WO2018012437A1 - セメントコンクリート用液状早強剤 - Google Patents

セメントコンクリート用液状早強剤 Download PDF

Info

Publication number
WO2018012437A1
WO2018012437A1 PCT/JP2017/025034 JP2017025034W WO2018012437A1 WO 2018012437 A1 WO2018012437 A1 WO 2018012437A1 JP 2017025034 W JP2017025034 W JP 2017025034W WO 2018012437 A1 WO2018012437 A1 WO 2018012437A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement concrete
bisphenol
strength
early
cement
Prior art date
Application number
PCT/JP2017/025034
Other languages
English (en)
French (fr)
Inventor
啓史 原
樋口 隆行
泰寛 石井
一也 本間
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2018527586A priority Critical patent/JP7038052B2/ja
Publication of WO2018012437A1 publication Critical patent/WO2018012437A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/30Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to an early strengthening agent for cement concrete used in civil engineering / architecture, for example.
  • Concrete products are manufactured by pouring a mixture of cement, aggregate, water and admixture into a formwork, curing it properly, and then demolding.
  • early-strength cement mix concrete with a low water-cement ratio in combination with a water reducing agent, perform steam curing, and the like.
  • Known admixtures for increasing strength include those mainly composed of quicklime, gypsum, and alkali metal sulfates, and those using a specific compound such as glycerin and an alkali metal sulfate in combination (Patent Document 1). ⁇ 4).
  • Patent Documents 5 to 7 those using aluminum salts and carboxylic acids as curing accelerators have been reported (Patent Documents 5 to 7).
  • Curing accelerators containing chlorine such as sodium chloride and calcium chloride are also known, but use is not preferred from the viewpoint of salt damage.
  • Aluminum salts are known to produce alumina gel in the neutral region and harden the cement composition, but this hardening reaction is fast and it is difficult to ensure fluidity.
  • the strength is manifested by the formation of alumina gel at the very beginning, but when a large amount of alumina gel is formed, the alumina gel covers the surface of the cement and the dissolution of the cement components is hindered, resulting in a decrease in strength over the long term. There was a problem that it was easy.
  • shotcrete is a physical property that is particularly required to be hardened and not peeled off when sprayed onto the rock, and is different from cast-in-place concrete or precast concrete, and thus cannot be easily diverted.
  • JP 2001-294460 A JP 2011-153068 A JP 2000-233959 A Special table 2008-519752 gazette JP 2012-121804 A JP 2011-1266 A JP 2001-348255 A Special table 2003-502269 JP2015-231931A
  • the present inventor has obtained knowledge for solving the above-mentioned problems and has completed the present invention.
  • the concentration of the water-soluble aluminum salt is 15 to 40% by mass in terms of solid content
  • the concentration of carboxylic acids is 1 to 20% by mass in terms of solid content
  • the concentration of bisphenol-based condensate is the solid content. It is possible to provide a liquid early strengthening agent for cement concrete having a conversion of 0.1 to 3% by mass and the balance being water.
  • the weight average molecular weight of the bisphenol condensate may be 1,000 to 30,000, and the structural unit of the bisphenol condensate is bisphenol S.
  • the alkanolamine may be contained, and a compound having a hydroxyl group may be further contained.
  • the liquid early strengthening agent for cement concrete may be used for cast-in-place cement concrete or precast cement concrete.
  • an early-strength cement concrete containing the liquid early strengthening agent for cement concrete and cement concrete may be provided.
  • the usage amount of the liquid early strengthening agent for cement concrete may be 0.1 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of cement.
  • a method for producing early-strength cement concrete in which the early fast-strength cement concrete is manufactured by adding the liquid early-strength agent for cement concrete to the cement concrete in the agitator vehicle.
  • the liquid early strengthening agent of the present invention has fluidity and excellent strength development.
  • cement concrete is a general term for cement paste, mortar, and concrete.
  • the liquid early strengthening agent for cement concrete in the present invention (hereinafter sometimes simply referred to as “early strengthening agent”) includes liquid early strengthening agents and slurry early strengthening agents.
  • the hardened cement body is a generic term for secondary concrete products and concrete structures that are manufactured from cement paste, mortar, concrete, or composite with reinforcing bars.
  • % indicate parts by mass and mass%, respectively, unless otherwise specified.
  • concentration in the present specification refers to the solid content concentration unless otherwise specified.
  • a numerical range means a range including an upper limit value and a lower limit value unless otherwise specified.
  • the early strengthening agent of the present invention contains a water-soluble aluminum salt, a carboxylic acid, a bisphenol condensate, and water.
  • the early strengthening agent of the present invention may further contain an alkanolamine.
  • the water-soluble aluminum salt used in the present invention can be either an anhydride or a hydrate.
  • Examples of the water-soluble aluminum salt include aluminum nitrate, aluminum sulfate, aluminum potassium sulfate, primary aluminum phosphate, and aluminum lactate. One or more of these can be used. Among these, aluminum sulfate is preferable in terms of excellent strength development.
  • the concentration of the water-soluble aluminum salt is preferably 15 to 40%, more preferably 20 to 35% in terms of anhydride. % Of water-soluble aluminum salt is a value in terms of solid content. If the concentration of the water-soluble aluminum salt is less than 15%, excellent strength development may not be obtained, and if it exceeds 40%, the slump may be lowered or the long-term strength may be lowered.
  • carboxylic acid used in the present invention refers to carboxylic acid or a salt thereof.
  • carboxylic acids are a generic term for organic compounds having carboxyl groups, salts of organic compounds having carboxyl groups, and mixtures of organic compound salts having carboxyl groups and organic compounds having carboxyl groups. Can do.
  • Carboxylic acids include monocarboxylic acids such as formic acid, acetic acid and propionic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid and other dicarboxylic acids, trimellit Acids, tricarboxylic acids such as tricarbaryl acid, oxymonocarboxylic acids such as hydroxybutyric acid, lactic acid and salicylic acid, oxydicarboxylic acids such as malic acid, aminocarboxylic acids such as aspartic acid and glutamic acid, ethylenediaminetetraacetic acid (EDTA) and trans Examples include aminopolycarboxylic acids such as -1,2-diaminocyclohexanetetraacetic acid (CyDTA) and salts thereof. Examples of the salt constituting the carboxylate include alkali metals and alkaline earth metals. One or more of these can be used
  • the concentration of the carboxylic acids is preferably 1 to 20%, more preferably 4 to 15% in terms of solid content. If the concentration of carboxylic acids is less than 1%, excellent strength development may not be obtained, and if it exceeds 20%, long-term strength may be lowered.
  • the bisphenol-based condensate used in the present invention is a general term for products obtained by condensation reaction of a compound in which two phenols are cross-linked with a functional group and formaldehyde.
  • the structural unit of the bisphenol-based condensate used in the present invention is bisphenol.
  • the functional group that crosslinks two phenols include a methylene group, an ethylidene group, a propylidene group, a butylidene group, a cyclohexylidene group, a vinylidene group, a carbonyl group, an imino group, an ether group, a sulfide group, and a sulfonyl group.
  • phenol as used herein means that any hydrogen atom bonded to the aromatic ring is an alkyl group having 1 to 4 carbon atoms, a cyclohexyl group, a phenyl group, an amino group, a carboxyl group, a hydroxyl group, a fluoro group, or a chloro group.
  • One or more bisphenol-based condensates can be used.
  • bis (4-hydroxyphenyl) sulfone commonly known as bisphenol S
  • bisphenol S in which two phenols are cross-linked with a sulfonyl group is preferable from the viewpoint of suppressing slump reduction and excellent initial strength development.
  • the bisphenol-based condensate may be a salt thereof.
  • Examples of the bisphenol include a compound represented by the following formula (1).
  • X represents any of the following formula (2), formula (3), formula (4), formula (5), O (oxygen atom), or S (sulfur atom).
  • Phenylene group The hydrogen atom in (1) may be substituted with an alkyl group or a halogen group. The hydrogen atom in the alkyl group may be substituted with a halogen group.
  • R 1 , R 2 and R 3 each independently represents hydrogen, a halogen group or an alkyl group.
  • R 4 represents an alkylene group. The hydrogen atom may be substituted with a halogen group.
  • the average molecular weight of the bisphenol-based condensate is preferably 1,000 to 30,000, more preferably 5,000 to 20,000. When the average molecular weight is out of the range of 1,000 to 30,000, there are cases where the suppression of slump reduction and the improvement of initial strength development are not excellent.
  • the average molecular weight here refers to the weight average molecular weight.
  • the average molecular weight is measured by gel permeation chromatographic analysis (standard material is sodium polystyrene sulfonate).
  • a bisphenol-based condensate can be obtained, for example, by heating and condensing each component under aqueous conditions in the presence of an alkali.
  • the concentration of the bisphenol condensate is preferably 0.1 to 3%, more preferably 0.2 to 2% in terms of solid content. Outside this range, the initial strength development may not be excellent.
  • the early strengthening agent of the present invention may contain alkanolamine.
  • Alkanolamine is used for the purpose of improving the initial strength of the cement composition.
  • the alkanolamine is not particularly limited, but can be used if it can be dissolved in the early strengthening agent.
  • An alkanolamine is an organic compound having a> N—R—OH structure in the structural formula.
  • R is an atomic group usually called an alkylene group or an arylene group, a linear alkylene group such as a methylene group, an ethylene group or an n-propylene group, an alkylene group having a branched structure such as an isopropylene group, and the like.
  • Arylene groups having an aromatic ring such as a phenylene group and a benzylene group.
  • R may be bonded to the nitrogen atom at two or more positions, and a part or all of R may have a cyclic structure.
  • R may be bonded to a plurality of hydroxyl groups.
  • R may have an element other than carbon and an element other than hydrogen, such as sulfur, fluorine, chlorine and oxygen, in part of the alkylene group.
  • R may have a plurality of hydroxyl groups bonded thereto.
  • alkanolamine examples include ethanolamine, diethanolamine, diisopropanolamine, triethanolamine, N-methyldiethanolamine, N, N-dimethylethanolamine, N, N-dibutylethanolamine, N- (2-aminoethyl) ethanolamine, Examples thereof include boron trifluoride triethanolamine and derivatives thereof. One or more of these can be used.
