WO2018012185A1 - Laminate body substrate, conductive substrate, method for manufacturing laminate body substrate, method for manufacturing conductive substrate - Google Patents

Laminate body substrate, conductive substrate, method for manufacturing laminate body substrate, method for manufacturing conductive substrate Download PDF

Info

Publication number
WO2018012185A1
WO2018012185A1 PCT/JP2017/021958 JP2017021958W WO2018012185A1 WO 2018012185 A1 WO2018012185 A1 WO 2018012185A1 JP 2017021958 W JP2017021958 W JP 2017021958W WO 2018012185 A1 WO2018012185 A1 WO 2018012185A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
blackened
substrate
base metal
Prior art date
Application number
PCT/JP2017/021958
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 渡邉
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020187037324A priority Critical patent/KR102365980B1/en
Priority to CN201780041438.6A priority patent/CN109416605B/en
Publication of WO2018012185A1 publication Critical patent/WO2018012185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a laminate substrate, a conductive substrate, a laminate substrate manufacturing method, and a conductive substrate manufacturing method.
  • a transparent conductive film for a touch panel in which an ITO (indium tin oxide) film is formed as a transparent conductive film on the surface of a transparent base material such as a transparent polymer film has been conventionally used. It has been.
  • a display with a touch panel has been increased in screen size, and in response to this, a conductive substrate such as a transparent conductive film for a touch panel is required to have a large area.
  • ITO has a high electric resistance value, there is a problem that it cannot cope with an increase in the area of the conductive substrate.
  • Patent Documents 2 and 3 it has been studied to use a metal wiring obtained by processing a metal foil such as copper instead of the ITO film wiring.
  • a metal foil such as copper
  • copper has a metallic luster
  • the conductive substrate provided with the metal wiring on the transparent base material is obtained by etching the metal layer so as to obtain a desired wiring pattern after obtaining the laminate substrate in which the metal layer is formed on the surface of the transparent base material. It is obtained by forming a metal wiring.
  • the conductive substrate having the blackened layer and the metal wiring on the transparent base material is obtained by obtaining a laminate substrate in which the blackened layer and the metal layer are laminated in that order on the surface of the transparent base material, and then the desired wiring. It is obtained by forming the metal wiring by etching the blackened layer and the metal layer so as to form a pattern.
  • the blackened layer 2 patterned on the transparent substrate 1 and the metal wiring 3 patterned with the metal layer are stacked.
  • the conductive substrate can be made.
  • a patterned on the transparent substrate 1 was blackened layer 2 having a width (bottom width) W A but it may be larger than the width W B of the metal wire 3 is a metal layer patterned. Then, so-called side etching occurs in which the side surface of the metal wiring 3 is etched. For this reason, the cross-sectional shape of the metal wiring 3 is likely to be a trapezoid with a wide base, and if the etching is performed until the electrical insulation between the metal wirings 3 is ensured, the wiring pitch width becomes too wide.
  • the patterned black layer 2 having a width as shown in FIG. 1C (bottom width) W A width W of the metal wires 3
  • a state smaller than B that is, so-called undercut occurs.
  • Such undercuts are generated, depending on the degree, the width W B of a predetermined metal wiring 3, an adhesion width of the transparent substrate 1, a blackening layer 2 patterned bottom width W A
  • the ratio of the contact width decreases more than necessary, there is a problem that sufficient wiring contact strength cannot be obtained.
  • the etching rate of the blackened layer is made equal to the etching rate of the metal layer, the etching residue of the blackened layer exists on the surface of the transparent substrate exposed after etching, that is, the opening is visually yellow. I could see it.
  • an object of the present invention is to provide a laminate substrate that includes a copper layer and a blackened layer, and can simultaneously etch the copper layer and the blackened layer.
  • the present invention A transparent substrate; A laminate formed on at least one surface side of the transparent substrate, The laminate is Mainly composed of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the metal group.
  • a base metal layer made of an alloy as a component;
  • a first blackening layer disposed on the base metal layer and containing oxygen, copper, and nickel;
  • a copper layer Provided is a laminate substrate in which the proportion of nickel is 20% by mass or more and 70% by mass or less in the metal component contained in the first blackened layer.
  • a laminate substrate that includes a copper layer and a blackened layer and can simultaneously etch the copper layer and the blackened layer.
  • the laminate substrate of the present embodiment can include a transparent substrate and a laminate formed on at least one surface side of the transparent substrate.
  • the laminate is made of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or 1 selected from the above metal group.
  • a base metal layer made of an alloy containing at least different kinds of metals as a main component, a first blackening layer disposed on the base metal layer and containing oxygen, copper, and nickel, and a copper layer. Can do.
  • the ratio of nickel can be 20 mass% or more and 70 mass% or less among the metal components contained in a 1st blackening layer.
  • substrate in this embodiment is a board
  • the conductive substrate is a wiring substrate having a copper wiring layer or a blackened wiring layer patterned on the surface of a transparent base material to form a wiring.
  • the transparent substrate is not particularly limited, and a polymer film that transmits visible light, a glass substrate, or the like can be preferably used.
  • a resin film such as a polyamide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a cycloolefin film, a polyimide film, or a polycarbonate film can be preferably used.
  • the thickness of the transparent base material is not particularly limited, and can be arbitrarily selected according to the strength required when the conductive substrate is used, the light transmittance, and the like.
  • the thickness of the transparent substrate can be, for example, 10 ⁇ m or more and 250 ⁇ m or less. In particular, when used for touch panel applications, it is preferably 20 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 120 ⁇ m or less. In the case of use for touch panel applications, for example, particularly in applications where it is required to reduce the thickness of the entire display, the thickness of the transparent substrate is preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • a laminated body is formed in the at least one surface side of a transparent base material, and can have a base metal layer, a 1st blackening layer, and a copper layer.
  • the copper layer is not particularly limited, but it is preferable not to dispose an adhesive between the copper layer and the transparent substrate or between the copper layer and the blackening layer in order not to reduce the light transmittance. That is, the copper layer is preferably formed directly on the upper surface of another member.
  • a copper thin film layer may be formed using a dry plating method such as a sputtering method, an ion plating method, or a vapor deposition method, and the copper thin film layer may be used as a copper layer. it can.
  • a copper thin film layer can be formed by a dry plating method on a transparent substrate or a blackened layer, and the copper plating layer can be formed by a wet plating method using the copper thin film layer as a power feeding layer.
  • the copper layer has a copper thin film layer and a copper plating layer.
  • the copper layer can be formed directly on the transparent substrate or the blackened layer without using an adhesive by forming the copper layer only by the dry plating method or by combining the dry plating method and the wet plating method as described above. preferable.
  • the thickness of the copper layer is not particularly limited, and when the copper layer is used as a wiring, it can be arbitrarily selected according to the electrical resistance value, the wiring width, etc. of the wiring.
  • the copper layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, and even more preferably 150 nm or more so that electricity flows sufficiently.
  • the upper limit value of the thickness of the copper layer is not particularly limited. However, when the copper layer is thick, side etching occurs because etching takes time when performing etching to form a wiring, and the resist peels off during the etching. Etc. are likely to occur.
  • the thickness of a copper layer is 5000 nm or less, and it is more preferable that it is 3000 nm or less.
  • the sum total of the thickness of a copper thin film layer and the thickness of a copper plating layer is the said range.
  • the copper layer Since the copper layer has a metallic luster, the copper reflects light as described above only by forming a copper wiring layer that is a wiring obtained by etching the copper layer on a transparent substrate, and used as a wiring substrate for a touch panel, for example. In this case, there is a problem that the visibility of the display is lowered. Therefore, a method of providing a blackened layer has been studied, but the blackened layer may not have sufficient reactivity with the etching solution, and the copper layer and the blackened layer are simultaneously etched into a desired shape. This is difficult, and there is a problem that an etching residue of the blackened layer is generated.
  • the inventors of the present invention initially studied a method of forming a copper oxide layer obtained by oxidizing a part of the copper layer as a blackened layer capable of suppressing light reflection on the surface of the copper layer. And when a part of copper layer was oxidized and it was set as the blackening layer, it discovered that the non-stoichiometric copper oxide and the copper which are not oxidized may be contained in the blackening layer concerned.
  • an etchant capable of etching the copper layer can be suitably used as the etchant.
  • the blackened layer contains non-stoichiometric copper oxide, the copper layer tends to be eluted into an etchable solution.
  • the blackened layer contains a non-stoichiometric copper oxide that easily elutes with respect to the etching solution
  • the blackened layer is highly reactive with the etching solution, and compared with the copper layer, The etching rate is greatly increased. For this reason, when the copper layer and the blackened layer were simultaneously etched, the blackened layer was likely to be undercut.
  • the inventors of the present invention include a copper layer and a blackened layer, and with the same etching solution, the copper layer and the blackened layer are formed in one step into an undercut and an opening.
  • the present invention was completed by intensively studying a laminate substrate that can be etched while suppressing the generation of the blackening layer residue.
  • the first blackening layer included in the laminate substrate of the present embodiment is provided on the base metal layer provided on the surface of the transparent substrate, that is, on the surface of the base metal layer.
  • the relationship between the base metal layer and the first blackening layer is that when etching is performed with the same etching solution, the base metal layer is a layer having a higher reactivity to the etching solution than the first blackening layer. can do. That is, the base metal layer is more easily dissolved in the etchant than the first blackening layer, and in other words, the base metal layer can be a layer that is easily etched.
  • the base metal layer By making the base metal layer a layer having a higher reactivity to the etchant than the first blackening layer, generation of etching residues on the surface of the transparent substrate exposed after the etching can be suppressed.
  • the etching property of the base metal layer affects the etching property of the first blackening layer.
  • the first blackened layer included in the laminate substrate of the present embodiment can contain a nickel component that is difficult to dissolve in the etching solution in addition to oxygen and copper.
  • the first blackening layer can contain copper and nickel as metal components.
  • the metal component which a 1st blackening layer contains can also be comprised only from copper and nickel, even in this case, it is not limited only to copper and nickel.
  • the first blackened layer may further contain 1% by mass or less of inevitable impurities as a metal component.
  • the first blackening layer only needs to contain oxygen, copper, and nickel, and the state in which each component is contained is not particularly limited.
  • the first blackening layer can contain, for example, at least part of copper, non-stoichiometric copper oxide in which nickel is oxidized, or nickel oxide. Even when the first blackened layer contains non-stoichiometric copper oxide as described above, the first blackened layer also contains a nickel component at the same time, so there is almost no difference in reactivity with the etching solution from the copper layer. Can be.
  • the first blackening layer preferably contains a non-stoichiometric oxide of nickel.
  • the amount of oxygen contained in the first blackened layer is not particularly limited. However, the amount of oxygen contained in the first blackened layer and the second blackened layer to be described later affects the light reflectance of the laminate substrate and a conductive substrate manufactured using the laminate substrate. There is a case. For this reason, the first blackened layer is formed according to the degree of light reflectance required in the laminated substrate or a conductive substrate manufactured using the laminated substrate, the color tone of the first blackened layer, and the like. It is preferable to select the amount of oxygen contained, and further the amount of oxygen to be added when forming the first blackening layer.
  • the proportion of nickel in the metal component contained in the first blackened layer is not particularly limited, but the proportion of nickel in the metal component contained in the first blackened layer is 20% by mass or more and 70% by mass. The following is preferable.
  • the ratio of nickel in the metal component contained in the first blackened layer is the total content of metal components in the blackened layer, for example, the total content of copper and nickel is 100% by mass. The ratio of nickel is shown.
  • the base metal layer does not contain non-stoichiometric oxide such as non-stoichiometric oxide of nickel, This is because a sufficient difference in reactivity with respect to the etching solution, that is, a difference in reaction rate can be secured.
  • the proportion of nickel in the metal component contained in the first blackened layer exceeds 70% by mass, the nickel is excessive and it may be difficult to etch the first blackened layer. That is, the dissolution rate of the first blackened layer in the etching solution is slower than that of the copper layer, and there is a possibility that the first blackened layer that can be etched simultaneously with the copper layer cannot be obtained. For this reason, as above-mentioned, it is preferable that the ratio of nickel is 70 mass% or less among the metal components contained in a 1st blackening layer.
  • the ratio of nickel is 20% by mass or more and 70% by mass or less, so that the wavelength of the laminated substrate and the conductive substrate formed from the laminated substrate is 400 nm.
  • the average of the regular reflectance of light having a wavelength of 700 nm or less can be assuredly reduced to 55% or less. For this reason, even when the conductive substrate is used for applications such as a touch panel, a decrease in the visibility of the display can be suppressed.
  • the average reflectance of light having a wavelength of 400 nm or more and 700 nm or less on the surface of the first blackened layer through the transparent substrate by setting the thickness of the base metal layer to 5 nm or less. When calculated, it can be more reliably set to 55% or less, which is preferable.
  • the base metal layer is made of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the above metal group It can be set as the layer which consists of an alloy which has a 1 or more types of metal as a main component.
  • the base metal layer for example, 1% by mass or less of unavoidable impurities may exist as a metal component.
  • the alloy which has as a main component one or more types of metals selected from the said metal group is an alloy which contains most one or more types of metals selected from the said metal group by mass ratio in a metal component. It means that there is.
  • Such an alloy may be an alloy made of one or more kinds of metals selected from the above metal group.
  • the base metal layer is particularly preferably made of any one of Cu, Ni—Cu alloy, and Ni—Cr alloy containing 7 mass% or less of Cr.
  • the Cr content can be greater than zero.
  • the base metal layer is made of any of the above metals (alloys) because the reactivity with the etching solution can be made particularly higher than that of the first blackening layer.
  • the metal component constituting the base metal layer exists as a metal and is not an indefinite ratio of oxide.
  • the base metal layer since the base metal layer does not contain oxygen, the base metal layer is etched using a non-stoichiometric oxide of a metal element constituting the base metal layer, specifically, for example, a non-stoichiometric oxide of nickel. It can be set as the structure which does not contain the component which is hard to melt
  • the base metal layer can contain a predetermined metal and can be configured not to contain oxygen.
  • the first blackening layer may contain oxygen, copper, and nickel.
  • the base metal layer and the first blackening layer included in the laminate substrate according to the present embodiment cause a difference in reactivity with the etching solution, and the base metal layer has the first blackening as described above.
  • the reactivity with the etching solution can be made higher than that of the layer.
  • the reactivity with respect to the etching liquid of a 1st blackening layer and a copper layer shall be a thing with little difference.
  • the base metal layer is easily etched as described above, when the laminate substrate is patterned, for example, the etching residue of the blackened layer on the surface of the transparent substrate Can be suppressed.
  • the base metal layer can be easily removed by etching. This is because the residue of the blackening layer can also be removed from above.
  • the etching residue of a blackening layer can be decreased, the decreasing rate of the total light transmittance of the transparent base material exposed by the etching, in other words, the decreasing rate of the total light transmittance of the opening can be suppressed.
  • the first blackening layer that is harder to etch than the base metal layer is disposed on the base metal layer, and the base metal layer is covered with the first blackening layer. For this reason, if the first blackening layer is not removed by etching, the underlying metal layer is not removed by etching, so that occurrence of undercut can be reliably suppressed. Furthermore, as described above, since the base metal layer is easily etched, the etching residue of the blackened layer hardly remains on the surface of the transparent substrate after the etching.
  • the thickness of the base metal layer is 5 nm or less. It is preferable.
  • the lower limit of the thickness of the underlying metal layer is not particularly limited, but the thickness of the underlying metal layer is also present in order to allow the underlying metal layer to exist as a film and from the viewpoint of sufficiently improving the etching property of the first blackening layer.
  • the thickness is preferably 1.5 nm or more.
  • the thickness of the first blackening layer is not particularly limited, and can be arbitrarily selected according to, for example, the degree of suppressing the reflection of light on the surface of the copper layer.
  • the lower limit of the thickness of the first blackening layer is preferably 20 nm or more.
  • the first blackening layer functions as a layer that suppresses reflection of light on the surface of the copper layer, but when the thickness of the first blackening layer is thin, reflection of light by the copper layer is sufficiently suppressed. There are cases where it is impossible On the other hand, as described above, the reflection of light on the surface of the copper layer can be more reliably suppressed by setting the thickness of the first blackened layer to 20 nm or more.
  • the upper limit of the thickness of the first blackened layer is not particularly limited, but the time required for film formation and the time required for etching when forming the wiring are increased even if the thickness is increased more than necessary, and the cost is increased. Will lead to an increase.
  • the thickness of the first blackening layer is preferably 70 nm or less, and more preferably 50 nm or less.
  • the multilayer substrate of the present embodiment has the predetermined base metal layer and the first blackened layer, the copper layer and the first blackened layer can be etched simultaneously. it can.
  • the copper layer and the first blackened layer can be etched at the same time by using the same etching solution to cause the copper layer and the first blackened layer to be undercut in one step and the opening. This means that etching can be performed while suppressing the generation of the residue of the blackened layer.
  • the copper layer and the first blackened layer can be processed with different etching liquids, and the etching liquid and the first blackened film that can selectively remove the copper layers. It is also possible to produce a conductive substrate having finer fine metal wires by selectively using an etching solution that can selectively remove a layer. Even when using different etching solutions in this way, in particular, the underlying metal layer is more reactive with the etching solution than the first blackening layer, so that fine metal wires can be formed on the surface of the transparent substrate without any blackening layer residue. Is possible.
  • the method for forming the base metal layer disposed on the laminate substrate of the present embodiment is not particularly limited.
  • the base metal layer is preferably formed by a dry film formation method such as sputtering.
  • the film can be formed while supplying an inert gas used as a sputtering gas into the chamber by using a target of a metal component constituting the base metal layer. Further, oxygen is not added to the sputtering gas when forming the base metal layer.
  • the method for forming the first blackened layer disposed on the laminate substrate of the present embodiment is not particularly limited.
  • the first blackening layer is preferably formed by, for example, a dry film forming method such as a sputtering method.
  • a copper-nickel alloy target When forming the first black layer by sputtering, for example, a copper-nickel alloy target may be used while supplying oxygen gas in addition to the inert gas used as the sputtering gas in the chamber. it can.
  • the proportion of nickel in the metal component contained in the copper-nickel alloy is 20 mass% or more and 70 It is preferable that it is below mass%. This is because the ratio of nickel in the metal components contained in the first blackened layer to be formed, for example, copper and nickel, and the copper-nickel alloy target used in forming the blackened layer is copper. This is because the ratio of nickel in copper and nickel contained in the nickel alloy is the same.
  • the method for adjusting the supply amount of oxygen gas supplied into the chamber is not particularly limited.
  • a mixed gas in which an oxygen gas and an inert gas are mixed in advance so that the oxygen partial pressure becomes a desired partial pressure can also be used.
  • the partial pressure of oxygen gas in the chamber can be adjusted by simultaneously supplying an inert gas and oxygen gas into the chamber and adjusting the supply amount of each gas. In particular, the latter is preferable because the partial pressure of each gas in the chamber can be adjusted as necessary.
  • the first blackening layer can also contain one or more components selected from hydrogen and carbon in addition to oxygen as components other than the metal component.
  • the gas for forming the first blackening layer contains one or more kinds of gases selected from water vapor, carbon monoxide gas, and carbon dioxide gas, in addition to oxygen gas and inert gas. Also good.
  • the ratio of the inert gas supplied to the chamber and the oxygen gas is as follows. It is not limited. It can be arbitrarily selected according to the reflectance of light required for the laminate substrate and the conductive substrate, the degree of color tone of each blackened layer, and the like.
  • the laminate substrate of the present embodiment can further have a second blackened layer in addition to the first blackened layer.
  • the laminate further has a second blackened layer.
  • the second blackening layer can be provided on the surface of the copper layer. That is, the copper layer is disposed between the first blackened layer and the second blackened layer, and can be sandwiched between the first blackened layer and the second blackened layer.
  • the configuration of the second blackening layer is not particularly limited, and for example, a configuration different from that of the first blackening layer may be employed.
  • the second blackened layer can be configured to contain the same components as the first blackened layer.
  • the second blackening layer can contain, for example, oxygen and copper.
  • the second blackened layer can further contain nickel, and can also contain oxygen, copper, and nickel.
  • the second blackening layer can be composed of one layer, but can also be a multilayer structure, for example, a structure having a layer containing copper as a metal component and a layer containing copper and nickel as metal components You can also be a multilayer structure, for example, a structure having a layer containing copper as a metal component and a layer containing copper and nickel as metal components You can also be a multilayer structure, for example, a structure having a layer containing copper as a metal component and a layer containing copper and nickel as metal components You can also
  • the ratio of nickel is 0 mass% or more and 70 mass% or less among the metal components in a 2nd blackened layer, for example, copper, or copper and nickel, in a 2nd blackened layer. This is because when the second blackening layer contains copper as the metal component, and optionally further contains nickel, the total content of copper and nickel as the metal component is 100% by mass. This is because if the ratio exceeds 70% by mass, nickel is excessive and etching of the second blackened layer may be difficult.
  • the thickness of the second blackening layer is not particularly limited, but for example, the lower limit can be 5 nm or more. Further, the upper limit is preferably, for example, 70 nm or less, and more preferably 50 nm or less.
  • the total thickness is preferably in the above range.
  • the method for forming the second blackened layer is not particularly limited, but it is preferable to form the second blackened layer by a dry film forming method such as a sputtering method in the same manner as the first blackened layer.
  • the second blackened layer is formed by sputtering
  • a copper target or a copper-nickel alloy target is used while supplying oxygen gas in addition to the inert gas used as the sputtering gas in the chamber.
  • the proportion of nickel in the copper-nickel alloy is greater than 0% by mass. It is preferable that it is 70 mass% or less.
  • the sputtering gas for forming the second blackened layer by sputtering can be selected in the same manner as in the case of forming the first blackened layer, description thereof is omitted here.
  • the base metal layer, the first blackened layer, and the copper layer, and in some cases, the second blackened layer can be further laminated on the transparent substrate as described later.
  • a conductive substrate By patterning the underlying metal layer, the first blackened layer, and the copper layer, and in some cases, the second blackened layer, a conductive substrate can be obtained.
  • the copper wiring layer and the underlying metal wiring layer of the conductive substrate obtained from the laminated substrate of the present embodiment, and the blackened wiring layers are respectively the copper layer and the underlying metal layer of the laminated substrate of the present embodiment. And the characteristics of each blackened layer are maintained.
  • the laminate substrate of this embodiment can have a transparent base material, and a laminate having a base metal layer, a first blackening layer, and a copper layer. Note that, as described above, the laminate may further have a second blackened layer.
  • the order in which the copper layer and the respective blackened layers are arranged on the transparent substrate and the number of the layers are particularly limited except that the first blackened layer is provided on the base metal layer in the laminate. is not. That is, for example, two layers of the copper layer, the base metal layer, and the first blackening layer can be laminated on at least one surface side of the transparent substrate. Further, a plurality of copper layers and / or first blackened layers can be formed as long as the base metal layer and the first blackened layer are laminated in that order in the laminated body.
  • the blackened layer is placed on the surface of the copper layer where the light reflection is particularly desired to be suppressed in order to suppress the reflection of light on the copper layer surface. It is preferable that they are arranged.
  • the laminated body has a second blackened layer as the blackened layer in addition to the first blackened layer.
  • the copper layer may be arranged between the first blackened layer and the second blackened layer. More specifically, for example, the base metal layer, the first blackened layer, the copper layer, and the second blackened layer can be laminated in this order from the transparent substrate side.
  • a multi-layer structure can be used as described above, but whether to make a multi-layer structure or a single layer may be appropriately selected and is not particularly limited.
  • the second blackened layer can be configured similarly to the first blackened layer, for example, or can be configured differently from the first blackened layer. That is, the second blackening layer can be a layer containing oxygen and copper, or can be a layer containing oxygen, copper, and nickel. For this reason, it is preferable that the ratio of nickel is 0 mass% or more and 70 mass% or less among the metal components in a 2nd blackening layer. This is because when the second blackening layer contains copper as the metal component, and optionally further contains nickel, the total content of copper and nickel as the metal component is 100% by mass. This is because if the ratio exceeds 70% by mass, etching of the second blackened layer may be difficult.
  • FIGS. 2A, 2B, 3A, and 3B are cross-sectional views of the laminate substrate of the present embodiment in a plane parallel to the lamination direction of the transparent base material, the copper layer, the base metal layer, and the first blackening layer. An example is shown.
  • the base metal layer 12, the first blackened layer 13, and the copper layer 14 are laminated one by one on the one surface 11a side of the transparent base material 11 one by one.
  • the base metal layers 12A and 12B, the first metal layer 12A, the second metal layer 12B, 1 blackening layer 13A, 13B and copper layer 14A, 14B can be laminated
  • the second blackening layer is provided in addition to the base metal layer, the first blackening layer, and the copper layer on at least one surface side of the transparent base material 11. You can also.
  • the base metal layer 12, the first blackened layer 13, the copper layer 14, and the second blackened layer are formed on one surface 11a side of the transparent base material 11. 15 can be stacked in that order.
  • the blackening layer the base metal layer 12, the first blackening layer 13, and the second blackening layer 15 are provided, and the copper layer 14 includes the first blackening layer 13, the second blackening layer 15, By arranging between them, reflection of light incident from the upper surface side and the lower surface side of the copper layer 14 can be more reliably suppressed.
  • a configuration in which a copper layer, a base metal layer, a first blackening layer, and a second blackening layer are laminated on both surfaces of the transparent substrate 11 can be adopted.
  • the base metal layers 12A and 12B are provided on the one surface 11a side and the other surface (the other surface) 11b side of the transparent base material 11, respectively.
  • the first blackening layers 13A and 13B, the copper layers 14A and 14B, and the second blackening layers 15A and 15B can be stacked in this order.
  • the manufacturing method of the 2nd blackening layer 15 is not specifically limited.
  • the second blackening layer 15 (15A, 15B) may be a blackening layer containing oxygen and copper.
  • the second blackening layer 15 (15A, 15B) may be a blackening layer containing oxygen, copper, and nickel similarly to the first blackening layer 13 (13A, 13B). For this reason, it can be made into the layer which contains the same component as a 1st blackening layer, or a metal component contained partially, and a 1st blackening layer and a 2nd blackening layer are the same means. Can be manufactured.
  • the transparent base material 11 serves as a symmetrical surface and the upper and lower sides of the transparent base material 11 are aligned.
  • the base metal layer 12A, the first blackening layer 13A, and the copper layer 14A are stacked in that order in the same manner as the configuration of FIG. It can be in the form.
  • the configuration on the other surface (the other surface) 11b side is such that the base metal layer 12B, the first blackened layer 13B, the copper layer 14B, and the second blackened layer 15B are stacked in that order.
  • the layers laminated on the top and bottom of the transparent substrate 11 may be asymmetrical.
  • the degree of light reflection of the laminate substrate of the present embodiment is not particularly limited.
  • the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less, and 40% or less. It is more preferable that it is 30% or less. This is because when the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less is 55% or less, for example, when the laminate substrate of this embodiment is used as a conductive substrate for a touch panel, the visibility of the display is reduced. It is because it can suppress especially.
  • the regular reflectance of the laminate substrate can be measured by irradiating the base metal layer or the blackened layer with light. That is, measurement can be performed by irradiating light from the blackened layer side of the blackened layer and the copper layer included in the laminate substrate.
  • the base metal layer 12 can be irradiated with light.
  • it can measure by irradiating light with respect to the surface of the base metal layer 12 from the surface 11b side of the transparent base material 11.
  • the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less means an average value of measurement results when the regular reflectance is measured by changing the wavelength within a range of 400 nm or more and 700 nm or less. Yes.
  • the width for changing the wavelength is not particularly limited. For example, it is preferable to measure the light in the wavelength range by changing the wavelength every 10 nm, and changing the wavelength every 1 nm to change the wavelength in the wavelength range. More preferably, the measurement is performed on light.
  • the laminated substrate can be formed into a conductive substrate by forming a thin metal wire by wiring a copper layer, a base metal layer, and a blackened layer by etching.
  • the regular reflectance of light on the conductive substrate is the regular reflectance on the surface on the light incident side of the base metal layer or the blackened layer disposed on the outermost surface when the transparent substrate is removed. means.
  • the measured value in the portion where the copper layer, the base metal layer, and the blackened layer remain satisfies the above range in the case of the conductive substrate after the etching treatment.
  • the conductive substrate of the present embodiment can include a transparent base material and fine metal wires formed on at least one surface side of the transparent base material.
  • the thin metal wire is made of one or more kinds of metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or 1 selected from the above metal group
  • a base metal wiring layer made of an alloy containing at least a metal as a main component, a first blackened wiring layer provided on the base metal wiring layer and containing oxygen, copper, and nickel; a copper wiring layer; It can be set as the laminated body provided with.
  • the ratio of nickel can be 20 mass% or more and 70 mass% or less among the metal components contained in a 1st blackening wiring layer.
  • the conductive substrate of this embodiment can be obtained, for example, by wiring the above-described laminated substrate. Therefore, the copper wiring layer, the base metal wiring layer, and the first blackened wiring layer are the same as the copper layer, the base metal layer, and the first blackened wiring layer, respectively, except that they are patterned by etching. Can have a configuration.
  • the thickness of the copper wiring layer is preferably 50 nm or more, more preferably 60 nm or more, and further preferably 150 nm or more.
  • the upper limit value of the thickness of the copper wiring layer is not particularly limited, but is preferably 5000 nm or less, and more preferably 3000 nm or less.
  • the underlying metal wiring layer is made of one or more kinds of metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the above metal group.
  • it can be a layer made of an alloy mainly composed of one or more kinds of metals.
  • an inevitable impurity of 1% by mass or less may exist as a metal component in the base metal wiring layer.
  • the base metal wiring layer is more preferably made of any one of Cu, Ni—Cu alloy, and Ni—Cr alloy containing 7 mass% or less of Cr.
  • the thickness of the underlying metal wiring layer is not particularly limited, but is preferably 1.5 nm or more and 5 nm or less.
  • the first blackened wiring layer can contain copper and nickel as metal components, and the proportion of nickel in the metal components contained in the first blackened wiring layer is 20% by mass or more and 70% by mass or less. Is preferred.
  • the thickness of the first blackened wiring layer is not particularly limited, but the lower limit is preferably 20 nm or more.
  • the upper limit value of the thickness of the first blackened wiring layer is not particularly limited, but is preferably 70 nm or less, and more preferably 50 nm or less.
  • a copper wiring layer, a base metal wiring layer, a first blackened wiring layer, and, in some cases, a second blackened wiring layer are provided on the transparent substrate.
  • the black wiring layer such as the first black wiring layer can suppress the reflection of light by the copper wiring layer. Therefore, by providing the blackened wiring layer, it is possible to have good display visibility when used for a touch panel or the like, for example.
  • the conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel, for example.
  • the conductive substrate has a wiring pattern formed by providing an opening in the copper layer, the base metal layer, the first blackened layer, and in some cases the second blackened layer in the above-described laminate substrate. It can be set as the structure which has. More preferably, it can be set as the structure provided with the mesh-shaped wiring pattern.
  • the conductive substrate on which the wiring pattern having the opening is formed includes the copper layer, the base metal layer, the first blackened layer, and, in some cases, the second blackened layer of the multilayer substrate described above. Can be obtained by etching. And it can be set as the electroconductive board
  • FIG. 4 shows a conductive substrate 30 having a mesh-like wiring pattern in the stacking direction of a copper wiring layer, a base metal wiring layer, a first blackened wiring layer, and in some cases a second blackened wiring layer.
  • the figure seen from the upper surface side is shown.
  • the conductive substrate 30 shown in FIG. 4 has a transparent base material 11, a plurality of copper wiring layers 34B parallel to the X-axis direction in the drawing, and a copper wiring layer 34A parallel to the Y-axis direction.
  • the copper wiring layers 34A and 34B can be formed by etching the above-described laminated substrate.
  • the upper and / or lower surfaces of the copper wiring layers 34A and 34B are not shown with a base metal wiring layer and a first blackening.
  • a wiring layer or the like is formed.
  • the base metal wiring layer, the first blackened wiring layer, and the like are on the main surface of the transparent substrate 11, that is, on a surface parallel to the surface on which the copper wiring layers 34A, 34B, etc. of the transparent substrate 11 are laminated. Etching is performed so that the cross-sectional shape is substantially the same as that of the copper wiring layers 34A and 34B.
  • the arrangement of the transparent substrate 11 and the copper wiring layers 34A and 34B is not particularly limited.
  • positioning with the transparent base material 11 and a copper wiring layer is shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG.
  • copper wiring layers 34 ⁇ / b> A and 34 ⁇ / b> B may be disposed on the upper and lower surfaces of the transparent substrate 11, respectively.
  • the base metal wiring layers 32A and 32B and the first blackened wiring layers 33A and 33B are arranged on the transparent substrate 11 side of the copper wiring layers 34A and 34B.
  • the base metal wiring layers 32A and 32B and the first blackened wiring layers 33A and 33B have substantially the same cross-sectional shape as that of the copper wiring layers 34A and 34B in a plane parallel to the main surface of the transparent substrate 11. Can do.
  • the second blackened wiring layers 35A and 35B can be disposed on the surface of the copper wiring layers 34A and 34B opposite to the transparent substrate 11.
