WO2018012233A1 - 水素化分解油の製造方法及び水素化分解油の製造装置 - Google Patents

水素化分解油の製造方法及び水素化分解油の製造装置 Download PDF

Info

Publication number
WO2018012233A1
WO2018012233A1 PCT/JP2017/022910 JP2017022910W WO2018012233A1 WO 2018012233 A1 WO2018012233 A1 WO 2018012233A1 JP 2017022910 W JP2017022910 W JP 2017022910W WO 2018012233 A1 WO2018012233 A1 WO 2018012233A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
liquid separation
gas
liquid
solvent
Prior art date
Application number
PCT/JP2017/022910
Other languages
English (en)
French (fr)
Inventor
洋一 高橋
利明 奥井
元晴 室田
Original Assignee
株式会社神戸製鋼所
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 千代田化工建設株式会社 filed Critical 株式会社神戸製鋼所
Priority to BR112019000250-2A priority Critical patent/BR112019000250B1/pt
Priority to CA3029800A priority patent/CA3029800C/en
Publication of WO2018012233A1 publication Critical patent/WO2018012233A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/26Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only

Definitions

  • the present invention relates to a method for producing hydrocracked oil and an apparatus for producing hydrocracked oil.
  • Crude oil contains various components such as low-boiling light oil and high-boiling heavy oil.
  • crude oil petroleum heavy oil
  • demand for light oil remains high as oil demand. For this reason, a method for producing light oil from petroleum heavy oil has attracted attention.
  • hydrocracking As a technique for lightening such heavy oil, many methods have been proposed for hydrocracking and thermal cracking of heavy oil.
  • a catalyst In hydrocracking, a catalyst is required to lighten heavy oil by reacting with hydrogen, but heavy oil contains a lot of heavy metals such as nickel and vanadium. easy.
  • thermal decomposition does not cause the disadvantage of a decrease in catalyst activity, but coke is likely to be produced in large quantities, and the yield of the product is likely to decrease.
  • the aromatic light solvent mixed with the solvent by this hydrocracking method improves the extractability of the solid content from the liquid phase fluid, but decreases the sedimentation rate.
  • naphtha mixed with the solvent improves the sedimentation property, but lowers the extractability and makes the solids easily aggregate.
  • this hydrocracking method requires a relatively long time for sedimentation during solid-liquid separation due to the effect of lowering the sedimentation by the aromatic light solvent and the effect of lowering the extractability by the naphtha fraction. Improvement is desired.
  • this hydrocracking method it is necessary to set the conditions for solid-liquid separation to a relatively high temperature and high pressure. Therefore, depending on the properties of the raw material, there is a possibility that the apparatus becomes large and the equipment cost becomes expensive.
  • the present invention has been made based on the above-described circumstances, and hydrocracking that can shorten the time for selectively removing coke produced in the hydrocracking process by sedimentation solid-liquid separation and can reduce equipment costs.
  • An object of the present invention is to provide an oil production method and a hydrocracked oil production apparatus.
  • the invention made in order to solve the above-mentioned problems is a method for producing hydrocracked oil using a petroleum heavy oil containing a heavy metal component as a raw material, and comprises the above petroleum heavy oil, iron catalyst and hydrogen gas A hydrocracking step for hydrocracking the heavy petroleum oil in a suspension bed reactor after the mixing step, and a multistage gas-liquid reaction product after the hydrocracking step.
  • the method for producing hydrocracked oil is characterized in that the solid-liquid separation solvent contains an aromatic light solvent, a naphtha fraction and a kerosene fraction each having a content in the above range, so that the settling property of the aromatic light solvent can be reduced.
  • the lowering action and the lowering action of extractability by the naphtha fraction can be suppressed.
  • the method for producing hydrocracked oil increases the separability in the step of solid-liquid separation of the mixture of the remaining solid-liquid phase obtained in the gas-liquid separation step and the solid-liquid separation solvent. Settling time can be shortened.
  • the hydrocracked oil production method separates the mixture into solid and liquid by a centrifuge, it does not require relatively high temperature and high pressure conditions, and can suppress the increase in size of the solid and liquid separation device. Can be reduced.
  • “sedimentation” is a concept including movement of a solid having a large specific gravity to the outer peripheral side due to centrifugal force of the centrifuge, and “sedimentation time” refers to the outer periphery of a plurality of solid centrifuges. Means the average time required for movement.
  • the mass ratio of the solid-liquid separation solvent to the mass of the remainder of the solid-liquid phase in the mixture is preferably 0.5 or more and 4 or less, and the temperature of the mixture in the centrifuge in the solid-liquid separation step is 40.
  • the residence time is from 60 ° C. to 130 ° C.
  • the gas-liquid separation step includes a first step of gas-liquid separation of the reaction product after the hydrocracking step by a high-pressure gas-liquid separator, and a low-pressure gas-liquid separator that separates the solid-liquid phase separated in the first step. It is good to have the 2nd process of carrying out gas-liquid separation by above, and the 3rd process of carrying out gas-liquid separation of the solid-liquid phase separated at the above-mentioned 2nd process with a decompression gas-liquid separator.
  • the gas-liquid separation step includes the first step, the second step, and the third step, and the gas-liquid separation is performed by the plurality of gas-liquid separators in which the pressure and temperature conditions decrease in this order, thereby reducing the pressure. A solid-liquid phase with a large heavy residue content can be separated efficiently.
  • the method for producing hydrocracked oil further comprises a fractionation step of fractionating the gas phase obtained in the gas-liquid separation step and the liquid phase obtained in the solid-liquid separation step, As the naphtha fraction and kerosene fraction, the naphtha fraction and kerosene fraction obtained in the fractionation step may be used.
  • the naphtha fraction and kerosene fraction obtained in the fractionation process As the naphtha fraction and kerosene fractionation step, it is easy to procure and transport the naphtha fraction and kerosene fraction. It becomes.
  • the aromatic light solvent is a single component having a boiling point of 150 ° C. or lower or a mixed component thereof, the boiling point of the naphtha fraction is 80 ° C. or higher and 180 ° C. or lower, and the boiling point of the kerosene fraction is higher than 180 ° C. and 240 ° C. It may be the following.
  • the use of the aromatic light solvent, the naphtha fraction, and the kerosene fraction within the above ranges as the solid-liquid separation solvent can suppress an increase in the vapor pressure of the solid-liquid separation solvent.
  • the “boiling point” refers to the boiling point at 1 atm (101325 Pa).
  • the residence time of the mixture in the centrifuge in the solid-liquid separation step is preferably 30 seconds or less, and the centrifugal force of the centrifuge is preferably 3000 G or less.
  • the residence time of the mixture in the centrifuge is set to 30 seconds or less, and the centrifugal force of the centrifuge is set to 3000 G or less, so that the enlargement of the solid-liquid separation device can be more reliably suppressed, and the equipment cost is reduced. The effect can be promoted.
  • the iron-based catalyst may be a limonite iron ore catalyst having an average particle diameter of 2 ⁇ m or less, and the mass ratio of the iron-based catalyst to the mass of petroleum heavy oil in the mixing step is 0.003 or more and 0.00. 02 or less is preferable.
  • the limonite iron ore catalyst having the above average particle diameter as the iron-based catalyst, the hydrogenation reaction can be promoted at a low cost, and the mass ratio of the iron-based catalyst to the mass of petroleum heavy oil is within the above range. By doing, the improvement effect of the yield of hydrocracked oil can be promoted.
  • the “average particle diameter” means a particle diameter (median diameter) at which the volume integrated value is 50% in the particle size distribution obtained by the laser diffraction scattering method.
  • Another invention made to solve the above-mentioned problems is a hydrocracked oil production apparatus using a petroleum heavy oil containing a heavy metal component as a raw material.
  • Mixing unit for mixing catalyst and hydrogen gas, suspension bed reaction unit for hydrocracking petroleum heavy oil in the raw slurry obtained in the mixing unit, and reaction product generated in the suspension bed reaction unit A gas-liquid separation unit that separates gas and liquid in multiple stages, a circulation unit that circulates a part of the solid-liquid phase obtained in the gas-liquid separation unit to the mixing unit, and a solid unit obtained in the gas-liquid separation unit A centrifuge for solid-liquid separation of the mixture of the remainder of the liquid phase and the solid-liquid separation solvent, wherein the solid-liquid separation solvent is an aromatic light solvent, a naphtha fraction obtained by hydrocracking, and kerosene
  • the solid-liquid separation solvent contains an aromatic light solvent, a naphtha fraction, and a kerosene fraction in the above-mentioned ranges, respectively.
  • the lowering action and the lowering action of extractability by the naphtha fraction can be suppressed.
  • the hydrocracking oil production apparatus increases the separability in the centrifugal separation part of the mixture of the remaining solid-liquid phase obtained in the gas-liquid separation part and the solvent for solid-liquid separation, and the sedimentation time. Can be shortened.
  • the hydrocracking oil production apparatus solid-liquid separates the mixture using a centrifuge, the size of the solid-liquid separation apparatus can be suppressed without requiring relatively high temperature and high pressure conditions. Can be reduced.
  • the hydrocracked oil production method and hydrocracked oil production apparatus of the present invention can shorten the time for selectively removing coke generated in the hydrocracking process by sedimentation solid-liquid separation, and Equipment costs can be reduced.
  • FIG. 1 is a schematic diagram showing a configuration of a hydrocracked oil production apparatus according to an embodiment of the present invention.
  • the hydrocracked oil production apparatus of this embodiment is a hydrocracked oil production apparatus that uses petroleum heavy oil containing a heavy metal component as a raw material.
  • the hydrocracking oil production apparatus includes a mixing section for mixing the petroleum heavy oil, the iron-based catalyst, and hydrogen gas, and a suspension for hydrocracking the petroleum heavy oil in the raw slurry obtained in the mixing section.
  • the hydrocracking oil production apparatus is obtained by a gas purification unit that purifies a gas from a gas phase separated by the gas-liquid separation unit, and a gas phase and a centrifugal separation unit that are obtained by the gas-liquid separation unit. And a fractionation part for fractionating the liquid phase.
  • the hydrocracking oil production apparatus includes a slurry preparation tank 1, a preheater 2, a first pump 3, a suspension bed reactor 4, a high-pressure gas-liquid separator 5, a low-pressure gas.
  • the mixing unit of the hydrocracked oil production apparatus includes a slurry preparation tank 1 and a pipe disposed between the slurry preparation tank 1 and the preheater 2.
  • the mixing unit mixes petroleum heavy oil A, iron-based catalyst B, and hydrogen gas C.
  • the slurry preparation tank 1 is a tank for mixing a petroleum heavy oil A and an iron catalyst B into a slurry.
  • the slurry preparation tank 1 includes a stirrer 1a.
  • the preheater 2 is a heater for preheating the raw slurry D supplied to the suspension bed reactor 4.
  • the first pump 3 is a pump for transferring the slurry prepared in the slurry preparation tank 1 to the preheater 2.
  • Hydrogen gas C is supplied to the slurry in a pipe transferred from the slurry preparation tank 1 to the preheater 2 by the first pump 3.
  • the raw material slurry D is formed by mixing the slurry and the hydrogen gas C in the pipe.
  • This raw slurry D is heated by the preheater 2 and supplied to the suspension bed reactor 4.
  • the suspension bed reaction unit of the hydrocracked oil production apparatus has a suspension bed reactor 4.
  • the suspension bed reactor 4 hydrocracks the petroleum heavy oil A in the raw slurry D therein.
  • a bubble column type suspension bed reactor can be used as the suspension bed reactor 4.
  • the gas-liquid separation unit of the hydrocracking oil production apparatus includes a high-pressure gas-liquid separator 5, a low-pressure gas-liquid separator 6, and a decompression gas-liquid separator 7.
  • the gas-liquid separation unit gas-liquid separates the reaction product E generated in the suspension bed reactor 4 by the high-pressure gas-liquid separator 5, the low-pressure gas-liquid separator 6, and the vacuum gas-liquid separator 7 in multiple stages.
  • the high-pressure gas-liquid separator 5 separates the reaction product E generated in the suspension bed reactor 4 into a gas phase and a solid-liquid phase at high temperature and pressure.
  • the high-pressure gas-liquid separator 5 for example, a known gas-liquid separator using gravity or centrifugal force can be used.
  • the pressure of the high pressure gas-liquid separator 5 is, for example, 8 MPaG or more and 17 MPaG or less, and the heating temperature of the high pressure gas-liquid separator 5 is, for example, 380 ° C. or more and 420 ° C. or less.
  • This solid-liquid phase contains a heavy oil component (heavy reaction product) and a solid (coke and iron-based catalyst B), but also contains a light oil component in addition to these.
  • the heavy oil component is an oil component having a boiling point of 525 ° C. or higher, and the light oil component is an oil component other than the heavy oil component and has a lower boiling point than the heavy oil component. is there.
  • the low-pressure gas-liquid separator 6 separates the solid-liquid phase separated by the high-pressure gas-liquid separator 5 into a gas phase and a solid-liquid phase at a high temperature and a low pressure.
  • a known gas-liquid separator using, for example, gravity or centrifugal force can be used as the low-pressure gas-liquid separator 6, a known gas-liquid separator using, for example, gravity or centrifugal force can be used.
  • the pressure of the low-pressure gas-liquid separator 6 is, for example, from 0.1 MPaG to 1 MPaG, and the heating temperature of the low-pressure gas-liquid separator 6 is, for example, from 360 ° C. to 400 ° C.
  • the vacuum gas-liquid separator 7 separates the solid-liquid phase separated by the low-pressure gas-liquid separator 6 into a gas phase and a solid-liquid phase F.
  • a known gas-liquid separator using gravity or centrifugal force can be used as the decompression gas-liquid separator 7, for example, a known gas-liquid separator using gravity or centrifugal force can be used.
  • the pressure of the decompression gas-liquid separator 7 is, for example, 5 mmHG or more and 50 mmHG or less, and the heating temperature of the decompression gas-liquid separator 7 is, for example, 330 ° C. or more and 370 ° C. or less.
  • the solid-liquid phase F contains a heavy oil component (heavy reaction product) and a solid, but also contains a light oil component in addition to these.
  • the solid-liquid phase F discharged from the vacuum gas-liquid separator 7 is in a state where the heavy oil component is dissolved in the light oil component and solids are mixed in the oil component.
  • the circulation unit of the hydrocracking oil production apparatus includes a second pump 9 and a pipe between the second pump 9 and the slurry preparation tank 1.
  • the second pump 9 circulates a part of the solid-liquid phase F separated by the vacuum gas-liquid separator 7 to the slurry preparation tank 1 and supplies the remainder of the solid-liquid phase F to the mixture preparation tank 8. It is a pump.
  • the mixture preparation tank 8 is a tank for obtaining the mixture H by mixing the solid-liquid phase F and the solid-liquid separation solvent G separated by the vacuum gas-liquid separator 7.
  • the mixture preparation tank 8 includes a stirrer 8a.
  • the third pump 11 is a pump for supplying the mixture H mixed in the mixture preparation tank 8 to the centrifuge 10.
  • the centrifugal separation unit of the hydrocracking oil production apparatus includes a centrifugal separator 10, an overflow solvent recovery device 12, and an underflow solvent recovery device 13.
  • the centrifugal separator 10 separates the mixture H by solid-liquid separation by centrifugation using the specific gravity difference between the solid and the liquid. Specifically, the centrifugal separator 10 applies centrifugal force to the mixture H supplied to the inside by the rotation of the rotor, thereby increasing the moving speed of the solid particles in the mixture H to the outer peripheral side, and reducing the solid content. Move to the outer circumference.
  • the centrifuge 10 separates the mixture H into a liquid phase and a solid content by moving the solid content of the mixture H to the outer peripheral side in this way.
  • the solid content of the mixture H separated on the outer peripheral side in the centrifuge 10 is discharged from the solid content discharge outlet, and the liquid phase of the mixture H separated inside the centrifuge 10 is liquid.
  • the centrifuge 10 only needs to be capable of solid-liquid separation of the mixture H.
  • a decanter type centrifuge capable of mechanically discharging the precipitated solid can be used.
  • the centrifuge 10 may process the mixture H in a batch manner, or may continuously process the mixture H. However, the continuous processing is more effective for the separation time per processing amount. Can be shortened.
  • the overflow solvent recovery device 12 is supplied with the liquid phase separated by the centrifugal separator 10, separates the solid-liquid separation solvent G from the liquid phase, and puts the separated solid-liquid separation solvent G into the mixture preparation tank 8. Supply and reuse.