  • diethanolamine is preferred because it is excellent in improving fluidity and strength development.
  • the concentration of the alkanolamine used in the present invention is preferably 1 to 15%, more preferably 2 to 10% in terms of solid content. If the alkanolamine concentration is less than 1%, the initial strength may be little improved, and if it exceeds 15%, the fluidity may be lowered.
  • the early strengthening agent of the present invention may contain a compound having a hydroxyl group.
  • the compound having a hydroxyl group is used for the purpose of improving the initial strength of the cement composition.
  • the compound having a hydroxyl group include low molecular compounds such as glycerin, ethylene glycol, and propylene glycol, polyoxyethylene alkyl ethers or derivatives thereof.
  • glycerin is preferable in terms of excellent fluidity.
  • the glycerin used in the present invention is, for example, a compound represented by the chemical formula C 3 H 8 O 3 , chemical name 1,2,3-propanetriol or glycerol.
  • the concentration of the compound having a hydroxyl group used in the present invention is preferably 1 to 10%, more preferably 3 to 7% in terms of solid content. If the concentration of the compound having a hydroxyl group is less than 1%, the improvement in early strength may be small, and if it exceeds 10%, the long-term strength may be lowered.
  • the early strength agent of the present invention When the early strength agent of the present invention is mixed with cement concrete, the early strength cement concrete is obtained.
  • the use amount of the early strengthening agent of the present invention is preferably 0.1 to 10 parts, more preferably 0.5 to 7 parts, and most preferably 1 to 5 parts in terms of solid content with respect to 100 parts of cement. If the amount of the early strengthening agent used is less than 0.1 part, the strength development may not be improved, and if it exceeds 10 parts, the slump may be lowered or the long-term strength development may be lowered.
  • the cement includes various ordinary Portland cements such as normal, early strength, moderate heat, and ultra early strength, and various mixed cements obtained by mixing fly ash, blast furnace slag, and the like with these various Portland cements. . These can be used in the form of fine powder.
  • a water reducing agent may be used on the cement concrete side.
  • water reducing agents include water reducing agents, AE water reducing agents, high performance water reducing agents, and high performance AE water reducing agents.
  • naphthalene sulfonic acid type is preferable.
  • group a naphthalenesulfonic acid formaldehyde condensate or its salt is preferable.
  • the naphthalene sulfonic acid formaldehyde condensate or a salt thereof include (trade name “Mighty 150”, manufactured by Kao Corporation).
  • the water reducing agent either a liquid or a powder can be used.
  • the amount of water reducing agent used is preferably 0.05 to 5 parts, more preferably 0.1 to 3 parts in terms of solid content with respect to 100 parts of cement.
  • the cement concrete used in the present invention contains cement and aggregate.
  • the aggregate those having low water absorption and high aggregate strength are preferable.
  • the fine aggregate river sand, mountain sand, lime sand, quartz sand and the like can be used, and as the coarse aggregate, river gravel, mountain gravel, lime gravel and the like can be used.
  • the water-cement ratio used for cement concrete is preferably 30% or more, more preferably 33 to 55% in terms of strength development. If it is less than 30%, cement concrete may not be sufficiently mixed.
  • the mechanism of the effect of the early strengthening agent of the present invention is not intended to be bound by a specific theory, but can be considered as follows.
  • the water-soluble aluminum salt reacts with hydroxide ions supplied from the cement to generate an alumina gel, thereby promoting the hardening of the cement composition.
  • this effect alone is not sufficient in strength development, it is considered that the carboxylate ions supplied from the carboxylic acids used together promote the elution of the cement component and promote the hydration reaction. .
  • a bisphenol-based condensate it is considered that water-soluble aluminum salts and carboxylic acids are easily dispersed throughout the cement composition, thereby further promoting curing and hydration promotion.
  • the present invention uses water as a solvent, and the present invention used as a liquid has a higher accelerating effect than the case where a water-soluble aluminum salt or carboxylate is used as a solid. This is considered to be because the dispersion effect of the bisphenol-based condensate becomes more effective by passing water that is easy to move in the cement composition before and after curing.
  • cast concrete that is difficult to manage is excellent in versatility, for example, cement concrete is carried to the site by an agitator car, and the early strength agent is applied to the cement concrete immediately before being put on site. By adding it later, the cement concrete and the early strength agent are mixed without segregation, thereby producing the early strength concrete.
  • the early strength agent of the present invention is used for cast-in-place cement concrete or precast cement concrete.
  • Cast-in-place cement concrete or precast cement concrete is produced by pouring cement concrete that has been kneaded into a formwork and demolding after curing, thereby producing cement concrete having a predetermined shape. Since it is necessary to pour into a formwork, these cement concretes must have a certain fluidity and be cured slowly, and a certain pot life must be ensured for surface finishing. Such characteristics are completely different from shotcrete. Since the early strengthening agent of the present invention has fluidity, junkers (rock rock pockets) cannot be formed in cement concrete, and the surface becomes uniform.
  • Example 1 Water-soluble aluminum salts, carboxylic acids, and bisphenol-based condensates are added to water so that the solid content concentrations shown in Tables 1 to 3 (hereinafter sometimes referred to as “concentrations”) are obtained.
  • a strong agent was prepared. The concentration is expressed as mass% in terms of solid content in the liquid early strengthening agent. The prepared liquid early strengthening agent was added to concrete, and the physical properties were evaluated.
  • the basic water composition is unit water volume 145kg / m 3 , unit cement volume 440kg / m 3 , water reducing agent 2.5kg / m 3 , s / a (fine aggregate ratio) 39.4%, air volume 4.5%
  • Concrete slumps were measured using liquid early strengtheners having the compositions shown in Tables 1 to 3 in an environment of 20 ° C.
  • As a liquid early strengthening agent 8.8 kg / m 3 corresponding to 2 parts in terms of solid content was weighed with respect to 100 parts of cement and added to concrete. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured.
  • the initial strength is improved when the concentration of water-soluble aluminum salt is 15 to 40%, the concentration of carboxylic acids is 1 to 20%, and the concentration of bisphenol condensate is 0.1 to 3%. Excellent in slump and long-term strength.
  • the water-soluble aluminum salts aluminum sulfate is preferred.
  • the carboxylic acids sodium formate is particularly desirable.
  • the bisphenol-based condensates those having an average molecular weight of 1,000 to 30,000 and bisphenol S being a part of the structural unit are preferable.
  • Example 2 The concentration of aluminum sulfate (anhydride equivalent) is 25%, the concentration of sodium formate is 10%, the concentration of bisphenol condensate [co] is 1%, the concentration of alkanolamine is the amount shown in Table 4, and the concentration of glycerin is The test was carried out in the same manner as in Experimental Example 1 (corresponding to Experiment No. 1-6), except that various liquid early strengthening agents were prepared by adding to water and stirring for 4 hours. Evaluated. The results are shown in Table 4.
  • the liquid early strengthening agent contains alkanolamine or glycerin
  • the initial strength is improved.
  • alkanolamines diethanolamine is preferred.
  • the concentration of alkanolamine is preferably 1 to 15%, and the concentration of glycerin is preferably 1 to 10% from the viewpoint of fluidity and strength development.
  • Example 3 The concentration of aluminum sulfate (anhydride equivalent) is 25%, the concentration of sodium formate is 10%, the concentration of bisphenol-based condensate [co] is 1%, and the rest of the liquid early strength agent consisting of water is 100 parts of cement.
  • the physical properties were evaluated in the same manner as in Experimental Example 1 (corresponding to Experiment No. 1-6) except that the amounts shown in Table 5 were used in terms of solid content. Further, as a comparative example, a test using no early strengthening agent was also conducted (Experiment No. 1-45). The results are shown in Table 5.
  • the initial strength is excellent even when the amount of liquid early strengthening agent is varied.
  • the amount of the liquid early strengthening agent used is preferably 0.1 to 10 parts with respect to 100 parts of cement from the viewpoint of suppressing slump fluctuation and excellent strength development.
  • Example 4 Concrete having a unit water amount of 145 kg / m 3 , a unit cement amount of 440 kg / m 3 , a water reducing agent 2.5 kg / m 3 , s / a 39.4%, and an air amount of 4.5% was mixed. 30 minutes after mixing the concrete, the liquid early strengthening agent (Experiment No. 1-6) prepared in “Experimental Example 1” was added afterwards, the concrete was mixed again, and the concrete slump was measured. The early strengthening agent weighed 8.8 kg / m 3 corresponding to 2 parts in terms of solid content with respect to 100 parts of cement, and was added later. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compression strength was evaluated. Except for the above, the same procedure as in Experimental Example 1 was performed. For comparison, the physical properties when no liquid early strengthening agent was used were also evaluated. The results are shown in Table 6.
  • the liquid early strengthening agent of the present invention shows the same slump and strength development, regardless of the timing of addition of the liquid early strengthening agent. This is an excellent performance particularly when concrete mixed in advance is transported to the site, and a liquid early strengthening agent is later added to an agitator vehicle or the like at the site.
  • Cast-in-place cement concrete or precast cement concrete must have a certain fluidity, and a certain pot life must be secured for surface finishing. If these properties are not excellent, jumpers may be formed in the cement concrete or the surface may not be uniform.
  • the liquid early strengthening agent of the present invention has a small influence on fluidity and is excellent in strength development.
  • the early strengthening agent of the present invention is particularly excellent in initial strength development.
  • the present invention has a high fluidity and can secure a pot life for surface finishing.
  • the liquid early strength agent of the present invention is useful for the production of concrete products, and the method for producing early strength cement concrete using the liquid early strength agent of the present invention is a method for increasing the productivity of concrete products with a small environmental load. Available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