  • the second blackened wiring layers 35A and 35B can have substantially the same cross-sectional shape as that of the copper wiring layers 34A and 34B in a plane parallel to the main surface of the transparent substrate 11.
  • the fine metal wires are formed on the underlying metal wiring layers 32A and 32B, the first blackened wiring layers 33A and 33B, and the copper wiring layers 34A and 34B.
  • the second blackened wiring layers 35A and 35B can be provided.
  • the copper wiring layers 34A and 34B can have a configuration arranged between the first blackened wiring layers 33A and 33B and the second blackened wiring layers 35A and 35B.
  • the second blackened wiring layer can be formed by etching the second blackened layer described above. For this reason, the second blackened wiring layer can have the same configuration as the second blackened layer described above except that it is patterned by etching.
  • the second blackened wiring layer can contain, for example, oxygen and copper.
  • nickel may be further contained. That is, the second blackened wiring layer can contain copper and oxygen, or copper, nickel, and oxygen.
  • the proportion of nickel in the metal component in the second blackened wiring layer is 0% by mass or more and 70% by mass or less.
  • the metal component in the second blackened wiring layer is copper when the second blackened wiring layer contains copper and oxygen, and the second blackened wiring layer is the first blackened wiring layer.
  • oxygen, copper and nickel are contained, copper and nickel are obtained.
  • the second blackened wiring layer can also have a multilayer structure, for example, a structure having a layer containing copper as a metal component and a layer containing copper and nickel as metal components.
  • the thickness of the second blackened wiring layer is not particularly limited, for example, the lower limit value can be 5 nm or more. Further, the upper limit is preferably, for example, 70 nm or less, and more preferably 50 nm or less. When the second blackened wiring layer has a multilayer structure, the total thickness is preferably within the above range.
  • the example which provided the 2nd blackening wiring layer in addition to the base metal wiring layer and the 1st blackening wiring layer was shown here, it is not limited to the said form.
  • a conductive substrate having only the first blackened wiring layer can be used as the blackened layer.
  • the conductive substrate having the mesh-like wiring shown in FIG. 4 includes, for example, copper layers 14A and 14B, base metal layers 12A and 12B, and first black on both sides of the transparent base 11 as shown in FIGS. 2B and 3B. It can form from the laminated body board
  • the conductive substrate provided with the first blackened wiring layer and the second blackened wiring layer as the blackened wiring layer shown in FIG. 5 may be formed from the multilayer substrate shown in FIG. 3B. it can.
  • the base metal layer 12A, the first blackened layer 13A, the copper layer 14A, and the second blackened layer 15A on the one surface 11a side of the transparent substrate 11 are arranged in a plurality of lines parallel to the Y-axis direction in FIG. 3B. Etching is performed so that the pattern is arranged at a predetermined interval along the X-axis direction.
  • the Y-axis direction in FIG. 3B indicates a direction perpendicular to the paper surface.
  • the X-axis direction in FIG. 3B means a direction parallel to the width direction of each layer.
  • the base metal layer 12B, the first blackened layer 13B, the copper layer 14B, and the second blackened layer 15B on the other surface 11b side of the transparent substrate 11 are arranged in a plurality of parallel to the X-axis direction in FIG. 3B. Etching is performed so that the linear patterns are arranged at predetermined intervals along the Y-axis direction.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 4 and 5 can be formed by the above operation. Note that the etching of both surfaces of the transparent substrate 11 can be performed simultaneously. That is, the base metal layers 12A and 12B, the first blackened layers 13A and 13B, the copper layers 14A and 14B, and the second blackened layers 15A and 15B may be etched simultaneously.
  • a conductive substrate having the following can be formed.
  • the conductive substrate having the mesh-like wiring shown in FIG. 4 can be formed by using two stacked substrates shown in FIG. 2A or FIG. 3A.
  • the case where the conductive substrate of FIG. 3A is used will be described as an example.
  • the base metal layer 12, the first blackened layer 13, the copper layer 14, and the second blackened plate are respectively provided.
  • the layer 15 is etched so that a plurality of linear patterns parallel to the X-axis direction are arranged at predetermined intervals along the Y-axis direction.
  • the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to.
  • the surface to be bonded when the two conductive substrates are bonded is not particularly limited.
  • the structure shown in FIG. 5 can be obtained by bonding the surfaces 11b of the transparent base material 11 in FIG.
  • the width of the fine metal wires and the distance between the fine metal wires in the conductive substrate having the mesh-like wiring shown in FIG. 4 are not particularly limited, and for example, according to the electrical resistance value required for the fine metal wires, etc. Can be selected.
  • the following undercut amount ratio is in a predetermined range so that the transparent substrate and the fine metal wire have sufficient adhesion.
  • FIG. 6 is a cross-sectional view of a conductive substrate in which a blackened wiring layer 61 and a copper wiring layer 62 are laminated in that order on the transparent base material 11 in a plane along the lamination direction of the blackened wiring layer and the copper wiring layer. Is shown.
  • FIG. 6 shows an example in which a thin metal wire is constituted by one blackened wiring layer 61 and one copper wiring layer 62.
  • the pattern width of the layer in contact with the transparent substrate is It may be narrower than the pattern width of the layer formed on the layer in contact with the transparent substrate. That is, an undercut may occur.
  • undercutting may occur when the etching rate of the blackened layer in contact with the transparent substrate is faster than the etching rate of the copper layer formed on the upper surface of the blackened layer.
  • the width (W 2 ) of the blackened wiring layer 61 in contact with the transparent substrate 11 which is the bottom width of the fine metal wire is the black width where the pattern width of the fine metal wire is obtained. It becomes narrower than the width (W 1 ) of the copper wiring layer 62 formed on the patterned wiring layer 61.
  • the undercut amount ratio is expressed by the equation (W 1 ⁇ W 2 ) / 2W 1 by the bottom width (W 2 ) of the fine metal wire and the pattern width (W 1 ) of the fine metal wire.
  • the base metal wiring layer, the first blackened wiring layer, and the copper wiring layer can be laminated in this order from the transparent base material 11 side.
  • the combination of the base metal wiring layer and the first blackened wiring layer is regarded as the blackened wiring layer 61 in FIG. it can be the width of the layer and the bottom width W 2 of the above-mentioned thin metal wires.
  • the width of the copper wiring layer may be a pattern width W 1 of the metal thin wire.
  • the undercut amount ratio preferably has a relationship of (W 1 ⁇ W 2 ) / 2W 1 ⁇ 0.075. This is because the undercut amount ratio satisfies the above relationship, and it can be said that the blackened layer and the copper layer are simultaneously etched and patterned into a desired pattern. It is because it is preferable also from a viewpoint which raises.
  • FIG. 4 and FIG. 5 so far show examples in which a mesh-like wiring pattern is formed by combining linear metal thin wires, but the present invention is not limited to such a form, and the metal thin wires constituting the wiring pattern are It can be of any shape.
  • the shape of the fine metal wires constituting the mesh-like wiring pattern can be changed to various shapes such as jagged lines (zigzag straight lines) so that moire (interference fringes) does not occur between the images on the display. .
  • the conductive substrate of the present embodiment is formed by wiring the above-described laminate substrate and providing openings in the base metal layer, the blackened layer such as the first blackened layer, and the copper layer in the laminate substrate. A wiring pattern. For this reason, the opening part which exposes a transparent base material is provided between the metal fine wires contained in a wiring pattern.
  • permeability of the light with a wavelength of 400 to 700 nm of a transparent base material is 3.0% or less. Is preferred.
  • the average reduction rate of light having a wavelength of 400 nm or more and 700 nm or less of the opening is 3.0% from the average of transmittance of light having a wavelength of 400 nm or more and 700 nm or less of the transparent base material used for the laminate substrate. This is because when the content exceeds 50%, the transparent base material may appear yellow when visually observed. The reduction rate exceeds 3.0% when the base metal layer is not provided.
  • the etching rate of the first blackened layer is low and the first blackened layer is low. This is because the blackened layer and the copper layer cannot be etched simultaneously. Therefore, as described above, it is necessary to provide a base metal layer that is more easily etched than the first blackened layer.
  • the degree of light reflection of the conductive substrate of the present embodiment is not particularly limited.
  • the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less. % Or less is more preferable, and it is further more preferable that it is 30% or less. This is because, when the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less is 55% or less, for example, when it is used as a conductive substrate for a touch panel, a reduction in display visibility can be particularly suppressed.
  • the conductive substrate having a mesh-like wiring composed of the two-layer wiring of the present embodiment described so far can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
  • Manufacturing method of laminate substrate, manufacturing method of conductive substrate Next, the structural example of the manufacturing method of the laminated body board
  • substrate of this embodiment can have the following processes.
  • the laminated body formation process which forms a laminated body in the at least one surface side of a transparent base material.
  • the said laminated body formation process can include the following steps. Mainly composed of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, W, or selected from the above metal group.
  • a copper layer forming step of forming a copper layer by a copper layer forming means for depositing the copper layer is preferable to implement a base metal layer formation step and a 1st blackening layer formation step in a pressure-reduced atmosphere.
  • the ratio of nickel is 20 mass% or more and 70 mass% or less among the metal components contained in a 1st blackening layer.
  • the manufacturing method of the multilayer substrate according to the present embodiment will be described, but the description thereof is omitted because the configuration can be the same as that of the above-described multilayer substrate except for the points described below.
  • the laminate substrate of the present embodiment can have a transparent base material and a laminate having a copper layer and each blackened layer.
  • the order in which the copper layer and the respective blackened layers are arranged on the transparent substrate and the number of the layers are particularly limited except that the first blackened layer is provided on the base metal layer in the laminate. is not. That is, for example, a plurality of copper layers, base metal layers, and first blackening layers can be laminated on at least one surface side of the transparent substrate.
  • the copper layer forming step, the base metal layer forming step, and the first blackened layer forming step are the same except that the first blackened layer forming step is performed immediately after the base metal layer forming step. It does not specifically limit about the order to implement and the frequency
  • the transparent base material preparation step is a step of preparing a transparent base material composed of, for example, a polymer film that transmits visible light or a glass substrate, and the specific operation is not particularly limited. For example, it can be cut into an arbitrary size as necessary for use in the subsequent steps and steps.
  • transmits visible light is already stated, description is abbreviate
  • the laminated body forming step is a step of forming a laminated body on at least one surface side of the transparent substrate, and can include a base metal layer forming step, a first blackened layer forming step, and a copper layer forming step. . Each step will be described below.
  • the base metal layer forming step includes at least one surface of the transparent substrate made of one or more kinds of metals selected from a metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W. Or forming a base metal layer by a base metal layer forming means for depositing a base metal layer made of an alloy containing one or more kinds of metals selected from the metal group as a main component.
  • the first blackening layer is formed by a first blackening layer film forming unit that deposits a first blackening layer containing oxygen, copper, and nickel on the base metal layer. Is a step of forming.
  • the base metal layer film forming means in the base metal layer forming step and the first black layer forming film forming means in the first black layer forming step are not particularly limited, but are preferably dry plating methods.
  • substrate of this embodiment can also have a 2nd blackening layer, and a laminated body formation process can have a 2nd blackening layer formation step in this case.
  • the second blackened layer can be formed by the second blackened layer forming means for depositing the second blackened layer.
  • the second blackening layer film forming means is not particularly limited, but is preferably a dry plating method.
  • the dry plating method that can be suitably used in the above-described base metal layer forming step, the first blackened layer forming step, and the second blackened layer forming step is not particularly limited.
  • a sputtering method or an ion plating method can be used.
  • it is more preferable to use a sputtering method because it is easy to control the composition and thickness of the base metal layer and the blackened layer. That is, it is preferable that the base metal layer film forming unit and the first blackening layer film forming unit be a sputtering film forming method.
  • the second blackened layer forming means is preferably a sputtering film forming method. That is, the first black layer forming means and the second black layer forming means for forming the black layer are preferably formed by sputtering.
  • the base metal layer, the first blackened layer, and in some cases, the second blackened layer can be suitably formed using, for example, the roll-to-roll sputtering apparatus 70 shown in FIG.
  • FIG. 7 shows a configuration example of the roll-to-roll sputtering apparatus 70.
  • the roll-to-roll sputtering apparatus 70 includes a casing 71 that houses most of the components.
  • the shape of the housing 71 is shown as a rectangular parallelepiped shape, but the shape of the housing 71 is not particularly limited, and may be any shape depending on the device accommodated therein, the installation location, the pressure resistance performance, and the like. It can be.
  • the shape of the housing 71 can be a cylindrical shape.
  • the inside of the casing 71 can be depressurized to 1 Pa or less, more preferably 10 ⁇ 3 Pa or less, more preferably 10 ⁇ 4 Pa or less. More preferably, it can be done.
  • the entire inside of the casing 71 can be reduced to the above pressure, and it can be configured such that only the lower region in the drawing where the can roll 73 (described later) where sputtering is performed can be reduced to the above pressure. .
  • an unwinding roll 72 Inside the casing 71 are an unwinding roll 72, a can roll 73, sputtering cathodes 74a to 74d, a front feed roll 75a, and a rear feed roll for supplying a substrate for forming the first blackened layer or the second blackened layer.
  • 75b tension rolls 76a and 76b, and a winding roll 77 can be arranged.
  • guide rolls 78a to 78h, a heater 79, and the like are optionally provided on the transport path of the base material on which the base metal layer, the first blackened layer, and the second blackened layer are formed. You can also.
  • the unwinding roll 72, the can roll 73, the front feed roll 75a, and the winding roll 77 can be provided with power by a servo motor.
  • the unwinding roll 72 and the winding roll 77 are preferably configured such that the tension balance of the base material on which the copper thin film layer is formed is maintained by torque control using a powder clutch or the like.
  • the structure of the can roll 73 is not particularly limited, for example, the surface thereof is finished with hard chrome plating, and a coolant and a heating medium supplied from the outside of the casing 71 are circulated inside the can roll 73 so that the temperature can be adjusted to a constant temperature. It is preferable that it is comprised.
  • the tension rolls 76a and 76b are preferably finished with hard chrome plating and provided with a tension sensor, for example.
  • the front feed roll 75a, the rear feed roll 75b, and the guide rolls 78a to 78h are preferably finished with hard chrome plating.
  • the sputtering cathodes 74a to 74d are of a magnetron cathode type so as to face the can roll 73.
  • the size of the sputtering cathodes 74a to 74d is not particularly limited, but the width direction dimension of the base metal layer for forming the sputtering cathodes 74a to 74d, the first blackening layer, etc. It is preferably wider than the width of the substrate on which the first blackening layer or the like is formed.
  • the base material on which the base metal layer, the first blackening layer, and the like are formed is conveyed through a roll-to-roll sputtering apparatus 70 that is a roll-to-roll vacuum film forming apparatus.
  • a base metal layer, a first blackening layer, and the like are formed on the can roll 73 when passing through positions facing the sputtering cathodes 74a to 74d.
  • a configuration example of a procedure when the first blackening layer is formed using the roll-to-roll sputtering apparatus 70 will be described.
  • a copper-nickel alloy target is mounted on the sputtering cathodes 74a to 74d, and the inside of the casing 71 in which the base material for forming the first blackening layer is set on the unwinding roll 72 is evacuated by the vacuum pumps 80a and 80b.
  • the ratio of nickel is 20 mass% or more and 70 mass% or less among the metal components contained in the 1st blackening layer to form, for example, copper and nickel.
  • the copper-nickel alloy target used for forming the first blackened layer also preferably has a nickel content of 20% by mass or more and 70% by mass or less among copper and nickel.
  • an inert gas for example, a sputtering gas composed of argon and oxygen
  • the configuration of the gas supply unit 81 is not particularly limited, but can have a gas storage tank (not shown).
  • mass flow controllers (MFC) 811a and 811b and valves 812a and 812b are provided for each gas type between the gas storage tank and the casing 71 so that the supply amount of each gas into the casing 71 can be controlled.
  • MFC mass flow controllers
  • FIG. 7 shows an example in which two sets of mass flow controllers and valves are provided, the number to be installed is not particularly limited, and the number to be installed can be selected according to the number of gas types to be used.
  • the flow rate of the sputtering gas and the opening of the pressure adjustment valve 82 provided between the vacuum pump 80b and the housing 71 are adjusted to maintain the inside of the housing 71 at, for example, 0.13 Pa or more and 13 Pa or less. It is preferable to perform film formation.
  • the inert gas and the oxygen gas premixed gases can be supplied into the casing 71.
  • the inert gas and the oxygen gas are individually supplied to the casing 71, and each gas has a desired partial pressure in the casing 71.
  • the supply amount and pressure can also be adjusted so that Further, the sputtering gas is not limited to a gas composed of an inert gas and oxygen as described above, and further includes one or more kinds of gases selected from water vapor, carbon monoxide gas, and carbon dioxide gas. May be included.
  • various members can be arranged in the roll-to-roll sputtering apparatus 70 as necessary.
  • pressure gauges 83a and 83b for measuring the pressure in the casing 71 and vent valves 84a and 84b can be provided.
  • the base metal layer is made of one or more kinds of metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W instead of the copper-nickel alloy target, or In the case of the first blackened layer described above, except that an alloy target composed mainly of one or more metals selected from the above metal group is attached to the sputtering cathodes 74a to 74d and oxygen is not added to the sputtering gas.
  • the film can be formed in the same manner as described above.
  • the base metal layer is more preferably made of any one of Cu, Ni—Cu alloy, and Ni—Cr alloy containing 7 mass% or less of Cr. For this reason, it is preferable to form a base metal layer using a target corresponding to these compositions.
  • the multilayer substrate of the present embodiment can have a second blackened layer in addition to the base metal layer and the first blackened layer.
  • a target corresponding to the target composition of the second blackened layer for example, a copper target or a copper-nickel alloy target is mounted on the sputtering cathodes 74a to 74d. Except for this, the film can be formed in the same manner as in the case of the first blackening layer described above.
  • the second blackened layer forming step is performed, it is preferable that the second blackened layer forming step is similarly performed in a reduced pressure atmosphere.
  • a copper layer can be formed on at least one surface side of the transparent substrate by a copper layer forming means for depositing copper, that is, copper.
  • the copper layer forming step it is preferable to form a copper thin film layer using a dry plating method. Moreover, when making a copper layer thicker, it is preferable to form a copper plating layer further using a wet plating method after forming a copper thin film layer by a dry plating method.
  • the copper layer forming step can include a step of forming a copper thin film layer by, for example, a dry plating method.
  • the copper layer forming step may include a step of forming a copper thin film layer by a dry plating method and a step of forming a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer. .
  • the above copper layer film forming means is not limited to one film forming means, and a plurality of film forming means can be used in combination.
  • the copper layer can be formed directly on the transparent substrate or the blackened layer without using an adhesive by forming the copper layer only by the dry plating method or by combining the dry plating method and the wet plating method as described above. preferable.
  • a copper thin film layer can be formed by, for example, a dry plating method.
  • the dry plating method is not particularly limited, but a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used in a reduced pressure atmosphere.
  • sputtering film forming means can be preferably used as the copper layer film forming means for depositing the copper layer in the copper layer forming step.
  • the copper thin film layer can be suitably formed using, for example, the roll-to-roll sputtering apparatus 70 shown in FIG. Since the configuration of the roll-to-roll sputtering apparatus 70 has already been described, the description thereof is omitted here.
  • a copper target is mounted on the sputtering cathodes 74a to 74d, and the inside of the casing 71 in which the base material for forming the copper thin film layer is set on the unwinding roll 72 is evacuated by the vacuum pumps 80a and 80b.
  • an inert gas for example, a sputtering gas such as argon can be introduced into the casing 71 by the gas supply means 81.
  • the gas supply means 81 When the sputtering gas is supplied into the casing 71 by the gas supply means 81, the flow rate of the sputtering gas and the opening degree of the pressure adjustment valve 82 provided between the vacuum pump 80b and the casing 71 are adjusted. Then, it is preferable to carry out film formation while maintaining the inside of the apparatus at, for example, 0.13 Pa or more and 1.3 Pa or less.
  • a copper layer (copper plating layer) can be further formed using a wet plating method after dry plating.
  • the copper thin film layer formed by the dry plating described above can be used as a power feeding layer.
  • electroplating film forming means can be preferably used as the copper layer forming means for depositing copper in the copper layer forming step.
  • the conditions in the step of forming the copper plating layer by the wet plating method using the copper thin film layer as the power feeding layer that is, the conditions of the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted.
  • a copper plating layer can be formed by supplying a base material on which a copper thin film layer is formed in a plating tank containing a copper plating solution and controlling the current density and the conveyance speed of the base material.
  • the copper layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, as in the above-described laminate substrate. More preferably, it is 150 nm or more.
  • the upper limit value of the thickness of the copper layer is not particularly limited, but the thickness of the copper layer is preferably 5000 nm or less, and more preferably 3000 nm or less.
  • the sum total of the thickness of a copper thin film layer and the thickness of a copper plating layer is the said range.
  • the thickness of the underlying metal layer is not particularly limited, but is preferably 1.5 nm or more and 5 nm or less.
  • the thickness of the first blackened wiring layer is not particularly limited, but the lower limit is preferably 20 nm or more. Moreover, the upper limit of the thickness of the first blackening layer is not particularly limited, but is preferably 70 nm or less, and more preferably 50 nm or less.
  • the thickness thereof is not particularly limited, but the lower limit can be set to 5 nm or more, for example. Further, the upper limit is preferably, for example, 70 nm or less, and more preferably 50 nm or less.
  • the second blackened layer may have a multilayer structure, and in this case, the total thickness of the plurality of layers constituting the second blackened layer is preferably in the above range.
  • the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less, and preferably 40% or less. More preferably, it is more preferably 30% or less.
  • a conductive substrate having a wiring pattern having openings in the copper layer, the base metal layer, and the first blackening layer is formed.
  • the conductive substrate can be configured to include mesh-like wiring.
  • the conductive substrate manufacturing method includes etching the base metal layer, the first blackening layer, and the copper layer of the multilayer substrate obtained by the above-described method for manufacturing a multilayer substrate. It is possible to have an etching process for forming a wiring pattern having a fine metal wire that is a laminate including a wiring layer, a first blackened wiring layer, and a copper wiring layer. And the opening part can be formed in a base metal layer, a 1st blackening layer, and a copper layer by the etching process which concerns.
  • a resist having an opening corresponding to a portion to be removed by etching is formed on the outermost surface of the multilayer substrate.
  • a resist can be formed on the exposed surface A of the copper layer 14 disposed on the multilayer substrate.
  • a method for forming a resist having an opening corresponding to a portion to be removed by etching is not particularly limited.
  • the resist can be formed by a photolithography method.
  • the base metal layer 12, the first blackened layer 13, and the copper layer 14 can be etched by supplying an etching solution from the upper surface of the resist.
  • the underlying metal layers 12A and 12B, the first blackening layers 13A and 13B, and the copper layers 14A and 14B formed on both surfaces of the transparent substrate 11 may be etched simultaneously.
  • the base metal layers 12A and 12B, the first blackened layers 13A and 13B, and the copper layers 14A and 14B formed on both sides of the transparent base material 11 can be subjected to an etching process on one side. That is, for example, after the base metal layer 12A, the first blackened layer 13A, and the copper layer 14A are etched, the base metal layer 12B, the first blackened layer 13B, and the copper layer 14B can be etched.
  • the 1st blackening layer formed with the manufacturing method of the laminated substrate of this embodiment shows the reactivity with respect to the etching liquid similar to a copper layer. Further, the base metal layer has a higher reactivity with the etching solution than the first blackened layer. For this reason, the etching solution used in the etching step is not particularly limited, and an etching solution generally used for etching the copper layer can be preferably used.
  • an aqueous solution used in the etching process for example, an aqueous solution containing one type selected from sulfuric acid, hydrogen peroxide solution, hydrochloric acid, cupric chloride, and ferric chloride, or two or more types selected from the above sulfuric acid, etc.
  • a mixed aqueous solution containing can be more preferably used.
  • the content of each component in the etching solution is not particularly limited.
  • the etching solution can be used at room temperature, but can also be used by heating in order to increase the reactivity, for example, heated to 40 ° C. or more and 50 ° C. or less.
  • a step of bonding the conductive substrates can be further provided.
  • a method for bonding the two conductive substrates is not particularly limited, and the bonding can be performed using, for example, an optical adhesive (OCA) or the like.
  • the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less, and preferably 40% or less. More preferably, it is more preferably 30% or less.
  • substrate were demonstrated.
  • Such a laminate substrate or a laminate substrate obtained by the laminate substrate manufacturing method includes a copper layer and a blackening layer such as a first blackening layer, and simultaneously etches the copper layer and the blackening layer. Processing can be performed. And since a copper layer and a blackening layer can be etched simultaneously, the copper wiring layer and blackening wiring layer of a desired shape can be formed easily.
  • a blackened wiring layer such as the first blackened wiring layer
  • reflection of light by the copper wiring layer can be suppressed.
  • a conductive substrate for a touch panel when used, a decrease in visibility is suppressed. can do. For this reason, it can be set as the electroconductive board
  • the measurement was performed by installing a reflectance measurement unit in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-2550).
  • a laminate substrate having the structure of FIG. 3A was produced.
  • the reflectance was measured through the transparent base material 11 on one surface 12a of the base metal layer 12 facing the transparent base material 11 in FIG. 3A.
  • the incident angle was set to 5 °, and irradiation was performed with light having a wavelength ranging from 400 nm to 700 nm.
  • the light irradiated to the laminate substrate is subjected to regular reflectance measurement with respect to light of each wavelength by changing the wavelength every 1 nm within a wavelength range of 400 nm to 700 nm, and the average of the measurement results is calculated as the conductivity.
  • the average of the regular reflectance of the substrate was used. In Table 1, the reflectance is shown.
  • the measurement was performed by installing an integrating sphere attachment device on the ultraviolet-visible spectrophotometer when measuring the regular reflectance.
  • the irradiated light is measured for the transmittance of each wavelength light by changing the wavelength every 1 nm within the wavelength range of 400 nm to 700 nm, and the average of the measurement results is the total light of the opening of the conductive substrate.
  • the average transmittance was used.
  • the average of the total light transmittance was measured in the same manner for the transparent base material used when the laminate substrate was manufactured in advance.
  • Example preparation conditions As examples and comparative examples, laminate substrates and conductive substrates were produced under the conditions described below, and evaluation was performed by the above-described evaluation method. [Example 1] A laminate substrate having the structure shown in FIG. 3A was produced. (Transparent substrate preparation process) First, the transparent base material preparation process was implemented.
  • a transparent substrate made of optical polyethylene terephthalate resin (PET) having a width of 500 mm and a thickness of 100 ⁇ m was prepared.
  • PET optical polyethylene terephthalate resin
  • a base metal layer forming step As the laminated body forming step, a base metal layer forming step, a first blackened layer forming step, a copper layer forming step, and a second blackened layer forming step were performed. This will be specifically described below.
  • (1) Base metal layer formation step First, a base metal layer formation step was performed.
  • the prepared transparent substrate was set in the roll-to-roll sputtering apparatus 70 shown in FIG. Further, a copper target (manufactured by Sumitomo Metal Mining Co., Ltd.) was attached to the sputtering cathode 74a. Since the underlying metal layer was thin, a copper target was set only on one sputtering cathode 74a, and no target was set on the other sputtering cathodes 74b to 74d.
  • a copper target manufactured by Sumitomo Metal Mining Co., Ltd.
  • the heater 79 of the roll-to-roll sputtering apparatus 70 was heated to 100 ° C., the transparent base material was heated, and water contained in the base material was removed.
  • the argon gas was introduced into the casing 71 by the gas supply means 81 so that the flow rate of argon gas was 240 sccm. .
  • electric power is supplied from the DC power source for sputtering connected to the sputtering cathode 74a, sputtering discharge is performed, and a desired material is formed on the transparent base material.
  • a base metal layer was formed. By this operation, a base metal layer was formed on the transparent substrate so as to have a thickness of 2 nm.
  • the target mounted on the sputtering cathodes 74a to 74d is a copper-nickel alloy target (manufactured by Sumitomo Metal Mining Co., Ltd.), and the inside of the casing 71 is exhausted to 1 ⁇ 10 ⁇ 4 Pa. Thereafter, argon gas and oxygen gas are supplied into the casing 71 of the roll-to-roll sputtering apparatus 70 by the gas supply means 81 so that the argon gas flow rate is 240 sccm and the oxygen gas flow rate is 80 sccm.
  • the first blackening layer has a thickness of 20 nm on the upper surface of the base metal layer in the same manner as in the case of the base metal layer except that power is supplied from a DC power supply for sputtering connected to the sputtering cathodes 74a to 74d. It formed so that it might become.
  • the base material layer formation step WHEREIN The base material which formed the base metal layer on the transparent base material was used, and the 1st blackening layer was formed into a film on the base metal layer.
  • a copper-nickel alloy target As a copper-nickel alloy target, as shown in Table 1, a target containing 20% by mass of Ni and 80% by mass of Cu was used. (3) Copper layer formation step Then, the copper layer formation step was implemented.
  • the target attached to the sputtering cathodes 74a to 74d is changed to a copper target (manufactured by Sumitomo Metal Mining Co., Ltd.), the inside of the casing 71 is evacuated, and then the casing 71 of the roll-to-roll sputtering apparatus 70 is used.
  • a copper layer having a thickness of 200 nm was formed on the upper surface of the first blackened layer in the same manner as the first blackened layer except that only argon gas was introduced therein.
  • the base metal layer and the 1st blackening layer were formed in that order on the transparent base material by the base metal layer formation step and the 1st blackening layer formation step.
  • a substrate was used.
  • Second Blackening Layer Formation Step Subsequently, a second blackening layer formation step was performed.
  • the base metal layer forming step, the first blackening layer forming step, and the copper layer forming step are performed on the transparent base material on the base metal layer, the first blackening layer, and the copper.
  • a second blackened layer was formed in the same manner as in the first blackened layer forming step except that a base material in which layers were formed in that order was used.
  • the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less of the produced laminate substrate was measured by the above-described procedure, and the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less was 54%.
  • a resist having an opening corresponding to a portion to be removed by etching was formed on the surface C in FIG. 3A of the manufactured laminate substrate. And it immersed for 1 minute in the etching liquid which consists of 10 mass% of ferric chloride, 10 mass% of hydrochloric acid, and the remainder with water, and produced the electroconductive board
  • substrate was immersed for 1 minute in the etching liquid which consists of 10 mass% of ferric chloride, 10 mass% of hydrochloric acid, and the remainder with water, and produced the electroconductive board
  • the undercut amount ratio of the fine metal wire and the total light transmittance of the opening were measured.
  • Example 2 A laminated substrate in the same manner as in Example 1 except that the supply amount of oxygen supplied into the housing when the first blackening layer and the second blackening layer were formed was changed as shown in Table 1. And the electroconductive board
  • the oxygen supply amount is changed from the conditions in the first embodiment as in the first blackened layer forming step of the present embodiment.
  • Example 1 Composition of the sputtering target used when forming the base metal layer, the thickness of the base metal layer, the supply amount of oxygen supplied into the housing when forming the first black layer and the second black layer.
  • the composition of the copper-nickel alloy target, which is a sputtering target used when forming the first black layer and the second black layer, and the thicknesses of the first black layer and the second black layer are shown.
  • a laminate substrate and a conductive substrate were produced and evaluated in the same manner as in Example 1 except for the points changed as shown in FIG.
  • the amount of oxygen supplied into the housing during the film formation and the composition of the copper-nickel alloy target were carried out in the same manner as in the first blackened layer forming step of each example.
  • the conditions are changed from those in Example 1.
  • the second blackened layer is formed to have the same thickness as the first blackened layer.
  • Example 5 As shown in Table 1, in Example 5, a target containing 60% by mass of Ni and 40% by mass of Cu is used as a sputtering target for forming the base metal layer. In Example 6, a target containing 7% by mass of Cr and 93% by mass of Ni is used.
  • Example 2 A laminate substrate and a conductive substrate were prepared and evaluated in the same manner as in Example 3 except that the thickness of the base metal layer was 1 nm.
  • Example 3 A laminate substrate and a conductive substrate were prepared and evaluated in the same manner as in Example 3 except that the thickness of the base metal layer was 6 nm.
  • the evaluation results are shown in Table 1.
  • the thickness of the base metal layer is 3 nm, the supply amount of oxygen supplied into the housing when forming the first blackened layer and the second blackened layer, the first blackened layer, and the second blackened layer Example 1 except that the composition of the copper-nickel alloy target, which is the sputtering target used to form the layers, and the thickness of the first and second blackened layers were 25 nm.
  • a laminate substrate and a conductive substrate were prepared and evaluated.
  • the undercut amount ratio of the fine metal wire was 0.075 or less, and the reduction rate of the total light transmittance of the opening was 3.0% or less. It was. That is, it was confirmed that the base metal layer, the first blackened layer, the copper layer, and the second blackened layer can be etched simultaneously.
  • the ratio of nickel is 20% by mass or more and 70% by mass or less among the copper and nickel contained in the sputtering target used for forming the first blackened layer, and the first blackened layer formed is formed. This is considered to be due to the similar composition. That is, it is considered that the reactivity of the first blackening layer with respect to the etching solution can be made equal to that of the copper layer.
  • Comparative Example 1 it was confirmed that the decrease rate of the total light transmittance of the opening exceeded 3.0%. This is presumably because a blackened layer residue was formed on the transparent substrate because the base metal layer was not formed.
  • etching residue means that the etching residue of the blackened layer was confirmed in the opening.
  • the base metal layer is as thin as 1 nm, and there is a part where the base metal layer is not formed. In this part, the first blackening layer is formed directly on the transparent substrate, and thus etching residue is generated. did.
  • the ratio of nickel contained in the copper-nickel alloy target at the time of forming the first blackened layer and the second blackened layer is as high as 80% by mass.
  • the etching rate of the first blackened layer and the second blackened layer was very slow, so it is considered that undercut occurred.
  • the laminated body substrate, the conductive substrate, the manufacturing method of the laminated body substrate, and the manufacturing method of the conductive substrate have been described in the above embodiments and examples, the present invention is not limited to the above embodiments and examples. Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.

