴム組成物をベルト用部材等の硫黄量が多いタイヤ部材の製造に用いる場合には不溶性硫黄が好ましい。
(4) Sulfur component Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur, morpholine disulfide, and tetramethylthiuram disulfide. Usually, powdered sulfur is preferred, and insoluble sulfur is preferred when the rubber composition produced in the present invention is used for producing tire members having a large amount of sulfur such as belt members.
 硫黄成分の使用量は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり、好ましくは0.01~30重量部、より好ましくは0.1~20重量部、さらに好ましくは0.1~10重量部である。 The amount of the sulfur component used is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, still more preferably 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. 0.1 to 10 parts by weight.
(5)他の成分
 本発明では、上述の化合物(I)等、ゴム成分、カーボンブラック、硫黄成分に加えて、ゴム分野で公知の他の成分を使用してもよい。他の成分としては、カーボンブラック以外の充填剤、シリカと結合可能な化合物、加硫促進剤、加硫促進助剤、樹脂、粘弾性改善剤、老化防止剤、オイル、ワックス、しゃく解剤、リターダー、オキシエチレンユニットを有する化合物、触媒(ナフテン酸コバルト等)が挙げられる。他の成分は、いずれも、1種のみを使用してもよく、2種以上を併用してもよい。
(5) Other components In the present invention, other components known in the rubber field may be used in addition to the above-mentioned compound (I) and the like, rubber components, carbon black, and sulfur components. Other components include fillers other than carbon black, compounds capable of binding to silica, vulcanization accelerators, vulcanization accelerators, resins, viscoelasticity improvers, anti-aging agents, oils, waxes, peptizers, Examples thereof include a retarder, a compound having an oxyethylene unit, and a catalyst (such as cobalt naphthenate). As for another component, all may use only 1 type and may use 2 or more types together.
 カーボンブラック以外の充填剤としては、例えば、シリカ(例えば、含水シリカ)、水酸化アルミニウム、瀝青炭粉砕物、タルク、クレー(特に、焼成クレー)、酸化チタンが挙げられる。 Examples of fillers other than carbon black include silica (for example, hydrous silica), aluminum hydroxide, bituminous coal pulverized material, talc, clay (particularly, calcined clay), and titanium oxide.
 シリカとしては、CTAB比表面積50~180m/gのシリカ、窒素吸着比表面積50~300m/gのシリカが例示される。シリカの市販品としては、例えば、東ソー・シリカ社製「Nipsil(登録商標)AQ」、「Nipsil(登録商標)AQ-N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)VN3-G」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」が挙げられる。また、(i)pHが6~8であるシリカ、(ii)ナトリウムを0.2~1.5重量%含むシリカ、(iii)真円度が1~1.3の真球状シリカ、(iv)シリコーンオイル(例、ジメチルシリコーンオイル)、エトキシシリル基を含有する有機ケイ素化合物、アルコール(例、エタノール、ポリエチレングリコール)等で表面処理したシリカ、(v)二種類以上の異なった窒素吸着比表面積を有するシリカの混合物を、充填剤として使用してもよい。本発明で製造するゴム組成物を乗用車トレッドに使用する場合、シリカの使用量は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり10~120重量部の範囲が好ましい。またシリカを配合する場合、シリカ/カーボンブラックの重量比は0.7/1~1/0.1が好ましい。 Examples of the silica include silica having a CTAB specific surface area of 50 to 180 m 2 / g and silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g. Examples of commercially available silica products include “Nipsil (registered trademark) AQ” and “Nipsil (registered trademark) AQ-N” manufactured by Tosoh Silica Co., Ltd., “Ultrazil (registered trademark) VN3” and “Ultrazil” manufactured by Degussa. (Registered trademark) VN3-G "," Ultrasil (registered trademark) 360 "," Ultrasil (registered trademark) 7000 "," Zeosil (registered trademark) 115GR "," Zeosil (registered trademark) 1115MP "manufactured by Rhodia, “Zeosil (registered trademark) 1205MP”, “Zeosil (registered trademark) Z85MP” may be mentioned. (I) silica having a pH of 6 to 8, (ii) silica containing 0.2 to 1.5% by weight of sodium, (iii) true spherical silica having a roundness of 1 to 1.3, (iv) ) Silicone oil (eg, dimethyl silicone oil), organosilicon compound containing ethoxysilyl group, silica surface-treated with alcohol (eg, ethanol, polyethylene glycol), etc. (v) two or more different nitrogen adsorption specific surface areas Mixtures of silica with can be used as fillers. When the rubber composition produced in the present invention is used for a passenger car tread, the amount of silica used is preferably in the range of 10 to 120 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. When silica is blended, the silica / carbon black weight ratio is preferably 0.7 / 1 to 1 / 0.1.
 水酸化アルミニウムとしては、窒素吸着比表面積5~250m/g、DOP給油量50~100ml/100gの水酸化アルミニウムが例示される。 Examples of the aluminum hydroxide include aluminum hydroxide having a nitrogen adsorption specific surface area of 5 to 250 m 2 / g and a DOP oil supply amount of 50 to 100 ml / 100 g.
 瀝青炭粉砕物の平均粒径は、通常、0.1mm以下であり、好ましくは0.05mm以下、より好ましくは0.01mm以下である。平均粒径が0.1mmを超える瀝青炭粉砕物を使用しても、ゴム組成物のヒステリシスロスが充分に低減されず、低燃費性を充分に向上できない場合がある。また、本発明で製造するゴム組成物をインナーライナー用組成物として用いる場合には、平均粒径が0.1mmを超える瀝青炭粉砕物を使用しても、該組成物の耐空気透過性を充分に向上できない場合がある。 The average particle size of the bituminous coal pulverized product is usually 0.1 mm or less, preferably 0.05 mm or less, more preferably 0.01 mm or less. Even if a bituminous coal pulverized product having an average particle size exceeding 0.1 mm is used, the hysteresis loss of the rubber composition may not be sufficiently reduced, and the fuel efficiency may not be sufficiently improved. Further, when the rubber composition produced in the present invention is used as a composition for an inner liner, even if a bituminous coal pulverized product having an average particle size of more than 0.1 mm is used, the air permeability of the composition is sufficient. May not be improved.
 瀝青炭粉砕物の平均粒径の下限は特に限定されないが、好ましくは0.001mm以上である。0.001mm未満では、コストが高くなる傾向がある。なお、瀝青炭粉砕物の平均粒径は、JIS Z 8815-1994に準拠して測定される粒度分布から算出された質量基準の平均粒径である。 The lower limit of the average particle diameter of the bituminous coal pulverized product is not particularly limited, but is preferably 0.001 mm or more. If it is less than 0.001 mm, the cost tends to increase. The average particle size of the bituminous coal pulverized product is a mass-based average particle size calculated from a particle size distribution measured according to JIS Z 8815-1994.
 瀝青炭粉砕物の比重は、1.6以下が好ましく、1.5以下がより好ましく、1.3以下がさらに好ましい。比重が1.6を超える瀝青炭粉砕物を使用すると、ゴム組成物全体の比重が増加し、タイヤの低燃費性向上が充分に図れないおそれがある。瀝青炭粉砕物の比重は、0.5以上が好ましく、1.0以上がより好ましい。比重が0.5未満である瀝青炭粉砕物を使用すると、混練時の加工性が悪化するおそれがある。 The specific gravity of the bituminous coal pulverized product is preferably 1.6 or less, more preferably 1.5 or less, and even more preferably 1.3 or less. When a bituminous coal pulverized product having a specific gravity exceeding 1.6 is used, the specific gravity of the entire rubber composition increases, and there is a possibility that the fuel efficiency of the tire cannot be sufficiently improved. The specific gravity of the pulverized bituminous coal is preferably 0.5 or more, and more preferably 1.0 or more. If a bituminous coal pulverized product having a specific gravity of less than 0.5 is used, workability during kneading may be deteriorated.
 瀝青炭粉砕物を使用する場合、その量は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり、通常5重量部以上、好ましくは10重量部以上であり、通常70重量部以下、好ましくは60重量部以下である。この量が、5重量部未満であると、瀝青炭粉砕物による効果が充分に得られない場合があり、70重量部を超えると、混練時の加工性が悪化するおそれがある。 When using the bituminous coal pulverized product, the amount is usually 5 parts by weight or more, preferably 10 parts by weight or more, and usually 70 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Hereinafter, it is preferably 60 parts by weight or less. If this amount is less than 5 parts by weight, the effect of the pulverized bituminous coal may not be sufficiently obtained, and if it exceeds 70 parts by weight, the workability during kneading may be deteriorated.
 充填剤としてシリカを用いる場合には、シランカップリング剤等のシリカと結合可能な化合物を使用することが好ましい。該化合物の例としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)ジスルフィド、3-オクタノイルチオプロピルトリエトキシシラン(別名:「オクタンチオ酸S-[3-(トリエトキシシリル)プロピル]エステル」、例えば、ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)エトキシシリル}プロピル]エステル、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)メチルシリル}プロピル]エステル、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、(3-グリシドキシプロピル)トリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシランおよび3-イソシアナトプロピルトリエトキシシランが挙げられる。これらの中で、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、3-オクタノイルチオプロピルトリエトキシシラン(例えば、ジェネラルエレクトロニックシリコンズ社製「NXTシラン」)が、好ましい。 When silica is used as the filler, it is preferable to use a compound capable of binding to silica such as a silane coupling agent. Examples of the compound include bis (3-triethoxysilylpropyl) tetrasulfide (eg, “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg, “Si— 75 "), bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) disulfide, 3-octanoylthiopropyltriethoxysilane (also known as" octanethioic acid S- [3- ( Triethoxysilyl) propyl] ester ", for example," NXT silane "manufactured by General Electronic Silicons), octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) ethoxysilyl} propyl] ester , Octanethioic acid S- [3-{(2-methyl-1,3 Propane dialkoxy) methylsilyl} propyl] ester, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (methoxyethoxy) silane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxy Propyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Liethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-isocyanato Mention may be made of propyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane. Among these, bis (3-triethoxysilylpropyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa) ), 3-octanoylthiopropyltriethoxysilane (for example, “NXT silane” manufactured by General Electronic Silicons) is preferable.
 シリカと結合可能な化合物の添加時期は特に限定されないが、シリカと同時期にゴム成分に配合することが好ましい。シリカおよびシリカと結合可能な化合物を使用する場合、シリカと結合可能な化合物の量は、シリカ100重量部あたり、好ましくは2~10重量部、より好ましくは7~9重量部である。シリカと結合可能な化合物を配合する場合、その配合温度は80~200℃が好ましく、より好ましくは110~180℃である。 The addition timing of the compound capable of binding to silica is not particularly limited, but it is preferably blended with the rubber component at the same time as silica. When silica and a compound capable of binding to silica are used, the amount of the compound capable of binding to silica is preferably 2 to 10 parts by weight, more preferably 7 to 9 parts by weight per 100 parts by weight of silica. When a compound capable of binding to silica is blended, the blending temperature is preferably 80 to 200 ° C, more preferably 110 to 180 ° C.
 充填剤としてシリカを用いる場合には、シリカと結合可能な化合物に加えて、エタノール、ブタノール、オクタノール等の1価アルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ペンタエリスリトール、ポリエーテルポリオール等の多価アルコール;N-アルキルアミン;アミノ酸;分子末端がカルボキシ変性またはアミン変性された液状ポリブタジエン等を使用することも好ましい。 When silica is used as a filler, in addition to compounds capable of binding to silica, monohydric alcohols such as ethanol, butanol and octanol; ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, pentaerythritol, poly It is also preferable to use polyhydric alcohols such as ether polyols; N-alkylamines; amino acids; liquid polybutadienes whose molecular ends are carboxy-modified or amine-modified.
 加硫促進剤の例としては、ゴム工業便覧<第四版>(平成6年1月20日 社団法人 日本ゴム協会発行)の412~413頁に記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。 Examples of vulcanization accelerators include thiazole-based vulcanization accelerators described in pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994), Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.
