WO2017130866A1 - Blackening plating solution and method for manufacturing conductive substrate - Google Patents

Blackening plating solution and method for manufacturing conductive substrate Download PDF

Info

Publication number
WO2017130866A1
WO2017130866A1 PCT/JP2017/001987 JP2017001987W WO2017130866A1 WO 2017130866 A1 WO2017130866 A1 WO 2017130866A1 JP 2017001987 W JP2017001987 W JP 2017001987W WO 2017130866 A1 WO2017130866 A1 WO 2017130866A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
blackening
copper
conductive substrate
plating solution
Prior art date
Application number
PCT/JP2017/001987
Other languages
French (fr)
Japanese (ja)
Inventor
下地 匠
志賀 大樹
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2017564216A priority Critical patent/JP6806093B2/en
Priority to KR1020187021196A priority patent/KR102611763B1/en
Priority to CN201780008167.4A priority patent/CN108603301A/en
Publication of WO2017130866A1 publication Critical patent/WO2017130866A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Definitions

  • the present invention relates to a method for producing a blackening plating solution and a conductive substrate.
  • the capacitive touch panel converts information on the position of the adjacent object on the panel surface into an electrical signal by detecting a change in capacitance caused by the object in proximity to the panel surface. Since the conductive substrate used in the capacitive touch panel is disposed on the surface of the display, the material of the conductive layer of the conductive substrate is required to have a low reflectance and be hard to be recognized.
  • a material of the conductive layer used in the capacitive touch panel a material having a low reflectance and which is hard to be recognized is used, and a wiring is formed on a transparent substrate or a transparent film.
  • Patent Document 1 discloses a transparent conductive film including a polymer film and a transparent conductive film comprising a metal oxide provided thereon by a vapor deposition method, as a transparent conductive film comprising a metal oxide
  • ITO indium oxide-tin oxide
  • the screen size of a display provided with a touch panel has been increased, and correspondingly, the area of a conductive substrate such as a transparent conductive film for a touch panel is also required to be increased.
  • ITO has a high electric resistance value, there is a problem that it can not cope with the increase in the area of the conductive substrate.
  • the inventors of the present invention have examined the blackening treatment by the wet method because the equipment can be simplified and the productivity is excellent without requiring the vacuum environment required by the dry method.
  • the blackened layer to be formed is formed as a conductive layer
  • the reactivity to the etching solution is higher than that of the copper layer.
  • the conductive substrate which has a desired wiring pattern after forming the copper layer which is a conductive layer, and a blackening layer, it will pattern by etching, but the copper layer to etching liquid, Due to the difference in reactivity with the blackened layer, it has been difficult in some cases to pattern the blackened layer into a desired shape.
  • an object of the present invention is to provide a blackening plating solution capable of forming a blackening layer which can be patterned into a desired shape when etched together with a copper layer.
  • Containing nickel ions and copper ions Provided is a blackening plating solution having a pH of 4.0 or more and 5.8 or less.
  • a blackening plating solution capable of forming a blackening layer that can be patterned into a desired shape when etched together with a copper layer.
  • FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3;
  • FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3;
  • the blackening plating solution of the present embodiment contains nickel ions and copper ions and can have a pH of 4.0 or more and 5.8 or less.
  • a blackened layer formed by a wet method using a plating solution containing Ni and Zn as main components has higher reactivity to the etching solution than the copper layer and is etched together with the copper layer It was difficult to pattern it into the desired shape. Therefore, the inventors of the present invention conducted intensive studies on a blackening plating solution capable of forming a blackening layer which can be patterned into a desired shape when etched together with a copper layer.
  • the inventors of the present invention suppress the reactivity of the blackening layer to the etching solution by using the blackening layer as a layer containing nickel and copper. It has been found that the desired shape can be obtained even when etching is performed simultaneously with the copper layer. In addition, it was also found that the blackening layer can be made to have a color that can suppress the reflection of light on the surface of the copper layer by containing nickel and copper.
  • the desired shape in the case where the copper layer and the blackening layer are simultaneously etched means, for example, a shape or pattern including a wiring having a wiring width of 10 ⁇ m or less.
  • the blackening plating solution of the present embodiment is preferably a plating solution capable of forming a layer containing nickel and copper as a metal component, and the blackening plating solution of the present embodiment includes nickel ions and copper ions. And can be contained.
  • the concentration of each component in the blackening plating solution is not particularly limited, but the nickel ion concentration in the blackening plating solution is preferably 2.0 g / l or more, and 3.0 g / l or more. It is more preferable that This is because the nickel ion concentration in the blackening plating solution is 2.0 g / l or more to make the blackening layer a color particularly suitable for suppressing the light reflection on the copper layer surface, and the conductive substrate It is because the reflectance of can be suppressed.
  • the upper limit value of the nickel ion concentration in the blackening plating solution is not particularly limited either, but is preferably 20.0 g / l or less, and more preferably 15.0 g / l or less. This controls the nickel ion concentration in the blackening plating solution to be 20.0 g / l or less, thereby suppressing the excess of the nickel component in the formed blackening layer, and the blackening layer surface has a bright nickel. It is because it can prevent that it becomes a surface like plating and can control the reflectance of a conductive board.
  • the copper ion concentration in the blackening plating solution is preferably 0.005 g / l or more, more preferably 0.008 g / l or more. This makes the blackening layer a color particularly suitable for suppressing light reflection on the copper layer surface when the copper ion concentration in the blackening plating solution is 0.005 g / l or more, and etching the blackening layer This is because the reactivity to the solution is made particularly appropriate, and even when the blackened layer is etched together with the copper layer, it can be patterned more reliably to the desired shape.
  • the upper limit value of the copper ion concentration in the blackening plating solution is not particularly limited, but is preferably 1.02 g / l or less, and more preferably 0.5 g / l or less. This controls the copper ion concentration in the blackening plating solution to be 1.02 g / l or less, thereby preventing the reactivity of the formed blackening layer with respect to the etching solution from becoming too high, thereby making the blackening layer copper. This is because the color is particularly suitable for suppressing the reflection of light on the layer surface, and the reflectance of the conductive substrate can be suppressed.
  • the supply method of nickel ion and copper ion is not specifically limited, For example, it can supply in the state of a salt.
  • a salt For example, sulfamate and sulfate can be suitably used.
  • the type of salt may be the same type of salt for each metal element, or different types of salts may be used simultaneously.
  • a blackening plating solution can also be prepared using, for example, the same type of salt as nickel sulfate and copper sulfate. Also, it is possible to prepare a blackening plating solution by simultaneously using different types of salts such as, for example, nickel sulfate and copper sulfamate.
  • the blackening plating solution of the present embodiment may further contain an amidosulfuric acid which functions as a complexing agent, in addition to the nickel ion and the copper ion.
  • an amidosulfuric acid which functions as a complexing agent, in addition to the nickel ion and the copper ion.
  • the content of amidosulfuric acid in the blackening plating solution is not particularly limited, and can be arbitrarily selected according to the degree of suppression of the reflectance required of the blackening layer to be formed.
  • the concentration of amidosulfuric acid in the blackening plating solution is not particularly limited, but is preferably, for example, 1 g / l to 50 g / l, and more preferably 5 g / l to 20 g / l.
  • the concentration of amidosulfuric acid is 1 g / l or more, the blackened layer can be made a color particularly suitable for suppressing light reflection on the surface of the copper layer, and the reflectance of the conductive substrate can be suppressed. It is.
  • the amidosulfuric acid is added in excess of 50 g / l, the effect of suppressing the reflectance of the conductive substrate is not significantly changed, so that it is preferably 50 g / l or less as described above.
  • the blackening plating solution of this embodiment can have a pH of, for example, 4.0 or more and 5.8 or less.
  • the blackening plating solution of the present embodiment can contain, for example, an alkaline substance.
  • alkaline substance include ammonia (ammonia water) and alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide.
  • the blackening plating solution of this embodiment contains an alkaline substance so that the pH may become the said range.
  • the blackening plating solution of the present embodiment may contain any component other than the components described above.
  • the pit inhibiting agent for nickel plating is mentioned, for example.
  • the pit prevention agent for nickel plating include Pitless S (trade name) manufactured by Nippon Kagaku Sangyo Co., Ltd., and Nickel Grime NAW 4 (trade name) manufactured by Rohm and Haas.
  • the blackening plating solution of the present embodiment described above it is possible to form a blackening layer which can be patterned into a desired shape when it is etched together with a copper layer.
  • the blackening plating solution of this embodiment can be suitably used when forming the blackening layer which can fully suppress reflection of the light in the copper layer surface of a conductive substrate. Furthermore, by using the blackening plating solution of the present embodiment, the blackening layer can be formed into a film by a wet method such as electrolytic plating, so that it is compared with the blackening layer conventionally formed by the dry method. Thus, the blackened layer can be formed with good productivity. (Conductive substrate) Next, a configuration example of a conductive substrate including a blackening layer formed using the blackening plating solution of the present embodiment will be described.
  • the conductive substrate of the present embodiment includes a transparent substrate, a copper layer disposed on at least one surface of the transparent substrate, and a blackening layer formed using a blackening plating solution on the copper layer.
  • the conductive substrate in the present embodiment means a substrate having a copper layer and a blackening layer on the surface of a transparent base before patterning a copper layer or the like, and a substrate having the copper layer or the like patterned, ie, And the wiring board.
  • the transparent substrate is not particularly limited, and a transparent substrate such as a resin substrate (resin film) which transmits visible light or a glass substrate can be preferably used.
  • a transparent substrate such as a resin substrate (resin film) which transmits visible light or a glass substrate can be preferably used.
  • resins such as polyamide resin, polyethylene terephthalate resin, polyethylene naphthalate resin, cycloolefin resin, polyimide resin, and polycarbonate resin can be preferably used.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PEN polyethylene naphthalate
  • polyamide, polyimide, polycarbonate and the like can be more preferably used as the material of the resin substrate that transmits visible light.
  • the thickness of the transparent substrate is not particularly limited, and can be arbitrarily selected according to the strength, the capacitance, the light transmittance, etc. required for the conductive substrate.
  • the thickness of the transparent substrate can be, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the transparent substrate is preferably 20 ⁇ m or more and 120 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the transparent substrate is preferably 20 ⁇ m to 50 ⁇ m.
  • the total light transmittance of the transparent substrate is preferably high.
  • the total light transmittance is preferably 30% or more, more preferably 60% or more.
  • the visibility of the display can be sufficiently ensured, for example, when used for a touch panel application.
  • the total light transmittance of the transparent substrate can be evaluated by the method defined in JIS K 7361-1.
  • the method for forming the copper layer on the transparent substrate is not particularly limited, but it is preferable not to dispose an adhesive between the transparent substrate and the copper layer in order not to reduce the light transmittance. That is, the copper layer is preferably formed directly on at least one surface of the transparent substrate. When the adhesion layer is disposed between the transparent substrate and the copper layer as described later, the copper layer is preferably formed directly on the upper surface of the adhesion layer.
  • the copper layer preferably has a copper thin film layer.
  • the copper layer may have a copper thin film layer and a copper plating layer.
  • a copper thin film layer can be formed on a transparent substrate by a dry plating method, and the copper thin film layer can be used as a copper layer.
  • the copper layer can be formed directly on the transparent substrate without the use of an adhesive.
  • a dry plating method for example, a sputtering method, a vapor deposition method, an ion plating method and the like can be preferably used.
  • a copper thin film layer and a copper plating layer are formed by forming a copper plating layer by electroplating which is 1 type of the wet plating method by using a copper thin film layer as a feed layer. It can also be a copper layer having. Since the copper layer has a copper thin film layer and a copper plating layer, the copper layer can be formed directly on the transparent substrate without an adhesive.
  • the thickness of the copper layer is not particularly limited, and when the copper layer is used as a wire, it can be arbitrarily selected according to the magnitude of the current supplied to the wire, the wire width, and the like.
  • the thickness of the copper layer is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the thickness of the copper layer is preferably 50 nm or more, more preferably 60 nm or more, and 150 nm It is more preferable that it is more than.
  • a copper layer has a copper thin film layer and a copper plating layer as mentioned above, it is preferable that the sum total of the thickness of a copper thin film layer and the thickness of a copper plating layer is the said range.
  • the thickness of the copper thin film layer is not particularly limited in any case where the copper layer is constituted of a copper thin film layer or in the case of having a copper thin film layer and a copper plating layer, for example, 50 nm or more and 500 nm It is preferable to set it as the following.
  • the copper layer can be used as a wiring by patterning it into a desired wiring pattern as described later. And since a copper layer can make electrical resistance value lower than ITO conventionally used as a transparent conductive film, the electrical resistance value of a conductive substrate can be made small by providing a copper layer.
  • the blackening layer can be formed using the blackening plating solution described above. Therefore, for example, after forming a copper layer, it can be formed on the upper surface of the copper layer by a wet method such as electrolytic plating.
  • the thickness of the blackening layer is not particularly limited, but is preferably, for example, 30 nm or more, and more preferably 50 nm or more. This is because the reflection of light on the surface of the copper layer can be particularly suppressed by setting the thickness of the blackening layer to 30 nm or more.
  • the upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming a wiring become longer, and the cost rises Will lead to Therefore, the thickness of the blackening layer is preferably 120 nm or less, and more preferably 90 nm or less.
  • a blackening layer when a blackening layer is formed into a film by blackening plating solution as stated above, a blackening layer can be made into the layer containing nickel and copper. Moreover, the component derived from the various addition components contained in the already mentioned blackening plating solution can also be included collectively.
  • the conductive substrate may be provided with any layer.
  • an adhesive layer can be provided.
  • the copper layer can be formed on the transparent substrate as described above, when the copper layer is formed directly on the transparent substrate, the adhesion between the transparent substrate and the copper layer may not be sufficient. . For this reason, when a copper layer is directly formed on the upper surface of the transparent substrate, the copper layer may peel off from the transparent substrate during the manufacturing process or during use.
  • an adhesion layer in order to improve the adhesiveness of a transparent base material and a copper layer, an adhesion layer can be arranged on a transparent base material. That is, it can also be set as a conductive substrate which has an adhesion layer between a transparent substrate and a copper layer.
  • the adhesion layer between the transparent base and the copper layer By arranging the adhesion layer between the transparent base and the copper layer, the adhesion between the transparent base and the copper layer can be enhanced, and peeling of the copper layer from the transparent base can be suppressed.
  • the adhesion layer can also function as a blackening layer. For this reason, it becomes possible to suppress also the reflection of the light of the copper layer by the light from the lower surface side of a copper layer, ie, the transparent base material side.
  • the material constituting the adhesion layer is not particularly limited, and the adhesion between the transparent substrate and the copper layer, the required degree of suppression of light reflection on the surface of the copper layer, and the use of a conductive substrate It can be arbitrarily selected according to the degree of stability to the environment (eg, humidity, temperature) to be used.
  • the adhesion layer preferably contains, for example, at least one metal selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • the adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen and nitrogen.
  • the adhesion layer can also include a metal alloy containing at least two or more metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • a metal alloy containing at least two or more kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn and Mn a Cu-Ti-Fe alloy
  • Cu-Ni-Fe alloy, Ni-Cu alloy, Ni-Zn alloy, Ni-Ti alloy, Ni-W alloy, Ni-Cr alloy, Ni-Cu-Cr alloy can be preferably used.
  • the film-forming method of the adhesion layer is not particularly limited, it is preferable to form a film by dry plating.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used.
  • the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy.
  • one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
  • the atmosphere for forming the adhesion layer includes one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • a gas containing For example, carbon monoxide gas and / or carbon dioxide gas when carbon is added to the adhesion layer, oxygen gas when oxygen is added, hydrogen gas and / or water when hydrogen is added,
  • nitrogen gas can be added to the atmosphere at the time of performing dry plating.