流動性を有し、強度発現性に優れる液状早強剤及びその製造方法の提供。水溶性アルミニウム塩の濃度が固形分換算で15~40質量%、カルボン酸類の濃度が固形分換算で1~20質量%、ビスフェノール系縮合物の濃度が固形分換算で0.1~3質量%であり、残りが水であるセメントコンクリート用液状早強剤。ビスフェノール系縮合物の構造単位はビスフェノールSが好ましい。セメントコンクリート用液状早強剤は、更に、アルカノールアミンを含有しても良い。

Description

セメントコンクリート用液状早強剤
 本発明は、例えば、土木・建築において使用されるセメントコンクリート用早強剤に関する。
 コンクリート製品は、セメント、骨材、水及び混和材を練り混ぜたものを、型枠に流し込み、適切に養生を行った後、脱型して製造される。ここで、材齢初期に高い強度を発現することは、生産性、つまり型枠の回転率を向上させる点で重要である。型枠の回転率を向上させることは、高価な型枠の必要数を少なくすることにつながる。初期強度を高めるための方法としては、早強セメントを使用すること、減水剤を併用して水セメント比の低いコンクリートを調合すること、蒸気養生を行うこと、等が知られている。
 近年では、蒸気使用に伴うエネルギーコストが高騰しており、蒸気養生時間を短縮できる方法、蒸気養生を行わなくてもよい方法が切望されている。また、より高い生産性の要求からも、養生工程の更なる短縮化が望まれることがあり、例えば、コンクリート製品の製造において養生期間16時間で高い強度を発現することが必要な場合がある。通常、養生工程には、蒸気等を用いた加熱作業工程等といった複雑な工程が組み込まれているが、そうした工程を変更して初期強度を向上させようとしても、実用的な手法とはなりにくい。そこで、工程変更を伴わずに簡単に初期強度の高いコンクリート製品が得られる方法が、製造コスト等の点から、市場では切望されている。
 強度を高める混和材としては、生石灰、せっこう、アルカリ金属の硫酸塩等を主体としたものや、グリセリン等の特定化合物とアルカリ金属硫酸塩を併用したもの等が知られている(特許文献1~4)。そのほかにも、アルミニウム塩、カルボン酸を硬化促進剤として使用するものも報告されている(特許文献5~7)。塩化ナトリウムや塩化カルシウム等の塩素を含有する硬化促進剤も知られているが、塩害の観点から使用は好ましくない。
 アルミニウム塩は、中性領域でアルミナゲルを生成し、セメント組成物を硬化することが知られているが、この硬化反応は早く、流動性を確保しづらい。又、ごく初期はアルミナゲルの生成で強度が発現するものの、アルミナゲルが多量に生成すると、アルミナゲルがセメントの表面を覆ってしまい、セメント成分の溶解が阻害され、長期的に強度が低下しやすいという課題があった。
 硫酸アルミニウム、ビスフェノール系縮合物を含有する吹付けコンクリート用の急結剤が報告されている(特許文献8~9)。しかしながら、吹付けコンクリートは岩盤に吹付けて瞬時に硬化し、剥落しないことが特に求められる物性であり、場所打ちコンクリート又はプレキャストコンクリートとは求められる物性が異なるため、容易に流用できるものではない。
特開2001-294460号公報 特開2011-153068号公報 特開2000-233959号公報 特表2008-519752号公報 特開2012-121804号公報 特開2011-1266号公報 特開2001-348255号公報 特表2003-502269号公報 特開2015-231931号公報
 本発明者は、前述の課題を解決する知見を得て本発明を完成するに至った。
 即ち、本発明の実施形態では、水溶性アルミニウム塩の濃度が固形分換算で15~40質量%、カルボン酸類の濃度が固形分換算で1~20質量%、ビスフェノール系縮合物の濃度が固形分換算で0.1~3質量%であり、残りが水であるセメントコンクリート用液状早強剤を提供できる。
 また本発明の実施形態では、当該セメントコンクリート用液状早強剤において、ビスフェノール系縮合物の重量平均分子量が1,000~30,000であってもよく、ビスフェノール系縮合物の構造単位がビスフェノールSであってもよく、更にアルカノールアミンを含有してもよいし、更にヒドロキシル基を有する化合物を含有してもよい。また本発明の実施形態では、当該セメントコンクリート用液状早強剤を、場所打ちセメントコンクリート又はプレキャストセメントコンクリートに用いてもよい。
 また本発明の実施形態では、当該セメントコンクリート用液状早強剤と、セメントコンクリートとを含有する早強性セメントコンクリートも提供できる。そのセメントコンクリート用液状早強剤の使用量が、セメント100質量部に対して、固形分換算で0.1~10質量部であってもよい。
 また本発明の実施形態では、当該セメントコンクリート用液状早強剤をアジテータ車中のセメントコンクリートに後添加し、早強性セメントコンクリートを製造する早強性セメントコンクリートの製造方法も提供できる。
 本発明の液状早強剤は、流動性を有し、強度発現性に優れる。
 以下、本発明を詳細に説明する。
 本発明でのセメントコンクリートとは、セメントペースト、モルタル及びコンクリートの総称である。本発明でのセメントコンクリート用液状早強剤(以下、単に「早強剤」と略記することもある)とは、液体早強剤、スラリー早強剤を包含する。本発明においてセメント硬化体とは、セメントペースト、モルタル、コンクリートから製造したり、又は、鉄筋等と複合化したりした、コンクリート二次製品やコンクリート構造物を総称する。
 本明細書においては、「部」および「%」は、別に特記しない限り、それぞれ質量部および質量%を示す。また本明細書における濃度は、別に特記しない限り、固形分濃度をいう。また本明細書においては、数値範囲は別段の定めがないかぎりはその上限値および下限値を含む範囲を意味する。
 本発明の早強剤は、水溶性アルミニウム塩、カルボン酸類、ビスフェノール系縮合物、水を含有する。本発明の早強剤は、更に、アルカノールアミンを含有しても良い。
 本発明で使用する水溶性アルミニウム塩は、無水物、水和物のいずれも使用できる。水溶性アルミニウム塩としては、硝酸アルミニウム、硫酸アルミニウム、硫酸アルミニウムカリウム、第一リン酸アルミニウム、乳酸アルミニウム等が挙げられる。これら1種又は2種以上が使用可能である。これらの中では、強度発現性に優れる点で、硫酸アルミニウムが好ましい。
 水溶性アルミニウム塩の濃度は、無水物換算で15~40%が好ましく、20~35%がより好ましい。水溶性アルミニウム塩の%は、固形分換算の値である。水溶性アルミニウム塩の濃度が15%未満では優れた強度発現性が得られない場合があり、40%を超えるとスランプが低下したり、長期強度が低下したりする場合がある。