 加硫促進剤の具体例としては、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)、2-メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)が挙げられる。 Specific examples of the vulcanization accelerator include N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS), and N, N-dicyclohexene. Xyl-2-benzothiazolylsulfenamide (DCBS), 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), and diphenylguanidine (DPG).
 充填剤としてカーボンブラックのみを用いる場合には、加硫促進剤として、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)またはジベンゾチアジルジスルフィド(MBTS)のいずれかと、ジフェニルグアニジン(DPG)とを併用することが好ましい。充填剤としてシリカとカーボンブラックとを併用する場合には、加硫促進剤として、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(BBS)、N,N-ジシクロへキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)またはジベンゾチアジルジスルフィド(MBTS)のいずれかと、ジフェニルグアニジン(DPG)とを併用することが好ましい。 When only carbon black is used as the filler, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfenamide (BBS) are used as vulcanization accelerators. ), N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG) are preferably used in combination. When silica and carbon black are used in combination as fillers, N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N-tert-butyl-2-benzothiazolylsulfene as vulcanization accelerators It is preferable to use either amide (BBS), N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS) or dibenzothiazyl disulfide (MBTS) and diphenylguanidine (DPG).
 硫黄成分と加硫促進剤との比率は特に制限されないが、硫黄成分/加硫促進剤の重量比は、好ましくは1/10~10/1、より好ましくは1/5~5/1、さらに好ましくは1/2~2/1である。また天然ゴムを主成分とするゴム部材において、耐熱性を向上させる方法である硫黄成分/加硫促進剤の比を1以下にするEV加硫は、耐熱性向上が特に必要な用途において好ましく用いられる。 The ratio of the sulfur component to the vulcanization accelerator is not particularly limited, but the weight ratio of the sulfur component / vulcanization accelerator is preferably 1/10 to 10/1, more preferably 1/5 to 5/1, A preferred range is 1/2 to 2/1. In addition, in a rubber member mainly composed of natural rubber, EV vulcanization, which is a method of improving heat resistance, in which the ratio of sulfur component / vulcanization accelerator is 1 or less, is preferably used in applications that particularly require improvement in heat resistance. It is done.
 加硫促進助剤としては、例えば、酸化亜鉛、ステアリン酸、シトラコンイミド化合物、アルキルフェノール・塩化硫黄縮合物、有機チオスルフェート化合物および式(III):
 R16-S-S-R17-S-S-R18   (III)
(式中、R17は、C2-10アルカンジイル基を示し、R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基を示す。)
で表される化合物が挙げられる。なお、本発明において酸化亜鉛は、加硫促進助剤の概念に包含され、上述の充填剤の概念には包含されない。
Examples of the vulcanization accelerating aid include zinc oxide, stearic acid, citraconimide compound, alkylphenol / sulfur chloride condensate, organic thiosulfate compound, and formula (III):
R 16 —S—S—R 17 —S—S—R 18 (III)
(Wherein R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represents a monovalent organic group containing a nitrogen atom.)
The compound represented by these is mentioned. In addition, in this invention, zinc oxide is included in the concept of a vulcanization | cure acceleration | stimulation adjuvant, and is not included in the concept of the above-mentioned filler.
 加硫促進助剤としては、酸化亜鉛、ステアリン酸、シトラコンイミド化合物が好ましく、酸化亜鉛、ステアリン酸がより好ましい。 As the vulcanization acceleration aid, zinc oxide, stearic acid, and citraconic imide compounds are preferable, and zinc oxide and stearic acid are more preferable.
 酸化亜鉛を使用する場合、その量は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり、好ましくは0.01~20重量部、より好ましくは0.1~15重量部、さらに好ましくは0.1~10重量部である。ステアリン酸を使用する場合、その量は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり、好ましくは0.01~15重量部、より好ましくは0.1~10重量部、さらに好ましくは0.1~5重量部である。 When zinc oxide is used, the amount thereof is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 15 parts by weight, per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. More preferably, it is 0.1 to 10 parts by weight. When stearic acid is used, the amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. More preferably, it is 0.1 to 5 parts by weight.
 シトラコンイミド化合物としては、熱的に安定であり、ゴム成分中への分散性に優れるという理由から、ビスシトラコンイミド類が好ましい。具体的には、1,2-ビスシトラコンイミドメチルベンゼン、1,3-ビスシトラコンイミドメチルベンゼン、1,4-ビスシトラコンイミドメチルベンゼン、1,6-ビスシトラコンイミドメチルベンゼン、2,3-ビスシトラコンイミドメチルトルエン、2,4-ビスシトラコンイミドメチルトルエン、2,5-ビスシトラコンイミドメチルトルエン、2,6-ビスシトラコンイミドメチルトルエン、1,2-ビスシトラコンイミドエチルベンゼン、1,3-ビスシトラコンイミドエチルベンゼン、1,4-ビスシトラコンイミドエチルベンゼン、1,6-ビスシトラコンイミドエチルベンゼン、2,3-ビスシトラコンイミドエチルトルエン、2,4-ビスシトラコンイミドエチルトルエン、2,5-ビスシトラコンイミドエチルトルエン、2,6-ビスシトラコンイミドエチルトルエンなどが挙げられる。 As the citraconimide compound, biscitraconimides are preferable because they are thermally stable and have excellent dispersibility in the rubber component. Specifically, 1,2-biscitraconimidomethylbenzene, 1,3-biscitraconimidomethylbenzene, 1,4-biscitraconimidomethylbenzene, 1,6-biscitraconimidomethylbenzene, 2,3-bis Citraconimidomethyltoluene, 2,4-biscitraconimidomethyltoluene, 2,5-biscitraconimidomethyltoluene, 2,6-biscitraconimidomethyltoluene, 1,2-biscitraconimidoethylbenzene, 1,3-biscitracon Imidoethylbenzene, 1,4-biscitraconimidoethylbenzene, 1,6-biscitraconimidoethylbenzene, 2,3-biscitraconimidoethyltoluene, 2,4-biscitraconimidoethyltoluene, 2,5-biscitraconimidoethyltoluene Emissions, such as 2,6-biscitraconimide ethyltoluene and the like.
 シトラコンイミド化合物のなかでも、熱的に特に安定であり、ゴム成分中への分散性に特に優れ、高硬度(Hs)の加硫ゴム組成物を得ることができる(リバージョン制御)という理由から、下記式で表される1,3-ビスシトラコンイミドメチルベンゼンが好ましい。 Among the citraconimide compounds, it is particularly stable thermally, particularly excellent in dispersibility in the rubber component, and can provide a vulcanized rubber composition having high hardness (Hs) (reversion control). 1,3-biscitraconimidomethylbenzene represented by the following formula is preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 加硫促進助剤として、高硬度(Hs)の加硫ゴム組成物を得ることができるという理由から、式(IV): Since a vulcanized rubber composition having high hardness (Hs) can be obtained as a vulcanization acceleration aid, the formula (IV):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、nは0~10の整数であり、Xは2~4の整数であり、R19はC5-12アルキル基である。]
で表されるアルキルフェノール・塩化硫黄縮合物を使用することが好ましい。
[Wherein n is an integer of 0 to 10, X is an integer of 2 to 4, and R 19 is a C 5-12 alkyl group. ]
It is preferable to use an alkylphenol-sulfur chloride condensate represented by
 アルキルフェノール・塩化硫黄縮合物(IV)のゴム成分中への分散性が良いという理由から、nは、好ましくは1~9の整数である。 N is preferably an integer of 1 to 9 because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component is good.
 Xが4を超えると、アルキルフェノール・塩化硫黄縮合物(IV)が熱的に不安定となる傾向があり、Xが1であるとアルキルフェノール・塩化硫黄縮合物(IV)中の硫黄含有率(硫黄の重量)が少ない。高硬度を効率よく発現させることができる(リバージョン抑制)という理由から、Xは2であることが好ましい。 When X exceeds 4, the alkylphenol-sulfur chloride condensate (IV) tends to become thermally unstable. When X is 1, the sulfur content (sulfur in the alkylphenol-sulfur chloride condensate (IV)) Less weight). X is preferably 2 for the reason that high hardness can be expressed efficiently (reversion suppression).
 R19は、C5-12アルキル基である。ゴム成分中へのアルキルフェノール・塩化硫黄縮合物(IV)の分散性が良いという理由から、R19は、好ましくはC6-9アルキル基である。 R 19 is a C 5-12 alkyl group. R 19 is preferably a C 6-9 alkyl group because the dispersibility of the alkylphenol / sulfur chloride condensate (IV) in the rubber component is good.
 アルキルフェノール・塩化硫黄縮合物(IV)の具体例として、nが0~10であり、Xが2であり、R19がオクチル基であり、硫黄含有率が24重量%である田岡化学工業社製のタッキロールV200が挙げられる。 As a specific example of the alkylphenol / sulfur chloride condensate (IV), n is 0 to 10, X is 2, R 19 is an octyl group, and the sulfur content is 24% by weight. The tack roll V200 is mentioned.
 加硫促進助剤として、高硬度(Hs)の加硫ゴム組成物が得られる(リバージョン抑制)という理由から、式(V):
 HOS-S-(CH-S-SOH   (V)
[式中、mは3~10の整数である。]
で表される有機チオスルフェート化合物の塩(以下「有機チオスルフェート化合物塩(V)」と記載することがある。)を使用することが好ましい。結晶水を含有する有機チオスルフェート化合物塩(V)を使用してもよい。有機チオスルフェート化合物塩(V)としては、例えば、リチウム塩、カリウム塩、ナトリウム塩、マグネシウム塩、カルシウム塩、バリウム塩、亜鉛塩、ニッケル塩、コバルト塩等が挙げられ、カリウム塩、ナトリウム塩が好ましい。
As a vulcanization acceleration aid, a vulcanized rubber composition having high hardness (Hs) can be obtained (reversion suppression).
HO 3 S—S— (CH 2 ) m —S—SO 3 H (V)
[Wherein, m is an integer of 3 to 10. ]
It is preferable to use a salt of an organic thiosulfate compound represented by the formula (hereinafter sometimes referred to as “organic thiosulfate compound salt (V)”). An organic thiosulfate compound salt (V) containing crystal water may be used. Examples of the organic thiosulfate compound salt (V) include lithium salt, potassium salt, sodium salt, magnesium salt, calcium salt, barium salt, zinc salt, nickel salt, cobalt salt, etc., potassium salt, sodium salt Is preferred.
 mは、3~10の整数であり、好ましくは3~6の整数である。mが2以下では、充分な耐熱疲労性が得られない傾向があり、mが11以上では、有機チオスルフェート化合物塩(V)による耐熱疲労性の改善効果が充分に得られない場合がある。 M is an integer of 3 to 10, preferably an integer of 3 to 6. When m is 2 or less, there is a tendency that sufficient heat fatigue resistance cannot be obtained. When m is 11 or more, the effect of improving the heat fatigue resistance by the organic thiosulfate compound salt (V) may not be sufficiently obtained. .
 有機チオスルフェート化合物塩(V)としては、常温常圧下で安定であるという観点から、そのナトリウム塩1水和物、ナトリウム塩2水和物が好ましく、コストの観点からチオ硫酸ナトリウムから得られる有機チオスルフェート化合物塩(V)がより好ましく、下記式で表される1,6-ヘキサメチレンジチオ硫酸ナトリウム・2水和物がさらに好ましい。 The organic thiosulfate compound salt (V) is preferably a sodium salt monohydrate or a sodium salt dihydrate from the viewpoint of being stable at normal temperature and pressure, and obtained from sodium thiosulfate from the viewpoint of cost. The organic thiosulfate compound salt (V) is more preferable, and sodium 1,6-hexamethylenedithiosulfate dihydrate represented by the following formula is more preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ゴム成分中へ良く分散すること、アルキルフェノール・塩化硫黄縮合物(IV)と併用した場合にアルキルフェノール・塩化硫黄縮合物(IV)の-S-架橋の中間に挿入されて、アルキルフェノール・塩化硫黄縮合物(IV)とのハイブリッド架橋を形成することが可能であるという理由から、式(III):
 R16-S-S-R17-S-S-R18   (III)
(式中、R17はC2-10アルカンジイル基を示し、R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基を示す。)
で表される化合物を、加硫促進助剤として使用することが好ましい。
Disperse well in the rubber component and, when used in combination with alkylphenol / sulfur chloride condensate (IV), it is inserted in the middle of -S X -crosslinking of alkylphenol / sulfur chloride condensate (IV) to condense alkylphenol / sulfur chloride Because it is possible to form a hybrid bridge with the product (IV), the formula (III):
R 16 —S—S—R 17 —S—S—R 18 (III)
(Wherein R 17 represents a C 2-10 alkanediyl group, and R 16 and R 18 each independently represents a monovalent organic group containing a nitrogen atom.)
It is preferable to use the compound represented by these as a vulcanization | cure acceleration | stimulation adjuvant.
 R17は、C2-10アルカンジイル基、好ましくはC4-8アルカンジイル基であり、より好ましくは直鎖状のC4-8アルカンジイル基である。R17は、直鎖状であることが好ましい。R17の炭素数が1以下では、熱的な安定性が悪い場合がある。また、R17の炭素数が11以上では、加硫促進助剤を介したポリマー間の距離が長くなり、加硫促進助剤を添加する効果が得られない場合がある。 R 17 is a C 2-10 alkanediyl group, preferably a C 4-8 alkanediyl group, and more preferably a linear C 4-8 alkanediyl group. R 17 is preferably linear. When the carbon number of R 17 is 1 or less, thermal stability may be poor. If the carbon number of R 17 is 11 or more, the distance between the polymers via the vulcanization accelerating aid becomes long, and the effect of adding the vulcanization accelerating aid may not be obtained.