  • a gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas at the time of dry plating.
  • the inert gas is not particularly limited but, for example, argon can be preferably used.
  • the adhesion between the transparent substrate and the adhesion layer can be enhanced by forming the adhesion layer by dry plating as described above. And since the adhesion layer can contain, for example, a metal as a main component, the adhesion to the copper layer is also high. For this reason, peeling of a copper layer can be suppressed by arrange
  • the thickness of the adhesion layer is not particularly limited, but is preferably 3 nm to 50 nm, more preferably 3 nm to 35 nm, and still more preferably 3 nm to 33 nm.
  • the thickness of the adhesion layer is preferably 3 nm or more as described above.
  • the upper limit of the thickness of the adhesion layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming a wiring become longer, and the cost increases. It will incur. Therefore, as described above, the thickness of the adhesive layer is preferably 50 nm or less, more preferably 35 nm or less, and still more preferably 33 nm or less.
  • the conductive substrate of the present embodiment can have a transparent substrate, a copper layer, and a blackening layer. Moreover, layers, such as an adhesion layer, can also be provided optionally.
  • FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B have shown the example of sectional drawing in the surface parallel to the lamination direction of a transparent base material, a copper layer, and a blackening layer of the conductive substrate of this embodiment.
  • the conductive substrate of the present embodiment can have, for example, a structure in which a copper layer and a blackening layer are laminated in this order from the transparent substrate side on at least one surface of the transparent substrate.
  • the copper layer 12 and the blackening layer 13 may be sequentially laminated one by one on one surface 11a side of the transparent substrate 11 it can. Further, as in the case of the conductive substrate 10B shown in FIG. 1B, copper layers 12A and 12B and black are respectively provided on one surface 11a side of the transparent substrate 11 and the other surface (the other surface) 11b side. And the barrier layers 13A and 13B can be stacked one by one in that order.
  • an adhesion layer may be provided as an arbitrary layer.
  • an adhesion layer, a copper layer, and a blackening layer can be formed in this order on at least one surface of the transparent substrate from the transparent substrate side.
  • the adhesion layer 14, the copper layer 12, and the blackening layer 13 are laminated in this order on one surface 11a side of the transparent substrate 11. be able to.
  • the adhesion layer, the copper layer, and the blackening layer may be laminated on both sides of the transparent substrate 11.
  • the adhesion layers 14A and 14B and the copper layers 12A and 12B are formed on one surface 11a side and the other surface 11b side of the transparent substrate 11, respectively.
  • the blackening layers 13A and 13B can be stacked in that order.
  • FIG. 1B and FIG. 2B when a copper layer, a blackening layer, etc. are laminated on both sides of a transparent substrate, layers laminated on the upper and lower sides of the transparent substrate 11 with the transparent substrate 11 as a symmetry plane become symmetrical.
  • positioned as shown was shown, it is not limited to the form which concerns.
  • the configuration on one surface 11a side of the transparent substrate 11 is the same as the configuration of FIG. 1B, in which the copper layer 12A and the blackening layer 13A are laminated in that order without providing the adhesion layer
  • the layers stacked on the upper and lower sides of the transparent substrate 11 may be asymmetric.
  • the reflection of light by the copper layer is suppressed to suppress the reflectance of the conductive substrate.
  • the degree of reflectance of the conductive substrate of the present embodiment is not particularly limited, but for example, in order to enhance the visibility of the display when used as a conductive substrate for a touch panel, one having a low reflectance Is good.
  • the average reflectance of light with a wavelength of 400 nm or more and 700 nm or less is preferably 60% or less, and more preferably 56% or less.
  • the measurement of reflectance can be performed by irradiating light to the blackened layer of the conductive substrate. Specifically, for example, when the copper layer 12 and the blackening layer 13 are laminated in this order on one surface 11a side of the transparent substrate 11 as shown in FIG. 1A, the blackening layer 13 is irradiated so as to irradiate light.
  • the surface A of the light can be irradiated with light and measured.
  • light having a wavelength of 400 nm or more and 700 nm or less is irradiated to the blackened layer 13 of the conductive substrate at an interval of 1 nm as described above, for example, and the average value of the measured values is the reflectance of the conductive substrate be able to.
  • the conductive substrate of the present embodiment can be preferably used as a conductive substrate for a touch panel.
  • the conductive substrate can be configured to have mesh-like wiring.
  • the conductive substrate provided with the mesh-like wiring can be obtained by etching the copper layer and the blackening layer of the conductive substrate of the present embodiment described above.
  • FIG. 3 is a view of the conductive substrate 30 provided with the mesh-like wiring as viewed from the upper surface side in the stacking direction of the copper layer or the like, and the transparent base material and the copper layer are patterned Layers other than the interconnections 31A and 31B formed by the formation are omitted. Moreover, the wiring 31B seen through the transparent base material 11 is also shown.
  • the conductive substrate 30 shown in FIG. 3 has a transparent base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and a wiring 31B parallel to the X-axis direction.
  • the wirings 31A and 31B are formed by etching a copper layer, and a blackening layer (not shown) is formed on the upper surface or the lower surface of the wirings 31A and 31B.
  • the blackening layer is etched to the same shape as the wirings 31A and 31B.
  • the arrangement of the transparent substrate 11 and the wirings 31A and 31B is not particularly limited.
  • positioning with the transparent base material 11 and wiring is shown to FIG. 4A and FIG. 4B.
  • 4A and 4B correspond to cross-sectional views taken along the line AA 'of FIG.
  • the wirings 31A and 31B may be disposed on the upper and lower surfaces of the transparent substrate 11, respectively.
  • blackened layers 32A and 32B etched in the same shape as the wiring are arranged on the upper surface of the wiring 31A and the lower surface of the wiring 31B.
  • wiring 31A, 31B is arrange
  • an adhesion layer may be provided in addition to the copper layer and the blackening layer. For this reason, in any case of FIG. 4A and FIG. 4B, for example, an adhesion layer can be provided between the wiring 31A and / or the wiring 31B and the transparent base material 11. When the adhesion layer is provided, the adhesion layer is also preferably etched to the same shape as the wirings 31A and 31B.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is, for example, a conductive substrate provided with copper layers 12A and 12B and blackening layers 13A and 13B on both sides of the transparent substrate 11 as shown in FIG. 1B. Can be formed from a flexible substrate.
  • the copper layer 12A and the blackening layer 13A on the side of one surface 11a of the transparent substrate 11 are parallel to the Y-axis direction in FIG. 1B.
  • the etching is performed such that a plurality of linear patterns are arranged at predetermined intervals along the X-axis direction.
  • the X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer.
  • the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
  • a plurality of linear patterns parallel to the X-axis direction in FIG. 1B are formed along the Y-axis direction at predetermined intervals with the copper layer 12B and the blackening layer 13B on the other surface 11b side of the transparent substrate 11 Do the etching to be placed.
  • the conductive substrate having the mesh-like wiring shown in FIG. 3 and FIG. 4A can be formed.
  • the etching of both surfaces of the transparent base material 11 can also be performed simultaneously. That is, the etching of the copper layers 12A and 12B and the blackening layers 13A and 13B may be performed simultaneously.
  • the conductive substrate having an adhesive layer patterned in the same shape as the wires 31A and 31B between the wires 31A and 31B and the transparent substrate 11 is the conductive substrate shown in FIG. 2B. It can produce by performing etching similarly using.
  • the conductive substrate having the mesh-like wiring shown in FIG. 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A.
  • a case where two conductive substrates shown in FIG. 1A are formed will be described by way of example.
  • a plurality of copper layers 12 and blackening layers 13 are respectively formed in parallel with the X axis direction
  • the etching is performed such that the linear patterns of are arranged at predetermined intervals along the Y-axis direction.
  • a conductive substrate provided with a mesh-like wiring is obtained. be able to.
  • the surface to be bonded when bonding the two conductive substrates is not particularly limited.
  • the surface A in FIG. 1A in which the copper layer 12 and the like are laminated and the other surface 11b in FIG. 1A in which the copper layer 12 and the like are not laminated are bonded to obtain the structure shown in FIG. It can also be done.
  • the other surfaces 11b in FIG. 1A where the copper layer 12 and the like of the transparent base material 11 are not laminated may be bonded to each other to have a cross section shown in FIG. 4A.
  • FIGS. 4A and 4B a conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the transparent substrate 11 is shown in FIG. 1A. It can manufacture by using the conductive substrate shown to FIG. 2A instead of a conductive substrate.
  • the width of the wires and the distance between the wires in the conductive substrate having the mesh-like wires shown in FIGS. 3, 4A and 4B are not particularly limited, and, for example, according to the amount of current flowing in the wires It can be selected.
  • the blackening layer formed using the above-described blackening plating solution is provided, and the blackening layer and the copper layer are simultaneously etched and patterned
  • the blackening layer and the copper layer can be patterned into the desired shape.
  • a wire having a wire width of 10 ⁇ m or less can be formed.
  • the conductive substrate of the present embodiment preferably includes a wire having a wire width of 10 ⁇ m or less.
  • the lower limit of the wiring width is not particularly limited, but can be, for example, 3 ⁇ m or more.
  • a wiring pattern The wiring which comprises can be made into arbitrary shapes.
  • the shapes of the wires forming the mesh-like wiring pattern may be various shapes such as lines (zigzag straight lines) bent in a jagged manner so as not to generate moire (interference fringes) with the image of the display.
  • the conductive substrate having mesh-like wiring composed of two layers of wiring can be preferably used, for example, as a conductive substrate for a projected capacitive touch panel.
  • the blackening layer is laminated on the copper layer formed on at least one surface of the transparent substrate. And, since the blackening layer is formed using the blackening plating solution described above, as described above, when patterning the copper layer and the blackening layer by etching, the blackening layer is easily formed. It can be patterned into a desired shape.
  • the blackening layer contained in the conductive substrate of this embodiment can fully suppress reflection of the light in the copper layer surface, and can be used as the conductive substrate which suppressed the reflectance. Also, for example, when used for applications such as touch panels, the visibility of the display can be enhanced.
  • the blackening layer can be formed by the wet method using the blackening plating solution described above, the conductive substrate can be produced with high productivity as compared with the case where the blackening layer is formed using the conventional dry method. It can be produced. (Method of manufacturing conductive substrate) Next, one configuration example of the method of manufacturing the conductive substrate of the present embodiment will be described.
  • the method for producing a conductive substrate of the present embodiment can have the following steps. Copper layer formation process of forming a copper layer on at least one side of a transparent substrate. Blackening layer formation process which forms a blackening layer using a blackening plating solution on a copper layer.
  • blackening plating solution it is possible to use the blackening plating solution described above, specifically, a blackening plating solution containing nickel ions and copper ions and having a pH of 4.0 to 5.8. it can.
  • the electroconductive substrate as stated above can be suitably manufactured with the manufacturing method of the electroconductive substrate of this embodiment. For this reason, since it can be set as the structure similar to the case of a conductive substrate as stated above except for the point demonstrated below, one part description is abbreviate
  • the transparent substrate to be subjected to the copper layer forming step can be prepared in advance.
  • the kind of transparent substrate to be used is not particularly limited, but as described above, a transparent substrate such as a resin substrate (resin film) that transmits visible light, a glass substrate, etc. can be preferably used.
  • the transparent substrate can be cut into any size in advance, if necessary.
  • a copper layer has a copper thin film layer.
  • the copper layer can also have a copper thin film layer and a copper plating layer.
  • a copper layer formation process can have a process of forming a copper thin film layer by dry plating, for example.
  • a dry plating method used at the process of forming a copper thin film layer For example, a vapor deposition method, sputtering method, or ion plating method etc. can be used.
  • a vacuum evaporation method can be preferably used as an evaporation method.
  • a dry plating method used in the step of forming a copper thin film layer it is more preferable to use a sputtering method because the control of the film thickness is particularly easy.
  • a copper plating layer can be formed by supplying a base on which a copper thin film layer is formed to a plating tank containing a copper plating solution and controlling the current density and the transport speed of the base.
  • the blackening layer can be formed using a blackening plating solution containing a nickel ion and a copper ion as described above and having a pH of 4.0 to 5.8.
  • the blackened layer can be formed by a wet method. Specifically, for example, using a copper layer as a feed layer, a blackening layer can be formed on the copper layer by electrolytic plating in a plating tank containing the above-described blackening plating solution. By thus forming the blackening layer by electrolytic plating using the copper layer as the feeding layer, the blackening layer can be formed on the entire surface of the copper layer opposite to the side facing the transparent base.
  • an arbitrary step can be further performed in addition to the above-described steps.
  • an adhesion layer formation process which forms an adhesion layer on the field which forms a copper layer of a transparent base material can be carried out.
  • the copper layer formation step can be carried out after the adhesion layer formation step, and in the copper layer formation step, copper is formed on the substrate on which the adhesion layer is formed on the transparent substrate in this step.
  • a thin film layer can be formed.
  • the film formation method of the adhesion layer is not particularly limited, but it is preferable to form a film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used.
  • the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy.
  • one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
  • the conductive substrate obtained by the method for producing a conductive substrate of the present embodiment can be used, for example, in various applications such as a touch panel. And when using for various uses, it is preferable that the copper layer contained in the conductive substrate of this embodiment, and a blackening layer are patterned. When the adhesion layer is provided, it is preferable that the adhesion layer is also patterned.
  • the copper layer and the blackening layer, and optionally also the adhesion layer can be patterned, for example, according to the desired wiring pattern, and the copper layer and the blackening layer, optionally also the adhesion layer, are patterned in the same shape It is preferable that the
  • the manufacturing method of the conductive substrate of this embodiment can have a patterning step of patterning a copper layer and a blackening layer.
  • the patterning step can be a step of patterning the adhesion layer, the copper layer, and the blackening layer.
  • the specific procedure of the patterning step is not particularly limited, and can be performed by any procedure.
  • a resist having a desired pattern is disposed on the surface A on the blackening layer 13.
  • a resist placement step can be performed.
  • an etching step can be performed in which the etchant is supplied to the surface A on the blackening layer 13, that is, the side on which the resist is disposed.
  • the etchant used in the etching step is not particularly limited.
  • the blackening layer formed by the method of manufacturing a conductive substrate of the present embodiment exhibits the same reactivity to the etching solution as the copper layer. Therefore, the etching solution used in the etching step is not particularly limited, and an etching solution generally used for etching the copper layer can be preferably used.
  • a mixed aqueous solution containing one or more selected from sulfuric acid, hydrogen peroxide (hydrogen peroxide water), hydrochloric acid, cupric chloride and ferric chloride can be preferably used as the etching solution.
  • the content of each component in the etching solution is not particularly limited.
  • the etching solution can be used at room temperature, but can also be used by heating to enhance the reactivity, for example, it can be used by heating to 40 ° C. or more and 50 ° C. or less.
  • the patterning process is performed to pattern the conductive substrate 10B in which the copper layers 12A and 12B and the blackening layers 13A and 13B are laminated on one surface 11a and the other surface 11b of the transparent substrate 11. it can.
  • a resist disposing step of disposing a resist having a desired pattern on the surface A and the surface B on the blackening layers 13A and 13B can be performed.
  • an etching step may be performed in which the etching solution is supplied to the surface A and the surface B on the blackened layers 13A and 13B, that is, the surface on which the resist is disposed.
  • the pattern to be formed in the etching step is not particularly limited, and may have an arbitrary shape.
  • the copper layer 12 and the blackening layer 13 should be patterned to include a plurality of straight lines and lines (zigzag straight lines) bent into jagged lines. Can.
  • the copper layer 12A and the copper layer 12B can form a pattern so as to form a mesh-like wiring.
  • the blackening layer 13A is preferably patterned to have the same shape as the copper layer 12A
  • the blackening layer 13B is preferably patterned to have the same shape as the copper layer 12B.
