WO2019156094A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
WO2019156094A1
WO2019156094A1 PCT/JP2019/004120 JP2019004120W WO2019156094A1 WO 2019156094 A1 WO2019156094 A1 WO 2019156094A1 JP 2019004120 W JP2019004120 W JP 2019004120W WO 2019156094 A1 WO2019156094 A1 WO 2019156094A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
group
formula
compound represented
composition according
Prior art date
Application number
PCT/JP2019/004120
Other languages
French (fr)
Japanese (ja)
Inventor
悟司 浜谷
真也 篠崎
真布夕 植野
正樹 阿部
Original Assignee
株式会社ブリヂストン
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン, 大塚化学株式会社 filed Critical 株式会社ブリヂストン
Priority to JP2019570762A priority Critical patent/JP7271445B2/en
Publication of WO2019156094A1 publication Critical patent/WO2019156094A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • C08K5/25Carboxylic acid hydrazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition and a tire.
  • Patent Document 1 contains carbon black and a specific hydrazide compound in an elastomer containing natural rubber for the purpose of improving the chemical interaction between the rubber component and carbon black.
  • a rubber composition is disclosed.
  • Patent Document 1 is not sufficiently low in heat generation, and further improvement in low heat generation is necessary to meet the demand for lower fuel consumption of automobiles.
  • improvement of low heat build-up was attempted by the technique of Patent Document 1, a polymer gel was generated in the rubber composition, and deterioration of processability (increased viscosity) was also considered. Further improvement was desired for sex.
  • an object of the present invention is to provide a rubber composition excellent in low heat generation, wear resistance and processability. Another object of the present invention is to provide a tire excellent in low heat generation, wear resistance and productivity.
  • the inventors of the present invention have intensively studied to solve the above-mentioned problems with rubber compositions containing a rubber component and a filler. And, by including a hydrazide compound having a specific structure in the rubber composition, it is possible to enhance the interaction between the rubber component and carbon black, and as a result, it is possible to realize more excellent low heat generation and wear resistance. Pay attention. And about the problem of the deterioration of workability resulting from the production
  • the rubber composition of the present invention comprises a rubber component containing a diene rubber, a filler, a compound represented by the following formula (I), and a fatty acid metal salt.
  • A is an aryl group having at least two polar groups, and the polar groups may be the same or different.
  • R 1 and R 2 are each independently hydrogen; And at least one substituent selected from the group consisting of an atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group, and the substituent is one or more of O, S, and N atoms May be included.
  • At least one of the polar groups of A in the compound represented by the formula (I) is a hydroxyl group, an amino group, or a nitro group. More preferably, at least one of is a hydroxyl group, and at least two of the polar groups are particularly preferably a hydroxyl group. This is because more excellent low heat generation and wear resistance can be realized.
  • a in the compound represented by the formula (I) is a phenyl group or a naphthyl group. This is because more excellent low heat generation property can be realized and the practicality is also excellent.
  • R 1 and R 2 in the compound represented by the formula (I) are both hydrogen atoms. This is because more excellent low heat generation and wear resistance can be realized.
  • the molecular weight of the compound represented by the formula (I) is preferably 250 or less. This is because more excellent low heat generation and wear resistance can be realized.
  • the melting point of the compound represented by the formula (I) is 80 ° C. or higher and lower than 250 ° C. This is because more excellent low heat generation and wear resistance can be realized.
  • the content of the compound represented by the formula (I) is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the rubber component. This is because more excellent low heat generation and wear resistance can be realized, and deterioration of workability can be effectively suppressed.
  • the compound represented by the formula (I) is 2,6-dihydroxybenzohydrazide, 2,3-dihydroxybenzohydrazide, 2,4-dihydroxybenzohydrazide, 2,5 -Dihydroxybenzohydrazide, 4-amino-2-hydroxybenzohydrazide, 3,5-dihydroxynaphthalene-2-carbohydrazide, 4-amino-3-hydroxynaphthalene-2-carbohydrazide, 3-hydroxy-4-nitronaphthalene- At least one selected from the group consisting of 2-carbohydrazide, 1,3-dihydroxynaphthalene-2-carbohydrazide, 2,4,6-trihydroxybenzohydrazide and 2,6-dihydroxy-4-methylbenzohydrazide Preferably there is. This is because more excellent low heat generation and wear resistance can be realized.
  • the diene rubber is preferably natural rubber. This is because excellent wear resistance can be realized.
  • the filler contains carbon black. This is because excellent wear resistance can be realized.
  • the content of the filler is preferably 10 to 160 parts by mass with respect to 100 parts by mass of the rubber component. This is because more excellent low heat generation and wear resistance can be realized.
  • the fatty acid of the fatty acid metal salt preferably has 6 to 20 carbon atoms. This is because better workability can be realized.
  • the metal of the fatty acid metal salt is Zn. This is because better workability can be realized.
  • the rubber composition of the present invention preferably further contains a compound represented by the following formula (II). This is because the provision of the above configuration can realize excellent low heat generation and wear resistance.
  • the compound represented by the formula (II) is 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N′—.
  • the tire of the present invention is characterized by using the above rubber composition. By providing the above configuration, it is possible to realize excellent low heat generation, wear resistance, and productivity.
  • the present invention it is possible to provide a rubber composition excellent in low heat buildup, wear resistance and processability. Further, according to the present invention, it is possible to provide a tire excellent in low heat generation, wear resistance, and productivity.
  • the rubber composition of the present invention is a rubber composition containing a rubber component, a filler, a compound represented by the following formula (I), and a fatty acid metal salt.
  • A is an aryl group having at least two polar groups, and the polar groups may be the same or different.
  • R 1 and R 2 are each independently hydrogen; And at least one substituent selected from the group consisting of an atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group, and the substituent is one or more of O, S, and N atoms May be included.
  • the rubber component contained in the rubber composition of the present invention is not particularly limited as long as it contains a diene rubber.
  • the diene rubber include natural rubber, polybutadiene rubber (BR), polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), styrene isoprene butadiene rubber (SIBR), and chloroprene rubber (CR).
  • synthetic diene rubbers such as acrylonitrile butadiene rubber (NBR).
  • NBR acrylonitrile butadiene rubber
  • at least natural rubber is preferably included. This is because more excellent low heat generation can be realized, and improvement in wear resistance can be expected.
  • gum you may contain individually by 1 type and may contain as 2 or more types of blends.
  • the rubber component is a non-diene system such as ethylene propylene diene rubber (EPDM), ethylene propylene rubber (EPM), butyl rubber (IIR), etc., as long as the effects of the invention are not impaired. It is also possible to include synthetic rubber.
  • EPDM ethylene propylene diene rubber
  • EPM ethylene propylene rubber
  • IIR butyl rubber
  • the content of the diene rubber in the rubber component is not particularly limited, but is preferably 80% by mass or more from the viewpoint of maintaining excellent low heat buildup and wear resistance, and 90% by mass. % Or more is more preferable.
  • the rubber composition of the present invention includes a filler in addition to the rubber component described above.
  • a filler in addition to the rubber component described above.
  • the dispersibility of the filler is increased, and the performance such as strength and abrasion resistance is maintained at a high level, while being excellent. Low heat generation can be realized.
  • the content of the filler is not particularly limited, but is preferably 10 to 160 parts by mass, more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component. preferable.
  • the amount of filler it is possible to achieve more excellent low heat generation and wear resistance, and when the content is 10 parts by mass or more, sufficient wear resistance is obtained, When the content is 160 parts by mass or less, it is possible to suppress the deterioration of low heat generation.
  • the type of the filler is not particularly limited.
  • carbon black, silica, and other inorganic fillers can be included.
  • the said filler contains carbon black. This is because more excellent low heat generation can be realized, and improvement in wear resistance can be expected.
  • the carbon black include GPF, FEF, SRF, HAF, ISAF, IISAF, and SAF grade carbon black.
  • the content of the carbon black is preferably 10 parts by mass or more and more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining superior wear resistance. Preferably, it is 50 parts by mass or more. This is because the wear resistance of the rubber composition can be further improved by setting the carbon black content to 10 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content of the carbon black is preferably 160 parts by mass or less, more preferably 90 parts by mass or less, and further preferably 70 parts by mass or less with respect to 100 parts by mass of the rubber component. preferable. This is because when the content of the carbon black is 160 parts by mass or less with respect to 100 parts by mass of the rubber component, low heat build-up and workability can be further improved while maintaining the wear resistance at a high level. .
  • the silica as the filler is not particularly limited, and for example, wet silica, dry silica, colloidal silica, and the like can be used.
  • M is a metal selected from the group consisting of Al, Mg, Ti, Ca and Zr, oxides or hydroxides of these metals, and hydrates thereof, and carbonates of these metals.
  • N, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10)
  • Examples of the inorganic compound of the formula (III) include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina; alumina monohydrate such as boehmite and diaspore (Al 2 O 3 .H 2 O); gibbsite Aluminum hydroxide [Al (OH) 3 ], such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), Talc (3MgO ⁇ 4SiO 2 ⁇ H 2 O), attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO), hydroxylated Calcium [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 .2SiO 2 ), kaolin (A
  • the rubber composition of this invention contains the compound represented by Formula (I) in addition to the rubber component and filler mentioned above.
  • A represents an aryl group.
  • the aryl group has at least two polar groups at arbitrary positions, and the polar groups may be the same or different.
  • the position of the polar group is the aromatic ring of the aryl group. It can be anywhere.
  • R 1 and R 2 in formula (I) are each independently at least one substituent selected from the group consisting of a hydrogen atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group. is there. Further, these substituents may contain one or more of O, S and N atoms.
  • the aryl group represented by A has a high affinity with a filler such as carbon black, and the portion having a hydrazide skeleton has a high affinity with the rubber component. Therefore, the chemical interaction between the rubber component and the filler can be greatly improved by being blended in the rubber composition. As a result, the hysteresis loss due to the friction between the fillers can be reduced, and as a result, extremely low heat build-up can be obtained as compared with the prior art. In addition, better wear resistance can be achieved by improving the dispersibility of the filler. In addition, as a result of greatly improved chemical interaction between the rubber component and the filler, it is possible to suppress the increase in viscosity of the unvulcanized rubber while maintaining the low heat buildup and wear resistance of the rubber composition. Can also be improved.
  • examples of the aryl group represented by A in the compound represented by the formula (I) include aromatic hydrocarbon groups such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a triphenylenyl group.
  • the aryl group is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group. Since it exhibits an excellent affinity with a filler, it can realize better low heat generation and wear resistance, and can reduce the number of aromatic rings, which is advantageous in terms of cost and also in terms of practicality.
  • the number of the polar groups which the aryl group shown by A in the compound represented by the formula (I) has is 2 or more.
  • a filler such as carbon black.
  • the affinity with the filler is sufficient. May not be obtained, and the low heat build-up and wear resistance of the rubber composition may be reduced.
  • the type of the polar group is not particularly limited, and examples thereof include an amino group, an imino group, a nitrile group, an ammonium group, an imide group, an amide group, a hydrazo group, an azo group, a diazo group, a hydroxyl group, and a carboxy group.
  • at least one of the polar groups is preferably a hydroxyl group, an amino group or a nitro group, more preferably a hydroxyl group, and particularly preferably at least two are hydroxyl groups. This is because the rubber composition exhibits excellent affinity with the filler and can further improve the low heat buildup and wear resistance of the rubber composition.
  • R 1 and R 2 are each independently a hydrogen atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group. And at least one substituent selected from the group consisting of groups. These substituents may contain one or more of O, S and N atoms. Further, R 1 and R 2 are preferably a hydrogen atom or an alkyl group among the substituents described above, and more preferably each of R 1 and R 2 is a hydrogen atom. This is because it has a high affinity with the rubber component, and more excellent low heat build-up, wear resistance and workability can be obtained.
  • the molecular weight of the compound represented by the formula (I) is preferably 250 or less, more preferably 220 or less, and still more preferably 180 or less. This is because the affinity with each molecule of natural rubber is increased, a superior low heat build-up property can be obtained, and the wear resistance can be increased.
  • the melting point of the compound represented by the formula (I) is preferably 80 ° C. or higher and lower than 250 ° C., more preferably 80 to 200 ° C. This is because, by lowering the melting point of the hydrazide compound, the affinity with each molecule of the natural rubber is increased, a more excellent low heat build-up property can be obtained, and the wear resistance can be increased.
  • the content of the compound represented by formula (I) in the rubber composition of the present invention is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferably from 10 to 10 parts by mass, and particularly preferably from 0.05 to 5 parts by mass.
  • the content 0.05 parts by mass or more with respect to 100 parts by mass of the rubber component more excellent low heat build-up and wear resistance can be obtained, and by making the content 30 parts by mass or less, workability can be improved. This is because deterioration can be prevented.
  • the rubber composition of the present invention is represented by the following formula (II) in addition to the compound represented by the above formula (I) from the viewpoint of realizing further excellent low heat build-up and wear resistance. Contains compounds.
  • Examples of the compound represented by the formula (II) include 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylpropylidene)- 2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(2-furylmethylene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1- Methylpropylidene) -2-naphthoic acid hydrazi
  • 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide and 1-hydroxy-N are preferred because they are easy to synthesize and can improve low heat build-up.
  • the content of the compound represented by the formula (II) is preferably 0.05 to 5 parts by mass, and 0.1 to 3 parts by mass with respect to 100 parts by mass of the rubber component. More preferred.
  • the content of the compound represented by the formula (II) is preferably 0.05 to 5 parts by mass, and 0.1 to 3 parts by mass with respect to 100 parts by mass of the rubber component. More preferred.
  • the deterioration of workability can be suppressed by making the content of the compound represented by 5) 5 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the rubber composition of the present invention further contains a fatty acid metal salt in addition to the rubber component, the filler and the compound represented by the formula (I) described above.
  • a fatty acid metal salt By including the compound represented by the above formula (I), it has become possible to greatly improve the chemical interaction between the rubber component and the filler. It was thought to get worse. Therefore, in the present invention, by further including a fatty acid metal salt as a processing aid in the rubber composition, it is possible to improve processability while maintaining a low exothermic property at an excellent level.
  • the type of the fatty acid metal salt is not particularly limited, and a known fatty acid metal salt can be appropriately selected and used.
  • fatty acid of the fatty acid metal salt a saturated or unsaturated fatty acid having 3 to 30 carbon atoms, preferably 6 to 20 carbon atoms, is preferably used from the viewpoint of obtaining good processability.
  • examples thereof include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, carboxylic acid and the like.
  • the metal of the fatty acid metal salt is not particularly limited.
  • the metal for example, at least one selected from the group consisting of Na, K, Ca, Mg, Al and Zn is preferably used, and Zn is more preferably used. This is because more excellent processability can be obtained.
  • the content of the fatty acid metal salt is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the fatty acid metal salt is By setting it as 5 mass parts or less with respect to 100 mass parts of rubber components, the fall of intensity
  • the rubber composition of the present invention contains a compounding agent usually used in the rubber industry, such as anti-aging.
  • a compounding agent usually used in the rubber industry, such as anti-aging.
  • An agent, a softening agent, a silane coupling agent, zinc white, a vulcanization accelerator, a vulcanizing agent, and the like can be appropriately selected and contained within a range that does not impair the object of the present invention.
  • these compounding agents commercially available products can be suitably used.
  • the manufacturing method of the rubber composition of the present invention is not particularly limited.
  • it can be obtained by blending and kneading a rubber component containing a diene rubber, a filler, a compound represented by the formula (I), and a fatty acid metal salt by a known method. .
  • the tire of the present invention is characterized by using the above-described rubber composition of the present invention.
  • the part to which the rubber composition is applied is not particularly limited, but is preferably used for a tread among tires.
  • a tire using the rubber composition of the present invention for a tread is excellent in low heat buildup and wear resistance.
  • the tire of the present invention is not particularly limited except that the above-described rubber composition of the present invention is used for any tire member, and can be produced according to a conventional method.
  • an inert gas such as nitrogen, argon, helium, or the like can be used in addition to normal or air with adjusted oxygen partial pressure.
  • Mooney viscosity index The rubber composition of each sample was measured for Mooney viscosity according to JIS K 6300-1: 2001 (Mooney viscosity, Mooney scorch time). In addition, about the measured Mooney viscosity, after taking the reciprocal number, it multiplied by 100, the index value when the reciprocal value x100 of the comparative example 2 was set to 100 was made into the Mooney viscosity index. As the Mooney viscosity index is larger, the unvulcanized viscosity is smaller and the workability is better.
  • slightly yellow crystals were found to be 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide as a result of NMR and IR analysis. (Melting point: 146 ° C., 1H-NMR (DMSO) 0.90 (m, 6H), 1.93 (s, 3H), 2.00 (m, 1H), 2.17 (m, 2H), 7.38.
  • the present invention it is possible to provide a rubber composition excellent in low heat buildup, wear resistance and processability. Further, according to the present invention, it is possible to provide a tire excellent in low heat generation, wear resistance, and productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