  • the overflow solvent recovery device 12 separates the solid-liquid separation solvent G by, for example, vaporizing the solid-liquid separation solvent G contained in the liquid phase by heating and then cooling the vaporized solid-liquid separation solvent G. To do.
  • a dryer or the like that can be heated to 240 ° C. or higher can be used as the overflow.
  • a part of the fluid after the solid-liquid separation solvent G is separated by the overflow solvent recovery device 12 is circulated to the slurry preparation tank 1, and the remainder of the fluid is supplied to the distillation column 16.
  • the underflow solvent recovery device 13 is supplied with the solids separated by the centrifuge 10, separates the solid-liquid separation solvent G from the solids, and puts the separated solid-liquid separation solvent G into the mixture preparation tank 8. Supply and reuse.
  • the underflow solvent recovery device 13 evaporates the solid-liquid separation solvent G contained in the solid content by heating, for example, and then cools the vaporized solid-liquid separation solvent G, thereby removing the solid-liquid separation solvent G. To separate. Therefore, a dryer that can be heated to 240 ° C. or higher can be used as the underflow solvent recovery device 13.
  • the solid after the solid-liquid separation solvent G is separated by the underflow solvent recovery device 13 is discharged as sludge J.
  • the high-pressure low-temperature gas-liquid separator 14 is supplied with the gas phase separated by the high-pressure gas-liquid separator 5 and further separates this gas phase into a gas phase and a liquid phase.
  • a known gas-liquid separator using, for example, gravity or centrifugal force can be used as the high-pressure low-temperature gas-liquid separator 14.
  • the gas phase separated by the high-pressure and low-temperature gas-liquid separator 14 is supplied to the gas purification device 15.
  • the liquid phase separated by the high-pressure and low-temperature gas-liquid separator 14 is supplied to the distillation column 16 together with the gas phase separated by the low-pressure gas-liquid separator 6 and the reduced-pressure gas-liquid separator 7.
  • the gas purification unit of the hydrocracked oil production apparatus has a gas purification apparatus 15.
  • the gas purifier 15 purifies the gas K from the gas phase separated by the high-pressure and low-temperature gas-liquid separator 14.
  • the gas purification device 15 adsorbs unnecessary gas contained in the gas phase with an adsorption tower or the like, and purifies the gas of necessary components.
  • high-purity hydrogen gas can be purified by filling the adsorption tower with an adsorbent that adsorbs CO, CH 4 , H 2 O, CO 2, etc., which are unnecessary gases other than hydrogen gas. .
  • a part of the gas K purified by the gas purifier 15 is used as a fuel gas, and the remaining part is used as a recycle gas for cooling the suspension bed reactor 4.
  • the fractionation unit of the hydrocracking oil production apparatus has a distillation column 16.
  • the distillation column 16 includes a gas phase separated by the low-pressure gas-liquid separator 6 and the reduced-pressure gas-liquid separator 7, a liquid phase separated by the high-pressure low-temperature gas-liquid separator 14, and a solid-liquid separation solvent by the overflow solvent recovery device 12.
  • the fluid after separating G is supplied, and these are fractionated into predetermined fractions.
  • a known shelf type distillation column can be used.
  • the gas phase liquid phase and fluid are heated to about 350 ° C., they are supplied into the distillation column 16 and converted into petroleum vapor in the distillation column 16. Separate in order. Thereby, for example, as shown in FIG. 1, naphtha L, kerosene M, light oil N, and vacuum light oil P are sequentially separated and extracted.
  • the ashless residue Q is extracted from the lower part of the distillation column 16.
  • Solid-liquid separation solvent G to be mixed with the solid-liquid phase F in the mixture preparation tank 8 contains an aromatic light solvent, a naphtha fraction, and a kerosene fraction.
  • the content of the aromatic light solvent in the solid-liquid separation solvent G is more than 10% by mass, and the lower limit of the content of the aromatic light solvent is preferably 20% by mass, and more preferably 30% by mass.
  • the content of the aromatic light solvent is preferably less than 80% by mass, and the upper limit of the content of the aromatic light solvent is preferably 60% by mass, more preferably 40% by mass. If the content of the aromatic light solvent is less than the above lower limit, the extractability of the solid from the solid-liquid phase F is lowered, and there is a possibility that sufficient separability cannot be obtained. Conversely, if the content of the aromatic light solvent exceeds the above upper limit, the sedimentation rate may decrease and the production time of hydrocracked oil may increase, and hydrocracking is expensive because the aromatic light solvent is expensive. Oil production costs may increase.
  • the content of the naphtha fraction in the solid-liquid separation solvent G is more than 10% by mass, and the lower limit of the content of the naphtha fraction is preferably 20% by mass, more preferably 30% by mass.
  • the upper limit of content of a naphtha fraction 75 mass% is preferable, 60 mass% is more preferable, and 40 mass% is further more preferable. If the content of the naphtha fraction is less than the above lower limit, the sedimentation rate is lowered and the production time of hydrocracked oil may be increased.
  • the kerosene fraction content in the solid-liquid separation solvent G is more than 10 mass%, and the lower limit of the kerosene fraction content is preferably 20 mass%, more preferably 30 mass%.
  • the upper limit of the kerosene fraction content is preferably 75% by mass, more preferably 60% by mass, and even more preferably 40% by mass. If the kerosene fraction content is less than the above lower limit, the sedimentation rate lowering effect by the aromatic light solvent cannot be sufficiently suppressed, and the production time of the hydrocracked oil may be prolonged. Conversely, if the kerosene fraction content exceeds the above upper limit, the amount of heat required for recovering the solid-liquid separation solvent G increases, which may increase the operating cost.
  • the solid-liquid separation solvent G may contain components other than these as long as it contains an aromatic light solvent, a naphtha fraction, and a kerosene fraction within the above ranges.
  • the aromatic light solvent, naphtha fraction and kerosene fraction within the above ranges into the solid-liquid separation solvent G, the extractability and sedimentation of solids from the solid-liquid phase F, and the solid-liquid separation solvent G Can be obtained in a well-balanced manner.
  • the contents of the aromatic light solvent, the naphtha fraction, and the kerosene fraction in the solid-liquid separation solvent G substantially equal, the above effects can be obtained in a more balanced manner. That is, it is particularly preferable that the solid-liquid separation solvent G contains 1/3 each of an aromatic light solvent, a naphtha fraction, and a kerosene fraction.
  • the aromatic light solvent contained in the solid-liquid separation solvent G is preferably a single component having a boiling point of 150 ° C. or lower or a mixed component thereof. If an aromatic light solvent having a boiling point exceeding 150 ° C. is used, it is necessary to increase the temperature in the centrifuge 10 in order to improve the extractability, which may increase the processing cost for solid-liquid separation. There is.
  • an aromatic light solvent having a boiling point of 150 ° C. or lower for example, benzene, toluene, xylene and the like can be used.
  • the naphtha fraction contained in the solid-liquid separation solvent G preferably has a boiling point of 80 ° C. or more and 180 ° C. or less, and the kerosene fraction contained in the solid-liquid separation solvent G has a boiling point of more than 180 ° C. and 240 ° C.
  • the following are preferred. If a naphtha fraction having a boiling point of less than 80 ° C. is used, the vapor pressure of the solid-liquid separation solvent G becomes too high, and there is a risk that the equipment cost will increase in order to cope with this vapor pressure. In addition, when a kerosene fraction having a boiling point exceeding 240 ° C. is used, the amount of heat required for recovering the solid-liquid separation solvent G by the overflow solvent recovery device 12 and the underflow solvent recovery device 13 increases, so that the operating cost is reduced. May increase.
  • the method for producing hydrocracked oil of this embodiment is a method for producing hydrocracked oil using petroleum heavy oil containing a heavy metal component as a raw material.
  • the method for producing hydrocracked oil comprises a mixing step of mixing the petroleum heavy oil A, an iron catalyst B and hydrogen gas C, and the petroleum heavy in the suspension bed reactor 4 after the mixing step.
  • a circulation step of circulating a part of the solid-liquid phase F obtained in the separation step to the mixing step, and a mixture H of the remainder of the solid-liquid phase F and the solid-liquid separation solvent G after the circulation step are centrifuged.
  • the hydrocracked oil production method is obtained by purifying gas from the gas phase separated in the gas-liquid separation step, and in the gas phase and solid-liquid separation step obtained in the gas-liquid separation step. And a step of fractionating the liquid phase.
  • ⁇ Mixing process> Petroleum-based heavy oil A, iron-based catalyst B, and hydrogen gas C are mixed.
  • the petroleum heavy oil A and the iron-based catalyst B are supplied to the slurry preparation tank 1 in the slurry preparation tank 1.
  • the slurry preparation tank 1 uses the stirrer 1a to mix the petroleum heavy oil A and the iron catalyst B, thereby obtaining a slurry containing the petroleum heavy oil A and the iron catalyst B.
  • the raw material slurry D is obtained by mixing the slurry obtained by mixing in this way and the hydrogen gas C in the pipe. This raw material slurry D is supplied to the suspension bed reactor 4 via the preheater 2.
  • the petroleum heavy oil A is not particularly limited, and petroleum heavy oils such as atmospheric distillation residue oil and vacuum distillation residue oil can be used. Also, super heavy oil such as naturally occurring bitumen (tar sand, oil sand, etc.) can be used.
  • the iron-based catalyst B is not particularly limited as long as it has high activity as a catalyst for hydrocracking reaction of petroleum heavy oil A.
  • limonite iron ore catalyst pyrite, hematite, iron sulfate, red mud, etc.
  • limonite iron ore catalyst is preferable.
  • Limonite iron ore catalysts are highly active compared to iron-based catalysts such as pyrite, hematite, and iron sulfate, and are inexpensive catalysts that are collected in nature.
  • the lower limit of the average particle diameter of the iron-based catalyst B is preferably 0.1 ⁇ m, and more preferably 0.3 ⁇ m.
  • the upper limit of the average particle diameter of the iron-based catalyst B is preferably 2 ⁇ m, and more preferably 1.2 ⁇ m. If the average particle diameter of the iron-based catalyst B is less than the above lower limit, it takes time to mechanically pulverize the iron-based catalyst B having such a small average particle diameter, and the hydrocracking treatment efficiency decreases. There is a fear.
  • the average particle diameter of the iron-based catalyst B exceeds the above upper limit, the effective surface area of the iron-based catalyst B is insufficient and the catalytic activity is lowered, so that the yield of hydrocracked oil may not be sufficiently improved.
  • the lower limit of the mass ratio of the iron-based catalyst B to the petroleum heavy oil A in the mixing step is preferably 0.003 in terms of iron, and more preferably 0.005.
  • the upper limit of the mass ratio is preferably 0.02 in terms of iron, and more preferably 0.015. If the mass ratio is less than the lower limit, the amount of coke produced tends to increase rapidly, and the production of coke may not be sufficiently suppressed. Conversely, if the mass ratio exceeds the upper limit, the hydrocracking cost may increase.
  • the temperature at which the slurry mixed in the slurry preparation tank 1 is heated in the preheater 2 may be close to the temperature at which the hydrocracking reaction starts.
  • the lower limit of the hydrocracking reaction pressure (hydrogen gas supply pressure) in the suspension bed reactor 4 is preferably 5 MPa, more preferably 7 MPa.
  • the upper limit of the reaction pressure for hydrocracking is preferably 20 MPa, and more preferably 17 MPa. If the reaction pressure of hydrocracking is less than the lower limit, the hydrogen partial pressure decreases and the amount of coke generated increases, so the catalytic activity of the iron-based catalyst B may decrease. On the other hand, if the reaction pressure of hydrocracking exceeds the above upper limit, the reaction promoting effect due to pressure increase cannot be obtained, and the cost of hydrocracking treatment may increase. In addition, reaction pressure can be adjusted with the quantity of the hydrogen gas C supplied in a mixing process.
  • the hydrogenation reaction temperature in the suspension bed reactor 4 400 degreeC is preferable and 430 degreeC is more preferable.
  • an upper limit of hydrogenation reaction temperature 480 degreeC is preferable and 455 degreeC is more preferable. If the hydrogenation reaction temperature is less than the lower limit, it is difficult for the hydrocracking reaction to proceed and there is a possibility that lightened oil cannot be obtained sufficiently. Conversely, if the hydrogenation reaction temperature exceeds the upper limit, the amount of coke produced tends to increase due to the thermal decomposition reaction, and the catalytic activity of the iron-based catalyst B may be reduced.
  • the lower limit of the hydrogenation reaction time in the suspension bed reactor 4 is preferably 30 minutes, and more preferably 60 minutes.
  • the upper limit of the hydrogenation reaction time is preferably 180 minutes, and more preferably 120 minutes. If the hydrogenation reaction time is less than the above lower limit, lightened oil may not be sufficiently obtained. On the contrary, when the hydrogenation reaction time exceeds the above upper limit, the increase in lightened oil obtained with respect to the increase in time decreases, and the production efficiency of hydrocracked oil may deteriorate.
  • the reaction product E obtained in the suspension bed reactor 4 is subjected to gas-liquid separation using a multistage gas-liquid separator.
  • the gas-liquid separation process includes a first process, a second process, and a third process for performing gas-liquid separation using different gas-liquid separators.
  • gas-liquid separation is performed in the order of the first step, the second step, and the third step.
  • gas-liquid separation is performed using different gas-liquid separators in which pressure and temperature conditions decrease in this order.
  • ⁇ Circulation process> a part of the solid-liquid phase F obtained in the gas-liquid separation step is circulated to the mixing step. Specifically, a part of the solid-liquid phase F separated by the reduced pressure gas-liquid separator 7 in the third step of the gas-liquid separation step is supplied by the second pump 9 to the slurry preparation tank 1 via a pipe. Thereby, the iron-based catalyst B contained in the solid-liquid phase F is reused.
  • the lower limit of the mass ratio of the iron-based catalyst B to the petroleum heavy oil A in the raw slurry D is preferably 2% by mass, and more preferably 3% by mass.
  • the upper limit of the mass ratio of the iron-based catalyst B in the raw material slurry D is preferably 11 mass%, and more preferably 6 mass%. If the mass ratio of the iron-based catalyst B in the raw material slurry D is less than the lower limit, the supply amount of the iron-based catalyst B becomes insufficient, and the yield of hydrocracked oil may be reduced.
  • the “steady state” refers to a state in which the total amount of the iron-based catalyst B in the suspension bed reactor 4 has escaped from a transient state such as when the apparatus is started up. For example, there is a slight increase or decrease over time. However, the fluctuation rate per unit time of the total amount of the iron-based catalyst B in the suspension bed reactor 4 is in a state of being 10 mass% or less.
  • the mixture H of the remaining solid-liquid phase F after the circulation step and the solid-liquid separation solvent G is solid-liquid separated by the centrifuge 10.
  • the mixture H in which the solid-liquid phase F and the solid-liquid separation solvent G are mixed in the mixture preparation tank 8 is supplied to the centrifuge 10 by the third pump 11, and the centrifuge 10 is supplied to the mixture H. Is separated into solid and liquid.
  • the mixture preparation tank 8 the remaining part of the solid-liquid phase F separated by the reduced-pressure gas-liquid separator 7 excluding a part recycled in the circulation step is supplied by the second pump 9, and the stirrer 8a is supplied.
  • the solid-liquid phase F and the solid-liquid separation solvent G are mixed to form a mixture H.
  • the solid-liquid separation solvent G is recovered from the liquid phase and solid content separated by the centrifuge 10, and the recovered solid-liquid separation solvent G is circulated to the solid-liquid separation step.
  • the overflow solvent recovery device 12 separates the solid-liquid separation solvent G from the liquid phase separated by the centrifuge 10 and supplies the separated solid-liquid separation solvent G to the mixture preparation tank 8.
  • the solid-liquid separation solvent G is separated from the solid separated by the centrifuge 10 by the underflow solvent recovery device 13, and the separated solid-liquid separation solvent G is supplied to the mixture preparation tank 8. Thereby, the solvent G for solid-liquid separation is recycled.
  • the lower limit of the mass ratio of the solid-liquid separation solvent G to the mass of the solid-liquid phase F in the mixture H is preferably 0.5, more preferably 1, and even more preferably 1.5.
