WO2018012307A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2018012307A1
WO2018012307A1 PCT/JP2017/024047 JP2017024047W WO2018012307A1 WO 2018012307 A1 WO2018012307 A1 WO 2018012307A1 JP 2017024047 W JP2017024047 W JP 2017024047W WO 2018012307 A1 WO2018012307 A1 WO 2018012307A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cylinder
reaction chamber
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2017/024047
Other languages
English (en)
French (fr)
Inventor
豪 朝井
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020187029190A priority Critical patent/KR102132107B1/ko
Priority to KR1020207018945A priority patent/KR102349874B1/ko
Priority to EP17827437.9A priority patent/EP3486471B1/en
Priority to US16/316,513 priority patent/US10989107B2/en
Priority to CN201780039700.3A priority patent/CN109415995A/zh
Priority to EP21188557.9A priority patent/EP3919727A1/en
Publication of WO2018012307A1 publication Critical patent/WO2018012307A1/ja
Priority to US17/191,790 priority patent/US20210189953A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B69/00Internal-combustion engines convertible into other combustion-engine type, not provided for in F02B11/00; Internal-combustion engines of different types characterised by constructions facilitating use of same main engine-parts in different types
    • F02B69/02Internal-combustion engines convertible into other combustion-engine type, not provided for in F02B11/00; Internal-combustion engines of different types characterised by constructions facilitating use of same main engine-parts in different types for different fuel types, other than engines indifferent to fuel consumed, e.g. convertible from light to heavy fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/02Modifying induction systems for imparting a rotation to the charge in the cylinder in engines having inlet valves arranged eccentrically to cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/22Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with pumping cylinder situated at side of working cylinder, e.g. the cylinders being parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B7/00Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M33/00Other apparatus for treating combustion-air, fuel or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B2019/006Engines characterised by precombustion chambers with thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an internal combustion engine including a fuel reforming cylinder for reforming fuel and an output cylinder for obtaining engine output by burning fuel or reformed fuel.
  • Patent Document 1 describes an internal combustion engine having a fuel reforming cylinder for reforming fuel and an output cylinder for obtaining engine output by burning fuel or reformed fuel.
  • fuel such as light oil or heavy oil is supplied to the fuel reforming cylinder, and the air-fuel mixture having a high equivalence ratio is adiabatically compressed in the fuel reforming cylinder.
  • the fuel is reformed in a high-temperature and high-pressure environment, and a reformed fuel (high octane fuel) having high antiknock properties such as hydrogen, carbon monoxide, and methane is generated.
  • the reformed fuel is supplied to the output cylinder together with air, and the engine output is obtained by burning the lean air-fuel mixture (uniform lean combustion) in the output cylinder.
  • the inventors of the present application have found a relationship (see FIG. 8) that the light gas concentration in the reformed gas increases proportionally as the temperature of the reaction gas increases when reforming the fuel in the fuel reforming cylinder. . That is, since it has been found that the reforming efficiency of the fuel is higher as the temperature of the reaction gas is higher, the present invention has been proposed based on this finding.
  • the present invention enables fuel reforming efficiency in an internal combustion engine including a fuel reforming cylinder for reforming fuel and an output cylinder for obtaining engine output by burning fuel or reformed fuel.
  • the purpose is to improve.
  • the present invention relates to an internal combustion engine including a fuel reforming cylinder for reforming fuel and an output cylinder for obtaining engine output by burning fuel or reformed fuel. It is characterized in that at least a part of the surface constituting the changing reaction chamber is a high heat insulating material.
  • the temperature at the time of the reforming reaction of the fuel in the reaction chamber can be kept higher than the case where the high heat insulating material is not used, the reforming efficiency of the fuel is not using the high heat insulating material. As a result, the result is improved.
  • the surface constituting the reaction chamber includes an inner peripheral surface of the fuel reforming cylinder in the cylinder block, a top surface of a piston housed in the fuel reforming cylinder, and the fuel reforming cylinder in the cylinder head. It is preferable that at least one of these surfaces includes the high heat insulating material.
  • the surface constituting the reaction chamber is specified to exist in a plurality of separate members, and the surface to be the high heat insulating material is specified.
  • the cylinder block includes an inner peripheral surface of the fuel reforming cylinder, a top surface of the piston, and an explosion surface of the cylinder head. Any one of them is a high heat insulating material, and an inner peripheral surface of the fuel reforming cylinder in the cylinder block, a top surface of a piston accommodated in the fuel reforming cylinder, and the fuel reforming in a cylinder head.
  • the present invention includes a configuration in which any two of the explosion surfaces covering the quality cylinders are high heat insulating materials.
  • the flow rate of the stirring flow by the swirl flow, tumble flow, and squish in the reaction chamber is reduced as compared with that in the combustion chamber of the output cylinder.
  • the means includes a mode in which an offset amount in the radial direction of the central axis of the intake port with respect to the center of the reaction chamber in a plan view is reduced, and the intake port with respect to the central axis of the reaction chamber in a side view At least one of a mode in which the inclination angle is reduced and a mode in which the passage area of the intake port is increased and the amount of change is suppressed.
  • the unevenness of the top surface of the fuel reforming piston is made as small as possible, preferably a form in which the top surface of the piston is flattened.
  • the top clearance (opposite distance between the piston 22 located at the top dead center and the explosion surface 1f of the cylinder head 1b) may be increased.
  • An external reaction chamber having a constant volume is provided outside the reaction chamber so as to communicate with the reaction chamber via a communication passage, and fuel to be reformed is supplied to the external reaction chamber. It is preferable.
  • the fuel to be reformed is directly supplied to the external reaction chamber, while the fuel to be reformed is not directly supplied to the reaction chamber.
  • the supplied fuel may adhere to the inner surface of the external reaction chamber, the adhering fuel is evaporated by the pressure increase and the temperature increase accompanying the rise of the piston.
  • the inner surface of the external reaction chamber is a high heat insulating material.
  • the present invention enables fuel reforming efficiency in an internal combustion engine including a fuel reforming cylinder for reforming fuel and an output cylinder for obtaining engine output by burning fuel or reformed fuel. Can be improved.
  • FIG. 4 is a diagram showing only the fuel reforming cylinder of FIG. 3. It is a figure which expands and shows the principal part of FIG. 1 is a diagram showing a schematic configuration of an embodiment of an internal combustion engine according to the present invention. It is a figure which shows other embodiment of the high heat insulating material in FIG. It is a figure which shows other embodiment of the fuel reforming cylinder of FIG.
  • FIG. 6 is a view showing still another embodiment of the fuel reforming cylinder of FIG. 1.
  • FIG. 6 is a view showing still another embodiment of the fuel reforming cylinder of FIG. 1. It is a figure which shows the relationship between the temperature of a reaction gas, and the light gas density
  • FIG. 1 to 3 show an embodiment of the present invention. Prior to the description of the features of the present invention, a schematic configuration of an embodiment of the internal combustion engine of the present invention will be described with reference to FIG.
  • the internal combustion engine 1 includes a fuel reforming cylinder 2 and an output cylinder 3.
  • the internal combustion engine 1 includes an intake system 4 and a reformed fuel as a piping system for supplying (introducing) gas or discharging (derived) gas to the fuel reforming cylinder 2 and the output cylinder 3.
  • a supply system 5, an exhaust system 6, an EGR system 7, and an output cylinder bypass system 8 are provided.
  • the fuel reforming cylinder 2 and the output cylinder 3 are both configured as a reciprocating type. Specifically, each of the cylinders 2 and 3 is configured such that pistons 22 and 32 are reciprocally accommodated in cylinder bores 21 and 31 formed in a cylinder block (not shown).
  • a reaction chamber (also referred to as a fuel reforming chamber) 23 is formed by the cylinder bore 21, the piston 22, and the cylinder head 1b.
  • a combustion chamber 33 is formed by the cylinder bore 31, the piston 32, and the cylinder head 1b.
  • the internal combustion engine 1 includes four cylinders in a cylinder block, one of which is configured as a fuel reforming cylinder 2, and the other three cylinders are configured as an output cylinder 3. Yes.
  • the number of each cylinder 2 and 3 is not limited to this.
  • the cylinder block may include six cylinders, two of which may be configured as the fuel reforming cylinder 2, and the other four cylinders may be configured as the output cylinder 3.