 R16およびR18は、それぞれ独立に、窒素原子を含む1価の有機基である。窒素原子を含む1価の有機基としては、芳香環を少なくとも1つ含むものが好ましく、芳香環および=N-C(=S)-基を含むものがさらに好ましい。R16およびR18は、それぞれ同一でも、異なっていてもよいが、製造の容易さなどの理由から、同一であることが好ましい。 R 16 and R 18 are each independently a monovalent organic group containing a nitrogen atom. As the monovalent organic group containing a nitrogen atom, those containing at least one aromatic ring are preferred, and those containing an aromatic ring and a ═N—C (═S) — group are more preferred. R 16 and R 18 may be the same or different, but are preferably the same for reasons such as ease of production.
 化合物(III)としては、例えば、1,2-ビス(ジベンジルチオカルバモイルジチオ)エタン、1,3-ビス(ジベンジルチオカルバモイルジチオ)プロパン、1,4-ビス(ジベンジルチオカルバモイルジチオ)ブタン、1,5-ビス(ジベンジルチオカルバモイルジチオ)ペンタン、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン、1,7-ビス(ジベンジルチオカルバモイルジチオ)ヘプタン、1,8-ビス(ジベンジルチオカルバモイルジチオ)オクタン、1,9-ビス(ジベンジルチオカルバモイルジチオ)ノナン、1,10-ビス(ジベンジルチオカルバモイルジチオ)デカンなどが挙げられる。なかでも、熱的に安定であり、ゴム成分中への分散性に優れるという理由から、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサンが好ましい。 Examples of the compound (III) include 1,2-bis (dibenzylthiocarbamoyldithio) ethane, 1,3-bis (dibenzylthiocarbamoyldithio) propane, 1,4-bis (dibenzylthiocarbamoyldithio) butane 1,5-bis (dibenzylthiocarbamoyldithio) pentane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane, 1,7-bis (dibenzylthiocarbamoyldithio) heptane, 1,8-bis (di Examples include benzylthiocarbamoyldithio) octane, 1,9-bis (dibenzylthiocarbamoyldithio) nonane, 1,10-bis (dibenzylthiocarbamoyldithio) decane. Of these, 1,6-bis (dibenzylthiocarbamoyldithio) hexane is preferred because it is thermally stable and has excellent dispersibility in the rubber component.
 化合物(III)の市販品としては、例えば、バイエル社製のVULCUREN TRIAL PRODUCT KA9188、VULCUREN VP KA9188(1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン)が挙げられる。 Examples of commercially available products of compound (III) include VULCUREN TRIAL PRODUCT KA9188 and VULCUREN VP KA9188 (1,6-bis (dibenzylthiocarbamoyldithio) hexane) manufactured by Bayer.
 ゴム組成物は、レゾルシノール等の有機化合物、レゾルシノール樹脂、変性レゾルシノール樹脂、クレゾール樹脂、変性クレゾール樹脂、フェノール樹脂および変性フェノール樹脂等の樹脂を含んでよい。レゾルシノールやこれらの樹脂を含むことにより、加硫ゴム組成物の破断時伸び、複素弾性率を向上させることができる。また、ゴム組成物をコードと接触するゴム製品の製造に使用する場合、レゾルシノールや樹脂を含むことにより、コードとの接着性を高めることができる。 The rubber composition may contain an organic compound such as resorcinol, a resin such as a resorcinol resin, a modified resorcinol resin, a cresol resin, a modified cresol resin, a phenol resin, and a modified phenol resin. By including resorcinol and these resins, the elongation at break and the complex elastic modulus of the vulcanized rubber composition can be improved. Moreover, when using a rubber composition for manufacture of the rubber product which contacts a code | cord | chord, adhesiveness with a code | cord | chord can be improved by including resorcinol and resin.
 レゾルシノールとしては、例えば、住友化学社製のレゾルシノール等が挙げられる。レゾルシノール樹脂としては、例えば、レゾルシノール・ホルムアルデヒド縮合物が挙げられる。変性レゾルシノール樹脂としては、例えば、レゾルシノール樹脂の繰り返し単位の一部をアルキル化したものが挙げられる。具体的には、インドスペック社製のペナコライト樹脂B-18-S、B-20、田岡化学工業社製のスミカノール620、ユニロイヤル社製のR-6、スケネクタディー化学社製のSRF1501、アッシュランド社製のArofene7209等が挙げられる。 Examples of resorcinol include resorcinol manufactured by Sumitomo Chemical Co., Ltd. Examples of the resorcinol resin include resorcinol / formaldehyde condensate. Examples of the modified resorcinol resin include those obtained by alkylating a part of the resorcinol resin repeating unit. Specifically, Penacolite resins B-18-S and B-20 manufactured by India Spec, Sumikanol 620 manufactured by Taoka Chemical Industries, R-6 manufactured by Uniroyal, SRF1501 manufactured by Schenectady Chemical, Ash Examples include Arofine 7209 manufactured by Land.
 クレゾール樹脂としては、例えば、クレゾール・ホルムアルデヒド縮合物が挙げられる。変性クレゾール樹脂としては、例えば、クレゾール樹脂の末端のメチル基をヒドロキシ基に変性したもの、クレゾール樹脂の繰り返し単位の一部をアルキル化したものが挙げられる。具体的には、田岡化学工業社製のスミカノール610、住友ベークライト社製のPR-X11061等が挙げられる。 Examples of the cresol resin include a cresol / formaldehyde condensate. Examples of the modified cresol resin include those obtained by modifying the terminal methyl group of the cresol resin to a hydroxy group, and those obtained by alkylating some of the repeating units of the cresol resin. Specifically, Sumikanol 610 manufactured by Taoka Chemical Industry Co., Ltd., PR-X11061 manufactured by Sumitomo Bakelite Co., Ltd., and the like can be given.
 フェノール樹脂としては、例えば、フェノール・ホルムアルデヒド縮合物が挙げられる。また、変性フェノール樹脂としては、フェノール樹脂をカシューオイル、トールオイル、アマニ油、各種動植物油、不飽和脂肪酸、ロジン、アルキルベンゼン樹脂、アニリン、メラミンなどを用いて変性した樹脂が挙げられる。 Examples of phenolic resins include phenol / formaldehyde condensates. Examples of modified phenolic resins include resins obtained by modifying phenolic resins with cashew oil, tall oil, linseed oil, various animal and vegetable oils, unsaturated fatty acids, rosin, alkylbenzene resins, aniline, melamine, and the like.
 その他の樹脂としては、例えば、住友化学社製の「スミカノール507AP」等のメトキシ化メチロールメラミン樹脂;日鉄化学社製のクマロン樹脂NG4(軟化点81~100℃)、神戸油化学工業社製の「プロセスレジンAC5」(軟化点75℃)等のクマロン・インデン樹脂;テルペン樹脂、テルペン・フェノール樹脂、芳香族変性テルペン樹脂等のテルペン系樹脂;三菱瓦斯化学社製の「ニカノール(登録商標)A70」(軟化点70~90℃)等のロジン誘導体;水素添加ロジン誘導体;ノボラック型アルキルフェノール系樹脂;レゾール型アルキルフェノール系樹脂;C5系石油樹脂;液状ポリブタジエンが挙げられる。 Examples of other resins include methoxylated methylol melamine resins such as “SUMIKANOL 507AP” manufactured by Sumitomo Chemical Co., Ltd .; Coumarone resin NG4 (softening point 81-100 ° C.) manufactured by Nippon Steel Chemical Co., Ltd., manufactured by Kobe Oil Chemical Co., Ltd. Coumarone-indene resin such as “Process Resin AC5” (softening point 75 ° C.); Terpene resin such as terpene resin, terpene / phenol resin, and aromatic modified terpene resin; “Nicanol® A70” manufactured by Mitsubishi Gas Chemical Company ”(Softening point 70 to 90 ° C.) and the like; hydrogenated rosin derivatives; novolac alkylphenol resins; resol alkylphenol resins; C5 petroleum resins; liquid polybutadiene.
 粘弾性改善剤としては、例えば、N,N’-ビス(2-メチル-2-ニトロプロピル)-1,6-ヘキサンジアミン(例えば、住友化学社製「スミファイン(登録商標)1162」)、特開昭63-23942号公報記載のジチオウラシル化合物、田岡化学工業社製「タッキロール(登録商標)AP」、「タッキロール(登録商標)V-200」、特開2009-138148号公報記載のアルキルフェノール・塩化硫黄縮合物、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ビス(3-ジエトキシメチルシリルプロピル)ジスルフィド、オクタンチオ酸S-[3-(トリエトキシシリル)プロピル]エステル、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)エトキシシリル}プロピル]エステル、オクタンチオ酸S-[3-{(2-メチル-1,3-プロパンジアルコキシ)メチルシリル}プロピル]エステル、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、(3-グリシドキシプロピル)トリエトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン(例えば、バイエル社製「KA9188」)、1,6-ヘキサメチレンジチオサルフェート2ナトリウム塩2水和物、1,3-ビス(シトラコンイミドメチル)ベンゼン(例えば、フレキシス社製「パーカリンク900」)、1-ベンゾイル-2-フェニルヒドラジド、1-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、特開2004-91505号公報記載の1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド等のカルボン酸ヒドラジド誘導体、特開2000-190704号公報記載の3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジフェニルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、特開2006-328310号公報記載のビスメルカプトオキサジアゾール化合物、特開2009-40898号公報記載のピリチオン塩化合物、特開2006-249361号公報記載の水酸化コバルト化合物が挙げられる。 Examples of the viscoelasticity improver include N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (for example, “Sumifine (registered trademark) 1162” manufactured by Sumitomo Chemical Co., Ltd.), Dithiouracil compounds described in JP-A-63-23942, “Tactrol (registered trademark) AP”, “Tactrol (registered trademark) V-200” manufactured by Taoka Chemical Co., Ltd., alkylphenols described in JP-A-2009-138148, Sulfur chloride condensate, bis (3-triethoxysilylpropyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa) ), Bis (3-diethoxymethylsilylpropyl) tetrasulfide, bis (3-diethoxymethylsilylpropyl) Pyr) disulfide, octanethioic acid S- [3- (triethoxysilyl) propyl] ester, octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) ethoxysilyl} propyl] ester, octanethioic acid S- [3-{(2-methyl-1,3-propanedialkoxy) methylsilyl} propyl] ester, methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, Ethyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (methoxyethoxy) sila , Phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, (3-glycidoxypropyl) trimethoxysilane, (3-glycine Sidoxypropyl) triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane , 3-isocyana Topropyltriethoxysilane, 1,6-bis (dibenzylthiocarbamoyldithio) hexane (for example, “KA9188” manufactured by Bayer), 1,6-hexamethylenedithiosulfate disodium salt dihydrate, 1,3- Bis (citraconimidomethyl) benzene (for example, “Parkalink 900” manufactured by Flexis), 1-benzoyl-2-phenylhydrazide, 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 3 -Hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide described in JP-A-2004-91505, 3 -Hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide, 1 Hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′ Carboxylic acid hydrazide derivatives such as-(2-furylmethylene) -2-naphthoic acid hydrazide, 3-hydroxy-N '-(2-furylmethylene) -2-naphthoic acid hydrazide, and the like described in JP 2000-190704 A -Hydroxy-N '-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N'-(1,3-diphenylethylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ' -(1-methylethylidene) -2-naphthoic acid hydrazide, bismercaptooxadi described in JP-A-2006-328310 Tetrazole compounds, pyrithione salt compounds described in JP-2009-40898, include cobalt hydroxide compounds described in JP-A No. 2006-249361.
 中でも、N,N’-ビス(2-メチル-2-ニトロプロピル)-1,6-ヘキサンジアミン(例えば、住友化学社製「スミファイン(登録商標)1162」)、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、デグッサ社製「Si-69」)、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、デグッサ社製「Si-75」)、1,6-ビス(ジベンジルチオカルバモイルジチオ)ヘキサン(例えば、バイエル社製「KA9188」)、ヘキサメチレンビスチオサルフェート2ナトリウム塩2水和物、1,3-ビス(シトラコンイミドメチル)ベンゼン(例えば、フレキシス社製「パーカリンク900」)、田岡化学工業社製「タッキロール(登録商標)AP」、「タッキロール(登録商標)V-200」が好ましい。 Among them, N, N′-bis (2-methyl-2-nitropropyl) -1,6-hexanediamine (for example, “Sumifine® 1162” manufactured by Sumitomo Chemical Co., Ltd.), bis (3-triethoxysilyl) Propyl) tetrasulfide (eg “Si-69” manufactured by Degussa), bis (3-triethoxysilylpropyl) disulfide (eg “Si-75” manufactured by Degussa), 1,6-bis (dibenzylthiocarbamoyl) Dithio) hexane (for example, “KA9188” manufactured by Bayer), hexamethylene bisthiosulfate disodium salt dihydrate, 1,3-bis (citraconimidomethyl) benzene (for example, “Parkalink 900” manufactured by Flexis) "Tacchiroll (registered trademark) AP", "Tacchiroll (registered trademark) V-20" manufactured by Taoka Chemical Industries, Ltd. "It is preferable.
 老化防止剤としては、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の436~443頁に記載されるものが挙げられる。老化防止剤としては、N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン(略称「6PPD」、例えば住友化学社製「アンチゲン(登録商標)6C」)、アニリンとアセトンの反応生成物(略称「TMDQ」)、ポリ(2,2,4-トリメチル-1,2-)ジヒドロキノリン)(例えば、松原産業社製「アンチオキシダントFR」)、合成ワックス(パラフィンワックス等)、植物性ワックスが好ましく用いられる。 Examples of the anti-aging agent include those described on pages 436 to 443 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. Anti-aging agents include N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (abbreviation “6PPD”, for example, “Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical), reaction of aniline and acetone. Products (abbreviated as “TMDQ”), poly (2,2,4-trimethyl-1,2-) dihydroquinoline) (for example, “Antioxidant FR” manufactured by Matsubara Sangyo Co., Ltd.), synthetic wax (paraffin wax etc.) A wax is preferably used.
 老化防止剤を使用する場合、その量は、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり、好ましくは0.01~15重量部、より好ましくは0.1~10重量部、さらに好ましくは0.1~5重量部である。 When an anti-aging agent is used, the amount is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 10 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Parts, more preferably 0.1 to 5 parts by weight.