Abstract

The present invention provides a laminate body substrate provided with a transparent substrate and a laminate body formed on at least one surface of the transparent substrate, wherein the laminate body comprises: an underlying metal layer comprising one or more metals selected from the group of metals consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or an alloy having as a main component one or more metals selected from the abovementioned group of metals; a first blackened layer, disposed on the underlying metal layer, containing oxygen, copper and nickel; and a copper layer. Of the metal components included in the first blackened layer, the ratio of nickel is from 20 mass% to 70 mass%, inclusive.

Description

積層体基板、導電性基板、積層体基板の製造方法、導電性基板の製造方法LAMINATED BOARD, CONDUCTIVE SUBSTRATE, METHOD FOR PRODUCING LAMINATED SUBSTRATE, METHOD FOR PRODUCING CONDUCTIVE SUBSTRATE
 本発明は、積層体基板、導電性基板、積層体基板の製造方法、導電性基板の製造方法に関する。 The present invention relates to a laminate substrate, a conductive substrate, a laminate substrate manufacturing method, and a conductive substrate manufacturing method.
 特許文献1に開示されているように、透明な高分子フィルム等の透明基材の表面に透明導電膜としてITO(酸化インジウム-スズ)膜を形成したタッチパネル用の透明導電性フィルムが従来から用いられている。 As disclosed in Patent Document 1, a transparent conductive film for a touch panel in which an ITO (indium tin oxide) film is formed as a transparent conductive film on the surface of a transparent base material such as a transparent polymer film has been conventionally used. It has been.
 ところで、近年タッチパネルを備えたディスプレイの大画面化が進んでおり、これに対応してタッチパネル用の透明導電性フィルム等の導電性基板についても大面積化が求められている。しかし、ITOは電気抵抗値が高いため、導電性基板の大面積化に対応できないという問題があった。 By the way, in recent years, a display with a touch panel has been increased in screen size, and in response to this, a conductive substrate such as a transparent conductive film for a touch panel is required to have a large area. However, since ITO has a high electric resistance value, there is a problem that it cannot cope with an increase in the area of the conductive substrate.
 このため、例えば特許文献2、3に開示されているようにITO膜の配線に替えて、銅等の金属箔を加工した金属配線を用いることが検討されている。しかし、例えば金属配線に銅を用いた場合、銅は金属光沢を有しているため、反射によりディスプレイの視認性が低下するという問題がある。 For this reason, for example, as disclosed in Patent Documents 2 and 3, it has been studied to use a metal wiring obtained by processing a metal foil such as copper instead of the ITO film wiring. However, for example, when copper is used for the metal wiring, since copper has a metallic luster, there is a problem that the visibility of the display decreases due to reflection.
 そこで、銅等の金属配線と共に、金属配線の透明基材の表面と平行な面に黒色の材料により構成される黒化層を形成した導電性基板が検討されている。 Therefore, a conductive substrate in which a blackened layer composed of a black material is formed on a surface parallel to the surface of a transparent base material of a metal wiring together with a metal wiring such as copper has been studied.
日本国特開2003-151358号公報Japanese Unexamined Patent Publication No. 2003-151358 日本国特開2011-018194号公報Japanese Unexamined Patent Publication No. 2011-018194 日本国特開2013-069261号公報Japanese Unexamined Patent Publication No. 2013-0669261
 ところで、透明基材上に金属配線を備えた導電性基板は、透明基材の表面に金属層を形成した積層体基板を得た後に、所望の配線パターンとなるように金属層をエッチングして金属配線を形成することで得られる。また、透明基材上に黒化層と金属配線とを有する導電性基板は、透明基材の表面に黒化層と金属層とをその順に積層した積層体基板を得た後に、所望の配線パターンとなるように黒化層と金属層とをエッチングして金属配線を形成することで得られる。 By the way, the conductive substrate provided with the metal wiring on the transparent base material is obtained by etching the metal layer so as to obtain a desired wiring pattern after obtaining the laminate substrate in which the metal layer is formed on the surface of the transparent base material. It is obtained by forming a metal wiring. In addition, the conductive substrate having the blackened layer and the metal wiring on the transparent base material is obtained by obtaining a laminate substrate in which the blackened layer and the metal layer are laminated in that order on the surface of the transparent base material, and then the desired wiring. It is obtained by forming the metal wiring by etching the blackened layer and the metal layer so as to form a pattern.
 黒化層、及び金属層をエッチングすることで、例えば、図1Aに示すように、透明基材1上にパターン化された黒化層2と、金属層をパターン化した金属配線3とが積層された導電性基板とすることができる。この場合、パターン化された黒化層2の幅Wと、金属配線3の幅Wとを略同一とすることが好ましい。 By etching the blackened layer and the metal layer, for example, as shown in FIG. 1A, the blackened layer 2 patterned on the transparent substrate 1 and the metal wiring 3 patterned with the metal layer are stacked. The conductive substrate can be made. In this case, the width W A of the blackening layer 2 patterned into, it is preferable that the width W B of the metal wire 3 substantially the same.
 しかし、エッチング液に対する反応性が金属層と黒化層とで大きく異なるという問題があった。すなわち、金属層と黒化層とを同時にエッチングしようとすると、いずれかの層が図1Aに示したような目的の形状にエッチングできないという問題であった。 However, there is a problem that the reactivity with the etching solution is greatly different between the metal layer and the blackened layer. That is, if the metal layer and the blackened layer are simultaneously etched, one of the layers cannot be etched into the target shape as shown in FIG. 1A.
 例えば、金属層と比較して、黒化層のエッチング速度が大幅に遅い場合は、図1Bに示すように、透明基材1上のパターン化した黒化層2の幅(底部幅)Wが、パターン化された金属層である金属配線3の幅Wよりも大きくなる場合がある。そして、金属配線3はその側面がエッチングされる、いわゆるサイドエッチングが生じる。このため、金属配線3の断面形状が裾広がりの台形になり易く、金属配線3間の電気的絶縁性を確保するまでエッチングを行うと配線ピッチ幅が広くなり過ぎてしまうという問題であった。 For example, as compared with the metal layer, if the etch rate of the blackening layer is much slower, as shown in FIG. 1B, a patterned on the transparent substrate 1 was blackened layer 2 having a width (bottom width) W A but it may be larger than the width W B of the metal wire 3 is a metal layer patterned. Then, so-called side etching occurs in which the side surface of the metal wiring 3 is etched. For this reason, the cross-sectional shape of the metal wiring 3 is likely to be a trapezoid with a wide base, and if the etching is performed until the electrical insulation between the metal wirings 3 is ensured, the wiring pitch width becomes too wide.
 また、金属層と比較して、黒化層のエッチング速度が大幅に速い場合は、図1Cに示すようにパターン化した黒化層2の幅(底部幅)Wが金属配線3の幅Wよりも小さくなった状態、いわゆるアンダーカットが発生する場合がある。このようなアンダーカットが発生し、その程度によっては、所定の金属配線3の幅Wに対して、透明基材1への密着幅である、パターン化した黒化層2の底部幅Wが小さくなり、密着幅の比率が必要以上に低下すると充分な配線密着強度が得られないという問題があった。 In comparison with the metal layer, if the etch rate of the blackening layer is faster significantly, the patterned black layer 2 having a width as shown in FIG. 1C (bottom width) W A width W of the metal wires 3 There is a case where a state smaller than B , that is, so-called undercut occurs. Such undercuts are generated, depending on the degree, the width W B of a predetermined metal wiring 3, an adhesion width of the transparent substrate 1, a blackening layer 2 patterned bottom width W A However, if the ratio of the contact width decreases more than necessary, there is a problem that sufficient wiring contact strength cannot be obtained.
 さらに、黒化層のエッチング速度を金属層のエッチング速度に揃えても、エッチング後に露出した透明基材、すなわちの開口部の表面に黒化層のエッチング残渣が存在し、開口部が目視で黄色く見えることもあった。 Furthermore, even if the etching rate of the blackened layer is made equal to the etching rate of the metal layer, the etching residue of the blackened layer exists on the surface of the transparent substrate exposed after etching, that is, the opening is visually yellow. I could see it.
 上記従来技術の問題に鑑み、本発明は銅層と、黒化層とを備え、銅層と、黒化層とを同時にエッチング処理できる積層体基板を提供することを目的とする。 In view of the above problems of the prior art, an object of the present invention is to provide a laminate substrate that includes a copper layer and a blackened layer, and can simultaneously etch the copper layer and the blackened layer.
 上記課題を解決するため本発明は、
 透明基材と、
 前記透明基材の少なくとも一方の面側に形成された積層体とを備え、
 前記積層体は、
 Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは前記金属群から選択された1種類以上の金属を主成分とする合金からなる下地金属層と、
 前記下地金属層上に配置され、酸素と、銅と、ニッケルとを含有する第1黒化層と、
 銅層と、を備え、
 前記第1黒化層に含まれる金属成分のうち、ニッケルの割合が20質量%以上70質量%以下である積層体基板を提供する。
In order to solve the above problems, the present invention
A transparent substrate;
A laminate formed on at least one surface side of the transparent substrate,
The laminate is
Mainly composed of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the metal group. A base metal layer made of an alloy as a component;
A first blackening layer disposed on the base metal layer and containing oxygen, copper, and nickel;
A copper layer,
Provided is a laminate substrate in which the proportion of nickel is 20% by mass or more and 70% by mass or less in the metal component contained in the first blackened layer.
 本発明によれば、銅層と、黒化層とを備え、銅層と、黒化層とを同時にエッチング処理できる積層体基板を提供することができる。 According to the present invention, it is possible to provide a laminate substrate that includes a copper layer and a blackened layer and can simultaneously etch the copper layer and the blackened layer.
従来の導電性基板において、金属層と黒化層とを同時にエッチングした場合の説明図。Explanatory drawing at the time of etching a metal layer and a blackening layer simultaneously in the conventional conductive substrate. 従来の導電性基板において、金属層と黒化層とを同時にエッチングした場合の説明図。Explanatory drawing at the time of etching a metal layer and a blackening layer simultaneously in the conventional conductive substrate. 従来の導電性基板において、金属層と黒化層とを同時にエッチングした場合の説明図。Explanatory drawing at the time of etching a metal layer and a blackening layer simultaneously in the conventional conductive substrate. 本発明の実施形態に係る積層体基板の断面図。Sectional drawing of the laminated body board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る積層体基板の断面図。Sectional drawing of the laminated body board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る積層体基板の断面図。Sectional drawing of the laminated body board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る積層体基板の断面図。Sectional drawing of the laminated body board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係るメッシュ状の配線を備えた導電性基板の上面図。The top view of the electroconductive board | substrate provided with the mesh-shaped wiring which concerns on embodiment of this invention. 図4のA-A´線における断面図。Sectional drawing in the AA 'line of FIG. アンダーカット量比率の説明図。Explanatory drawing of an undercut amount ratio. ロール・ツー・ロールスパッタリング装置の説明図。Explanatory drawing of a roll-to-roll sputtering apparatus.
 以下、本発明の積層体基板、導電性基板、積層体基板の製造方法、および導電性基板の製造方法の一実施形態について説明する。
(積層体基板、導電性基板)
 本実施形態の積層体基板は、透明基材と、透明基材の少なくとも一方の面側に形成された積層体とを備えることができる。また、積層体は、Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは上記金属群から選択された1種類以上の金属を主成分とする合金からなる下地金属層と、下地金属層上に配置され、酸素と、銅と、ニッケルとを含有する第1黒化層と、銅層と、を備えることができる。
Hereinafter, an embodiment of a laminate substrate, a conductive substrate, a laminate substrate manufacturing method, and a conductive substrate manufacturing method of the present invention will be described.
(Laminated substrate, conductive substrate)
The laminate substrate of the present embodiment can include a transparent substrate and a laminate formed on at least one surface side of the transparent substrate. The laminate is made of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or 1 selected from the above metal group. A base metal layer made of an alloy containing at least different kinds of metals as a main component, a first blackening layer disposed on the base metal layer and containing oxygen, copper, and nickel, and a copper layer. Can do.
 そして、第1黒化層に含まれる金属成分のうち、ニッケルの割合を20質量%以上70質量%以下とすることができる。 And the ratio of nickel can be 20 mass% or more and 70 mass% or less among the metal components contained in a 1st blackening layer.
 なお、本実施形態における積層体基板とは、透明基材の表面に、パターニングする前の銅層や黒化層を有する基板である。また、導電性基板とは、透明基材の表面に、パターニングして配線の形状にした銅配線層や黒化配線層を有する配線基板である。 In addition, the laminated body board | substrate in this embodiment is a board | substrate which has the copper layer and blackening layer before patterning on the surface of a transparent base material. The conductive substrate is a wiring substrate having a copper wiring layer or a blackened wiring layer patterned on the surface of a transparent base material to form a wiring.
 ここでまず、本実施形態の積層体基板に含まれる各部材について以下に説明する。 Here, first, each member included in the multilayer substrate of the present embodiment will be described below.
 透明基材としては特に限定されるものではなく、可視光を透過する高分子フィルムや、ガラス基板等を好ましく用いることができる。 The transparent substrate is not particularly limited, and a polymer film that transmits visible light, a glass substrate, or the like can be preferably used.
 可視光を透過する高分子フィルムとしては例えば、ポリアミド系フィルム、ポリエチレンテレフタレート系フィルム、ポリエチレンナフタレート系フィルム、シクロオレフィン系フィルム、ポリイミド系フィルム、ポリカーボネート系フィルム等の樹脂フィルムを好ましく用いることができる。 As the polymer film that transmits visible light, for example, a resin film such as a polyamide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a cycloolefin film, a polyimide film, or a polycarbonate film can be preferably used.
 透明基材の厚さについては特に限定されず、導電性基板とした場合に要求される強度や光の透過率等に応じて任意に選択することができる。透明基材の厚さとしては例えば10μm以上250μm以下とすることができる。特にタッチパネルの用途に用いる場合、20μm以上200μm以下であることが好ましく、より好ましくは20μm以上120μm以下である。タッチパネルの用途に用いる場合で、例えば特にディスプレイ全体の厚さを薄くすることが求められる用途においては、透明基材の厚さは20μm以上100μm以下であることが好ましい。 The thickness of the transparent base material is not particularly limited, and can be arbitrarily selected according to the strength required when the conductive substrate is used, the light transmittance, and the like. The thickness of the transparent substrate can be, for example, 10 μm or more and 250 μm or less. In particular, when used for touch panel applications, it is preferably 20 μm or more and 200 μm or less, more preferably 20 μm or more and 120 μm or less. In the case of use for touch panel applications, for example, particularly in applications where it is required to reduce the thickness of the entire display, the thickness of the transparent substrate is preferably 20 μm or more and 100 μm or less.
 次に積層体について説明する。積層体は、透明基材の少なくとも一方の面側に形成され、下地金属層と、第1黒化層と、銅層とを有することができる。 Next, the laminate will be described. A laminated body is formed in the at least one surface side of a transparent base material, and can have a base metal layer, a 1st blackening layer, and a copper layer.
 ここではまず銅層について説明する。 Here, the copper layer will be described first.
 銅層についても特に限定されないが、光の透過率を低減させないため、銅層と透明基材との間、または銅層と黒化層との間に接着剤を配置しないことが好ましい。すなわち銅層は、他の部材の上面に直接形成されていることが好ましい。 The copper layer is not particularly limited, but it is preferable not to dispose an adhesive between the copper layer and the transparent substrate or between the copper layer and the blackening layer in order not to reduce the light transmittance. That is, the copper layer is preferably formed directly on the upper surface of another member.
 他の部材の上面に銅層を直接形成するため、スパッタリング法、イオンプレーティング法や蒸着法等の乾式めっき法を用いて銅薄膜層を形成し、該銅薄膜層を銅層とすることができる。 In order to directly form a copper layer on the upper surface of another member, a copper thin film layer may be formed using a dry plating method such as a sputtering method, an ion plating method, or a vapor deposition method, and the copper thin film layer may be used as a copper layer. it can.
 また銅層をより厚くする場合には、乾式めっき法で銅薄膜層を形成した後に湿式めっき法を用いることが好ましい。すなわち、例えば透明基材または黒化層上に、乾式めっき法により銅薄膜層を形成し、該銅薄膜層を給電層として、湿式めっき法により銅めっき層を形成することができる。この場合、銅層は銅薄膜層と、銅めっき層とを有することになる。 When the copper layer is made thicker, it is preferable to use the wet plating method after forming the copper thin film layer by the dry plating method. That is, for example, a copper thin film layer can be formed by a dry plating method on a transparent substrate or a blackened layer, and the copper plating layer can be formed by a wet plating method using the copper thin film layer as a power feeding layer. In this case, the copper layer has a copper thin film layer and a copper plating layer.
 上述のように乾式めっき法のみ、または乾式めっき法と湿式めっき法とを組み合わせて銅層を形成することにより透明基材または黒化層上に接着剤を介さずに直接銅層を形成できるため好ましい。 Since the copper layer can be formed directly on the transparent substrate or the blackened layer without using an adhesive by forming the copper layer only by the dry plating method or by combining the dry plating method and the wet plating method as described above. preferable.
 銅層の厚さは特に限定されるものではなく、銅層を配線として用いた場合に、該配線の電気抵抗値や配線幅等に応じて任意に選択することができる。特に充分に電気が流れるように銅層は厚さが50nm以上であることが好ましく、60nm以上とすることがより好ましく、150nm以上であることがさらに好ましい。銅層の厚さの上限値は特に限定されないが、銅層が厚くなると、配線を形成するためにエッチングを行う際にエッチングに時間を要するためサイドエッチングが生じ、エッチングの途中でレジストが剥離する等の問題を生じ易くなる。このため、銅層の厚さは5000nm以下であることが好ましく、3000nm以下であることがより好ましい。なお、銅層が上述のように銅薄膜層と、銅めっき層とを有する場合には、銅薄膜層の厚さと、銅めっき層の厚さとの合計が上記範囲であることが好ましい。 The thickness of the copper layer is not particularly limited, and when the copper layer is used as a wiring, it can be arbitrarily selected according to the electrical resistance value, the wiring width, etc. of the wiring. In particular, the copper layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, and even more preferably 150 nm or more so that electricity flows sufficiently. The upper limit value of the thickness of the copper layer is not particularly limited. However, when the copper layer is thick, side etching occurs because etching takes time when performing etching to form a wiring, and the resist peels off during the etching. Etc. are likely to occur. For this reason, it is preferable that the thickness of a copper layer is 5000 nm or less, and it is more preferable that it is 3000 nm or less. In addition, when a copper layer has a copper thin film layer and a copper plating layer as mentioned above, it is preferable that the sum total of the thickness of a copper thin film layer and the thickness of a copper plating layer is the said range.
 次に、第1黒化層、および下地金属層について説明する。 Next, the first blackening layer and the base metal layer will be described.
 銅層は金属光沢を有するため、透明基材上に銅層をエッチングした配線である銅配線層を形成したのみでは上述のように銅が光を反射し、例えばタッチパネル用の配線基板として用いた場合、ディスプレイの視認性が低下するという問題があった。そこで、黒化層を設ける方法が検討されてきたが、黒化層がエッチング液に対する反応性を充分に有していない場合があり、銅層と黒化層とを同時に所望の形状にエッチングすることは困難であったり、黒化層のエッチング残渣が生じる問題があった。 Since the copper layer has a metallic luster, the copper reflects light as described above only by forming a copper wiring layer that is a wiring obtained by etching the copper layer on a transparent substrate, and used as a wiring substrate for a touch panel, for example. In this case, there is a problem that the visibility of the display is lowered. Therefore, a method of providing a blackened layer has been studied, but the blackened layer may not have sufficient reactivity with the etching solution, and the copper layer and the blackened layer are simultaneously etched into a desired shape. This is difficult, and there is a problem that an etching residue of the blackened layer is generated.
 また、本発明の発明者らは当初、銅層表面の光の反射を抑制できる黒化層として、銅層の一部を酸化した酸化銅の層を形成する方法について検討を行った。そして、銅層の一部を酸化して黒化層とした場合、係る黒化層には不定比の銅酸化物や、酸化されていない銅が含まれている場合があることを見出した。 In addition, the inventors of the present invention initially studied a method of forming a copper oxide layer obtained by oxidizing a part of the copper layer as a blackened layer capable of suppressing light reflection on the surface of the copper layer. And when a part of copper layer was oxidized and it was set as the blackening layer, it discovered that the non-stoichiometric copper oxide and the copper which are not oxidized may be contained in the blackening layer concerned.
 銅層、及び黒化層を備えた積層体基板の銅層、及び黒化層を同時にエッチングする場合、エッチング液として例えば銅層をエッチング可能なエッチング液を好適に用いることができる。そして、本発明の発明者らの検討によれば、黒化層が不定比の銅酸化物を含有する場合、銅層をエッチング可能なエッチング液に溶出しやすい。 When simultaneously etching the copper layer and the blackened layer of the laminate substrate provided with the copper layer and the blackened layer, for example, an etchant capable of etching the copper layer can be suitably used as the etchant. According to the study by the inventors of the present invention, when the blackened layer contains non-stoichiometric copper oxide, the copper layer tends to be eluted into an etchable solution.
 このように、黒化層がエッチング液に対して溶出しやすい不定比の銅酸化物を含有する場合、黒化層はエッチング液に対する反応性が高く、銅層と比較して、黒化層のエッチング速度が大幅に速くなる。このため、銅層と黒化層とを同時にエッチング処理した場合、黒化層はアンダーカットになりやすかった。 Thus, when the blackened layer contains a non-stoichiometric copper oxide that easily elutes with respect to the etching solution, the blackened layer is highly reactive with the etching solution, and compared with the copper layer, The etching rate is greatly increased. For this reason, when the copper layer and the blackened layer were simultaneously etched, the blackened layer was likely to be undercut.
 そこで、本発明の発明者らは、銅層と、黒化層とを備え、同一のエッチング液により、一つの工程で銅層と、黒化層とを、アンダーカットの発生、及び開口部への黒化層の残渣の発生を抑制しつつ、エッチングできる積層体基板について、鋭意検討を行い、本発明を完成させた。 Therefore, the inventors of the present invention include a copper layer and a blackened layer, and with the same etching solution, the copper layer and the blackened layer are formed in one step into an undercut and an opening. The present invention was completed by intensively studying a laminate substrate that can be etched while suppressing the generation of the blackening layer residue.
 本実施形態の積層体基板が有する第1黒化層は、透明基材の表面に設けられた下地金属層上、すなわち下地金属層の表面に設けられる。 The first blackening layer included in the laminate substrate of the present embodiment is provided on the base metal layer provided on the surface of the transparent substrate, that is, on the surface of the base metal layer.
 そして、下地金属層と第1黒化層との関係は、同一のエッチング液によりエッチングを行った場合に、下地金属層は、第1黒化層よりもエッチング液への反応性が高い層とすることができる。すなわち、下地金属層は、第1黒化層よりもエッチング液に溶解しやすく、別な言い方をすれば、下地金属層はエッチングされやすい層とすることができる。下地金属層を、第1黒化層よりもエッチング液への反応性が高い層とすることで、エッチング後に露出した透明基材の表面へのエッチング残渣の発生を抑制できる。このように、下地金属層のエッチング性が第1黒化層のエッチング性に影響するのである。 The relationship between the base metal layer and the first blackening layer is that when etching is performed with the same etching solution, the base metal layer is a layer having a higher reactivity to the etching solution than the first blackening layer. can do. That is, the base metal layer is more easily dissolved in the etchant than the first blackening layer, and in other words, the base metal layer can be a layer that is easily etched. By making the base metal layer a layer having a higher reactivity to the etchant than the first blackening layer, generation of etching residues on the surface of the transparent substrate exposed after the etching can be suppressed. As described above, the etching property of the base metal layer affects the etching property of the first blackening layer.
 具体的には、本実施形態の積層体基板が有する第1黒化層は、酸素、および銅に加えて、エッチング液で溶解しにくいニッケル成分を含有することができる。 Specifically, the first blackened layer included in the laminate substrate of the present embodiment can contain a nickel component that is difficult to dissolve in the etching solution in addition to oxygen and copper.
 上述のように、第1黒化層は、金属成分として銅及びニッケルを含有することができる。また、第1黒化層が含有する金属成分は銅及びニッケルのみから構成することもできるが、この場合であっても、銅、及びニッケルのみに限定されるものではない。例えば第1黒化層は、金属成分としてさらに1質量%以下の不可避不純物が存在していてもよい。 As described above, the first blackening layer can contain copper and nickel as metal components. Moreover, although the metal component which a 1st blackening layer contains can also be comprised only from copper and nickel, even in this case, it is not limited only to copper and nickel. For example, the first blackened layer may further contain 1% by mass or less of inevitable impurities as a metal component.
 第1黒化層は、酸素、銅、及びニッケルを含有していればよく、各成分がどのような状態で含まれているかは特に限定されるものではない。第1黒化層は、例えば少なくとも一部の銅や、ニッケルが酸化された、不定比の銅酸化物や、ニッケル酸化物を含有することができる。第1黒化層が上述のように不定比の銅酸化物を含有する場合でも、第1黒化層は、同時にニッケル成分も含有するため、エッチング液に対する反応性を銅層とほとんど差がないものとすることができる。特に、第1黒化層のエッチング液に対する反応性を、下地金属層よりも十分に抑制する観点から、第1黒化層は、ニッケルの不定比の酸化物を含有することが好ましい。 The first blackening layer only needs to contain oxygen, copper, and nickel, and the state in which each component is contained is not particularly limited. The first blackening layer can contain, for example, at least part of copper, non-stoichiometric copper oxide in which nickel is oxidized, or nickel oxide. Even when the first blackened layer contains non-stoichiometric copper oxide as described above, the first blackened layer also contains a nickel component at the same time, so there is almost no difference in reactivity with the etching solution from the copper layer. Can be. In particular, from the viewpoint of sufficiently suppressing the reactivity of the first blackening layer with respect to the etching solution as compared with the base metal layer, the first blackening layer preferably contains a non-stoichiometric oxide of nickel.
 なお、第1黒化層が含有する酸素の量は特に限定されるものではない。ただし、第1黒化層や、後述する第2黒化層が含有する酸素の量は、積層体基板や、該積層体基板を用いて作製した導電性基板の光の反射率に影響を与える場合がある。このため、積層体基板や、該積層体基板を用いて作製する導電性基板において要求される光の反射率の程度や、第1黒化層の色調等に応じて、第1黒化層が含有する酸素の量、さらには第1黒化層を成膜する際に添加する酸素の量を選択することが好ましい。 The amount of oxygen contained in the first blackened layer is not particularly limited. However, the amount of oxygen contained in the first blackened layer and the second blackened layer to be described later affects the light reflectance of the laminate substrate and a conductive substrate manufactured using the laminate substrate. There is a case. For this reason, the first blackened layer is formed according to the degree of light reflectance required in the laminated substrate or a conductive substrate manufactured using the laminated substrate, the color tone of the first blackened layer, and the like. It is preferable to select the amount of oxygen contained, and further the amount of oxygen to be added when forming the first blackening layer.
 第1黒化層に含まれる金属成分のうち、ニッケルの割合は特に限定されるものではないが、第1黒化層に含まれる金属成分のうち、ニッケルの割合は20質量%以上70質量%以下であることが好ましい。なお、第1黒化層に含まれる金属成分のうちのニッケルの割合とは、黒化層中の金属成分の含有量の合計、例えば銅と、ニッケルとの含有量の合計を100質量%とした場合のニッケルの割合を示している。 The proportion of nickel in the metal component contained in the first blackened layer is not particularly limited, but the proportion of nickel in the metal component contained in the first blackened layer is 20% by mass or more and 70% by mass. The following is preferable. The ratio of nickel in the metal component contained in the first blackened layer is the total content of metal components in the blackened layer, for example, the total content of copper and nickel is 100% by mass. The ratio of nickel is shown.
 これは、第1黒化層に含まれる金属成分のうち、ニッケルの割合を20質量%以上とすることで、ニッケルの不定比の酸化物等の不定比の酸化物を含有しない下地金属層とのエッチング液に対する反応性の差、すなわち反応速度の差を十分確保することができるからである。 This is because, by setting the ratio of nickel to 20% by mass or more of the metal component contained in the first blackening layer, the base metal layer does not contain non-stoichiometric oxide such as non-stoichiometric oxide of nickel, This is because a sufficient difference in reactivity with respect to the etching solution, that is, a difference in reaction rate can be secured.
 ただし、第1黒化層に含まれる金属成分のうち、ニッケルの割合が70質量%を超えて配合されるとニッケルが過剰で、第1黒化層のエッチングが困難になる恐れがある。すなわち第1黒化層のエッチング液への溶解速度が銅層と比較して遅く、銅層と同時にエッチングできる第1黒化層とすることができない恐れがある。このため、上述のように、第1黒化層に含まれる金属成分のうち、ニッケルの割合は、70質量%以下であることが好ましい。 However, if the proportion of nickel in the metal component contained in the first blackened layer exceeds 70% by mass, the nickel is excessive and it may be difficult to etch the first blackened layer. That is, the dissolution rate of the first blackened layer in the etching solution is slower than that of the copper layer, and there is a possibility that the first blackened layer that can be etched simultaneously with the copper layer cannot be obtained. For this reason, as above-mentioned, it is preferable that the ratio of nickel is 70 mass% or less among the metal components contained in a 1st blackening layer.
 また、第1黒化層に含まれる金属成分のうち、ニッケルの割合を20質量%以上70質量%以下とすることで、積層体基板、及び該積層体基板から形成した導電性基板の波長400nm以上700nm以下の光の正反射率の平均をより確実に55%以下と低くすることができる。このため、係る導電性基板をタッチパネル等の用途に用いた場合でも、ディスプレイの視認性の低下を抑制できるため、この点でも好ましい。 Further, among the metal components contained in the first blackened layer, the ratio of nickel is 20% by mass or more and 70% by mass or less, so that the wavelength of the laminated substrate and the conductive substrate formed from the laminated substrate is 400 nm. The average of the regular reflectance of light having a wavelength of 700 nm or less can be assuredly reduced to 55% or less. For this reason, even when the conductive substrate is used for applications such as a touch panel, a decrease in the visibility of the display can be suppressed.
 なお、後述するように、下地金属層の厚さも5nm以下とすることで、透明基材を透過して第1黒化層表面での波長400nm以上700nm以下の光の正反射率の平均を測定、算出した場合に、より確実に55%以下とすることができるため、好ましい。 As will be described later, by measuring the average reflectance of light having a wavelength of 400 nm or more and 700 nm or less on the surface of the first blackened layer through the transparent substrate by setting the thickness of the base metal layer to 5 nm or less. When calculated, it can be more reliably set to 55% or less, which is preferable.
 一方、下地金属層は、Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは上記金属群から選択された1種類以上の金属を主成分とする合金からなる層とすることができる。 On the other hand, the base metal layer is made of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the above metal group It can be set as the layer which consists of an alloy which has a 1 or more types of metal as a main component.
 ただし、下地金属層には、例えば金属成分としてさらに1質量%以下の不可避不純物が存在していてもよい。 However, in the base metal layer, for example, 1% by mass or less of unavoidable impurities may exist as a metal component.
 また、上記金属群から選択された1種類以上の金属を主成分とする合金とは、上記金属群から選択された1種類以上の金属を、金属成分中、質量比で最も多く含有する合金であることを意味する。以下、本明細書中の同様の記載は同様の意味を有する。係る合金は、上記金属群から選択された1種類以上の金属からなる合金とすることもできる。 Moreover, the alloy which has as a main component one or more types of metals selected from the said metal group is an alloy which contains most one or more types of metals selected from the said metal group by mass ratio in a metal component. It means that there is. Hereinafter, the same description in this specification has the same meaning. Such an alloy may be an alloy made of one or more kinds of metals selected from the above metal group.
 下地金属層は特に、Cu、Ni-Cu合金、Crを7質量%以下含むNi-Cr合金のいずれかからなることがさらに好ましい。ここで、Ni-Cr合金において、Crの含有量は0より多くすることができる。下地金属層が、上記いずれかの金属(合金)からなる場合、第1黒化層よりもエッチング液に対する反応性を特に高くすることができるため好ましい。 The base metal layer is particularly preferably made of any one of Cu, Ni—Cu alloy, and Ni—Cr alloy containing 7 mass% or less of Cr. Here, in the Ni—Cr alloy, the Cr content can be greater than zero. It is preferable that the base metal layer is made of any of the above metals (alloys) because the reactivity with the etching solution can be made particularly higher than that of the first blackening layer.
 なお、下地金属層を成膜する際、酸素を添加しないので、下地金属層を構成する金属成分は金属として存在し、不定比の酸化物とはなっていない。 In addition, since oxygen is not added when forming the base metal layer, the metal component constituting the base metal layer exists as a metal and is not an indefinite ratio of oxide.
 このように、下地金属層は酸素を含有しないため、下地金属層は、該下地金属層を構成する金属元素の不定比の酸化物、具体的には例えばニッケルの不定比の酸化物等のエッチング液に溶解しにくい成分を含まない構成とすることができる。 As described above, since the base metal layer does not contain oxygen, the base metal layer is etched using a non-stoichiometric oxide of a metal element constituting the base metal layer, specifically, for example, a non-stoichiometric oxide of nickel. It can be set as the structure which does not contain the component which is hard to melt | dissolve in a liquid.
 ここまで説明したように、下地金属層は所定の金属を含有することができ、酸素を含有しない構成とすることができる。一方、第1黒化層は酸素、銅、及びニッケルを含有することができる。 As described so far, the base metal layer can contain a predetermined metal and can be configured not to contain oxygen. Meanwhile, the first blackening layer may contain oxygen, copper, and nickel.
 このため、本実施形態の積層体基板が有する下地金属層と、第1黒化層とは、エッチング液に対する反応性の差を生じ、上述のように下地金属層の方が、第1黒化層よりもエッチング液に対する反応性を高くすることができる。また、第1黒化層と銅層とのエッチング液に対する反応性をほとんど差がないものとすることができる。 For this reason, the base metal layer and the first blackening layer included in the laminate substrate according to the present embodiment cause a difference in reactivity with the etching solution, and the base metal layer has the first blackening as described above. The reactivity with the etching solution can be made higher than that of the layer. Moreover, the reactivity with respect to the etching liquid of a 1st blackening layer and a copper layer shall be a thing with little difference.
 本実施形態の積層体基板によれば、上述のように下地金属層がエッチングされやすいことから、積層体基板のパターニングを行った場合に、例えば透明基材の表面への黒化層のエッチング残渣の発生を抑制できる。これは、例えば下地金属層上に第1黒化層等の黒化層の残渣が生じていたとしても、下地金属層がエッチングにより容易に除去できるため、下地金属層の除去と共に、透明基材上から、係る黒化層の残渣も除去できるためである。そして、黒化層のエッチング残渣を少なくできることから、エッチングにより露出した透明基材の全光線透過率の減少率、言い換えれば開口部の全光線透過率の減少率を抑制できる。 According to the laminate substrate of this embodiment, since the base metal layer is easily etched as described above, when the laminate substrate is patterned, for example, the etching residue of the blackened layer on the surface of the transparent substrate Can be suppressed. For example, even if a blackened layer residue such as the first blackened layer is generated on the base metal layer, the base metal layer can be easily removed by etching. This is because the residue of the blackening layer can also be removed from above. And since the etching residue of a blackening layer can be decreased, the decreasing rate of the total light transmittance of the transparent base material exposed by the etching, in other words, the decreasing rate of the total light transmittance of the opening can be suppressed.
 ただし、下地金属層のエッチング液に対する反応性が高いため、下地金属層のみを設けた場合であれば、アンダーカットの発生が懸念される。しかし、本実施形態の積層体基板においては、下地金属層上に、下地金属層よりエッチングされにくい第1黒化層を配置し、第1黒化層で下地金属層を覆っている。このため、第1黒化層がエッチングで除去されなければ、下地金属層はエッチングで除去されないので、アンダーカットの発生を確実に抑制できる。さらには上述の通り、下地金属層がエッチングされやすいので、エッチング後の透明基材の表面に黒化層のエッチング残渣が残りにくい。 However, since the reactivity of the base metal layer to the etching solution is high, there is a concern that undercut may occur if only the base metal layer is provided. However, in the multilayer substrate of this embodiment, the first blackening layer that is harder to etch than the base metal layer is disposed on the base metal layer, and the base metal layer is covered with the first blackening layer. For this reason, if the first blackening layer is not removed by etching, the underlying metal layer is not removed by etching, so that occurrence of undercut can be reliably suppressed. Furthermore, as described above, since the base metal layer is easily etched, the etching residue of the blackened layer hardly remains on the surface of the transparent substrate after the etching.
 特にアンダーカットの発生を抑制する観点から、また第1黒化層表面での波長400nm以上700nm以下の光の正反射率の平均を抑制する観点から、下地金属層の厚さは5nm以下であることが好ましい。 In particular, from the viewpoint of suppressing the occurrence of undercut, and from the viewpoint of suppressing the average regular reflectance of light having a wavelength of 400 nm to 700 nm on the surface of the first blackened layer, the thickness of the base metal layer is 5 nm or less. It is preferable.
 なお、下地金属層の厚さの下限値についても特に限定されないが、下地金属層を膜として存在させるため、また第1黒化層のエッチング性を十分に高める観点からも、下地金属層の厚さは1.5nm以上であることが好ましい。 The lower limit of the thickness of the underlying metal layer is not particularly limited, but the thickness of the underlying metal layer is also present in order to allow the underlying metal layer to exist as a film and from the viewpoint of sufficiently improving the etching property of the first blackening layer. The thickness is preferably 1.5 nm or more.
 また、第1黒化層の厚さは特に限定されるものではなく、例えば銅層表面での光の反射を抑制する程度等に応じて任意に選択することができる。 Further, the thickness of the first blackening layer is not particularly limited, and can be arbitrarily selected according to, for example, the degree of suppressing the reflection of light on the surface of the copper layer.
 特に、第1黒化層の厚さは、下限値は20nm以上であることが好ましい。 In particular, the lower limit of the thickness of the first blackening layer is preferably 20 nm or more.