  • the pistons 22 and 32 of the cylinders 2 and 3 are connected to the crankshaft 11 via connecting rods 24 and 34, respectively. As a result, the motion is converted between the reciprocating motion of the pistons 22 and 32 and the rotational motion of the crankshaft 11.
  • the crankshaft 11 can be connected to a ship's screw shaft via a clutch mechanism (not shown).
  • the piston 22 of the fuel reforming cylinder 2 and the piston 32 of the output cylinder 3 are connected to each other via the connecting rods 24 and 34 and the crankshaft 11. Therefore, power transmission between the cylinders 2 and 3 and transmission of power output from the cylinders 2 and 3 to the screw shaft are possible.
  • the fuel reforming cylinder 2 is provided with an injector 25 for supplying fuel such as light oil to the reaction chamber 23 as fuel before reforming.
  • the fuel is supplied from the injector 25, so that the air-fuel mixture having a high equivalence ratio is adiabatically compressed.
  • the fuel is reformed in a high-temperature and high-pressure environment, and a reformed fuel having high antiknock properties such as hydrogen, carbon monoxide, and methane is generated.
  • the output cylinder 3 is provided with an injector 35 for supplying fuel such as light oil to the combustion chamber 33.
  • fuel such as light oil
  • the combustion chamber 33 the reformed fuel generated in the fuel reforming cylinder 2 is supplied together with air, and the ignition chamber uses lean premixed combustion or ignition of a small amount of fuel injected from the injector 35. Propagated flame combustion is performed. Thereby, the crankshaft 11 rotates with the reciprocation of the piston 32, and an engine output is obtained.
  • the intake system 4 introduces air (fresh air) into the reaction chamber 23 of the fuel reforming cylinder 2 and the combustion chamber 33 of the output cylinder 3.
  • the intake system 4 includes a main intake passage 41, a fuel reforming cylinder intake passage 42 and an output cylinder intake passage 43 formed by branching the main intake passage 41 into two systems.
  • the main intake passage 41 is provided with a compressor wheel 12 a of the turbocharger 12.
  • the fuel reforming cylinder intake passage 42 communicates with the intake port of the fuel reforming cylinder 2.
  • An intake valve 26 is disposed between the intake port and the reaction chamber 23 of the fuel reforming cylinder 2 so as to be openable and closable.
  • the fuel reforming cylinder intake passage 42 is provided with an intake air amount adjustment valve 45 whose opening can be adjusted.
  • the output cylinder intake passage 43 communicates with the intake port of the output cylinder 3.
  • An intake valve 36 is disposed between the intake port and the combustion chamber 33 of the output cylinder 3 so as to be openable and closable.
  • the output cylinder intake passage 43 is provided with an intake air cooler (intercooler) 44.
  • the reformed fuel supply system 5 supplies the reformed fuel generated in the fuel reforming cylinder 2 toward the combustion chamber 33 of the output cylinder 3.
  • the reformed fuel supply system 5 includes a reformed fuel supply passage 51.
  • the reformed fuel supply passage 51 is provided with a reformed fuel cooler 52.
  • the upstream end of the reformed fuel supply passage 51 communicates with the exhaust port of the fuel reforming cylinder 2.
  • An exhaust valve 27 is disposed between the exhaust port and the reaction chamber 23 of the fuel reforming cylinder 2 so as to be openable and closable. Further, the downstream end of the reformed fuel supply passage 51 communicates with the output cylinder intake passage 43.
  • a mixer 53 is provided at a communication portion between the reformed fuel supply passage 51 and the output cylinder intake passage 43. Therefore, the reformed fuel generated in the fuel reforming cylinder 2 is mixed with the air flowing through the output cylinder intake passage 43 in the mixer 53 and supplied to the combustion chamber 33 of the output cylinder 3.
  • the exhaust system 6 discharges exhaust gas generated in the output cylinder 3.
  • the exhaust system 6 includes an exhaust passage 61.
  • the exhaust passage 61 is provided with a turbine wheel 12 b of the turbocharger 12.
  • the exhaust passage 61 communicates with the exhaust port of the output cylinder 3.
  • An exhaust valve 37 is disposed between the exhaust port and the combustion chamber 33 of the output cylinder 3 so as to be openable and closable.
  • the EGR system 7 includes a fuel reforming cylinder EGR system 7A and an output cylinder EGR system 7B.
  • the fuel reforming cylinder EGR system 7A supplies a part of the exhaust gas flowing through the exhaust passage 61 toward the reaction chamber 23 of the fuel reforming cylinder 2.
  • the fuel reforming cylinder EGR system 7A includes a fuel reforming cylinder EGR passage 71.
  • the fuel reforming cylinder EGR passage 71 has an upstream end communicating with the exhaust passage 61 and a downstream end communicating with the downstream side of the intake amount adjusting valve 45 in the fuel reforming cylinder intake passage 42.
  • the fuel reforming cylinder EGR passage 71 is provided with an EGR gas cooler 72. Further, an EGR gas amount adjusting valve 73 is provided in the fuel reforming cylinder EGR passage 71 downstream of the EGR gas cooler 72 (on the fuel reforming cylinder intake passage 42 side).
  • the fuel reforming cylinder EGR system 7A is provided with a cooler bypass passage 74 for bypassing the EGR gas cooler 72 and allowing EGR gas to flow.
  • the cooler bypass passage 74 is provided with a bypass amount adjusting valve 75.
  • the output cylinder EGR system 7B returns a part of the exhaust gas flowing through the exhaust passage 61 to the combustion chamber 33 of the output cylinder 3.
  • the output cylinder EGR system 7B includes an output cylinder EGR passage 76.
  • the output cylinder EGR passage 76 has an upstream end communicating with the exhaust passage 61 and a downstream end communicating with the downstream side of the mixer 53 in the output cylinder intake passage 43.
  • the output cylinder EGR passage 76 is provided with an EGR gas cooler 77. Further, an EGR gas amount adjustment valve 78 is provided in the output cylinder EGR passage 76 downstream of the EGR gas cooler 77 (on the output cylinder intake passage 43 side).
  • the output cylinder bypass system 8 is for introducing the gas discharged from the fuel reforming cylinder 2 into the exhaust passage 61 without supplying the gas to the output cylinder 3 (by bypassing the output cylinder 3).
  • the output cylinder bypass system 8 includes an output cylinder bypass passage 81.
  • the output cylinder bypass passage 81 has an upstream end upstream of the reformed fuel cooler 52 in the reformed fuel supply passage 51 and a downstream end upstream of the EGR gas cooler 77 in the output cylinder EGR passage 76 (exhaust passage 61). Side).
  • the output cylinder bypass passage 81 is provided with a bypass amount adjusting valve 82.
  • the coolers 44, 52, 72, and 77 provided in each system described above use engine cooling water or seawater as a cooling heat source for cooling the gas. These coolers 44, 52, 72, 77 may be air-cooled.
  • the air introduced into the main intake passage 41 is pressurized by the compressor wheel 12a of the turbocharger 12.
  • this air is diverted to the fuel reforming cylinder intake passage 42 and the output cylinder intake passage 43.
  • the amount of intake air flowing through the fuel reforming cylinder intake passage 42 is adjusted by the intake air amount adjusting valve 45.
  • the EGR gas that has flowed through the fuel reforming cylinder EGR system 7A is introduced into the fuel reforming cylinder intake passage 42.
  • the amount of EGR gas introduced into the fuel reforming cylinder intake passage 42 is adjusted by the EGR gas amount adjustment valve 73.
  • the temperature of the EGR gas introduced into the fuel reforming cylinder intake passage 42 is adjusted by the amount of EGR gas that bypasses the EGR gas cooler 72 according to the opening degree of the bypass amount adjusting valve 75.
  • air and EGR gas are introduced into the reaction chamber 23 of the fuel reforming cylinder 2.
  • the flow rate of EGR gas adjusted by the opening degree of the EGR gas amount adjusting valve 73 and the temperature of EGR gas adjusted by the opening degree of the bypass amount adjusting valve 75 increase the equivalent ratio in the reaction chamber 23.
  • the gas temperature in the reaction chamber 23 that can be set and the fuel can be satisfactorily reformed is adjusted.
  • the fuel supply amount from the injector 25 is basically set according to the engine required output. Specifically, the valve opening period of the injector 25 is set so that a target fuel supply amount can be obtained according to the fuel pressure supplied to the injector 25.
  • valve opening timing of the injector 25 at this time is set so that the injection of the target fuel supply amount is completed before the intake stroke of the fuel reforming cylinder 2 is completed. If the air-fuel mixture can be mixed uniformly before the piston 22 reaches the vicinity of the compression top dead center, the fuel injection period may be continued halfway through the compression stroke. As a result, until the piston 22 reaches the compression top dead center, a homogeneous mixture (a mixture with a high equivalence ratio) is generated in the reaction chamber 23.
  • the reformed fuel discharged from the reaction chamber 23 is cooled in the reformed fuel cooler 52 when flowing through the reformed fuel supply passage 51. By this cooling, pre-ignition of the reformed fuel in the output cylinder intake passage 43 and the combustion chamber 33 is suppressed.
  • the cooled reformed fuel is mixed with the air flowing through the output cylinder intake passage 43 in the mixer 53 and supplied to the combustion chamber 33 of the output cylinder 3. If necessary, the EGR gas amount adjusting valve 78 is opened, and EGR gas is introduced into the combustion chamber 33 of the output cylinder 3 through the output cylinder EGR passage 76.