 オイルとしては、例えば、プロセスオイル、植物油脂等が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルが挙げられる。市販品としては、例えば、アロマチックオイル(コスモ石油社製「NC-140」)、プロセスオイル(出光興産社製「ダイアナプロセスPS32」)が挙げられる。 Examples of the oil include process oil and vegetable oil. Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil. Examples of commercially available products include aromatic oil (“NC-140” manufactured by Cosmo Oil Co., Ltd.) and process oil (“Diana Process PS32” manufactured by Idemitsu Kosan Co., Ltd.).
 ワックスとしては、大内新興化学工業社製の「サンノック(登録商標)ワックス」、日本精蝋社製の「OZOACE-0355」等が挙げられる。 Examples of the wax include “Sannok (registered trademark) wax” manufactured by Ouchi Shinsei Chemical Co., Ltd. and “OZOACE-0355” manufactured by Nippon Seiwa Co., Ltd.
 しゃく解剤としては、ゴム分野において通常用いられるものであれば特に限定されるものではないが、例えば、日本ゴム協会編「ゴム工業便覧<第四版>」の446~449頁に記載される、芳香族メルカプタン系しゃく解剤、芳香族ジスルフィド系しゃく解剤、芳香族メルカプタン金属塩系しゃく解剤が挙げられる。中でも、ジキシリルジスルフィド、o,o’-ジベンズアミドジフェニルジスルフィド(大内新興化学工業社製「ノクタイザーSS」)が好ましい。しゃく解剤は、1種のみを使用してもよく、2種以上を併用してもよい。 The peptizer is not particularly limited as long as it is usually used in the rubber field. For example, it is described in pages 446 to 449 of “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. And aromatic mercaptan peptizers, aromatic disulfide peptizers, and aromatic mercaptan metal salt peptizers. Of these, dixylyl disulfide and o, o'-dibenzamide diphenyl disulfide ("Noctizer SS" manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) are preferable. Only one type of peptizer may be used, or two or more types may be used in combination.
 しゃく解剤の使用量は、特に限定されるものではないが、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり0.01~1重量部が好ましく、0.05~0.5重量部がより好ましい。 The amount of peptizer used is not particularly limited, but is preferably 0.01 to 1 part by weight, preferably 0.05 to 0, per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. More preferably, 5 parts by weight.
 リターダーとしては、無水フタル酸、安息香酸、サリチル酸、N-ニトロソジフェニルアミン、N-(シクロヘキシルチオ)フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール ジホスファイト等が例示され、N-(シクロヘキシルチオ)フタルイミド(CTP)が好ましく用いられる。 Examples of the retarder include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) phthalimide (CTP), sulfonamide derivatives, diphenylurea, bis (tridecyl) pentaerythritol diphosphite, and the like. (Cyclohexylthio) phthalimide (CTP) is preferably used.
 リターダーの使用量は特に限定されるものではないが、本発明で製造されるゴム組成物が含有するゴム成分100重量部あたり0.01~1重量部が好ましく、0.05~0.5重量部がより好ましい。 The amount of the retarder used is not particularly limited, but is preferably 0.01 to 1 part by weight, preferably 0.05 to 0.5 parts by weight per 100 parts by weight of the rubber component contained in the rubber composition produced in the present invention. Part is more preferred.
 本発明では、式:-O-(CH-CH-O)-H[式中、qは1以上の整数である。]で表わされる構造を有するオキシエチレンユニットを有する化合物を使用してもよい。ここで、上記式中、qは、2以上が好ましく、3以上がより好ましい。また、qは16以下が好ましく、14以下がより好ましい。qが17以上では、ゴム成分との相溶性および補強性が低下する傾向がある。 In the present invention, the formula: —O— (CH 2 —CH 2 —O) q —H [wherein q is an integer of 1 or more. You may use the compound which has an oxyethylene unit which has a structure represented by this. Here, in the above formula, q is preferably 2 or more, and more preferably 3 or more. Moreover, q is preferably 16 or less, and more preferably 14 or less. When q is 17 or more, the compatibility with the rubber component and the reinforcing property tend to decrease.
 オキシエチレンユニットを有する化合物中のオキシエチレンユニットの位置は、主鎖でも、末端でも、側鎖でもよい。得られるタイヤ表面における静電気の蓄積防止効果の持続性および電気抵抗の低減の観点から、オキシエチレンユニットを有する化合物の中でも、少なくとも側鎖にオキシエチレンユニットを有する化合物が好ましい。 The position of the oxyethylene unit in the compound having an oxyethylene unit may be a main chain, a terminal, or a side chain. Of the compounds having oxyethylene units, a compound having oxyethylene units at least in the side chain is preferred from the viewpoint of sustaining the effect of preventing static electricity accumulation on the obtained tire surface and reducing electric resistance.
 主鎖にオキシエチレンユニットを有する化合物としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、モノエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンスチレン化アルキルエーテル、ポリオキシエチレンアルキルアマイドなどが挙げられる。 Examples of the compound having an oxyethylene unit in the main chain include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, monoethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene Examples thereof include alkyl ethers, polyoxyethylene alkylamines, polyoxyethylene styrenated alkyl ethers, and polyoxyethylene alkyl amides.
 少なくとも側鎖にオキシエチレンユニットを有する化合物を使用する場合、オキシエチレンユニットの個数は、主鎖を構成する炭素数100個当たり4個以上が好ましく、8個以上がより好ましい。オキシエチレンユニットの個数が3個以下では、電気抵抗が増大する傾向がある。また、オキシエチレンユニットの個数は12個以下が好ましく、10個以下がより好ましい。オキシエチレンユニットの個数が13個以上では、ゴム成分との相溶性および補強性が低下する傾向がある。 When using a compound having an oxyethylene unit at least in the side chain, the number of oxyethylene units is preferably 4 or more, more preferably 8 or more per 100 carbon atoms constituting the main chain. When the number of oxyethylene units is 3 or less, the electrical resistance tends to increase. The number of oxyethylene units is preferably 12 or less, and more preferably 10 or less. When the number of oxyethylene units is 13 or more, the compatibility with the rubber component and the reinforcing property tend to be lowered.
 少なくとも側鎖にオキシエチレンユニットを有する化合物を使用する場合、その主鎖としては、主としてポリエチレン、ポリプロピレンまたはポリスチレンから構成されるものが好ましい。 When using a compound having an oxyethylene unit at least in the side chain, the main chain is preferably composed mainly of polyethylene, polypropylene or polystyrene.
<工程1>
 本発明の製造方法は、化合物(I)等と、ゴム成分と、カーボンブラックとを混練して、混練物を調製する工程1を含む。化合物(I)等、ゴム成分およびカーボンブラックは、いずれも、工程1で使用量の全量を混練してもよく、それらを分割して、それらの一部を工程1で混練し、次いで、それらの残りと工程2で得られた冷却混練物とを工程3で混練してもよい。但し、化合物(I)等による損失係数(tanδ)の低減効果を充分に発揮させるために、化合物(I)等およびカーボンブラックの両方とも、それら使用量の全量を工程1で混練することが好ましい。
<Step 1>
The production method of the present invention includes step 1 of preparing a kneaded product by kneading compound (I) and the like, a rubber component, and carbon black. The rubber component and carbon black such as compound (I) may all be kneaded in the total amount used in step 1, and they are divided and part of them is kneaded in step 1, and then The remaining kneaded product and the cooled kneaded product obtained in step 2 may be kneaded in step 3. However, in order to sufficiently exhibit the effect of reducing the loss factor (tan δ) due to the compound (I) or the like, it is preferable to knead the entire amount of the compound (I) and the like and carbon black in step 1 in order to sufficiently exhibit the effect of reducing the loss factor (tan δ). .
 工程1における混練には、例えば、バンバリーミキサーを含むインターナルミキサー、オープン型ニーダー、加圧式ニーダー、押出機、および射出成型機等を使用することができる。 For the kneading in Step 1, for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, or the like can be used.
 工程1における混練の回転速度は、好ましくは5rpm以上、より好ましくは10rpm以上、さらに好ましくは10~100rpm、特に好ましくは10~90rpmである。工程1における混練時間は、好ましくは1分以上、より好ましくは1~10分、さらに好ましくは2~8分である。工程1では、まず低い回転速度(例えば、10rpm)で混練し、次いで回転速度を上げて(例えば、50rpm)、混練を続けてもよい。工程1における混練開始時の装置設定温度は、好ましくは100~180℃、より好ましくは120~180℃、さらに好ましくは140~180℃、特に好ましくは150~170℃である。工程1における混練後の混練物の排出温度は、好ましくは150℃以上、より好ましくは155~200℃、さらに好ましくは160~185℃である。 The rotational speed of kneading in step 1 is preferably 5 rpm or more, more preferably 10 rpm or more, further preferably 10 to 100 rpm, and particularly preferably 10 to 90 rpm. The kneading time in step 1 is preferably 1 minute or more, more preferably 1 to 10 minutes, and further preferably 2 to 8 minutes. In step 1, the kneading may be continued by first kneading at a low rotation speed (for example, 10 rpm) and then increasing the rotation speed (for example, 50 rpm). The apparatus set temperature at the start of kneading in step 1 is preferably 100 to 180 ° C., more preferably 120 to 180 ° C., still more preferably 140 to 180 ° C., and particularly preferably 150 to 170 ° C. The discharge temperature of the kneaded product after kneading in step 1 is preferably 150 ° C. or higher, more preferably 155 to 200 ° C., and further preferably 160 to 185 ° C.
<工程2>
 本発明の製造方法は、得られた混練物に冷却操作を施して、冷却混練物を調製する工程2を含む。工程2において、混練物を、好ましくは120℃以下、より好ましくは100℃以下、さらに好ましくは80℃以下に冷却する。冷却後の混練物の温度下限に特に限定はないが、冷却後の混練物の温度は、好ましくは0℃以上、より好ましくは5℃以上である。
<Step 2>
The production method of the present invention includes step 2 of preparing the cooled kneaded product by subjecting the obtained kneaded product to a cooling operation. In step 2, the kneaded product is preferably cooled to 120 ° C. or lower, more preferably 100 ° C. or lower, and still more preferably 80 ° C. or lower. The temperature lower limit of the kneaded product after cooling is not particularly limited, but the temperature of the kneaded product after cooling is preferably 0 ° C. or higher, more preferably 5 ° C. or higher.
 冷却操作としては、例えば、(i)混練物の強制冷却(例えば、水冷または強制空冷)すること、(ii)例えばオープンロール等を使用して、混練物をシート状またはボード状に加工すること(なお、オープンロール等と接触する際に混練物は冷却される)、(iii)混練物をシート状またはボード状に加工した後に、シート状またはボード状混練物を強制冷却または放冷すること;等が挙げられる。混練物を効率的に均一に冷却するために、冷却操作が、混練物をシート状またはボード状に加工することを含むことが好ましい。シート状またはボード状に加工された混練物の厚さは、好ましくは1~500mm、より好ましくは1~400mm、さらに好ましくは1~100mmである。 Examples of the cooling operation include (i) forced cooling of the kneaded product (for example, water cooling or forced air cooling), and (ii) processing the kneaded product into a sheet or board using, for example, an open roll. (The kneaded product is cooled when it comes into contact with an open roll or the like), (iii) After the kneaded product is processed into a sheet or board, the sheet or board kneaded product is forcibly cooled or allowed to cool. And the like. In order to efficiently and uniformly cool the kneaded material, it is preferable that the cooling operation includes processing the kneaded material into a sheet shape or a board shape. The thickness of the kneaded material processed into a sheet or board is preferably 1 to 500 mm, more preferably 1 to 400 mm, and still more preferably 1 to 100 mm.
 本発明における冷却操作には、得られた混練物に上述のような操作を施さずに、単に放置して自然に温度が低下すること(即ち、放冷)は含まれない。なお、特許文献2の段落[0057]には、まず、ゴム成分、カーボンブラック、および特許文献2に記載の化合物I(即ち、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウム)をバンバリーミキサーで混練し(第1混練)、排出して、マスターバッチを調製し、次いで該マスターバッチと他の成分とをバンバリーミキサーで混練する(第2混練)こと、即ち、2段階の混練が記載されている。しかし、特許文献2には、第1混練で得られたマスターバッチに冷却操作を施すことは記載されていない。 The cooling operation in the present invention does not include that the obtained kneaded product is simply left to stand and the temperature is naturally lowered (ie, allowed to cool) without performing the above-described operation. In paragraph [0057] of Patent Document 2, first, the rubber component, carbon black, and compound I described in Patent Document 2 (ie, (2Z) -4-[(4-aminophenyl) amino] -4 -Oxo-2-butenoate) is kneaded with a Banbury mixer (first kneading) and discharged to prepare a master batch, and then the master batch and other components are kneaded with a Banbury mixer (second kneading). That is, two-stage kneading is described. However, Patent Document 2 does not describe performing a cooling operation on the master batch obtained by the first kneading.
<工程3>