  • a stacking step may be performed in which two or more patterned conductive substrates are stacked.
  • laminating for example, by laminating so that the patterns of copper layers of the respective conductive substrates intersect, it is possible to obtain a laminated conductive substrate provided with a mesh-like wiring.
  • the method of fixing the laminated two or more conductive substrates is not particularly limited, for example, it can be fixed by an adhesive or the like.
  • the conductive substrate obtained by the method for producing a conductive substrate of the present embodiment described above has a structure in which a blackening layer is laminated on a copper layer formed on at least one surface of a transparent substrate. . And, since the blackening layer is formed using the above-described blackening plating solution, when patterning the copper layer and the blackening layer by etching, the blackening layer is easily patterned into a desired shape. can do.
  • the blackening layer contained in the conductive substrate obtained by the method of manufacturing a conductive substrate according to the present embodiment sufficiently suppresses the reflection of light on the surface of the copper layer to provide a conductive substrate in which the reflectance is suppressed. Can. For this reason, when it uses, for example for uses, such as a touch panel, the visibility of a display can be improved.
  • the blackening layer can be formed by the wet method using the blackening plating solution described above, the conductive substrate can be produced with high productivity as compared with the case where the blackening layer is formed using the conventional dry method. It can be produced.
  • a conductive substrate having a structure shown in FIG. 1A was produced.
  • the reflectance measurement is performed with light having a wavelength of 400 nm or more and 700 nm or less at an interval of 1 nm with an incident angle of 5 ° and a light receiving angle of 5 °
  • the specular reflectance was measured by irradiation, and the average value was taken as the reflectance (average reflectance) of the conductive substrate.
  • a dry film resist (Hitachi Chemical RY 3310) was attached to the surface of the blackened layer of the conductive substrate obtained in the following experimental example by a lamination method.
  • the sample was immersed in an etching solution at 30 ° C. consisting of 10% by weight of sulfuric acid and 3% by weight of hydrogen peroxide for 40 seconds, and then the dry film resist was peeled off and removed with an aqueous solution of sodium hydroxide.
  • the obtained sample was observed with a 200 ⁇ microscope to determine the minimum value of the wiring width of the metal wiring remaining on the conductive substrate.
  • the metal wiring here includes a blackened layer patterned in a linear shape having a wiring width corresponding to a resist width, and a copper layer, that is, a wiring.
  • Experimental Examples 1 to 12 are Examples, and Experimental Examples 13 to 25 are Comparative Examples.
  • [Experimental Example 1] (1) Blackening Plating Solution
  • nickel ions and copper ions were supplied to the blackening plating solution by adding nickel sulfate hexahydrate and copper sulfate pentahydrate.
  • each component was added and prepared so that the concentration of nickel ion in the blackening plating solution was 8.9 g / l, the concentration of copper ion was 0.05 g / l, and the concentration of amidosulfuric acid was 11 g / l.
  • a copper layer was formed on one side of a transparent base made of a long polyethylene terephthalate resin (PET) having a length of 100 m, a width of 500 mm, and a thickness of 100 ⁇ m.
  • PET polyethylene terephthalate resin
  • the total light transmittance of the transparent substrate made of polyethylene terephthalate resin used as the transparent substrate was evaluated by the method defined in JIS K 7361-1 and found to be 97%.
  • a copper thin film layer forming step and a copper plating layer forming step were performed.
  • a copper thin film layer was formed on one surface of the transparent base using the above-mentioned transparent base as a base.
  • the above-mentioned transparent substrate from which water was removed by heating in advance to 60 ° C. was placed in the chamber of the sputtering apparatus.
  • Electric power was supplied to a copper target previously set at the cathode of the sputtering apparatus, and a copper thin film layer was formed to a thickness of 0.2 ⁇ m on one surface of the transparent substrate.
  • a copper plating layer was formed.
  • the copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.3 ⁇ m.
  • a copper layer having a thickness of 0.5 ⁇ m was formed as a copper layer.
  • a blackening layer was formed on one surface of the copper layer by electrolytic plating using the blackening plating solution of the above-mentioned experimental example.
  • the blackening layer forming step electroplating was performed under the conditions of a blackening plating solution temperature of 40 ° C., a current density of 0.2 A / dm 2 , and a plating time of 100 seconds to form a blackening layer.
  • the film thickness of the formed blackened layer was 70 nm.
  • the concentration of copper ions is 0.10 g / l, and the pH is 4.0.
  • a conductive substrate was produced and evaluated in the same manner as in Experimental Example 1 except that the blackening plating solution prepared in each of the experimental examples was used when forming the blackening layer.
  • the conductive substrate having the blackening layer formed using the blackening plating solution of Experimental Example 1 to Experimental Example 12 has an average specular reflectance of light having a wavelength of 400 nm or more and 700 nm or less. It could be confirmed that the value (reflectance) was also 60% or less.

Abstract

Provided is a blackening plating solution containing nickel ions and copper ions, and having a pH value of 4.0-5.8, inclusive.

Description

黒化めっき液、導電性基板の製造方法Method for producing blackening plating solution, conductive substrate
 本発明は、黒化めっき液、導電性基板の製造方法に関する。 The present invention relates to a method for producing a blackening plating solution and a conductive substrate.
 静電容量式タッチパネルは、パネル表面に近接する物体により引き起こされる静電容量の変化を検出することにより、パネル表面上での近接する物体の位置の情報を電気信号に変換する。静電容量式タッチパネルに用いられる導電性基板は、ディスプレイの表面に設置されるため、導電性基板の導電層の材料には反射率が低く、視認されにくいことが要求されている。 The capacitive touch panel converts information on the position of the adjacent object on the panel surface into an electrical signal by detecting a change in capacitance caused by the object in proximity to the panel surface. Since the conductive substrate used in the capacitive touch panel is disposed on the surface of the display, the material of the conductive layer of the conductive substrate is required to have a low reflectance and be hard to be recognized.
 そこで、静電容量式タッチパネルに用いられる導電層の材料としては、反射率が低く、視認されにくい材料が用いられ、透明基板または透明なフィルム上に配線が形成されている。 Therefore, as a material of the conductive layer used in the capacitive touch panel, a material having a low reflectance and which is hard to be recognized is used, and a wiring is formed on a transparent substrate or a transparent film.
 例えば特許文献1には、高分子フィルムおよびその上に気相成膜法により設けられた金属酸化物からなる透明導電膜を含む透明導電性フィルムが開示され、金属酸化物からなる透明導電膜として酸化インジウム-酸化スズ(ITO)膜を用いることが開示されている。 For example, Patent Document 1 discloses a transparent conductive film including a polymer film and a transparent conductive film comprising a metal oxide provided thereon by a vapor deposition method, as a transparent conductive film comprising a metal oxide The use of indium oxide-tin oxide (ITO) films is disclosed.
 ところで、近年タッチパネルを備えたディスプレイの大画面化が進んでおり、これに対応してタッチパネル用の透明導電性フィルム等の導電性基板についても大面積化が求められている。しかし、ITOは電気抵抗値が高いため、導電性基板の大面積化に対応できないという問題があった。 By the way, in recent years, the screen size of a display provided with a touch panel has been increased, and correspondingly, the area of a conductive substrate such as a transparent conductive film for a touch panel is also required to be increased. However, since ITO has a high electric resistance value, there is a problem that it can not cope with the increase in the area of the conductive substrate.
 そこで、導電層の材料として、ITOにかえて銅等の金属を用いることが検討されている。ただし、金属は金属光沢を有していることから、反射によりディスプレイの視認性が低下するという問題がある。このため、導電層の表面に、黒色の材料により構成される層を乾式法により形成する黒化処理を施した導電性基板が検討されている。 Therefore, using a metal such as copper instead of ITO as a material of the conductive layer has been studied. However, since metal has a metallic luster, there is a problem that the visibility of the display is reduced by reflection. For this reason, a conductive substrate subjected to a blackening treatment in which a layer made of a black material is formed by a dry method on the surface of the conductive layer has been studied.
 しかし、乾式法により導電層表面に十分に黒化処理を施すためには時間を要し、生産性が低かった。 However, it takes time to fully blacken the surface of the conductive layer by the dry method, and the productivity is low.
 そこで、本発明の発明者らは、乾式法で要求されるような真空環境を必要とせず、設備を簡略化でき、生産性に優れることから、湿式法により黒化処理を行うことを検討してきた。具体的にはNi及びZnを主成分として含有するめっき液を用い、湿式法により黒化層を形成することを検討してきた。 Therefore, the inventors of the present invention have examined the blackening treatment by the wet method because the equipment can be simplified and the productivity is excellent without requiring the vacuum environment required by the dry method. The Specifically, it has been studied to form a blackened layer by a wet method using a plating solution containing Ni and Zn as main components.
日本国特開2003-151358号公報Japanese Patent Application Laid-Open No. 2003-151358
 しかしながら、Ni及びZnを主成分として含有するめっき液を用いて湿式法、すなわち湿式めっき法により黒化層を形成する黒化処理を行った場合、形成される黒化層は、導電層として形成した銅層と比較してエッチング液に対する反応性が高い場合があった。そして、所望の配線パターンを有する導電性基板を作製する場合、導電層である銅層と、黒化層とを形成した後、エッチングによりパターン化することになるが、エッチング液に対する銅層と、黒化層との反応性の違いから、黒化層を所望の形状にパターン化することが困難な場合があった。 However, when performing a blackening treatment to form a blackened layer by a wet method, that is, a wet plating method using a plating solution containing Ni and Zn as main components, the blackened layer to be formed is formed as a conductive layer In some cases, the reactivity to the etching solution is higher than that of the copper layer. And when producing the conductive substrate which has a desired wiring pattern, after forming the copper layer which is a conductive layer, and a blackening layer, it will pattern by etching, but the copper layer to etching liquid, Due to the difference in reactivity with the blackened layer, it has been difficult in some cases to pattern the blackened layer into a desired shape.
 上記従来技術の問題に鑑み、本発明の一側面では、銅層と共にエッチングした場合に、所望の形状にパターン化できる黒化層を形成することが可能な黒化めっき液を提供することを目的とする。 In view of the problems of the prior art described above, an object of the present invention is to provide a blackening plating solution capable of forming a blackening layer which can be patterned into a desired shape when etched together with a copper layer. I assume.
 上記課題を解決するため本発明の一側面では、
 ニッケルイオンと、銅イオンとを含み、
 pHが4.0以上5.8以下である黒化めっき液を提供する。
In one aspect of the present invention to solve the above problems,
Containing nickel ions and copper ions,
Provided is a blackening plating solution having a pH of 4.0 or more and 5.8 or less.
 本発明の一側面によれば、銅層と共にエッチングした場合に、所望の形状にパターン化できる黒化層を形成することが可能な黒化めっき液を提供することができる。 According to one aspect of the present invention, it is possible to provide a blackening plating solution capable of forming a blackening layer that can be patterned into a desired shape when etched together with a copper layer.
本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the electroconductive substrate which concerns on embodiment of this invention. 本発明の実施形態に係るメッシュ状の配線を備えた導電性基板の上面図。The top view of the conductive substrate provided with the mesh-like wiring concerning the embodiment of the present invention. 図3のA-A´線における断面図。FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3; 図3のA-A´線における断面図。FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3;
 以下、本発明の黒化めっき液、導電性基板の一実施形態について説明する。
(黒化めっき液)
 本実施形態の黒化めっき液は、ニッケルイオンと、銅イオンとを含み、pHを4.0以上5.8以下とすることができる。
Hereinafter, one embodiment of the blackening plating solution and the conductive substrate of the present invention will be described.
(Blackening plating solution)
The blackening plating solution of the present embodiment contains nickel ions and copper ions and can have a pH of 4.0 or more and 5.8 or less.
 既述のように、例えばNi及びZnを主成分として含有するめっき液を用い、湿式法により形成された黒化層は、エッチング液に対する反応性が銅層よりも高く、銅層と共にエッチングした場合、所望の形状にパターン化することが困難であった。そこで、本発明の発明者らは、銅層と共にエッチングした場合に、所望の形状にパターン化できる黒化層を形成することが可能な黒化めっき液について鋭意検討を行った。 As described above, for example, a blackened layer formed by a wet method using a plating solution containing Ni and Zn as main components has higher reactivity to the etching solution than the copper layer and is etched together with the copper layer It was difficult to pattern it into the desired shape. Therefore, the inventors of the present invention conducted intensive studies on a blackening plating solution capable of forming a blackening layer which can be patterned into a desired shape when etched together with a copper layer.
 そして、黒化めっき液について検討を進める中で、本発明の発明者らは、黒化層をニッケルと、銅とを含有する層とすることで、黒化層のエッチング液に対する反応性を抑制でき、銅層と同時にエッチングした場合でも所望の形状にできることを見出した。また、黒化層は、ニッケルと銅とを含有することで銅層表面での光の反射を抑制することが可能な色とすることができることも併せて見出した。なお、ここでいう銅層と、黒化層とを同時にエッチングした場合の所望の形状とは、例えば配線幅が10μm以下の配線を含む形状、パターンを意味する。 And while proceeding with the study on the blackening plating solution, the inventors of the present invention suppress the reactivity of the blackening layer to the etching solution by using the blackening layer as a layer containing nickel and copper. It has been found that the desired shape can be obtained even when etching is performed simultaneously with the copper layer. In addition, it was also found that the blackening layer can be made to have a color that can suppress the reflection of light on the surface of the copper layer by containing nickel and copper. The desired shape in the case where the copper layer and the blackening layer are simultaneously etched means, for example, a shape or pattern including a wiring having a wiring width of 10 μm or less.
 そこで、本実施形態の黒化めっき液は、金属成分としてニッケルと銅とを含有する層を形成できるめっき液であることが好ましく、本実施形態の黒化めっき液は、ニッケルイオンと、銅イオンとを含有することができる。 Therefore, the blackening plating solution of the present embodiment is preferably a plating solution capable of forming a layer containing nickel and copper as a metal component, and the blackening plating solution of the present embodiment includes nickel ions and copper ions. And can be contained.
 黒化めっき液中の各成分の濃度は特に限定されるものではないが、黒化めっき液中のニッケルイオン濃度は、2.0g/l以上であることが好ましく、3.0g/l以上であることがより好ましい。これは、黒化めっき液中のニッケルイオン濃度を2.0g/l以上とすることで、黒化層を銅層表面での光の反射を抑制するのに特に適した色とし、導電性基板の反射率を抑制できるからである。 The concentration of each component in the blackening plating solution is not particularly limited, but the nickel ion concentration in the blackening plating solution is preferably 2.0 g / l or more, and 3.0 g / l or more. It is more preferable that This is because the nickel ion concentration in the blackening plating solution is 2.0 g / l or more to make the blackening layer a color particularly suitable for suppressing the light reflection on the copper layer surface, and the conductive substrate It is because the reflectance of can be suppressed.
 黒化めっき液中のニッケルイオン濃度の上限値についても特に限定されるものではないが、例えば20.0g/l以下であることが好ましく、15.0g/l以下であることがより好ましい。これは、黒化めっき液中のニッケルイオン濃度を20.0g/l以下とすることで、成膜した黒化層中のニッケル成分が過剰になることを抑制し、黒化層表面が光沢ニッケルメッキのような面になることを防止し、導電性基板の反射率を抑制できるからである。 The upper limit value of the nickel ion concentration in the blackening plating solution is not particularly limited either, but is preferably 20.0 g / l or less, and more preferably 15.0 g / l or less. This controls the nickel ion concentration in the blackening plating solution to be 20.0 g / l or less, thereby suppressing the excess of the nickel component in the formed blackening layer, and the blackening layer surface has a bright nickel. It is because it can prevent that it becomes a surface like plating and can control the reflectance of a conductive board.