  • air, reformed fuel, and EGR gas are respectively introduced into the combustion chamber 33 of the output cylinder 3, and the equivalence ratio in the combustion chamber 33 is adjusted to about 0.1 to 0.8.
  • the adiabatic compression of the lean mixed gas is performed in the compression stroke, and a small amount of fuel is injected from the injector 35 when the piston 22 reaches the compression top dead center.
  • the air-fuel mixture in the combustion chamber 33 is self-ignited, and lean premixed combustion is performed.
  • the fuel injection from the injector 35 is not performed, when the air-fuel mixture in the combustion chamber 33 self-ignites (premixed compression self-ignition), the fuel injection from the injector 35 is not necessarily required.
  • the fuel reforming cylinder 2 has a configuration in which a cylinder liner 21a is fitted into a cylinder hole (reference number omitted) of the cylinder block 1a.
  • the inner surface of the cylinder liner 21 a becomes the cylinder bore 21.
  • 1c is a water jacket of the cylinder block 1a
  • 1d is a head gasket.
  • a space surrounded by 1 f is called a reaction chamber 23.
  • the explosion surface 1f includes the inner surfaces (surfaces exposed to the reaction chamber 23) of the umbrella portions of the intake valve 26 and the exhaust valve 27 disposed in the fuel reforming cylinder 2.
  • a cylindrical high heat insulating material 10 is fitted and mounted on the inner peripheral surface of the cylinder liner 21a.
  • the high heat insulating material 10 is disposed in a predetermined region from the top side edge to the bottom side predetermined position on the inner peripheral surface of the cylinder liner 21a.
  • a diameter-expanded portion 21b that increases the inner diameter is provided in a predetermined region from the top-side edge to the bottom-side predetermined position on the inner peripheral surface of the cylinder liner 21a.
  • the cylindrical high heat insulating material 10 is fitted and attached to the enlarged diameter portion 21b. In the fitted state, the high heat insulating material 10 projects radially inward from the inner peripheral surface of the cylinder liner 21a. It has become.
  • the outer diameter of the outer peripheral surface of the piston 22 is reduced in a predetermined region from the edge near the top surface 22 a to the predetermined position on the bottom side.
  • a reduced diameter portion 22b is provided.
  • the axial dimension B (see FIG. 2) of the high heat insulating material 10 is appropriately set according to the region in the reaction chamber 23 that is desired to be kept at a high temperature during the fuel reforming reaction.
  • the region to be kept at a high temperature is the axial length range from the top edge of the cylinder liner 21a to the top surface 22a of the piston 22 disposed at the top dead center.
  • the axial dimension B is set to be equal to or larger than the axial length range.
  • the high heat insulating material 10 includes, for example, generally known ceramics having various compositions, iron-based metals, or a material obtained by coating a suitable base material surface with a high heat insulating resin.
  • the temperature at the time of the reforming reaction of the fuel in the reaction chamber 23 can be kept higher compared to the case where the high heat insulating material 10 is not used, the fuel reforming efficiency is the case where the high heat insulating material 10 is not used. As a result, the result is improved.
  • this invention is not limited only to the said embodiment, It can change suitably in the range equivalent to the claim and the said range.
  • the high heat insulating material 10 of the above-described embodiment has a configuration in which an annular groove 10a that is opened radially outward is provided in an axially intermediate region on the outer diameter side. Is possible.
  • a highly heat insulating material can be coated on a predetermined region of the inner peripheral surface of the cylinder liner 21a by thermal spraying or coating.
  • the present invention is not illustrated, for example, but includes the surfaces constituting the reaction chamber 23 (the inner peripheral surface of the cylinder liner 21a, the top surface 22a of the piston 22 and the cylinder head 1b).
  • a configuration in which all of the explosion surface 1f) are made of the high thermal insulation material 10 a configuration in which one of the top surface 22a of the piston 22 and the explosion surface 1f of the cylinder head 1b is made of the high thermal insulation material 10, or the inner circumference of the cylinder liner 21a
  • the form which makes any two of the surface, the top surface 22a of the piston 22, and the explosion surface 1f of the cylinder head 1b be the high heat insulating material 10 is included.
  • the high heat insulating material is not attached but the high heat insulating material is coated by spraying or coating. It is preferable to do.
  • the piston 22 itself can be formed of an iron-based metal that can be a high heat insulating material.
  • the means includes a mode in which the amount of offset in the radial direction of the central axis of the intake port with respect to the center of the reaction chamber 23 in plan view is reduced, and the intake port with respect to the central axis of the reaction chamber 23 in side view. At least one of a mode in which the inclination angle is reduced and a mode in which the passage area of the intake port is increased and the amount of change is suppressed.
  • the unevenness of the top surface 22a of the piston 22 for fuel reforming is made as small as possible, preferably a form in which the top surface 22a is flattened.
  • the top clearance (opposite distance between the piston 22 located at the top dead center and the explosion surface 1f of the cylinder head 1b) may be increased.
  • FIG. 5 to FIG. 7 show other embodiments of the present invention, which will be described in detail below.
  • an external reaction chamber 20 is provided outside the reaction chamber 23 of the fuel reforming cylinder 2.
  • the external reaction chamber 20 is provided in the vicinity of the reaction chamber 23 in the cylinder head 1b.
  • the external reaction chamber 20 is provided in the fuel reforming piston 22.
  • the external reaction chamber 20 is provided in the vicinity of the reaction chamber 23 in the cylinder block 1a.
  • the external reaction chamber 20 is formed in, for example, a substantially spherical shape, and its volume is set to be constant. However, the external reaction chamber 20 can be formed in an elliptical shape in addition to the above shape.
  • the external reaction chamber 20 communicates with the reaction chamber 23 via the communication passage 20a, and the fuel is directly supplied from the injector 25.
  • the communication passage 20 a is configured such that its axis does not pass through the center of the external reaction chamber 20.
  • the injector 25 is installed so that the injected fuel does not reach the reaction chamber 23 through the communication passage 20a.
  • the supply air in the reaction chamber 23 is adiabatically compressed.
  • the supply air in the reaction chamber 23 adiabatically compressed flows into the external reaction chamber 20 through the communication passage 20a at a high speed, and at that time, a high-speed vortex is formed in the external reaction chamber 20. Thereby, the inside of the reaction chamber 23 and the external reaction chamber 20 is brought into a high temperature and high pressure state.
  • the volume of the reaction chamber 23 increases and the internal pressure decreases as the piston 22 moves from the top dead center to the bottom dead center.
  • the reformed fuel moves to the reaction chamber 23 and is adiabatically expanded. This reformed fuel is cooled by the adiabatic expansion, and the reforming reaction stops when the pressure is reduced.
  • the piston 22 moves from the bottom dead center to the top dead center, and the exhaust valve 27 is opened, so that the reformed fuel is supplied to the output cylinder bypass passage 81 and the EGR gas. It is introduced into the output cylinder intake passage 43 via the cooler 77.
  • the fuel to be reformed is directly supplied to the external reaction chamber 20, while the reforming target is fed to the reaction chamber 23. Will not be supplied directly.
  • the fuel supplied to the external reaction chamber 20 evaporates while being mixed with the supply air by the synergistic effect of the pressure rise accompanying the rise of the piston 22 and the temperature rise and the generation of the high-speed vortex. It becomes difficult for fuel to adhere to the inner surface of the reaction chamber 20.
  • At least a part of the surfaces constituting the reaction chamber 23 (the inner peripheral surface of the cylinder liner 21 a and the piston 22, based on the spirit of the present invention). It is assumed that at least one of the top surface 22a and the explosion surface 1f of the cylinder head 1b) is mounted with the high heat insulating material 10 described above or coated with the high heat insulating material by thermal spraying or application.
  • the inner surface of the external reaction chamber 20 can be coated with the high heat insulating material 10 described above or coated with a high heat insulating material by thermal spraying or coating.
  • the temperature at the time of the reforming reaction of the fuel supplied to the external reaction chamber 20 can be kept higher than the case where the high heat insulating material 10 is not employed, the fuel reforming efficiency is improved. As a result, the result is improved as compared with the case of not adopting.
  • the present invention can be suitably used for an internal combustion engine including a fuel reforming cylinder for reforming fuel and an output cylinder for obtaining engine output by burning fuel or reformed fuel. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