 本発明の製造方法は、得られた冷却混練物を混練する工程3を含む。本発明の製造方法では、化合物(I)等、ゴム成分およびカーボンブラックを含有する混練物を一旦冷却し、得られた冷却混練物を混練することによって、ゴム成分がせん断され(ゴム成分の低分子量化)、その結果、化合物(I)等によるゴム組成物の粘度増大が抑制されると推定される。但し、本発明はこのような推定に限定されない。
<Step 3>
The manufacturing method of this invention includes the process 3 which knead | mixes the obtained cooling kneaded material. In the production method of the present invention, the kneaded product containing the rubber component and carbon black, such as compound (I), is once cooled, and the resulting kneaded kneaded product is kneaded to shear the rubber component (low rubber component). As a result, it is presumed that the increase in viscosity of the rubber composition due to the compound (I) or the like is suppressed. However, the present invention is not limited to such estimation.
 工程3における混練には、例えば、バンバリーミキサーを含むインターナルミキサー、オープン型ニーダー、加圧式ニーダー、押出機、および射出成型機等を使用することができる。 For the kneading in step 3, for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, and an injection molding machine can be used.
 工程3における混練を、回転速度を変更して行うことが好ましい。ゴム成分のせん断を充分に行うため、工程3における最初の混練の回転速度は、好ましくは40~100rpm、より好ましくは45~90rpm、さらに好ましくは46~80rpmであり、この最初の混練時間は、好ましくは0.5~10分、より好ましくは0.5~8分、さらに好ましくは0.5~6分である。このような回転速度で最初の混練を行い、ゴム成分を充分にせん断した後は、ゴム成分と他の成分とを充分に混練するため、回転速度を下げて(例えば、10rpm)、混練を行ってもよく、その後に回転速度を再度上げて(例えば、50rpm)、混練を行ってもよい。工程3における混練開始時の装置設定温度は、好ましくは100~180℃、より好ましくは120~170℃、さらに好ましくは140~170℃である。工程2で得られた冷却混練物は冷却後の温度のまま、混練装置に投入され、工程3の混練開始後に加熱される。工程3における混練後の混練物の排出温度は、好ましくは100~180℃、より好ましくは100~175℃、さらに好ましくは100~170℃である。 It is preferable to perform the kneading in the step 3 by changing the rotation speed. In order to sufficiently shear the rubber component, the rotational speed of the initial kneading in the step 3 is preferably 40 to 100 rpm, more preferably 45 to 90 rpm, and further preferably 46 to 80 rpm. Preferably it is 0.5 to 10 minutes, more preferably 0.5 to 8 minutes, and still more preferably 0.5 to 6 minutes. After first kneading at such a rotational speed and sufficiently shearing the rubber component, the rotational speed is decreased (for example, 10 rpm) to sufficiently knead the rubber component and other components. Alternatively, the rotational speed may be increased again (for example, 50 rpm) and kneading may be performed. The apparatus set temperature at the start of kneading in step 3 is preferably 100 to 180 ° C, more preferably 120 to 170 ° C, and still more preferably 140 to 170 ° C. The cooled and kneaded product obtained in step 2 is charged into the kneading apparatus while maintaining the temperature after cooling, and heated after the start of kneading in step 3. The discharge temperature of the kneaded product after kneading in step 3 is preferably 100 to 180 ° C, more preferably 100 to 175 ° C, and still more preferably 100 to 170 ° C.
<硫黄成分の混練工程>
 本発明は、上述のようにして得られたゴム組成物と、硫黄成分とを混練することを含む製造方法も提供する。硫黄成分の混練には、例えば、オープンロール、カレンダー等を使用することができる。硫黄成分の混練温度(混練しているゴム組成物の温度)は、60~120℃が好ましい。
<Kneading process of sulfur component>
The present invention also provides a production method including kneading the rubber composition obtained as described above and a sulfur component. For kneading the sulfur component, for example, an open roll, a calendar, or the like can be used. The kneading temperature of the sulfur component (temperature of the rubber composition being kneaded) is preferably 60 to 120 ° C.
<加硫工程>
 硫黄成分を含有するゴム組成物を加硫することによって、加硫ゴム組成物を製造することができる。加硫温度は、120~180℃が好ましい。当業者であれば、ゴム組成物の組成に応じて、加硫時間を適宜設定することができる。加硫は、通常、常圧または加圧下で行われる。
<Vulcanization process>
A vulcanized rubber composition can be produced by vulcanizing a rubber composition containing a sulfur component. The vulcanization temperature is preferably 120 to 180 ° C. A person skilled in the art can appropriately set the vulcanization time according to the composition of the rubber composition. Vulcanization is usually carried out at normal pressure or under pressure.
<他の工程>
 本発明の製造方法では、上述した工程1~3、硫黄成分の混練工程および加硫工程に加えて、他の工程を行ってもよい。他の工程としては、例えば、工程1の前のゴム成分の素練り工程等が挙げられる。
<Other processes>
In the production method of the present invention, other steps may be performed in addition to the steps 1 to 3, the kneading step of the sulfur component and the vulcanization step. As another process, the mastication process of the rubber component before the process 1 etc. are mentioned, for example.
<他の成分の混練>
 上述した他の成分の混練は、工程1、工程3および他の工程(例えば、素練り工程)のいずれで行ってもよい。但し、老化防止剤を工程1またはその前の素練り工程でゴム成分等と混練すると、工程1の際に混練物中の老化防止剤が化合物(I)等に作用し、化合物(I)等のtanδの低減効果が弱められる場合がある。このような悪影響を避けるために、老化防止剤を含有するゴム組成物を製造する場合、工程3で、老化防止剤の全量を工程2で得られた冷却混練物と混練することが好ましい。
<Kneading of other ingredients>
The above-described kneading of the other components may be performed in any one of step 1, step 3 and other steps (for example, a kneading step). However, when the anti-aging agent is kneaded with the rubber component or the like in the step 1 or the previous kneading step, the anti-aging agent in the kneaded product acts on the compound (I) or the like in the step 1, and the compound (I) or the like In some cases, the effect of reducing tan δ is weakened. In order to avoid such adverse effects, when producing a rubber composition containing an anti-aging agent, it is preferable to knead the entire amount of the anti-aging agent with the cooled kneaded product obtained in step 2 in step 3.
 加硫促進剤を使用する場合、その全量を、硫黄成分の混練工程で混練すること、即ち、硫黄成分および加硫促進剤を一緒に、ゴム組成物と混練することが好ましい。また、老化防止剤および加硫促進剤以外の他の成分は、硫黄成分の混練工程の前に、即ち、素練り工程、工程1または工程3のいずれかでゴム成分等と混練することが好ましい。老化防止剤および加硫促進剤以外の他の成分は、それらを分割して、素練り工程、工程1および工程3の二つ以上の工程でゴム成分等と混練してもよい。 When using a vulcanization accelerator, it is preferable to knead the entire amount in the kneading step of the sulfur component, that is, kneading the sulfur component and the vulcanization accelerator together with the rubber composition. Further, the components other than the antioxidant and the vulcanization accelerator are preferably kneaded with the rubber component or the like before the sulfur component kneading step, that is, in either the mastication step, step 1 or step 3. . Components other than the anti-aging agent and the vulcanization accelerator may be divided and kneaded with a rubber component or the like in two or more steps of the mastication step, step 1 and step 3.
<ゴム組成物>
 本発明は、上述の製造方法によって得られた、硫黄成分を含有しないゴム組成物、硫黄成分を含有するゴム組成物、加硫ゴム組成物も提供する。
<Rubber composition>
The present invention also provides a rubber composition containing no sulfur component, a rubber composition containing a sulfur component, and a vulcanized rubber composition obtained by the above-described production method.
 本発明のゴム組成物および加硫ゴム組成物は、様々な製品を製造するために有用である。ゴム組成物および加硫ゴム組成物から得られる製品としては、加硫タイヤおよびタイヤ用部材が好ましい。タイヤ用部材としては、例えば、本発明の加硫ゴム組成物およびスチールコードを含むタイヤ用ベルト部材、本発明の加硫ゴム組成物およびカーカス繊維コードを含むタイヤ用カーカス部材、タイヤ用サイドウォール部材、タイヤ用インナーライナー部材、タイヤ用キャップトレッド部材またはタイヤ用アンダートレッド部材が挙げられる。 The rubber composition and vulcanized rubber composition of the present invention are useful for producing various products. As a product obtained from the rubber composition and the vulcanized rubber composition, a vulcanized tire and a tire member are preferable. Examples of the tire member include a tire belt member including the vulcanized rubber composition of the present invention and a steel cord, a tire carcass member including the vulcanized rubber composition of the present invention and a carcass fiber cord, and a tire sidewall member. , A tire inner liner member, a tire cap tread member, or a tire under tread member.
 加硫タイヤは、まずタイヤ用部材を製造し、これらを組み合わせて生タイヤを製造し、生タイヤを加硫することによって製造される。本発明のゴム組成物を用いて製造されたタイヤは、損失係数(tanδ)が低く、低燃費を達成することができる。 The vulcanized tire is manufactured by first manufacturing a tire member, combining these to manufacture a raw tire, and vulcanizing the raw tire. The tire manufactured using the rubber composition of the present invention has a low loss coefficient (tan δ) and can achieve low fuel consumption.
 本発明の加硫ゴム組成物は、上記したタイヤ用途のみならず、各種防振ゴムとしても使用できる。かかる防振ゴムとしては、例えば、エンジンマウント、ストラットマウント、ブッシュ、エグゾーストハンガー等の自動車用防振ゴムが挙げられる。防振ゴムは、まず硫黄成分を含有するゴム組成物を所定の形状に加工し、次いで加硫することによって、製造することができる。 The vulcanized rubber composition of the present invention can be used not only for the tire applications described above but also as various anti-vibration rubbers. Examples of such anti-vibration rubbers include anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes, and exhaust hangers. The anti-vibration rubber can be manufactured by first processing a rubber composition containing a sulfur component into a predetermined shape and then vulcanizing it.
 以下、実施例等を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下の実施例等に記載の「部」は「重量部」を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples and the like. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention. “Parts” described in the following examples and the like means “parts by weight”.
1.成分
 以下の実施例等で使用した成分は以下の通りである。
・NR:天然ゴム(RSS#1)
・CB1:カーボンブラックHAF(旭カーボン社製、商品名「旭#70」)
・CB2:カーボンブラックISAF(旭カーボン社製、商品名「旭#80」)
・CB3:カーボンブラックFEF(旭カーボン社製、商品名「旭#60」)
・化合物(I-1):(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウム・二水和物
・酸化亜鉛(ZnO)
・ステアリン酸:花王社製「ルナックS20」
・老化防止剤:住友化学社製「アンチゲン(登録商標)6C」(N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン)
・硫黄成分:粉末硫黄(S
・加硫促進剤:N-シクロへキシル-2-ベンゾチアゾリルスルフェンアミド
1. Ingredients The ingredients used in the following examples and the like are as follows.
・ NR: Natural rubber (RSS # 1)
CB1: Carbon black HAF (Asahi Carbon Co., Ltd., trade name “Asahi # 70”)
CB2: Carbon Black ISAF (Asahi Carbon Co., Ltd., trade name “Asahi # 80”)
CB3: Carbon black FEF (Asahi Carbon Co., Ltd., trade name “Asahi # 60”)
Compound (I-1): (2Z) -4-[(4-aminophenyl) amino] -4-oxo-2-butenoate sodium dihydrate Zinc oxide (ZnO)
・ Stearic acid: “Lunac S20” manufactured by Kao Corporation
Anti-aging agent: “Antigen (registered trademark) 6C” (N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
- sulfur content: powdery sulfur (S 8)
・ Vulcanization accelerator: N-cyclohexyl-2-benzothiazolylsulfenamide
2.実施例における操作
 以下のようにして、実施例の硫黄成分を含有しないゴム組成物、硫黄成分を含有するゴム組成物、および加硫ゴム組成物を製造した。なお以下では、本発明における工程1を「non-pro第1工程」と、工程2を「冷却工程」と、工程3を「non-pro第2工程」と、硫黄成分の混練工程を「pro工程」と記載する。
2. Operation in Examples The rubber composition containing no sulfur component, the rubber composition containing the sulfur component, and the vulcanized rubber composition of the example were manufactured as follows. In the following, step 1 in the present invention is referred to as “non-pro first step”, step 2 as “cooling step”, step 3 as “non-pro second step”, and sulfur component kneading step as “pro”. Step ".
<non-pro第1工程>
 混練開始時の装置設定温度を155℃にした加圧式ニーダー((株)トーシン製TD1-5MDX)に、天然ゴムを投入後、回転数50rpmにて2分、素練りした。そこへ、下記表1~5に示す量でゴム成分以外の成分を加えて、下記表1~5に示す回転数および時間で混練を行い、混練物を排出した。排出温度を下記表1~5に示す。
<Non-pro first step>
The natural rubber was put into a pressure kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose apparatus set temperature at the start of kneading was 155 ° C., and then kneaded for 2 minutes at a rotation speed of 50 rpm. To this, components other than the rubber component were added in the amounts shown in Tables 1 to 5 below, and kneading was performed at the rotational speeds and times shown in Tables 1 to 5 below, and the kneaded product was discharged. The discharge temperatures are shown in Tables 1 to 5 below.