 第1黒化層は上述のように銅層表面における光の反射を抑制する層として機能するが、第1黒化層の厚さが薄い場合には、銅層による光の反射を充分に抑制できない場合がある。これに対して、上述のように、第1黒化層の厚さを20nm以上とすることにより、銅層表面における光の反射をより確実に抑制できる。 As described above, the first blackening layer functions as a layer that suppresses reflection of light on the surface of the copper layer, but when the thickness of the first blackening layer is thin, reflection of light by the copper layer is sufficiently suppressed. There are cases where it is impossible On the other hand, as described above, the reflection of light on the surface of the copper layer can be more reliably suppressed by setting the thickness of the first blackened layer to 20 nm or more.
 第1黒化層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、第1黒化層の厚さは70nm以下とすることが好ましく、50nm以下とすることがより好ましい。 The upper limit of the thickness of the first blackened layer is not particularly limited, but the time required for film formation and the time required for etching when forming the wiring are increased even if the thickness is increased more than necessary, and the cost is increased. Will lead to an increase. For this reason, the thickness of the first blackening layer is preferably 70 nm or less, and more preferably 50 nm or less.
 以上に説明したように、本実施形態の積層体基板においては、所定の下地金属層と、第1黒化層を有するため、銅層と、第1黒化層と、を同時にエッチングすることができる。 As described above, since the multilayer substrate of the present embodiment has the predetermined base metal layer and the first blackened layer, the copper layer and the first blackened layer can be etched simultaneously. it can.
 なお、銅層と、第1黒化層と、を同時にエッチングできるとは、同一のエッチング液により、一つの工程で銅層と、第1黒化層とを、アンダーカットの発生、及び開口部への黒化層の残渣の発生を抑制しつつ、エッチングできることを意味している。 It should be noted that the copper layer and the first blackened layer can be etched at the same time by using the same etching solution to cause the copper layer and the first blackened layer to be undercut in one step and the opening. This means that etching can be performed while suppressing the generation of the residue of the blackened layer.
 ただし、本実施形態の積層体基板においては、銅層と第1黒化層とを異なるエッチング液で配線加工することも可能であり、銅層を選択的に除去できるエッチング液と第1黒化層を選択的に除去できるエッチング液とを使い分け、より精細な金属細線を備えた導電性基板を作製することも可能である。このようにエッチング液を使い分ける場合でも、特に、下地金属層は第1黒化層よりもエッチング液に対する反応性が高いので、透明基材の面に黒化層の残渣なく精細な金属細線の形成が可能となる。 However, in the multilayer substrate of the present embodiment, the copper layer and the first blackened layer can be processed with different etching liquids, and the etching liquid and the first blackened film that can selectively remove the copper layers. It is also possible to produce a conductive substrate having finer fine metal wires by selectively using an etching solution that can selectively remove a layer. Even when using different etching solutions in this way, in particular, the underlying metal layer is more reactive with the etching solution than the first blackening layer, so that fine metal wires can be formed on the surface of the transparent substrate without any blackening layer residue. Is possible.
 本実施形態の積層体基板に配置する下地金属層の成膜方法は特に限定されるものではない。下地金属層は例えばスパッタリング法等の乾式成膜法により形成することが好ましい。下地金属層をスパッタリング法により成膜する場合、下地金属層を構成する金属成分のターゲットを用いて、チャンバー内にスパッタリングガスとして用いられる不活性ガスを供給しながら成膜することができる。また、下地金属層の成膜の際のスパッタリングガスには酸素を添加しない。 The method for forming the base metal layer disposed on the laminate substrate of the present embodiment is not particularly limited. The base metal layer is preferably formed by a dry film formation method such as sputtering. In the case where the base metal layer is formed by a sputtering method, the film can be formed while supplying an inert gas used as a sputtering gas into the chamber by using a target of a metal component constituting the base metal layer. Further, oxygen is not added to the sputtering gas when forming the base metal layer.
 本実施形態の積層体基板に配置する第1黒化層の成膜方法は特に限定されるものではない。第1黒化層は例えば、スパッタリング法等の乾式成膜法により形成することが好ましい。 The method for forming the first blackened layer disposed on the laminate substrate of the present embodiment is not particularly limited. The first blackening layer is preferably formed by, for example, a dry film forming method such as a sputtering method.
 第1黒化層をスパッタリング法により成膜する場合、例えば銅-ニッケル合金のターゲットを用いて、チャンバー内にスパッタリングガスとして用いられる不活性ガス以外に、酸素ガスを供給しながら成膜することができる。 When forming the first black layer by sputtering, for example, a copper-nickel alloy target may be used while supplying oxygen gas in addition to the inert gas used as the sputtering gas in the chamber. it can.
 第1黒化層の成膜で、スパッタリング時に銅-ニッケル合金のターゲットを用いた場合、銅-ニッケル合金中に含まれる金属成分、例えば銅及びニッケルのうち、ニッケルの割合は20質量%以上70質量%以下であることが好ましい。これは成膜する第1黒化層に含まれる金属成分、例えば銅及びニッケルのうちの、ニッケルの割合と、該黒化層を成膜する際に用いた銅-ニッケル合金のターゲットの、銅-ニッケル合金中に含まれる銅及びニッケルのうちのニッケルの割合と、が同じになるためである。 When a copper-nickel alloy target is used during sputtering in the formation of the first blackened layer, the proportion of nickel in the metal component contained in the copper-nickel alloy, for example, copper and nickel, is 20 mass% or more and 70 It is preferable that it is below mass%. This is because the ratio of nickel in the metal components contained in the first blackened layer to be formed, for example, copper and nickel, and the copper-nickel alloy target used in forming the blackened layer is copper. This is because the ratio of nickel in copper and nickel contained in the nickel alloy is the same.
 スパッタリング法により第1黒化層を成膜する際、チャンバー内に供給する酸素ガスの供給量を調整する方法は特に限定されるものではない。例えば酸素分圧が所望の分圧となるように予め酸素ガスと、不活性ガスとを混合した混合ガスを用いることもできる。また、チャンバー内に不活性ガス及び酸素ガスをそれぞれ同時に供給し、各ガスの供給量を調整することで、チャンバー内の酸素ガスの分圧を調整することもできる。特に後者の方が必要に応じてチャンバー内の各ガスの分圧を調整できることから好ましい。 When forming the first blackened layer by sputtering, the method for adjusting the supply amount of oxygen gas supplied into the chamber is not particularly limited. For example, a mixed gas in which an oxygen gas and an inert gas are mixed in advance so that the oxygen partial pressure becomes a desired partial pressure can also be used. Further, the partial pressure of oxygen gas in the chamber can be adjusted by simultaneously supplying an inert gas and oxygen gas into the chamber and adjusting the supply amount of each gas. In particular, the latter is preferable because the partial pressure of each gas in the chamber can be adjusted as necessary.
 なお、第1黒化層や、下地金属層を成膜する際の不活性ガスとしては特に限定されるものではなく、例えばアルゴンガスやキセノンガスを用いることができるが、アルゴンガスを好適に用いることができる。また、第1黒化層は、金属成分以外の成分として酸素以外に、水素、炭素から選ばれた1種類以上の成分もあわせて含有することもできる。このため、第1黒化層を成膜する際のガスは、酸素ガス、及び不活性ガス以外に、水蒸気、一酸化炭素ガス、二酸化炭素ガスから選択される1種類以上のガスを含んでいてもよい。 In addition, it does not specifically limit as an inert gas at the time of forming a 1st blackening layer and a base metal layer, For example, argon gas and xenon gas can be used, However, Argon gas is used suitably. be able to. The first blackening layer can also contain one or more components selected from hydrogen and carbon in addition to oxygen as components other than the metal component. For this reason, the gas for forming the first blackening layer contains one or more kinds of gases selected from water vapor, carbon monoxide gas, and carbon dioxide gas, in addition to oxygen gas and inert gas. Also good.
 上述のように不活性ガスと、酸素ガス等とを、チャンバーに供給しながらスパッタリング法により第1黒化層を成膜する際、チャンバー内に供給する不活性ガスと、酸素ガスとの比は限定されるものではない。積層体基板や導電性基板に要求される光の反射率や、各黒化層の色調の程度等に応じて任意に選択することができる。 As described above, when the first blackening layer is formed by the sputtering method while supplying the inert gas, oxygen gas, and the like to the chamber, the ratio of the inert gas supplied to the chamber and the oxygen gas is as follows. It is not limited. It can be arbitrarily selected according to the reflectance of light required for the laminate substrate and the conductive substrate, the degree of color tone of each blackened layer, and the like.
 また、本実施形態の積層体基板は、第1黒化層以外にもさらに第2黒化層を有することもできる。この場合、積層体は、さらに第2黒化層を有することになる。第2黒化層は、銅層の表面に設けることができる。すなわち、銅層は第1黒化層と、第2黒化層との間に配置され、第1黒化層と、第2黒化層とに挟まれた状態とすることができる。第2黒化層を有する場合、第2黒化層の構成は特に限定されるものではなく、例えば第1黒化層と異なる構成とすることもできる。また、第2黒化層は、第1黒化層と同様の成分を含有する構成とすることもできる。第2黒化層は、具体的には例えば酸素と、銅とを含有することができる。また、第2黒化層はさらにニッケルを含有することもでき、酸素と、銅と、ニッケルとを含有することもできる。 Further, the laminate substrate of the present embodiment can further have a second blackened layer in addition to the first blackened layer. In this case, the laminate further has a second blackened layer. The second blackening layer can be provided on the surface of the copper layer. That is, the copper layer is disposed between the first blackened layer and the second blackened layer, and can be sandwiched between the first blackened layer and the second blackened layer. When the second blackening layer is provided, the configuration of the second blackening layer is not particularly limited, and for example, a configuration different from that of the first blackening layer may be employed. In addition, the second blackened layer can be configured to contain the same components as the first blackened layer. Specifically, the second blackening layer can contain, for example, oxygen and copper. The second blackened layer can further contain nickel, and can also contain oxygen, copper, and nickel.
 第2黒化層は一層から構成することもできるが、複層構造とすることもでき、例えば金属成分として銅を含有する層と、金属成分として銅及びニッケルを含有する層とを有する構成とすることもできる。 The second blackening layer can be composed of one layer, but can also be a multilayer structure, for example, a structure having a layer containing copper as a metal component and a layer containing copper and nickel as metal components You can also
 そして、第2黒化層は、第2黒化層中の金属成分、例えば銅、または銅及びニッケルのうち、ニッケルの割合が0質量以上70質量%以下であることが好ましい。これは、第2黒化層が金属成分として銅、場合によってはさらにニッケルを含有する場合に、金属成分である銅と、ニッケルとの含有量の合計を100質量%とした場合に、ニッケルの割合が70質量%を超えるとニッケルが過剰で、第2黒化層のエッチングが困難になる恐れがあるからである。 And it is preferable that the ratio of nickel is 0 mass% or more and 70 mass% or less among the metal components in a 2nd blackened layer, for example, copper, or copper and nickel, in a 2nd blackened layer. This is because when the second blackening layer contains copper as the metal component, and optionally further contains nickel, the total content of copper and nickel as the metal component is 100% by mass. This is because if the ratio exceeds 70% by mass, nickel is excessive and etching of the second blackened layer may be difficult.
 第2黒化層の厚さは特に限定されないが、例えば下限値は5nm以上とすることができる。また、上限値は例えば70nm以下とすることが好ましく、50nm以下とすることがより好ましい。 The thickness of the second blackening layer is not particularly limited, but for example, the lower limit can be 5 nm or more. Further, the upper limit is preferably, for example, 70 nm or less, and more preferably 50 nm or less.
 また、上述のように第2黒化層を複層構造とする場合、その厚さの合計が上記範囲であることが好ましい。 Further, when the second blackened layer has a multilayer structure as described above, the total thickness is preferably in the above range.
 第2の黒化層の成膜方法は特に限定されないが、第1黒化層と同様に、スパッタリング法等の乾式成膜法により形成することが好ましい。 The method for forming the second blackened layer is not particularly limited, but it is preferable to form the second blackened layer by a dry film forming method such as a sputtering method in the same manner as the first blackened layer.
 第2黒化層をスパッタリング法により成膜する場合、例えば銅ターゲットや、銅-ニッケル合金のターゲットを用いて、チャンバー内にスパッタリングガスとして用いられる不活性ガス以外に、酸素ガスを供給しながら成膜することができる。 When the second blackened layer is formed by sputtering, for example, a copper target or a copper-nickel alloy target is used while supplying oxygen gas in addition to the inert gas used as the sputtering gas in the chamber. Can be membrane.
 第2黒化層の成膜で、スパッタリング時に銅-ニッケル合金のターゲットを用いた場合、銅-ニッケル合金中に含まれる金属成分、例えば銅及びニッケルのうち、ニッケルの割合は0質量%より多く70質量%以下であることが好ましい。 When a copper-nickel alloy target is used during sputtering in forming the second blackened layer, the proportion of nickel in the copper-nickel alloy, for example, copper and nickel, is greater than 0% by mass. It is preferable that it is 70 mass% or less.
 第2黒化層をスパッタリング法により成膜する際のスパッタリングガスについては、第1黒化層を成膜する場合と同様に選択することができるため、ここでは説明を省略する。 Since the sputtering gas for forming the second blackened layer by sputtering can be selected in the same manner as in the case of forming the first blackened layer, description thereof is omitted here.
 本実施形態の積層体基板においては、後述のように透明基材上に、下地金属層、第1黒化層、及び銅層、場合によってはさらに第2黒化層を積層することができ、係る下地金属層、第1黒化層、および銅層、場合によってはさらに第2黒化層をパターニングすることで導電性基板とすることができる。 In the laminate substrate of the present embodiment, the base metal layer, the first blackened layer, and the copper layer, and in some cases, the second blackened layer can be further laminated on the transparent substrate as described later. By patterning the underlying metal layer, the first blackened layer, and the copper layer, and in some cases, the second blackened layer, a conductive substrate can be obtained.
 このため、本実施形態の積層体基板から得られる導電性基板の銅配線層と下地金属配線層と、各黒化配線層とはそれぞれ、本実施形態の積層体基板の銅層と下地金属層と各黒化層との特徴が維持される。 For this reason, the copper wiring layer and the underlying metal wiring layer of the conductive substrate obtained from the laminated substrate of the present embodiment, and the blackened wiring layers are respectively the copper layer and the underlying metal layer of the laminated substrate of the present embodiment. And the characteristics of each blackened layer are maintained.
 次に、本実施形態の積層体基板の構成例について説明する。 Next, a configuration example of the multilayer substrate of this embodiment will be described.
 上述のように、本実施形態の積層体基板は透明基材と、下地金属層、第1黒化層、及び銅層を有する積層体と、を有することができる。なお、既述のように積層体はさらに第2黒化層を有することもできる。 As described above, the laminate substrate of this embodiment can have a transparent base material, and a laminate having a base metal layer, a first blackening layer, and a copper layer. Note that, as described above, the laminate may further have a second blackened layer.
 この際、積層体内で下地金属層上に第1黒化層を設けること以外は銅層と各黒化層とを透明基材上に配置する順番や、その層の数は特に限定されるものではない。つまり、例えば透明基材の少なくとも一方の面側に、銅層、下地金属層、及び第1黒化層を二層ずつ積層することもできる。また、積層体内で下地金属層と第1黒化層とをその順に積層しさえすれば銅層および/または第1黒化層は複数層形成することもできる。 At this time, the order in which the copper layer and the respective blackened layers are arranged on the transparent substrate and the number of the layers are particularly limited except that the first blackened layer is provided on the base metal layer in the laminate. is not. That is, for example, two layers of the copper layer, the base metal layer, and the first blackening layer can be laminated on at least one surface side of the transparent substrate. Further, a plurality of copper layers and / or first blackened layers can be formed as long as the base metal layer and the first blackened layer are laminated in that order in the laminated body.
 ただし、積層体内で銅層と、黒化層とを配置する際、銅層表面での光の反射の抑制のため、銅層の表面のうち光の反射を特に抑制したい面に黒化層が配置されていることが好ましい。 However, when placing the copper layer and the blackened layer in the stack, the blackened layer is placed on the surface of the copper layer where the light reflection is particularly desired to be suppressed in order to suppress the reflection of light on the copper layer surface. It is preferable that they are arranged.
 特に黒化層が銅層の表面に形成された積層構造を有することがより好ましい、具体的には例えば、積層体は、黒化層として、第1黒化層以外にさらに第2黒化層を有し、銅層は第1の黒化層と、第2の黒化層との間に配置された構成とすることができる。より具体的には例えば、透明基材側から、下地金属層、第1黒化層、銅層、第2黒化層の順に積層することができる。 In particular, it is more preferable to have a laminated structure in which the blackened layer is formed on the surface of the copper layer. Specifically, for example, the laminated body has a second blackened layer as the blackened layer in addition to the first blackened layer. The copper layer may be arranged between the first blackened layer and the second blackened layer. More specifically, for example, the base metal layer, the first blackened layer, the copper layer, and the second blackened layer can be laminated in this order from the transparent substrate side.
 第2黒化層を設ける場合、既述のように複層構造とすることもできるが、複層構造とするか一層とするかは適宜選択すればよく、特に限定されない。 When the second blackening layer is provided, a multi-layer structure can be used as described above, but whether to make a multi-layer structure or a single layer may be appropriately selected and is not particularly limited.
 また、第2黒化層は、例えば第1黒化層と同様の構成とすることもできるし、第1黒化層とは異なる構成とすることもできる。すなわち第2黒化層は、酸素と、銅とを含有する層とすることもでき、酸素と、銅と、ニッケルとを含有する層とすることもできる。このため、第2黒化層中の金属成分のうち、ニッケルの割合は、0質量%以上70質量%以下であることが好ましい。これは、第2黒化層が金属成分として銅、場合によってはさらにニッケルを含有する場合に、金属成分である銅と、ニッケルとの含有量の合計を100質量%とした場合に、ニッケルの割合が70質量%を超えると、第2黒化層のエッチングが困難になる恐れがあるからである。 Also, the second blackened layer can be configured similarly to the first blackened layer, for example, or can be configured differently from the first blackened layer. That is, the second blackening layer can be a layer containing oxygen and copper, or can be a layer containing oxygen, copper, and nickel. For this reason, it is preferable that the ratio of nickel is 0 mass% or more and 70 mass% or less among the metal components in a 2nd blackening layer. This is because when the second blackening layer contains copper as the metal component, and optionally further contains nickel, the total content of copper and nickel as the metal component is 100% by mass. This is because if the ratio exceeds 70% by mass, etching of the second blackened layer may be difficult.
 本実施形態の積層体基板の具体的な構成例について、図2A、図2B、図3A、図3Bを用いて以下に説明する。図2A、図2B、図3Aおよび図3Bは、本実施形態の積層体基板の、透明基材、銅層、下地金属層、及び第1黒化層の積層方向と平行な面における断面図の例を示している。 Specific examples of the configuration of the laminate substrate according to this embodiment will be described below with reference to FIGS. 2A, 2B, 3A, and 3B. 2A, FIG. 2B, FIG. 3A and FIG. 3B are cross-sectional views of the laminate substrate of the present embodiment in a plane parallel to the lamination direction of the transparent base material, the copper layer, the base metal layer, and the first blackening layer. An example is shown.
 例えば、図2Aに示した積層体基板10Aのように、透明基材11の一方の面11a側に下地金属層12、第1黒化層13と、銅層14とを一層ずつその順に積層することができる。すなわち、透明基材11の表面に設けられる下地金属層12と、下地金属層12の表面に設けられる第1黒化層13と、第1黒化層13の表面に設けられる銅層14とを備えた構成とすることができる。 For example, as in the laminated substrate 10A shown in FIG. 2A, the base metal layer 12, the first blackened layer 13, and the copper layer 14 are laminated one by one on the one surface 11a side of the transparent base material 11 one by one. be able to. That is, the base metal layer 12 provided on the surface of the transparent substrate 11, the first blackening layer 13 provided on the surface of the base metal layer 12, and the copper layer 14 provided on the surface of the first blackening layer 13. It can be set as the structure provided.
 また、図2Bに示した積層体基板10Bのように、透明基材11の一方の面11a側と、もう一方の面(他方の面)11b側と、にそれぞれ下地金属層12A、12B、第1黒化層13A、13Bと、銅層14A、14Bと、を一層ずつその順に積層することができる。 Further, as in the laminated substrate 10B shown in FIG. 2B, the base metal layers 12A and 12B, the first metal layer 12A, the second metal layer 12B, 1 blackening layer 13A, 13B and copper layer 14A, 14B can be laminated | stacked one layer at a time in that order.
 また、既述のように、本実施形態の積層体基板は、透明基材11の少なくとも一方の面側に下地金属層、第1黒化層、銅層以外に第2黒化層を設けることもできる。例えば図3Aに示した積層体基板20Aのように、透明基材11の一方の面11a側に、下地金属層12と、第1黒化層13と、銅層14と、第2黒化層15と、をその順に積層することができる。 Further, as described above, in the laminate substrate of the present embodiment, the second blackening layer is provided in addition to the base metal layer, the first blackening layer, and the copper layer on at least one surface side of the transparent base material 11. You can also. For example, as in the laminate substrate 20A shown in FIG. 3A, the base metal layer 12, the first blackened layer 13, the copper layer 14, and the second blackened layer are formed on one surface 11a side of the transparent base material 11. 15 can be stacked in that order.
 このように黒化層として、下地金属層12、第1黒化層13、及び第2黒化層15を有し、銅層14を第1黒化層13と、第2黒化層15との間に配置することで、銅層14の上面側、及び下面側から入射する光の反射をより確実に抑制することが可能になる。 Thus, as the blackening layer, the base metal layer 12, the first blackening layer 13, and the second blackening layer 15 are provided, and the copper layer 14 includes the first blackening layer 13, the second blackening layer 15, By arranging between them, reflection of light incident from the upper surface side and the lower surface side of the copper layer 14 can be more reliably suppressed.
 この場合も透明基材11の両面に銅層、下地金属層、第1黒化層、第2黒化層を積層した構成とすることができる。具体的には図3Bに示した積層体基板20Bのように、透明基材11の一方の面11a側と、もう一方の面(他方の面)11b側と、にそれぞれ下地金属層12A、12B、第1黒化層13A、13Bと、銅層14A、14Bと、第2黒化層15A、15Bと、をその順に積層できる。 In this case as well, a configuration in which a copper layer, a base metal layer, a first blackening layer, and a second blackening layer are laminated on both surfaces of the transparent substrate 11 can be adopted. Specifically, as in the laminate substrate 20B shown in FIG. 3B, the base metal layers 12A and 12B are provided on the one surface 11a side and the other surface (the other surface) 11b side of the transparent base material 11, respectively. The first blackening layers 13A and 13B, the copper layers 14A and 14B, and the second blackening layers 15A and 15B can be stacked in this order.
 なお、第2黒化層15(15A、15B)の製造方法は特に限定されるものではない。例えば、第2黒化層15(15A、15B)は、酸素と、銅とを含有する黒化層とすることもできる。また、第2黒化層15(15A、15B)は、第1黒化層13(13A、13B)と同様に酸素と、銅と、ニッケルとを含有する黒化層とすることもできる。このため、第1黒化層と同じ成分を含有するか、一部含有する金属成分が異なる層とすることができ、第1黒化層と、第2黒化層とは、同様の手段により製造することができる。 In addition, the manufacturing method of the 2nd blackening layer 15 (15A, 15B) is not specifically limited. For example, the second blackening layer 15 (15A, 15B) may be a blackening layer containing oxygen and copper. Further, the second blackening layer 15 (15A, 15B) may be a blackening layer containing oxygen, copper, and nickel similarly to the first blackening layer 13 (13A, 13B). For this reason, it can be made into the layer which contains the same component as a 1st blackening layer, or a metal component contained partially, and a 1st blackening layer and a 2nd blackening layer are the same means. Can be manufactured.
 透明基材11の両面に銅層と、下地金属層と、黒化層と、を積層した、図2B、図3Bの構成例においては、透明基材11を対称面として透明基材11の上下に積層した層が対称になるように配置した例を示したが、係る形態に限定されるものではない。 In the configuration example of FIGS. 2B and 3B in which a copper layer, a base metal layer, and a blackening layer are laminated on both surfaces of the transparent base material 11, the transparent base material 11 serves as a symmetrical surface and the upper and lower sides of the transparent base material 11 are aligned. Although the example which arrange | positioned so that the laminated | stacked layer might become symmetrical was shown, it is not limited to the form which concerns.
 例えば、図3Bにおいて、透明基材11の一方の面11a側の構成を図2Bの構成と同様に、下地金属層12Aと、第1黒化層13Aと、銅層14Aとをその順に積層した形態とすることができる。そして、もう一方の面(他方の面)11b側の構成を、下地金属層12Bと、第1黒化層13Bと、銅層14Bと、第2黒化層15Bと、をその順に積層した形態として、透明基材11の上下に積層した層を非対称な構成としてもよい。 For example, in FIG. 3B, the base metal layer 12A, the first blackening layer 13A, and the copper layer 14A are stacked in that order in the same manner as the configuration of FIG. It can be in the form. The configuration on the other surface (the other surface) 11b side is such that the base metal layer 12B, the first blackened layer 13B, the copper layer 14B, and the second blackened layer 15B are stacked in that order. As an alternative, the layers laminated on the top and bottom of the transparent substrate 11 may be asymmetrical.
 本実施形態の積層体基板の光の反射の程度は特に限定されるものではないが、例えば波長400nm以上700nm以下の光の正反射率の平均は55%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。これは波長400nm以上700nm以下の光の正反射率の平均が55%以下の場合、例えば本実施形態の積層体基板を、タッチパネル用の導電性基板として用いた場合でもディスプレイの視認性の低下を特に抑制できるためである。 The degree of light reflection of the laminate substrate of the present embodiment is not particularly limited. For example, the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less, and 40% or less. It is more preferable that it is 30% or less. This is because when the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less is 55% or less, for example, when the laminate substrate of this embodiment is used as a conductive substrate for a touch panel, the visibility of the display is reduced. It is because it can suppress especially.
 積層体基板の正反射率の測定は、下地金属層、または黒化層に光を照射するようにして測定を行うことができる。すなわち、積層体基板に含まれる黒化層及び銅層のうち、黒化層側から光を照射して測定を行うことができる。具体的には例えば図2Aのように透明基材11の一方の面11aに下地金属層12、第1黒化層13、銅層14の順に積層した場合、下地金属層12に光を照射できるように、透明基材11の面11b側から、下地金属層12の表面に対して光を照射して測定できる。 The regular reflectance of the laminate substrate can be measured by irradiating the base metal layer or the blackened layer with light. That is, measurement can be performed by irradiating light from the blackened layer side of the blackened layer and the copper layer included in the laminate substrate. Specifically, for example, when the base metal layer 12, the first blackening layer 13, and the copper layer 14 are laminated in this order on one surface 11 a of the transparent substrate 11 as shown in FIG. 2A, the base metal layer 12 can be irradiated with light. Thus, it can measure by irradiating light with respect to the surface of the base metal layer 12 from the surface 11b side of the transparent base material 11.
 また、波長400nm以上700nm以下の光の正反射率の平均とは、400nm以上700nm以下の範囲内で波長を変化させて正反射率の測定を行った際の測定結果の平均値を意味している。測定の際、波長を変化させる幅は特に限定されないが、例えば、10nm毎に波長を変化させて上記波長範囲の光について測定を行うことが好ましく、1nm毎に波長を変化させて上記波長範囲の光について測定を行うことがより好ましい。 The average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less means an average value of measurement results when the regular reflectance is measured by changing the wavelength within a range of 400 nm or more and 700 nm or less. Yes. In the measurement, the width for changing the wavelength is not particularly limited. For example, it is preferable to measure the light in the wavelength range by changing the wavelength every 10 nm, and changing the wavelength every 1 nm to change the wavelength in the wavelength range. More preferably, the measurement is performed on light.
 なお、後述のように積層体基板は銅層、下地金属層、及び黒化層をエッチングによって配線加工することにより金属細線を形成して導電性基板とすることができる。導電性基板における光の正反射率とは、透明基材を除いた場合に、最表面に配置されている下地金属層、または黒化層の、光が入射する側の表面における正反射率を意味する。 As will be described later, the laminated substrate can be formed into a conductive substrate by forming a thin metal wire by wiring a copper layer, a base metal layer, and a blackened layer by etching. The regular reflectance of light on the conductive substrate is the regular reflectance on the surface on the light incident side of the base metal layer or the blackened layer disposed on the outermost surface when the transparent substrate is removed. means.
 このため、エッチング処理を行った後の導電性基板であれば、銅層、下地金属層、及び黒化層が残存している部分での測定値が上記範囲を満たしていることが好ましい。 For this reason, it is preferable that the measured value in the portion where the copper layer, the base metal layer, and the blackened layer remain satisfies the above range in the case of the conductive substrate after the etching treatment.
 次に、本実施形態の導電性基板について説明する。 Next, the conductive substrate of this embodiment will be described.
 本実施形態の導電性基板は、透明基材と、透明基材の少なくとも一方の面側に形成された金属細線とを備えることができる。そして、金属細線は、Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは上記金属群から選択された1種類以上の金属を主成分とする合金からなる下地金属配線層と、下地金属配線層上に設けられ、酸素と、銅と、ニッケルとを含有する第1黒化配線層と、銅配線層とを備えた積層体とすることができる。また、第1黒化配線層に含まれる金属成分のうち、ニッケルの割合を20質量%以上70質量%以下とすることができる。 The conductive substrate of the present embodiment can include a transparent base material and fine metal wires formed on at least one surface side of the transparent base material. The thin metal wire is made of one or more kinds of metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or 1 selected from the above metal group A base metal wiring layer made of an alloy containing at least a metal as a main component, a first blackened wiring layer provided on the base metal wiring layer and containing oxygen, copper, and nickel; a copper wiring layer; It can be set as the laminated body provided with. Moreover, the ratio of nickel can be 20 mass% or more and 70 mass% or less among the metal components contained in a 1st blackening wiring layer.
 本実施形態の導電性基板は、例えば既述の積層体基板を配線加工して得ることができる。このため、銅配線層、下地金属配線層、及び第1黒化配線層は、エッチングによりパターニングした点以外は、それぞれ既述の銅層、下地金属層、及び第1黒化配線層と同様の構成を有することができる。 The conductive substrate of this embodiment can be obtained, for example, by wiring the above-described laminated substrate. Therefore, the copper wiring layer, the base metal wiring layer, and the first blackened wiring layer are the same as the copper layer, the base metal layer, and the first blackened wiring layer, respectively, except that they are patterned by etching. Can have a configuration.
 すなわち、銅配線層は、厚さが50nm以上であることが好ましく、60nm以上とすることがより好ましく、150nm以上であることがさらに好ましい。銅配線層の厚さの上限値は特に限定されないが、5000nm以下であることが好ましく、3000nm以下であることがより好ましい。 That is, the thickness of the copper wiring layer is preferably 50 nm or more, more preferably 60 nm or more, and further preferably 150 nm or more. The upper limit value of the thickness of the copper wiring layer is not particularly limited, but is preferably 5000 nm or less, and more preferably 3000 nm or less.
 また、下地金属配線層は、Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは上記金属群から選択された1種類以上の金属を主成分とする合金からなる層とすることができる。ただし、例えば下地金属配線層には、金属成分としてさらに1質量%以下の不可避不純物が存在していてもよい。 The underlying metal wiring layer is made of one or more kinds of metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the above metal group. In addition, it can be a layer made of an alloy mainly composed of one or more kinds of metals. However, for example, an inevitable impurity of 1% by mass or less may exist as a metal component in the base metal wiring layer.
 下地金属配線層は特に、Cu、Ni-Cu合金、Crを7質量%以下含むNi-Cr合金のいずれかからなることがさらに好ましい。 In particular, the base metal wiring layer is more preferably made of any one of Cu, Ni—Cu alloy, and Ni—Cr alloy containing 7 mass% or less of Cr.
 下地金属配線層の厚さについても特に限定されないが、1.5nm以上、5nm以下であることが好ましい。 The thickness of the underlying metal wiring layer is not particularly limited, but is preferably 1.5 nm or more and 5 nm or less.
 第1黒化配線層は、金属成分として銅及びニッケルを含有することができ、第1黒化配線層に含まれる金属成分のうち、ニッケルの割合は20質量%以上70質量%以下であることが好ましい。 The first blackened wiring layer can contain copper and nickel as metal components, and the proportion of nickel in the metal components contained in the first blackened wiring layer is 20% by mass or more and 70% by mass or less. Is preferred.
 第1黒化配線層の厚さは特に限定されるものではないが、下限値は20nm以上であることが好ましい。また、第1黒化配線層の厚さの上限値は特に限定されるものではないが、70nm以下とすることが好ましく、50nm以下とすることがより好ましい。 The thickness of the first blackened wiring layer is not particularly limited, but the lower limit is preferably 20 nm or more. The upper limit value of the thickness of the first blackened wiring layer is not particularly limited, but is preferably 70 nm or less, and more preferably 50 nm or less.
 そして、本実施形態の導電性基板においては、透明基材上に銅配線層と、下地金属配線層と、第1黒化配線層と、場合によってはさらに第2黒化配線層を設けており、第1黒化配線層等の黒化配線層により、銅配線層による光の反射を抑制することができる。従って、黒化配線層を設けることにより、例えばタッチパネル等に用いた場合に良好なディスプレイの視認性を有することができる。 In the conductive substrate of the present embodiment, a copper wiring layer, a base metal wiring layer, a first blackened wiring layer, and, in some cases, a second blackened wiring layer are provided on the transparent substrate. The black wiring layer such as the first black wiring layer can suppress the reflection of light by the copper wiring layer. Therefore, by providing the blackened wiring layer, it is possible to have good display visibility when used for a touch panel or the like, for example.
 本実施形態の導電性基板は例えばタッチパネル用の導電性基板として好ましく用いることができる。この場合、導電性基板は既述の積層体基板における銅層、下地金属層、及び第1黒化層や、場合によってはさらに第2黒化層に開口部を設けることで形成した配線パターンを有する構成とすることができる。より好ましくは、メッシュ状の配線パターンを備えた構成とすることができる。 The conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel, for example. In this case, the conductive substrate has a wiring pattern formed by providing an opening in the copper layer, the base metal layer, the first blackened layer, and in some cases the second blackened layer in the above-described laminate substrate. It can be set as the structure which has. More preferably, it can be set as the structure provided with the mesh-shaped wiring pattern.
 開口部を備えた配線パターンが形成された導電性基板は、ここまで説明した積層体基板の銅層と、下地金属層と、第1黒化層と、場合によってはさらに第2黒化層とをエッチングすることにより得ることができる。そして、例えば二層の金属細線によりメッシュ状の配線パターンを有する導電性基板とすることができる。具体的な構成例を図4に示す。 The conductive substrate on which the wiring pattern having the opening is formed includes the copper layer, the base metal layer, the first blackened layer, and, in some cases, the second blackened layer of the multilayer substrate described above. Can be obtained by etching. And it can be set as the electroconductive board | substrate which has a mesh-shaped wiring pattern, for example by a two-layer metal fine wire. A specific configuration example is shown in FIG.
 図4はメッシュ状の配線パターンを備えた導電性基板30を銅配線層と、下地金属配線層と、第1黒化配線層と、場合によってはさらに第2黒化配線層との積層方向の上面側から見た図を示している。図4に示した導電性基板30は、透明基材11と、図中X軸方向に平行な複数の銅配線層34BとY軸方向に平行な銅配線層34Aとを有している。なお、銅配線層34A、34Bは、既述の積層体基板をエッチングすることで形成でき、銅配線層34A、34Bの上面および/または下面には図示しない下地金属配線層、及び第1黒化配線層等が形成されている。また、下地金属配線層、及び第1黒化配線層等は、透明基材11の主表面、すなわち透明基材11の銅配線層34A、34B等を積層している面と平行な面での断面形状が、銅配線層34A、34Bとほぼ同じ形状となるようにエッチングされている。 FIG. 4 shows a conductive substrate 30 having a mesh-like wiring pattern in the stacking direction of a copper wiring layer, a base metal wiring layer, a first blackened wiring layer, and in some cases a second blackened wiring layer. The figure seen from the upper surface side is shown. The conductive substrate 30 shown in FIG. 4 has a transparent base material 11, a plurality of copper wiring layers 34B parallel to the X-axis direction in the drawing, and a copper wiring layer 34A parallel to the Y-axis direction. The copper wiring layers 34A and 34B can be formed by etching the above-described laminated substrate. The upper and / or lower surfaces of the copper wiring layers 34A and 34B are not shown with a base metal wiring layer and a first blackening. A wiring layer or the like is formed. In addition, the base metal wiring layer, the first blackened wiring layer, and the like are on the main surface of the transparent substrate 11, that is, on a surface parallel to the surface on which the copper wiring layers 34A, 34B, etc. of the transparent substrate 11 are laminated. Etching is performed so that the cross-sectional shape is substantially the same as that of the copper wiring layers 34A and 34B.
 透明基材11と銅配線層34A、34Bとの配置は特に限定されない。透明基材11と銅配線層との配置の構成例を図5に示す。図5は図4のA-A´線での断面図に当たる。 The arrangement of the transparent substrate 11 and the copper wiring layers 34A and 34B is not particularly limited. The structural example of arrangement | positioning with the transparent base material 11 and a copper wiring layer is shown in FIG. FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG.
 例えば、図5に示したように、透明基材11の上下面にそれぞれ銅配線層34A、34Bが配置されていてもよい。なお、図5に示した導電性基板の場合、銅配線層34A、34Bの透明基材11側には、下地金属配線層32A、32B、及び第1黒化配線層33A、33Bが配置されている。下地金属配線層32A、32B、及び第1黒化配線層33A、33Bは、透明基材11の主表面と平行な面での断面形状を、銅配線層34A、34Bとほぼ同じ形状とすることができる。 For example, as shown in FIG. 5, copper wiring layers 34 </ b> A and 34 </ b> B may be disposed on the upper and lower surfaces of the transparent substrate 11, respectively. In the case of the conductive substrate shown in FIG. 5, the base metal wiring layers 32A and 32B and the first blackened wiring layers 33A and 33B are arranged on the transparent substrate 11 side of the copper wiring layers 34A and 34B. Yes. The base metal wiring layers 32A and 32B and the first blackened wiring layers 33A and 33B have substantially the same cross-sectional shape as that of the copper wiring layers 34A and 34B in a plane parallel to the main surface of the transparent substrate 11. Can do.
 また、図5に示したように、銅配線層34A、34Bの透明基材11とは反対側の面には、第2黒化配線層35A、35Bを配置することもできる。この場合、第2黒化配線層35A、35Bについても、透明基材11の主表面と平行な面での断面形状が、銅配線層34A、34Bとほぼ同じ形状とすることができる。 Further, as shown in FIG. 5, the second blackened wiring layers 35A and 35B can be disposed on the surface of the copper wiring layers 34A and 34B opposite to the transparent substrate 11. In this case, the second blackened wiring layers 35A and 35B can have substantially the same cross-sectional shape as that of the copper wiring layers 34A and 34B in a plane parallel to the main surface of the transparent substrate 11.