 本発明で使用するカルボン酸類は、カルボン酸又はその塩をいう。本明細書においてカルボン酸類とは、カルボキシル基を有する有機化合物、カルボキシル基を有する有機化合物の塩、カルボキシル基を有する有機化合物の塩とカルボキシル基を有する有機化合物との混合物の総称であると考えることができる。
 カルボン酸としては、ギ酸、酢酸及びプロピオン酸等のモノカルボン酸類、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フマル酸及びフタル酸等のジカルボン酸類、トリメリット酸やトリカルバリリル酸等のトリカルボン酸類、ヒドロキシ酪酸、乳酸及びサリチル酸等のオキシモノカルボン酸類、リンゴ酸等のオキシジカルボン酸類、アスパラギン酸やグルタミン酸等のアミノカルボン酸類、エチレンジアミン四酢酸(EDTA)やトランス-1,2-ジアミノシクロヘキサン四酢酸(CyDTA)等のアミノポリカルボン酸及びこれらの塩が挙げられる。カルボン酸塩を構成する塩としては、アルカリ金属やアルカリ土類金属等が挙げられる。これら1種又は2種以上が使用可能である。カルボン酸類の中では、強度発現性に優れる点で、ギ酸ナトリウムが好ましい。
 カルボン酸類の濃度は、固形分換算で1~20%が好ましく、4~15%がより好ましい。カルボン酸類の濃度が1%未満では優れた強度発現性が得られない場合があり、20%を超えると長期強度の低下をまねく場合がある。
 本発明で使用するビスフェノール系縮合物とは、例えば、2個のフェノールが官能基で架橋された化合物とホルムアルデヒドを縮合反応して得られる生成物の総称である。本発明で使用するビスフェノール系縮合物の構造単位は、ビスフェノールである。2個のフェノールを架橋する官能基としては、メチレン基、エチリデン基、プロピリデン基、ブチリデン基、シクロヘキシリデン基、ビニリデン基、カルボニル基、イミノ基、エーテル基、スルフィド基、スルホニル基等が挙げられる。更にこれらの基の任意の水素原子が、炭素数1~4のアルキル基、フェニル基、アミノ基、ヒドロキシル基、フルオロ基、クロロ基、ブロモ基、ヨード基等で置換されたものも挙げられる。ここでいうフェノールとは、芳香族環に結合している任意の水素原子が、炭素数1~4のアルキル基、シクロヘキシル基、フェニル基、アミノ基、カルボキシル基、ヒドロキシル基、フルオロ基、クロロ基、ブロモ基、ヨード基等で置換された化合物、ヒドロキシル基の水素原子の一部がアルカリ金属原子等に置換された化合物も含有する。ビスフェノール系縮合物は1種又は2種以上が使用可能である。これらの中では、スランプの低下を抑制し、初期強度発現性に優れる点で、2個のフェノールをスルホニル基で架橋したビス(4-ヒドロキシフェニル)スルホン(通称、ビスフェノールS)が好ましい。
 ビスフェノール系縮合物は、その塩であっても良い。ビスフェノールとは、例えば、下記式(1)の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Xは下記式(2)、式(3)、式(4)、式(5)、O(酸素原子)、またはS(硫黄原子)のいずれかを表す。フェニレン基の水素原子は、アルキル基、ハロゲン基で置換されても良い。アルキル基の水素原子は、ハロゲン基で置換されても良い。)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(式(2)及び式(3)中のR1,R2,R3は夫々独立して水素、ハロゲン基又はアルキル基を示す。またR4はアルキレン基を示す。アルキル基やアルキレン基の水素原子は、ハロゲン基で置換されても良い。)
 ビスフェノール系縮合物の平均分子量は1,000~30,000が好ましく、5,000~20,000がより好ましい。平均分子量が1,000~30,000の範囲外であると、スランプの低下の抑制、初期強度発現性の向上に優れない場合がある。なおここでいう平均分子量とは、重量平均分子量を指す。平均分子量は、ゲル浸透クロマトグラフ分析(標準物質はポリスチレンスルホン酸ナトリウム)により測定する。ビスフェノール系縮合物は、例えば、各成分をアルカリ存在下で、水性条件で加熱して縮合することにより得られる。
 ビスフェノール系縮合物の濃度は、固形分換算で、0.1~3%が好ましく、0.2~2%がより好ましい。この範囲外では初期強度発現性の向上に優れない場合がある。
 本発明の早強剤は、アルカノールアミンを含有してもよい。アルカノールアミンは、セメント組成物の初期強度を向上させる目的で使用する。
 アルカノールアミンは、特に限定されないが、早強剤に溶解可能であれば使用できる。アルカノールアミンとは、構造式において>N-R-OH構造を有する有機化合物である。ここで、Rは通常アルキレン基又はアリーレン基と呼ばれる原子団であり、メチレン基、エチレン基、n-プロピレン基等の直鎖型のアルキレン基、イソプロピレン基等の枝分かれ構造を有するアルキレン基、並びに、フェニレン基及びベンジレン基等の芳香族環を有するアリーレン基等が挙げられる。Rは窒素原子と2箇所以上で結合していてもよく、Rの一部又は全部が環状構造であってもよい。Rは複数の水酸基と結合していてもよい。Rはアルキレン基の一部に炭素以外の元素及び水素以外の元素、例えば、イオウ、フッ素、塩素及び酸素等を有してもよい。Rは複数の水酸基が結合していてもよい。アルカノールアミンとしては、エタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジブチルエタノールアミン、N-(2-アミノエチル)エタノールアミン、三フッ化ホウ素トリエタノールアミン及びこれらの誘導体等が挙げられる。これらの1種又は2種以上が使用可能である。アルカノールアミンの中では、流動性や強度発現性の向上に優れる点で、ジエタノールアミンが好ましい。
 本発明で使用するアルカノールアミンの濃度は、固形分換算で、1~15%が好ましく、2~10%がより好ましい。アルカノールアミンの濃度が1%未満では初期強度の向上が小さい場合があり、15%を超えると流動性を低下させる場合がある。
 本発明の早強剤は、ヒドロキシル基を有する化合物を含有してもよい。ヒドロキシル基を有する化合物は、セメント組成物の初期強度を向上させる目的で使用する。ヒドロキシル基を有する化合物としては、グリセリン、エチレングリコール、プロピレングリコール等の低分子化合物、ポリオキシエチレンアルキルエーテル類又はその誘導体等が挙げられる。ヒドロキシル基を有する化合物の中では、流動性の向上に優れる点で、グリセリンが好ましい。本発明で使用するグリセリンとは、例えば、化学式でC383、化学名1,2,3-プロパントリオール又はグリセロールで表される化合物である。
 本発明で使用するヒドロキシル基を有する化合物の濃度は、固形分換算で、1~10%が好ましく、3~7%がより好ましい。ヒドロキシル基を有する化合物の濃度が1%未満では早強性の向上が小さい場合があり、10%を超えると長期強度を低下させる場合がある。