 また、黒化めっき液中の銅イオン濃度は、0.005g/l以上であることが好ましく、0.008g/l以上であることがより好ましい。これは、黒化めっき液中の銅イオン濃度が0.005g/l以上の場合、黒化層を銅層表面での光の反射を抑制するのに特に適した色とし、黒化層のエッチング液に対する反応性を特に適切なものとし、銅層と共に黒化層をエッチングした場合でもより確実に所望の形状にパターン化することができるためである。 The copper ion concentration in the blackening plating solution is preferably 0.005 g / l or more, more preferably 0.008 g / l or more. This makes the blackening layer a color particularly suitable for suppressing light reflection on the copper layer surface when the copper ion concentration in the blackening plating solution is 0.005 g / l or more, and etching the blackening layer This is because the reactivity to the solution is made particularly appropriate, and even when the blackened layer is etched together with the copper layer, it can be patterned more reliably to the desired shape.
 黒化めっき液中の銅イオン濃度の上限値は特に限定されるものではないが、例えば1.02g/l以下であることが好ましく、0.5g/l以下であることがより好ましい。これは、黒化めっき液中の銅イオン濃度を1.02g/l以下とすることで、成膜した黒化層のエッチング液に対する反応性が高くなりすぎることを抑制し、黒化層を銅層表面での光の反射を抑制するのに特に適した色とし、導電性基板の反射率を抑制できるからである。 The upper limit value of the copper ion concentration in the blackening plating solution is not particularly limited, but is preferably 1.02 g / l or less, and more preferably 0.5 g / l or less. This controls the copper ion concentration in the blackening plating solution to be 1.02 g / l or less, thereby preventing the reactivity of the formed blackening layer with respect to the etching solution from becoming too high, thereby making the blackening layer copper. This is because the color is particularly suitable for suppressing the reflection of light on the layer surface, and the reflectance of the conductive substrate can be suppressed.
 黒化めっき液を調製する際、ニッケルイオンと、銅イオンとの供給方法は特に限定されるものではなく、例えば塩の状態で供給することができる。例えばスルファミン酸塩や、硫酸塩を好適に用いることができる。なお、塩の種類は各金属元素について全て同じ種類の塩でもよく、異なる種類の塩を同時に用いることもできる。具体的には例えば硫酸ニッケルと、硫酸銅とのように同じ種類の塩を用いて黒化めっき液を調製することもできる。また、例えば硫酸ニッケルと、スルファミン酸銅と、のように異なる種類の塩を同時に用いて黒化めっき液を調製することもできる。 When preparing a blackening plating solution, the supply method of nickel ion and copper ion is not specifically limited, For example, it can supply in the state of a salt. For example, sulfamate and sulfate can be suitably used. The type of salt may be the same type of salt for each metal element, or different types of salts may be used simultaneously. Specifically, a blackening plating solution can also be prepared using, for example, the same type of salt as nickel sulfate and copper sulfate. Also, it is possible to prepare a blackening plating solution by simultaneously using different types of salts such as, for example, nickel sulfate and copper sulfamate.
 本実施形態の黒化めっき液は、ニッケルイオンと、銅イオン以外に、錯化剤として機能するアミド硫酸をさらに含むこともできる。アミド硫酸を含有することで、銅層表面での光の反射を抑制するのに特に適した色の黒化層とすることができる。 The blackening plating solution of the present embodiment may further contain an amidosulfuric acid which functions as a complexing agent, in addition to the nickel ion and the copper ion. By containing amidosulfuric acid, it is possible to make a blackening layer of a color particularly suitable for suppressing the reflection of light on the surface of the copper layer.
 黒化めっき液中のアミド硫酸の含有量については特に限定されるものではなく、形成する黒化層に要求される反射率の抑制の程度等に応じて任意に選択することができる。 The content of amidosulfuric acid in the blackening plating solution is not particularly limited, and can be arbitrarily selected according to the degree of suppression of the reflectance required of the blackening layer to be formed.
 例えば、黒化めっき液中のアミド硫酸の濃度は特に限定されないが、例えば1g/l以上50g/l以下であることが好ましく、5g/l以上20g/l以下であることがより好ましい。これは、アミド硫酸の濃度を1g/l以上とすることで、黒化層を銅層表面での光の反射を抑制するのに特に適した色とし、導電性基板の反射率を抑制できるからである。また、アミド硫酸を50g/lより多く過剰に添加しても、導電性基板の反射率を抑制する効果に大きな変化を生じないことから、上述のように50g/l以下であることが好ましい。 For example, the concentration of amidosulfuric acid in the blackening plating solution is not particularly limited, but is preferably, for example, 1 g / l to 50 g / l, and more preferably 5 g / l to 20 g / l. This is because, by setting the concentration of amidosulfuric acid to 1 g / l or more, the blackened layer can be made a color particularly suitable for suppressing light reflection on the surface of the copper layer, and the reflectance of the conductive substrate can be suppressed. It is. Further, even if the amidosulfuric acid is added in excess of 50 g / l, the effect of suppressing the reflectance of the conductive substrate is not significantly changed, so that it is preferably 50 g / l or less as described above.
 そして、本実施形態の黒化めっき液はpHを例えば4.0以上5.8以下とすることができる。 And, the blackening plating solution of this embodiment can have a pH of, for example, 4.0 or more and 5.8 or less.
 これは、黒化めっき液のpHを4.0以上とすることで、係る黒化めっき液を用いて黒化層を形成した際に、黒化層に色ムラが生じることをより確実に抑制でき、光の反射を特に抑制できる色を有する黒化層を形成することができるからである。また黒化めっき液のpHを5.8以下、特にpHを5.3以下とすることで、黒化めっき液の成分の一部が析出することを抑制することができる。 This is because, by setting the pH of the blackening plating solution to 4.0 or more, when the blackening layer is formed using the blackening plating solution, the occurrence of color unevenness in the blackening layer is more reliably suppressed. This is because it is possible to form a blackened layer having a color that can particularly suppress the reflection of light. Further, by setting the pH of the blackening plating solution to 5.8 or less, in particular, to 5.3 or less, precipitation of part of components of the blackening plating solution can be suppressed.
 黒化めっき液のpHを上記範囲とするため、本実施形態の黒化めっき液は例えばアルカリ性物質を含有することができる。アルカリ性物質としては、例えばアンモニア(アンモニア水)や、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物等が挙げられる。 In order to make the pH of the blackening plating solution fall in the above range, the blackening plating solution of the present embodiment can contain, for example, an alkaline substance. Examples of the alkaline substance include ammonia (ammonia water) and alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide.
 そして、上述のようにアルカリ性物質はpH調整剤として機能することから、本実施形態の黒化めっき液は、そのpHが上記範囲となるように、アルカリ性物質を含有することが好ましい。 And since an alkaline substance functions as a pH adjuster as mentioned above, it is preferable that the blackening plating solution of this embodiment contains an alkaline substance so that the pH may become the said range.
 本実施形態の黒化めっき液には、ここまで説明した各成分以外に任意の成分を含有することもできる。任意に含有できる成分としては例えば、ニッケルめっき用ピット防止剤が挙げられる。ニッケルメッキ用ピット防止剤としては、例えば日本化学産業社製のピットレスS(商品名)やロームアンドハース社製のニッケルグリーム NAW4(商品名)などが挙げられる。 The blackening plating solution of the present embodiment may contain any component other than the components described above. As a component which can be contained optionally, the pit inhibiting agent for nickel plating is mentioned, for example. Examples of the pit prevention agent for nickel plating include Pitless S (trade name) manufactured by Nippon Kagaku Sangyo Co., Ltd., and Nickel Grime NAW 4 (trade name) manufactured by Rohm and Haas.
 以上に説明した本実施形態の黒化めっき液によれば、銅層と共にエッチングした場合に、所望の形状にパターン化できる黒化層を形成できる。 According to the blackening plating solution of the present embodiment described above, it is possible to form a blackening layer which can be patterned into a desired shape when it is etched together with a copper layer.
 また、本実施形態の黒化めっき液は、導電性基板の銅層表面での光の反射を十分に抑制できる黒化層を形成する際に好適に用いることができる。さらに、本実施形態の黒化めっき液を用いることで、黒化層を電解めっき法等の湿式法により成膜することができるため、従来、乾式法で成膜されていた黒化層と比較して、生産性良く黒化層を形成できる。
(導電性基板)
 次に、本実施形態の黒化めっき液を用いて形成した黒化層を含む導電性基板の一構成例について説明する。
Moreover, the blackening plating solution of this embodiment can be suitably used when forming the blackening layer which can fully suppress reflection of the light in the copper layer surface of a conductive substrate. Furthermore, by using the blackening plating solution of the present embodiment, the blackening layer can be formed into a film by a wet method such as electrolytic plating, so that it is compared with the blackening layer conventionally formed by the dry method. Thus, the blackened layer can be formed with good productivity.
(Conductive substrate)
Next, a configuration example of a conductive substrate including a blackening layer formed using the blackening plating solution of the present embodiment will be described.
 本実施形態の導電性基板は、透明基材と、透明基材の少なくとも一方の面上に配置された銅層と、銅層上に黒化めっき液を用いて形成された黒化層と、を有することができる。 The conductive substrate of the present embodiment includes a transparent substrate, a copper layer disposed on at least one surface of the transparent substrate, and a blackening layer formed using a blackening plating solution on the copper layer. You can have
 なお、本実施形態における導電性基板とは、銅層等をパターン化する前の、透明基材の表面に銅層、及び黒化層を有する基板と、銅層等をパターン化した基板、すなわち、配線基板と、を含む。 The conductive substrate in the present embodiment means a substrate having a copper layer and a blackening layer on the surface of a transparent base before patterning a copper layer or the like, and a substrate having the copper layer or the like patterned, ie, And the wiring board.
 ここでまず、導電性基板に含まれる各部材について以下に説明する。 Here, first, each member included in the conductive substrate will be described below.
 透明基材としては特に限定されるものではなく、可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。 The transparent substrate is not particularly limited, and a transparent substrate such as a resin substrate (resin film) which transmits visible light or a glass substrate can be preferably used.
 可視光を透過する樹脂基板の材料としては例えば、ポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂等の樹脂を好ましく用いることができる。特に、可視光を透過する樹脂基板の材料として、PET(ポリエチレンテレフタレート)、COP(シクロオレフィンポリマー)、PEN(ポリエチレンナフタレート)、ポリアミド、ポリイミド、ポリカーボネート等をより好ましく用いることができる。 As a material of the resin substrate which transmits visible light, for example, resins such as polyamide resin, polyethylene terephthalate resin, polyethylene naphthalate resin, cycloolefin resin, polyimide resin, and polycarbonate resin can be preferably used. In particular, PET (polyethylene terephthalate), COP (cycloolefin polymer), PEN (polyethylene naphthalate), polyamide, polyimide, polycarbonate and the like can be more preferably used as the material of the resin substrate that transmits visible light.
 透明基材の厚さについては特に限定されず、導電性基板とした場合に要求される強度や静電容量、光の透過率等に応じて任意に選択することができる。透明基材の厚さとしては例えば10μm以上200μm以下とすることができる。特にタッチパネルの用途に用いる場合、透明基材の厚さは20μm以上120μm以下とすることが好ましく、20μm以上100μm以下とすることがより好ましい。タッチパネルの用途に用いる場合で、例えば特にディスプレイ全体の厚さを薄くすることが求められる用途においては、透明基材の厚さは20μm以上50μm以下であることが好ましい。 The thickness of the transparent substrate is not particularly limited, and can be arbitrarily selected according to the strength, the capacitance, the light transmittance, etc. required for the conductive substrate. The thickness of the transparent substrate can be, for example, 10 μm or more and 200 μm or less. In particular, when used for touch panel applications, the thickness of the transparent substrate is preferably 20 μm or more and 120 μm or less, and more preferably 20 μm or more and 100 μm or less. When used for touch panel applications, for example, in applications where it is required to reduce the thickness of the entire display, the thickness of the transparent substrate is preferably 20 μm to 50 μm.
 透明基材の全光線透過率は高い方が好ましく、例えば全光線透過率は30%以上であることが好ましく、60%以上であることがより好ましい。透明基材の全光線透過率が上記範囲であることにより、例えばタッチパネルの用途に用いた場合にディスプレイの視認性を十分に確保することができる。 The total light transmittance of the transparent substrate is preferably high. For example, the total light transmittance is preferably 30% or more, more preferably 60% or more. When the total light transmittance of the transparent substrate is in the above range, the visibility of the display can be sufficiently ensured, for example, when used for a touch panel application.
 なお透明基材の全光線透過率はJIS K 7361-1に規定される方法により評価することができる。 The total light transmittance of the transparent substrate can be evaluated by the method defined in JIS K 7361-1.
 次に、銅層について説明する。 Next, the copper layer will be described.
 透明基材上に銅層を形成する方法は特に限定されないが、光の透過率を低減させないため、透明基材と銅層との間に接着剤を配置しないことが好ましい。すなわち銅層は、透明基材の少なくとも一方の面上に直接形成されていることが好ましい。なお、後述のように透明基材と銅層との間に密着層を配置する場合には、銅層は密着層の上面に直接形成されていることが好ましい。 The method for forming the copper layer on the transparent substrate is not particularly limited, but it is preferable not to dispose an adhesive between the transparent substrate and the copper layer in order not to reduce the light transmittance. That is, the copper layer is preferably formed directly on at least one surface of the transparent substrate. When the adhesion layer is disposed between the transparent substrate and the copper layer as described later, the copper layer is preferably formed directly on the upper surface of the adhesion layer.
 透明基材等の上面に銅層を直接形成するため、銅層は銅薄膜層を有することが好ましい。また、銅層は銅薄膜層と銅めっき層とを有していてもよい。 In order to form a copper layer directly on the upper surface of a transparent substrate or the like, the copper layer preferably has a copper thin film layer. Also, the copper layer may have a copper thin film layer and a copper plating layer.
 例えば透明基材上に、乾式めっき法により銅薄膜層を形成し、該銅薄膜層を銅層とすることができる。これにより、透明基材上に接着剤を介さずに直接銅層を形成できる。なお、乾式めっき法としては、例えばスパッタリング法や蒸着法、イオンプレーティング法等を好ましく用いることができる。 For example, a copper thin film layer can be formed on a transparent substrate by a dry plating method, and the copper thin film layer can be used as a copper layer. Thus, the copper layer can be formed directly on the transparent substrate without the use of an adhesive. As the dry plating method, for example, a sputtering method, a vapor deposition method, an ion plating method and the like can be preferably used.
 また、銅層の膜厚を厚くする場合には、銅薄膜層を給電層として湿式めっき法の一種である電気めっき法により銅めっき層を形成することにより、銅薄膜層と銅めっき層とを有する銅層とすることもできる。銅層が銅薄膜層と銅めっき層とを有することにより、この場合も透明基材上に接着剤を介さずに直接銅層を形成できる。 Moreover, when making the film thickness of a copper layer thick, a copper thin film layer and a copper plating layer are formed by forming a copper plating layer by electroplating which is 1 type of the wet plating method by using a copper thin film layer as a feed layer. It can also be a copper layer having. Since the copper layer has a copper thin film layer and a copper plating layer, the copper layer can be formed directly on the transparent substrate without an adhesive.
 銅層の厚さは特に限定されるものではなく、銅層を配線として用いた場合に、該配線に供給する電流の大きさや配線幅等に応じて任意に選択することができる。 The thickness of the copper layer is not particularly limited, and when the copper layer is used as a wire, it can be arbitrarily selected according to the magnitude of the current supplied to the wire, the wire width, and the like.
 ただし、銅層が厚くなると、配線パターンを形成するためにエッチングを行う際にエッチングに時間を要するためサイドエッチが生じ易くなり、細線が形成しにくくなる等の問題を生じる場合がある。このため、銅層の厚さは5μm以下であることが好ましく、3μm以下であることがより好ましい。 However, if the copper layer is thick, side etching tends to occur because etching takes time to perform the wiring pattern formation, which may cause problems such as difficulty in forming fine lines. Therefore, the thickness of the copper layer is preferably 5 μm or less, more preferably 3 μm or less.