 すなわち、図5に示した導電性基板においては、ここまで説明したように、金属細線は、下地金属配線層32A、32B、第1黒化配線層33A、33B、及び銅配線層34A、34Bに加えてさらに、第2黒化配線層35A、35Bを有することができる。そして、銅配線層34A、34Bは、第1黒化配線層33A、33Bと、第2黒化配線層35A、35Bとの間に配置された構成を有することができる。 That is, in the conductive substrate shown in FIG. 5, as described so far, the fine metal wires are formed on the underlying metal wiring layers 32A and 32B, the first blackened wiring layers 33A and 33B, and the copper wiring layers 34A and 34B. In addition, the second blackened wiring layers 35A and 35B can be provided. The copper wiring layers 34A and 34B can have a configuration arranged between the first blackened wiring layers 33A and 33B and the second blackened wiring layers 35A and 35B.
 第2黒化配線層は、既述の第2黒化層をエッチングすることにより形成することができる。このため、第2黒化配線層は、エッチングによりパターニングした点以外は既述の第2黒化層と同様の構成を有することができる。 The second blackened wiring layer can be formed by etching the second blackened layer described above. For this reason, the second blackened wiring layer can have the same configuration as the second blackened layer described above except that it is patterned by etching.
 具体的には、第2黒化配線層は、例えば酸素と、銅と、を含有することができる。また、場合によってはさらにニッケルを含有することができる。すなわち、第2黒化配線層は銅および酸素、または銅、ニッケル、および酸素を含有することができる。そして、第2黒化配線層は、第2黒化配線層中の金属成分のうち、ニッケルの割合が0質量%以上70質量%以下であることが好ましい。なお、ここでの第2黒化配線層中の金属成分とは、第2黒化配線層が銅と酸素とを含有する場合は銅となり、第2黒化配線層が第1黒化配線層と同様に酸素と銅とニッケルとを含有する場合は、銅及びニッケルとなる。 Specifically, the second blackened wiring layer can contain, for example, oxygen and copper. In some cases, nickel may be further contained. That is, the second blackened wiring layer can contain copper and oxygen, or copper, nickel, and oxygen. In the second blackened wiring layer, it is preferable that the proportion of nickel in the metal component in the second blackened wiring layer is 0% by mass or more and 70% by mass or less. Here, the metal component in the second blackened wiring layer is copper when the second blackened wiring layer contains copper and oxygen, and the second blackened wiring layer is the first blackened wiring layer. Similarly, when oxygen, copper and nickel are contained, copper and nickel are obtained.
 また、第2黒化配線層は複層構造とすることもでき、例えば金属成分として銅を含有する層と、金属成分として銅及びニッケルを含有する層とを有する構成とすることもできる。 Further, the second blackened wiring layer can also have a multilayer structure, for example, a structure having a layer containing copper as a metal component and a layer containing copper and nickel as metal components.
 第2黒化配線層の厚さは特に限定されないが、例えば下限値は5nm以上とすることができる。また、上限値は例えば70nm以下とすることが好ましく、50nm以下とすることがより好ましい。第2黒化配線層を複層構造とする場合、その厚さの合計が上記範囲であることが好ましい。 Although the thickness of the second blackened wiring layer is not particularly limited, for example, the lower limit value can be 5 nm or more. Further, the upper limit is preferably, for example, 70 nm or less, and more preferably 50 nm or less. When the second blackened wiring layer has a multilayer structure, the total thickness is preferably within the above range.
 なお、ここでは下地金属配線層、及び第1黒化配線層に加えて、第2黒化配線層を設けた例を示したが、係る形態に限定されるものではない。例えば黒化層として、第1黒化配線層のみを有する導電性基板とすることもできる。 In addition, although the example which provided the 2nd blackening wiring layer in addition to the base metal wiring layer and the 1st blackening wiring layer was shown here, it is not limited to the said form. For example, a conductive substrate having only the first blackened wiring layer can be used as the blackened layer.
 図4に示したメッシュ状の配線を有する導電性基板は例えば、図2B、図3Bのように透明基材11の両面に銅層14A、14Bと、下地金属層12A、12Bと、第1黒化層13A、13Bとを備えた積層体基板から形成することができる。 The conductive substrate having the mesh-like wiring shown in FIG. 4 includes, for example, copper layers 14A and 14B, base metal layers 12A and 12B, and first black on both sides of the transparent base 11 as shown in FIGS. 2B and 3B. It can form from the laminated body board | substrate provided with the formation layers 13A and 13B.
 なお、例えば図5に示した黒化配線層として、第1の黒化配線層、及び第2黒化配線層を備えた導電性基板は、図3Bに示した積層体基板から形成することができる。 For example, the conductive substrate provided with the first blackened wiring layer and the second blackened wiring layer as the blackened wiring layer shown in FIG. 5 may be formed from the multilayer substrate shown in FIG. 3B. it can.
 そこで、図3Bの積層体基板を用いて形成した場合を例に説明する。 Therefore, an example in which the laminated substrate of FIG. 3B is used will be described.
 まず、透明基材11の一方の面11a側の下地金属層12A、第1黒化層13A、銅層14A、及び第2黒化層15Aを、図3B中Y軸方向に平行な複数の線状のパターンが、X軸方向に沿って所定の間隔をあけて配置されるようにエッチングする。なお、図3B中のY軸方向とは、紙面と垂直な方向を指す。また、図3B中のX軸方向とは各層の幅方向と平行な方向を意味している。 First, the base metal layer 12A, the first blackened layer 13A, the copper layer 14A, and the second blackened layer 15A on the one surface 11a side of the transparent substrate 11 are arranged in a plurality of lines parallel to the Y-axis direction in FIG. 3B. Etching is performed so that the pattern is arranged at a predetermined interval along the X-axis direction. Note that the Y-axis direction in FIG. 3B indicates a direction perpendicular to the paper surface. Further, the X-axis direction in FIG. 3B means a direction parallel to the width direction of each layer.
 そして、透明基材11のもう一方の面11b側の下地金属層12B、第1黒化層13B、銅層14B、及び第2黒化層15Bを、図3B中X軸方向と平行な複数の線状のパターンがY軸方向に沿って所定の間隔をあけて配置されるようにエッチングを行う。 Then, the base metal layer 12B, the first blackened layer 13B, the copper layer 14B, and the second blackened layer 15B on the other surface 11b side of the transparent substrate 11 are arranged in a plurality of parallel to the X-axis direction in FIG. 3B. Etching is performed so that the linear patterns are arranged at predetermined intervals along the Y-axis direction.
 以上の操作により図4、図5に示したメッシュ状の配線を有する導電性基板を形成することができる。なお、透明基材11の両面のエッチングは同時に行うこともできる。すなわち、下地金属層12A、12B、第1黒化層13A、13B、銅層14A、14B、及び第2黒化層15A、15Bのエッチングは同時に行ってもよい。 The conductive substrate having the mesh-like wiring shown in FIGS. 4 and 5 can be formed by the above operation. Note that the etching of both surfaces of the transparent substrate 11 can be performed simultaneously. That is, the base metal layers 12A and 12B, the first blackened layers 13A and 13B, the copper layers 14A and 14B, and the second blackened layers 15A and 15B may be etched simultaneously.
 また、図2Bに示した積層体基板を用いて、同様にエッチングを行うことで、第2黒化配線層35A、35Bを有しない点以外は、図5に示した導電性基板と同様の構成を有する導電性基板を形成することができる。 Further, the same structure as that of the conductive substrate shown in FIG. 5 except that the second blackened wiring layers 35A and 35B are not obtained by performing etching in the same manner using the laminate substrate shown in FIG. 2B. A conductive substrate having the following can be formed.
 図4に示したメッシュ状の配線を有する導電性基板は、図2Aまたは図3Aに示した積層体基板を2枚用いることにより形成することもできる。図3Aの導電性基板を用いた場合を例に説明すると、図3Aに示した導電性基板2枚についてそれぞれ、下地金属層12、第1黒化層13、銅層14、及び第2黒化層15を、X軸方向と平行な複数の線状のパターンがY軸方向に沿って所定の間隔をあけて配置されるようにエッチングを行う。そして、上記エッチング処理により各導電性基板に形成した線状のパターンが互いに交差するように向きをあわせて2枚の導電性基板を貼り合せることによりメッシュ状の配線を備えた導電性基板とすることができる。2枚の導電性基板を貼り合せる際に貼り合せる面は特に限定されるものではない。 The conductive substrate having the mesh-like wiring shown in FIG. 4 can be formed by using two stacked substrates shown in FIG. 2A or FIG. 3A. The case where the conductive substrate of FIG. 3A is used will be described as an example. For the two conductive substrates shown in FIG. 3A, the base metal layer 12, the first blackened layer 13, the copper layer 14, and the second blackened plate are respectively provided. The layer 15 is etched so that a plurality of linear patterns parallel to the X-axis direction are arranged at predetermined intervals along the Y-axis direction. Then, the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to. The surface to be bonded when the two conductive substrates are bonded is not particularly limited.
 例えば、2枚の導電性基板について、図3Aにおける透明基材11の銅層14等が積層されていない面11b同士を貼り合せることで、図5に示した構成とすることができる。 For example, for the two conductive substrates, the structure shown in FIG. 5 can be obtained by bonding the surfaces 11b of the transparent base material 11 in FIG.
 なお、図4に示したメッシュ状の配線を有する導電性基板における金属細線の幅や、金属細線間の距離は特に限定されるものではなく、例えば、金属細線に必要な電気抵抗値等に応じて選択することができる。 Note that the width of the fine metal wires and the distance between the fine metal wires in the conductive substrate having the mesh-like wiring shown in FIG. 4 are not particularly limited, and for example, according to the electrical resistance value required for the fine metal wires, etc. Can be selected.
 ただし、透明基材と、金属細線とが十分な密着性を有するように、以下のアンダーカット量比率が所定の範囲にあることが好ましい。 However, it is preferable that the following undercut amount ratio is in a predetermined range so that the transparent substrate and the fine metal wire have sufficient adhesion.
 ここで、図6を用いてアンダーカット量比率について説明する。図6は、透明基材11上に、黒化配線層61、銅配線層62がその順に積層された導電性基板の、黒化配線層及び銅配線層の積層方向に沿った面における断面図を示している。なお、図6においては黒化配線層61が1層と、銅配線層62が1層とにより金属細線が構成された例を示している。 Here, the undercut amount ratio will be described with reference to FIG. FIG. 6 is a cross-sectional view of a conductive substrate in which a blackened wiring layer 61 and a copper wiring layer 62 are laminated in that order on the transparent base material 11 in a plane along the lamination direction of the blackened wiring layer and the copper wiring layer. Is shown. FIG. 6 shows an example in which a thin metal wire is constituted by one blackened wiring layer 61 and one copper wiring layer 62.
 導電性基板を構成する層のうち、透明基材に接する層が、透明基材に接する層の上面に形成された層よりもエッチング速度が速い場合、透明基材に接する層のパターン幅が、透明基材に接する層上に形成された層のパターン幅よりも狭くなる場合がある。すなわち、アンダーカットが発生する場合がある。 Of the layers constituting the conductive substrate, when the layer in contact with the transparent substrate has a higher etching rate than the layer formed on the upper surface of the layer in contact with the transparent substrate, the pattern width of the layer in contact with the transparent substrate is It may be narrower than the pattern width of the layer formed on the layer in contact with the transparent substrate. That is, an undercut may occur.
 図6に示した構成例において、透明基材に接する黒化層のエッチング速度が、黒化層の上面に形成された銅層のエッチング速度よりも速い場合、アンダーカットが発生する場合がある。図6に示した構成例においてアンダーカットが発生した場合、金属細線の底部幅となる、透明基材11に接する黒化配線層61の幅(W)が、金属細線のパターン幅となる黒化配線層61上に形成された銅配線層62の幅(W)よりも狭くなる。 In the configuration example shown in FIG. 6, undercutting may occur when the etching rate of the blackened layer in contact with the transparent substrate is faster than the etching rate of the copper layer formed on the upper surface of the blackened layer. When undercut occurs in the configuration example shown in FIG. 6, the width (W 2 ) of the blackened wiring layer 61 in contact with the transparent substrate 11 which is the bottom width of the fine metal wire is the black width where the pattern width of the fine metal wire is obtained. It becomes narrower than the width (W 1 ) of the copper wiring layer 62 formed on the patterned wiring layer 61.
 この場合、アンダーカット量比率は、金属細線の底部幅(W)と、金属細線のパターン幅(W)とにより、(W-W)/2Wの式で表される。 In this case, the undercut amount ratio is expressed by the equation (W 1 −W 2 ) / 2W 1 by the bottom width (W 2 ) of the fine metal wire and the pattern width (W 1 ) of the fine metal wire.
 なお、本実施形態の導電性基板においては、既述のように透明基材11側から例えば下地金属配線層、第1黒化配線層、銅配線層の順に積層することができる。導電性基板が係る形態を有する場合には、下地金属配線層と、第1黒化配線層とをあわせたものを図6における黒化配線層61とみなし、透明基材11に接する下地金属配線層の幅を上述の金属細線の底部幅Wとすることができる。また、銅配線層の幅を上記金属細線のパターン幅Wとすることができる。 In the conductive substrate of the present embodiment, as described above, for example, the base metal wiring layer, the first blackened wiring layer, and the copper wiring layer can be laminated in this order from the transparent base material 11 side. When the conductive substrate has such a configuration, the combination of the base metal wiring layer and the first blackened wiring layer is regarded as the blackened wiring layer 61 in FIG. it can be the width of the layer and the bottom width W 2 of the above-mentioned thin metal wires. Also, the width of the copper wiring layer may be a pattern width W 1 of the metal thin wire.
 そして、アンダーカット量比率は(W-W)/2W≦0.075の関係を有することが好ましい。これはアンダーカット量比率が上記関係を充足することで、黒化層と、銅層とを同時にエッチングし、所望のパターンにパターニングできているといえ、透明基材11と金属細線との密着性を高める観点からも好ましいからである。 The undercut amount ratio preferably has a relationship of (W 1 −W 2 ) / 2W 1 ≦ 0.075. This is because the undercut amount ratio satisfies the above relationship, and it can be said that the blackened layer and the copper layer are simultaneously etched and patterned into a desired pattern. It is because it is preferable also from a viewpoint which raises.
 ここまで図4、図5においては、直線形状の金属細線を組み合わせてメッシュ状の配線パターンを形成した例を示したが、係る形態に限定されるものではなく、配線パターンを構成する金属細線は任意の形状とすることができる。例えばディスプレイの画像との間でモアレ(干渉縞)が発生しないようメッシュ状の配線パターンを構成する金属細線の形状をそれぞれ、ぎざぎざに屈曲した線(ジグザグ直線)等の各種形状にすることもできる。 FIG. 4 and FIG. 5 so far show examples in which a mesh-like wiring pattern is formed by combining linear metal thin wires, but the present invention is not limited to such a form, and the metal thin wires constituting the wiring pattern are It can be of any shape. For example, the shape of the fine metal wires constituting the mesh-like wiring pattern can be changed to various shapes such as jagged lines (zigzag straight lines) so that moire (interference fringes) does not occur between the images on the display. .
 本実施形態の導電性基板は、既述の積層体基板を配線加工し、積層体基板における下地金属層、第1黒化層等の黒化層、及び銅層に開口部を設けることで形成した配線パターンを有する。このため、配線パターンに含まれる金属細線間には透明基材を露出する開口部が設けられている。 The conductive substrate of the present embodiment is formed by wiring the above-described laminate substrate and providing openings in the base metal layer, the blackened layer such as the first blackened layer, and the copper layer in the laminate substrate. A wiring pattern. For this reason, the opening part which exposes a transparent base material is provided between the metal fine wires contained in a wiring pattern.
 そして、該開口部の波長400nm以上700nm以下の光の透過率の平均の、透明基材の波長400nm以上700nm以下の光の透過率の平均からの減少率は、3.0%以下であることが好ましい。 And the decreasing rate from the average of the transmittance | permeability of the light with a wavelength of 400 nm or more and 700 nm or less of this opening part from the average of the transmittance | permeability of the light with a wavelength of 400 to 700 nm of a transparent base material is 3.0% or less. Is preferred.
 これは、上記開口部の波長400nm以上700nm以下の光の透過率の平均の、積層体基板に供する透明基材の波長400nm以上700nm以下の光の透過率の平均からの減少率が3.0%を超えると、透明基材を目視で観察すると黄色に変色して見える場合があるからである。上記減少率が3.0%を超えるのは、下地金属層を設けない場合であって、第1黒化層、及び銅層をエッチングする際に第1黒化層のエッチング速度が遅く第1黒化層と銅層とを同時にエッチングできていないためである。このため、既述のように、第1黒化層よりもエッチングされやすい下地金属層を設けることが必要である。 This is because the average reduction rate of light having a wavelength of 400 nm or more and 700 nm or less of the opening is 3.0% from the average of transmittance of light having a wavelength of 400 nm or more and 700 nm or less of the transparent base material used for the laminate substrate. This is because when the content exceeds 50%, the transparent base material may appear yellow when visually observed. The reduction rate exceeds 3.0% when the base metal layer is not provided. When the first blackened layer and the copper layer are etched, the etching rate of the first blackened layer is low and the first blackened layer is low. This is because the blackened layer and the copper layer cannot be etched simultaneously. Therefore, as described above, it is necessary to provide a base metal layer that is more easily etched than the first blackened layer.
 また、本実施形態の導電性基板の光の反射の程度は特に限定されるものではないが、例えば波長400nm以上700nm以下の光の正反射率の平均は55%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。これは波長400nm以上700nm以下の光の正反射率の平均が55%以下の場合、例えばタッチパネル用の導電性基板として用いた場合でもディスプレイの視認性の低下を特に抑制できるためである。 In addition, the degree of light reflection of the conductive substrate of the present embodiment is not particularly limited. For example, the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less. % Or less is more preferable, and it is further more preferable that it is 30% or less. This is because, when the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less is 55% or less, for example, when it is used as a conductive substrate for a touch panel, a reduction in display visibility can be particularly suppressed.
 ここまで説明した本実施形態の2層の配線から構成されるメッシュ状の配線を有する導電性基板は、例えば投影型静電容量方式のタッチパネル用の導電性基板として好ましく用いることができる。
(積層体基板の製造方法、導電性基板の製造方法)
 次に本実施形態の積層体基板の製造方法の構成例について説明する。
The conductive substrate having a mesh-like wiring composed of the two-layer wiring of the present embodiment described so far can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
(Manufacturing method of laminate substrate, manufacturing method of conductive substrate)
Next, the structural example of the manufacturing method of the laminated body board | substrate of this embodiment is demonstrated.
 本実施形態の積層体基板の製造方法は、以下の工程を有することができる。 
 透明基材を準備する透明基材準備工程。 
 透明基材の少なくとも一方の面側に積層体を形成する積層体形成工程。 
 そして、上記積層体形成工程は以下のステップを含むことができる。 
 Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは上記金属群から選択される1種類以上の金属を主成分とする合金からなる下地金属層を堆積する下地金属層成膜手段により下地金属層を成膜する下地金属層形成ステップ。 
 下地金属層上に、酸素と、銅と、ニッケルとを含有する第1黒化層を堆積する第1黒化層成膜手段により第1黒化層を形成する第1黒化層形成ステップ。
The manufacturing method of the laminated body board | substrate of this embodiment can have the following processes.
A transparent base material preparation step for preparing a transparent base material.
The laminated body formation process which forms a laminated body in the at least one surface side of a transparent base material.
And the said laminated body formation process can include the following steps.
Mainly composed of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, W, or selected from the above metal group. A base metal layer forming step of forming a base metal layer by a base metal layer film forming means for depositing a base metal layer made of an alloy as a component.
A first blackening layer forming step of forming a first blackening layer by a first blackening layer forming means for depositing a first blackening layer containing oxygen, copper, and nickel on the base metal layer;
 銅層を堆積する銅層成膜手段により銅層を形成する銅層形成ステップ。 
 そして、下地金属層形成ステップ、及び第1黒化層形成ステップは減圧雰囲気下において実施することが好ましい。また、第1黒化層に含まれる金属成分のうち、ニッケルの割合が20質量%以上70質量%以下であることが好ましい。
A copper layer forming step of forming a copper layer by a copper layer forming means for depositing the copper layer.
And it is preferable to implement a base metal layer formation step and a 1st blackening layer formation step in a pressure-reduced atmosphere. Moreover, it is preferable that the ratio of nickel is 20 mass% or more and 70 mass% or less among the metal components contained in a 1st blackening layer.
 以下に本実施形態の積層体基板の製造方法について説明するが、以下に説明する点以外については上述の積層体基板の場合と同様の構成とすることができるため説明を省略している。 Hereinafter, the manufacturing method of the multilayer substrate according to the present embodiment will be described, but the description thereof is omitted because the configuration can be the same as that of the above-described multilayer substrate except for the points described below.
 上述のように、本実施形態の積層体基板は透明基材と、銅層及び各黒化層を有する積層体と、を有することができる。この際、積層体内で下地金属層上に第1黒化層を設けること以外は銅層と各黒化層とを透明基材上に配置する順番や、その層の数は特に限定されるものではない。つまり、例えば透明基材の少なくとも一方の面側に、銅層と下地金属層と第1黒化層とをそれぞれ複数層積層することもできる。 As described above, the laminate substrate of the present embodiment can have a transparent base material and a laminate having a copper layer and each blackened layer. At this time, the order in which the copper layer and the respective blackened layers are arranged on the transparent substrate and the number of the layers are particularly limited except that the first blackened layer is provided on the base metal layer in the laminate. is not. That is, for example, a plurality of copper layers, base metal layers, and first blackening layers can be laminated on at least one surface side of the transparent substrate.
 このため、上記銅層形成ステップと、下地金属層形成ステップと、第1黒化層形成ステップとは、下地金属層形成ステップの直後に第1黒化層形成ステップを実施する点以外は、その実施する順番や、実施する回数については特に限定されるものではない。従って、形成する積層体基板の構造に合わせて任意の回数、タイミングで実施することができる。 Therefore, the copper layer forming step, the base metal layer forming step, and the first blackened layer forming step are the same except that the first blackened layer forming step is performed immediately after the base metal layer forming step. It does not specifically limit about the order to implement and the frequency | count of implementing. Therefore, it can be carried out at an arbitrary number of times according to the structure of the laminated substrate to be formed.
 透明基材準備工程は、例えば可視光を透過する高分子フィルムや、ガラス基板等により構成された透明基材を準備する工程であり、具体的な操作は特に限定されるものではない。例えば後段の各工程、ステップに供するため必要に応じて任意のサイズに切断等を行うことができる。なお、可視光を透過する高分子フィルムとして好適に用いることができるものについては既述のため、ここでは説明を省略する。 The transparent base material preparation step is a step of preparing a transparent base material composed of, for example, a polymer film that transmits visible light or a glass substrate, and the specific operation is not particularly limited. For example, it can be cut into an arbitrary size as necessary for use in the subsequent steps and steps. In addition, since what can be used suitably as a polymer film which permeate | transmits visible light is already stated, description is abbreviate | omitted here.
 次に積層体形成工程について説明する。積層体形成工程は透明基材の少なくとも一方の面側に積層体を形成する工程であり、下地金属層形成ステップと、第1黒化層形成ステップと、銅層形成ステップとを有することができる。各ステップについて以下に説明する。 Next, the laminate forming process will be described. The laminated body forming step is a step of forming a laminated body on at least one surface side of the transparent substrate, and can include a base metal layer forming step, a first blackened layer forming step, and a copper layer forming step. . Each step will be described below.
 まず、下地金属層形成ステップ、及び第1黒化層形成ステップについて説明する。 First, the base metal layer forming step and the first blackened layer forming step will be described.
 下地金属層形成ステップは、透明基材の少なくとも一方の面側にCu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは上記金属群から選択される1種類以上の金属を主成分とする合金からなる下地金属層を堆積する下地金属層成膜手段により下地金属層を成膜するステップである。 The base metal layer forming step includes at least one surface of the transparent substrate made of one or more kinds of metals selected from a metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W. Or forming a base metal layer by a base metal layer forming means for depositing a base metal layer made of an alloy containing one or more kinds of metals selected from the metal group as a main component.
 また、第1黒化層形成ステップは、下地金属層上に、酸素と、銅と、ニッケルとを含有する第1黒化層を堆積する第1黒化層成膜手段により第1黒化層を形成するステップである。 In the first blackening layer forming step, the first blackening layer is formed by a first blackening layer film forming unit that deposits a first blackening layer containing oxygen, copper, and nickel on the base metal layer. Is a step of forming.
 下地金属層形成ステップにおける下地金属層成膜手段、及び第1黒化層形成ステップにおける第1黒化層成膜手段は特に限定されるものではないが、乾式めっき法であることが望ましい。 The base metal layer film forming means in the base metal layer forming step and the first black layer forming film forming means in the first black layer forming step are not particularly limited, but are preferably dry plating methods.
 なお、本実施形態の積層体基板は、第2黒化層を有することもでき、この場合、積層体形成工程は、第2黒化層形成ステップを有することができる。第2黒化層形成ステップでは、第2黒化層を堆積する第2黒化層成膜手段により第2黒化層を形成することができる。第2黒化層成膜手段についても特に限定されるものではないが、乾式めっき法であることが好ましい。 In addition, the laminated body board | substrate of this embodiment can also have a 2nd blackening layer, and a laminated body formation process can have a 2nd blackening layer formation step in this case. In the second blackened layer forming step, the second blackened layer can be formed by the second blackened layer forming means for depositing the second blackened layer. The second blackening layer film forming means is not particularly limited, but is preferably a dry plating method.
 上述の下地金属層形成ステップや、第1黒化層形成ステップ、第2黒化層形成ステップで好適に用いることができる乾式めっき法としては特に限定されるものではないが、減圧雰囲気下において、スパッタリング法、イオンプレーティング法を用いることができる。特に下地金属層や、黒化層の組成や厚さの制御が容易であることから、スパッタリング法を用いることがより好ましい。すなわち、下地金属層成膜手段、及び第1黒化層成膜手段はスパッタリング成膜法であることが好ましい。また、第2黒化層も成膜する場合には、第2黒化層成膜手段はスパッタリング成膜法であることが好ましい。すなわち、黒化層を成膜する第1黒化層成膜手段、及び第2黒化層成膜手段は、スパッタリング成膜法であることが好ましい。 The dry plating method that can be suitably used in the above-described base metal layer forming step, the first blackened layer forming step, and the second blackened layer forming step is not particularly limited. A sputtering method or an ion plating method can be used. In particular, it is more preferable to use a sputtering method because it is easy to control the composition and thickness of the base metal layer and the blackened layer. That is, it is preferable that the base metal layer film forming unit and the first blackening layer film forming unit be a sputtering film forming method. When the second blackened layer is also formed, the second blackened layer forming means is preferably a sputtering film forming method. That is, the first black layer forming means and the second black layer forming means for forming the black layer are preferably formed by sputtering.
 下地金属層、及び第1黒化層、場合によってはさらに第2黒化層等は例えば図7に示したロール・ツー・ロールスパッタリング装置70を用いて好適に成膜することができる。 The base metal layer, the first blackened layer, and in some cases, the second blackened layer can be suitably formed using, for example, the roll-to-roll sputtering apparatus 70 shown in FIG.
 図7はロール・ツー・ロールスパッタリング装置70の一構成例を示している。ロール・ツー・ロールスパッタリング装置70は、その構成部品のほとんどを収納した筐体71を備えている。図7において筐体71の形状は直方体形状として示しているが、筐体71の形状は特に限定されるものではなく、内部に収容する装置や、設置場所、耐圧性能等に応じて任意の形状とすることができる。例えば筐体71の形状は円筒形状とすることもできる。ただし、成膜開始時に成膜に関係ない残留ガスを除去するため、筐体71内部は1Pa以下まで減圧できることが好ましく、10-3Pa以下まで減圧できることがより好ましく、10-4Pa以下まで減圧できることがさらに好ましい。なお、筐体71内部全てが上記圧力まで減圧できる必要はなく、スパッタリングを行う、後述するキャンロール73が配置された図中下側の領域のみが上記圧力まで減圧できるように構成することもできる。 FIG. 7 shows a configuration example of the roll-to-roll sputtering apparatus 70. The roll-to-roll sputtering apparatus 70 includes a casing 71 that houses most of the components. In FIG. 7, the shape of the housing 71 is shown as a rectangular parallelepiped shape, but the shape of the housing 71 is not particularly limited, and may be any shape depending on the device accommodated therein, the installation location, the pressure resistance performance, and the like. It can be. For example, the shape of the housing 71 can be a cylindrical shape. However, in order to remove residual gas not related to film formation at the start of film formation, it is preferable that the inside of the casing 71 can be depressurized to 1 Pa or less, more preferably 10 −3 Pa or less, more preferably 10 −4 Pa or less. More preferably, it can be done. In addition, it is not necessary that the entire inside of the casing 71 can be reduced to the above pressure, and it can be configured such that only the lower region in the drawing where the can roll 73 (described later) where sputtering is performed can be reduced to the above pressure. .
 筐体71内には、第1黒化層または第2黒化層を成膜する基材を供給する巻出ロール72、キャンロール73、スパッタリングカソード74a~74d、前フィードロール75a、後フィードロール75b、テンションロール76a、76b、巻取ロール77を配置することができる。また、下地金属層や、第1黒化層、第2黒化層を成膜する基材の搬送経路上には、上記各ロール以外に任意にガイドロール78a~78hや、ヒーター79等を設けることもできる。 Inside the casing 71 are an unwinding roll 72, a can roll 73, sputtering cathodes 74a to 74d, a front feed roll 75a, and a rear feed roll for supplying a substrate for forming the first blackened layer or the second blackened layer. 75b, tension rolls 76a and 76b, and a winding roll 77 can be arranged. In addition to the above rolls, guide rolls 78a to 78h, a heater 79, and the like are optionally provided on the transport path of the base material on which the base metal layer, the first blackened layer, and the second blackened layer are formed. You can also.
 巻出ロール72、キャンロール73、前フィードロール75a、巻取ロール77にはサーボモータによる動力を備えることができる。巻出ロール72、巻取ロール77は、パウダークラッチ等によるトルク制御によって銅薄膜層を成膜する基材の張力バランスが保たれるようになっていることが好ましい。 The unwinding roll 72, the can roll 73, the front feed roll 75a, and the winding roll 77 can be provided with power by a servo motor. The unwinding roll 72 and the winding roll 77 are preferably configured such that the tension balance of the base material on which the copper thin film layer is formed is maintained by torque control using a powder clutch or the like.
 キャンロール73の構成についても特に限定されないが、例えばその表面が硬質クロムめっきで仕上げられ、その内部には筐体71の外部から供給される冷媒や温媒が循環し、一定の温度に調整できるように構成されていることが好ましい。 Although the structure of the can roll 73 is not particularly limited, for example, the surface thereof is finished with hard chrome plating, and a coolant and a heating medium supplied from the outside of the casing 71 are circulated inside the can roll 73 so that the temperature can be adjusted to a constant temperature. It is preferable that it is comprised.
 テンションロール76a、76bは例えば、表面が硬質クロムめっきで仕上げられ張力センサーが備えられていることが好ましい。また、前フィードロール75aや、後フィードロール75b、ガイドロール78a~78hについても表面が硬質クロムめっきで仕上げられていることが好ましい。 The tension rolls 76a and 76b are preferably finished with hard chrome plating and provided with a tension sensor, for example. The front feed roll 75a, the rear feed roll 75b, and the guide rolls 78a to 78h are preferably finished with hard chrome plating.
 スパッタリングカソード74a~74dは、マグネトロンカソード式でキャンロール73に対向して配置することが好ましい。スパッタリングカソード74a~74dのサイズは特に限定されないが、スパッタリングカソード74a~74dの下地金属層や、第1黒化層等を成膜する基材の巾方向の寸法は、対向する下地金属層や、第1黒化層等を成膜する基材の巾より広いことが好ましい。 It is preferable that the sputtering cathodes 74a to 74d are of a magnetron cathode type so as to face the can roll 73. The size of the sputtering cathodes 74a to 74d is not particularly limited, but the width direction dimension of the base metal layer for forming the sputtering cathodes 74a to 74d, the first blackening layer, etc. It is preferably wider than the width of the substrate on which the first blackening layer or the like is formed.
 下地金属層や、第1黒化層等を成膜する基材は、ロール・ツー・ロール真空成膜装置であるロール・ツー・ロールスパッタリング装置70内を搬送される。そして、キャンロール73上であって、スパッタリングカソード74a~74dと対向する位置を通過する際に下地金属層や、第1黒化層等が成膜される。ロール・ツー・ロールスパッタリング装置70を用いて第1黒化層を成膜する場合の手順の構成例について説明する。 The base material on which the base metal layer, the first blackening layer, and the like are formed is conveyed through a roll-to-roll sputtering apparatus 70 that is a roll-to-roll vacuum film forming apparatus. A base metal layer, a first blackening layer, and the like are formed on the can roll 73 when passing through positions facing the sputtering cathodes 74a to 74d. A configuration example of a procedure when the first blackening layer is formed using the roll-to-roll sputtering apparatus 70 will be described.
 まず、銅-ニッケル合金ターゲットをスパッタリングカソード74a~74dに装着し、第1黒化層を成膜する基材を巻出ロール72にセットした筐体71内を真空ポンプ80a、80bにより真空排気する。なお、形成する第1黒化層に含まれる金属成分、例えば銅、及びニッケルのうち、ニッケルの割合は20質量%以上70質量%以下であることが好ましい。このため、第1黒化層を成膜する際に用いる銅-ニッケル合金ターゲットについても、銅、及びニッケルのうち、ニッケルの割合が20質量%以上70質量%以下であることが好ましい。 First, a copper-nickel alloy target is mounted on the sputtering cathodes 74a to 74d, and the inside of the casing 71 in which the base material for forming the first blackening layer is set on the unwinding roll 72 is evacuated by the vacuum pumps 80a and 80b. . In addition, it is preferable that the ratio of nickel is 20 mass% or more and 70 mass% or less among the metal components contained in the 1st blackening layer to form, for example, copper and nickel. For this reason, the copper-nickel alloy target used for forming the first blackened layer also preferably has a nickel content of 20% by mass or more and 70% by mass or less among copper and nickel.
 そしてその後、不活性ガス、例えばアルゴンと、酸素とからなるスパッタリングガスを気体供給手段81により筐体71内に導入することができる。なお、気体供給手段81の構成は特に限定されないが、図示しない気体貯蔵タンクを有することができる。そして、気体貯蔵タンクと筐体71との間に、ガス種ごとにマスフローコントローラー(MFC)811a、811b、及びバルブ812a、812bを設け、各ガスの筐体71内への供給量を制御できるように構成できる。図7ではマスフローコントローラーと、バルブとを2組設けた例を示しているが、設置する数は特に限定されず、用いるガス種の数に応じて設置する数を選択することができる。 Then, an inert gas, for example, a sputtering gas composed of argon and oxygen can be introduced into the casing 71 by the gas supply means 81. The configuration of the gas supply unit 81 is not particularly limited, but can have a gas storage tank (not shown). Further, mass flow controllers (MFC) 811a and 811b and valves 812a and 812b are provided for each gas type between the gas storage tank and the casing 71 so that the supply amount of each gas into the casing 71 can be controlled. Can be configured. Although FIG. 7 shows an example in which two sets of mass flow controllers and valves are provided, the number to be installed is not particularly limited, and the number to be installed can be selected according to the number of gas types to be used.
 この際、スパッタリングガスの流量と、真空ポンプ80bと筐体71との間に設けられた圧力調整バルブ82の開度とを調整して筐体71内を例えば0.13Pa以上13Pa以下に保持して成膜を実施することが好ましい。 At this time, the flow rate of the sputtering gas and the opening of the pressure adjustment valve 82 provided between the vacuum pump 80b and the housing 71 are adjusted to maintain the inside of the housing 71 at, for example, 0.13 Pa or more and 13 Pa or less. It is preferable to perform film formation.
 なお、不活性ガス、酸素ガスは予め混合したガスを筐体71内に供給することもできるが、それぞれ個別に筐体71に供給し、筐体71内でそれぞれのガスが所望の分圧となるようにその供給量、圧力を調整することもできる。また、スパッタリングガスは、既述のように不活性ガスと、酸素とからなるガスに限定されるものではなく、水蒸気、一酸化炭素ガス、二酸化炭素ガスから選択される1種類以上のガスをさらに含んでいてもよい。 In addition, as the inert gas and the oxygen gas, premixed gases can be supplied into the casing 71. However, the inert gas and the oxygen gas are individually supplied to the casing 71, and each gas has a desired partial pressure in the casing 71. The supply amount and pressure can also be adjusted so that Further, the sputtering gas is not limited to a gas composed of an inert gas and oxygen as described above, and further includes one or more kinds of gases selected from water vapor, carbon monoxide gas, and carbon dioxide gas. May be included.
 この状態で、巻出ロール72から基材を例えば毎分0.5m以上10m以下程度の速さで搬送しながら、スパッタリングカソード74a~74dに接続したスパッタリング用直流電源より電力を供給してスパッタリング放電を行う。これにより基材上に所望の第1黒化層を連続成膜することができる。 In this state, while discharging the substrate from the unwinding roll 72 at a speed of, for example, about 0.5 m to 10 m / min, power is supplied from a sputtering DC power source connected to the sputtering cathodes 74a to 74d to perform sputtering discharge. I do. Thereby, a desired 1st blackening layer can be continuously formed on a base material.
 なお、ロール・ツー・ロールスパッタリング装置70には上述した以外にも必要に応じて各種部材を配置できる。例えば筐体71内の圧力を測定するための圧力計83a、83bや、ベントバルブ84a、84bを設けることもできる。 In addition to the above, various members can be arranged in the roll-to-roll sputtering apparatus 70 as necessary. For example, pressure gauges 83a and 83b for measuring the pressure in the casing 71 and vent valves 84a and 84b can be provided.
 下地金属層は、銅-ニッケル合金ターゲットに替えて、Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは上記金属群から選択される1種類以上の金属を主成分とする合金のターゲットをスパッタリングカソード74a~74dに装着する点とスパッタリングガスに酸素を添加しない点以外は上述の第1黒化層の場合と同様にして成膜することができる。 The base metal layer is made of one or more kinds of metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W instead of the copper-nickel alloy target, or In the case of the first blackened layer described above, except that an alloy target composed mainly of one or more metals selected from the above metal group is attached to the sputtering cathodes 74a to 74d and oxygen is not added to the sputtering gas. The film can be formed in the same manner as described above.
 なお、下地金属層は特に、Cu、Ni-Cu合金、Crを7質量%以下含むNi-Cr合金のいずれかからなることがさらに好ましい。このため、これらの組成に対応したターゲットを用いて、下地金属層を成膜することが好ましい。 The base metal layer is more preferably made of any one of Cu, Ni—Cu alloy, and Ni—Cr alloy containing 7 mass% or less of Cr. For this reason, it is preferable to form a base metal layer using a target corresponding to these compositions.