 本発明の早強剤をセメントコンクリートと混合すると、早強性セメントコンクリートが得られる。
 本発明の早強剤の使用量は、セメント100部に対して、固形分換算で0.1~10部が好ましく、0.5~7部がより好ましく、1~5部が最も好ましい。早強剤の使用量が0.1部未満では強度発現性の向上に優れない場合があり、10部を超えるとスランプが低下したり、長期強度発現性が低下したりする場合がある。
 ここでセメントとは、通常市販されている普通、早強、中庸熱及び超早強等の各種ポルトランドセメントや、これら各種ポルトランドセメントにフライアッシュや高炉スラグ等を混合した各種混合セメント等が挙げられる。これらを微粉末化して使用することも可能である。
 本発明はセメントコンクリート側に減水剤を使用してもよい。減水剤類としては、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤等が挙げられる。減水剤類の中では、ナフタレンスルホン酸系が好ましい。ナフタレンスルホン酸系としては、ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩が好ましい。ナフタレンスルホン酸ホルムアルデヒド縮合物又はその塩としては、(商品名「マイテイ150」、花王社製)等が挙げられる。減水剤類は、液状のものや粉状のもの何れも使用できる。
 減水剤の使用量は、セメント100部に対して、固形分換算で0.05~5部が好ましく、0.1~3部がより好ましい。
 本発明で使用するセメントコンクリートはセメントと骨材とを含有するものである。ここで骨材としては、吸水率が低く、骨材強度が高いものが好ましい。細骨材としては、川砂、山砂、石灰砂及び珪砂等が使用可能であり、粗骨材としては、川砂利、山砂利、及び石灰砂利等が使用可能である。
 セメントコンクリートに使用する水セメント比は、強度発現性の点で、30%以上が好ましく、33~55%がより好ましい。30%未満ではセメントコンクリートを十分に混合できない場合がある。
 本発明の早強剤の効果発現の機構は、特定の理論に縛られることを望むものではないが、次のように考えることができる。水溶性アルミニウム塩は、セメントから供給される水酸化物イオンと反応し、アルミナゲルを生成することで、セメント組成物の硬化を促す。この効果だけでは、強度発現性は十分ではないが、併せて用いられているカルボン酸類から供給されるカルボン酸イオンが、セメント成分の溶出を促し、水和反応を促進していることが考えられる。更に、ビスフェノール系縮合物を用いることで、水溶性アルミニウム塩やカルボン酸類が、セメント組成物全体に分散しやすくなることで、硬化及び水和促進が更に助長されると考えられる。本発明は水を溶媒として使用しており、水溶性アルミニウム塩やカルボン酸塩を固体として使用した場合に比べ、液体として使用した本発明の方が、促進効果が高い。これは、硬化前及び硬化後のセメント組成物中で、移動しやすい水を介することで、ビスフェノール系縮合物の分散効果がより効果的になることが理由として考えられる。このため本発明の実施形態によれば、管理が困難である場所打ちコンクリート等で汎用性に優れ、例えば、アジテータ車で現場までセメントコンクリートを運び、現場で打込む直前に早強剤をセメントコンクリートに後添加することで、セメントコンクリートと早強剤が偏析なく混ざり合い、早強性コンクリートを製造できるという効果を奏する。
 本発明の早強剤は、場所打ちセメントコンクリート又はプレキャストセメントコンクリートに用いる。場所打ちセメントコンクリート又はプレキャストセメントコンクリートは、何れも練りあがったセメントコンクリートを型枠に流し込み、硬化後に脱型することで、所定の形状のセメントコンクリートを製造する。型枠に流し込む必要があるため、これらのセメントコンクリートは、一定の流動性を有し緩慢に硬化することが必要であり、表面仕上げするために一定の可使時間が確保する必要がある。このような特性は吹付けコンクリートとはまったく異なるものである。本発明の早強剤は、流動性を有するので、セメントコンクリート中にジャンカ(rock pocket)ができず、表面が均一になる。
 以下、実験例に基づき本発明を詳細に説明する。
「実験例1」
 表1~3に示す固形分濃度(以下濃度ということもある)になるように、水溶性アルミニウム塩、カルボン酸類、ビスフェノール系縮合物を水に添加し、4時間攪拌することで種々の液状早強剤を調製した。濃度は液状早強剤中の固形分換算の質量%で表す。調製した液状早強剤をコンクリートに添加し、物性を評価した。
 単位水量145kg/m3、単位セメント量440kg/m3、減水剤2.5kg/m3、s/a(細骨材率)39.4%、空気量4.5%をコンクリートの基本配合とし、20℃の環境下で表1~3に示す組成の液状早強剤を使用して、コンクリートのスランプを測定した。液状早強剤として、セメント100部に対して固形分換算で2部に相当する8.8kg/m3を計量し、コンクリートに添加した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強さを測定した。
 また比較例(実験No.1-46)として、液状早強剤ではなく、粉体早強剤を使用した場合も行った。粉体早強剤として、水溶性アルミニウム塩[B]:カルボン酸類[b]:ビスフェノール系縮合物[コ]=25:10:1(質量比)からなり、水を含有しない粉体早強剤を使用した。結果を表1~3に示す。
<使用材料>
水溶性アルミニウム塩[A]:硝酸アルミニウム、市販品
水溶性アルミニウム塩[B]:硫酸アルミニウム、14水塩、市販品
水溶性アルミニウム塩[C]:硫酸アルミニウムカリウム、市販品
水溶性アルミニウム塩[D]:第一リン酸アルミニウム、市販品
水溶性アルミニウム塩[E]:乳酸アルミニウム、市販品
カルボン酸類[a]:ギ酸、市販品
カルボン酸類[b]:ギ酸ナトリウム、市販品
カルボン酸類[c]:ギ酸カリウム、市販品
カルボン酸類[d]:酢酸ナトリウム、市販品
カルボン酸類[e]:シュウ酸ナトリウム、市販品
カルボン酸類[f]:乳酸ナトリウム、市販品
カルボン酸類[g]:アスパラギン酸ナトリウム、市販品
ビスフェノール系縮合物[ア]:ビス(4-ヒドロキシフェニル)メタンの縮合物、平均分子量12,000、市販品
ビスフェノール系縮合物[イ]:2,2-ビス(4-ヒドロキシフェニル)プロパンの縮合物、平均分子量12,000、市販品
ビスフェノール系縮合物[ウ]:2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンの縮合物、平均分子量12,000、市販品
ビスフェノール系縮合物[エ]:2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパンの縮合物、平均分子量12,000、市販品