The purpose of the present invention is to provide a rubber composition having exceptional low heat build-up, wear resistance, and processability. In order to achieve the purpose, the present invention is characterized in including a rubber component that contains a diene rubber; a filler; a compound represented by formula (I); and a fatty acid metal salt.

Description

ゴム組成物及びタイヤRubber composition and tire
 本発明は、ゴム組成物及びタイヤに関する。 The present invention relates to a rubber composition and a tire.
 昨今、自動車の低燃費化に対する要求が強くなっており、転がり抵抗の小さいタイヤが求められている。そのため、タイヤのトレッド等に使用するゴム組成物として、tanδが低く、低発熱性に優れたゴム組成物が望まれている。 Recently, there is a strong demand for fuel efficiency reduction of automobiles, and tires with low rolling resistance are required. Therefore, as a rubber composition used for a tire tread or the like, a rubber composition having a low tan δ and an excellent low heat generation property is desired.
 従来の空気入りタイヤにおいては、低発熱性を実現することを目的として、ゴム組成物中のカーボンブラックの粒子径を大きくしたり、カーボンブラックの配合量を減少させる等の対策が考えられるが、同時にトレッドゴムの耐摩耗性の低下や、ゴムの耐カット性や耐チッピング性等の耐破壊性を低下させるという問題があった。 In conventional pneumatic tires, for the purpose of realizing low heat build-up, measures such as increasing the particle size of carbon black in the rubber composition or reducing the amount of carbon black can be considered. At the same time, there has been a problem that the wear resistance of the tread rubber is lowered and the fracture resistance such as cut resistance and chipping resistance of the rubber is lowered.
 そのため、耐摩耗性等の他の物性を低下させることなく、低発熱性を改善できる技術の開発が望まれていた。
 それらの技術の一つとして、例えば特許文献1には、ゴム成分とカーボンブラックとの化学的相互作用を向上させることを目的として、天然ゴムを含むエラストマーに、カーボンブラック及び特定のヒドラジド化合物を配合したゴム組成物が開示されている。
Therefore, it has been desired to develop a technique capable of improving the low heat generation without reducing other physical properties such as wear resistance.
As one of those technologies, for example, Patent Document 1 contains carbon black and a specific hydrazide compound in an elastomer containing natural rubber for the purpose of improving the chemical interaction between the rubber component and carbon black. A rubber composition is disclosed.
特表2014-501827号公報Special table 2014-501827 gazette
 しかしながら、特許文献1に開示された技術については、低発熱性が十分ではなく、自動車の低燃費化に対する要求に応えるべく、低発熱性のさらなる改善が必要であった。加えて、特許文献1の技術によって、低発熱性の改善を図った場合には、ゴム組成物中にポリマーゲルが生成し、加工性の悪化(粘度の増大)も考えられたことから、加工性についてもさらなる改善が望まれていた。 However, the technique disclosed in Patent Document 1 is not sufficiently low in heat generation, and further improvement in low heat generation is necessary to meet the demand for lower fuel consumption of automobiles. In addition, when improvement of low heat build-up was attempted by the technique of Patent Document 1, a polymer gel was generated in the rubber composition, and deterioration of processability (increased viscosity) was also considered. Further improvement was desired for sex.
 そのため、本発明の目的は、低発熱性、耐摩耗性及び加工性に優れたゴム組成物を提供することにある。また、本発明の他の目的は、低発熱性、耐摩耗性及び生産性に優れたタイヤを提供することにある。 Therefore, an object of the present invention is to provide a rubber composition excellent in low heat generation, wear resistance and processability. Another object of the present invention is to provide a tire excellent in low heat generation, wear resistance and productivity.
 本発明者らは、ゴム成分及び充填材を含むゴム組成物について、上記課題を解決するべく鋭意研究を行った。そして、ゴム組成物中に、特定構造を有するヒドラジド化合物を含有させることによって、ゴム成分とカーボンブラックとの相互作用を高めることができる結果、より優れた低発熱性及び耐摩耗性を実現できることに着目した。そして、上述したポリマーゲルの生成に起因した加工性の悪化の問題については、ゴム組成物中に、さらに脂肪酸金属塩を含有させることによって、加工性の向上を可能にし、優れた低発熱性及び耐摩耗性と、優れた加工性とを両立できることを見出し、本発明を完成するに至った。 The inventors of the present invention have intensively studied to solve the above-mentioned problems with rubber compositions containing a rubber component and a filler. And, by including a hydrazide compound having a specific structure in the rubber composition, it is possible to enhance the interaction between the rubber component and carbon black, and as a result, it is possible to realize more excellent low heat generation and wear resistance. Pay attention. And about the problem of the deterioration of workability resulting from the production | generation of the polymer gel mentioned above, by making a rubber composition contain a fatty-acid metal salt further, improvement of workability is enabled, the outstanding low exothermic property and The inventors have found that both wear resistance and excellent workability can be achieved, and have completed the present invention.
 即ち、本発明のゴム組成物は、ジエン系ゴムを含有するゴム成分と、充填材と、下記式(I)で表される化合物と、脂肪酸金属塩とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000003
(式中、Aは、アリール基であり、少なくとも2つの極性基を有し、該極性基は同じであっても、異なっていてもよい。R1及びR2は、それぞれ独立して、水素原子、アシル基、アミド基、アルキル基、シクロアルキル基及びアリール基からなる群から選択される少なくとも一種の置換基であり、さらに、該置換基は、O、S及びN原子のうちの一種以上を含んでいてもよい。)
 上記構成を具えることによって、優れた低発熱性、耐摩耗性及び加工性を実現できる。
That is, the rubber composition of the present invention comprises a rubber component containing a diene rubber, a filler, a compound represented by the following formula (I), and a fatty acid metal salt.
Figure JPOXMLDOC01-appb-C000003
(In the formula, A is an aryl group having at least two polar groups, and the polar groups may be the same or different. R 1 and R 2 are each independently hydrogen; And at least one substituent selected from the group consisting of an atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group, and the substituent is one or more of O, S, and N atoms May be included.)
By providing the above configuration, it is possible to achieve excellent low heat generation, wear resistance, and workability.
 また、本発明のゴム組成物については、前記式(I)で表される化合物中のAの有する極性基の少なくとも1つが、ヒドロキシル基、アミノ基又はニトロ基であることが好ましく、当該極性基の少なくとも1つがヒドロキシル基であることがより好ましく、当該極性基の少なくとも2つがヒドロキシル基であることが特に好ましい。より優れた低発熱性及び耐摩耗性を実現できるためである。 In the rubber composition of the present invention, it is preferable that at least one of the polar groups of A in the compound represented by the formula (I) is a hydroxyl group, an amino group, or a nitro group. More preferably, at least one of is a hydroxyl group, and at least two of the polar groups are particularly preferably a hydroxyl group. This is because more excellent low heat generation and wear resistance can be realized.
 さらに、本発明のゴム組成物については、前記式(I)で表される化合物中のAが、フェニル基又はナフチル基であることが好ましい。より優れた低発熱性を実現でき、実用性の点でも優れるためである。 Furthermore, in the rubber composition of the present invention, it is preferable that A in the compound represented by the formula (I) is a phenyl group or a naphthyl group. This is because more excellent low heat generation property can be realized and the practicality is also excellent.
 また、本発明のゴム組成物については、前記式(I)で表される化合物中のR1及びR2が、いずれも水素原子であることが好ましい。より優れた低発熱性及び耐摩耗性を実現できるためである。 In the rubber composition of the present invention, it is preferable that R 1 and R 2 in the compound represented by the formula (I) are both hydrogen atoms. This is because more excellent low heat generation and wear resistance can be realized.
 さらに、本発明のゴム組成物については、前記式(I)で表される化合物の分子量が、250以下であることが好ましい。より優れた低発熱性及び耐摩耗性を実現できるためである。 Furthermore, in the rubber composition of the present invention, the molecular weight of the compound represented by the formula (I) is preferably 250 or less. This is because more excellent low heat generation and wear resistance can be realized.
 さらにまた、本発明のゴム組成物については、前記式(I)で表される化合物の融点が、80℃以上、250℃未満であることが好ましい。より優れた低発熱性及び耐摩耗性を実現できるためである。 Furthermore, for the rubber composition of the present invention, it is preferable that the melting point of the compound represented by the formula (I) is 80 ° C. or higher and lower than 250 ° C. This is because more excellent low heat generation and wear resistance can be realized.
 また、本発明のゴム組成物については、前記式(I)で表される化合物の含有量が、前記ゴム成分100質量部に対して、0.05~30質量部であることが好ましい。より優れた低発熱性及び耐摩耗性を実現でき、加工性の悪化も有効に抑制できるためである。 In the rubber composition of the present invention, the content of the compound represented by the formula (I) is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the rubber component. This is because more excellent low heat generation and wear resistance can be realized, and deterioration of workability can be effectively suppressed.
 さらに、本発明のゴム組成物については、前記式(I)で表される化合物が、2,6-ジヒドロキシベンゾヒドラジド、2,3-ジヒドロキシベンゾヒドラジド、2,4-ジヒドロキシベンゾヒドラジド、2,5-ジヒドロキシベンゾヒドラジド、4-アミノ-2-ヒドロキシベンゾヒドラジド、3,5-ジヒドロキシナフタレン-2-カルボヒドラジド、4-アミノ-3-ヒドロキシナフタレン-2-カルボヒドラジド、3-ヒドロキシ-4-ニトロナフタレン-2-カルボヒドラジド、1,3-ジヒドロキシナフタレン-2-カルボヒドラジド、2,4,6-トリヒドロキシベンゾヒドラジド及び2,6-ジヒドロキシ-4-メチルベンゾヒドラジドからなる群より選択される少なくとも1つであることが好ましい。より優れた低発熱性及び耐摩耗性を実現できるためである。 Further, in the rubber composition of the present invention, the compound represented by the formula (I) is 2,6-dihydroxybenzohydrazide, 2,3-dihydroxybenzohydrazide, 2,4-dihydroxybenzohydrazide, 2,5 -Dihydroxybenzohydrazide, 4-amino-2-hydroxybenzohydrazide, 3,5-dihydroxynaphthalene-2-carbohydrazide, 4-amino-3-hydroxynaphthalene-2-carbohydrazide, 3-hydroxy-4-nitronaphthalene- At least one selected from the group consisting of 2-carbohydrazide, 1,3-dihydroxynaphthalene-2-carbohydrazide, 2,4,6-trihydroxybenzohydrazide and 2,6-dihydroxy-4-methylbenzohydrazide Preferably there is. This is because more excellent low heat generation and wear resistance can be realized.
 また、本発明のゴム組成物については、前記ジエン系ゴムが、天然ゴムであることが好ましい。優れた耐摩耗性を実現できるためである。 In the rubber composition of the present invention, the diene rubber is preferably natural rubber. This is because excellent wear resistance can be realized.
 さらに、本発明のゴム組成物については、前記充填材が、カーボンブラックを含むことが好ましい。優れた耐摩耗性を実現できるためである。 Furthermore, in the rubber composition of the present invention, it is preferable that the filler contains carbon black. This is because excellent wear resistance can be realized.
 さらにまた、本発明のゴム組成物については、前記充填材の含有量が、前記ゴム成分100質量部に対して、10~160質量部であることが好ましい。より優れた低発熱性及び耐摩耗性を実現できるためである。 Furthermore, in the rubber composition of the present invention, the content of the filler is preferably 10 to 160 parts by mass with respect to 100 parts by mass of the rubber component. This is because more excellent low heat generation and wear resistance can be realized.
 また、本発明のゴム組成物については、前記脂肪酸金属塩の脂肪酸は、炭素数が6~20であることが好ましい。より優れた加工性を実現できるためである。 In the rubber composition of the present invention, the fatty acid of the fatty acid metal salt preferably has 6 to 20 carbon atoms. This is because better workability can be realized.
 さらに、本発明のゴム組成物については、前記脂肪酸金属塩の金属が、Znであることが好ましい。より優れた加工性を実現できるためである。 Furthermore, in the rubber composition of the present invention, it is preferable that the metal of the fatty acid metal salt is Zn. This is because better workability can be realized.
 本発明のゴム組成物については、さらに下記式(II)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記構成を具えることによって、優れた低発熱性及び耐摩耗性を実現できるためである。
The rubber composition of the present invention preferably further contains a compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000004
This is because the provision of the above configuration can realize excellent low heat generation and wear resistance.
 また、本発明のゴム組成物については、前記式(II)で表される化合物が、1-ヒドロキシ-N′-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、及び、3-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジドからなる群より選択される少なくとも1つであることがより好ましい。より優れた低発熱性及び耐摩耗性を得ることができる。 In the rubber composition of the present invention, the compound represented by the formula (II) is 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N′—. (1-Methylpropylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(2-furylmethylene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide, 3- Hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide and 3-hydroxy-N ′-(2-furylmethylene) -2-naphtho And more preferably at least one selected from the group consisting of acid hydrazide. More excellent low heat buildup and wear resistance can be obtained.
 本発明のタイヤは、上述のゴム組成物を用いたことを特徴とする。
 上記構成を具えることによって、優れた低発熱性、耐摩耗性及び生産性を実現できる。
The tire of the present invention is characterized by using the above rubber composition.
By providing the above configuration, it is possible to realize excellent low heat generation, wear resistance, and productivity.
 本発明によれば、低発熱性、耐摩耗性及び加工性に優れたゴム組成物を提供することができる。また、本発明によれば、低発熱性、耐摩耗性及び生産性に優れたタイヤを提供することができる。 According to the present invention, it is possible to provide a rubber composition excellent in low heat buildup, wear resistance and processability. Further, according to the present invention, it is possible to provide a tire excellent in low heat generation, wear resistance, and productivity.
 以下に、本発明の実施形態を具体的に例示説明する。
<ゴム組成物>
 本発明のゴム組成物は、ゴム成分と、充填材と、下記式(I)で表される化合物と、脂肪酸金属塩とを含むゴム組成物である。
Figure JPOXMLDOC01-appb-C000005
(式中、Aは、アリール基であり、少なくとも2つの極性基を有し、該極性基は同じであっても、異なっていてもよい。R1及びR2は、それぞれ独立して、水素原子、アシル基、アミド基、アルキル基、シクロアルキル基及びアリール基からなる群から選択される少なくとも一種の置換基であり、さらに、該置換基は、O、S及びN原子のうちの一種以上を含んでいてもよい。)
Hereinafter, embodiments of the present invention will be specifically described.
<Rubber composition>
The rubber composition of the present invention is a rubber composition containing a rubber component, a filler, a compound represented by the following formula (I), and a fatty acid metal salt.
Figure JPOXMLDOC01-appb-C000005
(In the formula, A is an aryl group having at least two polar groups, and the polar groups may be the same or different. R 1 and R 2 are each independently hydrogen; And at least one substituent selected from the group consisting of an atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group, and the substituent is one or more of O, S, and N atoms May be included.)