燃料を改質するための燃料改質気筒(2)と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒(3)とを備える内燃機関(1)において、燃料改質気筒(2)の容積が変化する反応室(23)を構成する面の少なくとも一部が、高断熱材(10)とされている。

Description

内燃機関
 本発明は、燃料を改質するための燃料改質気筒と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒とを備える内燃機関に関する。
 例えば特許文献1には、燃料を改質するための燃料改質気筒と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒とを有する内燃機関が記載されている。
 具体的には、燃料改質気筒に軽油や重油等の燃料を供給し、この燃料改質気筒内において当量比の高い混合気を断熱圧縮する。これにより、高温高圧の環境下で燃料が改質し、水素、一酸化炭素、メタン等のアンチノック性の高い改質燃料(高オクタン価燃料)が生成される。そして、この改質燃料を空気と共に出力気筒に供給し、この出力気筒内において希薄混合気の燃焼(均一希薄燃焼)が行われることにより機関出力が得られる。
 この種の内燃機関によれば、出力気筒内において均一希薄燃焼が行われるため、NOx排出量の低減およびスート排出量の低減を図ることができる。また、アンチノック性の高い燃料の燃焼が行われるため、ノッキングが抑制されると共にディーゼルマイクロパイロット着火により最適な時期での燃焼が実現できるため、燃焼効率の向上を図ることもできる。
特開2014-136978号公報
 本願発明者は、燃料改質気筒において燃料を改質する際に、反応ガスの温度が高くなるにつれて改質ガス中の軽質ガス濃度が比例して高くなるという関係(図8参照)を知見した。つまり、反応ガスの温度が高いほど燃料の改質効率が高くなるということを知見したので、この知見に基づき本発明を提案するに至った。
 本発明は、燃料を改質するための燃料改質気筒と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒とを備える内燃機関において、燃料の改質効率を可及的に向上させることを目的としている。
 本発明は、燃料を改質するための燃料改質気筒と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒とを備える内燃機関において、前記燃料改質気筒の容積が変化する反応室を構成する面の少なくとも一部が、高断熱材とされている、ことを特徴としている。
 この構成では、前記反応室において燃料を改質する際に当該反応室から外側への放熱、つまり当該反応室からの熱損失を低下させることが可能になる。
 これにより、前記反応室における燃料の改質反応時の温度を、前記高断熱材を採用しない場合に比べて高く保つことができるので、燃料の改質効率が、前記高断熱材を採用しない場合に比べて向上する結果となる。
 また、前記反応室を構成する面は、シリンダブロックにおいて前記燃料改質気筒の内周面と、前記燃料改質気筒内に収容されるピストンの頂面と、シリンダヘッドにおいて前記燃料改質気筒を覆う爆面とを含み、これらの面のうちの少なくとも1つが、前記高断熱材とされている、ことが好ましい。
 ここでは、前記反応室を構成する面が、別々の複数の部材に存在していることを特定しているとともに、前記高断熱材とする面を特定している。
 詳しくは、前記反応室を構成する面の全てを高断熱材とする形態、前記シリンダブロックにおいて前記燃料改質気筒の内周面と前記ピストンの頂面と前記シリンダヘッドの爆面とのうちのいずれか1つを高断熱材とする形態、ならびに前記シリンダブロックにおいて前記燃料改質気筒の内周面と、前記燃料改質気筒内に収容されるピストンの頂面と、シリンダヘッドにおいて前記燃料改質気筒を覆う爆面とのうちのいずれか2つを高断熱材とする形態が、本発明に含まれる。
 また、前記反応室でのスワール流、タンブル流、スキッシュによる攪拌流の流速を、前記出力気筒の燃焼室でのそれに比べて低下させるように構成されている、ことが好ましい。
 ちなみに、前記スワール流、タンブル流の流速を低下させる手段としては、前記反応室に対する吸気ポートの連接位置と傾斜角度との少なくともいずれか一方を規定する形態が挙げられる。具体的に、前記手段としては、平面視において前記反応室の中心に対する前記吸気ポートの中心軸線の径方向でのオフセット量を小さくする形態と、側面視において前記反応室の中心軸線に対する前記吸気ポートの傾斜角度を小さくする形態と、前記吸気ポートの通路面積を大きくし、その変化量を抑制する形態との少なくともいずれか一方が挙げられる。
 また、前記スキッシュによる攪拌流の流速を低下させる手段としては、燃料改質用のピストンの頂面の凹凸を可及的に小さくする形態、好ましくは前記ピストンの頂面を平坦にする形態が挙げられる他、トップクリアランス(上死点に位置するピストン22とシリンダヘッド1bの爆面1fとの対向距離)を大きくする形態が挙げられる。
 この構成では、前記反応室において燃料を改質する際に当該反応室を構成する面から外側への放熱、つまり当該反応室からの熱損失を低下させることが可能になる。
 また、前記反応室の外側には、容積が一定の外部反応室が前記反応室に連絡通路を介して連通するように設けられ、この外部反応室に前記改質対象となる燃料が供給される、ことが好ましい。
 この構成では、前記外部反応室に前記改質対象となる燃料が直接的に供給されるようになる一方で、前記反応室に前記改質対象となる燃料が直接的に供給されなくなる。
 これにより、前記燃料が前記反応室を構成する面に付着しにくくなるので、前記ピストンの往復動によって前記付着燃料が掻き落とされるリスクを低減できるようになる。
 一方、前記外部反応室の内面には、供給される燃料が付着する可能性があるものの、この付着燃料は、前記ピストンの上昇に伴う圧力上昇ならびに温度上昇によって蒸発されることになる。
 また、前記外部反応室の内面が、高断熱材とされる、ことが好ましい。
 この構成では、前記外部反応室において燃料を改質する際に当該外部反応室の内面から外側への放熱、つまり当該外部反応室からの熱損失を低下させることが可能になる。
 これにより、前記外部反応室に供給される燃料の改質反応時の温度を、前記高断熱材を採用しない場合に比べて高く保つことができるので、燃料の改質効率が、前記高断熱材を採用しない場合に比べて向上する結果となる。
 本発明は、燃料を改質するための燃料改質気筒と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒とを備える内燃機関において、燃料の改質効率を可及的に向上させることが可能になる。
図3の燃料改質気筒のみを示す図である。 図1の要部を拡大して示す図である。 本発明に係る内燃機関の一実施形態の概略構成を示す図である。 図2における高断熱材の他の実施形態を示す図である。 図1の燃料改質気筒の他の実施形態を示す図である。 図1の燃料改質気筒のさらに他の実施形態を示す図である。 図1の燃料改質気筒のさらに他の実施形態を示す図である。 燃料を改質する際において反応ガスの温度と改質ガス中の軽質ガス濃度との関係を示す図である。
 以下、本発明を実施するための最良の実施形態について添付図面を参照して詳細に説明する。
 図1から図3に、本発明の一実施形態を示している。本発明の特徴説明に先立ち、図3を参照して本発明の内燃機関の一実施形態の概略構成を説明する。
 -内燃機関のシステム構成-
 本実施形態に係る内燃機関1は、燃料改質気筒2および出力気筒3を備えている。また、この内燃機関1は、前記燃料改質気筒2や前記出力気筒3に対し、ガスの供給(導入)またはガスの排出(導出)を行うための配管系として、吸気系4、改質燃料供給系5、排気系6、EGR系7、および、出力気筒バイパス系8を備えている。
 (燃料改質気筒および出力気筒)
 燃料改質気筒2および出力気筒3は、共にレシプロ型で構成されている。具体的に、各気筒2,3は、シリンダブロック(図示省略)に形成されたシリンダボア21,31内にピストン22,32が往復動自在に収容されて構成されている。
 燃料改質気筒2では、シリンダボア21、ピストン22、シリンダヘッド1bによって反応室(燃料改質室とも言う)23が形成されている。出力気筒3では、シリンダボア31、ピストン32、シリンダヘッド1bによって燃焼室33が形成されている。
 本実施形態に係る内燃機関1は、シリンダブロックに4つの気筒が備えられ、そのうちの1つの気筒が燃料改質気筒2として構成されており、他の3つの気筒が出力気筒3として構成されている。各気筒2,3の数はこれに限定されるものではない。例えば、シリンダブロックに6つの気筒が備えられ、そのうちの2つの気筒が燃料改質気筒2として構成されており、他の4つの気筒が出力気筒3として構成されていてもよい。
 各気筒2,3のピストン22,32はそれぞれコネクティングロッド24,34を介してクランクシャフト11に連結されている。これにより、ピストン22,32の往復運動とクランクシャフト11の回転運動との間で運動が変換されるようになっている。
 クランクシャフト11は、クラッチ機構(図示省略)を介して船舶のスクリュー軸に連結可能となっている。
 燃料改質気筒2のピストン22と出力気筒3のピストン32とは前記コネクティングロッド24,34およびクランクシャフト11を介して互いに連結されている。このため、これら気筒2,3間での動力伝達や、これら気筒2,3から出力された動力のスクリュー軸への伝達等が可能となっている。
 燃料改質気筒2には、反応室23に改質前の燃料として例えば軽油等の燃料を供給するインジェクタ25が備えられている。この反応室23では、インジェクタ25から燃料が供給されることにより、当量比の高い混合気が断熱圧縮される。これにより、高温高圧の環境下で燃料が改質し、水素、一酸化炭素、メタン等のアンチノック性の高い改質燃料が生成される。
 出力気筒3には、燃焼室33に例えば軽油等の燃料を供給するインジェクタ35が備えられている。この燃焼室33では、前記燃料改質気筒2で生成された改質燃料が空気と共に供給され、この燃焼室33で希薄予混合燃焼もしくはインジェクタ35から噴射される微量の燃料の着火を点火源とした伝播火炎燃焼が行われる。これにより、ピストン32の往復動に伴ってクランクシャフト11が回転し、機関出力が得られる。
 (吸気系)
 吸気系4は、燃料改質気筒2の反応室23および出力気筒3の燃焼室33それぞれに空気(新気)を導入するものである。
 この吸気系4は、メイン吸気通路41、このメイン吸気通路41が2系統に分岐されて成る燃料改質気筒吸気通路42および出力気筒吸気通路43を備えている。メイン吸気通路41には、ターボチャージャ12のコンプレッサホイール12aが備えられている。