<冷却工程>
 non-pro第1工程で得られた混練物を設定温度50℃のオープンロール(関西ロール社製ラボラトリーミル)を用いて、混練物を厚さ3~5mmのシート状に加工した後、下記表1~5に示す冷却後温度になるまで、室温の大気雰囲気下でシート状の混練物を放冷した。
<Cooling process>
The kneaded product obtained in the first step of non-pro was processed into a sheet having a thickness of 3 to 5 mm using an open roll (laboratory mill manufactured by Kansai Roll Co., Ltd.) having a set temperature of 50 ° C. The sheet-like kneaded material was allowed to cool in an air atmosphere at room temperature until the temperature after cooling shown in 1 to 5 was reached.
<non-pro第2工程>
 混練開始時の装置設定温度を155℃にした加圧式ニーダー((株)トーシン製TD1-5MDX)に、上記冷却工程で得たゴム組成物を投入して、回転数50rpmにて1分のせん断をかけた後に、下記表1~5に示す量で成分を投入し、回転数10rpmにて1分、さらに回転数50rpmにて1分混練を行って、硫黄成分を含有しないゴム組成物を得た。排出温度を下記表1~5に示す。
<Non-pro second step>
The rubber composition obtained in the above cooling process is put into a pressure kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose apparatus set temperature at the start of kneading is 155 ° C., and sheared for 1 minute at a rotation speed of 50 rpm. Then, the components are added in the amounts shown in Tables 1 to 5 below, and kneaded for 1 minute at a rotational speed of 10 rpm and further for 1 minute at a rotational speed of 50 rpm, to obtain a rubber composition containing no sulfur component. It was. The discharge temperatures are shown in Tables 1 to 5 below.
<pro工程>
 オープンロールで60~80℃の温度にて、non-pro第2工程により得られたゴム組成物と、下記表1~5に示す量で加硫促進剤および硫黄成分とを混練し、硫黄成分を含有するゴム組成物を得た。
<Pro process>
The rubber composition obtained in the second step of non-pro is kneaded with the vulcanization accelerator and the sulfur component in the amounts shown in Tables 1 to 5 below at a temperature of 60 to 80 ° C. with an open roll, and the sulfur component A rubber composition containing was obtained.
<加硫工程>
 加硫プレス機を用いて、加硫温度を145℃に設定し、加硫時間をJIS K 6300-2に準拠したレオメーター測定にて得られた90%加硫時間(tc(90))の値に5分を加えた時間に設定して、pro工程により得られたゴム組成物を加硫することによって、加硫ゴム組成物を得た。
<Vulcanization process>
Using a vulcanizing press, the vulcanization temperature was set to 145 ° C., and the vulcanization time was 90% vulcanization time (tc (90)) obtained by rheometer measurement according to JIS K 6300-2. A vulcanized rubber composition was obtained by vulcanizing the rubber composition obtained by the pro process at a value obtained by adding 5 minutes to the value.
3.比較例および参考例における操作
 以下のようにして、比較例および参考例の硫黄成分を含有しないゴム組成物、硫黄成分を含有するゴム組成物、および加硫ゴム組成物を製造した。なお以下では、硫黄成分を含有しないゴム組成物を製造する工程を「non-pro第1工程」と、硫黄成分を含有するゴム組成物を製造する工程を「pro工程」と記載する。
3. Operation in Comparative Examples and Reference Examples Rubber compositions containing no sulfur component, rubber compositions containing sulfur components, and vulcanized rubber compositions of Comparative Examples and Reference Examples were produced as follows. In the following, a process for producing a rubber composition not containing a sulfur component is referred to as a “non-pro first process”, and a process for producing a rubber composition containing a sulfur component is referred to as a “pro process”.
<non-pro第1工程>
 混練開始時の装置設定温度を155℃にした加圧式ニーダー((株)トーシン製TD1-5MDX)に、天然ゴムを投入後、回転数50rpmにて2分、素練りした。そこへ、下記表1~5に示す量でゴム成分以外の成分を加えて、下記表1~5に示す回転数および時間で混練を行い、混練物を排出した。排出温度を下記表1~5に示す。
<Non-pro first step>
The natural rubber was put into a pressure kneader (TD1-5MDX manufactured by Toshin Co., Ltd.) whose apparatus set temperature at the start of kneading was 155 ° C., and then kneaded for 2 minutes at a rotation speed of 50 rpm. To this, components other than the rubber component were added in the amounts shown in Tables 1 to 5 below, and kneading was performed at the rotational speeds and times shown in Tables 1 to 5 below, and the kneaded product was discharged. The discharge temperatures are shown in Tables 1 to 5 below.
<pro工程>
 オープンロールで60~80℃の温度にて、non-pro第1工程により得られたゴム組成物と、下記表1~5に示す量で加硫促進剤および硫黄成分とを混練し、硫黄成分を含有するゴム組成物を得た。
<Pro process>
The rubber composition obtained by the first step of non-pro is kneaded with the vulcanization accelerator and the sulfur component in the amounts shown in Tables 1 to 5 below at a temperature of 60 to 80 ° C. with an open roll, and the sulfur component A rubber composition containing was obtained.
<加硫工程>
 加硫プレス機を用いて、加硫温度を145℃に設定し、加硫時間をJIS K 6300-2に準拠したレオメーター測定にて得られたtc(90)の値に5分を加えた時間に設定して、pro工程により得られたゴム組成物を加硫することによって、加硫ゴム組成物を得た。
<Vulcanization process>
Using a vulcanizing press, the vulcanization temperature was set to 145 ° C, and the vulcanization time was added to the value of tc (90) obtained by rheometer measurement in accordance with JIS K 6300-2 by 5 minutes. By setting the time and vulcanizing the rubber composition obtained by the pro process, a vulcanized rubber composition was obtained.
4.特性評価
<粘度の相対値>
 JIS-K6300-1に準拠し、125℃にて、実施例、比較例および参考例で得られた硫黄成分を含有するゴム組成物のムーニー粘度を測定した。
4). Characterization <Relative value of viscosity>
In accordance with JIS-K6300-1, the Mooney viscosity of the rubber compositions containing sulfur components obtained in Examples, Comparative Examples and Reference Examples was measured at 125 ° C.
 化合物(I-1)を使用しない参考例のゴム組成物のムーニー粘度、および化合物(I-1)を使用する実施例または比較例のゴム組成物のムーニー粘度から、式(1):
 粘度の相対値=(実施例または比較例のゴム組成物のムーニー粘度)/(参考例のゴム組成物のムーニー粘度) ・・・ (1)
によって、粘度の相対値を算出した。結果を下記表1~5に示す。
From the Mooney viscosity of the rubber composition of Reference Example not using Compound (I-1) and the Mooney viscosity of the rubber composition of Examples or Comparative Examples using Compound (I-1), Formula (1):
Relative value of viscosity = (Mooney viscosity of rubber composition of Example or Comparative Example) / (Mooney viscosity of rubber composition of Reference Example) (1)
Was used to calculate the relative value of the viscosity. The results are shown in Tables 1 to 5 below.
<tanδの相対値>
 以下の条件で株式会社上島製作所製の粘弾性アナライザを用いて、実施例、比較例および参考例で得られた加硫ゴム組成物の粘弾性特性を測定し、それらの60℃での損失係数(tanδ)を求めた。
 測定温度:-5℃~80℃
 昇温速度:2℃/分
 初期歪:10%
 動的歪:2.5%
 周波数:10Hz
<Relative value of tan δ>
Using the viscoelasticity analyzer manufactured by Ueshima Seisakusho Co., Ltd. under the following conditions, the viscoelastic properties of the vulcanized rubber compositions obtained in Examples, Comparative Examples and Reference Examples were measured, and their loss coefficients at 60 ° C. (Tan δ) was determined.
Measurement temperature: -5 ℃ -80 ℃
Temperature increase rate: 2 ° C / min Initial strain: 10%
Dynamic strain: 2.5%
Frequency: 10Hz
 化合物(I-1)を使用しない参考例のゴム組成物のtanδ、および化合物(I-1)を使用する実施例または比較例の加硫ゴム組成物のtanδから、式(2):
 tanδの相対値=(実施例または比較例の加硫ゴム組成物のtanδ)/(参考例の加硫ゴム組成物のtanδ) ・・・ (2)
によって、tanδの相対値を算出した。結果を下記表1~5に示す。
From the tan δ of the rubber composition of the reference example not using the compound (I-1) and the tan δ of the vulcanized rubber composition of the example or comparative example using the compound (I-1), the formula (2):
Relative value of tan δ = (tan δ of the vulcanized rubber composition of Example or Comparative Example) / (tan δ of the vulcanized rubber composition of Reference Example) (2)
Was used to calculate the relative value of tan δ. The results are shown in Tables 1 to 5 below.
実施例1~4、比較例1および2、並びに参考例1および2
 上述の操作、下記表1に示す成分および条件にて、実施例1~4、比較例1および2、並びに参考例1および2のゴム組成物および加硫ゴム組成物を製造した。なお、下記表1に示す実施例1および2並びに比較例1の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例1のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出し、実施例3および4並びに比較例2の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例2のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出した。
Examples 1 to 4, Comparative Examples 1 and 2, and Reference Examples 1 and 2
The rubber compositions and vulcanized rubber compositions of Examples 1 to 4, Comparative Examples 1 and 2, and Reference Examples 1 and 2 were produced using the above-described operations and the components and conditions shown in Table 1 below. The relative viscosity values and the relative tan δ values of Examples 1 and 2 and Comparative Example 1 shown in Table 1 below are the Mooney of the rubber composition of Reference Example 1 in Formula (1) and Formula (2), respectively. The viscosity and the tan δ value of the vulcanized rubber composition were calculated, and the relative viscosity values and the relative tan δ values of Examples 3 and 4 and Comparative Example 2 were calculated using the equations (1) and (2), respectively. The value was calculated using the Mooney viscosity of the rubber composition of Reference Example 2 and the value of tan δ of the vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表1に示すように、硫黄成分を含有しないゴム組成物を1段階の混練工程(non-pro第1工程)のみで製造した比較例1および2では、粘度の相対値が1よりも大きくなっていた。このことから、従来の1段階の混練工程のみでは、化合物(I-1)を使用することによって、ゴム組成物の粘度が増大することが分かる。 As shown in Table 1 above, in Comparative Examples 1 and 2 in which a rubber composition containing no sulfur component was produced in only one kneading step (non-pro first step), the relative value of the viscosity was greater than 1. It was. This shows that the viscosity of the rubber composition is increased by using compound (I-1) only in the conventional one-stage kneading process.
 一方、硫黄成分を含有しないゴム組成物を2段階の混練工程(non-pro第1工程およびnon-pro第2工程)で製造した実施例1~4では、粘度の相対値が1よりも小さかった。このように、2段階の混練工程を行う実施例1~4では、化合物(I-1)を使用することによるゴム組成物の粘度増大を抑制するだけでなく、化合物(I-1)を使用しない参考例1および2よりも、ゴム組成物の粘度を低減させることができた。 On the other hand, in Examples 1 to 4 in which a rubber composition containing no sulfur component was produced in a two-stage kneading process (non-pro first process and non-pro second process), the relative value of the viscosity was less than 1. It was. As described above, in Examples 1 to 4 in which the two-stage kneading process is performed, not only the viscosity increase of the rubber composition due to the use of the compound (I-1) is suppressed, but also the compound (I-1) is used. The viscosity of the rubber composition could be reduced more than in Reference Examples 1 and 2.
 また、驚くべきことに、実施例1および2のtanδの相対値は比較例1の値よりも低く、実施例3および4のtanδの相対値は比較例2の値よりも低かった。このように、2段階の混練工程を行うことによって、粘度増大の抑制だけでなく、tanδをより一層低減することができた。 Surprisingly, the relative value of tan δ in Examples 1 and 2 was lower than that in Comparative Example 1, and the relative value of tan δ in Examples 3 and 4 was lower than that in Comparative Example 2. Thus, by performing the two-stage kneading step, not only the increase in viscosity but also tan δ could be further reduced.
実施例5~7、比較例3、および参考例3
 上述の操作、並びに下記表2に示す成分および条件にて、実施例5~7、比較例3、および参考例3のゴム組成物および加硫ゴム組成物を製造した。なお、下記表2に示す実施例5~7および比較例3の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例3のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出した。
Examples 5 to 7, Comparative Example 3, and Reference Example 3