  • the upper limit of the mass ratio is preferably 4, more preferably 3, and more preferably 2.5. If the mass ratio is less than the lower limit, sufficient separability may not be obtained. On the other hand, when the mass ratio exceeds the upper limit, the amount of the solid-liquid separation solvent G increases, which may increase the production cost of hydrocracked oil.
  • the lower limit of the temperature of the mixture H in the centrifuge 10 in the solid-liquid separation step is preferably 40 ° C., more preferably 70 ° C.
  • an upper limit of the temperature of the mixture H in the centrifuge 10 130 degreeC is preferable and 120 degreeC is more preferable. If the temperature of the mixture H in the centrifuge 10 is less than the above lower limit, the heavy component does not flow and is difficult to dissolve, and thus sufficient extractability may not be obtained. Conversely, when the temperature of the mixture H in the centrifuge 10 exceeds the above upper limit, the solid-liquid separation solvent G evaporates and the pressure in the centrifuge 10 easily rises. Therefore, the equipment cost may increase.
  • the upper limit of the residence time of the mixture H in the centrifuge 10 in the solid-liquid separation step is preferably 60 seconds, more preferably 45 seconds, and further preferably 30 seconds.
  • the lower limit of the residence time of the mixture H is preferably 5 seconds, more preferably 10 seconds, and even more preferably 20 seconds. If the residence time of the mixture H exceeds the above upper limit, the capacity in the centrifuge must be increased, and the centrifuge may become large. On the contrary, if the residence time of the mixture H is less than the said minimum, there exists a possibility that solid-liquid separation cannot fully be performed.
  • the centrifugal force of the centrifuge 10 in the solid-liquid separation step is preferably 3000 G or less, more preferably 2500 G or less, further preferably 2200 G or less, and particularly preferably 2000 G or less.
  • the centrifugal force of the centrifuge 10 is preferably 1600 G or more. The higher the centrifugal force in the solid-liquid separation step, the better the separation ability. However, if the centrifugal force in the solid-liquid separation step exceeds the above upper limit, the centrifugal separator 10 becomes large and equipment costs may increase. .
  • the gas K is purified from the gas phase separated by the high-pressure low-temperature gas-liquid separator 14 by the gas purification device 15.
  • the high-pressure low-temperature gas-liquid separator 14 further gas-liquid-separates the gas phase separated by the high-pressure gas-liquid separator 5 at high pressure and low temperature, and supplies the separated gas phase to the gas purification device 15.
  • the gas phase obtained in the gas-liquid separation step and the liquid phase obtained in the solid-liquid separation step are fractionated.
  • the gas phase separated by the low-pressure gas-liquid separator 6 and the reduced-pressure gas-liquid separator 7, the liquid phase separated by the high-pressure low-temperature gas-liquid separator 14, the solvent for solid-liquid separation by the overflow solvent recovery device 12 The liquid phase after separation of G is supplied to the distillation column 16, and these are fractionated by the distillation column 16 into naphtha L, kerosene M, light oil N, reduced pressure light oil P, ashless residue Q, and the like.
  • the naphtha L and kerosene M obtained in the fractionation step may be used as the naphtha fraction and kerosene fraction of the solvent G for solid-liquid separation.
  • the naphtha L and kerosene M obtained in the fractionation step of the hydrocracked oil production method as the naphtha fraction and kerosene fraction of the solid-liquid separation solvent G, the naphtha fraction and kerosene fraction are obtained. Procurement and transportation can be facilitated, and the cost of the solid-liquid separation solvent G can be reduced.
  • the naphtha fraction and kerosene fraction to be included in the first solid-liquid separation solvent G are used.
  • naphtha L and kerosene M obtained by another hydrocracking oil production apparatus may be used.
  • the operation is started without containing the naphtha fraction and the kerosene fraction as the solid-liquid separation solvent G, and when the naphtha L and kerosene M are fractionated by the hydrocracking oil production apparatus, the solid-liquid separation is performed.
  • the fractionated naphtha L and kerosene M may be added to the solvent G.
  • the hydrocracked oil production method is such that the solid-liquid separation solvent G contains an aromatic light solvent, a naphtha fraction, and a kerosene fraction in excess of 10% by mass, respectively, thereby reducing sedimentation by the aromatic light solvent.
  • the action and the extractability lowering action due to the naphtha fraction can be suppressed.
  • the hydrocracked oil production method is separated in the solid-liquid separation step in which the mixture H of the remaining solid-liquid phase F obtained in the gas-liquid separation step and the solid-liquid separation solvent G is solid-liquid separated. It can increase the property and shorten the sedimentation time.
  • the hydrocracked oil manufacturing method separates the mixture H by solid-liquid separation using the centrifuge 10, the size of the solid-liquid separation apparatus can be suppressed without requiring relatively high temperature and high pressure conditions. Cost can be reduced.
  • the manufacturing method of the hydrocracked oil of this invention and the manufacturing apparatus of hydrocracked oil are not limited to the said embodiment.
  • a three-stage gas-liquid separator including the high-pressure gas-liquid separator 5, the low-pressure gas-liquid separator 6, and the decompression gas-liquid separator 7 is used as the multi-stage gas-liquid separator. It may be composed of a gas-liquid separator having a stage, or may be composed of a gas-liquid separator having four or more stages. As the number of stages of the gas-liquid separator increases, the time required for gas-liquid separation becomes longer, but it becomes easier to improve the separability.
  • naphtha, kerosene, light oil, vacuum gas oil and ashless residue Q are fractionated by the distillation tower.
  • at least naphtha and kerosene may be fractionated, and other oil content may be obtained. Does not have to be fractionated.
  • oil components other than these may be fractionated.
  • Example 1 In the hydrocracking oil production apparatus of FIG. 1, a heavy petroleum oil A containing heavy metal components and an iron-based catalyst B are supplied to a slurry preparation tank 1, and hydrogen gas C is supplied to the slurry mixed in the slurry preparation tank 1. Feeding raw material slurry D was obtained. The raw slurry D was preheated by the preheater 2 and then supplied to the suspension bed reactor 4.
  • a vacuum distillation residue hereinafter referred to as VR
  • a limonite iron ore catalyst was used as the iron catalyst B.
  • the addition amount of the limonite iron ore catalyst was 1% by mass in terms of iron with respect to the mass of the vacuum distillation residue.
  • the average particle size of the limonite iron ore catalyst was 1.05 ⁇ m.
  • the hydrocracking reaction conditions in the suspension bed reactor 4 were a reaction pressure of 12 MPa, a reaction temperature of 450 ° C., and a reaction time of 90 minutes.
  • the reaction product E generated in the suspension bed reactor 4 is supplied to the high-pressure gas-liquid separator 5, and the gas is sequentially separated by the high-pressure gas-liquid separator 5, the low-pressure gas-liquid separator 6, and the reduced-pressure gas-liquid separator 7.
  • Liquid separation was performed and separated into a gas phase and a solid-liquid phase.
  • the temperature conditions of each gas-liquid separator are a pressure of 12 MPaG and a temperature of 400 ° C. in the high-pressure gas-liquid separator 5, and a pressure of 0.3 MPaG and a temperature of 380 ° C. in the low-pressure gas-liquid separator 6.
  • the pressure was 10 mmHG and the temperature was 350 ° C.
  • the solid-liquid phase F (VR, vacuum distillation residue) obtained from the lower part of the low-pressure gas-liquid separator 6 in this way and the solid-liquid separation solvent G are mixed, and this mixture H is centrifuged with a centrifuge tube volume of 250 mL. It was separated into a supernatant and a sediment (cake) using a vessel 10 (“Table Top Centrifuge 5100” manufactured by Kubota Corporation). This supernatant and cake correspond to the liquid phase and solid content separated by the centrifuge 10 in the above embodiment, respectively.
  • the said solid-liquid separation solvent G mixed the thing containing the aromatic light solvent, the naphtha fraction, and the kerosene fraction of the mass ratio shown in Table 1 with respect to the said vacuum distillation residue.
  • toluene was used as the aromatic light solvent.
  • the solid-liquid separation was performed for 30 seconds at a centrifugal force of 2000 G of the centrifuge 10 and a temperature of the mixture in the centrifuge 10 of 100 ° C.
  • the method of solid-liquid separation in this manner was set as Example 1, and the solid content concentration contained in each of the supernatant liquid and cake separated as described above was measured.
  • the solid content obtained at this time is asphaltene and iron-based catalyst B, which are insoluble components of toluene.
  • the measurement results are shown in Table 1.
  • the “solvent / vacuum distillation residue mass ratio” in Table 1 represents the mass ratio of the solid-liquid separation solvent to the vacuum distillation residue in the above mixture.
  • the mass ratio shown in “Content in solid-liquid separation solvent” in Table 1 indicates the mass ratio of each component in the solvent for solid-liquid separation, that is, the blending ratio of each component in the solvent for solid-liquid separation.
  • Example 2 Example 2 was carried out except that a solid-liquid separation solvent having the same blending ratio as in Example 1 was used, and a mixture mixed so that the mass ratio of the solid-liquid separation solvent to the vacuum distillation residue was 0.9 was used. Solid-liquid separation was performed in the same manner as in Example 1.
  • Example 3 Example 3 was carried out except that a solid-liquid separation solvent having the same blending ratio as in Example 1 was used, and a mixture mixed so that the mass ratio of the solid-liquid separation solvent to the vacuum distillation residue was 3.6 was used. Solid-liquid separation was performed in the same manner as in Example 1.
  • Example 4 mixed the thing containing toluene, the naphtha fraction, and the kerosene fraction of the mass ratio shown in Table 1 with respect to the said vacuum distillation residue, and the residence time in the centrifuge 10 at the time of solid-liquid separation The solid-liquid separation was carried out in the same manner as in Example 1 except that was set to 50 seconds.
  • Example 5 solid-liquid separation was performed in the same manner as in Example 1 except that the above-mentioned vacuum distillation residue was mixed with the ones containing toluene, naphtha fraction and kerosene fraction in the mass ratio shown in Table 1. It was.
  • Example 6 solid-liquid separation was performed in the same manner as in Example 1 except that the temperature of the mixture in the centrifuge 10 during solid-liquid separation was set to 60 ° C.
  • Example 7 solid-liquid separation was performed in the same manner as in Example 1 except that the residence time in the centrifuge 10 during solid-liquid separation was 15 seconds.
  • Example 8 solid-liquid separation was performed in the same manner as in Example 1 except that the centrifugal force of the centrifuge 10 during solid-liquid separation was changed to 1500 G.
  • Example 9 In Example 9, a limonite iron ore catalyst having an average particle diameter of 2.5 ⁇ m was used, and the amount of the limonite iron ore catalyst added to the mass of the vacuum distillation residue was 2.5% by mass in terms of iron. Solid-liquid separation was carried out by the same method as above.
  • Comparative Examples 1 to 4 are the same as those in Example 1 except that a mixture obtained by mixing toluene, a naphtha fraction, and a kerosene fraction at a mass ratio shown in Table 1 with respect to the vacuum distillation residue was used. Solid-liquid separation was performed by the same method.
  • Comparative Example 5 Solid-liquid separation was performed in the same manner as in Example 1 except that toluene was used as the solid-liquid separation solvent to be mixed with the vacuum distillation residue.
  • Example 2 to Example 9 and Comparative Example 1 to Comparative Example 5 the solids concentration contained in each of the supernatant liquid and cake separated as in Example 1 was measured. These measurement results are shown in Table 1.
  • Comparative Example 1 and Comparative Example 5 contain toluene as a solvent for solid-liquid separation. The amount is extremely large. Since toluene is several times more expensive than the naphtha fraction, Comparative Example 1 and Comparative Example 5 are not practical because the solid-liquid separation solvent becomes too expensive.
  • Example 1 Comparing the results of Example 1 and Example 2, these use the same solid-liquid separation solvent with the same blending ratio of 1/3 each of toluene, naphtha fraction and kerosene fraction, Example 1 has a higher solid content in the cake. This is because the mass ratio of the solid-liquid separation solvent to the vacuum distillation residue in the solid-liquid separation solvent is smaller in Example 2 than in Example 1, so the extractability of Example 2 is lower than in Example 1. This is because. This shows that the separability can be further improved by setting the mass ratio of the solid-liquid separation solvent to 1.5 or more.
  • Example 1 and Example 3 use the solid-liquid separation solvent having the same blending ratio of toluene, naphtha fraction and kerosene fraction, but the solid-liquid separation solvent for the vacuum distillation residue in the solid-liquid separation solvent
  • the mass ratio of Example 3 is greater than that of Example 1. From this fact, it can be said that when the mass ratio of the solid-liquid separation solvent is increased to a level close to the mass ratio in Example 3, the increase in the extractability improvement effect is reduced even if the mass ratio is further increased. Therefore, it can be seen that by adjusting the mass ratio of the solid-liquid separation solvent within a range of 4 or less, high extractability can be obtained while suppressing the amount of the solid-liquid separation solvent used.
  • Example 1 When comparing the results of Example 1 and Example 4, Example 1 has a higher solid content concentration in the cake.
  • the mass ratio of the solid-liquid separation solvent to the vacuum distillation residue in the solid-liquid separation solvent is substantially equal, but the blending ratio of each component in the solid-liquid separation solvent is different.
  • the content of toluene in the solid-liquid separation solvent is higher in Example 4 than in Example 1, the solid content concentration in the cake is higher in Example 1 as described above. This can be said that the solid content concentration in the cake of Example 4 was smaller than that in Example 1 because the sedimentation rate lowering effect was more greatly affected than the toluene extractability improving effect.
  • Example 1 has a higher solid content concentration in the cake.
  • the mass ratio of the solid-liquid separation solvent to the vacuum distillation residue in the solid-liquid separation solvent is substantially equal, but the blending ratio of each component in the solid-liquid separation solvent is different.
  • the content of toluene in the solid-liquid separation solvent is higher in Example 1 than in Example 5. This can be said that the solid content concentration in the cake of Example 5 was smaller than that in Example 1 because the content of toluene having a large extractability improving effect was small. This shows that the separability can be further improved by setting the content of toluene in the solid-liquid separation solvent to 30% by mass or more.
  • Example 1 has a higher solid content concentration in the cake.
  • Example 1 and Example 6 differ only in the temperature of the mixture in the centrifuge. The reason why the solid content concentration in the cake of Example 1 was higher was that Example 6 had a lower flow of heavy components because the temperature of the mixture in the centrifuge was lower. From this result, it is understood that the separability can be further improved by setting the temperature of the mixture in the centrifuge to 70 ° C. or higher.
  • Example 1 has a higher solid content in the cake.
  • Example 1 and Example 7 differ only in the residence time of the mixture in the centrifuge. From this result, it is understood that the separability can be further improved by setting the residence time of the mixture in the centrifuge to 20 seconds or more.
  • Example 1 has a higher solid content concentration in the cake.
  • Example 1 and Example 8 differ only in the centrifugal force of the centrifuge at the time of solid-liquid separation. From this result, it is understood that the separability can be further improved by setting the centrifugal force of the centrifuge to 1600 G or more.
  • Example 1 has a higher solid content concentration in the cake.
  • Example 1 and Example 9 differ only in the addition amount with respect to the average particle diameter of a limonite iron ore catalyst, and a vacuum distillation residue. From this result, the extractability can be further improved by setting the average particle size of the limonite iron ore catalyst to 2 ⁇ m or less and the mass ratio of the limonite iron ore catalyst to the mass of the vacuum distillation residue to 0.02 or less in terms of iron. Recognize.
  • the hydrocracked oil production method and hydrocracked oil production apparatus can reduce the time for selectively removing coke generated in the hydrocracking process by sedimentation solid-liquid separation, and the equipment cost. Therefore, it can be suitably used as an apparatus for producing light oil from petroleum heavy oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本発明の水素化分解油の製造方法は、重金属成分を含有する石油系重質油を原料とする水素化分解油の製造方法であって、石油系重質油、鉄系触媒及び水素ガスを混合する混合工程と、混合工程後に懸濁床反応器中で石油系重質油を水素化分解する水素化分解工程と、水素化分解工程後の反応生成物を多段の気液分離器で気液分離する気液分離工程と、気液分離工程で得られた固液相の一部を混合工程に循環する循環工程と、循環工程後の固液相の残部と固液分離用溶剤との混合物を遠心分離器で固液分離する固液分離工程とを備え、固液分離用溶剤が、芳香族軽質溶剤、水素化分解法により得られるナフサ留分及び灯油留分をそれぞれ10質量%超含有する。