(ゴム成分)
 本発明のゴム組成物に含まれるゴム成分については、ジエン系ゴムを含むものであれば特に限定はされない。
 前記ジエン系ゴムについては、例えば、天然ゴムや、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、スチレン・ブタジエン共重合体ゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等の合成ジエン系ゴムが挙げられるが、これらの中でも、少なくとも天然ゴムを含むことが好ましい。より優れた低発熱性を実現できるからであり、耐摩耗性についても向上が望める。
 なお、前記ジエン系ゴムについては、1種単独で含有してもよいし、2種以上のブレンドとして含有してもよい。
(Rubber component)
The rubber component contained in the rubber composition of the present invention is not particularly limited as long as it contains a diene rubber.
Examples of the diene rubber include natural rubber, polybutadiene rubber (BR), polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), styrene isoprene butadiene rubber (SIBR), and chloroprene rubber (CR). And synthetic diene rubbers such as acrylonitrile butadiene rubber (NBR). Among these, at least natural rubber is preferably included. This is because more excellent low heat generation can be realized, and improvement in wear resistance can be expected.
In addition, about the said diene type rubber | gum, you may contain individually by 1 type and may contain as 2 or more types of blends.
 また、前記ゴム成分については、上述したジエン系ゴム以外にも、発明の効果を損なわない範囲で、エチレンプロピレンジエンゴム(EPDM)、エチレンプロピレンゴム(EPM)、ブチルゴム(IIR)等の非ジエン系合成ゴムを含むことも可能である。 In addition to the above-mentioned diene rubber, the rubber component is a non-diene system such as ethylene propylene diene rubber (EPDM), ethylene propylene rubber (EPM), butyl rubber (IIR), etc., as long as the effects of the invention are not impaired. It is also possible to include synthetic rubber.
 なお、前記ゴム成分におけるジエン系ゴムの含有量については、特に限定はされないが、優れた低発熱性及び耐摩耗性を維持するという点からは、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The content of the diene rubber in the rubber component is not particularly limited, but is preferably 80% by mass or more from the viewpoint of maintaining excellent low heat buildup and wear resistance, and 90% by mass. % Or more is more preferable.
(充填材)
 本発明のゴム組成物は、上述したゴム成分に加えて、充填材を含む。
 充填材を、前記ゴム成分及び後述する式(I)で表される化合物とともに含むことで、充填材の分散性が高まり、強度や耐摩耗性等の性能を高いレベルで維持しつつ、優れた低発熱性を実現できる。
(Filler)
The rubber composition of the present invention includes a filler in addition to the rubber component described above.
By including the filler together with the rubber component and the compound represented by the formula (I) described later, the dispersibility of the filler is increased, and the performance such as strength and abrasion resistance is maintained at a high level, while being excellent. Low heat generation can be realized.
 ここで、前記充填材の含有量は、特に限定されるものではないが、前記ゴム成分100質量部に対して10~160質量部であることが好ましく、30~100質量部であることがより好ましい。充填材の量について適正化を図ることで、より優れた低発熱性及び耐摩耗性を実現できるためであり、含有量が10質量部以上の場合には、十分な耐摩耗性が得られ、含有量が160質量部以下の場合には、低発熱性の悪化を抑えることができる。 Here, the content of the filler is not particularly limited, but is preferably 10 to 160 parts by mass, more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component. preferable. By optimizing the amount of filler, it is possible to achieve more excellent low heat generation and wear resistance, and when the content is 10 parts by mass or more, sufficient wear resistance is obtained, When the content is 160 parts by mass or less, it is possible to suppress the deterioration of low heat generation.
 また、前記充填材の種類については特に限定はされない。例えば、カーボンブラックや、シリカ、その他の無機充填材を含むことができる。その中でも、前記充填材は、カーボンブラックを含むことが好ましい。より優れた低発熱性を実現できるからであり、耐摩耗性についても向上が望める。
 ここで、前記カーボンブラックとしては、GPF、FEF、SRF、HAF、ISAF、IISAF、SAFグレード等のカーボンブラックが挙げられる。
Further, the type of the filler is not particularly limited. For example, carbon black, silica, and other inorganic fillers can be included. Among these, it is preferable that the said filler contains carbon black. This is because more excellent low heat generation can be realized, and improvement in wear resistance can be expected.
Examples of the carbon black include GPF, FEF, SRF, HAF, ISAF, IISAF, and SAF grade carbon black.
 なお、前記カーボンブラックの含有量は、よりすぐれた耐摩耗性を得る観点から、前記ゴム成分100質量部に対して、10質量部以上であることが好ましく、30質量部以上であることがより好ましく、50質量部以上であることがさらに好ましい。前記カーボンブラックの含有量を、前記ゴム成分100質量部に対して10質量部以上とすることで、ゴム組成物の耐摩耗性をより向上できるためである。また、前記カーボンブラックの含有量は、前記ゴム成分100質量部に対して、160質量部以下であることが好ましく、90質量部以下であることがより好ましく、70質量部以下であることがさらに好ましい。前記カーボンブラックの含有量を、前記ゴム成分100質量部に対して160質量部以下とすることで、耐摩耗性を高いレベルで維持しつつ、低発熱性や加工性についてより改善できるためである。 In addition, the content of the carbon black is preferably 10 parts by mass or more and more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining superior wear resistance. Preferably, it is 50 parts by mass or more. This is because the wear resistance of the rubber composition can be further improved by setting the carbon black content to 10 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content of the carbon black is preferably 160 parts by mass or less, more preferably 90 parts by mass or less, and further preferably 70 parts by mass or less with respect to 100 parts by mass of the rubber component. preferable. This is because when the content of the carbon black is 160 parts by mass or less with respect to 100 parts by mass of the rubber component, low heat build-up and workability can be further improved while maintaining the wear resistance at a high level. .
 なお、前記充填材としてのシリカについては、特に限定はされず、例えば、湿式シリカ、乾式シリカ及びコロイダルシリカ等を用いることができる。
 また、前記その他の無機充填材としては、例えば下記式(III)で表される無機化合物を用いることも可能である。
nM・xSiOY・zH2O ・・・ (III)
(式中、Mは、Al、Mg、Ti、Ca及びZrからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、並びに、これらの金属の炭酸塩から選ばれる少なくとも一種であり;n、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。)
The silica as the filler is not particularly limited, and for example, wet silica, dry silica, colloidal silica, and the like can be used.
Moreover, as said other inorganic filler, it is also possible to use the inorganic compound represented, for example by following formula (III).
nM · xSiO Y · zH 2 O (III)
Wherein M is a metal selected from the group consisting of Al, Mg, Ti, Ca and Zr, oxides or hydroxides of these metals, and hydrates thereof, and carbonates of these metals. N, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10)
 上記式(III)の無機化合物としては、γ-アルミナ、α-アルミナ等のアルミナ(Al23);ベーマイト、ダイアスポア等のアルミナ一水和物(Al23・H2O);ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)3];炭酸アルミニウム[Al2(CO33]、水酸化マグネシウム[Mg(OH)2]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、タルク(3MgO・4SiO2・H2O)、アタパルジャイト(5MgO・8SiO2・9H2O)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)2]、酸化アルミニウムマグネシウム(MgO・Al23)、クレー(Al23・2SiO2)、カオリン(Al23・2SiO2・2H2O)、パイロフィライト(Al23・4SiO2・H2O)、ベントナイト(Al23・4SiO2・2H2O)、ケイ酸アルミニウム(Al2SiO5、Al4・3SiO4・5H2O等)、ケイ酸マグネシウム(Mg2SiO4、MgSiO3等)、ケイ酸カルシウム(Ca2SiO4等)、ケイ酸アルミニウムカルシウム(Al23・CaO・2SiO2等)、ケイ酸マグネシウムカルシウム(CaMgSiO4)、炭酸カルシウム(CaCO3)、酸化ジルコニウム(ZrO2)、水酸化ジルコニウム[ZrO(OH)2・nH2O]、炭酸ジルコニウム[Zr(CO3)2]、各種ゼオライトのような電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等を挙げることができる。 Examples of the inorganic compound of the formula (III) include alumina (Al 2 O 3 ) such as γ-alumina and α-alumina; alumina monohydrate such as boehmite and diaspore (Al 2 O 3 .H 2 O); gibbsite Aluminum hydroxide [Al (OH) 3 ], such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), Talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO), hydroxylated Calcium [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 .2SiO 2 ), kaolin (Al 2 O 3 .2) SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5 , Al 4 · 3SiO 4 · 5H 2 O), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), calcium silicate (Ca 2 SiO 4 etc.), aluminum calcium silicate (Al 2 O 3 · CaO · 2SiO 2) Etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 .nH 2 O], zirconium carbonate [Zr (CO 3 ) 2 ], A crystalline aluminosilicate containing hydrogen, alkali metal, or alkaline earth metal that corrects the charge, such as various zeolites.
(式(I)で表される化合物)
 そして、本発明のゴム組成物は、上述したゴム成分及び充填材に加えて、式(I)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000006
 式(I)の、Aは、アリール基である。ここで、該アリール基は、任意の位置に少なくとも2つの極性基を有し、該極性基は同じであっても、異なっていてもよく、前記極性基の位置については、アリール基の芳香環中のどこであってもよい。
 また、式(I)のR1及びR2は、それぞれ独立して、水素原子、アシル基、アミド基、アルキル基、シクロアルキル基及びアリール基からなる群から選択される少なくとも一種の置換基である。さらに、これらの置換基については、O、S及びN原子のうちの一種以上を含んでいてもよい。
(Compound represented by formula (I))
And the rubber composition of this invention contains the compound represented by Formula (I) in addition to the rubber component and filler mentioned above.
Figure JPOXMLDOC01-appb-C000006
In formula (I), A represents an aryl group. Here, the aryl group has at least two polar groups at arbitrary positions, and the polar groups may be the same or different. The position of the polar group is the aromatic ring of the aryl group. It can be anywhere.
R 1 and R 2 in formula (I) are each independently at least one substituent selected from the group consisting of a hydrogen atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group. is there. Further, these substituents may contain one or more of O, S and N atoms.
 上記式(I)で表される化合物については、Aで示されたアリール基がカーボンブラック等の充填材と高い親和性を有し、且つ、ヒドラジド骨格を有する部分がゴム成分と高い親和性を有するため、ゴム組成物中に配合されることで、ゴム成分と充填材との化学的相互作用を大きく向上させることができる。それによって、充填材同士の擦れ合いに起因したヒステリシスロスを低減できる結果、従来に比べて極めて優れた低発熱性を得ることができる。加えて、充填材の分散性向上によって、よりすぐれた耐摩耗性についても実現できる。
 また、ゴム成分と充填材との化学的相互作用が大きく向上した結果、ゴム組成物の低発熱性及び耐摩耗性を維持しつつ、未加硫ゴムの粘度上昇を抑制できるため、加工性についても向上が可能となる。
For the compound represented by the above formula (I), the aryl group represented by A has a high affinity with a filler such as carbon black, and the portion having a hydrazide skeleton has a high affinity with the rubber component. Therefore, the chemical interaction between the rubber component and the filler can be greatly improved by being blended in the rubber composition. As a result, the hysteresis loss due to the friction between the fillers can be reduced, and as a result, extremely low heat build-up can be obtained as compared with the prior art. In addition, better wear resistance can be achieved by improving the dispersibility of the filler.
In addition, as a result of greatly improved chemical interaction between the rubber component and the filler, it is possible to suppress the increase in viscosity of the unvulcanized rubber while maintaining the low heat buildup and wear resistance of the rubber composition. Can also be improved.
 ここで、前記式(I)で表される化合物中のAで示したアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、トリフェニレニル基等の芳香族炭化水素基が挙げられる。その中でも、前記アリール基は、フェニル基又はナフチル基であることが好ましく、フェニル基であることがより好ましい。優れた充填材との親和性を示すため、より優れた低発熱性及び耐摩耗性を実現でき、芳香環の数を減らせるため、コスト的にも有利であり、実用性の点でも優れる。 Here, examples of the aryl group represented by A in the compound represented by the formula (I) include aromatic hydrocarbon groups such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a triphenylenyl group. Among these, the aryl group is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group. Since it exhibits an excellent affinity with a filler, it can realize better low heat generation and wear resistance, and can reduce the number of aromatic rings, which is advantageous in terms of cost and also in terms of practicality.
 また、前記式(I)で表される化合物中のAで示したアリール基の有する極性基の数は、2つ以上である。芳香環中に2つ以上の極性基を有することで、カーボンブラック等の充填材と高い親和性を得ることができるためであり、2つ未満の場合には、充填材との親和性が十分に得られず、ゴム組成物の低発熱性及び耐摩耗性を低下させるおそれがある。
 また、前記極性基の種類については、特に限定はされず、例えば、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシ基、カルボニル基、エポキシ基、オキシカルボニル基、含窒素複素環基、含酸素複素環基、スズ含有基、アルコキシシリル基、アルキルアミノ基、ニトロ基等が挙げられる。それらの中でも、前記極性基は、少なくとも1つがヒドロキシル基、アミノ基又はニトロ基であることが好ましく、ヒドロキシル基であることがより好ましく、少なくとも2つがヒドロキシル基であることが特に好ましい。さらに優れた充填材との親和性を示し、ゴム組成物の低発熱性及び耐摩耗性をより向上できるためである。
Moreover, the number of the polar groups which the aryl group shown by A in the compound represented by the formula (I) has is 2 or more. By having two or more polar groups in the aromatic ring, it is possible to obtain a high affinity with a filler such as carbon black. In the case of less than two, the affinity with the filler is sufficient. May not be obtained, and the low heat build-up and wear resistance of the rubber composition may be reduced.
The type of the polar group is not particularly limited, and examples thereof include an amino group, an imino group, a nitrile group, an ammonium group, an imide group, an amide group, a hydrazo group, an azo group, a diazo group, a hydroxyl group, and a carboxy group. Carbonyl group, epoxy group, oxycarbonyl group, nitrogen-containing heterocyclic group, oxygen-containing heterocyclic group, tin-containing group, alkoxysilyl group, alkylamino group, nitro group and the like. Among them, at least one of the polar groups is preferably a hydroxyl group, an amino group or a nitro group, more preferably a hydroxyl group, and particularly preferably at least two are hydroxyl groups. This is because the rubber composition exhibits excellent affinity with the filler and can further improve the low heat buildup and wear resistance of the rubber composition.
 また、前記式(I)で表される化合物においてAにつながるヒドラジド基については、R1及びR2が、それぞれ独立して、水素原子、アシル基、アミド基、アルキル基、シクロアルキル基及びアリール基からなる群から選択される少なくとも一種の置換基である。なお、これらの置換基は、O、S及びN原子のうちの一種以上を含むものであってもよい。
 さらに、R1及びR2については、上述した置換基の中でも、水素原子又はアルキル基であることが好ましく、R1及びR2がいずれも水素原子であることがより好ましい。ゴム成分と高い親和性を有し、より優れた低発熱性、耐摩耗性及び加工性が得られるためである。