The rubber compositions and vulcanized rubber compositions of Examples 5 to 7, Comparative Example 3, and Reference Example 3 were produced by the above operation and the components and conditions shown in Table 2 below. The relative viscosity values and the relative tan δ values of Examples 5 to 7 and Comparative Example 3 shown in Table 2 below are the Mooney values of the rubber composition of Reference Example 3 in Formula (1) and Formula (2), respectively. The viscosity and tan δ value of the vulcanized rubber composition were used for calculation.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例5~7では、non-pro第1工程にて10rpmで2分の混練後、50rpmで混練を1~3分行った。non-pro第1工程にて10rpmで2分および50rpmで1分の混練を行っただけの実施例5でも、粘度の相対値が1であり、粘度増減を抑制できた。この結果から、粘度増大の抑制は、冷却後にnon-pro第2工程を行うことに起因すると推定される。 In Examples 5 to 7, kneading was carried out at 50 rpm for 1 to 3 minutes after kneading at 10 rpm for 2 minutes in the non-pro first step. Even in Example 5 in which kneading was performed at 10 rpm for 2 minutes and at 50 rpm for 1 minute in the non-pro first step, the relative value of the viscosity was 1, and the increase and decrease in viscosity could be suppressed. From this result, it is estimated that the suppression of the increase in viscosity is caused by performing the second step of non-pro after cooling.
実施例8~15、比較例4および5、並びに参考例4および5
 上述の操作、並びに下記表3に示す成分および条件にて、実施例8~15、比較例4および5、並びに参考例4および5のゴム組成物および加硫ゴム組成物を製造した。なお、下記表3に示す実施例8~12および比較例4の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例4のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出し、実施例13~15および比較例5の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例5のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出した。
Examples 8 to 15, Comparative Examples 4 and 5, and Reference Examples 4 and 5
The rubber compositions and vulcanized rubber compositions of Examples 8 to 15, Comparative Examples 4 and 5, and Reference Examples 4 and 5 were produced using the above-described operations and the components and conditions shown in Table 3 below. The relative values of the viscosity and the tan δ of Examples 8 to 12 and Comparative Example 4 shown in Table 3 below are the Mooney of the rubber composition of Reference Example 4 in Formula (1) and Formula (2), respectively. The viscosity and the tan δ value of the vulcanized rubber composition were calculated, and the relative viscosity values and the tan δ values of Examples 13 to 15 and Comparative Example 5 were calculated using the formulas (1) and (2), respectively. The value was calculated using the Mooney viscosity of the rubber composition of Reference Example 5 and the tan δ value of the vulcanized rubber composition.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 他の成分(酸化亜鉛、ステアリン酸、老化防止剤)をnon-pro第1工程で混練した場合の影響を検討した。酸化亜鉛、ステアリン酸または老化防止剤をnon-pro第1工程で混練する実施例9~12、14および15の粘度の相対値は1程度または1よりも小さく、これらの他の成分をnon-pro第1工程で混練しても、粘度増大を抑制することができる。しかし、老化防止剤をnon-pro第1工程で混練する実施例11、12および15は、他の実施例に比べて、tanδの相対値が大きくなった。老化防止剤をnon-pro第1工程で混練することによって、化合物(I-1)のtanδの低減効果が弱められていると推定される。そのため、老化防止剤を使用する場合、non-pro第1工程(即ち、本発明の工程1)ではなく、non-pro第2工程(即ち、本発明の工程3)で、老化防止剤の全量と冷却混練物とを混練することが好ましい。 The effect of kneading other components (zinc oxide, stearic acid, anti-aging agent) in the first step of non-pro was examined. The relative values of the viscosity of Examples 9 to 12, 14 and 15 in which zinc oxide, stearic acid or an antioxidant is kneaded in the first step of non-pro are about 1 or less than 1, and these other components are Even if kneaded in the first step of pro, an increase in viscosity can be suppressed. However, in Examples 11, 12, and 15 in which the anti-aging agent was kneaded in the first step of non-pro, the relative value of tan δ was larger than in the other examples. It is presumed that the effect of reducing tan δ of compound (I-1) is weakened by kneading the antioxidant in the first step of non-pro. Therefore, when the anti-aging agent is used, the total amount of the anti-aging agent is not used in the non-pro first step (ie, step 3 of the present invention) but in the non-pro second step (ie, step 3 of the present invention). It is preferable to knead the cooled kneaded product.
実施例16~21、比較例6~8、および参考例6~8
 上述の操作、下記表4に示す成分および条件にて、実施例16~21、比較例6~8、および参考例6~8のゴム組成物および加硫ゴム組成物を製造した。なお、下記表4に示す実施例16および17並びに比較例6の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例6のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出し、実施例18および19並びに比較例7の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例7のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出し、実施20および21並びに比較例8の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例8のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出した。
Examples 16 to 21, Comparative Examples 6 to 8, and Reference Examples 6 to 8
The rubber compositions and vulcanized rubber compositions of Examples 16 to 21, Comparative Examples 6 to 8, and Reference Examples 6 to 8 were produced using the above-described operations and the components and conditions shown in Table 4 below. The relative values of viscosity and tan δ of Examples 16 and 17 and Comparative Example 6 shown in Table 4 below are the Mooney of the rubber composition of Reference Example 6 in Formula (1) and Formula (2), respectively. The viscosity and the tan δ value of the vulcanized rubber composition were calculated, and the relative viscosity values and the relative tan δ values of Examples 18 and 19 and Comparative Example 7 were calculated using the equations (1) and (2), respectively. In Example 2, the Mooney viscosity of the rubber composition of Reference Example 7 and the tan δ value of the vulcanized rubber composition were calculated, and the relative values of the viscosity and tan δ of Examples 20 and 21 and Comparative Example 8 were In the formulas (1) and (2), the Mooney viscosity of the rubber composition of Reference Example 8 and the tan δ value of the vulcanized rubber composition were used.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 カーボンブラックの種類を変更した実施例16~21のいずれでも、粘度の相対値およびtanδの相対値が比較例よりも小さかった。これらの結果から、本発明の製造方法によれば、カーボンブラックの種類にかかわらず、化合物(I)による粘度増大を抑制することができ、且つtanδも低減することができることが分かる。 In any of Examples 16 to 21 in which the type of carbon black was changed, the relative value of viscosity and the relative value of tan δ were smaller than those of the comparative example. From these results, it can be seen that according to the production method of the present invention, it is possible to suppress an increase in viscosity due to the compound (I) and to reduce tan δ regardless of the type of carbon black.
実施例22および23、比較例9および10、並びに参考例9
 上述の操作、下記表5に示す成分および条件にて、実施例22および23、比較例9および10、並びに参考例9のゴム組成物および加硫ゴム組成物を製造した。なお、下記表5に示す実施例22および23並びに比較例9および10の粘度の相対値およびtanδの相対値は、それぞれ、式(1)および式(2)において、参考例9のゴム組成物のムーニー粘度および加硫ゴム組成物のtanδの値を使用して算出した。
Figure JPOXMLDOC01-appb-T000018
Examples 22 and 23, Comparative Examples 9 and 10, and Reference Example 9
The rubber compositions and vulcanized rubber compositions of Examples 22 and 23, Comparative Examples 9 and 10, and Reference Example 9 were produced using the above-described operations and the components and conditions shown in Table 5 below. The relative viscosity values and the relative tan δ values of Examples 22 and 23 and Comparative Examples 9 and 10 shown in Table 5 below are the rubber composition of Reference Example 9 in Formula (1) and Formula (2), respectively. The Mooney viscosity and the tan δ value of the vulcanized rubber composition were used for calculation.
Figure JPOXMLDOC01-appb-T000018
 化合物(I-1)の添加量を変更した実施例22および23でも、粘度の相対値およびtanδの相対値が比較例よりも小さかった。これらの結果から、本発明の製造方法によれば、化合物(I-1)の添加量にかかわらず、粘度増大を抑制することができ、且つtanδも低減することができることが分かる。 Also in Examples 22 and 23 in which the addition amount of compound (I-1) was changed, the relative value of viscosity and the relative value of tan δ were smaller than those of the comparative example. From these results, it can be seen that according to the production method of the present invention, increase in viscosity can be suppressed and tan δ can be reduced regardless of the amount of compound (I-1) added.
製造例1
 窒素置換された500mLの反応容器に、p-フェニレンジアミン1.65g(15.3mmol)とテトラヒドロフラン180mLとを仕込み、反応容器を0~5℃に保持した。
 この反応容器を0~5℃に保ちながら、そこへ、p-フェニレンジアミン5.51g(51.0mmol)を添加し、次いで無水マレイン酸5.00g(51.0mmol)をテトラヒドロフラン7.5mLに溶解させて得た溶液を30分かけて滴下した。上述のp-フェニレンジアミンを添加する操作と無水マレイン酸のテトラヒドロフラン溶液を滴下する操作を合計6回繰り返した。
 6回目の無水マレイン酸のテトラヒドロフラン溶液の滴下終了後、得られた混合物を20~25℃でさらに2時間撹拌した。その後、得られた反応溶液を濃縮乾固して、粗結晶を得た。この粗結晶は、NMR測定により、主成分が、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸であることを確認した。収率:94.3%。
Production Example 1
A 500-mL reaction vessel purged with nitrogen was charged with 1.65 g (15.3 mmol) of p-phenylenediamine and 180 mL of tetrahydrofuran, and the reaction vessel was kept at 0 to 5 ° C.
While maintaining this reaction vessel at 0 to 5 ° C., 5.51 g (51.0 mmol) of p-phenylenediamine was added thereto, and then 5.00 g (51.0 mmol) of maleic anhydride was dissolved in 7.5 mL of tetrahydrofuran. The resulting solution was added dropwise over 30 minutes. The above-described operation of adding p-phenylenediamine and the operation of dropwise addition of a maleic anhydride tetrahydrofuran solution were repeated a total of 6 times.
After completion of the sixth dropwise addition of maleic anhydride in tetrahydrofuran, the resulting mixture was stirred at 20-25 ° C. for an additional 2 hours. Thereafter, the obtained reaction solution was concentrated to dryness to obtain crude crystals. This crude crystal was confirmed by NMR measurement to have (2Z) -4-[(4-aminophenyl) amino] -4-oxo-2-butenoic acid as the main component. Yield: 94.3%.
製造例2
 窒素置換された500mLの反応容器に、テトラヒドロフラン10mLを仕込み、反応容器を0~5℃に保持した。
 この反応容器を0~5℃に保ちながら、そこへ、無水マレイン酸30.0g(305.9mmol)をテトラヒドロフラン45mLに溶解させて得た溶液と、p-フェニレンジアミン34.7g(321.2mmol)をメタノール30mLに溶解させて得た溶液とを、2時間かけて同時並行的に滴下した。滴下終了後、得られた混合物を0~5℃に保ってさらに2時間撹拌した。その後、得られた反応溶液を濃縮乾固して、粗結晶を得た。この粗結晶は、NMR測定により、主成分が、(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸であることを確認した。収率:92.6%。
Production Example 2
A 500 mL reaction vessel purged with nitrogen was charged with 10 mL of tetrahydrofuran, and the reaction vessel was kept at 0 to 5 ° C.
While maintaining this reaction vessel at 0 to 5 ° C., 30.0 g (305.9 mmol) of maleic anhydride was dissolved in 45 mL of tetrahydrofuran, and 34.7 g (321.2 mmol) of p-phenylenediamine. Was dissolved in 30 mL of methanol and added dropwise in parallel over 2 hours. After completion of the dropwise addition, the resulting mixture was kept at 0-5 ° C. and further stirred for 2 hours. Thereafter, the obtained reaction solution was concentrated to dryness to obtain crude crystals. This crude crystal was confirmed by NMR measurement to have (2Z) -4-[(4-aminophenyl) amino] -4-oxo-2-butenoic acid as the main component. Yield: 92.6%.
 本発明の製造方法によれば、化合物(I)等を使用することによるゴム組成物の粘度増大を抑制することができる。本発明に製造方法によって得られたゴム組成物は、様々な製品(例えば、加硫タイヤおよびタイヤ用部材)の製造に有用である。 According to the production method of the present invention, an increase in the viscosity of the rubber composition due to the use of compound (I) or the like can be suppressed. The rubber composition obtained by the production method of the present invention is useful for production of various products (for example, vulcanized tires and tire members).
 本願は、日本で出願された特願2015-102549号を基礎としており、その内容は本願明細書に全て包含される。 This application is based on Japanese Patent Application No. 2015-102549 filed in Japan, the contents of which are incorporated in full herein.