Description

水素化分解油の製造方法及び水素化分解油の製造装置
 本発明は、水素化分解油の製造方法及び水素化分解油の製造装置に関する。
 原油には低沸点の軽質油、高沸点の重質油等の様々な成分が含まれる。近年、供給原油としては重質油の含有率が高い原油(石油系重質油)が増えつつある。一方、石油需要としては、軽質油の需要が依然として高い。このため、石油系重質油から軽質油を製造する方法が注目されている。
 このような重質油を軽質化する技術として、重質油の水素化分解や熱分解について多くの方法が提案されている。水素化分解では、重質油を水素と反応させて軽質化するために触媒が必要であるが、重質油はニッケルやバナジウムなどの重金属を多く含むため、触媒被毒により触媒活性が低下し易い。また、熱分解では、触媒活性低下の不都合は生じないが、コークが大量に生成し易く、また生成物の収率が低下し易い。
 これらの重質油の水素化分解や熱分解における不都合を解消するために、低廉な使い捨ての鉄系触媒と重質油とを混合し、懸濁床(スラリー床)反応器で反応させる水素化分解方法が提案されている(日本国特開2001-89772号公報参照)。この水素化分解方法では、使用した触媒を反応器へ循環させることにより、運転コストを低減している。しかし、この水素化分解方法でも、重質油の種類によってはコークの生成量が大きくなり、触媒活性が低下するおそれがある。
 上記水素化分解方法の触媒活性低下の不都合を解消するために、芳香族軽質溶剤と水素化分解により得られたナフサとを混合した溶剤を用い、所定の条件で沈降固液分離する水素化分解方法が提案されている(日本国特開2007-246719号公報参照)。この水素化分解方法は、所定の条件での沈降固液分離により、水素化分解工程で生じるコークを低コストで選択的に液相流体から除去し、コークの生成に伴う触媒活性低下を抑制している。
 しかし、この水素化分解方法で上記溶剤に混合させる芳香族軽質溶剤は、液相流体からの固形分の抽出性を向上させるが、沈降速度を低下させる。一方、上記溶剤に混合させるナフサは、沈降性を改善させるが、抽出性を低下させ固体が凝集し易くなる。そのため、この水素化分解方法は、芳香族軽質溶剤による沈降性の低下作用及びナフサ留分による抽出性の低下作用の影響により固液分離の際の沈降に比較的長い時間を要するので、生産効率の向上が望まれる。また、この水素化分解方法は、固液分離の条件を比較的高温かつ高圧にする必要があるため、原料の性状によっては装置が大型化し設備コストが高価となるおそれがある。
日本国特開2001-89772号公報 日本国特開2007-246719号公報
 本発明は、上述のような事情に基づいてなされたものであり、水素化分解工程で生じるコークを沈降固液分離により選択的に除去する時間を短縮でき、かつ設備コストを低減できる水素化分解油の製造方法及び水素化分解油の製造装置を提供することを目的とする。
 上記課題を解決するためになされた発明は、重金属成分を含有する石油系重質油を原料とする水素化分解油の製造方法であって、上記石油系重質油、鉄系触媒及び水素ガスを混合する混合工程と、上記混合工程後に懸濁床反応器中で上記石油系重質油を水素化分解する水素化分解工程と、上記水素化分解工程後の反応生成物を多段の気液分離器で気液分離する気液分離工程と、上記気液分離工程で得られた固液相の一部を上記混合工程に循環する循環工程と、上記循環工程後の固液相の残部と固液分離用溶剤との混合物を遠心分離器で固液分離する固液分離工程とを備え、上記固液分離用溶剤が、芳香族軽質溶剤、水素化分解法により得られるナフサ留分及び灯油留分をそれぞれ10質量%超含有する、水素化分解油の製造方法である。
 当該水素化分解油の製造方法は、固液分離用溶剤が、それぞれ含有量が上記範囲の芳香族軽質溶剤、ナフサ留分及び灯油留分を含有することにより、芳香族軽質溶剤による沈降性の低下作用及びナフサ留分による抽出性の低下作用を抑制できる。これにより、当該水素化分解油の製造方法は、気液分離工程で得られた固液相の残部と上記固液分離用溶剤との混合物を固液分離する工程での分離性を高くすると共に沈降時間を短縮できる。また、当該水素化分解油の製造方法は、遠心分離器により上記混合物を固液分離するので、比較的高温及び高圧の条件を必要とせず固液分離装置の大型化を抑制できるため、設備コストを低減できる。ここで「沈降」とは、遠心分離器の遠心力による比重の大きい固体の外周側への移動を含む概念であり、「沈降時間」とは、複数の固体の遠心分離器の外周側への移動に要する平均時間を意味する。
 上記混合物における上記固液相の残部の質量に対する固液分離用溶剤の質量比としては、0.5以上4以下が好ましく、上記固液分離工程での遠心分離器内の混合物の温度としては40℃以上130℃以下、滞留時間としては60秒以下が好ましい。このように、混合物における固液相の残部の質量に対する固液分離用溶剤の質量比を上記範囲内とすることで、固液分離用溶剤の使用量を抑制しつつ固液分離工程での分離性向上効果を促進できる。また、このように遠心分離器内の混合物の温度を上記範囲内とすることで、重質有機物の抽出性を向上させつつ灯油留分の蒸発を抑制できる。また、このように遠心分離器内の混合物の滞留時間を上記上限以下とすることで、固液分離装置の小型化を促進できる。
 上記気液分離工程が、上記水素化分解工程後の反応生成物を高圧気液分離器により気液分離する第1工程と、上記第1工程で分離された固液相を低圧気液分離器により気液分離する第2工程と、上記第2工程で分離された固液相を減圧気液分離器により気液分離する第3工程とを有するとよい。このように、気液分離工程が、第1工程、第2工程及び第3工程を有し、圧力及び温度条件がこの順で低下する複数の気液分離器で気液分離することにより、減圧重質残渣の含有量の大きい固液相を効率よく分離できる。
 上記水素化分解油の製造方法が、上記気液分離工程で得られた気相及び固液分離工程で得られた液相を分留する分留工程をさらに備え、上記固液分離用溶剤のナフサ留分及び灯油留分として、上記分留工程で得られたナフサ留分及び灯油留分を用いるとよい。このように、固液分離用溶剤のナフサ留分及び灯油留分として分留工程で得られたナフサ留分及び灯油留分を用いることにより、ナフサ留分及び灯油留分の調達及び輸送が容易となる。
 上記芳香族軽質溶剤が沸点150℃以下の単一成分又はそれらの混合成分であり、上記ナフサ留分の沸点が80℃以上180℃以下であり、上記灯油留分の沸点が180℃超240℃以下であるとよい。このように、固液分離用溶剤として芳香族軽質溶剤、ナフサ留分及び灯油留分のそれぞれの沸点が上記範囲内のものを用いることで、固液分離用溶剤の蒸気圧の上昇を抑制できると共に、固液分離工程で分離された液相及び固体の回収に要する熱量の増加を抑制できるので、設備コスト及び水素化分解油の製造コストの抑制効果を促進できる。ここで「沸点」とは、1気圧(101325Pa)における沸点をいう。
 上記固液分離工程での遠心分離器内の混合物の滞留時間としては、30秒以下が好ましく、上記遠心分離器の遠心力としては、3000G以下が好ましい。このように、遠心分離器内の混合物の滞留時間を30秒以下とし、遠心分離器の遠心力を3000G以下とすることで、固液分離装置の大型化をより確実に抑制でき、設備コスト低減効果を促進できる。
 上記鉄系触媒が平均粒子径2μm以下のリモナイト鉄鉱石触媒であるとよく、上記混合工程における石油系重質油の質量に対する鉄系触媒の質量比としては、鉄換算で0.003以上0.02以下が好ましい。このように、鉄系触媒として上記平均粒子径を有するリモナイト鉄鉱石触媒を用いることで低コストで水素化反応を促進でき、石油系重質油の質量に対する鉄系触媒の質量比を上記範囲内とすることで水素化分解油の収率の向上効果を促進できる。ここで「平均粒子径」とは、レーザー回折散乱法によって求めた粒度分布において体積積算値50%となる粒径(メディアン径)を意味する。
 また、上記課題を解決するためになされた別の発明は、重金属成分を含有する石油系重質油を原料とする水素化分解油の製造装置であって、上記石油系重質油、鉄系触媒及び水素ガスを混合する混合部と、上記混合部で得た原料スラリー中の石油系重質油を水素化分解する懸濁床反応部と、上記懸濁床反応部で生成された反応生成物を多段で気液分離する気液分離部と、上記気液分離部で得られた固液相の一部を上記混合部に循環する循環部と、上記気液分離部で得られた固液相の残部と固液分離用溶剤との混合物を固液分離する遠心分離部とを備え、上記固液分離用溶剤が、芳香族軽質溶剤、水素化分解法により得られるナフサ留分及び灯油留分をそれぞれ10質量%超含有する、水素化分解油の製造装置である。
 当該水素化分解油の製造装置は、固液分離用溶剤が、それぞれ含有量が上記範囲の芳香族軽質溶剤、ナフサ留分及び灯油留分を含有することにより、芳香族軽質溶剤による沈降性の低下作用及びナフサ留分による抽出性の低下作用を抑制できる。これにより、当該水素化分解油の製造装置は、気液分離部で得られた固液相の残部と上記固液分離用溶剤との混合物の遠心分離部での分離性を高くすると共に沈降時間を短縮できる。また、当該水素化分解油の製造装置は、遠心分離器により上記混合物を固液分離するので、比較的高温及び高圧の条件を必要とせず固液分離装置の大型化を抑制できるため、設備コストを低減できる。
 以上説明したように、本発明の水素化分解油の製造方法及び水素化分解油の製造装置により、水素化分解工程で生じるコークを沈降固液分離により選択的に除去する時間を短縮でき、かつ設備コストを低減できる。
図1は、本発明の一実施形態に係る水素化分解油製造装置の構成を示す概略模式図である。
 以下、本発明に係る水素化分解油の製造装置及び水素化分解油の製造方法の実施形態について、図面を参照しつつ説明する。
[水素化分解油製造装置]
 本実施形態の水素化分解油製造装置は、重金属成分を含有する石油系重質油を原料とする水素化分解油の製造装置である。当該水素化分解油製造装置は、上記石油系重質油、鉄系触媒及び水素ガスを混合する混合部と、上記混合部で得た原料スラリー中の石油系重質油を水素化分解する懸濁床反応部と、上記懸濁床反応部で生成された反応生成物を多段で気液分離する気液分離部と、上記気液分離部で得られた固液相の一部を上記混合部に循環する循環部と、上記気液分離部で得られた固液相の残部と固液分離用溶剤との混合物を固液分離する遠心分離部とを主に備える。また、当該水素化分解油製造装置は、上記気液分離部で分離された気相からガスを精製するガス精製部と、上記気液分離部で得られた気相及び遠心分離部で得られた液相を分留する分留部とを備える。
 当該水素化分解油製造装置は、具体的には図1に示すように、スラリー調製槽1、予熱器2、第1ポンプ3、懸濁床反応器4、高圧気液分離器5、低圧気液分離器6、減圧気液分離器7、混合物調製槽8、第2ポンプ9、遠心分離器10、第3ポンプ11、オーバーフロー溶剤回収装置12、アンダーフロー溶剤回収装置13、高圧低温気液分離器14、ガス精製装置15及び蒸留塔16を備える。
<混合部>
 当該水素化分解油製造装置の混合部は、スラリー調製槽1と、スラリー調製槽1及び予熱器2間に配設される配管とを有する。混合部は、石油系重質油A、鉄系触媒B及び水素ガスCを混合する。
 スラリー調製槽1は、石油系重質油A及び鉄系触媒Bを混合し、スラリー化するための槽である。また、スラリー調製槽1は撹拌機1aを備える。
 予熱器2は、懸濁床反応器4に供給される原料スラリーDを予熱するための加熱器である。
 第1ポンプ3は、スラリー調製槽1で調製されたスラリーを予熱器2へ移送するためのポンプである。第1ポンプ3によりスラリー調製槽1から予熱器2へ移送される配管内で、上記スラリーに水素ガスCが供給される。このように配管内で上記スラリーと水素ガスCとを混合することにより、原料スラリーDが形成される。この原料スラリーDは、予熱器2で加熱されて懸濁床反応器4に供給される。
<懸濁床反応部>
 当該水素化分解油製造装置の懸濁床反応部は、懸濁床反応器4を有する。懸濁床反応器4は、その中で上記原料スラリーD中の上記石油系重質油Aを水素化分解する。この懸濁床反応器4としては、例えば気泡塔型の懸濁床反応器を用いることができる。