 燃料改質気筒吸気通路42は燃料改質気筒2の吸気ポートに連通している。この吸気ポートと燃料改質気筒2の反応室23との間には吸気バルブ26が開閉可能に配設されている。また、この燃料改質気筒吸気通路42には開度調整可能な吸気量調整弁45が備えられている。
 出力気筒吸気通路43は出力気筒3の吸気ポートに連通している。この吸気ポートと出力気筒3の燃焼室33との間には吸気バルブ36が開閉可能に配設されている。また、この出力気筒吸気通路43には吸気冷却器(インタクーラ)44が備えられている。
 (改質燃料供給系)
 改質燃料供給系5は、前記燃料改質気筒2で生成された改質燃料を出力気筒3の燃焼室33に向けて供給するものである。
 この改質燃料供給系5は改質燃料供給通路51を備えている。この改質燃料供給通路51には改質燃料冷却器52が備えられている。改質燃料供給通路51の上流端は燃料改質気筒2の排気ポートに連通している。この排気ポートと燃料改質気筒2の反応室23との間には排気バルブ27が開閉可能に配設されている。また、改質燃料供給通路51の下流端は出力気筒吸気通路43に連通している。
 この改質燃料供給通路51と出力気筒吸気通路43との連通部分にはミキサ53が設けられている。このため、燃料改質気筒2で生成された改質燃料は、ミキサ53において出力気筒吸気通路43を流れる空気と混合されて出力気筒3の燃焼室33に供給されることになる。
 (排気系)
 排気系6は、前記出力気筒3で発生した排気ガスを排出するものである。この排気系6は排気通路61を備えている。この排気通路61には、ターボチャージャ12のタービンホイール12bが備えられている。排気通路61は出力気筒3の排気ポートに連通している。この排気ポートと出力気筒3の燃焼室33との間には排気バルブ37が開閉可能に配設されている。
 (EGR系)
 EGR系7は、燃料改質気筒EGR系7Aと出力気筒EGR系7Bとを備えている。
 燃料改質気筒EGR系7Aは、前記排気通路61を流れる排気ガスの一部を燃料改質気筒2の反応室23に向けて供給するものである。
 この燃料改質気筒EGR系7Aは燃料改質気筒EGR通路71を備えている。この燃料改質気筒EGR通路71は、上流端が排気通路61に、下流端が燃料改質気筒吸気通路42における吸気量調整弁45の下流側にそれぞれ連通されている。燃料改質気筒EGR通路71にはEGRガス冷却器72が備えられている。また、燃料改質気筒EGR通路71におけるEGRガス冷却器72よりも下流側(燃料改質気筒吸気通路42側)にはEGRガス量調整弁73が備えられている。
 また、燃料改質気筒EGR系7Aには、EGRガス冷却器72をバイパスしてEGRガスを流すためのクーラバイパス通路74が設けられている。このクーラバイパス通路74にはバイパス量調整弁75が備えられている。
 一方、出力気筒EGR系7Bは、前記排気通路61を流れる排気ガスの一部を出力気筒3の燃焼室33に戻すものである。この出力気筒EGR系7Bは出力気筒EGR通路76を備えている。
 この出力気筒EGR通路76は、上流端が排気通路61に、下流端が出力気筒吸気通路43におけるミキサ53の下流側にそれぞれ連通されている。出力気筒EGR通路76にはEGRガス冷却器77が備えられている。また、出力気筒EGR通路76におけるEGRガス冷却器77よりも下流側(出力気筒吸気通路43側)にはEGRガス量調整弁78が備えられている。
 (出力気筒バイパス系)
 出力気筒バイパス系8は、前記燃料改質気筒2から排出されたガスを出力気筒3に供給することなく(出力気筒3をバイパスさせて)、前記排気通路61に導入するためのものである。
 この出力気筒バイパス系8は出力気筒バイパス通路81を備えている。この出力気筒バイパス通路81は、上流端が改質燃料供給通路51における改質燃料冷却器52の上流側に、下流端が出力気筒EGR通路76におけるEGRガス冷却器77の上流側(排気通路61側)にそれぞれ連通されている。また、この出力気筒バイパス通路81にはバイパス量調整弁82が備えられている。
 なお、前述した各系に備えられている冷却器44,52,72,77は、ガスを冷却するための冷熱源として、エンジン冷却水または海水等が使用される。また、これら冷却器44,52,72,77は空冷式のものであってもよい。
 -内燃機関の基本動作-
 次に、前述の如く構成された内燃機関1の基本動作について説明する。
 メイン吸気通路41に導入される空気は、ターボチャージャ12のコンプレッサホイール12aによって加圧される。
 そして、この空気は、燃料改質気筒吸気通路42および出力気筒吸気通路43に分流される。この際、燃料改質気筒吸気通路42を流れる吸気の量は吸気量調整弁45によって調整される。
 また、燃料改質気筒吸気通路42には、燃料改質気筒EGR系7Aを流れたEGRガスが導入される。この際、燃料改質気筒吸気通路42に導入されるEGRガス量はEGRガス量調整弁73によって調整される。
 また、燃料改質気筒吸気通路42に導入されるEGRガスの温度はバイパス量調整弁75の開度に応じてEGRガス冷却器72をバイパスするEGRガス量によって調整される。これにより、燃料改質気筒2の反応室23には、空気およびEGRガスが導入されることになる。この際、EGRガス量調整弁73の開度によって調整されるEGRガスの流量、および、バイパス量調整弁75の開度によって調整されるEGRガスの温度は、反応室23での当量比を高く設定し、また、燃料の改質を良好に行うことができる反応室23のガス温度が確保できるように調整される。
 このようにして燃料改質気筒2の反応室23に、空気およびEGRガスが導入された状態で、インジェクタ25から反応室23に燃料が供給される。
 このインジェクタ25からの燃料供給量は、基本的には機関要求出力に応じて設定される。具体的には、インジェクタ25に供給されている燃料圧力に応じ、目標とする燃料供給量が得られるように、インジェクタ25の開弁期間が設定される。
 また、この際のインジェクタ25の開弁タイミングは、燃料改質気筒2の吸気行程が終了するまでの間に前記目標とする燃料供給量の噴射が完了するように設定されることが望ましいが、ピストン22が圧縮上死点付近に到達する前に混合気が均一に混合可能である場合には、圧縮行程途中まで燃料噴射期間が継続されてもよい。これにより、ピストン22が圧縮上死点に達するまでに、反応室23において均質な混合気(当量比の高い混合気)が生成されることになる。
 ピストン22が圧縮上死点に向かって移動する間に、反応室23の圧力および温度が上昇し、この反応室23では、当量比の高い混合気(例えば4.0以上の当量比の混合気)が断熱圧縮される。これにより、高温高圧の環境下で、燃料の脱水素反応、部分酸化反応、水蒸気改質反応、熱解離反応が行われて、燃料が改質され、水素、一酸化炭素、メタン等のアンチノック性の高い改質燃料が生成される。
 反応室23から排出された改質燃料は、改質燃料供給通路51を流れる際に改質燃料冷却器52において冷却される。この冷却により、出力気筒吸気通路43や燃焼室33での改質燃料の過早着火が抑制される。
 そして、この冷却された改質燃料は、出力気筒吸気通路43を流れる空気とミキサ53において混合され、出力気筒3の燃焼室33に供給される。また、必要に応じて、EGRガス量調整弁78が開放され、出力気筒EGR通路76を経てEGRガスが出力気筒3の燃焼室33に導入される。
 このようにして、出力気筒3の燃焼室33には、空気、改質燃料、EGRガスがそれぞれ導入され、この燃焼室33内の当量比が0.1~0.8程度に調整される。
 出力気筒3では、圧縮行程において、希薄混合ガスの断熱圧縮が行われ、ピストン22が圧縮上死点に達した時点で、インジェクタ35から微量の燃料噴射が行われる。これにより、燃焼室33内の混合気が自着火し、希薄予混合燃焼が行われる。なお、インジェクタ35からの燃料噴射を行わなくても燃焼室33の混合気が自着火(予混合圧縮自着火)する場合には、このインジェクタ35からの燃料噴射は必ずしも必要ない。
 前記燃焼によって、ピストン32が往復動し、クランクシャフト11が回転することで機関出力が得られる。この機関出力は前記スクリュー軸に伝達される。また、この機関出力の一部は、燃料改質気筒2におけるピストン22の往復動の駆動源として使用される。
 ここで、燃料改質気筒2は、図2に示すように、そのシリンダブロック1aのシリンダホール(符号省略)にシリンダライナ21aを嵌合した構成になっている。この場合、シリンダライナ21aの内面がシリンダボア21となる。なお、図2において、1cはシリンダブロック1aのウォータジャケット、1dはヘッドガスケットである。
 このシリンダライナ21aの内周面と、シリンダライナ21a内に収容されるピストン22の頂面22aと、シリンダヘッド1bにおいてシリンダライナ21aのトップ側(シリンダヘッド1b寄り)開口を覆う面(以下、爆面と言う)1fとにより囲まれる空間が、反応室23とされる。なお、前記爆面1fは、燃料改質気筒2に配置される吸気バルブ26および排気バルブ27の各傘部の内面(反応室23に露呈する面)を含んでいるものとする。
 このような構成の反応室23であるから、その容積がピストン22の往復動によって変化することが明らかになる。
 そして、図1および図2に示すように、シリンダライナ21aの内周面には、円筒形状の高断熱材10が嵌合装着されている。
 この高断熱材10は、シリンダライナ21aの内周面においてトップ側の端縁からボトム側所定位置までの所定領域に配置されている。
 具体的に、シリンダライナ21aの内周面においてトップ側の端縁からボトム側所定位置までの所定領域には、内径寸法を拡径する拡径部21bが設けられている。この拡径部21bに円筒形状の高断熱材10が嵌合装着されているが、当該嵌合状態においては、高断熱材10がシリンダライナ21aの内周面から径方向内向きに張り出した状態になっている。
 そこで、高断熱材10がピストン22に干渉することを回避させるために、ピストン22の外周面において頂面22a寄りの端縁からボトム側所定位置までの所定領域には、外径寸法を縮径する縮径部22bが設けられている。
 また、高断熱材10の軸方向寸法B(図2参照)は、反応室23において燃料の改質反応時に高温に保ちたい領域に応じて適宜設定される。具体的に、前記高温に保ちたい領域とは、シリンダライナ21aのトップ側の端縁から上死点に配置されたピストン22の頂面22aまでの軸方向長さ範囲のことである。このため、前記軸方向寸法Bは、前記軸方向長さ範囲と同じか、あるいはそれよりも大きく設定することが好ましい。
 そして、高断熱材10としては、例えば一般に知られるいろいろな組成のセラミックス、鉄系金属、あるいは適宜の基材表面に高断熱性の樹脂をコーティングしたものなどが挙げられる。