 また、既述のように、本実施形態の積層体基板は、下地金属層、第1黒化層以外に、第2黒化層を有することもできる。このように、第2黒化層を成膜する場合には、第2黒化層の目的とする組成に応じたターゲット、例えば銅ターゲットや、銅-ニッケル合金ターゲットをスパッタリングカソード74a~74dに装着する以外は、上述の第1黒化層の場合と同様にして成膜することができる。 Further, as described above, the multilayer substrate of the present embodiment can have a second blackened layer in addition to the base metal layer and the first blackened layer. As described above, when forming the second blackened layer, a target corresponding to the target composition of the second blackened layer, for example, a copper target or a copper-nickel alloy target is mounted on the sputtering cathodes 74a to 74d. Except for this, the film can be formed in the same manner as in the case of the first blackening layer described above.
 そして、下地金属層形成ステップ、及び第1黒化層形成ステップは減圧雰囲気下において実施することが好ましい。また、第2黒化層形成ステップを行う場合には、第2黒化層形成ステップについても同様に減圧雰囲気下で実施することが好ましい。 And it is preferable to implement a base metal layer formation step and a 1st blackening layer formation step in a pressure-reduced atmosphere. In addition, when the second blackened layer forming step is performed, it is preferable that the second blackened layer forming step is similarly performed in a reduced pressure atmosphere.
 次に、銅層形成ステップについて説明する。 Next, the copper layer forming step will be described.
 銅層形成ステップでは透明基材の少なくとも一方の面側に銅層、すなわち銅を堆積する銅層成膜手段により銅層を形成することができる。 In the copper layer forming step, a copper layer can be formed on at least one surface side of the transparent substrate by a copper layer forming means for depositing copper, that is, copper.
 銅層形成ステップでは、乾式めっき法を用いて銅薄膜層を形成することが好ましい。また銅層をより厚くする場合には、乾式めっき法により銅薄膜層を形成後に湿式めっき法を用いてさらに銅めっき層を形成することが好ましい。 In the copper layer forming step, it is preferable to form a copper thin film layer using a dry plating method. Moreover, when making a copper layer thicker, it is preferable to form a copper plating layer further using a wet plating method after forming a copper thin film layer by a dry plating method.
 このため、銅層形成ステップは、例えば乾式めっき法により銅薄膜層を形成するステップを有することができる。また、銅層形成ステップは、乾式めっき法により銅薄膜層を形成するステップと、該銅薄膜層を給電層として、湿式めっき法により銅めっき層を形成するステップと、を有していてもよい。 Therefore, the copper layer forming step can include a step of forming a copper thin film layer by, for example, a dry plating method. The copper layer forming step may include a step of forming a copper thin film layer by a dry plating method and a step of forming a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer. .
 従って、上述の銅層成膜手段としては1つの成膜手段に限定されるものではなく、複数の成膜手段を組み合わせて用いることもできる。 Therefore, the above copper layer film forming means is not limited to one film forming means, and a plurality of film forming means can be used in combination.
 上述のように乾式めっき法のみ、又は乾式めっき法と湿式めっき法とを組み合わせて銅層を形成することにより透明基材または黒化層上に接着剤を介さずに直接銅層を形成できるため好ましい。 Since the copper layer can be formed directly on the transparent substrate or the blackened layer without using an adhesive by forming the copper layer only by the dry plating method or by combining the dry plating method and the wet plating method as described above. preferable.
 上述のように、銅層形成ステップでは、例えば乾式めっき法により銅薄膜層を形成することができる。 As described above, in the copper layer forming step, a copper thin film layer can be formed by, for example, a dry plating method.
 乾式めっき法としては特に限定されるものではないが、減圧雰囲気下において、スパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。 The dry plating method is not particularly limited, but a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used in a reduced pressure atmosphere.
 特に、銅薄膜層の形成に用いる乾式めっき法としては、厚さの制御が容易であることから、スパッタリング法を用いることがより好ましい。すなわちこの場合、銅層形成ステップにおける銅層を堆積させる銅層成膜手段としてスパッタリング成膜手段(スパッタリング成膜法)を好ましく用いることができる。 In particular, as the dry plating method used for forming the copper thin film layer, it is more preferable to use the sputtering method because the thickness can be easily controlled. That is, in this case, sputtering film forming means (sputtering film forming method) can be preferably used as the copper layer film forming means for depositing the copper layer in the copper layer forming step.
 銅薄膜層は、例えば図7に示したロール・ツー・ロールスパッタリング装置70を用いて好適に成膜することができる。なお、ロール・ツー・ロールスパッタリング装置70の構成については既述のため、ここでは説明を省略する。 The copper thin film layer can be suitably formed using, for example, the roll-to-roll sputtering apparatus 70 shown in FIG. Since the configuration of the roll-to-roll sputtering apparatus 70 has already been described, the description thereof is omitted here.
 以下にロール・ツー・ロールスパッタリング装置を用いた場合を例に銅薄膜層を形成するステップを説明する。 Hereinafter, the steps of forming a copper thin film layer will be described by taking as an example the case of using a roll-to-roll sputtering apparatus.
 ロール・ツー・ロールスパッタリング装置70を用いて銅薄膜層を成膜する場合の手順について説明する。 The procedure for forming a copper thin film layer using the roll-to-roll sputtering apparatus 70 will be described.
 まず、銅ターゲットをスパッタリングカソード74a~74dに装着し、銅薄膜層を成膜する基材を巻出ロール72にセットした筐体71内を真空ポンプ80a、80bにより真空排気する。 First, a copper target is mounted on the sputtering cathodes 74a to 74d, and the inside of the casing 71 in which the base material for forming the copper thin film layer is set on the unwinding roll 72 is evacuated by the vacuum pumps 80a and 80b.
 その後、不活性ガス、例えばアルゴン等のスパッタリングガスを気体供給手段81により筐体71内に導入することができる。 Thereafter, an inert gas, for example, a sputtering gas such as argon can be introduced into the casing 71 by the gas supply means 81.
 そして、気体供給手段81によりスパッタリングガスを筐体71内に供給した際、スパッタリングガスの流量と、真空ポンプ80bと筐体71との間に設けられた圧力調整バルブ82の開度と、を調整して装置内を例えば0.13Pa以上1.3Pa以下に保持し、成膜を実施することが好ましい。 When the sputtering gas is supplied into the casing 71 by the gas supply means 81, the flow rate of the sputtering gas and the opening degree of the pressure adjustment valve 82 provided between the vacuum pump 80b and the casing 71 are adjusted. Then, it is preferable to carry out film formation while maintaining the inside of the apparatus at, for example, 0.13 Pa or more and 1.3 Pa or less.
 この状態で、巻出ロール72から基材を例えば毎分1m以上20m以下の速さで搬送しながら、スパッタリングカソード74a~74dに接続したスパッタリング用直流電源より電力を供給してスパッタリング放電を行う。これにより基材上に所望の銅薄膜層を連続成膜することができる。 In this state, while discharging the substrate from the unwinding roll 72 at a speed of, for example, 1 m or more and 20 m or less per minute, power is supplied from the sputtering DC power source connected to the sputtering cathodes 74a to 74d to perform sputtering discharge. Thereby, a desired copper thin film layer can be continuously formed on a base material.
 また、既述のように乾式めっき後に湿式めっき法を用いてさらに銅層(銅めっき層)を成膜することができる。 Further, as described above, a copper layer (copper plating layer) can be further formed using a wet plating method after dry plating.
 湿式めっき法により銅めっき層を成膜する場合、上述した乾式めっきにより成膜した銅薄膜層を給電層とすることができる。そしてこの場合、銅層形成ステップにおける銅を堆積させる銅層成膜手段として、電気めっき成膜手段を好ましく用いることができる。 When a copper plating layer is formed by a wet plating method, the copper thin film layer formed by the dry plating described above can be used as a power feeding layer. In this case, electroplating film forming means can be preferably used as the copper layer forming means for depositing copper in the copper layer forming step.
 銅薄膜層を給電層として、湿式めっき法により銅めっき層を形成する工程における条件、すなわち、電気めっき処理の条件は、特に限定されるものではなく、常法による諸条件を採用すればよい。例えば、銅めっき液を入れためっき槽に銅薄膜層を形成した基材を供給し、電流密度や、基材の搬送速度を制御することによって、銅めっき層を形成できる。 The conditions in the step of forming the copper plating layer by the wet plating method using the copper thin film layer as the power feeding layer, that is, the conditions of the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted. For example, a copper plating layer can be formed by supplying a base material on which a copper thin film layer is formed in a plating tank containing a copper plating solution and controlling the current density and the conveyance speed of the base material.
 ここまで、本実施形態の積層体基板の製造方法に含まれる各工程、ステップについて説明した。 So far, each process and step included in the manufacturing method of the multilayer substrate of the present embodiment has been described.
 本実施形態の積層体基板の製造方法により得られる積層体基板は、既述の積層体基板と同様に、銅層は厚さが50nm以上であることが好ましく、60nm以上とすることがより好ましく、150nm以上であることがさらに好ましい。銅層の厚さの上限値は特に限定されないが、銅層の厚さは5000nm以下であることが好ましく、3000nm以下であることがより好ましい。なお、銅層が上述のように銅薄膜層と、銅めっき層を有する場合には、銅薄膜層の厚さと、銅めっき層の厚さとの合計が上記範囲であることが好ましい。 In the laminate substrate obtained by the method for producing a laminate substrate according to this embodiment, the copper layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, as in the above-described laminate substrate. More preferably, it is 150 nm or more. The upper limit value of the thickness of the copper layer is not particularly limited, but the thickness of the copper layer is preferably 5000 nm or less, and more preferably 3000 nm or less. In addition, when a copper layer has a copper thin film layer and a copper plating layer as mentioned above, it is preferable that the sum total of the thickness of a copper thin film layer and the thickness of a copper plating layer is the said range.
 下地金属層についても厚さは特に限定されないが、1.5nm以上5nm以下が好ましい。 The thickness of the underlying metal layer is not particularly limited, but is preferably 1.5 nm or more and 5 nm or less.
 第1黒化配線層についても厚さは特に限定されるものではないが、下限値は20nm以上であることが好ましい。また、第1黒化層の厚さの上限値は特に限定されるものではないが、70nm以下とすることが好ましく、50nm以下とすることがより好ましい。 The thickness of the first blackened wiring layer is not particularly limited, but the lower limit is preferably 20 nm or more. Moreover, the upper limit of the thickness of the first blackening layer is not particularly limited, but is preferably 70 nm or less, and more preferably 50 nm or less.
 第2黒化層を設ける場合、その厚さは特に限定されないが、例えば下限値は5nm以上とすることができる。また、上限値は例えば70nm以下とすることが好ましく、50nm以下とすることがより好ましい。なお、既述のように第2黒化層は複層構造とすることもでき、この場合、第2黒化層を構成する複数の層の厚さの合計が上記範囲であることが好ましい。 When the second blackening layer is provided, the thickness thereof is not particularly limited, but the lower limit can be set to 5 nm or more, for example. Further, the upper limit is preferably, for example, 70 nm or less, and more preferably 50 nm or less. As described above, the second blackened layer may have a multilayer structure, and in this case, the total thickness of the plurality of layers constituting the second blackened layer is preferably in the above range.
 さらに、本実施形態の積層体基板の製造方法により得られる積層体基板は、波長400nm以上700nm以下の光の正反射率の平均は55%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。 Furthermore, in the laminate substrate obtained by the laminate substrate manufacturing method of the present embodiment, the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less, and preferably 40% or less. More preferably, it is more preferably 30% or less.
 本実施形態の積層体基板の製造方法により得られる積層体基板を用いて、銅層、下地金属層、及び第1黒化層に開口部を備えた配線パターンが形成された導電性基板とすることができる。導電性基板は、より好ましくは、メッシュ状の配線を備えた構成とすることができる。 Using the laminate substrate obtained by the laminate substrate manufacturing method of the present embodiment, a conductive substrate having a wiring pattern having openings in the copper layer, the base metal layer, and the first blackening layer is formed. be able to. More preferably, the conductive substrate can be configured to include mesh-like wiring.
 係る本実施形態の導電性基板の製造方法は、上述の積層体基板の製造方法により得られた積層体基板の下地金属層と、第1黒化層と、銅層とをエッチングし、下地金属配線層と、第1黒化配線層と、銅配線層とを備えた積層体である金属細線を有する配線パターンを形成するエッチング工程を有することができる。そして、係るエッチング工程により、下地金属層、第1黒化層、及び銅層に開口部を形成できる。 The conductive substrate manufacturing method according to the present embodiment includes etching the base metal layer, the first blackening layer, and the copper layer of the multilayer substrate obtained by the above-described method for manufacturing a multilayer substrate. It is possible to have an etching process for forming a wiring pattern having a fine metal wire that is a laminate including a wiring layer, a first blackened wiring layer, and a copper wiring layer. And the opening part can be formed in a base metal layer, a 1st blackening layer, and a copper layer by the etching process which concerns.
 エッチング工程では例えばまず、エッチングにより除去する部分に対応した開口部を有するレジストを、積層体基板の最表面に形成する。例えば、図2Aに示した積層体基板の場合、積層体基板に配置した銅層14の露出した表面A上にレジストを形成することができる。なお、エッチングにより除去する部分に対応した開口部を有するレジストの形成方法は特に限定されないが、例えばフォトリソグラフィー法により形成することができる。 In the etching step, for example, first, a resist having an opening corresponding to a portion to be removed by etching is formed on the outermost surface of the multilayer substrate. For example, in the case of the multilayer substrate shown in FIG. 2A, a resist can be formed on the exposed surface A of the copper layer 14 disposed on the multilayer substrate. Note that a method for forming a resist having an opening corresponding to a portion to be removed by etching is not particularly limited. For example, the resist can be formed by a photolithography method.
 次いで、レジスト上面からエッチング液を供給することにより、下地金属層12、第1黒化層13、及び銅層14のエッチングを実施することができる。 Then, the base metal layer 12, the first blackened layer 13, and the copper layer 14 can be etched by supplying an etching solution from the upper surface of the resist.
 なお、図2Bのように透明基材11の両面に銅層、黒化層を配置した場合には、積層体基板の表面A及び表面Bにそれぞれ所定の形状の開口部を有するレジストを形成し、透明基材11の両面に形成した下地金属層12A、12B、第1黒化層13A、13B、及び銅層14A、14Bを同時にエッチングしてもよい。また、透明基材11の両側に形成された下地金属層12A、12B、第1黒化層13A、13B、及び銅層14A、14Bについて、一方の側ずつエッチング処理を行うこともできる。すなわち、例えば、下地金属層12A、第1黒化層13A、銅層14Aのエッチングを行った後に、下地金属層12B、第1黒化層13B、銅層14Bのエッチングを行うこともできる。 2B, when a copper layer and a blackened layer are arranged on both surfaces of the transparent substrate 11, resists having openings of predetermined shapes are formed on the surface A and the surface B of the laminate substrate, respectively. The underlying metal layers 12A and 12B, the first blackening layers 13A and 13B, and the copper layers 14A and 14B formed on both surfaces of the transparent substrate 11 may be etched simultaneously. In addition, the base metal layers 12A and 12B, the first blackened layers 13A and 13B, and the copper layers 14A and 14B formed on both sides of the transparent base material 11 can be subjected to an etching process on one side. That is, for example, after the base metal layer 12A, the first blackened layer 13A, and the copper layer 14A are etched, the base metal layer 12B, the first blackened layer 13B, and the copper layer 14B can be etched.
 本実施形態の積層体基板の製造方法で形成する第1黒化層は、銅層と同様のエッチング液に対する反応性を示す。また、下地金属層は、係るエッチング液に対する反応性が第1黒化層よりも高い。このため、エッチング工程で用いるエッチング液は特に限定されるものではなく、一般的に銅層のエッチングに用いられるエッチング液を好ましく用いることができる。 The 1st blackening layer formed with the manufacturing method of the laminated substrate of this embodiment shows the reactivity with respect to the etching liquid similar to a copper layer. Further, the base metal layer has a higher reactivity with the etching solution than the first blackened layer. For this reason, the etching solution used in the etching step is not particularly limited, and an etching solution generally used for etching the copper layer can be preferably used.
 エッチング工程で用いるエッチング液としては例えば、硫酸、過酸化水素水、塩酸、塩化第二銅、及び塩化第二鉄から選択された1種類を含む水溶液、または上記硫酸等から選択された2種類以上を含む混合水溶液をより好ましく用いることができる。エッチング液中の各成分の含有量は、特に限定されるものではない。 As an etching solution used in the etching process, for example, an aqueous solution containing one type selected from sulfuric acid, hydrogen peroxide solution, hydrochloric acid, cupric chloride, and ferric chloride, or two or more types selected from the above sulfuric acid, etc. A mixed aqueous solution containing can be more preferably used. The content of each component in the etching solution is not particularly limited.
 エッチング液は室温で用いることもできるが、反応性を高めるため加温して用いることもできる、例えば40℃以上50℃以下に加熱して用いることができる。 The etching solution can be used at room temperature, but can also be used by heating in order to increase the reactivity, for example, heated to 40 ° C. or more and 50 ° C. or less.
 上述したエッチング工程により得られるメッシュ状の配線の具体的な形態については、既述のとおりであるため、ここでは説明を省略する。 Since the specific form of the mesh-like wiring obtained by the above-described etching process is as described above, the description thereof is omitted here.
 また、図2A、図3Aに示した透明基材11の一方の面側に下地金属層、第1黒化層、及び銅層を有する2枚の積層体基板をエッチング工程に供して導電性基板とした後、2枚の導電性基板を貼り合せてメッシュ状の配線を備えた導電性基板とする場合、導電性基板を貼り合せる工程をさらに設けることができる。この際、2枚の導電性基板を貼り合せる方法は特に限定されるものではなく、例えば光学接着剤(OCA)等を用いて接着することができる。 2A and 3A, the two laminated substrates having the base metal layer, the first blackening layer, and the copper layer on one surface side of the transparent base material 11 shown in FIG. After that, in the case where two conductive substrates are bonded to form a conductive substrate having a mesh-like wiring, a step of bonding the conductive substrates can be further provided. In this case, a method for bonding the two conductive substrates is not particularly limited, and the bonding can be performed using, for example, an optical adhesive (OCA) or the like.
 なお、本実施形態の導電性基板の製造方法により得られる導電性基板は、波長400nm以上700nm以下の光の正反射率の平均は55%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。 In the conductive substrate obtained by the method for manufacturing a conductive substrate according to the present embodiment, the average regular reflectance of light having a wavelength of 400 nm to 700 nm is preferably 55% or less, and preferably 40% or less. More preferably, it is more preferably 30% or less.
 これは波長400nm以上700nm以下の光の正反射率の平均が55%以下の場合、例えばタッチパネル用の導電性基板として用いた場合でもディスプレイの視認性の低下を特に抑制できるためである。 This is because, when the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less is 55% or less, for example, when used as a conductive substrate for a touch panel, it is possible to particularly suppress a reduction in display visibility.
 以上に本実施形態の積層体基板、導電性基板、積層体基板の製造方法、及び導電性基板の製造方法について説明した。係る積層体基板、または積層体基板の製造方法により得られる積層体基板においては、銅層と、第1黒化層等の黒化層とを備え、銅層と、黒化層とを同時にエッチング処理を行うことができる。そして、銅層と黒化層とを同時にエッチングすることができるため、容易に所望の形状の銅配線層、及び黒化配線層を形成することができる。 In the above, the laminated substrate of this embodiment, the electroconductive board | substrate, the manufacturing method of a laminated body board | substrate, and the manufacturing method of an electroconductive board | substrate were demonstrated. Such a laminate substrate or a laminate substrate obtained by the laminate substrate manufacturing method includes a copper layer and a blackening layer such as a first blackening layer, and simultaneously etches the copper layer and the blackening layer. Processing can be performed. And since a copper layer and a blackening layer can be etched simultaneously, the copper wiring layer and blackening wiring layer of a desired shape can be formed easily.
 また、第1黒化配線層等の黒化配線層を設けることで銅配線層による光の反射を抑制することができ、例えばタッチパネル用の導電性基板とした場合に、視認性の低下を抑制することができる。このため、黒化配線層を設けることで良好な視認性を有する導電性基板とすることができる。 Further, by providing a blackened wiring layer such as the first blackened wiring layer, reflection of light by the copper wiring layer can be suppressed. For example, when a conductive substrate for a touch panel is used, a decrease in visibility is suppressed. can do. For this reason, it can be set as the electroconductive board | substrate which has favorable visibility by providing a blackening wiring layer.
 以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって、なんら限定されるものではない。
(評価方法)
(1)正反射率
 以下の各実施例、比較例において作製した積層体基板について正反射率の測定を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.
(Evaluation methods)
(1) Regular reflectance The regular reflectance was measured for the laminate substrates produced in the following examples and comparative examples.
 測定は、紫外可視分光光度計(株式会社 島津製作所製 型式:UV-2550)に反射率測定ユニットを設置して行った。 The measurement was performed by installing a reflectance measurement unit in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-2550).
 各実施例で図3Aの構造を有する積層体基板を作製したが、反射率の測定は図3Aにおける下地金属層12の透明基材11と対向する一方の面12aに対して透明基材11を通じて入射角を5°として、波長400nm以上700nm以下の範囲の光を照射して実施した。なお、積層体基板に照射した光は、波長400nm以上700nm以下の範囲内で、1nm毎に波長を変化させて各波長の光について正反射率の測定を行い、測定結果の平均を該導電性基板の正反射率の平均とした。なお、表1中では反射率として示している。
(2)金属細線のアンダーカット量比率
 アンダーカット量比率は、各実施例、比較例で作製した導電性基板の配線の断面をSEMで観察し、金属細線のパターン幅W及び金属細線の底部幅Wを求めて算出した。なお、金属細線のパターン幅W、金属細線の底部幅Wについては図6を用いて既に説明した通りである。
(3)開口部の全光線透過率の減少率
 各実施例、比較例で作製した導電性基板の透明基材を露出する金属細線間の開口部について、全光線透過率の測定を行った。
In each example, a laminate substrate having the structure of FIG. 3A was produced. The reflectance was measured through the transparent base material 11 on one surface 12a of the base metal layer 12 facing the transparent base material 11 in FIG. 3A. The incident angle was set to 5 °, and irradiation was performed with light having a wavelength ranging from 400 nm to 700 nm. In addition, the light irradiated to the laminate substrate is subjected to regular reflectance measurement with respect to light of each wavelength by changing the wavelength every 1 nm within a wavelength range of 400 nm to 700 nm, and the average of the measurement results is calculated as the conductivity. The average of the regular reflectance of the substrate was used. In Table 1, the reflectance is shown.
(2) the undercut amount ratio undercut amount ratio of thin metal wires, each of the embodiments, the cross section of the wire of the conductive substrate prepared in Comparative Example was observed by SEM, the bottom of the pattern width W 1 and the metal thin wires of the metal thin wires It was calculated to determine the width W 2. Note that the pattern width W 1 of the fine metal wire and the bottom width W 2 of the fine metal wire are as already described with reference to FIG.
(3) Reduction rate of total light transmittance of opening part The total light transmittance was measured about the opening part between the metal fine wires which expose the transparent base material of the electroconductive board | substrate produced by each Example and the comparative example.
 測定は、正反射率を測定した際の紫外可視分光光度計に積分球付属装置を設置して行った。照射した光は、波長400nm以上700nm以下の範囲内で、1nm毎に波長を変化させて各波長の光について透過率の測定を行い、測定結果の平均を該導電性基板の開口部の全光線透過率の平均とした。 The measurement was performed by installing an integrating sphere attachment device on the ultraviolet-visible spectrophotometer when measuring the regular reflectance. The irradiated light is measured for the transmittance of each wavelength light by changing the wavelength every 1 nm within the wavelength range of 400 nm to 700 nm, and the average of the measurement results is the total light of the opening of the conductive substrate. The average transmittance was used.
 また、予め積層体基板を製造する際に用いた透明基材について、同様にして全光線透過率の平均を測定しておいた。 In addition, the average of the total light transmittance was measured in the same manner for the transparent base material used when the laminate substrate was manufactured in advance.
 そして、各実施例、比較例で作製した導電性基板の開口部の全光線透過率の平均の、透明基材の全光線透過率の平均からの減少率である、開口部の全光線透過率の減少率を算出した。
(試料の作製条件)
 実施例、比較例として、以下に説明する条件で積層体基板、及び導電性基板を作製し、上述の評価方法により評価を行った。
[実施例1]
 図3Aに示した構造を有する積層体基板を作製した。
(透明基材準備工程)
 まず、透明基材準備工程を実施した。
And the average of the total light transmittance of the opening part of the conductive substrate produced in each Example and Comparative Example is the decrease rate from the average of the total light transmittance of the transparent base material, the total light transmittance of the opening part The reduction rate was calculated.
(Sample preparation conditions)
As examples and comparative examples, laminate substrates and conductive substrates were produced under the conditions described below, and evaluation was performed by the above-described evaluation method.
[Example 1]
A laminate substrate having the structure shown in FIG. 3A was produced.
(Transparent substrate preparation process)
First, the transparent base material preparation process was implemented.
 具体的には、幅500mm、厚さ100μmの光学用ポリエチレンテレフタレート樹脂(PET)製の透明基材を準備した。
(積層体形成工程)
 次に、積層体形成工程を実施した。
Specifically, a transparent substrate made of optical polyethylene terephthalate resin (PET) having a width of 500 mm and a thickness of 100 μm was prepared.
(Laminate formation process)
Next, the laminated body formation process was implemented.
 積層体形成工程として、下地金属層形成ステップ、第1黒化層形成ステップ、銅層形成ステップ、第2黒化層形成ステップを実施した。以下に具体的に説明する。
(1)下地金属層形成ステップ
 まず下地金属層形成ステップを実施した。
As the laminated body forming step, a base metal layer forming step, a first blackened layer forming step, a copper layer forming step, and a second blackened layer forming step were performed. This will be specifically described below.
(1) Base metal layer formation step First, a base metal layer formation step was performed.
 準備した透明基材を図7に示したロール・ツー・ロールスパッタリング装置70にセットした。また、スパッタリングカソード74aに、銅ターゲット、(住友金属鉱山(株)製)を装着した。なお、下地金属層は薄いことから、1つのスパッタリングカソード74aにのみ銅ターゲットをセットし、他のスパッタリングカソード74b~74dにはターゲットをセットしなかった。 The prepared transparent substrate was set in the roll-to-roll sputtering apparatus 70 shown in FIG. Further, a copper target (manufactured by Sumitomo Metal Mining Co., Ltd.) was attached to the sputtering cathode 74a. Since the underlying metal layer was thin, a copper target was set only on one sputtering cathode 74a, and no target was set on the other sputtering cathodes 74b to 74d.
 そして、ロール・ツー・ロールスパッタリング装置70のヒーター79を100℃に加熱し、透明基材を加熱し、基材中に含まれる水分を除去した。 Then, the heater 79 of the roll-to-roll sputtering apparatus 70 was heated to 100 ° C., the transparent base material was heated, and water contained in the base material was removed.
 続いて筐体71内を1×10-4Paまで真空ポンプ80a、80bにより排気した後、気体供給手段81によりアルゴンガスの流量が240sccmとなるようにしてアルゴンガスを筐体71内に導入した。そして、透明基材を巻出ロール72から毎分2mの速さで搬送しながら、スパッタリングカソード74aに接続したスパッタリング用直流電源より電力を供給し、スパッタリング放電を行い、透明基材上に所望の下地金属層を成膜した。係る操作により透明基材上に下地金属層を厚さ2nmとなるように形成した。
(2)第1黒化層形成ステップ
 次に第1黒化層形成ステップを実施した。
Subsequently, after the inside of the casing 71 was evacuated to 1 × 10 −4 Pa by the vacuum pumps 80a and 80b, the argon gas was introduced into the casing 71 by the gas supply means 81 so that the flow rate of argon gas was 240 sccm. . And while conveying a transparent base material from the unwinding roll 72 at the speed of 2 m / m, electric power is supplied from the DC power source for sputtering connected to the sputtering cathode 74a, sputtering discharge is performed, and a desired material is formed on the transparent base material. A base metal layer was formed. By this operation, a base metal layer was formed on the transparent substrate so as to have a thickness of 2 nm.
(2) First Blackened Layer Formation Step Next, a first blackened layer formation step was performed.
 第1の黒化層形成ステップでは、スパッタリングカソード74a~74dに装着するターゲットを、銅-ニッケル合金ターゲット(住友金属鉱山(株)製)とし、筐体71内を1×10-4Paまで排気後、ロール・ツー・ロールスパッタリング装置70の筐体71内に、気体供給手段81によりアルゴンガスの流量が240sccm、酸素ガスの流量が80sccmとなるようにしてアルゴンガスと酸素ガスとを筐体71内に導入し、スパッタリングカソード74a~74dに接続したスパッタリング用直流電源より電力を供給した以外は、下地金属層の場合と同様にして下地金属層の上面に第1黒化層を厚さ20nmとなるように形成した。 In the first blackening layer forming step, the target mounted on the sputtering cathodes 74a to 74d is a copper-nickel alloy target (manufactured by Sumitomo Metal Mining Co., Ltd.), and the inside of the casing 71 is exhausted to 1 × 10 −4 Pa. Thereafter, argon gas and oxygen gas are supplied into the casing 71 of the roll-to-roll sputtering apparatus 70 by the gas supply means 81 so that the argon gas flow rate is 240 sccm and the oxygen gas flow rate is 80 sccm. The first blackening layer has a thickness of 20 nm on the upper surface of the base metal layer in the same manner as in the case of the base metal layer except that power is supplied from a DC power supply for sputtering connected to the sputtering cathodes 74a to 74d. It formed so that it might become.
 なお、基材としては、下地金属層形成ステップで、透明基材上に下地金属層を形成した基材を用い、下地金属層上に第1黒化層を成膜している。 In addition, as a base material, the base material layer formation step WHEREIN: The base material which formed the base metal layer on the transparent base material was used, and the 1st blackening layer was formed into a film on the base metal layer.
 また、銅-ニッケル合金ターゲットとしては、表1に示すように、Niを20質量%、Cuを80質量%含有するターゲットを用いた。
(3)銅層形成ステップ
 続いて、銅層形成ステップを実施した。
As a copper-nickel alloy target, as shown in Table 1, a target containing 20% by mass of Ni and 80% by mass of Cu was used.
(3) Copper layer formation step Then, the copper layer formation step was implemented.
 銅層形成ステップでは、スパッタリングカソード74a~74dに装着するターゲットを銅ターゲット(住友金属鉱山(株)製)に変え、筐体71内を排気後、ロール・ツー・ロールスパッタリング装置70の筐体71内にアルゴンガスのみを導入した点以外は第1黒化層の場合と同様にして第1黒化層の上面に銅層を厚さ200nmとなるように形成した。 In the copper layer forming step, the target attached to the sputtering cathodes 74a to 74d is changed to a copper target (manufactured by Sumitomo Metal Mining Co., Ltd.), the inside of the casing 71 is evacuated, and then the casing 71 of the roll-to-roll sputtering apparatus 70 is used. A copper layer having a thickness of 200 nm was formed on the upper surface of the first blackened layer in the same manner as the first blackened layer except that only argon gas was introduced therein.
 なお、銅層を形成する基材としては、下地金属層形成ステップと、第1黒化層形成ステップとで、透明基材上に、下地金属層、及び第1黒化層をその順に形成した基材を用いた。
(4)第2黒化層形成ステップ
 続いて、第2黒化層形成ステップを実施した。
In addition, as a base material which forms a copper layer, the base metal layer and the 1st blackening layer were formed in that order on the transparent base material by the base metal layer formation step and the 1st blackening layer formation step. A substrate was used.
(4) Second Blackening Layer Formation Step Subsequently, a second blackening layer formation step was performed.
 第2黒化層形成ステップでは、下地金属層形成ステップと、第1黒化層形成ステップと、銅層形成ステップとで、透明基材上に、下地金属層、第1黒化層、及び銅層をその順に形成した基材を用いた点以外は第1黒化層形成ステップと同様にして、第2黒化層を形成した。 In the second blackening layer forming step, the base metal layer forming step, the first blackening layer forming step, and the copper layer forming step are performed on the transparent base material on the base metal layer, the first blackening layer, and the copper. A second blackened layer was formed in the same manner as in the first blackened layer forming step except that a base material in which layers were formed in that order was used.
 作製した積層体基板の波長400nm以上700nm以下の光の正反射率の平均を、上述の手順により測定したところ、波長400nm以上700nm以下の光の正反射率の平均は54%であった。 The average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less of the produced laminate substrate was measured by the above-described procedure, and the average regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less was 54%.
 また、得られた積層体基板について正反射率測定を行った後、エッチング工程を行い、導電性基板を作製した。 Moreover, after measuring the regular reflectance of the obtained laminate substrate, an etching process was performed to produce a conductive substrate.
 エッチング工程ではまず、エッチングにより除去する部分に対応した開口部を有するレジストを、作製した積層体基板の図3Aにおける表面C上に形成した。そして、塩化第二鉄10質量%と、塩酸10質量%と、残部が水と、からなるエッチング液に1分間浸漬して導電性基板を作製した。 In the etching step, first, a resist having an opening corresponding to a portion to be removed by etching was formed on the surface C in FIG. 3A of the manufactured laminate substrate. And it immersed for 1 minute in the etching liquid which consists of 10 mass% of ferric chloride, 10 mass% of hydrochloric acid, and the remainder with water, and produced the electroconductive board | substrate.
 作製した導電性基板について、金属細線のアンダーカット量比率、及び開口部の全光線透過率の測定を行った。 For the produced conductive substrate, the undercut amount ratio of the fine metal wire and the total light transmittance of the opening were measured.
 評価結果を表1に示す。
[実施例2]
 第1黒化層、第2黒化層を成膜する際に筐体内に供給した酸素の供給量を表1に示したように変更した点以外は実施例1と同様にして積層体基板、及び導電性基板を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Example 2]
A laminated substrate in the same manner as in Example 1 except that the supply amount of oxygen supplied into the housing when the first blackening layer and the second blackening layer were formed was changed as shown in Table 1. And the electroconductive board | substrate was produced and evaluated.
 なお、第2黒化層形成ステップにおいても、本実施例の第1黒化層形成ステップと同様に酸素の供給量を実施例1の際の条件から変更している。 In the second blackened layer forming step, the oxygen supply amount is changed from the conditions in the first embodiment as in the first blackened layer forming step of the present embodiment.
 評価結果を表1に示す。
[実施例3~実施例7]
 下地金属層を成膜する際に用いたスパッタリングターゲットの組成、及び下地金属層の厚さ、第1黒化層、第2黒化層を成膜する際に筐体内に供給した酸素の供給量、第1黒化層、第2黒化層を成膜する際に用いたスパッタリングターゲットである、銅-ニッケル合金ターゲットの組成、及び第1黒化層、第2黒化層の厚さを表1に示したように変更した点以外は実施例1と同様にして積層体基板、及び導電性基板を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Examples 3 to 7]
Composition of the sputtering target used when forming the base metal layer, the thickness of the base metal layer, the supply amount of oxygen supplied into the housing when forming the first black layer and the second black layer The composition of the copper-nickel alloy target, which is a sputtering target used when forming the first black layer and the second black layer, and the thicknesses of the first black layer and the second black layer are shown. A laminate substrate and a conductive substrate were produced and evaluated in the same manner as in Example 1 except for the points changed as shown in FIG.
 なお、第2黒化層形成ステップにおいても、各実施例の第1黒化層形成ステップと同様に成膜する際に筐体内に供給した酸素の供給量、銅-ニッケル合金ターゲットの組成を実施例1の際の条件から変更している。また、各実施例で第2黒化層は、第1黒化層と同じ厚さになるように成膜を行っている。 In the second blackened layer forming step, the amount of oxygen supplied into the housing during the film formation and the composition of the copper-nickel alloy target were carried out in the same manner as in the first blackened layer forming step of each example. The conditions are changed from those in Example 1. In each embodiment, the second blackened layer is formed to have the same thickness as the first blackened layer.
 下地金属層を成膜する際のスパッタリングターゲットとして、表1に示したように実施例5ではNiを60質量%、Cuを40質量%含有するターゲットを用いている。また、実施例6ではCrを7質量%、Niを93質量%含有するターゲットを用いている。 As shown in Table 1, in Example 5, a target containing 60% by mass of Ni and 40% by mass of Cu is used as a sputtering target for forming the base metal layer. In Example 6, a target containing 7% by mass of Cr and 93% by mass of Ni is used.
 評価結果を表1に示す。
[比較例1]
 下地金属層を形成しなかった点以外は実施例3と同様にして積層体基板、及び導電性基板を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Comparative Example 1]
A laminate substrate and a conductive substrate were prepared and evaluated in the same manner as in Example 3 except that the base metal layer was not formed.
 評価結果を表1に示す。
[比較例2]
 下地金属層の厚さを1nmとした点以外は実施例3と同様にして積層体基板、及び導電性基板を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Comparative Example 2]
A laminate substrate and a conductive substrate were prepared and evaluated in the same manner as in Example 3 except that the thickness of the base metal layer was 1 nm.
 評価結果を表1に示す。
[比較例3]
 下地金属層の厚さを6nmとした点以外は実施例3と同様にして積層体基板、及び導電性基板を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Comparative Example 3]
A laminate substrate and a conductive substrate were prepared and evaluated in the same manner as in Example 3 except that the thickness of the base metal layer was 6 nm.
 評価結果を表1に示す。
[比較例4]
 第1黒化層、第2黒化層を成膜する際に筐体内に供給した酸素の供給量、第1黒化層、第2黒化層を成膜する際に用いたスパッタリングターゲットである、銅-ニッケル合金ターゲットの組成、を表1に示したように変更した点以外は実施例1と同様にして積層体基板、及び導電性基板を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Comparative Example 4]
The oxygen supply amount supplied into the housing when forming the first blackening layer and the second blackening layer, and the sputtering target used when forming the first blackening layer and the second blackening layer. A laminate substrate and a conductive substrate were prepared and evaluated in the same manner as in Example 1 except that the composition of the copper-nickel alloy target was changed as shown in Table 1.
 評価結果を表1に示す。
[比較例5]
 下地金属層の厚さを3nmにした点と、第1黒化層、第2黒化層を成膜する際に筐体内に供給した酸素の供給量、第1黒化層、第2黒化層を成膜する際に用いたスパッタリングターゲットである、銅-ニッケル合金ターゲットの組成、第1黒化層、第2黒化層の厚さを25nmにした点以外は実施例1と同様にして積層体基板、及び導電性基板を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Comparative Example 5]
The thickness of the base metal layer is 3 nm, the supply amount of oxygen supplied into the housing when forming the first blackened layer and the second blackened layer, the first blackened layer, and the second blackened layer Example 1 except that the composition of the copper-nickel alloy target, which is the sputtering target used to form the layers, and the thickness of the first and second blackened layers were 25 nm. A laminate substrate and a conductive substrate were prepared and evaluated.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001