ビスフェノール系縮合物[オ]:4,4’-ジヒドロキシベンゾフェノンの縮合物、平均分子量12,000、市販品
ビスフェノール系縮合物[カ]:ビス(4-ヒドロキシフェニル)スルフィドの縮合物、平均分子量12,000、市販品
ビスフェノール系縮合物[キ]:ビス(4-ヒドロキシフェニル)スルホンの縮合物、平均分子量800、市販品
ビスフェノール系縮合物[ク]:ビス(4-ヒドロキシフェニル)スルホンの縮合物、平均分子量1,000、市販品
ビスフェノール系縮合物[ケ]:ビス(4-ヒドロキシフェニル)スルホンの縮合物、平均分子量5,000、市販品
ビスフェノール系縮合物[コ]:ビス(4-ヒドロキシフェニル)スルホンの縮合物、平均分子量12,000、市販品
ビスフェノール系縮合物[サ]:ビス(4-ヒドロキシフェニル)スルホンの縮合物、平均分子量20,000、市販品
ビスフェノール系縮合物[シ]:ビス(4-ヒドロキシフェニル)スルホンの縮合物、平均分子量30,000、市販品
ビスフェノール系縮合物[ス]:ビス(4-ヒドロキシフェニル)スルホンの縮合物、平均分子量35,000、市販品
水:工業用水
セメント:普通ポルトランドセメント、ブレーン値3,150cm2/g、比重3.14、市販品
細骨材:日本国新潟県姫川産、5mm下、密度2.62g/cm3、市販品
粗骨材:日本国新潟県姫川産、25mm下、密度2.64g/cm3、市販品
減水剤:ナフタレンスルホン酸系、商品名「マイテイ150」、花王社製
<測定方法>
スランプ:JIS A 1101に準拠。
圧縮強度:JIS A 1108に準拠。コンクリートは、材齢24時間までは20℃で封緘養生し、以降は20℃水中で養生した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1~3より、水溶性アルミニウム塩の濃度が15~40%、カルボン酸類の濃度が1~20%、ビスフェノール系縮合物の濃度が0.1~3%であることが、初期強度の向上に優れ、スランプや長期強度への影響も小さい。水溶性アルミニウム塩の中では、硫酸アルミニウムが好ましい。カルボン酸類の中では、ギ酸ナトリウムが特に望ましい。ビスフェノール系縮合物の中では、平均分子量1,000~30,000であり、ビスフェノールSが構造単位の一部であるものが好ましい。本発明の液状早強剤を使用すると、流動性を損なうことがないために流し込みやすく、かつ、初期強度が向上するため、脱型に必要な強度を発現するために必要な養生期間が短縮でき、コンクリートの生産性向上につながる。一方、粉体早強剤を使用した場合には、初期強度が低く、本発明の効果が得られない。
「実験例2」
 硫酸アルミニウムの濃度(無水物換算)が25%、ギ酸ナトリウムの濃度が10%、ビスフェノール系縮合物[コ]の濃度が1%、アルカノールアミンの濃度が表4に示す量、グリセリンの濃度が表4に示す量にし、水に添加し、4時間攪拌することで種々の液状早強剤を調製したこと以外は、実験例1(実験No.1-6に対応)と同様に実施し、物性を評価した。結果を表4に示す。
<使用材料>
アルカノールアミン又はグリセリン[ア]:モノエタノールアミン、市販品
アルカノールアミン又はグリセリン[イ]:ジエタノールアミン、市販品
アルカノールアミン又はグリセリン[ウ]:トリエタノールアミン、市販品
アルカノールアミン又はグリセリン[エ]:ジイソプロパノールアミン、市販品
アルカノールアミン又はグリセリン[オ]:グリセリン、市販品
Figure JPOXMLDOC01-appb-T000009
 表4より、液状早強剤がアルカノールアミンやグリセリンを含有した場合は、初期強度の向上に優れる。アルカノールアミンの中では、ジエタノールアミンが好ましい。アルカノールアミンの濃度は1~15%、グリセリンの濃度は1~10%であることが、流動性や強度発現性の点で、好ましい。
「実験例3」
 硫酸アルミニウムの濃度(無水物換算)が25%、ギ酸ナトリウムの濃度が10%、ビスフェノール系縮合物[コ]の濃度が1%であり、残りが水からなる液状早強剤を、セメント100部に対して固形分換算で表5に示す量を使用したこと以外は、実験例1(実験No.1-6に対応)と同様に実施し、物性を評価した。また比較例として、早強剤を使用しないものも実施した(実験No.1-45)。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010
 表5より、液状早強剤の使用量を変動させた場合でも、初期強度の向上に優れる。液状早強剤の使用量は、セメント100部に対して、0.1部~10部であることが、スランプの変動を抑え、強度発現性に優れる点で、好ましい。
「実験例4」
 単位水量145kg/m3、単位セメント量440kg/m3、減水剤2.5kg/m3、s/a39.4%、空気量4.5%のコンクリートを練混ぜた。コンクリートを練混ぜてから30分後に「実験例1」で調製した液状早強剤(実験No.1-6)を後添加して、コンクリートを再度混合し、コンクリートのスランプを測定した。早強剤はセメント100部に対して、固形分換算で2部に相当する8.8kg/m3を計量し、後添加した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強さを評価した。前記以外は、実験例1と同様に実施した。比較のため、液状早強剤を使用しない場合の物性も評価した。結果を表6に示す。
<使用材料>
「実験例1」で用いた材料と同じ。
Figure JPOXMLDOC01-appb-T000011
 表6より、本発明の液状早強剤は、液状早強剤の添加のタイミングに依らず、同程度のスランプや強度発現性を示す。これは、特にあらかじめ練混ぜたコンクリートを現場に運び、現場でアジテータ車等に液状早強剤を後添加する場合に優れる性能である。
 場所打ちセメントコンクリート又はプレキャストセメントコンクリートは、一定の流動性が必要であり、表面仕上げするために一定の可使時間が確保する必要がある。これらの性状に優れないと、セメントコンクリート中にジャンカができたり、表面が均一にならなかったりする場合がある。
 流動性を確保するために、減水剤をセメントコンクリート中に多量に増やしたりする方法や、水の量を増やしたりする方法があり、可使時間を確保するために、遅延剤を併用する方法があった。しかしながら、これらの方法は、強度発現性が損なわれやすく、コストの観点からも好ましくない。
 本発明の液状早強剤は、流動性に及ぼす影響が小さく、かつ、強度発現性に優れる。本発明の早強剤は、特に、初期強度発現性に優れる。本発明は、流動性が大きく、表面仕上げするための可使時間を確保できる。
 本発明の液状早強剤は、コンクリート製品の製造に有用であり、本発明の液状早強剤を用いる早強性セメントコンクリートの製造方法は、環境負荷の小さいコンクリート製品の生産性を高める方法として利用できる。