 以上説明したように本発明を適用した実施形態では、シリンダライナ21aの内周面に高断熱材10を装着することにより、反応室23において燃料を改質する際に反応室23から外側への放熱、つまり反応室23からの熱損失を低下させることが可能になる。
 これにより、反応室23における燃料の改質反応時の温度を、高断熱材10を採用しない場合に比べて高く保つことができるので、燃料の改質効率が、高断熱材10を採用しない場合に比べて向上する結果となる。
 なお、本発明は、上記実施形態のみに限定されるものではなく、特許請求の範囲内および当該範囲と均等の範囲内で適宜に変更することが可能である。
 (1)上記実施形態の高断熱材10は、例えば図4に示すように、その外径側の軸方向途中領域に、径方向外向きに開放する環状溝10aを設けた構成とすることが可能である。
 その場合には、高断熱材10をシリンダライナ21aに嵌合装着した状態において当該シリンダライナ21aと環状溝10aとで囲む環状空間10bが空気層となるので、反応室23の断熱作用を可及的に高めることが可能になる。これにより、反応室23からの熱損失をさらに低下させることが可能になる。
 (2)上記実施形態では、シリンダライナ21aの内周面に円筒形状の高断熱材10を嵌合装着する場合を例示しているが、本発明はこれのみに限定されるものではない。
 例えば図示していないが、シリンダライナ21aの内周面の所定領域に高断熱材料を溶射または塗布によりコーティングする形態とすることが可能である。
 その場合、シリンダライナ21aに拡径部21bを設けたり、ピストン22に縮径部22bを設けたりする必要がなくなるので、コスト低減に貢献できるようになる。
 (3)本発明は、上記実施形態の他に、例えば図示していないが、前記反応室23を構成する面(シリンダライナ21aの内周面、ピストン22の頂面22a、ならびにシリンダヘッド1bの爆面1f)の全てを高断熱材10とする形態、ピストン22の頂面22aおよびシリンダヘッド1bの爆面1fとのいずれか一方を高断熱材10とする形態、あるいはシリンダライナ21aの内周面、ピストン22の頂面22a、ならびにシリンダヘッド1bの爆面1fのうちのいずれか2つを高断熱材10とする形態が含まれる。
 なお、前記ピストン22の頂面22aおよびシリンダヘッド1bの爆面1fを高断熱材10とする場合にあっては、高断熱材10を装着するのではなく、高断熱材料を溶射または塗布によりコーティングすることが好ましい。
 また、前記ピストン22の頂面22aを高断熱材10とする場合にあっては、ピストン22そのものを高断熱材となりうる鉄系金属で形成することが可能である。
 (4)上記実施形態において、燃料改質気筒2での発熱量が出力気筒3での発熱量に比べて低いことを考慮し、図1に示すように、シリンダヘッド1bにおいて燃料改質気筒2の近傍に設けられているウォータジャケット1eの底部から爆面1fまでの直線距離Aを、シリンダヘッド1bにおいて出力気筒3側での前記直線距離Aに対応する直線距離(図示省略)よりも大きく設定したり、あるいは前記ウォータジャケット1eを無くしたりすることが可能となる。
 (5)上記実施形態において、反応室23でのスワール流、タンブル流、スキッシュによる攪拌流の流速を、出力気筒3の燃焼室33でのそれに比べて低下させるように構成することが好ましい。
 例えば前記スワール流、タンブル流の流速を低下させる手段としては、反応室23に対する吸気ポート(符号省略)の連接位置と傾斜角度との少なくともいずれか一方を規定する形態が挙げられる。具体的に、前記手段としては、平面視において反応室23の中心に対する前記吸気ポートの中心軸線の径方向でのオフセット量を小さくする形態と、側面視において反応室23の中心軸線に対する前記吸気ポートの傾斜角度を小さくする形態と、前記吸気ポートの通路面積を大きくし、その変化量を抑制する形態との少なくともいずれか一方が挙げられる。
 また、前記スキッシュによる攪拌流の流速を低下させる手段としては、燃料改質用のピストン22の頂面22aの凹凸を可及的に小さくする形態、好ましくは頂面22aを平坦にする形態が挙げられる他、トップクリアランス(上死点に位置するピストン22とシリンダヘッド1bの爆面1fとの対向距離)を大きくする形態が挙げられる。
 この構成では、反応室23において燃料を改質する際に反応室23を構成する面(シリンダライナ21aの内周面、ピストン22の頂面22a、ならびにシリンダヘッド1bの爆面1f)から外側への放熱、つまり反応室23からの熱損失を低下させることが可能になる。
 これにより、反応室23に供給される燃料が当該反応室23を構成する面に付着しにくくなるので、ピストン22の往復動によって前記付着燃料が掻き落とされるリスクを低減できるようになる。
 (6)図5から図7に本発明の他の実施形態を示しているので、以下において詳細に説明する。図5から図7に示す実施形態では、燃料改質気筒2の反応室23の外側に、外部反応室20を設けている。
 具体的に、図5に示す実施形態では、外部反応室20をシリンダヘッド1bにおいて反応室23の近傍に設けている。図6に示す実施形態では、外部反応室20を燃料改質用のピストン22に設けている。図7に示す実施形態では、外部反応室20をシリンダブロック1aにおいて反応室23の近傍に設けている。
 そして、外部反応室20は、例えば略球形に形成されていて、その容積が一定に設定されている。但し、外部反応室20は、前記形状の他にも楕円形などに形成することが可能である。この外部反応室20は、連絡通路20aを介して反応室23に連通されていて、インジェクタ25から燃料が直接的に供給されるようになっている。
 連絡通路20aは、その軸線が外部反応室20の中心を通過しないように構成されている。インジェクタ25は、噴射した燃料が連絡通路20aを通じて反応室23に到達しないように設置されている。
 次に、このような実施形態での燃料改質に関する動作について説明する。
 まず、燃料改質気筒2の吸気行程では、ピストン22が上死点から下死点に移動するとともに、吸気バルブ26が開弁されることに伴い、反応室23の容積が増大することになって、反応室23の内部圧力が低下し、燃料改質に適した酸素濃度の給気(外気およびEGRガスを含む)が吸引される。
 その後、燃料改質気筒2の圧縮行程では、ピストン22が下死点から上死点に移動することに伴い、反応室23の容積が減少することになって、反応室23の内部圧力が増大するので、反応室23内の給気が断熱圧縮される。この断熱圧縮された反応室23内の給気は連絡通路20aを経て外部反応室20に高速で流入されるので、その際、外部反応室20内で高速の渦流を形成する。これにより、反応室23および外部反応室20の内部が高温、高圧の状態とされる。
 この圧縮行程では、前記高温、高圧の外部反応室20内にインジェクタ25から燃料改質に適した当量比の燃料が噴射されるので、当該燃料が前記給気と急速に混合(予混合)され、蒸発する。この混合気は、ピストン22が上死点付近に到達した際、改質反応が開始される。この際、外部反応室20の内部圧力は、改質反応が進行することにより反応室23の内部圧力よりも低くなるため、前記混合気が反応室23に流入することがない。
 そして、燃料改質気筒2の膨張行程では、ピストン22が上死点から下死点に移動することに伴い、反応室23の容積が増大して内部圧力が減少するので、外部反応室20内の改質燃料が反応室23に移動し、断熱膨張される。この改質燃料は前記断熱膨張により冷却され、圧力が低下した状態になることで、改質反応が停止する。
 引き続く燃料改質気筒2の排出行程では、ピストン22が下死点から上死点に移動するとともに、排気バルブ27が開弁されることに伴い、改質燃料が出力気筒バイパス通路81およびEGRガス冷却器77を介して出力気筒吸気通路43に導入される。
 以上説明したように、図5から図7に示す実施形態では、外部反応室20に前記改質対象となる燃料が直接的に供給されるようになる一方で、反応室23に前記改質対象となる燃料が直接的に供給されなくなる。
 つまり、反応室23内で燃料の改質反応が行われなくなるので、外部反応室20に供給される燃料が反応室23を構成する面(シリンダヘッド1b、シリンダブロック1a、ピストン22)に付着しにくくなる。そのため、ピストン22の往復動によって前記付着燃料が掻き落とされるリスクを低減できるようになる。
 一方、外部反応室20に供給される燃料は、ピストン22の上昇に伴う圧力上昇ならびに温度上昇と高速の渦流の発生との相乗作用によって給気と混合されながら蒸発されるようになるので、外部反応室20の内面に燃料が付着しにくくなる。
 なお、図5から図7に示す実施形態においても、図示していないが、本発明の趣旨に基づき反応室23を構成する面の少なくとも一部(シリンダライナ21aの内周面と、ピストン22の頂面22aと、シリンダヘッド1bの爆面1fとのうちの少なくともいずれか1つ)に、上述した高断熱材10が装着、あるいは高断熱材料が溶射または塗布によりコーティングされるものとする。
 また、外部反応室20の内面に対しても、図示していないが、上述した高断熱材10を装着、あるいは高断熱材料を溶射または塗布によりコーティングすることができる。
 このような実施形態では、外部反応室20において燃料を改質する際に外部反応室20から外側への放熱、つまり外部反応室20からの熱損失を低下させることが可能になる。
 これにより、外部反応室20に供給される燃料の改質反応時の温度を、高断熱材10を採用しない場合に比べて高く保つことができるので、燃料の改質効率が、高断熱材10を採用しない場合に比べて向上する結果となる。
 なお、本発明は、その主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の各実施形態や各実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、日本で2016年7月14日に出願された特願2016-139574号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
 本発明は、燃料を改質するための燃料改質気筒と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒とを備える内燃機関に好適に利用することが可能である。
     1 内燃機関
       1a シリンダブロック
       1b シリンダヘッド
       1f 爆面
     2 燃料改質気筒
       21 シリンダボア
          21a シリンダライナ
          21b 拡径部
       22 ピストン
          22a 頂面
          22b 縮径部
       23 反応室
     3 出力気筒
    10 高断熱材
       10a 環状溝
    20 外部反応室
       20a 連絡通路