 表1に示した結果によると、実施例1~実施例7については、金属細線のアンダーカット量比率が0.075以下、開口部の全光線透過率の減少率が3.0%以下となった。すなわち、下地金属層と、第1黒化層と、銅層と、第2黒化層とを同時にエッチングできることを確認できた。
Figure JPOXMLDOC01-appb-T000001


According to the results shown in Table 1, in Examples 1 to 7, the undercut amount ratio of the fine metal wire was 0.075 or less, and the reduction rate of the total light transmittance of the opening was 3.0% or less. It was. That is, it was confirmed that the base metal layer, the first blackened layer, the copper layer, and the second blackened layer can be etched simultaneously.
 これは、第1黒化層を成膜する際に用いたスパッタリングターゲットに含まれる銅及びニッケルのうち、ニッケルの割合が20質量%以上70質量%以下であり、成膜した第1黒化層においても同様の組成であったためと考えられる。すなわち、第1黒化層のエッチング液に対する反応性を銅層と同等にすることができたためと考えられる。 This is because the ratio of nickel is 20% by mass or more and 70% by mass or less among the copper and nickel contained in the sputtering target used for forming the first blackened layer, and the first blackened layer formed is formed. This is considered to be due to the similar composition. That is, it is considered that the reactivity of the first blackening layer with respect to the etching solution can be made equal to that of the copper layer.
 そして、下地金属層については、酸素を含有しない、所定の金属を含有する層とすることで、第1黒化層よりもエッチング液に対する反応性が高くすることができたため、黒化層の残渣を透明基材上に残すことなく除去できたと考えられる。 And about the foundation | substrate metal layer, since it was made the layer containing a predetermined metal which does not contain oxygen, the reactivity with respect to an etching liquid could be made higher than a 1st blackening layer, Therefore The residue of a blackening layer Is considered to have been removed without leaving on the transparent substrate.
 これに対して、比較例1は、開口部の全光線透過率の減少率が3.0%を超えていることが確認できた。これは下地金属層を形成しなかったため、透明基材上に黒化層の残渣が生じたためと考えられる。なお、表1中アンダーカット比率について「エッチング残」とは開口部に黒化層のエッチング残渣が確認できたことを意味している。 On the other hand, in Comparative Example 1, it was confirmed that the decrease rate of the total light transmittance of the opening exceeded 3.0%. This is presumably because a blackened layer residue was formed on the transparent substrate because the base metal layer was not formed. In Table 1, with respect to the undercut ratio, “etching residue” means that the etching residue of the blackened layer was confirmed in the opening.
 このように、下地金属層を有しない比較例1については、第1黒化層と銅層とを同時にエッチングできないことが確認できた。 Thus, it was confirmed that in Comparative Example 1 having no base metal layer, the first blackened layer and the copper layer could not be etched simultaneously.
 比較例2は、下地金属層が1nmと薄く、一部に下地金属層が形成されない部分があり、当該部分では、透明基材上に直接第1黒化層が形成されたのでエッチング残渣が発生した。 In Comparative Example 2, the base metal layer is as thin as 1 nm, and there is a part where the base metal layer is not formed. In this part, the first blackening layer is formed directly on the transparent substrate, and thus etching residue is generated. did.
 比較例3は、下地金属層が厚く、下地金属層による反射が大きくなり、得られた積層体基板の正反射率の平均が61%と非常に高くなることが確認された。 In Comparative Example 3, it was confirmed that the base metal layer was thick and the reflection by the base metal layer was large, and the average regular reflectance of the obtained laminate substrate was as extremely high as 61%.
 比較例4は、第1黒化層、第2黒化層を形成する際の銅-ニッケル合金ターゲットに含まれるニッケルの割合が11質量%と低かったため、得られた積層体基板の正反射率の平均が60%と非常に高くなることが確認された。 In Comparative Example 4, since the proportion of nickel contained in the copper-nickel alloy target when forming the first blackened layer and the second blackened layer was as low as 11% by mass, the regular reflectance of the obtained laminate substrate was It was confirmed that the average of was very high at 60%.
 また、比較例5は第1黒化層、第2黒化層を形成する際の銅-ニッケル合金ターゲットに含まれるニッケルの割合が80質量%と非常に高く、導電性基板とするためエッチングを行う際に、第1黒化層、第2黒化層のエッチング速度が非常に遅かったため、アンダーカットが生じたものと考えられる。 In Comparative Example 5, the ratio of nickel contained in the copper-nickel alloy target at the time of forming the first blackened layer and the second blackened layer is as high as 80% by mass. When performing, the etching rate of the first blackened layer and the second blackened layer was very slow, so it is considered that undercut occurred.
 以上に積層体基板、導電性基板、積層体基板の製造方法、導電性基板の製造方法を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the laminated body substrate, the conductive substrate, the manufacturing method of the laminated body substrate, and the manufacturing method of the conductive substrate have been described in the above embodiments and examples, the present invention is not limited to the above embodiments and examples. Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.
 本出願は、2016年7月12日に日本国特許庁に出願された特願2016-137717号に基づく優先権を主張するものであり、特願2016-137717号の全内容を本国際出願に援用する。 This application claims priority based on Japanese Patent Application No. 2016-137717 filed with the Japan Patent Office on July 12, 2016. The entire contents of Japanese Patent Application No. 2016-137717 are incorporated herein by reference. Incorporate.
10A、10B、20A、20B        積層体基板
11                     透明基材
12、12A、12B             下地金属層
13、13A、13B             第1黒化層
14、14A、14B             銅層
15、15A、15B             第2黒化層
30                     導電性基板
32A、32B                下地金属配線層
33A、33B                第1黒化配線層
34A、34B、62             銅配線層
35A、35B                第2黒化配線層
10A, 10B, 20A, 20B Laminate substrate 11 Transparent base material 12, 12A, 12B Underlying metal layer 13, 13A, 13B First blackened layer 14, 14A, 14B Copper layer 15, 15A, 15B Second blackened layer 30 Conductive substrates 32A, 32B Underlying metal wiring layers 33A, 33B First blackened wiring layers 34A, 34B, 62 Copper wiring layers 35A, 35B Second blackened wiring layers