In the hydrazide group connected to A in the compound represented by the formula (I), R 1 and R 2 are each independently a hydrogen atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group. And at least one substituent selected from the group consisting of groups. These substituents may contain one or more of O, S and N atoms.
Further, R 1 and R 2 are preferably a hydrogen atom or an alkyl group among the substituents described above, and more preferably each of R 1 and R 2 is a hydrogen atom. This is because it has a high affinity with the rubber component, and more excellent low heat build-up, wear resistance and workability can be obtained.
 ここで、上述した式(I)で表される化合物のいくつかの好適例を、以下に示す。これらの化合物を用いることで、ゴム組成物の低発熱性をより向上できる。なお、これらの化合物は、一種単独で用いることも、複数種を混合して用いることもできる。
2,6-ジヒドロキシベンゾヒドラジド
Figure JPOXMLDOC01-appb-C000007
2,3-ジヒドロキシベンゾヒドラジド
Figure JPOXMLDOC01-appb-C000008
2,4-ジヒドロキシベンゾヒドラジド
Figure JPOXMLDOC01-appb-C000009
2,5-ジヒドロキシベンゾヒドラジド
Figure JPOXMLDOC01-appb-C000010
4-アミノ-2-ヒドロキシベンゾヒドラジド
Figure JPOXMLDOC01-appb-C000011
3,5-ジヒドロキシナフタレン-2-カルボヒドラジド
Figure JPOXMLDOC01-appb-C000012
4-アミノ-3-ヒドロキシナフタレン-2-カルボヒドラジド
Figure JPOXMLDOC01-appb-C000013
3-ヒドロキシ-4-ニトロナフタレン-2-カルボヒドラジド
Figure JPOXMLDOC01-appb-C000014
1,3-ジヒドロキシナフタレン-2-カルボヒドラジド
Figure JPOXMLDOC01-appb-C000015
2,4,6-トリヒドロキシベンゾヒドラジド
Figure JPOXMLDOC01-appb-C000016
2,6-ジヒドロキシ-4-メチルベンゾヒドラジド
Figure JPOXMLDOC01-appb-C000017
Here, some suitable examples of the compound represented by the formula (I) described above are shown below. By using these compounds, the low heat build-up of the rubber composition can be further improved. In addition, these compounds can be used individually by 1 type, or can mix and use multiple types.
2,6-dihydroxybenzohydrazide
Figure JPOXMLDOC01-appb-C000007
2,3-dihydroxybenzohydrazide
Figure JPOXMLDOC01-appb-C000008
2,4-dihydroxybenzohydrazide
Figure JPOXMLDOC01-appb-C000009
2,5-dihydroxybenzohydrazide
Figure JPOXMLDOC01-appb-C000010
4-amino-2-hydroxybenzohydrazide
Figure JPOXMLDOC01-appb-C000011
3,5-dihydroxynaphthalene-2-carbohydrazide
Figure JPOXMLDOC01-appb-C000012
4-Amino-3-hydroxynaphthalene-2-carbohydrazide
Figure JPOXMLDOC01-appb-C000013
3-hydroxy-4-nitronaphthalene-2-carbohydrazide
Figure JPOXMLDOC01-appb-C000014
1,3-dihydroxynaphthalene-2-carbohydrazide
Figure JPOXMLDOC01-appb-C000015
2,4,6-trihydroxybenzohydrazide
Figure JPOXMLDOC01-appb-C000016
2,6-Dihydroxy-4-methylbenzohydrazide
Figure JPOXMLDOC01-appb-C000017
 また、前記式(I)で表される化合物の分子量については、250以下であることが好ましく、220以下であることがより好ましく、180以下であることが更に好ましい。天然ゴムの各分子との親和性が高くなり、より優れた低発熱性を得ることができ、耐摩耗性についても高めることができるからである。 Further, the molecular weight of the compound represented by the formula (I) is preferably 250 or less, more preferably 220 or less, and still more preferably 180 or less. This is because the affinity with each molecule of natural rubber is increased, a superior low heat build-up property can be obtained, and the wear resistance can be increased.
 また、前記式(I)で表される化合物の融点については、80℃以上、250℃未満であることが好ましく、80~200℃であることがより好ましい。前記ヒドラジド化合物の融点を低くすることで、天然ゴムの各分子との親和性が高くなり、より優れた低発熱性を得ることができ、耐摩耗性についても高めることができるからである。 The melting point of the compound represented by the formula (I) is preferably 80 ° C. or higher and lower than 250 ° C., more preferably 80 to 200 ° C. This is because, by lowering the melting point of the hydrazide compound, the affinity with each molecule of the natural rubber is increased, a more excellent low heat build-up property can be obtained, and the wear resistance can be increased.
 なお、本発明のゴム組成物における前記式(I)で表される化合物の含有量は、前記ゴム成分100質量部に対して、0.05~30質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.05~5質量部であることが特に好ましい。前記含有量を前記ゴム成分100質量部に対して0.05質量部以上とすることで、より優れた低発熱性及び耐摩耗性が得られ、30質量部以下とすることで、加工性の悪化も防ぐことができるためである。 The content of the compound represented by formula (I) in the rubber composition of the present invention is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferably from 10 to 10 parts by mass, and particularly preferably from 0.05 to 5 parts by mass. By making the content 0.05 parts by mass or more with respect to 100 parts by mass of the rubber component, more excellent low heat build-up and wear resistance can be obtained, and by making the content 30 parts by mass or less, workability can be improved. This is because deterioration can be prevented.
 なお、本発明のゴム組成物では、さらに優れた低発熱性及び耐摩耗性を実現する観点から、上述した式(I)で表される化合物に加えて、下記式(II)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000018
The rubber composition of the present invention is represented by the following formula (II) in addition to the compound represented by the above formula (I) from the viewpoint of realizing further excellent low heat build-up and wear resistance. Contains compounds.
Figure JPOXMLDOC01-appb-C000018
 前記式(II)で表される化合物としては、例えば、1-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド等が挙げられる。また、これらの化合物の中でも、合成の容易性や、低発熱性をより改善できる点からは、1-ヒドロキシ-N′-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N
’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、及び、3-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジドのうちの少なくとも一種を用いることが好ましい。
Examples of the compound represented by the formula (II) include 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylpropylidene)- 2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(2-furylmethylene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1- Methylpropylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylbutylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1,3 Dimethylbutylidene) -2-naphthoic acid hydrazide, 3-hydroxy -N '- (2-furyl-methylene) -2-naphthoic acid hydrazide, and the like. Among these compounds, 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide and 1-hydroxy-N are preferred because they are easy to synthesize and can improve low heat build-up.
'-(1-methylpropylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N'-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N '-(2-furyl) Methylene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide, At least one of 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide and 3-hydroxy-N ′-(2-furylmethylene) -2-naphthoic acid hydrazide; It is preferable to use it.
 前記式(II)で表される化合物の含有量としては、前記ゴム成分100質量部に対して、0.05~5質量部であることが好ましく、0.1~3質量部であることがより好ましい。前記式(II)で表される化合物の含有量を、ゴム成分100質量部に対して0.05質量部以上とすることで、低発熱性改善効果がより確実に得られ、前記式(II)で表される化合物の含有量を、ゴム成分100質量部に対して5質量部以下とすることで、加工性の悪化を抑制できる。 The content of the compound represented by the formula (II) is preferably 0.05 to 5 parts by mass, and 0.1 to 3 parts by mass with respect to 100 parts by mass of the rubber component. More preferred. By setting the content of the compound represented by the formula (II) to 0.05 parts by mass or more with respect to 100 parts by mass of the rubber component, the effect of improving the low heat build-up can be obtained more reliably. ), The deterioration of workability can be suppressed by making the content of the compound represented by 5) 5 parts by mass or less with respect to 100 parts by mass of the rubber component.
(脂肪酸金属塩)
 本発明のゴム組成物は、上述した、ゴム成分、充填材及び式(I)で表される化合物に加えて、脂肪酸金属塩をさらに含む。
 前記式(I)で表される化合物を含むことによって、ゴム成分と充填材との化学的相互作用を大きく向上させることは可能となったが、それに伴ってポリマーゲルが発生し、加工性が悪化することが考えられた。そのため、本発明では、ゴム組成物中に、加工助剤として脂肪酸金属塩をさらに含むことによって、低発熱性については優れたレベルで維持しつつ、加工性についても向上させることが可能となる。
(Fatty acid metal salt)
The rubber composition of the present invention further contains a fatty acid metal salt in addition to the rubber component, the filler and the compound represented by the formula (I) described above.
By including the compound represented by the above formula (I), it has become possible to greatly improve the chemical interaction between the rubber component and the filler. It was thought to get worse. Therefore, in the present invention, by further including a fatty acid metal salt as a processing aid in the rubber composition, it is possible to improve processability while maintaining a low exothermic property at an excellent level.
 ここで、前記脂肪酸金属塩の種類については、特に限定はされず、公知の脂肪酸金属塩を適宜選択して用いることができる。 Here, the type of the fatty acid metal salt is not particularly limited, and a known fatty acid metal salt can be appropriately selected and used.
 前記脂肪酸金属塩の脂肪酸については、良好な加工性を得る点からは、炭素数が3~30、好ましくは6~20の、飽和又は不飽和の脂肪酸を用いることが好ましい。例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、カルボン酸等が挙げられる。
 なお、これらの脂肪酸金属塩については、単独で含んでもよいし、二種以上を併用することもできる。
As the fatty acid of the fatty acid metal salt, a saturated or unsaturated fatty acid having 3 to 30 carbon atoms, preferably 6 to 20 carbon atoms, is preferably used from the viewpoint of obtaining good processability. Examples thereof include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, carboxylic acid and the like.
In addition, about these fatty-acid metal salts, you may include independently and can also use 2 or more types together.
 また、前記脂肪酸金属塩の金属についても、特に限定はされない。前記金属としては、例えば、Na、K、Ca、Mg、Al及びZnからなる群より選択される少なくとも一種を用いることが好ましく、Znを用いることがより好ましい。より優れた加工性が得られるためである。 Further, the metal of the fatty acid metal salt is not particularly limited. As the metal, for example, at least one selected from the group consisting of Na, K, Ca, Mg, Al and Zn is preferably used, and Zn is more preferably used. This is because more excellent processability can be obtained.
 なお、前記脂肪酸金属塩の含有量については、前記ゴム成分100質量部に対して、0.1~5質量部であることが好ましく、0.5~3質量部であることがより好ましい。前記脂肪酸金属塩の含有量を、ゴム成分100質量部に対して0.1質量部以上とすることで、加工性向上効果をより確実に得ることができ、前記脂肪酸金属塩の含有量を、ゴム成分100質量部に対して5質量部以下とすることで、強度や耐摩耗性の低下を抑制できる。 Note that the content of the fatty acid metal salt is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. By setting the content of the fatty acid metal salt to 0.1 parts by mass or more with respect to 100 parts by mass of the rubber component, it is possible to more reliably obtain an effect of improving workability, and the content of the fatty acid metal salt is By setting it as 5 mass parts or less with respect to 100 mass parts of rubber components, the fall of intensity | strength and abrasion resistance can be suppressed.
(その他の成分)
 本発明のゴム組成物は、前記ゴム成分、前記充填材、前記式(I)で表される化合物及び前記脂肪酸金属塩の他に、ゴム工業界で通常使用される配合剤、例えば、老化防止剤、軟化剤、シランカップリング剤、亜鉛華、加硫促進剤、加硫剤等を、本発明の目的を害しない範囲内で適宜選択して含むことができる。これら配合剤としては、市販品を好適に使用することができる。
(Other ingredients)
In addition to the rubber component, the filler, the compound represented by the formula (I) and the fatty acid metal salt, the rubber composition of the present invention contains a compounding agent usually used in the rubber industry, such as anti-aging. An agent, a softening agent, a silane coupling agent, zinc white, a vulcanization accelerator, a vulcanizing agent, and the like can be appropriately selected and contained within a range that does not impair the object of the present invention. As these compounding agents, commercially available products can be suitably used.
 なお、本発明のゴム組成物の製造方法は、特に限定はされない。例えば、ジエン系ゴムを含有するゴム成分と、充填材と、式(I)で表される化合物と、脂肪酸金属塩とを、公知の方法で、配合し、混錬することで得ることができる。 In addition, the manufacturing method of the rubber composition of the present invention is not particularly limited. For example, it can be obtained by blending and kneading a rubber component containing a diene rubber, a filler, a compound represented by the formula (I), and a fatty acid metal salt by a known method. .
<タイヤ>
 本発明のタイヤは、上述した本発明のゴム組成物を用いてなることを特徴とする。低発熱性、耐摩耗性及び加工性に優れた本発明のゴム組成物をタイヤ材料として含むことによって、優れた低発熱性及び生産性を実現できる。
 前記ゴム組成物を適用する部位については、特に限定されないが、タイヤの中でもトレッドに用いることが好ましい。本発明のゴム組成物をトレッドに用いたタイヤは、低発熱性及び耐摩耗性に優れる。
 なお、本発明のタイヤは、上述した本発明のゴム組成物をタイヤ部材のいずれかに用いる以外特に制限は無く、常法に従って製造することができる。なお、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
<Tire>
The tire of the present invention is characterized by using the above-described rubber composition of the present invention. By including the rubber composition of the present invention excellent in low heat generation, wear resistance and processability as a tire material, excellent low heat generation and productivity can be realized.
The part to which the rubber composition is applied is not particularly limited, but is preferably used for a tread among tires. A tire using the rubber composition of the present invention for a tread is excellent in low heat buildup and wear resistance.
The tire of the present invention is not particularly limited except that the above-described rubber composition of the present invention is used for any tire member, and can be produced according to a conventional method. In addition, as a gas filled in the tire, an inert gas such as nitrogen, argon, helium, or the like can be used in addition to normal or air with adjusted oxygen partial pressure.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(化合物a~k)
 化合物a~kを製造した。化合物a~kの種類、融点、1H-NMR測定(条件:300MHz、DMSO-d6、δppm)の結果について以下に示す。
(Compounds a to k)
Compounds ak were prepared. The types, melting points, and 1 H-NMR measurements (conditions: 300 MHz, DMSO-d 6 , δ ppm) of compounds a to k are shown below.
・化合物a:2,6-ジヒドロキシベンゾヒドラジド
 2,6-ジヒドロキシ安息香酸メチル5.29g、100%ヒドラジン一水和物3.30gを1-ブタノール32mLに添加し、117℃で15時間攪拌した。反応液を冷却後、析出している固体を濾過し、イソプロピルアルコールで洗浄した。得られた固体を減圧乾燥し、淡黄色固体2,6-ジヒドロキシベンゾヒドラジド2.85g(収率54%)を得た。
Figure JPOXMLDOC01-appb-C000019
(融点:198℃、1H-NMR(300MHz,DMSO-d6,δppm):6.3(d,2H),7.1(t,1H),NH(3H)及びOH(2H)は不検出)