 また、特に導電性基板の抵抗値を低くし、十分に電流を供給できるようにする観点から、例えば銅層は厚さが50nm以上であることが好ましく、60nm以上であることがより好ましく、150nm以上であることがさらに好ましい。 Further, in particular, in view of lowering the resistance value of the conductive substrate and supplying a sufficient current, for example, the thickness of the copper layer is preferably 50 nm or more, more preferably 60 nm or more, and 150 nm It is more preferable that it is more than.
 なお、銅層が上述のように銅薄膜層と、銅めっき層とを有する場合には、銅薄膜層の厚さと、銅めっき層の厚さとの合計が上記範囲であることが好ましい。 In addition, when a copper layer has a copper thin film layer and a copper plating layer as mentioned above, it is preferable that the sum total of the thickness of a copper thin film layer and the thickness of a copper plating layer is the said range.
 銅層が銅薄膜層により構成される場合、または銅薄膜層と銅めっき層とを有する場合のいずれの場合でも、銅薄膜層の厚さは特に限定されるものではないが、例えば50nm以上500nm以下とすることが好ましい。 Although the thickness of the copper thin film layer is not particularly limited in any case where the copper layer is constituted of a copper thin film layer or in the case of having a copper thin film layer and a copper plating layer, for example, 50 nm or more and 500 nm It is preferable to set it as the following.
 銅層は後述するように例えば所望の配線パターンにパターン化することにより配線として用いることができる。そして、銅層は従来透明導電膜として用いられていたITOよりも電気抵抗値を低くすることができるから、銅層を設けることにより導電性基板の電気抵抗値を小さくできる。 The copper layer can be used as a wiring by patterning it into a desired wiring pattern as described later. And since a copper layer can make electrical resistance value lower than ITO conventionally used as a transparent conductive film, the electrical resistance value of a conductive substrate can be made small by providing a copper layer.
 次に黒化層について説明する。 Next, the blackening layer will be described.
 黒化層は、既述の黒化めっき液を用いて成膜することができる。このため、例えば銅層を形成後、銅層の上面に電解めっき法等の湿式法により形成することができる。 The blackening layer can be formed using the blackening plating solution described above. Therefore, for example, after forming a copper layer, it can be formed on the upper surface of the copper layer by a wet method such as electrolytic plating.
 黒化めっき液については既述のため、ここでは説明を省略する。 The blackening plating solution has already been described, and thus the description thereof is omitted here.
 黒化層の厚さは特に限定されるものではないが、例えば30nm以上であることが好ましく、50nm以上であることがより好ましい。これは、黒化層の厚さを30nm以上とすることにより銅層表面における光の反射を特に抑制できるからである。 The thickness of the blackening layer is not particularly limited, but is preferably, for example, 30 nm or more, and more preferably 50 nm or more. This is because the reflection of light on the surface of the copper layer can be particularly suppressed by setting the thickness of the blackening layer to 30 nm or more.
 黒化層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、黒化層の厚さは120nm以下とすることが好ましく、90nm以下とすることがより好ましい。 The upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming a wiring become longer, and the cost rises Will lead to Therefore, the thickness of the blackening layer is preferably 120 nm or less, and more preferably 90 nm or less.
 なお、既述の黒化めっき液により黒化層を成膜した場合、黒化層は、ニッケル、銅を含有する層とすることができる。また、既述の黒化めっき液に含まれる各種添加成分由来の成分も併せて含有することができる。 In addition, when a blackening layer is formed into a film by blackening plating solution as stated above, a blackening layer can be made into the layer containing nickel and copper. Moreover, the component derived from the various addition components contained in the already mentioned blackening plating solution can also be included collectively.
 また、導電性基板は上述の透明基材、銅層、黒化層以外に任意の層を設けることもできる。例えば密着層を設けることができる。 In addition to the above-mentioned transparent base material, copper layer and blackening layer, the conductive substrate may be provided with any layer. For example, an adhesive layer can be provided.
 密着層の構成例について説明する。 A configuration example of the adhesion layer will be described.
 上述のように銅層は透明基材上に形成することができるが、透明基材上に銅層を直接形成した場合に、透明基材と銅層との密着性は十分ではない場合がある。このため、透明基材の上面に直接銅層を形成した場合、製造過程、または、使用時に透明基材から銅層が剥離する場合がある。 Although the copper layer can be formed on the transparent substrate as described above, when the copper layer is formed directly on the transparent substrate, the adhesion between the transparent substrate and the copper layer may not be sufficient. . For this reason, when a copper layer is directly formed on the upper surface of the transparent substrate, the copper layer may peel off from the transparent substrate during the manufacturing process or during use.
 そこで、本実施形態の導電性基板においては、透明基材と銅層との密着性を高めるため、透明基材上に密着層を配置することができる。すなわち、透明基材と銅層との間に密着層を有する導電性基板とすることもできる。 So, in the conductive substrate of this embodiment, in order to improve the adhesiveness of a transparent base material and a copper layer, an adhesion layer can be arranged on a transparent base material. That is, it can also be set as a conductive substrate which has an adhesion layer between a transparent substrate and a copper layer.
 透明基材と銅層との間に密着層を配置することにより、透明基材と銅層との密着性を高め、透明基材から銅層が剥離することを抑制できる。 By arranging the adhesion layer between the transparent base and the copper layer, the adhesion between the transparent base and the copper layer can be enhanced, and peeling of the copper layer from the transparent base can be suppressed.
 また、密着層は黒化層としても機能させることができる。このため、銅層の下面側、すなわち透明基材側からの光による銅層の光の反射も抑制することが可能になる。 The adhesion layer can also function as a blackening layer. For this reason, it becomes possible to suppress also the reflection of the light of the copper layer by the light from the lower surface side of a copper layer, ie, the transparent base material side.
 密着層を構成する材料は特に限定されるものではなく、透明基材及び銅層との密着力や、要求される銅層表面での光の反射の抑制の程度、また、導電性基板を使用する環境(例えば湿度や、温度)に対する安定性の程度等に応じて任意に選択することができる。 The material constituting the adhesion layer is not particularly limited, and the adhesion between the transparent substrate and the copper layer, the required degree of suppression of light reflection on the surface of the copper layer, and the use of a conductive substrate It can be arbitrarily selected according to the degree of stability to the environment (eg, humidity, temperature) to be used.
 密着層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種類以上の金属を含むことが好ましい。また、密着層は炭素、酸素、水素、窒素から選ばれる1種類以上の元素をさらに含むこともできる。 The adhesion layer preferably contains, for example, at least one metal selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. The adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen and nitrogen.
 なお、密着層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種類以上の金属を含む金属合金を含むこともできる。この場合についても、密着層は炭素、酸素、水素、窒素から選ばれる1種類以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種類以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。 The adhesion layer can also include a metal alloy containing at least two or more metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two or more kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn and Mn, a Cu-Ti-Fe alloy Alternatively, Cu-Ni-Fe alloy, Ni-Cu alloy, Ni-Zn alloy, Ni-Ti alloy, Ni-W alloy, Ni-Cr alloy, Ni-Cu-Cr alloy can be preferably used.
 密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には上述のように炭素、酸素、水素、窒素から選ばれる1種類以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 Although the film-forming method of the adhesion layer is not particularly limited, it is preferable to form a film by dry plating. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy. As described above, one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
 密着層が炭素、酸素、水素、窒素から選ばれる1種類以上の元素を含む場合には、密着層を成膜する際の雰囲気中に炭素、酸素、水素、窒素から選ばれる1種類以上の元素を含有するガスを添加しておくことにより、密着層中に添加することができる。例えば、密着層に炭素を添加する場合には一酸化炭素ガスおよび/または二酸化炭素ガスを、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび/または水を、窒素を添加する場合には窒素ガスを、乾式めっきを行う際の雰囲気中に添加しておくことができる。 When the adhesion layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen, the atmosphere for forming the adhesion layer includes one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. Can be added to the adhesive layer by adding a gas containing. For example, carbon monoxide gas and / or carbon dioxide gas when carbon is added to the adhesion layer, oxygen gas when oxygen is added, hydrogen gas and / or water when hydrogen is added, When nitrogen is added, nitrogen gas can be added to the atmosphere at the time of performing dry plating.
 炭素、酸素、水素、窒素から選ばれる1種類以上の元素を含有するガスは、不活性ガスに添加し、乾式めっきの際の雰囲気ガスとすることが好ましい。不活性ガスとしては特に限定されないが、例えばアルゴンを好ましく用いることができる。 A gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas at the time of dry plating. The inert gas is not particularly limited but, for example, argon can be preferably used.
 密着層を上述のように乾式めっき法により成膜することにより、透明基材と密着層との密着性を高めることができる。そして、密着層は例えば金属を主成分として含むことができるため銅層との密着性も高い。このため、透明基材と銅層との間に密着層を配置することにより、銅層の剥離を抑制することができる。 The adhesion between the transparent substrate and the adhesion layer can be enhanced by forming the adhesion layer by dry plating as described above. And since the adhesion layer can contain, for example, a metal as a main component, the adhesion to the copper layer is also high. For this reason, peeling of a copper layer can be suppressed by arrange | positioning an adhesion layer between a transparent base material and a copper layer.
 密着層の厚さは特に限定されるものではないが、例えば3nm以上50nm以下とすることが好ましく、3nm以上35nm以下とすることがより好ましく、3nm以上33nm以下とすることがさらに好ましい。 The thickness of the adhesion layer is not particularly limited, but is preferably 3 nm to 50 nm, more preferably 3 nm to 35 nm, and still more preferably 3 nm to 33 nm.
 密着層についても黒化層として機能させる場合、すなわち銅層における光の反射を抑制する場合、密着層の厚さを上述のように3nm以上とすることが好ましい。 When the adhesion layer is also made to function as a blackening layer, that is, when the reflection of light in the copper layer is suppressed, the thickness of the adhesion layer is preferably 3 nm or more as described above.
 密着層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、密着層の厚さは上述のように50nm以下とすることが好ましく、35nm以下とすることがより好ましく、33nm以下とすることがさらに好ましい。 The upper limit of the thickness of the adhesion layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming a wiring become longer, and the cost increases. It will incur. Therefore, as described above, the thickness of the adhesive layer is preferably 50 nm or less, more preferably 35 nm or less, and still more preferably 33 nm or less.
 次に、導電性基板の構成例について説明する。 Next, a configuration example of the conductive substrate will be described.
 上述のように、本実施形態の導電性基板は透明基材と、銅層と、黒化層と、を有することができる。また、任意に密着層等の層を有することもできる。 As described above, the conductive substrate of the present embodiment can have a transparent substrate, a copper layer, and a blackening layer. Moreover, layers, such as an adhesion layer, can also be provided optionally.
 具体的な構成例について、図1A、図1B、図2A、図2Bを用いて以下に説明する。図1A、図1B、図2A、図2Bは、本実施形態の導電性基板の、透明基材、銅層、黒化層の積層方向と平行な面における断面図の例を示している。 A specific configuration example will be described below with reference to FIGS. 1A, 1B, 2A, and 2B. FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B have shown the example of sectional drawing in the surface parallel to the lamination direction of a transparent base material, a copper layer, and a blackening layer of the conductive substrate of this embodiment.
 本実施形態の導電性基板は、例えば透明基材の少なくとも一方の面上に、透明基材側から銅層と、黒化層とがその順に積層された構造を有することができる。 The conductive substrate of the present embodiment can have, for example, a structure in which a copper layer and a blackening layer are laminated in this order from the transparent substrate side on at least one surface of the transparent substrate.
 具体的には例えば、図1Aに示した導電性基板10Aのように、透明基材11の一方の面11a側に銅層12と、黒化層13と、を一層ずつその順に積層することができる。また、図1Bに示した導電性基板10Bのように、透明基材11の一方の面11a側と、もう一方の面(他方の面)11b側と、にそれぞれ銅層12A、12Bと、黒化層13A、13Bと、を一層ずつその順に積層することができる。 Specifically, for example, as in the conductive substrate 10A shown in FIG. 1A, the copper layer 12 and the blackening layer 13 may be sequentially laminated one by one on one surface 11a side of the transparent substrate 11 it can. Further, as in the case of the conductive substrate 10B shown in FIG. 1B, copper layers 12A and 12B and black are respectively provided on one surface 11a side of the transparent substrate 11 and the other surface (the other surface) 11b side. And the barrier layers 13A and 13B can be stacked one by one in that order.
 また、さらに任意の層として、例えば密着層を設けた構成とすることもできる。この場合例えば、透明基材の少なくとも一方の面上に、透明基材側から密着層と、銅層と、黒化層とがその順に形成された構造とすることができる。 Furthermore, for example, an adhesion layer may be provided as an arbitrary layer. In this case, for example, an adhesion layer, a copper layer, and a blackening layer can be formed in this order on at least one surface of the transparent substrate from the transparent substrate side.
 具体的には例えば図2Aに示した導電性基板20Aのように、透明基材11の一方の面11a側に、密着層14と、銅層12と、黒化層13とをその順に積層することができる。 Specifically, for example, as in the case of the conductive substrate 20A shown in FIG. 2A, the adhesion layer 14, the copper layer 12, and the blackening layer 13 are laminated in this order on one surface 11a side of the transparent substrate 11. be able to.
 この場合も透明基材11の両面に密着層、銅層、黒化層を積層した構成とすることもできる。具体的には図2Bに示した導電性基板20Bのように、透明基材11の一方の面11a側と、他方の面11b側と、にそれぞれ密着層14A、14Bと、銅層12A、12Bと、黒化層13A、13Bとをその順に積層できる。 Also in this case, the adhesion layer, the copper layer, and the blackening layer may be laminated on both sides of the transparent substrate 11. Specifically, as in the case of the conductive substrate 20B shown in FIG. 2B, the adhesion layers 14A and 14B and the copper layers 12A and 12B are formed on one surface 11a side and the other surface 11b side of the transparent substrate 11, respectively. And the blackening layers 13A and 13B can be stacked in that order.
 なお、図1B、図2Bにおいて、透明基材の両面に銅層、黒化層等を積層した場合において、透明基材11を対称面として透明基材11の上下に積層した層が対称になるように配置した例を示したが、係る形態に限定されるものではない。例えば、図2Bにおいて、透明基材11の一方の面11a側の構成を図1Bの構成と同様に、密着層14Aを設けずに銅層12Aと、黒化層13Aとをその順に積層した形態とし、透明基材11の上下に積層した層を非対称な構成としてもよい。 In addition, in FIG. 1B and FIG. 2B, when a copper layer, a blackening layer, etc. are laminated on both sides of a transparent substrate, layers laminated on the upper and lower sides of the transparent substrate 11 with the transparent substrate 11 as a symmetry plane become symmetrical. Although the example arrange | positioned as shown was shown, it is not limited to the form which concerns. For example, in FIG. 2B, the configuration on one surface 11a side of the transparent substrate 11 is the same as the configuration of FIG. 1B, in which the copper layer 12A and the blackening layer 13A are laminated in that order without providing the adhesion layer The layers stacked on the upper and lower sides of the transparent substrate 11 may be asymmetric.
 ところで、本実施形態の導電性基板においては、透明基材上に銅層と、黒化層とを設けることで、銅層による光の反射を抑制し、導電性基板の反射率を抑制することができる。 By the way, in the conductive substrate of the present embodiment, by providing a copper layer and a blackening layer on a transparent substrate, the reflection of light by the copper layer is suppressed to suppress the reflectance of the conductive substrate. Can.