<気液分離部>
 当該水素化分解油製造装置の気液分離部は、高圧気液分離器5、低圧気液分離器6及び減圧気液分離器7を有する。気液分離部は、高圧気液分離器5、低圧気液分離器6及び減圧気液分離器7により懸濁床反応器4で生成された反応生成物Eを多段で気液分離する。
 高圧気液分離器5は、懸濁床反応器4で生成された反応生成物Eを高温高圧で気相と固液相とに分離する。高圧気液分離器5として、例えば重力や遠心力を利用する公知の気液分離器を用いることができる。高圧気液分離器5の圧力は、例えば8MPaG以上17MPaG以下であり、高圧気液分離器5の加熱温度は、例えば380℃以上420℃以下である。この固液相には、重質油成分(重質反応生成物)及び固体(コーク及び鉄系触媒B)が含まれているが、これらの他に軽質油成分も含まれている。なお、上記重質油成分は、沸点が525℃以上の油成分であり、上記軽質油成分は、上記重質油成分以外の油成分であって上記重質油成分よりも沸点が低いものである。
 低圧気液分離器6は、高圧気液分離器5で分離された固液相を高温低圧で気相と固液相とに分離する。低圧気液分離器6として、例えば重力や遠心力を利用する公知の気液分離器を用いることができる。低圧気液分離器6の圧力は、例えば0.1MPaG以上1MPaG以下であり、低圧気液分離器6の加熱温度は、例えば360℃以上400℃以下である。
 減圧気液分離器7は、低圧気液分離器6で分離された固液相を気相と固液相Fとに分離する。減圧気液分離器7として、例えば重力や遠心力を利用する公知の気液分離器を用いることができる。減圧気液分離器7の圧力は、例えば5mmHG以上50mmHG以下であり、減圧気液分離器7の加熱温度は、例えば330℃以上370℃以下である。固液相Fには、重質油成分(重質反応生成物)及び固体が含まれているが、これらの他に軽質油成分も含まれている。なお、減圧気液分離器7から排出される固液相Fは、軽質油成分に上記重質油成分が溶解し、この油成分に固体が混ざった状態のものである。
<循環部>
 当該水素化分解油製造装置の循環部は、第2ポンプ9と、第2ポンプ9及びスラリー調製槽1間の配管とを有する。第2ポンプ9は、減圧気液分離器7で分離された固液相Fの一部をスラリー調製槽1へ循環させると共に、上記固液相Fの残部を混合物調製槽8に供給するためのポンプである。
 混合物調製槽8は、減圧気液分離器7で分離された固液相Fと固液分離用溶剤Gとを混合し混合物Hを得るための槽である。また、混合物調製槽8は撹拌機8aを備える。
 第3ポンプ11は、混合物調製槽8で混合された混合物Hを遠心分離器10に供給するためのポンプである。
<遠心分離部>
 当該水素化分解油製造装置の遠心分離部は、遠心分離器10、オーバーフロー溶剤回収装置12及びアンダーフロー溶剤回収装置13を有する。
 遠心分離器10は、固体と液体との比重差を利用して、遠心分離により上記混合物Hを固液分離する。具体的には、遠心分離器10は、回転子の回転により内部に供給される混合物Hに遠心力を付加し、混合物H中の固体粒子の外周側への移動速度を速くし、固形分を外周側へ移動させる。遠心分離器10は、このように混合物Hの固形分を外周側へ移動させることにより、混合物Hを液相と固形分とに分離する。このようにして遠心分離器10内の外周側に分離された混合物Hの固形分は、固形分排出用出口から排出され、遠心分離器10の内側に分離された混合物Hの液相は、液相排出用出口から排出される。遠心分離器10は、上記混合物Hを固液分離できるものであればよく、例えば沈降固体を機械的に排出できるデカンタ型の遠心分離器を用いることができる。また、遠心分離器10は、混合物Hをバッチ式で処理するものであってもよいし、連続的に処理するものであってもよいが、連続的に処理した方が処理量当たりの分離時間を短縮できる。
 オーバーフロー溶剤回収装置12は、遠心分離器10で分離された液相が供給され、この液相から固液分離用溶剤Gを分離し、この分離した固液分離用溶剤Gを混合物調製槽8に供給し再利用する。オーバーフロー溶剤回収装置12は、例えば加熱により上記液相に含まれる固液分離用溶剤Gを気化させた後、その気化した固液分離用溶剤Gを冷却することにより固液分離用溶剤Gを分離する。後述するように、固液分離用溶剤Gが含有する成分の沸点は240℃以下なので、240℃以上に加熱できる乾燥器などをオーバーフローとして用いることができる。オーバーフロー溶剤回収装置12で固液分離用溶剤Gを分離した後の流体の一部はスラリー調製槽1へ循環され、その流体の残部は蒸留塔16へ供給される。
 アンダーフロー溶剤回収装置13は、遠心分離器10で分離された固形分が供給され、この固形分から固液分離用溶剤Gを分離し、この分離した固液分離用溶剤Gを混合物調製槽8に供給し再利用する。アンダーフロー溶剤回収装置13は、例えば加熱により上記固形分に含まれる固液分離用溶剤Gを気化させた後、その気化した固液分離用溶剤Gを冷却することにより固液分離用溶剤Gを分離する。従って、アンダーフロー溶剤回収装置13として、240℃以上に加熱できる乾燥器などを用いることができる。アンダーフロー溶剤回収装置13で固液分離用溶剤Gを分離した後の固形物は、スラッジJとして排出される。
 高圧低温気液分離器14は、高圧気液分離器5で分離された気相が供給され、この気相をさらに気相と液相とに分離する。高圧低温気液分離器14として、例えば重力や遠心力を利用する公知の気液分離器を用いることができる。高圧低温気液分離器14で分離された気相は、ガス精製装置15へ供給される。また、高圧低温気液分離器14で分離された液相は、低圧気液分離器6及び減圧気液分離器7で分離された気相と共に蒸留塔16に供給される。
<ガス精製部>
 水素化分解油製造装置のガス精製部は、ガス精製装置15を有する。ガス精製装置15は、高圧低温気液分離器14で分離された気相からガスKを精製する。ガス精製装置15は、例えば上記気相に含まれる不要なガスを吸着塔などで吸着させ、必要な成分のガスを精製する。例えば水素ガスを精製する場合、水素ガス以外の不要ガスであるCO、CH、HO及びCO等を吸着する吸着剤を吸着塔に充填することにより、高純度の水素ガスが精製できる。ガス精製装置15で精製されたガスKは、一部は燃料ガスとして利用され、残部はリサイクルガスとして懸濁床反応器4の冷却用ガスに利用される。
<分留部>
 水素化分解油製造装置の分留部は、蒸留塔16を有する。蒸留塔16は、低圧気液分離器6及び減圧気液分離器7で分離された気相、高圧低温気液分離器14で分離された液相、オーバーフロー溶剤回収装置12で固液分離用溶剤Gを分離した後の流体が供給され、これらを所定の留分に分留する。蒸留塔16として、例えば公知の棚段式の蒸留塔を用いることができる。例えば上記気相、液相及び流体を350℃程度に熱した後にこれらを蒸留塔16内に供給し、蒸留塔16内で石油蒸気とし、この石油蒸気の冷却後、沸点の低いものから高いものへと順に分離する。これにより、例えば図1に示すようにナフサL、灯油M、軽油N、減圧軽油Pが順に分離され、抜き出される。また、蒸留塔16下部から無灰残渣Qが抜き出される。
(固液分離用溶剤)
 上記混合物調製槽8で固液相Fと混合する固液分離用溶剤Gは、芳香族軽質溶剤、ナフサ留分及び灯油留分を含有する。
 固液分離用溶剤Gにおける芳香族軽質溶剤の含有量は10質量%超であり、芳香族軽質溶剤の含有量の下限としては、20質量%が好ましく、30質量%がより好ましい。また、芳香族軽質溶剤の含有量は、80質量%未満が好ましく、芳香族軽質溶剤の含有量の上限としては、60質量%が好ましく、40質量%がより好ましい。芳香族軽質溶剤の含有量が上記下限に満たないと、固液相Fからの固体の抽出性が低下して十分な分離性が得られないおそれがある。逆に、芳香族軽質溶剤の含有量が上記上限を超えると、沈降速度が低下して水素化分解油の製造時間が長くなるおそれがあると共に、芳香族軽質溶剤は高価であるため水素化分解油の製造コストが増加するおそれがある。
 固液分離用溶剤Gにおけるナフサ留分の含有量は10質量%超であり、ナフサ留分の含有量の下限としては、20質量%が好ましく、30質量%がより好ましい。一方、ナフサ留分の含有量の上限としては、75質量%が好ましく、60質量%がより好ましく、40質量%がさらに好ましい。ナフサ留分の含有量が上記下限に満たないと、沈降速度が低下して水素化分解油の製造時間が長くなるおそれがある。逆に、ナフサ留分の含有量が上記上限を超えると、固液相Fからの固体の抽出性が低下して、固体の凝集により遠心分離器10下部に閉塞が生じ易くなるおそれがある。
 固液分離用溶剤Gにおける灯油留分の含有量は10質量%超であり、灯油留分の含有量の下限としては、20質量%が好ましく、30質量%がより好ましい。一方、灯油留分の含有量の上限としては、75質量%が好ましく、60質量%がより好ましく、40質量%がさらに好ましい。灯油留分の含有量が上記下限に満たないと、芳香族軽質溶剤による沈降速度低下作用を十分に抑制できず、水素化分解油の製造時間が長くなるおそれがある。逆に、灯油留分の含有量が上記上限を超えると、固液分離用溶剤Gを回収する際に必要な熱量が大きくなるため、運転コストが増加するおそれがある。
 なお、固液分離用溶剤Gは、上記範囲内の芳香族軽質溶剤、ナフサ留分及び灯油留分をそれぞれ含有していれば、これら以外の成分を含んでいてもよい。固液分離用溶剤Gに上記範囲内の芳香族軽質溶剤、ナフサ留分及び灯油留分をそれぞれ含有させることで、固液相Fからの固体の抽出性、沈降性、固液分離用溶剤Gのハンドリング性及び回収性等をバランスよく得ることができる。さらに、固液分離用溶剤Gにおける芳香族軽質溶剤、ナフサ留分及び灯油留分の含有量を略等しくすることで、上記各効果をよりバランスよく得ることができる。つまり、固液分離用溶剤Gは、芳香族軽質溶剤、ナフサ留分及び灯油留分を1/3ずつ含有することが特に好ましい。
 固液分離用溶剤Gが含有する芳香族軽質溶剤としては、沸点150℃以下の単一成分又はそれらの混合成分のものが好ましい。芳香族軽質溶剤として沸点が150℃を超えるものを用いると、抽出性を向上させるために遠心分離器10内の温度を高くする必要があるため、固液分離のための処理コストが増加するおそれがある。沸点150℃以下の芳香族軽質溶剤として、例えばベンゼン、トルエン、キシレン等を用いることができる。
 固液分離用溶剤Gが含有するナフサ留分としては、沸点が80℃以上180℃以下のものが好ましく、固液分離用溶剤Gが含有する灯油留分としては、沸点が180℃超240℃以下のものが好ましい。沸点が80℃未満のナフサ留分を用いると、固液分離用溶剤Gの蒸気圧が高くなり過ぎ、この蒸気圧に対応するために設備コストが増加するおそれがある。また、沸点が240℃を超える灯油留分を用いると、オーバーフロー溶剤回収装置12及びアンダーフロー溶剤回収装置13で固液分離用溶剤Gを回収する際に必要な熱量が大きくなるため、運転コストが増加するおそれがある。
[水素化分解油製造方法]
 本実施形態の水素化分解油の製造方法は、重金属成分を含有する石油系重質油を原料とする水素化分解油の製造方法である。当該水素化分解油の製造方法は、上記石油系重質油A、鉄系触媒B及び水素ガスCを混合する混合工程と、上記混合工程後に懸濁床反応器4中で上記石油系重質油Aを水素化分解する水素化分解工程と、上記水素化分解工程後の反応生成物Eを多段の気液分離器5,6,7で気液分離する気液分離工程と、上記気液分離工程で得られた固液相Fの一部を上記混合工程に循環する循環工程と、上記循環工程後の固液相Fの残部と固液分離用溶剤Gとの混合物Hを遠心分離器10で固液分離する固液分離工程とを主に備える。また、当該水素化分解油の製造方法は、上記気液分離工程で分離された気相からガスを精製する工程と、上記気液分離工程で得られた気相及び固液分離工程で得られた液相を分留する工程とを備える。
<混合工程>