・化合物b:2,3-ジヒドロキシベンゾヒドラジド
 2,3-ジヒドロキシ安息香酸メチル2.75g、100%ヒドラジン一水和物7.00gを水1.5mLに添加し、100℃で3時間攪拌した。反応液を濃縮後、析出している固体にイソプロピルアルコールを加えて濾過し、イソプロピルアルコールで洗浄した。得られた固体を減圧乾燥し、淡黄色固体2,3-ジヒドロキシベンゾヒドラジド2.00g(収率73%)を得た。
Figure JPOXMLDOC01-appb-C000020
(融点:223℃、1H-NMR(300MHz,DMSO-d6,δppm):4.7(br-s,2H),6.7(m,1H), 6.9(m,1H),7.2(m,1H),10.1(br-s,1H),OH(2H)は不検出)

・化合物c:2,4-ジヒドロキシベンゾヒドラジド
 2,4-ジヒドロキシ安息香酸メチル5.50g、100%ヒドラジン一水和物13.4gを水3mLに添加し、100℃で3時間攪拌した。反応液を濃縮後、析出している固体にイソプロピルアルコールを加えて濾別し、イソプロピルアルコールで洗浄した。得られた固体を減圧乾燥し、淡黄色固体2,4-ジヒドロキシベンゾヒドラジド4.82g(収率88%)を得た。
Figure JPOXMLDOC01-appb-C000021
(融点:237℃、1H-NMR(300MHz,DMSO-d6,δppm):
6.2(m,2H),7.6(m,1H),NH(3H)及びOH(2H)は不検出)

・化合物d:2,5-ジヒドロキシベンゾヒドラジド
 2,5-ジヒドロキシ安息香酸メチル5.39g、100%ヒドラジン一水和物3.29gを1-ブタノール32mLに添加し、117℃で15時間攪拌した。反応液を冷却後、析出している固体を濾別し、イソプロピルアルコールで洗浄した。得られた固体を減圧乾燥し、淡黄色固体2,5-ジヒドロキシベンゾヒドラジド4.26g(収率79%)を得た。
Figure JPOXMLDOC01-appb-C000022
(融点:210℃、1H-NMR(300MHz,DMSO-d6,δppm):4.6(br-s,2H),6.7(m,1H), 6.8(m,1H),7.2(m,1H),9.0(br-s,1H),9.9(br-s,1H),11.5(br-s,1H))

・化合物e:4-アミノ-2-ヒドロキシベンゾヒドラジド
 4-アミノ-2-ヒドロキシ安息香酸メチル12.0g、100%ヒドラジン一水和物30.3gを水6.6mLに添加し、100℃で2時間攪拌した。反応液を濃縮後、水を加え、析出した固体を濾別し、水で洗浄した。得られた固体を減圧乾燥し、淡黄色固体4-アミノ-2-ヒドロキシベンゾヒドラジド8.68g(収率72%)を得た。
Figure JPOXMLDOC01-appb-C000023
(融点:198℃、1H-NMR(300MHz,DMSO-d6,δppm):
4.4(br-s,2H),5.7(m,2H),6.0(m,2H), 7.4(m,1H),9.5(m,1H),12.7(br-s,1H))

・化合物f:3,5-ジヒドロキシナフタレン-2-カルボヒドラジド
 3,5-ジヒドロキシナフトエ酸43.0g、濃硫酸42.0mLをメタノール860mLに添加し、65℃で44時間攪拌した。反応液を冷却後、水を加え、析出した固体を濾別し、水で洗浄した。得られた固体を減圧乾燥し、淡黄色固体3,5-ジヒドロキシナフタレン-2-カルボン酸メチル44.7g(収率97%)を得た。
 上記の方法で得た3,5-ジヒドロキシナフタレン-2-カルボン酸メチル8.39g、100%ヒドラジン一水和物5.29gをブタノール40.0mLに添加し、65℃で2時間攪拌した。反応液を濃縮し、析出した固体をイソプロピルアルコールに懸濁した。析出した固体を濾別し、イソプロピルエーテルで洗浄した。得られた固体を減圧乾燥し、淡黄色固体3,5-ジヒドロキシナフタレン-2-カルボヒドラジド5.01g(収率60%)を得た。
Figure JPOXMLDOC01-appb-C000024
(融点:219℃、1H-NMR(300MHz,DMSO-d6,δppm):
6.8(m,1H),7.1(m,1H),7.3(m,1H), 7.4(s,1H),8.3(s,1H),10.3(br-s,2H),NH(3H)不検出)

・化合物g:4-アミノ-3-ヒドロキシナフタレン-2-カルボヒドラジド
 3-ヒドロキシ-2-ナフトエ酸50.0gをクロロホルム270mLに加え、氷冷後、60%硝酸24.3mLを滴下した。35分間攪拌した後、析出した固体を濾別し、水、クロロホルムで洗浄した。得られた固体を減圧乾燥し、橙色固体3-ヒドロキシ-4-ニトロ-2-ナフトエ酸47.7g(収率77%)を得た。
 上記の方法で得た3-ヒドロキシ-4-ニトロ-2-ナフトエ酸12.5g、濃硫酸1mLをブタノール200mLに添加し、117℃で48時間攪拌した。反応液を濃縮後、析出している固体を濾別し、ブタノールで洗浄した。得られた固体を減圧乾燥し、黄色固体3-ヒドロキシ-4-ニトロナフタレン-2-カルボン酸ブチル7.52g(収率48%)を得た。
上記の方法で得た3-ヒドロキシ-4-ニトロナフタレン-2-カルボン酸ブチル28.7g、パラジウムカーボン2.90gをメタノール494mLに添加し、水素で置換して室温で8時間攪拌した。反応液を濃縮後、得られた固体にヒドラジン一水和物17.7g、ブタノール330mLを加え、75℃で13時間攪拌した。反応液を冷却後、析出している固体を濾別し、ブタノールで洗浄した。得られた固体を減圧乾燥し、淡黄色固体4-アミノ-3-ヒドロキシナフタレン-2-カルボヒドラジド21.1g(収率98%)を得た。
Figure JPOXMLDOC01-appb-C000025
(融点:181℃、1H-NMR(300MHz,DMSO-d6,δppm):
4.7(br-s,2H),7.3(m,1H), 7,4(m,1H),7.6(m,1H),7.7(s,1H),8.0(m,1H),10.4(br-s,1H),NH(3H)不検出)