 本実施形態の導電性基板の反射率の程度については特に限定されるものではないが、例えばタッチパネル用の導電性基板として用いた場合のディスプレイの視認性を高めるためには、反射率は低い方が良い。例えば、波長400nm以上700nm以下の光の平均反射率が60%以下であることが好ましく、56%以下であることがより好ましい。 The degree of reflectance of the conductive substrate of the present embodiment is not particularly limited, but for example, in order to enhance the visibility of the display when used as a conductive substrate for a touch panel, one having a low reflectance Is good. For example, the average reflectance of light with a wavelength of 400 nm or more and 700 nm or less is preferably 60% or less, and more preferably 56% or less.
 反射率の測定は、導電性基板の黒化層に光を照射するようにして測定を行うことができる。具体的には例えば図1Aのように透明基材11の一方の面11a側に銅層12、黒化層13の順に積層した場合、黒化層13に光を照射するように黒化層13の表面Aに対して光を照射し、測定できる。測定に当たっては波長400nm以上700nm以下の光を例えば波長1nm間隔で上述のように導電性基板の黒化層13に対して照射し、測定した値の平均値を該導電性基板の反射率とすることができる。 The measurement of reflectance can be performed by irradiating light to the blackened layer of the conductive substrate. Specifically, for example, when the copper layer 12 and the blackening layer 13 are laminated in this order on one surface 11a side of the transparent substrate 11 as shown in FIG. 1A, the blackening layer 13 is irradiated so as to irradiate light. The surface A of the light can be irradiated with light and measured. In the measurement, light having a wavelength of 400 nm or more and 700 nm or less is irradiated to the blackened layer 13 of the conductive substrate at an interval of 1 nm as described above, for example, and the average value of the measured values is the reflectance of the conductive substrate be able to.
 本実施形態の導電性基板はタッチパネル用の導電性基板として好ましく用いることができる。この場合導電性基板はメッシュ状の配線を備えた構成とすることができる。 The conductive substrate of the present embodiment can be preferably used as a conductive substrate for a touch panel. In this case, the conductive substrate can be configured to have mesh-like wiring.
 メッシュ状の配線を備えた導電性基板は、ここまで説明した本実施形態の導電性基板の銅層、及び黒化層をエッチングすることにより得ることができる。 The conductive substrate provided with the mesh-like wiring can be obtained by etching the copper layer and the blackening layer of the conductive substrate of the present embodiment described above.
 例えば、二層の配線によりメッシュ状の配線とすることができる。具体的な構成例を図3に示す。図3はメッシュ状の配線を備えた導電性基板30を銅層等の積層方向の上面側から見た図を示しており、配線パターンが分かり易いように、透明基材、及び銅層をパターン化して形成した配線31A、31B以外の層は記載を省略している。また、透明基材11を介してみえる配線31Bも示している。 For example, a two-layer wiring can be used to form a mesh-like wiring. A specific configuration example is shown in FIG. FIG. 3 is a view of the conductive substrate 30 provided with the mesh-like wiring as viewed from the upper surface side in the stacking direction of the copper layer or the like, and the transparent base material and the copper layer are patterned Layers other than the interconnections 31A and 31B formed by the formation are omitted. Moreover, the wiring 31B seen through the transparent base material 11 is also shown.
 図3に示した導電性基板30は、透明基材11と、図中Y軸方向に平行な複数の配線31Aと、X軸方向に平行な配線31Bとを有している。なお、配線31A、31Bは銅層をエッチングして形成されており、該配線31A、31Bの上面または下面には図示しない黒化層が形成されている。また、黒化層は配線31A、31Bと同じ形状にエッチングされている。 The conductive substrate 30 shown in FIG. 3 has a transparent base 11, a plurality of wirings 31A parallel to the Y-axis direction in the drawing, and a wiring 31B parallel to the X-axis direction. The wirings 31A and 31B are formed by etching a copper layer, and a blackening layer (not shown) is formed on the upper surface or the lower surface of the wirings 31A and 31B. The blackening layer is etched to the same shape as the wirings 31A and 31B.
 透明基材11と配線31A、31Bとの配置は特に限定されない。透明基材11と配線との配置の構成例を図4A、図4Bに示す。図4A、図4Bは図3のA-A´線での断面図に当たる。 The arrangement of the transparent substrate 11 and the wirings 31A and 31B is not particularly limited. The structural example of arrangement | positioning with the transparent base material 11 and wiring is shown to FIG. 4A and FIG. 4B. 4A and 4B correspond to cross-sectional views taken along the line AA 'of FIG.
 まず、図4Aに示したように、透明基材11の上下面にそれぞれ配線31A、31Bが配置されていてもよい。なお、図4Aでは配線31Aの上面、及び31Bの下面には、配線と同じ形状にエッチングされた黒化層32A、32Bが配置されている。 First, as shown in FIG. 4A, the wirings 31A and 31B may be disposed on the upper and lower surfaces of the transparent substrate 11, respectively. In FIG. 4A, blackened layers 32A and 32B etched in the same shape as the wiring are arranged on the upper surface of the wiring 31A and the lower surface of the wiring 31B.
 また、図4Bに示したように、1組の透明基材11を用い、一方の透明基材11を挟んで上下面に配線31A、31Bを配置し、かつ、一方の配線31Bは透明基材11間に配置されてもよい。この場合も、配線31A、31Bの上面には配線と同じ形状にエッチングされた黒化層32A、32Bが配置されている。なお、既述のように、銅層、黒化層以外に密着層を設けることもできる。このため、図4A、図4Bいずれの場合でも、例えば配線31Aおよび/または配線31Bと透明基材11との間に密着層を設けることもできる。密着層を設ける場合、密着層も配線31A、31Bと同じ形状にエッチングされていることが好ましい。 Moreover, as shown to FIG. 4B, using one set of transparent base materials 11, wiring 31A, 31B is arrange | positioned on the up-and-down side on both sides of one transparent base material 11, and one wiring 31B is a transparent base material. It may be disposed between the eleven. Also in this case, blackened layers 32A and 32B etched in the same shape as the wirings are disposed on the top surfaces of the wirings 31A and 31B. As described above, an adhesion layer may be provided in addition to the copper layer and the blackening layer. For this reason, in any case of FIG. 4A and FIG. 4B, for example, an adhesion layer can be provided between the wiring 31A and / or the wiring 31B and the transparent base material 11. When the adhesion layer is provided, the adhesion layer is also preferably etched to the same shape as the wirings 31A and 31B.
 図3及び図4Aに示したメッシュ状の配線を有する導電性基板は例えば、図1Bのように透明基材11の両面に銅層12A、12Bと、黒化層13A、13Bとを備えた導電性基板から形成することができる。 The conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A is, for example, a conductive substrate provided with copper layers 12A and 12B and blackening layers 13A and 13B on both sides of the transparent substrate 11 as shown in FIG. 1B. Can be formed from a flexible substrate.
 図1Bの導電性基板を用いて形成した場合を例に説明すると、まず、透明基材11の一方の面11a側の銅層12A、黒化層13Aを、図1B中Y軸方向に平行な複数の線状のパターンがX軸方向に沿って所定の間隔をあけて配置されるようにエッチングを行う。なお、図1B中のX軸方向は、各層の幅方向と平行な方向を意味している。また、図1B中のY軸方向とは、図1B中の紙面と垂直な方向を意味している。 The copper layer 12A and the blackening layer 13A on the side of one surface 11a of the transparent substrate 11 are parallel to the Y-axis direction in FIG. 1B. The etching is performed such that a plurality of linear patterns are arranged at predetermined intervals along the X-axis direction. The X-axis direction in FIG. 1B means a direction parallel to the width direction of each layer. Also, the Y-axis direction in FIG. 1B means a direction perpendicular to the paper surface in FIG. 1B.
 そして、透明基材11の他方の面11b側の銅層12B、黒化層13Bを図1B中X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。 Then, a plurality of linear patterns parallel to the X-axis direction in FIG. 1B are formed along the Y-axis direction at predetermined intervals with the copper layer 12B and the blackening layer 13B on the other surface 11b side of the transparent substrate 11 Do the etching to be placed.
 以上の操作により図3、図4Aに示したメッシュ状の配線を有する導電性基板を形成することができる。なお、透明基材11の両面のエッチングは同時に行うこともできる。すなわち、銅層12A、12B、黒化層13A、13Bのエッチングは同時に行ってもよい。また、図4Aにおいて、配線31A、31Bと、透明基材11との間にさらに配線31A、31Bと同じ形状にパターン化された密着層を有する導電性基板は、図2Bに示した導電性基板を用いて同様にエッチングを行うことで作製できる。 By the above operation, the conductive substrate having the mesh-like wiring shown in FIG. 3 and FIG. 4A can be formed. In addition, the etching of both surfaces of the transparent base material 11 can also be performed simultaneously. That is, the etching of the copper layers 12A and 12B and the blackening layers 13A and 13B may be performed simultaneously. Further, in FIG. 4A, the conductive substrate having an adhesive layer patterned in the same shape as the wires 31A and 31B between the wires 31A and 31B and the transparent substrate 11 is the conductive substrate shown in FIG. 2B. It can produce by performing etching similarly using.
 図3に示したメッシュ状の配線を有する導電性基板は、図1Aまたは図2Aに示した導電性基板を2枚用いることにより形成することもできる。図1Aの導電性基板を2枚用いて形成した場合を例に説明すると、図1Aに示した導電性基板2枚についてそれぞれ、銅層12、黒化層13を、X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。そして、上記エッチング処理により各導電性基板に形成した線状のパターンが互いに交差するように向きをあわせて2枚の導電性基板を貼り合せることによりメッシュ状の配線を備えた導電性基板とすることができる。2枚の導電性基板を貼り合せる際に貼り合せる面は特に限定されるものではない。例えば、銅層12等が積層された図1Aにおける表面Aと、銅層12等が積層されていない図1Aにおける他方の面11bとを貼り合せて、図4Bに示した構造となるようにすることもできる。 The conductive substrate having the mesh-like wiring shown in FIG. 3 can also be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A. A case where two conductive substrates shown in FIG. 1A are formed will be described by way of example. For the two conductive substrates shown in FIG. 1A, a plurality of copper layers 12 and blackening layers 13 are respectively formed in parallel with the X axis direction The etching is performed such that the linear patterns of are arranged at predetermined intervals along the Y-axis direction. Then, by aligning two conductive substrates in a direction such that the linear patterns formed on the conductive substrates by the above etching process intersect with each other, a conductive substrate provided with a mesh-like wiring is obtained. be able to. The surface to be bonded when bonding the two conductive substrates is not particularly limited. For example, the surface A in FIG. 1A in which the copper layer 12 and the like are laminated and the other surface 11b in FIG. 1A in which the copper layer 12 and the like are not laminated are bonded to obtain the structure shown in FIG. It can also be done.
 また、例えば透明基材11の銅層12等が積層されていない図1Aにおける他方の面11b同士を貼り合せて断面が図4Aに示した構造となるようにすることもできる。 Further, for example, the other surfaces 11b in FIG. 1A where the copper layer 12 and the like of the transparent base material 11 are not laminated may be bonded to each other to have a cross section shown in FIG. 4A.
 なお、図4A、図4Bにおいて、配線31A、31Bと、透明基材11との間にさらに配線31A、31Bと同じ形状にパターン化された密着層を有する導電性基板は、図1Aに示した導電性基板にかえて図2Aに示した導電性基板を用いることで作製できる。 In FIGS. 4A and 4B, a conductive substrate having an adhesion layer patterned in the same shape as the wirings 31A and 31B between the wirings 31A and 31B and the transparent substrate 11 is shown in FIG. 1A. It can manufacture by using the conductive substrate shown to FIG. 2A instead of a conductive substrate.
 図3、図4A、図4Bに示したメッシュ状の配線を有する導電性基板における配線の幅や、配線間の距離は特に限定されるものではなく、例えば、配線に流す電流量等に応じて選択することができる。 The width of the wires and the distance between the wires in the conductive substrate having the mesh-like wires shown in FIGS. 3, 4A and 4B are not particularly limited, and, for example, according to the amount of current flowing in the wires It can be selected.
 ただし、本実施形態の導電性基板によれば、既述の黒化めっき液を用いて形成された黒化層を有しており、黒化層と銅層とを同時にエッチングし、パターン化した場合でも、黒化層、及び銅層を所望の形状にパターン化できる。具体的には例えば配線幅が10μm以下の配線を形成することができる。このため、本実施形態の導電性基板は、配線幅が10μm以下の配線を含むことが好ましい。配線幅の下限値は特に限定されないが、例えば3μm以上とすることができる。 However, according to the conductive substrate of the present embodiment, the blackening layer formed using the above-described blackening plating solution is provided, and the blackening layer and the copper layer are simultaneously etched and patterned In some cases, the blackening layer and the copper layer can be patterned into the desired shape. Specifically, for example, a wire having a wire width of 10 μm or less can be formed. For this reason, the conductive substrate of the present embodiment preferably includes a wire having a wire width of 10 μm or less. The lower limit of the wiring width is not particularly limited, but can be, for example, 3 μm or more.
 また、図3、図4A、図4Bにおいては、直線形状の配線を組み合わせてメッシュ状の配線(配線パターン)を形成した例を示しているが、係る形態に限定されるものではなく、配線パターンを構成する配線は任意の形状とすることができる。例えばディスプレイの画像との間でモアレ(干渉縞)が発生しないようメッシュ状の配線パターンを構成する配線の形状をそれぞれ、ぎざぎざに屈曲した線(ジグザグ直線)等の各種形状にすることもできる。 Moreover, although the example which formed mesh-like wiring (wiring pattern) combining the wiring of linear shape in FIG. 3, FIG. 4 A and FIG. 4B is shown, it is not limited to the form which concerns, A wiring pattern The wiring which comprises can be made into arbitrary shapes. For example, the shapes of the wires forming the mesh-like wiring pattern may be various shapes such as lines (zigzag straight lines) bent in a jagged manner so as not to generate moire (interference fringes) with the image of the display.
 このように2層の配線から構成されるメッシュ状の配線を有する導電性基板は、例えば投影型静電容量方式のタッチパネル用の導電性基板として好ましく用いることができる。 Thus, the conductive substrate having mesh-like wiring composed of two layers of wiring can be preferably used, for example, as a conductive substrate for a projected capacitive touch panel.
 以上の本実施形態の導電性基板によれば、透明基材の少なくとも一方の面上に形成された銅層上に、黒化層を積層した構造を有している。そして、黒化層は既述の黒化めっき液を用いて形成されているため、既述の様に、銅層と、黒化層とをエッチングによりパターン化する際、黒化層を容易に所望の形状にパターン化することができる。 According to the conductive substrate of the present embodiment described above, the blackening layer is laminated on the copper layer formed on at least one surface of the transparent substrate. And, since the blackening layer is formed using the blackening plating solution described above, as described above, when patterning the copper layer and the blackening layer by etching, the blackening layer is easily formed. It can be patterned into a desired shape.
 また、本実施形態の導電性基板に含まれる黒化層は、銅層表面における光の反射を十分に抑制し、反射率を抑制した導電性基板とすることができる。また、例えばタッチパネル等の用途に用いた場合にディスプレイの視認性を高めることができる。 Moreover, the blackening layer contained in the conductive substrate of this embodiment can fully suppress reflection of the light in the copper layer surface, and can be used as the conductive substrate which suppressed the reflectance. Also, for example, when used for applications such as touch panels, the visibility of the display can be enhanced.
 さらに、黒化層を既述の黒化めっき液を用いて湿式法により形成できるため、従来の乾式法を用いて黒化層を成膜する場合と比較して、生産性良く導電性基板を生産することができる。
(導電性基板の製造方法)
 次に本実施形態の導電性基板の製造方法の一構成例について説明する。
Furthermore, since the blackening layer can be formed by the wet method using the blackening plating solution described above, the conductive substrate can be produced with high productivity as compared with the case where the blackening layer is formed using the conventional dry method. It can be produced.