Claims (23)

  1.  硫黄成分を含有しないゴム組成物の製造方法であって、
     式(I):
    Figure JPOXMLDOC01-appb-C000001

    [式(I)中、
     Rは、1以上の置換基を有していてもよいC2-12アルカンジイル基、1以上の置換基を有していてもよいC3-10シクロアルカンジイル基、1以上の置換基を有していてもよい2価のC6-12芳香族炭化水素基、またはこれらの組合せを表す。
     RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、1以上の置換基を有していてもよいC1-6アルキル基、または1以上の置換基を有していてもよいC6-14アリール基を表すか、或いはRおよびRが結合し、それらが結合している炭素原子と一緒になって、1以上の置換基を有していてもよいC3-10シクロアルケンジイル基を形成する。
     Rは、ヒドロキシ基、1以上の置換基を有していてもよいC1-6アルコキシ基、または1以上の置換基を有していてもよいC6-14アリールオキシ基を表す。
     Xは、-NH-または-O-を表す。]
    で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つと、ゴム成分と、カーボンブラックとを混練して、混練物を調製する工程1、
     得られた混練物に冷却操作を施して、冷却混練物を調製する工程2、および
     得られた冷却混練物を混練する工程3
    を含む製造方法。
    A method for producing a rubber composition containing no sulfur component,
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001

    [In the formula (I),
    R 1 represents a C 2-12 alkanediyl group which may have one or more substituents, a C 3-10 cycloalkanediyl group which may have one or more substituents, or one or more substituents. Represents a divalent C 6-12 aromatic hydrocarbon group which may have the above-mentioned or a combination thereof.
    R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, one or more C 1-6 alkoxy group which may have one or more substituents, or one or more substituents. Represents a good C 1-6 alkyl group, or a C 6-14 aryl group optionally having one or more substituents, or R 2 and R 3 are bonded, and the carbon atom to which they are bonded; Together, they form a C 3-10 cycloalkenediyl group which may have one or more substituents.
    R 4 represents a hydroxy group, a C 1-6 alkoxy group which may have one or more substituents, or a C 6-14 aryloxy group which may have one or more substituents.
    X represents —NH— or —O—. ]
    Step 1 for preparing a kneaded product by kneading at least one selected from the group consisting of a compound represented by the formula: salt thereof, solvate thereof and solvate of the salt thereof, a rubber component, and carbon black;
    Step 2 for preparing the cooled kneaded product by subjecting the obtained kneaded product to a cooling operation, and Step 3 for kneading the obtained cooled kneaded product
    Manufacturing method.
  2.  工程2において、混練物を120℃以下に冷却する請求項1に記載の製造方法。 The manufacturing method of Claim 1 which cools a kneaded material to 120 degrees C or less in the process 2.
  3.  工程2における冷却操作が、混練物をシート状またはボード状に加工することを含む請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the cooling operation in step 2 includes processing the kneaded material into a sheet shape or a board shape.
  4.  工程1における混練を、10rpm以上の回転速度で1分以上行う請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the kneading in step 1 is performed at a rotation speed of 10 rpm or more for 1 minute or more.
  5.  工程1における混練後の混練物の排出温度が150℃以上である請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein a discharge temperature of the kneaded material after kneading in step 1 is 150 ° C or higher.
  6.  製造されるゴム組成物が老化防止剤を含有し、老化防止剤の全量と工程2で得られた冷却混練物とを工程3において混練する請求項1~5のいずれか一項に記載の製造方法。 The production according to any one of claims 1 to 5, wherein the rubber composition to be produced contains an anti-aging agent, and the total amount of the anti-aging agent and the cooled kneaded product obtained in step 2 are kneaded in step 3. Method.
  7.  式(I)で表される化合物が、式(II):
    Figure JPOXMLDOC01-appb-C000002

    [式(II)中、R~RおよびXは上記と同義である。]
    で表される化合物である請求項1~6のいずれか一項に記載の製造方法。
    The compound represented by formula (I) is represented by formula (II):
    Figure JPOXMLDOC01-appb-C000002

    [In the formula (II), R 1 to R 4 and X are as defined above. ]
    The production method according to any one of claims 1 to 6, which is a compound represented by the formula:
  8.  Rが、フェニレン基である請求項1~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein R 1 is a phenylene group.
  9.  RおよびRが、水素原子である請求項1~8のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein R 2 and R 3 are hydrogen atoms.
  10.  Rが、ヒドロキシ基である請求項1~9のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein R 4 is a hydroxy group.
  11.  Xが、-NH-である請求項1~10のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein X is -NH-.
  12.  式(I)で表される化合物、その塩、その溶媒和物およびその塩の溶媒和物からなる群から選ばれる少なくとも一つが、式(I)で表される化合物の塩の溶媒和物である請求項1~11のいずれか一項に記載の製造方法。 At least one selected from the group consisting of a compound represented by formula (I), a salt thereof, a solvate thereof and a solvate of the salt is a solvate of a salt of the compound represented by formula (I) The production method according to any one of claims 1 to 11.
  13.  ゴム成分の50重量%以上がジエン系ゴムである請求項1~12のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 12, wherein 50% by weight or more of the rubber component is a diene rubber.
  14.  硫黄成分を含有するゴム組成物の製造方法であって、請求項1~13のいずれか一項に記載の製造方法により得られたゴム組成物と、硫黄成分とを混練することを含む製造方法。 A method for producing a rubber composition containing a sulfur component, the method comprising kneading a rubber composition obtained by the production method according to any one of claims 1 to 13 and a sulfur component. .
  15.  請求項1~13のいずれか一項に記載の製造方法により得られた、硫黄成分を含有しないゴム組成物。 A rubber composition containing no sulfur component, obtained by the production method according to any one of claims 1 to 13.
  16.  請求項14に記載の製造方法により得られた、硫黄成分を含有するゴム組成物。 A rubber composition containing a sulfur component obtained by the production method according to claim 14.
  17.  請求項16に記載の硫黄成分を含有するゴム組成物を加硫することによって得られた加硫ゴム組成物。 A vulcanized rubber composition obtained by vulcanizing the rubber composition containing the sulfur component according to claim 16.
  18.  請求項17に記載の加硫ゴム組成物を含む加硫タイヤ。 A vulcanized tire comprising the vulcanized rubber composition according to claim 17.
  19.  請求項17に記載の加硫ゴム組成物およびスチールコードを含むタイヤ用ベルト部材。 A tire belt member comprising the vulcanized rubber composition according to claim 17 and a steel cord.
  20.  請求項17に記載の加硫ゴム組成物およびカーカス繊維コードを含むタイヤ用カーカス部材。 A tire carcass member comprising the vulcanized rubber composition according to claim 17 and a carcass fiber cord.
  21.  請求項17に記載の加硫ゴム組成物を含むタイヤ用部材。 A tire member comprising the vulcanized rubber composition according to claim 17.
  22.  タイヤ用サイドウォール部材、タイヤ用インナーライナー部材、タイヤ用キャップトレッド部材またはタイヤ用アンダートレッド部材である請求項21に記載のタイヤ用部材。 The tire member according to claim 21, which is a tire sidewall member, a tire inner liner member, a tire cap tread member, or a tire undertread member.
  23.  請求項14に記載の製造方法により得られた、硫黄成分を含有するゴム組成物を加硫することを含む、加硫ゴム組成物の製造方法。 A method for producing a vulcanized rubber composition, comprising vulcanizing a rubber composition containing a sulfur component obtained by the production method according to claim 14.
PCT/JP2016/064820 2015-05-20 2016-05-19 Process for producing rubber composition WO2016186155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017519391A JPWO2016186155A1 (en) 2015-05-20 2016-05-19 Method for producing rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-102549 2015-05-20
JP2015102549 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016186155A1 true WO2016186155A1 (en) 2016-11-24

Family

ID=57320435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064820 WO2016186155A1 (en) 2015-05-20 2016-05-19 Process for producing rubber composition

Country Status (3)

Country Link
JP (1) JPWO2016186155A1 (en)
TW (1) TW201714924A (en)
WO (1) WO2016186155A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075944A (en) * 2018-11-05 2020-05-21 Toyo Tire株式会社 Rubber composition for vibrationproof rubber, and vibrationproof rubber
JP2020075945A (en) * 2018-11-05 2020-05-21 Toyo Tire株式会社 Rubber composition for vibrationproof rubber, vibrationproof rubber, and method for producing rubber composition for vibrationproof rubber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232354A (en) * 2004-02-20 2005-09-02 Bridgestone Corp Rubber composition and tire using it
JP2011026441A (en) * 2009-07-24 2011-02-10 Sumitomo Rubber Ind Ltd Method for producing rubber composition
JP2014084312A (en) * 2012-10-25 2014-05-12 Sumitomo Chemical Co Ltd Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232354A (en) * 2004-02-20 2005-09-02 Bridgestone Corp Rubber composition and tire using it
JP2011026441A (en) * 2009-07-24 2011-02-10 Sumitomo Rubber Ind Ltd Method for producing rubber composition
JP2014084312A (en) * 2012-10-25 2014-05-12 Sumitomo Chemical Co Ltd Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075944A (en) * 2018-11-05 2020-05-21 Toyo Tire株式会社 Rubber composition for vibrationproof rubber, and vibrationproof rubber
JP2020075945A (en) * 2018-11-05 2020-05-21 Toyo Tire株式会社 Rubber composition for vibrationproof rubber, vibrationproof rubber, and method for producing rubber composition for vibrationproof rubber
JP7248411B2 (en) 2018-11-05 2023-03-29 Toyo Tire株式会社 Rubber composition for anti-vibration rubber, anti-vibration rubber, and method for producing rubber composition for anti-vibration rubber
JP7288749B2 (en) 2018-11-05 2023-06-08 Toyo Tire株式会社 Rubber composition for anti-vibration rubber and anti-vibration rubber

Also Published As

Publication number Publication date
JPWO2016186155A1 (en) 2018-03-08
TW201714924A (en) 2017-05-01

Similar Documents

Publication Publication Date Title
JP5573883B2 (en) Rubber composition
EP2913367B1 (en) Carbon black
KR101784018B1 (en) Use of s-(3-aminopropyl)thiosulfuric acid or metal salt thereof
EP2450402B1 (en) Vulcanized rubber and process for manufaturing same
JP2014084312A (en) Compound for improving viscoelastic properties of vulcanized rubber, and rubber composition including the compound
US9796831B2 (en) Process for producing particles
KR20200047709A (en) Rubber composition
WO2013015440A1 (en) Rubber composition
JPWO2016175272A1 (en) Rubber composition
TW202043351A (en) Vulcanized rubber composition
WO2016186155A1 (en) Process for producing rubber composition
WO2018012452A1 (en) Additive composition and rubber composition
JP7033374B2 (en) Rubber composition
WO2019054290A1 (en) Rubber composition
JP2017101132A (en) Rubber composition and vulcanized rubber composition
JP5978043B2 (en) Rubber composition
WO2018012451A1 (en) Additive composition and rubber composition
WO2019031538A1 (en) Method for producing rubber composition
JP2018080290A (en) Rubber composition
JP2018204033A (en) Method for producing rubber composition
JP2019119784A (en) Manufacturing method of rubber composition
JP2018080289A (en) Rubber composition
JP6013823B2 (en) Compound
WO2013115403A1 (en) Method for producing vulcanized rubber
JP2012153630A (en) Thiosulfuric acid compound or salt thereof and rubber composition including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796548

Country of ref document: EP

Kind code of ref document: A1