 混合工程では、石油系重質油A、鉄系触媒B及び水素ガスCを混合する。具体的には、スラリー調製槽1において石油系重質油A及び鉄系触媒Bをスラリー調製槽1に供給する。スラリー調製槽1が、撹拌機1aを用いて上記石油系重質油A及び鉄系触媒Bを混合することで、石油系重質油A及び鉄系触媒Bを含むスラリーを得る。このように混合して得たスラリーと水素ガスCとを配管中で混合することにより原料スラリーDが得られる。この原料スラリーDを予熱器2を介して懸濁床反応器4に供給する。
 石油系重質油Aとしては、特に限定されないが、常圧蒸留残渣油、減圧蒸留残渣油等の石油系重質油を用いることができる。また、天然に存在するビチューメン(タールサンド、オイルサンド等)のような超重質油を用いることもできる。
 鉄系触媒Bとしては、石油系重質油Aの水素化分解反応に対する触媒として活性が高いものであれば特に限定されないが、例えばリモナイト鉄鉱石触媒、パイライト、ヘマタイト、硫酸鉄、赤泥等を挙げることができる。これらの中でもリモナイト鉄鉱石触媒が好ましい。リモナイト鉄鉱石触媒は、パイライト、ヘマタイト、硫酸鉄等の鉄系触媒に比べて高活性であり、かつ天然で採取される安価な触媒である。
 鉄系触媒Bの平均粒子径の下限としては、0.1μmが好ましく、0.3μmがより好ましい。一方、鉄系触媒Bの平均粒子径の上限としては、2μmが好ましく、1.2μmがより好ましい。鉄系触媒Bの平均粒子径が上記下限に満たないと、このような平均粒子径の小さい鉄系触媒Bを得るための機械的粉砕に時間を要し、水素化分解の処理効率が低下するおそれがある。逆に、鉄系触媒Bの平均粒子径が上記上限を超えると、鉄系触媒Bの実効表面積が不足し触媒活性が低くなるため、水素化分解油の収率を十分に向上できないおそれがある。
 上記混合工程における石油系重質油Aに対する鉄系触媒Bの質量比の下限としては、鉄換算で0.003が好ましく、0.005がより好ましい。一方、上記質量比の上限としては、鉄換算で0.02が好ましく、0.015がより好ましい。上記質量比が上記下限に満たないと、コーク生成量が急激に高くなる傾向があり、コークの生成を十分に抑制できないおそれがある。逆に、上記質量比が上記上限を超えると、水素化分解の処理コストが大きくなるおそれがある。
 予熱器2においてスラリー調製槽1で混合されたスラリーを加熱する温度としては、水素化分解反応が開始する温度付近とするとよい。
<水素化分解工程>
 水素化分解工程では、懸濁床反応器4内で原料スラリーD中の石油系重質油Aを水素ガスCにより水素化分解する。この水素化分解により、反応生成物Eが得られる。
 懸濁床反応器4における水素化分解の反応圧力(水素ガス供給圧力)の下限としては、5MPaが好ましく、7MPaがより好ましい。一方、水素化分解の反応圧力の上限としては、20MPaが好ましく、17MPaがより好ましい。水素化分解の反応圧力が上記下限に満たないと、水素分圧が小さくなりコーク生成量が増大するため、鉄系触媒Bの触媒活性が低下するおそれがある。逆に、水素化分解の反応圧力が上記上限を超えると、増圧による反応促進効果が得られず、水素化分解の処理コストが大きくなるおそれがある。なお、反応圧力は、混合工程において供給する水素ガスCの量によって調整することができる。
 懸濁床反応器4における水素化反応温度の下限としては、400℃が好ましく、430℃がより好ましい。一方、水素化反応温度の上限としては、480℃が好ましく、455℃がより好ましい。水素化反応温度が上記下限に満たないと、水素化分解反応が進み難く、軽質化された油を十分に得られないおそれがある。逆に、水素化反応温度が上記上限を超えると、熱分解反応によりコーク生成量が増加し易く、鉄系触媒Bの触媒活性が低下するおそれがある。
 懸濁床反応器4における水素化反応時間の下限としては、30分が好ましく、60分がより好ましい。一方、水素化反応時間の上限としては、180分が好ましく、120分がより好ましい。水素化反応時間が上記下限に満たないと、軽質化された油を十分に得られないおそれがある。逆に、水素化反応時間が上記上限を超えると、時間の増加に対して得られる軽質化された油の増量が少なくなり、水素化分解油の製造効率が悪化するおそれがある。
<気液分離工程>
 気液分離工程では、懸濁床反応器4で得られた反応生成物Eを多段の気液分離器を用いて気液分離する。具体的には、気液分離工程は、それぞれ異なる気液分離器を用いて気液分離を行う第1工程、第2工程及び第3工程を有する。気液分離工程は、第1工程、第2工程及び第3工程の順に気液分離を行う。第1工程、第2工程及び第3工程は、圧力及び温度条件がこの順で低下する異なる気液分離器を用いて気液分離する。
(第1工程)
 第1工程では、上記水素化分解工程後の反応生成物Eを高圧気液分離器5により気液分離する。
(第2工程)
 第2工程では、第1工程で高圧気液分離器5により分離された固液相を低圧気液分離器6により気液分離する。
(第3工程)
 第3工程では、第2工程で低圧気液分離器6により分離された固液相を減圧気液分離器7により気液分離する。
<循環工程>
 循環工程では、上記気液分離工程で得られた固液相Fの一部を上記混合工程に循環する。具体的には、気液分離工程の第3工程で減圧気液分離器7により分離された固液相Fの一部を第2ポンプ9により、配管を介してスラリー調製槽1に供給する。これにより、固液相Fに含まれる鉄系触媒Bが再利用される。
 定常状態において、原料スラリーDにおける石油系重質油Aに対する鉄系触媒Bの質量割合の下限としては、2質量%が好ましく、3質量%がより好ましい。一方、上記原料スラリーDにおける鉄系触媒Bの質量割合の上限としては、11質量%が好ましく、6質量%がより好ましい。上記原料スラリーDにおける鉄系触媒Bの質量割合が上記下限に満たないと、鉄系触媒Bの供給量が不十分となり、水素化分解油の収率が低下するおそれがある。逆に、上記原料スラリーDにおける鉄系触媒Bの質量割合が上記上限を超えると、新規に供給される鉄系触媒B又は再利用される鉄系触媒Bの供給量を多くする必要があり、水素化分解の処理コストが増加するおそれがある。ここで「定常状態」とは、懸濁床反応器4内の鉄系触媒Bの総量が装置立ち上げ時等の過渡状態を脱した状態を指し、例えば時間の経過に伴い多少の増減はあるものの、懸濁床反応器4内の鉄系触媒Bの総量の単位時間当たりの変動率が10質量%以下に収まる状態である。
<固液分離工程>
 固液分離工程では、上記循環工程後の固液相Fの残部と固液分離用溶剤Gとの混合物Hを遠心分離器10により固液分離する。具体的には、混合物調製槽8で固液相Fと固液分離用溶剤Gとが混合された混合物Hが第3ポンプ11により遠心分離器10に供給され、遠心分離器10がこの混合物Hを固液分離する。なお、混合物調製槽8は、減圧気液分離器7により分離された固液相Fのうち、循環工程で循環利用された一部を除く残部が第2ポンプ9により供給され、撹拌機8aを用いて固液相Fと固液分離用溶剤Gとを混合して混合物Hを生成する。
 また、固液分離工程では、遠心分離器10で分離した液相及び固形分から固液分離用溶剤Gを回収し、この回収した固液分離用溶剤Gを固液分離工程へ循環する。具体的には、オーバーフロー溶剤回収装置12により、遠心分離器10で分離された液相から固液分離用溶剤Gを分離し、この分離した固液分離用溶剤Gを混合物調製槽8に供給する。また、アンダーフロー溶剤回収装置13により、遠心分離器10で分離された固形物から固液分離用溶剤Gを分離し、この分離した固液分離用溶剤Gを混合物調製槽8に供給する。これにより、固液分離用溶剤Gが循環利用される。
 上記混合物Hにおける固液相Fの質量に対する固液分離用溶剤Gの質量比の下限としては、0.5が好ましく、1がより好ましく、1.5がさらに好ましい。一方、上記質量比の上限としては、4が好ましく、3がより好ましく、2.5がより好ましい。上記質量比が上記下限に満たないと、十分な分離性が得られないおそれがある。逆に、上記質量比が上記上限を超えると、固液分離用溶剤Gの使用量が多くなり、水素化分解油の製造コストが増加するおそれがある。
 固液分離工程での遠心分離器10内の混合物Hの温度の下限としては、40℃が好ましく、70℃がより好ましい。一方、遠心分離器10内の混合物Hの温度の上限としては、130℃が好ましく、120℃がより好ましい。遠心分離器10内の混合物Hの温度が上記下限に満たないと、重質分が流動せず溶解し難いため、十分な抽出性が得られないおそれがある。逆に、遠心分離器10内の混合物Hの温度が上記上限を超えると、固液分離用溶剤Gが蒸発して遠心分離器10内の圧力が上昇し易くなるので、この圧力の上昇に対応するために設備コストが増加するおそれがある。
 固液分離工程での遠心分離器10内の混合物Hの滞留時間の上限としては、60秒が好ましく、45秒がより好ましく、30秒がさらに好ましい。一方、混合物Hの滞留時間の下限としては、5秒が好ましく、10秒がより好ましく、20秒がさらに好ましい。混合物Hの滞留時間が上記上限を超えると、遠心分離器内の容量を大きくしなければならず、遠心分離器が大型となるおそれがある。逆に、混合物Hの滞留時間が上記下限に満たないと、十分に固液分離できないおそれがある。
 固液分離工程での遠心分離器10の遠心力としては、3000G以下が好ましく、2500G以下がより好ましく、2200G以下がさらに好ましく、2000G以下が特に好ましい。一方、遠心分離器10の遠心力としては、1600G以上が好ましい。固液分離工程での遠心力は、高いほど分離能力が向上するが、固液分離工程での遠心力が上記上限を超えると、遠心分離器10が大型となり、設備コストが増加するおそれがある。
<ガス精製工程>
 ガス精製工程では、ガス精製装置15により、高圧低温気液分離器14で分離された気相からガスKを精製する。なお、高圧低温気液分離器14は、高圧気液分離器5で分離された気相をさらに高圧低温で気液分離し、その分離した気相をガス精製装置15に供給する。
<分留工程>
 分留工程では、上記気液分離工程で得られた気相及び上記固液分離工程で得られた液相を分留する。具体的には、低圧気液分離器6及び減圧気液分離器7で分離された気相、高圧低温気液分離器14で分離された液相、オーバーフロー溶剤回収装置12で固液分離用溶剤Gを分離した後の液相が蒸留塔16に供給され、蒸留塔16によりこれらをナフサL、灯油M、軽油N、減圧軽油P、無灰残渣Q等に分留する。
 上記固液分離用溶剤Gのナフサ留分及び灯油留分として上記分留工程で得られたナフサL及び灯油Mを用いるとよい。このように、固液分離用溶剤Gのナフサ留分及び灯油留分として当該水素化分解油製造方法の分留工程で得られたナフサL及び灯油Mを用いることにより、ナフサ留分及び灯油留分の調達及び輸送が容易となると共に、固液分離用溶剤Gのコストを低減できる。
 なお、当該水素化分解油製造装置の運転開始時には、分留工程で得られたナフサL及び灯油Mが存在しないため、最初の固液分離用溶剤Gに含有させるナフサ留分及び灯油留分として、例えば他の水素化分解油製造装置で得たナフサL及び灯油Mを用いてもよい。また、固液分離用溶剤Gとしてナフサ留分及び灯油留分を含有させずに運転を開始し、当該水素化分解油製造装置によりナフサL及び灯油Mが分留された時点で、固液分離用溶剤Gにその分留されたナフサL及び灯油Mを添加するようにしてもよい。
[利点]
 当該水素化分解油の製造方法は、固液分離用溶剤Gが、芳香族軽質溶剤、ナフサ留分及び灯油留分をそれぞれ10質量%超含有することにより、芳香族軽質溶剤による沈降性の低下作用及びナフサ留分による抽出性の低下作用を抑制できる。これにより、当該水素化分解油の製造方法は、気液分離工程で得られた固液相Fの残部と固液分離用溶剤Gとの混合物Hを固液分離する固液分離工程での分離性を高くすると共に沈降時間を短縮できる。また、当該水素化分解油の製造方法は、遠心分離器10により混合物Hを固液分離するので、比較的高温及び高圧の条件を必要とせず固液分離装置の大型化を抑制できるため、設備コストを低減できる。
〔その他の実施形態〕
 なお、本発明の水素化分解油の製造方法及び水素化分解油の製造装置は、上記実施形態に限定されるものではない。
 例えば上記実施形態では、多段の気液分離器として、高圧気液分離器5、低圧気液分離器6及び減圧気液分離器7の3段の気液分離器を用いることとしたが、2段の気液分離器で構成してもよいし、4段以上の気液分離器で構成してもよい。気液分離器の段数が多いほど気液分離に要する時間は長くなるが、分離性を向上させ易くなる。