(Method of manufacturing conductive substrate)
Next, one configuration example of the method of manufacturing the conductive substrate of the present embodiment will be described.
 本実施形態の導電性基板の製造方法は、以下の工程を有することができる。 
 透明基材の少なくとも一方の面上に銅層を形成する銅層形成工程。 
 銅層上に黒化めっき液を用いて黒化層を形成する黒化層形成工程。
The method for producing a conductive substrate of the present embodiment can have the following steps.
Copper layer formation process of forming a copper layer on at least one side of a transparent substrate.
Blackening layer formation process which forms a blackening layer using a blackening plating solution on a copper layer.
 なお、黒化めっき液としては既述の黒化めっき液、具体的にはニッケルイオンと、銅イオンとを含み、pHが4.0以上5.8以下である黒化めっき液を用いることができる。 As the blackening plating solution, it is possible to use the blackening plating solution described above, specifically, a blackening plating solution containing nickel ions and copper ions and having a pH of 4.0 to 5.8. it can.
 以下に本実施形態の導電性基板の製造方法について具体的に説明する。 The method of manufacturing the conductive substrate of the present embodiment will be specifically described below.
 なお、本実施形態の導電性基板の製造方法により既述の導電性基板を好適に製造することができる。このため、以下に説明する点以外については既述の導電性基板の場合と同様の構成とすることができるため説明を一部省略する。 In addition, the electroconductive substrate as stated above can be suitably manufactured with the manufacturing method of the electroconductive substrate of this embodiment. For this reason, since it can be set as the structure similar to the case of a conductive substrate as stated above except for the point demonstrated below, one part description is abbreviate | omitted.
 銅層形成工程に供する透明基材は予め準備しておくことができる。用いる透明基材の種類は特に限定されるものではないが、既述のように可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。透明基材は必要に応じて予め任意のサイズに切断等行っておくこともできる。 The transparent substrate to be subjected to the copper layer forming step can be prepared in advance. The kind of transparent substrate to be used is not particularly limited, but as described above, a transparent substrate such as a resin substrate (resin film) that transmits visible light, a glass substrate, etc. can be preferably used. The transparent substrate can be cut into any size in advance, if necessary.
 そして、銅層は既述のように、銅薄膜層を有することが好ましい。また、銅層は銅薄膜層と銅めっき層とを有することもできる。このため、銅層形成工程は、例えば乾式めっき法により銅薄膜層を形成する工程を有することができる。また、銅層形成工程は、乾式めっき法により銅薄膜層を形成する工程と、該銅薄膜層を給電層として、湿式めっき法の一種である電気めっき法により銅めっき層を形成する工程と、を有していてもよい。 And as mentioned above, it is preferable that a copper layer has a copper thin film layer. The copper layer can also have a copper thin film layer and a copper plating layer. For this reason, a copper layer formation process can have a process of forming a copper thin film layer by dry plating, for example. In the copper layer forming step, a step of forming a copper thin film layer by dry plating, a step of forming a copper plating layer by electroplating, which is a kind of wet plating, using the copper thin film as a feeding layer, May be included.
 銅薄膜層を形成する工程で用いる乾式めっき法としては、特に限定されるものではなく、例えば、蒸着法、スパッタリング法、又はイオンプレーティング法等を用いることができる。なお、蒸着法としては真空蒸着法を好ましく用いることができる。銅薄膜層を形成する工程で用いる乾式めっき法としては、特に膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。 It does not specifically limit as a dry plating method used at the process of forming a copper thin film layer, For example, a vapor deposition method, sputtering method, or ion plating method etc. can be used. In addition, a vacuum evaporation method can be preferably used as an evaporation method. As a dry plating method used in the step of forming a copper thin film layer, it is more preferable to use a sputtering method because the control of the film thickness is particularly easy.
 次に銅めっき層を形成する工程について説明する。湿式めっき法により銅めっき層を形成する工程における条件、すなわち、電気めっき処理の条件は、特に限定されるものではなく、常法による諸条件を採用すればよい。例えば、銅めっき液を入れためっき槽に銅薄膜層を形成した基材を供給し、電流密度や、基材の搬送速度を制御することによって、銅めっき層を形成できる。 Next, the process of forming a copper plating layer will be described. The conditions in the step of forming the copper plating layer by the wet plating method, that is, the conditions of the electroplating treatment are not particularly limited, and various conditions in the usual manner may be adopted. For example, a copper plating layer can be formed by supplying a base on which a copper thin film layer is formed to a plating tank containing a copper plating solution and controlling the current density and the transport speed of the base.
 次に、黒化層形成工程について説明する。 Next, the blackening layer forming step will be described.
 黒化層形成工程においては、既述のニッケルイオンと、銅イオンとを含み、pHが4.0以上5.8以下である黒化めっき液を用いて黒化層を形成できる。 In the blackening layer forming step, the blackening layer can be formed using a blackening plating solution containing a nickel ion and a copper ion as described above and having a pH of 4.0 to 5.8.
 黒化層は湿式法により形成できる。具体的には例えば、銅層を給電層として用いて、既述の黒化めっき液を含むめっき槽内で、銅層上に電解めっき法により黒化層を形成することができる。このように銅層を給電層として、電解めっき法により黒化層を形成することで、銅層の透明基材と対向する面とは反対側の面の全面に黒化層を形成できる。 The blackened layer can be formed by a wet method. Specifically, for example, using a copper layer as a feed layer, a blackening layer can be formed on the copper layer by electrolytic plating in a plating tank containing the above-described blackening plating solution. By thus forming the blackening layer by electrolytic plating using the copper layer as the feeding layer, the blackening layer can be formed on the entire surface of the copper layer opposite to the side facing the transparent base.
 黒化めっき液については既述のため、説明を省略する。 The description of the blackening plating solution is omitted because it has already been described.
 本実施形態の導電性基板の製造方法においては、上述の工程に加えてさらに任意の工程を実施することもできる。 In the method of manufacturing a conductive substrate of the present embodiment, an arbitrary step can be further performed in addition to the above-described steps.
 例えば透明基材と銅層との間に密着層を形成する場合、透明基材の銅層を形成する面上に密着層を形成する密着層形成工程を実施することができる。密着層形成工程を実施する場合、銅層形成工程は、密着層形成工程の後に実施することができ、銅層形成工程では、本工程で透明基材上に密着層を形成した基材に銅薄膜層を形成できる。 For example, when forming an adhesion layer between a transparent base material and a copper layer, an adhesion layer formation process which forms an adhesion layer on the field which forms a copper layer of a transparent base material can be carried out. When the adhesion layer formation step is carried out, the copper layer formation step can be carried out after the adhesion layer formation step, and in the copper layer formation step, copper is formed on the substrate on which the adhesion layer is formed on the transparent substrate in this step. A thin film layer can be formed.
 密着層形成工程において、密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には既述のように炭素、酸素、水素、窒素から選ばれる1種類以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。 In the adhesion layer forming step, the film formation method of the adhesion layer is not particularly limited, but it is preferable to form a film by a dry plating method. As the dry plating method, for example, a sputtering method, an ion plating method, a vapor deposition method and the like can be preferably used. In the case where the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because control of the film thickness is easy. As described above, one or more elements selected from carbon, oxygen, hydrogen and nitrogen can be added to the adhesion layer, and in this case, reactive sputtering can be more preferably used.
 本実施形態の導電性基板の製造方法で得られる導電性基板は例えばタッチパネル等の各種用途に用いることができる。そして、各種用途に用いる場合には、本実施形態の導電性基板に含まれる銅層、及び黒化層がパターン化されていることが好ましい。なお、密着層を設ける場合は、密着層についてもパターン化されていることが好ましい。銅層、及び黒化層、場合によってはさらに密着層は、例えば所望の配線パターンにあわせてパターン化することができ、銅層、及び黒化層、場合によってはさらに密着層は同じ形状にパターン化されていることが好ましい。 The conductive substrate obtained by the method for producing a conductive substrate of the present embodiment can be used, for example, in various applications such as a touch panel. And when using for various uses, it is preferable that the copper layer contained in the conductive substrate of this embodiment, and a blackening layer are patterned. When the adhesion layer is provided, it is preferable that the adhesion layer is also patterned. The copper layer and the blackening layer, and optionally also the adhesion layer, can be patterned, for example, according to the desired wiring pattern, and the copper layer and the blackening layer, optionally also the adhesion layer, are patterned in the same shape It is preferable that the
 このため、本実施形態の導電性基板の製造方法は、銅層、及び黒化層をパターン化するパターニング工程を有することができる。なお、密着層を形成した場合には、パターニング工程は、密着層、銅層、及び黒化層をパターン化する工程とすることができる。 For this reason, the manufacturing method of the conductive substrate of this embodiment can have a patterning step of patterning a copper layer and a blackening layer. When the adhesion layer is formed, the patterning step can be a step of patterning the adhesion layer, the copper layer, and the blackening layer.
 パターニング工程の具体的手順は特に限定されるものではなく、任意の手順により実施することができる。例えば図1Aのように透明基材11上に銅層12、黒化層13が積層された導電性基板10Aの場合、まず黒化層13上の表面Aに所望のパターンを有するレジストを配置するレジスト配置ステップを実施することができる。次いで、黒化層13上の表面A、すなわち、レジストを配置した面側にエッチング液を供給するエッチングステップを実施できる。 The specific procedure of the patterning step is not particularly limited, and can be performed by any procedure. For example, in the case of the conductive substrate 10A in which the copper layer 12 and the blackening layer 13 are stacked on the transparent substrate 11 as shown in FIG. 1A, first, a resist having a desired pattern is disposed on the surface A on the blackening layer 13. A resist placement step can be performed. Then, an etching step can be performed in which the etchant is supplied to the surface A on the blackening layer 13, that is, the side on which the resist is disposed.
 エッチングステップにおいて用いるエッチング液は特に限定されるものではない。ただし、本実施形態の導電性基板の製造方法で形成する黒化層は銅層とほぼ同様のエッチング液への反応性を示す。このため、エッチングステップにおいて用いるエッチング液は特に限定されるものではなく、一般的に銅層のエッチングに用いられるエッチング液を好ましく用いることができる。 The etchant used in the etching step is not particularly limited. However, the blackening layer formed by the method of manufacturing a conductive substrate of the present embodiment exhibits the same reactivity to the etching solution as the copper layer. Therefore, the etching solution used in the etching step is not particularly limited, and an etching solution generally used for etching the copper layer can be preferably used.
 エッチング液としては例えば、硫酸、過酸化水素(過酸化水素水)、塩酸、塩化第二銅、及び塩化第二鉄から選択された1種類以上を含む混合水溶液を好ましく用いることができる。エッチング液中の各成分の含有量は、特に限定されるものではない。 For example, a mixed aqueous solution containing one or more selected from sulfuric acid, hydrogen peroxide (hydrogen peroxide water), hydrochloric acid, cupric chloride and ferric chloride can be preferably used as the etching solution. The content of each component in the etching solution is not particularly limited.
 エッチング液は室温で用いることもできるが、反応性を高めるため加温して用いることもでき、例えば40℃以上50℃以下に加熱して用いることもできる。 The etching solution can be used at room temperature, but can also be used by heating to enhance the reactivity, for example, it can be used by heating to 40 ° C. or more and 50 ° C. or less.
 また、図1Bのように透明基材11の一方の面11a、他方の面11bに銅層12A、12B、黒化層13A、13Bを積層した導電性基板10Bについてもパターン化するパターニング工程を実施できる。この場合例えば黒化層13A、13B上の表面A、及び表面Bに所望のパターンを有するレジストを配置するレジスト配置ステップを実施できる。次いで、黒化層13A、13B上の表面A、及び表面B、すなわち、レジストを配置した面側にエッチング液を供給するエッチングステップを実施できる。 In addition, as shown in FIG. 1B, the patterning process is performed to pattern the conductive substrate 10B in which the copper layers 12A and 12B and the blackening layers 13A and 13B are laminated on one surface 11a and the other surface 11b of the transparent substrate 11. it can. In this case, for example, a resist disposing step of disposing a resist having a desired pattern on the surface A and the surface B on the blackening layers 13A and 13B can be performed. Then, an etching step may be performed in which the etching solution is supplied to the surface A and the surface B on the blackened layers 13A and 13B, that is, the surface on which the resist is disposed.
 エッチングステップで形成するパターンについては特に限定されるものではなく、任意の形状とすることができる。例えば図1Aに示した導電性基板10Aの場合、既述のように銅層12、黒化層13を複数の直線や、ぎざぎざに屈曲した線(ジグザグ直線)を含むようにパターンを形成することができる。 The pattern to be formed in the etching step is not particularly limited, and may have an arbitrary shape. For example, in the case of the conductive substrate 10A shown in FIG. 1A, as described above, the copper layer 12 and the blackening layer 13 should be patterned to include a plurality of straight lines and lines (zigzag straight lines) bent into jagged lines. Can.
 また、図1Bに示した導電性基板10Bの場合、銅層12Aと、銅層12Bとでメッシュ状の配線となるようにパターンを形成することができる。この場合、黒化層13Aは、銅層12Aと同様の形状に、黒化層13Bは銅層12Bと同様の形状になるようにそれぞれパターン化を行うことが好ましい。 Further, in the case of the conductive substrate 10B shown in FIG. 1B, the copper layer 12A and the copper layer 12B can form a pattern so as to form a mesh-like wiring. In this case, the blackening layer 13A is preferably patterned to have the same shape as the copper layer 12A, and the blackening layer 13B is preferably patterned to have the same shape as the copper layer 12B.
 また、例えばパターニング工程で上述の導電性基板10Aについて銅層12等をパターン化した後、パターン化した2枚以上の導電性基板を積層する積層工程を実施することもできる。積層する際、例えば各導電性基板の銅層のパターンが交差するように積層することにより、メッシュ状の配線を備えた積層導電性基板を得ることもできる。 Further, for example, after the copper layer 12 or the like is patterned on the above-described conductive substrate 10A in the patterning step, a stacking step may be performed in which two or more patterned conductive substrates are stacked. When laminating, for example, by laminating so that the patterns of copper layers of the respective conductive substrates intersect, it is possible to obtain a laminated conductive substrate provided with a mesh-like wiring.
 積層した2枚以上の導電性基板を固定する方法は特に限定されるものではないが、例えば接着剤等により固定することができる。 Although the method of fixing the laminated two or more conductive substrates is not particularly limited, for example, it can be fixed by an adhesive or the like.
 以上の本実施形態の導電性基板の製造方法により得られる導電性基板は、透明基材の少なくとも一方の面上に形成された銅層上に、黒化層を積層した構造を有している。そして、黒化層は既述の黒化めっき液を用いて形成されているため、銅層と、黒化層とをエッチングによりパターン化する際、黒化層を容易に所望の形状にパターン化することができる。 The conductive substrate obtained by the method for producing a conductive substrate of the present embodiment described above has a structure in which a blackening layer is laminated on a copper layer formed on at least one surface of a transparent substrate. . And, since the blackening layer is formed using the above-described blackening plating solution, when patterning the copper layer and the blackening layer by etching, the blackening layer is easily patterned into a desired shape. can do.
 また、本実施形態の導電性基板の製造方法により得られる導電性基板に含まれる黒化層は、銅層表面における光の反射を十分に抑制し、反射率を抑制した導電性基板とすることができる。このため、例えばタッチパネル等の用途に用いた場合にディスプレイの視認性を高めることができる。 In addition, the blackening layer contained in the conductive substrate obtained by the method of manufacturing a conductive substrate according to the present embodiment sufficiently suppresses the reflection of light on the surface of the copper layer to provide a conductive substrate in which the reflectance is suppressed. Can. For this reason, when it uses, for example for uses, such as a touch panel, the visibility of a display can be improved.