Claims (9)

  1. 水溶性アルミニウム塩の濃度が固形分換算で15~40質量%、カルボン酸類の濃度が固形分換算で1~20質量%、ビスフェノール系縮合物の濃度が固形分換算で0.1~3質量%であり、残りが水であるセメントコンクリート用液状早強剤。
  2. ビスフェノール系縮合物の重量平均分子量が1,000~30,000である請求項1記載のセメントコンクリート用液状早強剤。
  3. ビスフェノール系縮合物の構造単位がビスフェノールSである請求項1又は2記載のセメントコンクリート用液状早強剤。
  4. 更に、アルカノールアミンを含有する請求項1~3のうちの1項記載のセメントコンクリート用液状早強剤。
  5. 更に、ヒドロキシル基を有する化合物を含有する請求項1~4のうちの1項記載のセメントコンクリート用液状早強剤。
  6. 場所打ちセメントコンクリート又はプレキャストセメントコンクリートに用いる請求項1~5のうちの1項記載のセメントコンクリート用液状早強剤。
  7. 請求項1~6のうちの1項記載のセメントコンクリート用液状早強剤と、セメントコンクリートとを含有する早強性セメントコンクリート。
  8. セメントコンクリート用液状早強剤の使用量が、セメント100質量部に対して、固形分換算で0.1~10質量部である請求項7記載の早強性セメントコンクリート。
  9. 請求項1~6のうちの1項記載のセメントコンクリート用液状早強剤をアジテータ車中のセメントコンクリートに後添加し、早強性セメントコンクリートを製造する早強性セメントコンクリートの製造方法。
PCT/JP2017/025034 2016-07-12 2017-07-07 セメントコンクリート用液状早強剤 WO2018012437A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527586A JP7038052B2 (ja) 2016-07-12 2017-07-07 セメントコンクリート用液状早強剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-137218 2016-07-12
JP2016137218 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018012437A1 true WO2018012437A1 (ja) 2018-01-18