 また、上記実施形態では、蒸留塔により、ナフサ、灯油、軽油、減圧軽油及び無灰残渣Qが分留されることとしたが、少なくともナフサ及び灯油が分留されればよく、これ以外の油分は分留しなくてもよい。また、これら以外の油分が分留されてもよい。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 図1の水素化分解油製造装置において、スラリー調製槽1に重金属成分を含有する石油系重質油A及び鉄系触媒Bを供給し、スラリー調製槽1で混合されたスラリーに水素ガスCを供給して原料スラリーDを得た。この原料スラリーDを予熱器2で予熱した後、懸濁床反応器4に供給した。ここで、上記石油系重質油Aとして減圧蒸留残渣(以下、VRという)を用い、鉄系触媒Bとしてリモナイト鉄鉱石触媒を用いた。このリモナイト鉄鉱石触媒の添加量は、減圧蒸留残渣の質量に対して鉄換算で1質量%とした。このリモナイト鉄鉱石触媒の平均粒子径は1.05μmであった。懸濁床反応器4での水素化分解反応の条件は、反応圧力12MPa、反応温度450℃、反応時間90分とした。
 次に、懸濁床反応器4で生成した反応生成物Eを高圧気液分離器5に供給し、高圧気液分離器5、低圧気液分離器6及び減圧気液分離器7により順に気液分離を行い、気相及び固液相に分離した。ここで、各気液分離器の温度条件は、高圧気液分離器5では、圧力12MPaG、温度400℃とし、低圧気液分離器6では、圧力0.3MPaG、温度380℃とし、減圧気液分離器7では、圧力10mmHG、温度350℃とした。このようにして低圧気液分離器6の下部から得られた固液相F(VR、減圧蒸留残渣)と固液分離用溶剤Gとを混合し、この混合物Hを遠沈管容積250mLの遠心分離器10(株式会社久保田製作所の「テーブルトップ遠心機5100」)で上澄み液と沈降物(ケーキ)とに分離した。この上澄み液及びケーキは、それぞれ上記実施形態での遠心分離器10で分離された液相及び固形分に相当する。上記固液分離用溶剤Gは、上記減圧蒸留残渣に対して表1に示す質量割合の芳香族軽質溶剤、ナフサ留分及び灯油留分を含有するものを混合した。ここでは、芳香族軽質溶剤としてトルエンを用いた。上記固液分離は、遠心分離器10の遠心力2000G、遠心分離器10内の上記混合物の温度100℃とし、30秒間行った。このようにして固液分離する方法を実施例1とし、固液分離された上記上澄み液及びケーキのそれぞれに含まれる固形分濃度を測定した。このとき得られる固形分は、トルエンの不溶分であるアスファルテン及び鉄系触媒Bである。この測定結果を表1に示す。なお、表1の「溶剤/減圧蒸留残渣質量比」は、上記混合物における減圧蒸留残渣に対する固液分離用溶剤の質量比を示す。また、表1の「固液分離溶剤中含有量」に示す質量割合は、固液分離用溶剤における各成分の質量割合、すなわち固液分離用溶剤中の各成分の配合比を示す。
(実施例2)
 実施例2は、実施例1と同様の配合比の固液分離用溶剤を用い、減圧蒸留残渣に対する固液分離用溶剤の質量比が0.9となるよう混合した混合物を用いた以外は実施例1と同様の方法により固液分離を行った。
(実施例3)
 実施例3は、実施例1と同様の配合比の固液分離用溶剤を用い、減圧蒸留残渣に対する固液分離用溶剤の質量比が3.6となるよう混合した混合物を用いた以外は実施例1と同様の方法により固液分離を行った。
(実施例4)
 実施例4は、上記減圧蒸留残渣に対して表1に示す質量割合のトルエン、ナフサ留分及び灯油留分を含有するものを混合し、固液分離時の遠心分離器10内での滞留時間を50秒とした以外は実施例1と同様の方法により固液分離を行った。
(実施例5)
 実施例5は、上記減圧蒸留残渣に対して表1に示す質量割合のトルエン、ナフサ留分及び灯油留分を含有するものを混合した以外は実施例1と同様の方法により固液分離を行った。
(実施例6)
 実施例6は、固液分離時の遠心分離器10内の混合物の温度を60℃とした以外は実施例1と同様の方法により固液分離を行った。
(実施例7)
 実施例7は、固液分離時の遠心分離器10での滞留時間を15秒とした以外は実施例1と同様の方法により固液分離を行った。
(実施例8)
 実施例8は、固液分離時の遠心分離器10の遠心力を1500Gとした以外は実施例1と同様の方法により固液分離を行った。
(実施例9)
 実施例9は、リモナイト鉄鉱石触媒として平均粒子径2.5μmのものを用い、減圧蒸留残渣の質量に対するリモナイト鉄鉱石触媒の添加量を鉄換算で2.5質量%とした以外は実施例1と同様の方法により固液分離を行った。
(比較例1~比較例4)
 比較例1~比較例4は、それぞれ上記減圧蒸留残渣に対して表1に示す質量割合のトルエン、ナフサ留分及び灯油留分を含有するものを混合した混合物を用いた以外は実施例1と同様の方法により固液分離を行った。
(比較例5)
 比較例5は、上記減圧蒸留残渣に混合する固液分離用溶剤としてトルエンを用いた以外は実施例1と同様の方法により固液分離を行った。
 実施例2~実施例9及び比較例1~比較例5のそれぞれにおいて、実施例1と同様に固液分離された上澄み液及びケーキのそれぞれに含まれる固形分濃度を測定した。これらの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<評価結果>
 表1の結果より、実施例1~実施例9でのケーキ中の固形分濃度は40質量%以上と大きく、遠心分離器により、固形分としてアスファルテン及び鉄系触媒Bを十分に分離できたことがわかる。一方、比較例1~比較例5でのケーキ中の固形分濃度は40質量%未満であり、遠心分離器によりアスファルテン及び鉄系触媒Bを十分には分離できていない。このことから、トルエン、ナフサ留分及び灯油留分をそれぞれ10質量%超含有する固液分離用溶剤を用いることで、固形分の抽出性を向上できることが確認できた。ここで、比較例1及び比較例5でのケーキ中の固形分濃度は35質量%及び36質量%程度と比較的大きいが、比較例1及び比較例5は固液分離用溶剤のトルエンの含有量を極めて大きくしたものである。トルエンはナフサ留分に比べて数倍高価であるため、比較例1及び比較例5では固液分離用溶剤が高価となり過ぎるため実用的ではない。
 また、表1の結果より、実施例1~実施例9での上澄み液中の固形分濃度は1.2質量%以下と非常に小さく、このことからも、実施例1~実施例9では、遠心分離器により固形分としてアスファルテン及び鉄系触媒Bが十分に分離できたことがわかる。
 実施例1及び実施例2の結果を比較すると、これらはトルエン、ナフサ留分及び灯油留分の含有量が1/3ずつである同じ配合比の固液分離用溶剤を使用しているが、実施例1の方がケーキ中の固形分濃度が高い。これは、固液分離用溶剤における減圧蒸留残渣に対する固液分離用溶剤の質量比が、実施例1に比べて実施例2の方が小さいため、実施例2の抽出性が実施例1より低下したためである。このことから、上記固液分離用溶剤の質量比を1.5以上とすることで、分離性をより向上できることがわかる。
 実施例1及び実施例3の結果を比較すると、これらのケーキ中の固形分濃度は同等である。実施例1及び実施例3は、トルエン、ナフサ留分及び灯油留分の配合比が同じ固液分離用溶剤を使用しているが、固液分離用溶剤における減圧蒸留残渣に対する固液分離用溶剤の質量比が、実施例1に比べて実施例3の方が大きい。このことより、上記固液分離用溶剤の質量比は、実施例3での質量比に近い程度まで大きくなると、さらに大きくしても抽出性の向上効果の増加が小さくなるといえる。従って、上記固液分離用溶剤の質量比を4以下となる範囲で調整することで、固液分離用溶剤の使用量を抑制しつつ高い抽出性が得られることがわかる。
 実施例1及び実施例4の結果を比較すると、実施例1の方がケーキ中の固形分濃度が高い。実施例1及び実施例4は、固液分離用溶剤における減圧蒸留残渣に対する固液分離用溶剤の質量比は略等しいが、固液分離用溶剤中の各成分の配合比が異なる。固液分離用溶剤中のトルエンの含有量は実施例1よりも実施例4の方が大きいが、上述したようにケーキ中の固形分濃度は実施例1の方が大きい。これは、トルエンの抽出性向上作用よりも沈降速度低下作用の方が大きく影響したために、実施例4のケーキ中の固形分濃度が実施例1よりも小さくなったといえる。このことから、固液分離用溶剤中のトルエンの含有量を60質量%以下とし、ナフサ留分及び灯油留分の含有量を共に20質量%以上とすることで、分離性をより向上できることがわかる。また、固液分離用溶剤におけるトルエン、ナフサ留分及び灯油留分の含有量を等しくすることで、分離性が向上し易いことがわかる。
 実施例1及び実施例5の結果を比較すると、実施例1の方がケーキ中の固形分濃度が高い。実施例1及び実施例5は、固液分離用溶剤における減圧蒸留残渣に対する固液分離用溶剤の質量比は略等しいが、固液分離用溶剤中の各成分の配合比が異なる。固液分離用溶剤中のトルエンの含有量は、実施例1の方が実施例5よりも大きい。これは、抽出性向上効果の大きいトルエンの含有量が小さいために、実施例5のケーキ中の固形分濃度が実施例1よりも小さくなったといえる。このことから、固液分離用溶剤中のトルエンの含有量を30質量%以上とすることで、分離性をより向上できることがわかる。
 実施例1及び実施例6の結果を比較すると、実施例1の方がケーキ中の固形分濃度が高い。実施例1及び実施例6は、遠心分離器での混合物の温度のみが異なる。実施例1の方がケーキ中の固形分濃度が高かったのは、実施例6の方が遠心分離器での混合物の温度が低かったことで重質分の流動が小さかったためといえる。この結果より、遠心分離器での混合物の温度を70℃以上とすることで、分離性をより向上できることがわかる。
 実施例1及び実施例7の結果を比較すると、実施例1の方がケーキ中の固形分濃度が高い。実施例1及び実施例7は、遠心分離器での混合物の滞留時間のみが異なる。この結果より、遠心分離器での混合物の滞留時間を20秒以上とすることで、分離性をより向上できることがわかる。
 実施例1及び実施例8の結果を比較すると、実施例1の方がケーキ中の固形分濃度が高い。実施例1及び実施例8は、固液分離時の遠心分離器の遠心力のみが異なる。この結果より、遠心分離器の遠心力を1600G以上とすることで、分離性をより向上できることがわかる。
 実施例1及び実施例9の結果を比較すると、実施例1の方がケーキ中の固形分濃度が高い。実施例1及び実施例9は、リモナイト鉄鉱石触媒の平均粒子径及び減圧蒸留残渣に対する添加量のみが異なる。この結果より、リモナイト鉄鉱石触媒の平均粒子径を2μm以下とし、減圧蒸留残渣の質量に対するリモナイト鉄鉱石触媒の質量比を鉄換算で0.02以下とすることで、抽出性をより向上できることがわかる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年7月11日出願の日本特許出願2016-136871に基づくものであり、その内容はここに参照として取り込まれる。
 以上説明したように、当該水素化分解油の製造方法及び水素化分解油の製造装置により、水素化分解工程で生じるコークを沈降固液分離により選択的に除去する時間を短縮でき、かつ設備コストを低減できるので、石油系重質油から軽質油を製造する装置等として好適に用いることができる。
 1 スラリー調製槽
 1a 撹拌機
 2 予熱器
 3 第1ポンプ
 4 懸濁床反応器
 5 高圧気液分離器
 6 低圧気液分離器
 7 減圧気液分離器
 8 混合物調製槽
 8a 撹拌機
 9 第2ポンプ
 10 遠心分離器
 11 第3ポンプ
 12 オーバーフロー溶剤回収装置
 13 アンダーフロー溶剤回収装置
 14 高圧低温気液分離器
 15 ガス精製装置
 16 蒸留塔
 A 石油系重質油
 B 鉄系触媒
 C 水素ガス
 D 原料スラリー
 E 反応生成物
 F 固液相
 G 固液分離用溶剤
 H 混合物
 J スラッジ
 K ガス
 L ナフサ 
 M 灯油
 N 軽油
 P 減圧軽油
 Q 無灰残渣
 