・化合物h:3-ヒドロキシ-4-ニトロナフタレン-2-カルボヒドラジド
 3-ヒドロキシ-2-ナフトエ酸50.0gをクロロホルム270mLに加え、氷冷後、60%硝酸24.3mLを滴下した。35分間攪拌した後、固体を濾別し、水、クロロホルムで洗浄した。得られた固体を減圧乾燥し、橙色固体3-ヒドロキシ-4-ニトロ-2-ナフトエ酸47.7g(収率77%)を得た。
上記の方法で得た3-ヒドロキシ-4-ニトロ-2-ナフトエ酸12.5g、濃硫酸1mLをブタノール200mLに添加し、117℃で48時間攪拌した。反応液を濃縮後、析出した固体を濾別し、ブタノールで洗浄した。得られた固体を減圧乾燥し、黄色固体3-ヒドロキシ-4-ニトロナフタレン-2-カルボン酸ブチル7.52g(収率48%)を得た。
 上記の方法で得た3-ヒドロキシ-4-ニトロナフタレン-2-カルボン酸ブチル17.1gをメタノール175mLに溶解し、100%ヒドラジン一水和物6.28gを添加し、65℃で16時間攪拌した。反応液を冷却後、析出した固体を濾別し、メタノールで洗浄した。得られた固体を減圧乾燥し、橙色固体3-ヒドロキシ-4-ニトロナフタレン-2-カルボヒドラジド14.6g(収率100%)を得た。
Figure JPOXMLDOC01-appb-C000026
(融点:185℃、1H-NMR(300MHz,DMSO-d6,δppm):
7.1(m,1H), 7.4(m,2H),7.8(m,1H),8.4(m,1H),NH(3H),OH(1H)不検出)

・化合物i:1,3-ジヒドロキシナフタレン-2-カルボヒドラジド
 マロン酸ジエチル5.00gのアセトニトリル50mL溶液に塩化マグネシウム2.97gを加え、氷冷した。次に、トリエチルアミン6.30gを滴下して30分間攪拌した後、フェニル酢酸クロリド4.82gを滴下し、室温に戻し、4.5時間攪拌した。再び反応液を氷冷し、2N塩酸200mLを加え、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥し、濃縮後、減圧乾燥した。得られた淡黄色油状物残渣を氷冷し、濃硫酸15mLを滴下し、室温に戻して17時間攪拌した。反応液を氷冷し、氷水35mLをゆっくり加え、析出した固体を濾別し、水洗した。得られた固体を減圧乾燥し、黄色固体1,3-ジヒドロキシナフタレン-2-カルボン酸エチル6.09g(収率84%)を得た。
 上記の方法で得た1,3-ジヒドロキシナフタレン-2-カルボン酸エチル800mgのメタノール3mL溶液に室温で100%ヒドラジン一水和物0.21gを加え、2.5時間加熱還流し、室温に戻して12時間攪拌した。析出した固体を濾別し、得られた固体をメタノールで洗浄し、減圧乾燥して黄土色固体1,3-ジヒドロキシナフタレン-2-カルボヒドラジド540mg(収率72%)を得た。
Figure JPOXMLDOC01-appb-C000027
(融点:205℃、1H-NMR(300MHz,DMSO-d6,δppm):
6.6(s,1H), 7.2(m,1H),7.4(m,1H),7.5(d,1H),8.0(d,1H),NH(3H),OH(2H)不検出)

・化合物j:2,4,6-トリヒドロキシベンゾヒドラジド
 2,4,6-トリヒドロキシ安息香酸1水和物10.0gのアセトン100mL溶液に、室温で炭酸ナトリウム2.96gを加えて10分間攪拌し、ジメチル硫酸7.04gを加えて50℃に昇温し、5時間攪拌した。反応液を濃縮し、水を加えて酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。更に無水硫酸マグネシウムで乾燥し、濃縮後、析出した固体を酢酸エチルとヘキサンの混合溶媒に懸濁して濾別し、減圧乾燥してピンク色固体2,4,6-トリヒドロキシ安息香酸メチル6.03g(収率62%)を得た。
 上記の方法で得た2,4,6-トリヒドロキシ安息香酸メチル2.40gをメタノール10mLに懸濁させ、室温で100%ヒドラジン一水和物0.98gを加え、1.5時間加熱還流し、室温に戻して12時間攪拌した。析出した固体を濾別し、得られた固体をメタノールで洗浄し、減圧乾燥してベージュ色固体2,4,6-トリヒドロキシベンゾヒドラジド960mg(収率40%)を得た。
Figure JPOXMLDOC01-appb-C000028
(融点:207℃、1H-NMR(300MHz,DMSO-d6,δppm):
4.3(br-s,2H),5.8(s,2H),7.2(s,1H),9.3(br-s,1H),12.3(br-s,2H))

・化合物k:2,6-ジヒドロキシ-4-メチルベンゾヒドラジド
 2,6-ジヒドロキシ-4-メチル安息香酸5.00gのアセトン50mL溶液に、室温で炭酸ナトリウム1.66gを加えて10分間攪拌し、ジメチル硫酸3.94gを加えて50℃に昇温し、5時間攪拌した。反応液を濃縮し、水を加えて酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。更に無水硫酸マグネシウムで乾燥し、濃縮後、析出した固体を冷ヘキサンに懸濁して濾別し、減圧乾燥して白色固体2,6-ジヒドロキシ-4-メチル安息香酸メチル4.94g(収率91%)を得た。
 上記の方法で得た2,6-ジヒドロキシ-4-メチル安息香酸メチル4.50gをメタノール12mLに懸濁させ、室温で100%ヒドラジン一水和物1.85gを加え、12時間加熱還流した。室温に戻し、析出した固体を濾別し、得られた固体をメタノールで洗浄し、減圧乾燥してピンク色固体2,6-ジヒドロキシ-4-メチルベンゾヒドラジド3.09g(収率69%)を得た。
Figure JPOXMLDOC01-appb-C000029
(融点:180℃、1H-NMR(300MHz,DMSO-d6,δppm):
2.14(s,3H),5.1(br-s,2H),6.1(s,2H),9.9(br-s,1H),12.5(br-s,2H))
Compound a: 2,6-dihydroxybenzohydrazide 5.29 g of methyl 2,6-dihydroxybenzoate and 3.30 g of 100% hydrazine monohydrate were added to 32 mL of 1-butanol, and the mixture was stirred at 117 ° C. for 15 hours. After cooling the reaction solution, the precipitated solid was filtered and washed with isopropyl alcohol. The obtained solid was dried under reduced pressure to obtain 2.85 g (yield 54%) of a pale yellow solid 2,6-dihydroxybenzohydrazide.
Figure JPOXMLDOC01-appb-C000019
(Melting point: 198 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm): 6.3 (d, 2H), 7.1 (t, 1H), NH (3H) and OH (2H) are not detection)

Compound b: 2,3-dihydroxybenzohydrazide 2.75 g of methyl 2,3-dihydroxybenzoate and 7.00 g of 100% hydrazine monohydrate were added to 1.5 mL of water and stirred at 100 ° C. for 3 hours. After the reaction solution was concentrated, isopropyl alcohol was added to the precipitated solid, filtered, and washed with isopropyl alcohol. The obtained solid was dried under reduced pressure to obtain 2.00 g (73% yield) of a light yellow solid 2,3-dihydroxybenzohydrazide.
Figure JPOXMLDOC01-appb-C000020
(Melting point: 223 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm): 4.7 (br-s, 2H), 6.7 (m, 1H), 6.9 (m, 1H), 7.2 (m, 1H), 10.1 (br-s, 1H), OH (2H) not detected)

Compound c: 2,4-dihydroxybenzohydrazide 5.50 g of methyl 2,4-dihydroxybenzoate and 13.4 g of 100% hydrazine monohydrate were added to 3 mL of water and stirred at 100 ° C. for 3 hours. After concentrating the reaction solution, isopropyl alcohol was added to the precipitated solid and the mixture was separated by filtration and washed with isopropyl alcohol. The obtained solid was dried under reduced pressure to obtain 4.82 g (yield 88%) of a pale yellow solid 2,4-dihydroxybenzohydrazide.
Figure JPOXMLDOC01-appb-C000021
(Melting point: 237 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
6.2 (m, 2H), 7.6 (m, 1H), NH (3H) and OH (2H) are not detected)

Compound d: 2,5-dihydroxybenzohydrazide 5.39 g of methyl 2,5-dihydroxybenzoate and 3.29 g of 100% hydrazine monohydrate were added to 32 mL of 1-butanol, and the mixture was stirred at 117 ° C. for 15 hours. After cooling the reaction solution, the precipitated solid was filtered off and washed with isopropyl alcohol. The obtained solid was dried under reduced pressure to obtain 4.26 g (yield 79%) of a pale yellow solid 2,5-dihydroxybenzohydrazide.
Figure JPOXMLDOC01-appb-C000022
(Melting point: 210 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm): 4.6 (br-s, 2H), 6.7 (m, 1H), 6.8 (m, 1H), 7.2 (m, 1H), 9.0 (br-s, 1H), 9.9 (br-s, 1H), 11.5 (br-s, 1H))

Compound e: 4-amino-2-hydroxybenzohydrazide 12.0 g of methyl 4-amino-2-hydroxybenzoate and 30.3 g of 100% hydrazine monohydrate were added to 6.6 mL of water, and 2 at 100 ° C. Stir for hours. The reaction mixture was concentrated, water was added, and the precipitated solid was filtered off and washed with water. The obtained solid was dried under reduced pressure to obtain 8.68 g (yield 72%) of a pale yellow solid 4-amino-2-hydroxybenzohydrazide.
Figure JPOXMLDOC01-appb-C000023
(Melting point: 198 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
4.4 (br-s, 2H), 5.7 (m, 2H), 6.0 (m, 2H), 7.4 (m, 1H), 9.5 (m, 1H), 12.7 (Br-s, 1H))

Compound f: 3,5-dihydroxynaphthalene-2-carbohydrazide 43.0 g of 3,5-dihydroxynaphthoic acid and 42.0 mL of concentrated sulfuric acid were added to 860 mL of methanol and stirred at 65 ° C. for 44 hours. After cooling the reaction solution, water was added, and the precipitated solid was filtered off and washed with water. The obtained solid was dried under reduced pressure to obtain 44.7 g (yield 97%) of a light yellow solid methyl 3,5-dihydroxynaphthalene-2-carboxylate.
8.39 g of methyl 3,5-dihydroxynaphthalene-2-carboxylate obtained by the above method and 5.29 g of 100% hydrazine monohydrate were added to 40.0 mL of butanol and stirred at 65 ° C. for 2 hours. The reaction solution was concentrated, and the precipitated solid was suspended in isopropyl alcohol. The precipitated solid was separated by filtration and washed with isopropyl ether. The obtained solid was dried under reduced pressure to obtain 5.01 g (yield 60%) of a pale yellow solid 3,5-dihydroxynaphthalene-2-carbohydrazide.
Figure JPOXMLDOC01-appb-C000024
(Melting point: 219 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
6.8 (m, 1H), 7.1 (m, 1H), 7.3 (m, 1H), 7.4 (s, 1H), 8.3 (s, 1H), 10.3 (br -S, 2H), NH (3H) not detected)

Compound g: 4-amino-3-hydroxynaphthalene-2-carbohydrazide 50.0 g of 3-hydroxy-2-naphthoic acid was added to 270 mL of chloroform, and after ice cooling, 24.3 mL of 60% nitric acid was added dropwise. After stirring for 35 minutes, the precipitated solid was separated by filtration and washed with water and chloroform. The obtained solid was dried under reduced pressure to obtain 47.7 g of orange solid 3-hydroxy-4-nitro-2-naphthoic acid (yield 77%).
12.5 g of 3-hydroxy-4-nitro-2-naphthoic acid obtained by the above method and 1 mL of concentrated sulfuric acid were added to 200 mL of butanol, and the mixture was stirred at 117 ° C. for 48 hours. After concentrating the reaction solution, the precipitated solid was filtered off and washed with butanol. The obtained solid was dried under reduced pressure to obtain 7.52 g of butyl 3-hydroxy-4-nitronaphthalene-2-carboxylate (yield 48%).
28.7 g of butyl 3-hydroxy-4-nitronaphthalene-2-carboxylate and 2.90 g of palladium carbon obtained by the above method were added to 494 mL of methanol, purged with hydrogen, and stirred at room temperature for 8 hours. After concentration of the reaction solution, 17.7 g of hydrazine monohydrate and 330 mL of butanol were added to the obtained solid, and the mixture was stirred at 75 ° C. for 13 hours. After cooling the reaction solution, the precipitated solid was filtered off and washed with butanol. The obtained solid was dried under reduced pressure to obtain 21.1 g (yield 98%) of a pale yellow solid 4-amino-3-hydroxynaphthalene-2-carbohydrazide.
Figure JPOXMLDOC01-appb-C000025
(Melting point: 181 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
4.7 (br-s, 2H), 7.3 (m, 1H), 7, 4 (m, 1H), 7.6 (m, 1H), 7.7 (s, 1H), 8.0 (M, 1H), 10.4 (br-s, 1H), NH (3H) not detected)