Family

ID=60951775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025034 WO2018012437A1 (ja) 2016-07-12 2017-07-07 セメントコンクリート用液状早強剤

Country Status (3)

Country Link
JP (1) JP7038052B2 (ja)
TW (1) TW201835000A (ja)
WO (1) WO2018012437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244601A1 (ja) * 2018-06-18 2019-12-26 デンカ株式会社 コンクリート表面仕上げ用硬化促進剤の投入方法
WO2023123962A1 (zh) * 2021-12-30 2023-07-06 中国石油天然气集团有限公司 水泥浆体系及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3131557A1 (en) * 2019-02-27 2020-09-03 Basf Se Mixture comprising glyoxylic acid or condensation or addition products thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172063A (ja) * 1999-12-17 2001-06-26 Denki Kagaku Kogyo Kk 凝結調整材スラリー、セメントコンクリート、急結性セメントコンクリート、及び急結性セメントコンクリートの施工方法
JP2001213646A (ja) * 2000-01-27 2001-08-07 Nichiha Corp セメント硬化促進剤およびセメント硬化促進方法
JP2010517923A (ja) * 2007-02-13 2010-05-27 シーカ・テクノロジー・アーゲー 水硬性結合剤のための凝固・硬化促進剤ならびにその調製方法
JP2014005184A (ja) * 2012-06-26 2014-01-16 Denki Kagaku Kogyo Kk 液状急結剤、吹付け材料、及びそれを用いた吹付け工法
WO2014148523A1 (ja) * 2013-03-21 2014-09-25 電気化学工業株式会社 液体急結剤
JP2015231930A (ja) * 2014-06-10 2015-12-24 デンカ株式会社 液体急結剤、急結性セメントコンクリート、およびそれを用いた吹付け工法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172063A (ja) * 1999-12-17 2001-06-26 Denki Kagaku Kogyo Kk 凝結調整材スラリー、セメントコンクリート、急結性セメントコンクリート、及び急結性セメントコンクリートの施工方法
JP2001213646A (ja) * 2000-01-27 2001-08-07 Nichiha Corp セメント硬化促進剤およびセメント硬化促進方法
JP2010517923A (ja) * 2007-02-13 2010-05-27 シーカ・テクノロジー・アーゲー 水硬性結合剤のための凝固・硬化促進剤ならびにその調製方法
JP2014005184A (ja) * 2012-06-26 2014-01-16 Denki Kagaku Kogyo Kk 液状急結剤、吹付け材料、及びそれを用いた吹付け工法
WO2014148523A1 (ja) * 2013-03-21 2014-09-25 電気化学工業株式会社 液体急結剤
JP2015231930A (ja) * 2014-06-10 2015-12-24 デンカ株式会社 液体急結剤、急結性セメントコンクリート、およびそれを用いた吹付け工法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244601A1 (ja) * 2018-06-18 2019-12-26 デンカ株式会社 コンクリート表面仕上げ用硬化促進剤の投入方法
CN112118943A (zh) * 2018-06-18 2020-12-22 电化株式会社 混凝土表面精加工用硬化促进剂的投入方法
JPWO2019244601A1 (ja) * 2018-06-18 2021-08-12 デンカ株式会社 コンクリート表面仕上げ用硬化促進剤の投入方法
EP3778164A4 (en) * 2018-06-18 2022-01-12 Denka Company Limited CURING ACCELERATOR SUPPLY METHOD FOR CONCRETE SURFACE FINISH
JP7214728B2 (ja) 2018-06-18 2023-01-30 デンカ株式会社 コンクリート表面仕上げ用硬化促進剤の投入方法
WO2023123962A1 (zh) * 2021-12-30 2023-07-06 中国石油天然气集团有限公司 水泥浆体系及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2018012437A1 (ja) 2019-05-09
JP7038052B2 (ja) 2022-03-17
TW201835000A (zh) 2018-10-01

Similar Documents

Publication Publication Date Title
JP6826115B2 (ja) セメント用早強剤、それを用いた早強性セメント、および早強性コンクリートの製造方法
JP7038052B2 (ja) セメントコンクリート用液状早強剤
EP2641885B1 (en) Hydraulic composition dispersing agent
JP6876489B2 (ja) 速硬コンクリート及びその製造方法
JP6694313B2 (ja) 速硬コンクリートの製造方法
JP2013252999A (ja) 水硬性組成物
JP2023090942A (ja) 水硬性組成物
JP5965256B2 (ja) 水硬性組成物
JP2015231931A (ja) 粉体急結剤
JP2011132039A (ja) 水中不分離性水硬性組成物用流動化剤
JPH10236860A (ja) 耐硫酸性セメント組成物
WO2017214108A1 (en) Strength enhancing admixtures for hydraulic cements
JP5587007B2 (ja) 耐硫酸性セメント組成物、耐硫酸性モルタル組成物及び耐硫酸性コンクリート組成物
JP6689677B2 (ja) 水硬性組成物用分散剤組成物
JP5168670B2 (ja) 超早強セメント組成物
JP2013220973A (ja) セメント組成物
JP2003146725A (ja) 水硬性組成物
JP2002087867A (ja) セメント材料の製造方法
JP6667333B2 (ja) セメント組成物、セメント混練物
JP6200314B2 (ja) 水硬性組成物用添加剤組成物
JP6200315B2 (ja) 水硬性組成物用添加剤組成物
WO2019176832A1 (ja) 水硬性組成物用混和剤組成物
JP5587006B2 (ja) 耐硫酸性セメント組成物、耐硫酸性モルタル組成物及び耐硫酸性コンクリート組成物
JP2003292362A (ja) 耐硫酸性セメント組成物
JPS5884160A (ja) セメント分散剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527586

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827565

Country of ref document: EP

Kind code of ref document: A1