Claims (17)

  1.  透明基材と、
     前記透明基材の少なくとも一方の面側に形成された積層体とを備え、
     前記積層体は、
     Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは前記金属群から選択された1種類以上の金属を主成分とする合金からなる下地金属層と、
     前記下地金属層上に配置され、酸素と、銅と、ニッケルとを含有する第1黒化層と、
     銅層と、を備え、
     前記第1黒化層に含まれる金属成分のうち、ニッケルの割合が20質量%以上70質量%以下である積層体基板。
    A transparent substrate;
    A laminate formed on at least one surface side of the transparent substrate,
    The laminate is
    Mainly composed of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the metal group. A base metal layer made of an alloy as a component;
    A first blackening layer disposed on the base metal layer and containing oxygen, copper, and nickel;
    A copper layer,
    The laminated body board | substrate whose ratio of nickel is 20 mass% or more and 70 mass% or less among the metal components contained in a said 1st blackening layer.
  2.  前記積層体は、さらに第2黒化層を有し、
     前記銅層は、前記第1黒化層と、前記第2黒化層との間に配置され、
     前記第2黒化層は、酸素と、銅とを含有し、
     前記第2黒化層中の、金属成分のうち、ニッケルの割合が0質量%以上70質量%以下である請求項1に記載の積層体基板。
    The laminate further has a second blackening layer,
    The copper layer is disposed between the first blackened layer and the second blackened layer,
    The second blackening layer contains oxygen and copper,
    The laminate substrate according to claim 1, wherein a ratio of nickel is 0% by mass or more and 70% by mass or less in the metal component in the second blackening layer.
  3.  前記下地金属層の厚さが、1.5nm以上、5nm以下である請求項1または2に記載の積層体基板。 The laminate substrate according to claim 1 or 2, wherein a thickness of the base metal layer is 1.5 nm or more and 5 nm or less.
  4.  前記下地金属層が、Cu、Ni-Cu合金、Crを7質量%以下含むNi-Cr合金のいずれかからなる請求項1から3のいずれか一項に記載の積層体基板。 The laminate substrate according to any one of claims 1 to 3, wherein the base metal layer is made of any one of Cu, Ni-Cu alloy, and Ni-Cr alloy containing 7 mass% or less of Cr.
  5.  波長400nm以上700nm以下の光の正反射率の平均が55%以下である請求項1から4のいずれか一項に記載の積層体基板。 The laminate substrate according to any one of claims 1 to 4, wherein the average regular reflectance of light having a wavelength of 400 nm to 700 nm is 55% or less.
  6.  透明基材と、
     前記透明基材の少なくとも一方の面側に形成された金属細線とを備え、
     前記金属細線が、
     Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは前記金属群から選択された1種類以上の金属を主成分とする合金からなる下地金属配線層と、
     前記下地金属配線層上に配置され、酸素と、銅と、ニッケルとを含有する第1黒化配線層と、
     銅配線層とを備えた積層体であり、
     前記第1黒化配線層に含まれる金属成分のうち、ニッケルの割合が20質量%以上70質量%以下である導電性基板。
    A transparent substrate;
    A thin metal wire formed on at least one surface side of the transparent substrate,
    The thin metal wire is
    Mainly composed of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the metal group. A base metal wiring layer made of an alloy as a component;
    A first blackened wiring layer disposed on the base metal wiring layer and containing oxygen, copper, and nickel;
    A laminate comprising a copper wiring layer,
    The electroconductive board | substrate whose ratio of nickel is 20 to 70 mass% among the metal components contained in the said 1st blackening wiring layer.
  7.  前記金属細線は、さらに第2黒化配線層を有し、
     前記銅配線層は、前記第1黒化配線層と、前記第2黒化配線層との間に配置され、
     前記第2黒化配線層は、酸素と、銅とを含有し、
     前記第2黒化配線層中の、金属成分のうち、ニッケルの割合が0質量%以上70質量%以下である請求項6に記載の導電性基板。
    The thin metal wire further has a second blackened wiring layer,
    The copper wiring layer is disposed between the first blackened wiring layer and the second blackened wiring layer,
    The second blackened wiring layer contains oxygen and copper,
    The conductive substrate according to claim 6, wherein a ratio of nickel in the metal component in the second blackened wiring layer is 0% by mass or more and 70% by mass or less.
  8.  前記下地金属配線層の厚さが、1.5nm以上、5nm以下である請求項6または7に記載の導電性基板。 The conductive substrate according to claim 6 or 7, wherein a thickness of the base metal wiring layer is 1.5 nm or more and 5 nm or less.
  9.  前記下地金属配線層が、Cu、Ni-Cu合金、Crを7質量%以下含むNi-Cr合金のいずれかからなる請求項6から8のいずれか一項に記載の導電性基板。 The conductive substrate according to any one of claims 6 to 8, wherein the base metal wiring layer is made of any one of Cu, Ni-Cu alloy, and Ni-Cr alloy containing 7 mass% or less of Cr.
  10.  前記金属細線間には前記透明基材を露出する開口部が設けられており、
     前記開口部の波長400nm以上700nm以下の光の透過率の平均の、前記透明基材の波長400nm以上700nm以下の光の透過率の平均からの減少率が、3.0%以下である請求項6から9のいずれか一項に記載の導電性基板。
    An opening that exposes the transparent substrate is provided between the thin metal wires,
    The average decrease in the transmittance of light having a wavelength of not less than 400 nm and not more than 700 nm of the opening is 3.0% or less from the average of the transmittance of light having a wavelength of not less than 400 nm and not more than 700 nm of the transparent substrate. The conductive substrate according to any one of 6 to 9.
  11.  透明基材を準備する透明基材準備工程と、
     前記透明基材の少なくとも一方の面側に積層体を形成する積層体形成工程とを有し、
     前記積層体形成工程は、
     Cu、Ni、Cr、Ti、Al、Fe、Co、Mo、V、Wからなる金属群から選択される1種類以上の金属からなる、あるいは前記金属群から選択される1種類以上の金属を主成分とする合金からなる下地金属層を堆積する下地金属層成膜手段により下地金属層を形成する下地金属層形成ステップと、
     下地金属層上に、酸素と、銅と、ニッケルと含有する第1黒化層を堆積する第1黒化層成膜手段により第1黒化層を形成する第1黒化層形成ステップと、
     銅層を堆積する銅層成膜手段により銅層を形成する銅層形成ステップと、を含み、
     前記下地金属層形成ステップ、及び第1黒化層形成ステップは減圧雰囲気下において実施し、前記第1黒化層に含まれる金属成分のうち、ニッケルの割合が20質量%以上70質量%以下である積層体基板の製造方法。
    A transparent substrate preparation step of preparing a transparent substrate;
    A laminate forming step of forming a laminate on at least one surface side of the transparent substrate,
    The laminate forming step includes
    Mainly composed of one or more metals selected from the metal group consisting of Cu, Ni, Cr, Ti, Al, Fe, Co, Mo, V, and W, or selected from the metal group. A base metal layer forming step of forming a base metal layer by a base metal layer film forming means for depositing a base metal layer made of an alloy as a component;
    A first blackening layer forming step of forming a first blackening layer by a first blackening layer forming means for depositing a first blackening layer containing oxygen, copper, and nickel on the base metal layer;
    A copper layer forming step of forming a copper layer by a copper layer film forming means for depositing a copper layer,
    The base metal layer forming step and the first blackened layer forming step are performed in a reduced pressure atmosphere, and the proportion of nickel in the metal component contained in the first blackened layer is 20% by mass to 70% by mass. A method for manufacturing a laminated substrate.
  12.  前記下地金属層成膜手段、及び前記第1黒化層成膜手段がスパッタリング成膜法である請求項11に記載の積層体基板の製造方法。 The method for manufacturing a laminate substrate according to claim 11, wherein the base metal layer film forming means and the first blackening layer film forming means are sputtering film forming methods.
  13.  前記下地金属層の厚さが、1.5nm以上、5nm以下である請求項11または12に記載の積層体基板の製造方法。 The method for manufacturing a laminate substrate according to claim 11 or 12, wherein a thickness of the base metal layer is 1.5 nm or more and 5 nm or less.
  14.  前記下地金属層が、Cu、Ni-Cu合金、Crを7質量%以下含むNi-Cr合金のいずれかからなる請求項11から13のいずれか一項に記載の積層体基板の製造方法。 The method for manufacturing a multilayer substrate according to any one of claims 11 to 13, wherein the base metal layer is made of any one of Cu, Ni-Cu alloy, and Ni-Cr alloy containing 7 mass% or less of Cr.
  15.  第1黒化層の厚さが20nm以上である請求項11から14のいずれか一項に記載の積層体基板の製造方法。 The method for manufacturing a laminate substrate according to any one of claims 11 to 14, wherein the thickness of the first blackening layer is 20 nm or more.
  16.  請求項11乃至15のいずれか一項に記載の積層体基板の製造方法により得られた積層体基板の前記下地金属層と、前記第1黒化層と、前記銅層とをエッチングし、下地金属配線層と、第1黒化配線層と、銅配線層とを備えた積層体である金属細線を有する配線パターンを形成するエッチング工程を有し、
     前記エッチング工程により、前記下地金属層、前記第1黒化層、及び前記銅層に開口部を形成する導電性基板の製造方法。
    The base metal layer, the first blackening layer, and the copper layer of the multilayer substrate obtained by the method for manufacturing a multilayer substrate according to any one of claims 11 to 15 are etched to form a base An etching step of forming a wiring pattern having a thin metal wire that is a laminate including a metal wiring layer, a first blackened wiring layer, and a copper wiring layer;
    The manufacturing method of the electroconductive board | substrate which forms an opening part in the said base metal layer, the said 1st blackening layer, and the said copper layer by the said etching process.
  17.  得られる導電性基板の波長400nm以上700nm以下の光の正反射率の平均が55%以下である請求項16に記載の導電性基板の製造方法。 The method for producing a conductive substrate according to claim 16, wherein an average of regular reflectance of light having a wavelength of 400 nm or more and 700 nm or less of the obtained conductive substrate is 55% or less.
PCT/JP2017/021958 2016-07-12 2017-06-14 Laminate body substrate, conductive substrate, method for manufacturing laminate body substrate, method for manufacturing conductive substrate WO2018012185A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187037324A KR102365980B1 (en) 2016-07-12 2017-06-14 A laminate substrate, a conductive substrate, a method for manufacturing a laminate substrate, and a method for manufacturing a conductive substrate
CN201780041438.6A CN109416605B (en) 2016-07-12 2017-06-14 Laminate substrate, conductive substrate, method for producing laminate substrate, and method for producing conductive substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-137717 2016-07-12
JP2016137717A JP7049759B2 (en) 2016-07-12 2016-07-12 Laminated board, conductive board, method of manufacturing laminated board, method of manufacturing conductive board

Publications (1)

Publication Number Publication Date
WO2018012185A1 true WO2018012185A1 (en) 2018-01-18

Family

ID=60952988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021958 WO2018012185A1 (en) 2016-07-12 2017-06-14 Laminate body substrate, conductive substrate, method for manufacturing laminate body substrate, method for manufacturing conductive substrate

Country Status (5)

Country Link
JP (1) JP7049759B2 (en)
KR (1) KR102365980B1 (en)
CN (1) CN109416605B (en)
TW (1) TWI740970B (en)
WO (1) WO2018012185A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718654B (en) * 2019-09-04 2021-02-11 郡宏光電股份有限公司 Conductive plate for touch device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate
JP2015114690A (en) * 2013-12-09 2015-06-22 アルプス電気株式会社 Electrostatic sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086132B2 (en) 2001-11-16 2008-05-14 株式会社ブリヂストン Transparent conductive film and touch panel
JP2008311565A (en) 2007-06-18 2008-12-25 Dainippon Printing Co Ltd Composite filter for display
JP5517019B2 (en) * 2008-05-26 2014-06-11 住友金属鉱山株式会社 Printed wiring board and method for manufacturing printed wiring board
JP5361579B2 (en) 2009-07-09 2013-12-04 信越ポリマー株式会社 Sensor panel for large display and manufacturing method thereof
JP2013069261A (en) 2011-09-08 2013-04-18 Dainippon Printing Co Ltd Electrode substrate for touch panel, touch panel, and image display device
US9204535B2 (en) * 2012-04-18 2015-12-01 Lg Chem, Ltd. Conductive structure and method for manufacturing same
KR102170097B1 (en) * 2013-10-31 2020-10-26 스미토모 긴조쿠 고잔 가부시키가이샤 Electrically conductive substrate and method for manufacturing electrically conductive substrate
JP6230025B2 (en) 2014-07-04 2017-11-15 国立大学法人信州大学 Thermal response test analysis method and analysis program
JP6497391B2 (en) * 2014-07-31 2019-04-10 住友金属鉱山株式会社 Conductive substrate for touch panel, manufacturing method of conductive substrate for touch panel
JP2016103138A (en) * 2014-11-28 2016-06-02 日東電工株式会社 Transparent conductive base material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate
JP2015114690A (en) * 2013-12-09 2015-06-22 アルプス電気株式会社 Electrostatic sensor

Also Published As

Publication number Publication date
KR102365980B1 (en) 2022-02-22
CN109416605B (en) 2022-06-07
TW201829177A (en) 2018-08-16
JP7049759B2 (en) 2022-04-07
TWI740970B (en) 2021-10-01
KR20190030659A (en) 2019-03-22
CN109416605A (en) 2019-03-01
JP2018010420A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6555341B2 (en) Conductive substrate
JP6201804B2 (en) Thin line pattern forming method and conductive substrate manufacturing method
WO2017065184A1 (en) Laminate substrate, method for manufacturing laminate substrate, electroconductive substrate, and method for manufacturing electroconductive substrate
JP6447388B2 (en) LAMINATED BOARD, CONDUCTIVE SUBSTRATE, METHOD FOR PRODUCING LAMINATED SUBSTRATE, METHOD FOR PRODUCING CONDUCTIVE SUBSTRATE
JP6455366B2 (en) LAMINATED BOARD, CONDUCTIVE SUBSTRATE, METHOD FOR PRODUCING LAMINATED SUBSTRATE, METHOD FOR PRODUCING CONDUCTIVE SUBSTRATE
WO2018012185A1 (en) Laminate body substrate, conductive substrate, method for manufacturing laminate body substrate, method for manufacturing conductive substrate
WO2017057262A1 (en) Conductive substrate
JP6823363B2 (en) Conductive substrate, manufacturing method of conductive substrate
JP6417964B2 (en) LAMINATED BOARD, WIRING BOARD AND METHOD FOR PRODUCING THEM
WO2017057139A1 (en) Laminated body substrate, electrically conductive substrate, method for producing laminated body substrate and method for producing electrically conductive substrate
WO2017033740A1 (en) Conductive substrate
JP6729007B2 (en) Laminated substrate, conductive substrate, laminated substrate manufacturing method, and conductive substrate manufacturing method
JP6932908B2 (en) Laminated board, conductive board, method of manufacturing laminated board, method of manufacturing conductive board
JP6365422B2 (en) Method for manufacturing conductive substrate
JP2017133063A (en) Laminate substrate, conductive substrate, production method of laminate substrate, and production method of conductive substrate
WO2017130866A1 (en) Blackening plating solution and method for manufacturing conductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037324

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827317

Country of ref document: EP

Kind code of ref document: A1