Compound h: 3-hydroxy-4-nitronaphthalene-2-carbohydrazide 50.0 g of 3-hydroxy-2-naphthoic acid was added to 270 mL of chloroform, and after ice cooling, 24.3 mL of 60% nitric acid was added dropwise. After stirring for 35 minutes, the solid was filtered off and washed with water and chloroform. The obtained solid was dried under reduced pressure to obtain 47.7 g of orange solid 3-hydroxy-4-nitro-2-naphthoic acid (yield 77%).
12.5 g of 3-hydroxy-4-nitro-2-naphthoic acid obtained by the above method and 1 mL of concentrated sulfuric acid were added to 200 mL of butanol, and the mixture was stirred at 117 ° C. for 48 hours. After the reaction solution was concentrated, the precipitated solid was separated by filtration and washed with butanol. The obtained solid was dried under reduced pressure to obtain 7.52 g of butyl 3-hydroxy-4-nitronaphthalene-2-carboxylate (yield 48%).
Dissolve 17.1 g of butyl 3-hydroxy-4-nitronaphthalene-2-carboxylate obtained by the above method in 175 mL of methanol, add 6.28 g of 100% hydrazine monohydrate, and stir at 65 ° C. for 16 hours. did. After cooling the reaction solution, the precipitated solid was filtered off and washed with methanol. The obtained solid was dried under reduced pressure to obtain 14.6 g of orange solid 3-hydroxy-4-nitronaphthalene-2-carbohydrazide (yield 100%).
Figure JPOXMLDOC01-appb-C000026
(Melting point: 185 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
7.1 (m, 1H), 7.4 (m, 2H), 7.8 (m, 1H), 8.4 (m, 1H), NH (3H), OH (1H) not detected)

Compound i: 1,3-dihydroxynaphthalene-2-carbohydrazide 2.97 g of magnesium chloride was added to a solution of 5.00 g of diethyl malonate in 50 mL of acetonitrile and cooled with ice. Next, 6.30 g of triethylamine was added dropwise and stirred for 30 minutes, and then 4.82 g of phenylacetic acid chloride was added dropwise, returned to room temperature, and stirred for 4.5 hours. The reaction mixture was ice-cooled again, 2N hydrochloric acid (200 mL) was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. The extract was dried over anhydrous magnesium sulfate, concentrated, and dried under reduced pressure. The obtained pale yellow oily residue was ice-cooled, 15 mL of concentrated sulfuric acid was added dropwise, and the mixture was allowed to return to room temperature and stirred for 17 hours. The reaction solution was ice-cooled, 35 mL of ice water was slowly added, and the precipitated solid was separated by filtration and washed with water. The obtained solid was dried under reduced pressure to obtain 6.09 g (yield 84%) of a yellow solid ethyl 1,3-dihydroxynaphthalene-2-carboxylate.
To a solution of ethyl 1,3-dihydroxynaphthalene-2-carboxylate (800 mg) obtained in the above method in 3 mL of methanol was added 0.21 g of 100% hydrazine monohydrate at room temperature, and the mixture was heated to reflux for 2.5 hours and returned to room temperature. And stirred for 12 hours. The precipitated solid was separated by filtration, and the obtained solid was washed with methanol and dried under reduced pressure to obtain 540 mg (yield 72%) of an ocherous solid 1,3-dihydroxynaphthalene-2-carbohydrazide.
Figure JPOXMLDOC01-appb-C000027
(Melting point: 205 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
6.6 (s, 1H), 7.2 (m, 1H), 7.4 (m, 1H), 7.5 (d, 1H), 8.0 (d, 1H), NH (3H), OH (2H) not detected)

Compound j: 2,4,6-trihydroxybenzohydrazide 2.96 g of sodium carbonate was added to a solution of 10.0 g of 2,4,6-trihydroxybenzoic acid monohydrate 10.0 g in acetone at room temperature and stirred for 10 minutes. Then, 7.04 g of dimethyl sulfate was added, the temperature was raised to 50 ° C., and the mixture was stirred for 5 hours. The reaction mixture was concentrated, water was added and the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. After drying over anhydrous magnesium sulfate and concentrating, the precipitated solid was suspended in a mixed solvent of ethyl acetate and hexane, filtered, dried under reduced pressure, and pink solid methyl 2,4,6-trihydroxybenzoate. 03 g (62% yield) was obtained.
2.40 g of methyl 2,4,6-trihydroxybenzoate obtained by the above method is suspended in 10 mL of methanol, 0.98 g of 100% hydrazine monohydrate is added at room temperature, and the mixture is heated to reflux for 1.5 hours. The mixture was returned to room temperature and stirred for 12 hours. The precipitated solid was separated by filtration, and the obtained solid was washed with methanol and dried under reduced pressure to obtain 960 mg (yield 40%) of a beige solid 2,4,6-trihydroxybenzohydrazide.
Figure JPOXMLDOC01-appb-C000028
(Melting point: 207 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
4.3 (br-s, 2H), 5.8 (s, 2H), 7.2 (s, 1H), 9.3 (br-s, 1H), 12.3 (br-s, 2H) )

Compound k: 2,6-dihydroxy-4-methylbenzohydrazide To a solution of 5.00 g of 2,6-dihydroxy-4-methylbenzoic acid in 50 mL of acetone, 1.66 g of sodium carbonate was added at room temperature and stirred for 10 minutes. 3.94 g of dimethyl sulfate was added, the temperature was raised to 50 ° C., and the mixture was stirred for 5 hours. The reaction mixture was concentrated, water was added and the mixture was extracted with ethyl acetate, and the organic layer was washed with saturated brine. After drying over anhydrous magnesium sulfate and concentrating, the precipitated solid was suspended in cold hexane, filtered and dried under reduced pressure to give 4.94 g of a white solid methyl 2,6-dihydroxy-4-methylbenzoate (yield 91 %).
4.50 g of methyl 2,6-dihydroxy-4-methylbenzoate obtained by the above method was suspended in 12 mL of methanol, 1.85 g of 100% hydrazine monohydrate was added at room temperature, and the mixture was heated to reflux for 12 hours. After returning to room temperature, the precipitated solid was separated by filtration, and the obtained solid was washed with methanol and dried under reduced pressure to obtain 3.09 g (yield 69%) of a pink solid 2,6-dihydroxy-4-methylbenzohydrazide. Obtained.
Figure JPOXMLDOC01-appb-C000029
(Melting point: 180 ° C., 1 H-NMR (300 MHz, DMSO-d 6 , δ ppm):
2.14 (s, 3H), 5.1 (br-s, 2H), 6.1 (s, 2H), 9.9 (br-s, 1H), 12.5 (br-s, 2H) )
<実施例1~13、比較例1~6>
 表1の成分組成に従って、ゴム組成物のサンプルを調製した。なお、各成分の配合量については、ゴム成分100質量部に対する質量部で示している。
<Examples 1 to 13 and Comparative Examples 1 to 6>
A rubber composition sample was prepared according to the component composition of Table 1. In addition, about the compounding quantity of each component, it has shown by the mass part with respect to 100 mass parts of rubber components.
<評価>
 得られたゴム組成物のサンプルについて、以下の評価を行った。
(1)低発熱性(tanδ指数)
 各サンプルのゴム組成物を、145℃で33分間加硫して加硫ゴムを得た。得られた加硫ゴムに対し、粘弾性測定装置[レオメトリックス社製]を用い、温度50℃、歪み5%、周波数15Hzで損失正接(tanδ)を測定した。
 なお、測定したtanδは逆数をとった後100を乗じ、比較例2のtanδの逆数値×100を100としたときの指数値で示した。指数値が大きい程、低発熱性に優れることを示す。評価結果は表1に示す。
<Evaluation>
The following evaluation was performed about the sample of the obtained rubber composition.
(1) Low exothermic property (tan δ index)
The rubber composition of each sample was vulcanized at 145 ° C. for 33 minutes to obtain a vulcanized rubber. The obtained vulcanized rubber was measured for loss tangent (tan δ) at a temperature of 50 ° C., a strain of 5%, and a frequency of 15 Hz using a viscoelasticity measuring device (manufactured by Rheometrics).
The measured tan δ was expressed as an exponent value when the reciprocal number was taken and then multiplied by 100, and the inverse value of tan δ in Comparative Example 2 × 100 was taken as 100. It shows that it is excellent in low exothermic property, so that an index value is large. The evaluation results are shown in Table 1.
(2)耐摩耗性(摩耗指数)
 各サンプルのゴム組成物、145℃で33分間加硫して加硫ゴムを得た。得られた各加硫ゴムから円板状(直径16.2mm×厚さ6mm)に切り抜いた試験片を用い、JIS-K6264-2:2005に準じて、DIN摩耗試験を行い、室温でDIN摩耗試験を行った際の摩耗量(mm3)を測定した。
 なお、各サンプルにおいて測定した摩耗量については、比較例2の摩耗量の逆数を100とした場合の、各サンプルの摩耗量の逆数を指数として表示している。指数値が大きい程、摩耗量が少なく、耐摩耗性が良好であることを示す。評価結果は表1に示す。
(2) Wear resistance (wear index)
The rubber composition of each sample was vulcanized at 145 ° C. for 33 minutes to obtain a vulcanized rubber. A DIN abrasion test was conducted in accordance with JIS-K6264-2: 2005 using a test piece cut out from each vulcanized rubber in a disk shape (diameter: 16.2 mm × thickness: 6 mm), and DIN abrasion was performed at room temperature. The amount of wear (mm 3 ) during the test was measured.
In addition, about the abrasion amount measured in each sample, the reciprocal number of the abrasion amount of each sample when the reciprocal number of the abrasion amount of the comparative example 2 is set to 100 is displayed as an index. The larger the index value, the smaller the amount of wear and the better the wear resistance. The evaluation results are shown in Table 1.
(3)加工性評価(ムーニー粘度指数)
 各サンプルのゴム組成物を、JIS K 6300-1:2001(ムーニー粘度、ムーニースコーチタイム)に準拠して、ムーニー粘度の測定を行った。
 なお、測定したムーニー粘度については逆数をとった後100を乗じ、比較例2の逆数値×100を100としたときの指数値をムーニー粘度指数とした。ムーニー粘度指数については、大きい程、未加硫粘度が小さく、作業性が良好であることを示す。
(3) Processability evaluation (Mooney viscosity index)
The rubber composition of each sample was measured for Mooney viscosity according to JIS K 6300-1: 2001 (Mooney viscosity, Mooney scorch time).
In addition, about the measured Mooney viscosity, after taking the reciprocal number, it multiplied by 100, the index value when the reciprocal value x100 of the comparative example 2 was set to 100 was made into the Mooney viscosity index. As the Mooney viscosity index is larger, the unvulcanized viscosity is smaller and the workability is better.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
*1:RSS#1
*2:旭カーボン(株)製「♯80」
*3:以下の方法で合成された3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、式(I)で表される化合物には該当しない
(合成方法)
 ディーンスターク型還流冷却器及び撹拌機を備えた反応器に、メチルイソブチルケトン500ml及び3-ヒドロキシ-2-ナフトエ酸ヒドラジド50.5g(0.25モル)を仕込んだ後、加温し、留出する水を除去しながら5時間加熱還流した。反応液を20℃まで冷却した後、析出した結晶を濾別し、減圧乾燥して微黄色結晶を得た(67.6g、収率95%)。この微黄色結晶は、下記に示すように、NMR、IR分析の結果、3-ヒドロキシ-N′-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジドであることがわかった。
(融点146℃、1H-NMR(DMSO) 0.90(m,6H)、1.93(s,3H)、2.00(m,1H)、2.17(m,2H)、7.38(m,2H)、7.46(m,1H)、7.75(m,1H)、7.95(m,1H)、8.58(m,1H)、11.15(b,1H)、11.65(b,1H)、IR(KBR) 3400~2400、1650、1550、1510、1470、1360、1230、1170、1140、1120、1050、950、900、880、770、740、670、600、550、480cm-1
*4:3-ヒドロキシ-2-ナフトエ酸ヒドラジド、東京化成工業(株)製、式(I)で表される化合物には該当しない
*5:三共油化工業(株)製「A/O MIX」
*6:N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業(株)製「ノクラック6C」
*7:2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、大内新興化学工業(株)製「ノクラック224」
*8:N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、三新化学工業(株)製「サンセラーCM」
*9:東京化成工業(株)製
* 1: RSS # 1
* 2: “# 80” manufactured by Asahi Carbon Co., Ltd.
* 3: 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide synthesized by the following method, not applicable to the compound represented by formula (I) (synthesis method)
A reactor equipped with a Dean-Stark reflux condenser and a stirrer was charged with 500 ml of methyl isobutyl ketone and 50.5 g (0.25 mol) of 3-hydroxy-2-naphthoic acid hydrazide, and then heated and distilled. The mixture was heated to reflux for 5 hours while removing water. After the reaction solution was cooled to 20 ° C., the precipitated crystals were separated by filtration and dried under reduced pressure to obtain slightly yellow crystals (67.6 g, yield 95%). As shown below, the slightly yellow crystals were found to be 3-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide as a result of NMR and IR analysis.
(Melting point: 146 ° C., 1H-NMR (DMSO) 0.90 (m, 6H), 1.93 (s, 3H), 2.00 (m, 1H), 2.17 (m, 2H), 7.38. (M, 2H), 7.46 (m, 1H), 7.75 (m, 1H), 7.95 (m, 1H), 8.58 (m, 1H), 11.15 (b, 1H) 11.65 (b, 1H), IR (KBR) 3400-2400, 1650, 1550, 1510, 1470, 1360, 1230, 1170, 1140, 1120, 1050, 950, 900, 880, 770, 740, 670, 600, 550, 480 cm -1 )
* 4: 3-hydroxy-2-naphthoic acid hydrazide, manufactured by Tokyo Chemical Industry Co., Ltd., does not fall under the compound represented by formula (I)
* 5: “A / O MIX” manufactured by Sankyo Oil Chemical Co., Ltd.
* 6: N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, “NOCRACK 6C” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 7: 2,2,4-trimethyl-1,2-dihydroquinoline polymer, “NOCRACK 224” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 8: N-cyclohexyl-2-benzothiazolesulfenamide, “Sunseller CM” manufactured by Sanshin Chemical Industry Co., Ltd.
* 9: Made by Tokyo Chemical Industry Co., Ltd.
 各実施例、比較例について、ムーニー粘度指数、tanδ指数、及び摩耗指数の合計値を算出し、総合評価とした。総合評価が高いもの程、加工性、低発熱性及び耐摩耗性を高いレベル両立ができていることを示す。
 表1の結果から、各実施例のゴム組成物は、各比較例のゴム組成物に対して総合評価が高く、加工性、低発熱性、耐摩耗性を、高いレベルで両立ができていることが分かる。
For each of the examples and comparative examples, the sum of Mooney viscosity index, tan δ index, and wear index was calculated for comprehensive evaluation. The higher the overall evaluation, the higher the level of workability, low heat build-up and wear resistance.
From the results of Table 1, the rubber composition of each example has a high overall evaluation with respect to the rubber composition of each comparative example, and the workability, low heat build-up, and wear resistance are compatible at a high level. I understand that.
 本発明によれば、低発熱性、耐摩耗性及び加工性に優れたゴム組成物を提供することができる。また、本発明によれば、低発熱性、耐摩耗性及び生産性に優れたタイヤを提供することができる。 According to the present invention, it is possible to provide a rubber composition excellent in low heat buildup, wear resistance and processability. Further, according to the present invention, it is possible to provide a tire excellent in low heat generation, wear resistance, and productivity.