Claims (5)

  1.  燃料を改質するための燃料改質気筒と、燃料または改質燃料を燃焼することによって機関出力を得るための出力気筒とを備える内燃機関において、
     前記燃料改質気筒の容積が変化する反応室を構成する面の少なくとも一部が、高断熱材とされている、ことを特徴とする内燃機関。
  2.  請求項1に記載の内燃機関において、
     前記反応室を構成する面は、シリンダブロックにおいて前記燃料改質気筒の内周面と、前記燃料改質気筒内に収容されるピストンの頂面と、シリンダヘッドにおいて前記燃料改質気筒を覆う爆面とを含み、
     これらの面のうちの少なくとも1つが、前記高断熱材とされている、ことを特徴とする内燃機関。
  3.  請求項1または2に記載の内燃機関において、
     前記反応室でのスワール流、タンブル流、スキッシュによる攪拌流の流速を、前記出力気筒の燃焼室でのそれに比べて低下させるように構成されている、ことを特徴とする内燃機関。
  4.  請求項1から3のいずれか1項に記載の内燃機関において、
     前記反応室の外側には、容積が一定の外部反応室が前記反応室に連絡通路を介して連通するように設けられ、
     この外部反応室に前記改質対象となる燃料が供給される、ことを特徴とする内燃機関。
  5.  請求項4に記載の内燃機関において、
     前記外部反応室の内面が、高断熱材とされる、ことを特徴とする内燃機関。
PCT/JP2017/024047 2016-07-14 2017-06-29 内燃機関 WO2018012307A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187029190A KR102132107B1 (ko) 2016-07-14 2017-06-29 내연 기관
KR1020207018945A KR102349874B1 (ko) 2016-07-14 2017-06-29 내연 기관
EP17827437.9A EP3486471B1 (en) 2016-07-14 2017-06-29 Internal combustion engine
US16/316,513 US10989107B2 (en) 2016-07-14 2017-06-29 Internal combustion engine
CN201780039700.3A CN109415995A (zh) 2016-07-14 2017-06-29 内燃机
EP21188557.9A EP3919727A1 (en) 2016-07-14 2017-06-29 Internal combustion engine
US17/191,790 US20210189953A1 (en) 2016-07-14 2021-03-04 Internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139574A JP6675281B2 (ja) 2016-07-14 2016-07-14 内燃機関
JP2016-139574 2016-07-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/316,513 A-371-Of-International US10989107B2 (en) 2016-07-14 2017-06-29 Internal combustion engine
US17/191,790 Continuation US20210189953A1 (en) 2016-07-14 2021-03-04 Internal combustion engine