Claims (8)

  1.  重金属成分を含有する石油系重質油を原料とする水素化分解油の製造方法であって、
     上記石油系重質油、鉄系触媒及び水素ガスを混合する混合工程と、
     上記混合工程後に懸濁床反応器中で上記石油系重質油を水素化分解する水素化分解工程と、
     上記水素化分解工程後の反応生成物を多段の気液分離器で気液分離する気液分離工程と、
     上記気液分離工程で得られた固液相の一部を上記混合工程に循環する循環工程と、
     上記循環工程後の固液相の残部と固液分離用溶剤との混合物を遠心分離器で固液分離する固液分離工程と
     を備え、
     上記固液分離用溶剤が、芳香族軽質溶剤、水素化分解法により得られるナフサ留分及び灯油留分をそれぞれ10質量%超含有する、水素化分解油の製造方法。
  2.  上記混合物における上記固液相の残部の質量に対する固液分離用溶剤の質量比が0.5以上4以下であり、
     上記固液分離工程での遠心分離器内の混合物の温度が40℃以上130℃以下、滞留時間が60秒以下である、請求項1に記載の水素化分解油の製造方法。
  3.  上記気液分離工程が、
     上記水素化分解工程後の反応生成物を高圧気液分離器により気液分離する第1工程と、
     上記第1工程で分離された固液相を低圧気液分離器により気液分離する第2工程と、
     上記第2工程で分離された固液相を減圧気液分離器により気液分離する第3工程と
     を有する、請求項1又は請求項2に記載の水素化分解油の製造方法。
  4.  上記気液分離工程で得られた気相及び固液分離工程で得られた液相を分留する分留工程をさらに備え、
     上記固液分離用溶剤のナフサ留分及び灯油留分として、上記分留工程で得られたナフサ留分及び灯油留分を用いる、請求項1又は請求項2に記載の水素化分解油の製造方法。
  5.  上記芳香族軽質溶剤が沸点150℃以下の単一成分又はそれらの混合成分であり、
     上記ナフサ留分の沸点が80℃以上180℃以下であり、
     上記灯油留分の沸点が180℃超240℃以下である、請求項1又は請求項2に記載の水素化分解油の製造方法。
  6.  上記固液分離工程での遠心分離器内の混合物の滞留時間が30秒以下であり、上記遠心分離器の遠心力が3000G以下である、請求項1又は請求項2に記載の水素化分解油の製造方法。
  7.  上記鉄系触媒が平均粒子径2μm以下のリモナイト鉄鉱石触媒であり、
     上記混合工程における石油系重質油の質量に対する鉄系触媒の質量比が、鉄換算で0.003以上0.02以下である、請求項1又は請求項2に記載の水素化分解油の製造方法。
  8.  重金属成分を含有する石油系重質油を原料とする水素化分解油の製造装置であって、
     上記石油系重質油、鉄系触媒及び水素ガスを混合する混合部と、
     上記混合部で得た原料スラリー中の石油系重質油を水素化分解する懸濁床反応部と、
     上記懸濁床反応部で生成された反応生成物を多段で気液分離する気液分離部と、
     上記気液分離部で得られた固液相の一部を上記混合部に循環する循環部と、
     上記気液分離部で得られた固液相の残部と固液分離用溶剤との混合物を固液分離する遠心分離部と
     を備え、
     上記固液分離用溶剤が、芳香族軽質溶剤、水素化分解法により得られるナフサ留分及び灯油留分をそれぞれ10質量%超含有する、水素化分解油の製造装置。
PCT/JP2017/022910 2016-07-11 2017-06-21 水素化分解油の製造方法及び水素化分解油の製造装置 WO2018012233A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112019000250-2A BR112019000250B1 (pt) 2016-07-11 2017-06-21 Método e aparelho utilizado para a produção de óleo hidrocraqueado
CA3029800A CA3029800C (en) 2016-07-11 2017-06-21 Method and apparatus for producing hydrocracked oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016136871A JP6715709B2 (ja) 2016-07-11 2016-07-11 水素化分解油の製造方法及び水素化分解油の製造装置
JP2016-136871 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012233A1 true WO2018012233A1 (ja) 2018-01-18

Family

ID=60953070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022910 WO2018012233A1 (ja) 2016-07-11 2017-06-21 水素化分解油の製造方法及び水素化分解油の製造装置

Country Status (4)

Country Link
JP (1) JP6715709B2 (ja)
BR (1) BR112019000250B1 (ja)
CA (1) CA3029800C (ja)
WO (1) WO2018012233A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11066610B2 (en) 2019-05-28 2021-07-20 Saudi Arabian Oil Company Systems and processes for suppressing heavy polynuclear aromatic deposition in a hydrocracking process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202383A (en) * 1981-06-08 1982-12-11 Res Assoc Residual Oil Process<Rarop> Hydrogenating method of heavy oil
JP2006511681A (ja) * 2002-12-20 2006-04-06 エニ、ソシエタ、ペル、アチオニ 重質粗油及び蒸留残渣のような重質原料油の転化方法
JP2007246719A (ja) * 2006-03-16 2007-09-27 Kobe Steel Ltd 石油系重質油の水素化分解方法
JP2012193314A (ja) * 2011-03-17 2012-10-11 Kobe Steel Ltd 重質油からの水素化分解油の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202383A (en) * 1981-06-08 1982-12-11 Res Assoc Residual Oil Process<Rarop> Hydrogenating method of heavy oil
JP2006511681A (ja) * 2002-12-20 2006-04-06 エニ、ソシエタ、ペル、アチオニ 重質粗油及び蒸留残渣のような重質原料油の転化方法
JP2007246719A (ja) * 2006-03-16 2007-09-27 Kobe Steel Ltd 石油系重質油の水素化分解方法
JP2012193314A (ja) * 2011-03-17 2012-10-11 Kobe Steel Ltd 重質油からの水素化分解油の製造方法

Also Published As

Publication number Publication date
JP2018009056A (ja) 2018-01-18
BR112019000250A2 (pt) 2019-04-16
CA3029800A1 (en) 2018-01-18
BR112019000250B1 (pt) 2022-06-14
CA3029800C (en) 2021-02-02
JP6715709B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
CN104254590B (zh) 对原油进行集成浆液加氢处理和蒸汽热解来生产石油化学产品
RU2332440C1 (ru) Способ прямого сжижения угля
CA2712725C (en) Apparatus and method for recovering a hydrocarbon diluent from tailings
RU2541324C2 (ru) Добавка для процесса гидропереработки и способ ее получения и применения
JP6073882B2 (ja) 重質炭化水素の安定化方法
CN105324462B (zh) 使用新型设备和方法改进从重质液态烃中分离固体沥青质(“ias”)
JP4813933B2 (ja) 石油系重質油の水素化分解方法
US20160040079A1 (en) Enhanced methods for solvent deasphalting of hydrocarbons
CN108884395A (zh) 通过回收和处理重质裂化器残余物来增加烯烃产量的整合方法
WO2017106146A1 (en) Supercritical water upgrading process to produce high grade coke
RU2622393C2 (ru) Конверсия асфальтенового пека в течение процесса гидрокрекинга остатка с кипящим слоем
WO2017066269A1 (en) Method to remove metals from petroleum
RU2649387C2 (ru) Способ селективной деасфальтизации тяжелого сырья
JP7126442B2 (ja) プラスチック二次加工製品の生産速度が上昇した改良型沸騰床リアクター
KR101759351B1 (ko) 초임계 용매를 이용한 중질 탄화수소 유분의 수소화 분해 공정
TW201839112A (zh) 具有較少的結垢沉積物的升級的沸騰床反應器
JPS5826385B2 (ja) 水素添加による炭化水素の処理及び微粉の除去
KR20100106989A (ko) 상압잔사유의 업그레이드 공정
JP6942146B2 (ja) 混合溶剤脱れきを利用してディレードコーカー中で高品質コークスを製造するための方法
WO2018012233A1 (ja) 水素化分解油の製造方法及び水素化分解油の製造装置
JPH0832887B2 (ja) 固体アスフアルトの分別方法
RU2737894C2 (ru) Способ обработки углеводородного сырья, включающий стадию деасфальтизации и стадию кондиционирования асфальта
RU2805925C1 (ru) Способ комбинированного гидрокрекинга тяжелого нефтяного сырья, включающий выделение отработанной добавки из неконвертированных остатков гидрокрекинга и ее осушку
RU2808443C1 (ru) Способ комбинированного гидрокрекинга тяжелого нефтяного сырья, включающий выделение отработанной добавки из неконвертированных остатков гидрокрекинга и ее осушку
CN118222326A (zh) 用于加工重质石油原料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3029800

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019000250

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019000250

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190107

122 Ep: pct application non-entry in european phase

Ref document number: 17827363

Country of ref document: EP

Kind code of ref document: A1