Claims (18)

  1.  ジエン系ゴムを含有するゴム成分と、充填材と、下記式(I)で表される化合物と、脂肪酸金属塩とを含むことを特徴とする、ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは、アリール基であり、少なくとも2つの極性基を有し、該極性基は同じであっても、異なっていてもよい。R1及びR2は、それぞれ独立して、水素原子、アシル基、アミド基、アルキル基、シクロアルキル基及びアリール基からなる群から選択される少なくとも一種の置換基であり、さらに、該置換基は、O、S及びN原子のうちの一種以上を含んでいてもよい。)
    A rubber composition comprising a rubber component containing a diene rubber, a filler, a compound represented by the following formula (I), and a fatty acid metal salt.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, A is an aryl group having at least two polar groups, and the polar groups may be the same or different. R 1 and R 2 are each independently hydrogen; And at least one substituent selected from the group consisting of an atom, an acyl group, an amide group, an alkyl group, a cycloalkyl group, and an aryl group, and the substituent is one or more of O, S, and N atoms May be included.)
  2.  前記式(I)で表される化合物中のAの有する極性基の少なくとも1つが、ヒドロキシル基、アミノ基又はニトロ基であることを特徴とする、請求項1に記載のゴム組成物。 2. The rubber composition according to claim 1, wherein at least one of the polar groups of A in the compound represented by the formula (I) is a hydroxyl group, an amino group, or a nitro group.
  3.  前記式(I)で表される化合物中のAの有する極性基の少なくとも1つが、ヒドロキシル基であることを特徴とする、請求項2に記載のゴム組成物。 The rubber composition according to claim 2, wherein at least one of the polar groups of A in the compound represented by the formula (I) is a hydroxyl group.
  4.  前記式(I)で表される化合物中のAの有する極性基の少なくとも2つが、ヒドロキシル基であることを特徴とする、請求項3に記載のゴム組成物。 The rubber composition according to claim 3, wherein at least two of the polar groups of A in the compound represented by the formula (I) are hydroxyl groups.
  5.  前記式(I)で表される化合物中のAが、フェニル基又はナフチル基であることを特徴とする、請求項1~4のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, wherein A in the compound represented by the formula (I) is a phenyl group or a naphthyl group.
  6.  前記式(I)で表される化合物中のR1及びR2が、いずれも水素原子であることを特徴とする、請求項1~5のいずれか1項に記載のゴム組成物。 6. The rubber composition according to claim 1, wherein R 1 and R 2 in the compound represented by the formula (I) are both hydrogen atoms.
  7.  前記式(I)で表される化合物の分子量が、250以下であることを特徴とする、請求項1~6のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, wherein the compound represented by the formula (I) has a molecular weight of 250 or less.
  8.  前記式(I)で表される化合物の融点が、80℃以上、250℃未満であることを特徴とする、請求項1~7のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 7, wherein the compound represented by the formula (I) has a melting point of 80 ° C or higher and lower than 250 ° C.
  9.  前記式(I)で表される化合物の含有量が、前記ゴム成分100質量部に対して、0.05~30質量部であることを特徴とする、請求項1~8のいずれか1項に記載のゴム組成物。 The content of the compound represented by the formula (I) is 0.05 to 30 parts by mass with respect to 100 parts by mass of the rubber component, according to any one of claims 1 to 8. The rubber composition as described in 2.
  10.  前記式(I)で表される化合物が、2,6-ジヒドロキシベンゾヒドラジド、2,3-ジヒドロキシベンゾヒドラジド、2,4-ジヒドロキシベンゾヒドラジド、2,5-ジヒドロキシベンゾヒドラジド、4-アミノ-2-ヒドロキシベンゾヒドラジド、3,5-ジヒドロキシナフタレン-2-カルボヒドラジド、4-アミノ-3-ヒドロキシナフタレン-2-カルボヒドラジド、3-ヒドロキシ-4-ニトロナフタレン-2-カルボヒドラジド、1,3-ジヒドロキシナフタレン-2-カルボヒドラジド、2,4,6-トリヒドロキシベンゾヒドラジド及び2,6-ジヒドロキシ-4-メチルベンゾヒドラジドからなる群より選択される少なくとも1つであることを特徴とする、請求項1~9のいずれか1項に記載のゴム組成物。 The compound represented by the formula (I) is 2,6-dihydroxybenzohydrazide, 2,3-dihydroxybenzohydrazide, 2,4-dihydroxybenzohydrazide, 2,5-dihydroxybenzohydrazide, 4-amino-2- Hydroxybenzohydrazide, 3,5-dihydroxynaphthalene-2-carbohydrazide, 4-amino-3-hydroxynaphthalene-2-carbohydrazide, 3-hydroxy-4-nitronaphthalene-2-carbohydrazide, 1,3-dihydroxynaphthalene The at least one selected from the group consisting of -2-carbohydrazide, 2,4,6-trihydroxybenzohydrazide and 2,6-dihydroxy-4-methylbenzohydrazide 10. The rubber composition according to any one of 9 above.
  11.  前記ジエン系ゴムが、天然ゴムであることを特徴とする、請求項1~10のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 10, wherein the diene rubber is natural rubber.
  12.  前記充填材が、カーボンブラックを含むことを特徴とする、請求項1~11のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 11, wherein the filler contains carbon black.
  13.  前記充填材の含有量が、前記ゴム成分100質量部に対して、10~160質量部であることを特徴とする、請求項1~12のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 12, wherein a content of the filler is 10 to 160 parts by mass with respect to 100 parts by mass of the rubber component.
  14.  前記脂肪酸金属塩の脂肪酸は、炭素数が6~20であることを特徴とする、請求項1~13のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 13, wherein the fatty acid of the fatty acid metal salt has 6 to 20 carbon atoms.
  15.  前記脂肪酸金属塩の金属が、Znであることを特徴とする、請求項1~14のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 14, wherein the metal of the fatty acid metal salt is Zn.
  16.  さらに、下記式(II)で表される化合物を含むことを特徴とする、請求項1~15のいずれか1項に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000002
    The rubber composition according to any one of claims 1 to 15, further comprising a compound represented by the following formula (II):
    Figure JPOXMLDOC01-appb-C000002
  17.  前記式(II)で表される化合物が、1-ヒドロキシ-N′-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、3-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、及び、3-ヒドロキシ-N’-(2-フリルメチレン)-2-ナフトエ酸ヒドラジドからなる群より選択される少なくとも1つであることを特徴とする、請求項16に記載のゴム組成物。 The compound represented by the formula (II) is 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylpropylidene) -2-naphthoyl. Acid hydrazide, 1-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(2-furylmethylene) -2-naphthoic acid hydrazide, 3-hydroxy- N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1-methylpropylidene) -2-naphthoic acid hydrazide, 3-hydroxy-N ′-(1,3-dimethyl) Butylidene) -2-naphthoic acid hydrazide and 3-hydroxy-N ′-(2-furylmethylene) -2-naphthoic acid hydrazide Characterized in that at least one rubber composition according to claim 16.
  18.  請求項1~17のいずれか1項に記載のゴム組成物を用いてなることを特徴とする、タイヤ。 A tire comprising the rubber composition according to any one of claims 1 to 17.
PCT/JP2019/004120 2018-02-07 2019-02-05 Rubber composition and tire WO2019156094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570762A JP7271445B2 (en) 2018-02-07 2019-02-05 Rubber composition and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-020559 2018-02-07
JP2018020559 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156094A1 true WO2019156094A1 (en) 2019-08-15

Family

ID=67549424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004120 WO2019156094A1 (en) 2018-02-07 2019-02-05 Rubber composition and tire

Country Status (2)

Country Link
JP (1) JP7271445B2 (en)
WO (1) WO2019156094A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838638B1 (en) * 2019-11-21 2021-03-03 住友ゴム工業株式会社 Rubber composition for tires and tires
JP2021080406A (en) * 2019-11-21 2021-05-27 住友ゴム工業株式会社 Tire rubber composition and tire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292834A (en) * 1998-04-02 1999-10-26 Otsuka Chem Co Ltd Hydrazone derivative
JP2002194139A (en) * 2000-10-19 2002-07-10 Bridgestone Corp Rubber composition and tire containing polymaleimide
WO2009104555A1 (en) * 2008-02-18 2009-08-27 株式会社ブリヂストン Modified diene rubber, method for producing the same, rubber composition using the same, and tire
JP2014501827A (en) * 2010-12-21 2014-01-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン Compositions based on natural rubber and carbon black containing hydrazide, hydrazone or polyamine
JP2016041779A (en) * 2014-08-15 2016-03-31 株式会社ブリヂストン Tire rubber composition and tire
WO2018012452A1 (en) * 2016-07-11 2018-01-18 住友化学株式会社 Additive composition and rubber composition
JP2018193535A (en) * 2017-05-16 2018-12-06 株式会社ブリヂストン tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114885A (en) * 1974-07-30 1976-02-05 Adeka Argus Chemical Co Ltd JUKIZAIR YOSOSEI BUTSU

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292834A (en) * 1998-04-02 1999-10-26 Otsuka Chem Co Ltd Hydrazone derivative
JP2002194139A (en) * 2000-10-19 2002-07-10 Bridgestone Corp Rubber composition and tire containing polymaleimide
WO2009104555A1 (en) * 2008-02-18 2009-08-27 株式会社ブリヂストン Modified diene rubber, method for producing the same, rubber composition using the same, and tire
JP2014501827A (en) * 2010-12-21 2014-01-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン Compositions based on natural rubber and carbon black containing hydrazide, hydrazone or polyamine
JP2016041779A (en) * 2014-08-15 2016-03-31 株式会社ブリヂストン Tire rubber composition and tire
WO2018012452A1 (en) * 2016-07-11 2018-01-18 住友化学株式会社 Additive composition and rubber composition
JP2018193535A (en) * 2017-05-16 2018-12-06 株式会社ブリヂストン tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838638B1 (en) * 2019-11-21 2021-03-03 住友ゴム工業株式会社 Rubber composition for tires and tires
EP3825356A1 (en) * 2019-11-21 2021-05-26 Sumitomo Rubber Industries, Ltd. Tire rubber composition and tire
JP2021080406A (en) * 2019-11-21 2021-05-27 住友ゴム工業株式会社 Tire rubber composition and tire
JP2021080405A (en) * 2019-11-21 2021-05-27 住友ゴム工業株式会社 Tire rubber composition and tire
JP7378280B2 (en) 2019-11-21 2023-11-13 住友ゴム工業株式会社 Rubber composition for tires and tires

Also Published As

Publication number Publication date
JP7271445B2 (en) 2023-05-11
JPWO2019156094A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP7146636B2 (en) Rubber composition, tire, additive and hydrazide compound
EP3805306B1 (en) Rubber composition and tire
KR101861876B1 (en) Method for manufacturing rubber composition
JP5418141B2 (en) Rubber composition
JP6190383B2 (en) Rubber composition containing blocked mercaptosilane coupling agent
JP7123805B2 (en) Rubber additive, rubber composition and tire using the same
KR20170019354A (en) Alkylidene aminoganidine and salt thereof, modifier composition, modified rubber for tire, rubber composition for tire, and tire
JP2018203937A (en) Rubber composition for tire, and tire
JP7271445B2 (en) Rubber composition and tire
WO2018211932A1 (en) Rubber composition for tire, and tire
JP7257973B2 (en) Rubber composition and tire
US9670336B2 (en) Method for producing rubber composition, and rubber composition
JP2019131154A (en) Rubber composition for crawler and rubber crawler
JP6541505B2 (en) Rubber composition, tire and method for producing rubber composition
JP2019210408A (en) Rubber composition and tire
JP2005047963A (en) Rubber composition
JP2019137719A (en) Rubber composition for conveyor belt, and conveyor belt
US10087292B2 (en) Method for producing rubber composition, and rubber composition
JP2019131653A (en) Composition and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750333

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019570762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750333

Country of ref document: EP

Kind code of ref document: A1