Publications (1)

Publication Number Publication Date
WO2018012307A1 true WO2018012307A1 (ja) 2018-01-18

Family

ID=60952379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024047 WO2018012307A1 (ja) 2016-07-14 2017-06-29 内燃機関

Country Status (6)

Country Link
US (2) US10989107B2 (ja)
EP (2) EP3486471B1 (ja)
JP (1) JP6675281B2 (ja)
KR (2) KR102132107B1 (ja)
CN (1) CN109415995A (ja)
WO (1) WO2018012307A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9903262B2 (en) * 2014-04-07 2018-02-27 The Board Of Trustees Of The Leland Stanford Junior University Stoichiometric high-temperature direct-injection compression-ignition engine
JP6789907B2 (ja) * 2017-09-21 2020-11-25 ヤンマーパワーテクノロジー株式会社 内燃機関
JP2022531863A (ja) 2019-05-15 2022-07-12 クリアフレーム エンジンズ,インコーポレイテッド ディーゼルエンジンアーキテクチャにおける高オクタン価燃料の冷間始動
AU2021225956A1 (en) 2020-02-26 2022-08-25 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
MX2023000435A (es) 2020-07-09 2023-04-12 Clearflame Engines Inc Sistemas y métodos de desactivación de cilindro en motores de mezclado controlado de alta temperatura.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557954A (en) * 1978-07-03 1980-01-21 Agency Of Ind Science & Technol Engine with fuel improving unit
JP2000178004A (ja) * 1998-12-15 2000-06-27 Fuji Electric Co Ltd 燃料電池用燃料改質器
JP2007192062A (ja) * 2006-01-17 2007-08-02 Toyota Central Res & Dev Lab Inc 内燃機関
JP2008127996A (ja) * 2006-11-16 2008-06-05 Toyota Motor Corp 内燃機関の排気リフォーマシステム
JP2014136978A (ja) 2013-01-15 2014-07-28 Yanmar Co Ltd エンジン
JP2016056704A (ja) * 2014-09-05 2016-04-21 ヤンマー株式会社 エンジン
JP2016094930A (ja) * 2014-11-17 2016-05-26 ヤンマー株式会社 エンジン
JP2016139574A (ja) 2015-01-29 2016-08-04 トヨタ自動車株式会社 非水電解質二次電池用正極の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142320A (ja) * 1984-12-15 1986-06-30 Mitsubishi Heavy Ind Ltd デイ−ゼル機関の燃焼室
DE3644747A1 (de) * 1986-12-30 1988-07-14 Zoche Michael Verbrennungsmotor mit flammhalter und brennraumisolation
JPS63227943A (ja) * 1987-03-13 1988-09-22 Mazda Motor Corp エンジンの燃焼室構造
JP2718071B2 (ja) * 1988-07-21 1998-02-25 いすゞ自動車株式会社 副室式断熱エンジン
US5125380A (en) * 1990-09-06 1992-06-30 Toyota Jidosha Kabushiki Kaisha Two-stroke diesel engine
JPH06323209A (ja) * 1993-05-13 1994-11-22 Isuzu Ceramics Kenkyusho:Kk 副室を備えたアルコール改質エンジン
DE69701017T2 (de) * 1996-05-24 2000-06-29 Isuzu Ceramics Res Inst Dieselbrennkraftmaschine mit schwer verdampfbarem Brennstoff
JP2001173446A (ja) 1999-12-17 2001-06-26 Nissan Motor Co Ltd 副室付き内燃機関
JP3821351B2 (ja) * 2000-05-31 2006-09-13 スズキ株式会社 多気筒内燃機関の吸気装置
MY154401A (en) * 2003-06-20 2015-06-15 Scuderi Group Llc Split-cycle four-stroke engine
CN1776021A (zh) * 2005-11-23 2006-05-24 邹志尚 在内燃机汽缸的内壁应用的硬质复合纳米陶瓷薄膜的涂层
US20160018315A1 (en) * 2014-07-21 2016-01-21 GM Global Technology Operations LLC Non-destructive adhesion testing of coating to engine cylinder bore
US9982608B2 (en) * 2014-09-05 2018-05-29 Yanmar Co., Ltd. Engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557954A (en) * 1978-07-03 1980-01-21 Agency Of Ind Science & Technol Engine with fuel improving unit
JP2000178004A (ja) * 1998-12-15 2000-06-27 Fuji Electric Co Ltd 燃料電池用燃料改質器
JP2007192062A (ja) * 2006-01-17 2007-08-02 Toyota Central Res & Dev Lab Inc 内燃機関
JP2008127996A (ja) * 2006-11-16 2008-06-05 Toyota Motor Corp 内燃機関の排気リフォーマシステム
JP2014136978A (ja) 2013-01-15 2014-07-28 Yanmar Co Ltd エンジン
JP2016056704A (ja) * 2014-09-05 2016-04-21 ヤンマー株式会社 エンジン
JP2016094930A (ja) * 2014-11-17 2016-05-26 ヤンマー株式会社 エンジン
JP2016139574A (ja) 2015-01-29 2016-08-04 トヨタ自動車株式会社 非水電解質二次電池用正極の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486471A4

Also Published As

Publication number Publication date
CN109415995A (zh) 2019-03-01
JP2018009530A (ja) 2018-01-18
EP3486471A1 (en) 2019-05-22
EP3486471B1 (en) 2021-11-24
EP3919727A1 (en) 2021-12-08
JP6675281B2 (ja) 2020-04-01
KR20180122674A (ko) 2018-11-13
US20210189953A1 (en) 2021-06-24
US10989107B2 (en) 2021-04-27
EP3486471A4 (en) 2019-07-10
US20190249597A1 (en) 2019-08-15
KR102132107B1 (ko) 2020-07-09
KR102349874B1 (ko) 2022-01-10
KR20200083672A (ko) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2018012307A1 (ja) 内燃機関
US9238996B2 (en) Piston having combustion bowl shaped to balance combustion efficiency and emission properties
US9234451B2 (en) Piston having combustion bowl shaped to balance combustion efficiency and emission properties
US10288026B2 (en) Compression engine with direct fuel injection with compression ignition comprising means for cooling the piston
US8505513B2 (en) Fuel injection method for a direct-injection auto-ignition internal-combustion engine
CN104863693B (zh) 内燃发动机的气体燃料燃烧装置
US20180245506A1 (en) Combustion chamber geometry
WO2021005344A1 (en) Hydrogen fuelled internal combustion engine
US20140123934A1 (en) Fuel-stratified combustion chamber in a direct-injected internal combustion engine
JP6323907B2 (ja) エンジン
WO2007080746A1 (ja) 予混合圧縮自着火燃焼機関
JP2020079599A (ja) 内燃機関
JP2019082169A (ja) 2弁式内燃機関
JP2021195953A (ja) 内燃機関
JP2021014851A (ja) 内燃機関
JP2006194188A (ja) 予混合圧縮自着火燃焼機関
DK181408B1 (en) Internal combustion engine and a method for starting up an internal combustion engine
WO2022202739A1 (ja) 対向ピストンエンジン
KR20210008298A (ko) 내연 엔진
Jankowska-Siemińska et al. Preliminary researches of influence of different loads on working conditions and performances of the piston combustion engine with direct fuel injection
Lehrheuer et al. CO2 Reduction Through Small Displacement in Combination with Biofuels

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187029190

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827437

Country of ref document: EP

Effective date: 20190214