 さらに、黒化層を既述の黒化めっき液を用いて湿式法により形成できるため、従来の乾式法を用いて黒化層を成膜する場合と比較して、生産性良く導電性基板を生産することができる。 Furthermore, since the blackening layer can be formed by the wet method using the blackening plating solution described above, the conductive substrate can be produced with high productivity as compared with the case where the blackening layer is formed using the conventional dry method. It can be produced.
 以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、得られた導電性基板の評価方法について説明する。
(1)反射率
 測定は、紫外可視分光光度計(株式会社 島津製作所製 型式:UV-2600)に反射率測定ユニットを設置して行った。
The present invention will be described by way of specific examples and comparative examples, but the present invention is not limited to these examples.
(Evaluation method)
First, an evaluation method of the obtained conductive substrate will be described.
(1) Reflectance Measurement was performed by installing a reflectance measurement unit in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-2600).
 後述のように各実験例では図1Aに示した構造を有する導電性基板を作製した。このため、反射率測定は図1Aに示した導電性基板10Aの黒化層13の表面Aに対して入射角5°、受光角5°として、波長400nm以上700nm以下の光を波長1nm間隔で照射して正反射率を測定し、その平均値を該導電性基板の反射率(平均反射率)とした。
(2)エッチング特性
 まず、以下の実験例において得られた導電性基板の黒化層表面にドライフィルムレジスト(日立化成RY3310)をラミネート法により貼り付けた。そして、フォトマスクを介して紫外線露光を行い、さらに1%炭酸ナトリウム水溶液によりレジストを溶解して現像した。これにより、3.0μm以上10.0μm以下の範囲で0.5μm毎にレジスト幅が異なるパターンをもつサンプルを作製した。すなわち、レジスト幅が3.0μm、3.5μm、4.0μm・・・9.5μm、10.0μmと、0.5μm毎に異なる15種類の線状のパターンを形成した。
As described later, in each of the experimental examples, a conductive substrate having a structure shown in FIG. 1A was produced. For this reason, the reflectance measurement is performed with light having a wavelength of 400 nm or more and 700 nm or less at an interval of 1 nm with an incident angle of 5 ° and a light receiving angle of 5 ° The specular reflectance was measured by irradiation, and the average value was taken as the reflectance (average reflectance) of the conductive substrate.
(2) Etching Properties First, a dry film resist (Hitachi Chemical RY 3310) was attached to the surface of the blackened layer of the conductive substrate obtained in the following experimental example by a lamination method. Then, ultraviolet exposure was performed through a photomask, and the resist was dissolved and developed with a 1% aqueous solution of sodium carbonate. Thus, a sample having a pattern in which the resist width differs every 0.5 μm in the range of 3.0 μm to 10.0 μm was produced. That is, 15 different linear patterns were formed every resist width of 3.0 μm, 3.5 μm, 4.0 μm,... 9.5 μm, 10.0 μm and 0.5 μm.
 次いで、サンプルを硫酸10重量%、過酸化水素3重量%からなる30℃のエッチング液に、40秒間浸漬し、その後水酸化ナトリウム水溶液でドライフィルムレジストを剥離、除去した。 Next, the sample was immersed in an etching solution at 30 ° C. consisting of 10% by weight of sulfuric acid and 3% by weight of hydrogen peroxide for 40 seconds, and then the dry film resist was peeled off and removed with an aqueous solution of sodium hydroxide.
 得られたサンプルを200倍の顕微鏡で観察し、導電性基板に残存する金属配線の配線幅の最小値を求めた。なお、ここでの金属配線とは、レジスト幅に対応した配線幅を有する線状にパターン化された黒化層、及び銅層すなわち配線を含む。 The obtained sample was observed with a 200 × microscope to determine the minimum value of the wiring width of the metal wiring remaining on the conductive substrate. The metal wiring here includes a blackened layer patterned in a linear shape having a wiring width corresponding to a resist width, and a copper layer, that is, a wiring.
 レジストを剥離した後、導電性基板に残存する金属配線の配線幅の最小値が小さいほど、銅層と、黒化層とのエッチング液に対する反応性がより同一に近いことを意味し、残存する金属配線の配線幅の最小値が10μm以下の場合、合格として表2において〇と評価した。また、配線幅が10μmの金属配線を形成できなかった場合、不合格として表2において×と評価した。
(試料の作製条件)
 以下の各実験例では、以下に説明する条件で導電性基板を作製し、上述の評価方法により評価を行った。
As the minimum value of the wiring width of the metal wiring remaining on the conductive substrate is smaller after stripping the resist, it means that the reactivity of the copper layer and the blackening layer to the etching solution is closer to the same, which remains When the minimum value of the wiring width of the metal wiring is 10 μm or less, it was evaluated as 合格 in Table 2 as a pass. Further, when a metal wiring having a wiring width of 10 μm could not be formed, it was evaluated as x in Table 2 as a rejection.
(Sample preparation conditions)
In each of the following experimental examples, a conductive substrate was produced under the conditions described below, and evaluated by the above-described evaluation method.
 実験例1~実験例12が実施例であり、実験例13~実験例25が比較例となる。
[実験例1]
(1)黒化めっき液
 実験例1では、ニッケルイオン、銅イオン、アミド硫酸、アンモニアを含有する黒化めっき液を調製した。なお、黒化めっき液には、硫酸ニッケル6水和物、硫酸銅5水和物を添加することで、ニッケルイオン、銅イオンを供給した。
Experimental Examples 1 to 12 are Examples, and Experimental Examples 13 to 25 are Comparative Examples.
[Experimental Example 1]
(1) Blackening Plating Solution In Experimental Example 1, a blackening plating solution containing nickel ions, copper ions, amidosulfuric acid and ammonia was prepared. In addition, nickel ions and copper ions were supplied to the blackening plating solution by adding nickel sulfate hexahydrate and copper sulfate pentahydrate.
 そして、黒化めっき液中のニッケルイオンの濃度が8.9g/l、銅イオンの濃度が0.05g/l、アミド硫酸の濃度が11g/lとなるように各成分を添加調製した。 Then, each component was added and prepared so that the concentration of nickel ion in the blackening plating solution was 8.9 g / l, the concentration of copper ion was 0.05 g / l, and the concentration of amidosulfuric acid was 11 g / l.
 また、アンモニア水を黒化めっき液に添加して、黒化めっき液のpHを4.0に調整した。
(2)導電性基板
(銅層形成工程)
 長さ100m、幅500mm、厚さ100μmの長尺状のポリエチレンテレフタレート樹脂(PET)製の透明基材の一方の面上に銅層を成膜した。なお、透明基材として用いたポリエチレンテレフタレート樹脂製の透明基材について、全光線透過率をJIS K 7361-1に規定された方法により評価を行ったところ97%であった。
Further, ammonia water was added to the blackening plating solution to adjust the pH of the blackening plating solution to 4.0.
(2) Conductive substrate (copper layer forming process)
A copper layer was formed on one side of a transparent base made of a long polyethylene terephthalate resin (PET) having a length of 100 m, a width of 500 mm, and a thickness of 100 μm. The total light transmittance of the transparent substrate made of polyethylene terephthalate resin used as the transparent substrate was evaluated by the method defined in JIS K 7361-1 and found to be 97%.
 銅層形成工程では、銅薄膜層形成工程と、銅めっき層形成工程と、を実施した。 In the copper layer forming step, a copper thin film layer forming step and a copper plating layer forming step were performed.
 まず、銅薄膜層形成工程について説明する。 First, the copper thin film layer forming process will be described.
 銅薄膜層形成工程では、基材として上述の透明基材を用い、透明基材の一方の面上に銅薄膜層を形成した。 In the copper thin film layer forming step, a copper thin film layer was formed on one surface of the transparent base using the above-mentioned transparent base as a base.
 銅薄膜層形成工程ではまず、予め60℃まで加熱して水分を除去した上述の透明基材を、スパッタリング装置のチャンバー内に設置した。 In the copper thin film layer forming step, first, the above-mentioned transparent substrate from which water was removed by heating in advance to 60 ° C. was placed in the chamber of the sputtering apparatus.
 次に、チャンバー内を1×10-3Paまで排気した後、アルゴンガスを導入し、チャンバー内の圧力を1.3Paとした。 Next, after evacuating the chamber to 1 × 10 −3 Pa, argon gas was introduced to adjust the pressure in the chamber to 1.3 Pa.
 スパッタリング装置のカソードに予めセットしておいた銅ターゲットに電力を供給し、透明基材の一方の面上に銅薄膜層を厚さが0.2μmになるように成膜した。 Electric power was supplied to a copper target previously set at the cathode of the sputtering apparatus, and a copper thin film layer was formed to a thickness of 0.2 μm on one surface of the transparent substrate.
 次に、銅めっき層形成工程においては銅めっき層を形成した。銅めっき層は、電気めっき法により銅めっき層の厚さが0.3μmになるように成膜した。 Next, in the copper plating layer forming step, a copper plating layer was formed. The copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.3 μm.
 以上の銅薄膜層形成工程と、銅めっき層形成工程とを実施することで、銅層として厚さ0.5μmの銅層を形成した。 By performing the above-described copper thin film layer forming step and the copper plating layer forming step, a copper layer having a thickness of 0.5 μm was formed as a copper layer.
 銅層形成工程で作製した、透明基材上に厚さ0.5μmの銅層が形成された基板を20g/lの硫酸に30sec浸漬し、洗浄した後に以下の黒化層形成工程を実施した。
(黒化層形成工程)
 黒化層形成工程では、上述の本実験例の黒化めっき液を用いて電解めっき法により、銅層の一方の面上に黒化層を形成した。なお、黒化層形成工程においては黒化めっき液の温度が40℃、電流密度が0.2A/dm、めっき時間が100secの条件で電解めっきを行い、黒化層を形成した。
The substrate having the 0.5 μm thick copper layer formed on the transparent substrate, which was prepared in the copper layer forming step, was immersed in 20 g / l sulfuric acid for 30 seconds and washed, and the following blackening layer forming step was carried out. .
(Blackening layer formation process)
In the blackening layer forming step, a blackening layer was formed on one surface of the copper layer by electrolytic plating using the blackening plating solution of the above-mentioned experimental example. In the blackening layer forming step, electroplating was performed under the conditions of a blackening plating solution temperature of 40 ° C., a current density of 0.2 A / dm 2 , and a plating time of 100 seconds to form a blackening layer.
 形成した黒化層の膜厚は70nmとなった。 The film thickness of the formed blackened layer was 70 nm.
 以上の工程により得られた導電性基板について、既述の反射率、及びエッチング特性の評価を実施した。結果を表2、表3に示す。なお、表2がエッチング特性の評価結果であり、表3は、反射率の評価結果を示している。
[実験例2~実験例25]
 黒化めっき液を調製する際、各実験例について、黒化めっき液内の銅イオンの濃度、及びpHを表1に示した値となるように変更した点以外は実験例1の場合と同様にして黒化めっき液を調製した。
With respect to the conductive substrate obtained by the above steps, the evaluation of the reflectance and the etching characteristic described above was performed. The results are shown in Tables 2 and 3. Table 2 shows the evaluation results of the etching characteristics, and Table 3 shows the evaluation results of the reflectance.
[Experimental Example 2 to Experimental Example 25]
When preparing the blackening plating solution, it is the same as the case of Experimental example 1 except that the concentration of copper ions in the blackening plating solution and the pH are changed to the values shown in Table 1 for each experimental example. The blackening plating solution was prepared.
 なお、例えば実験例2の場合は、銅イオンの濃度が0.10g/l、pHが4.0となる。 In the case of Experimental Example 2, for example, the concentration of copper ions is 0.10 g / l, and the pH is 4.0.
 また、黒化層を形成する際に各実験例で作製した黒化めっき液を用いた点以外は実験例1と同様にして導電性基板を作製し、評価を行った。 Further, a conductive substrate was produced and evaluated in the same manner as in Experimental Example 1 except that the blackening plating solution prepared in each of the experimental examples was used when forming the blackening layer.
 結果を表2、3に示す。 The results are shown in Tables 2 and 3.
 なお、表2、表3では表1に示した実験例の番号に対応する箇所が、各実験例の結果を示している。例えば表1で実験例2として示した銅イオン濃度が0.10g/lであり、かつpHが4.0となる箇所が、表2、表3においても実験例2の結果を示している。 In Tables 2 and 3, locations corresponding to the numbers of the experimental examples shown in Table 1 indicate the results of the respective experimental examples. For example, the places where the copper ion concentration shown as Experimental Example 2 in Table 1 is 0.10 g / l and the pH is 4.0 show the results of Experimental Example 2 also in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

 表2に示した結果より、ニッケルイオンと、銅イオンと、を含み、pHが4.0以上5.8以下である実験例1~実験例12の黒化めっき液を用いて黒化層を形成し、エッチング後に残った金属配線のパターンの、配線幅の最小値が10μm以下となることが確認できた。従って、これらの黒化めっき液を用いて成膜した黒化層を有する導電性基板では、黒化層を銅層と共にエッチングした場合に、所望の形状にパターン化できることが確認できた。また、表3に示した結果より、実験例1~実験例12の黒化めっき液を用いて形成した黒化層を有する導電性基板は、波長400nm以上700nm以下の光の正反射率の平均値(反射率)も60%以下であることを確認できた。
Figure JPOXMLDOC01-appb-T000003

From the results shown in Table 2, using the blackening plating solution of Experimental Example 1 to Experimental Example 12 containing a nickel ion and a copper ion and having a pH of 4.0 or more and 5.8 or less, It was confirmed that the minimum value of the wiring width of the metal wiring pattern formed and left after etching was 10 μm or less. Therefore, in the conductive substrate having the blackened layer formed by using these blackening plating solutions, it can be confirmed that the blackened layer can be patterned into a desired shape when the blackened layer is etched together with the copper layer. Further, from the results shown in Table 3, the conductive substrate having the blackening layer formed using the blackening plating solution of Experimental Example 1 to Experimental Example 12 has an average specular reflectance of light having a wavelength of 400 nm or more and 700 nm or less. It could be confirmed that the value (reflectance) was also 60% or less.
 これに対して、比較例である実験例13、実験例18~実験例20においては、エッチング後に配線幅が10μmの金属配線のパターンについても残っていないことが確認できた。従って、これらの黒化めっき液を用いて黒化層を成膜し、銅層と共にエッチングした場合に、黒化層を所望の形状にパターン化することは困難であることが確認できた。 On the other hand, in the experimental examples 13 and 18 to 20 which are comparative examples, it was confirmed that no pattern of metal wiring having a wiring width of 10 μm remains after etching. Therefore, it has been confirmed that it is difficult to pattern the blackened layer into a desired shape when the blackened layer is formed using these blackening plating solutions and etched together with the copper layer.
 また、実験例21~実験例25においては、めっき液に沈殿物が生じ、黒化層を形成することができなかった。 Further, in Experimental Examples 21 to 25, a precipitate was generated in the plating solution, and a blackened layer could not be formed.
 そして、実験例14~実験例17においては、エッチング後に残った金属配線のパターンの、配線幅の最小値が10μm以下になることを確認できたものの、成膜した黒化層にめっきむらが生じ、導電性基板として使用することはできなかった。 Then, in Experimental Examples 14 to 17, although it was confirmed that the minimum value of the wiring width of the pattern of the metal wiring remaining after etching is 10 μm or less, uneven plating occurs in the formed blackened layer. , Could not be used as a conductive substrate.
 以上に黒化めっき液、導電性基板の製造方法を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the method for manufacturing the blackening plating solution and the conductive substrate has been described above in the embodiments and examples and the like, the present invention is not limited to the embodiments and the examples and the like. Various changes and modifications are possible within the scope of the present invention as set forth in the claims.
 本出願は、2016年1月29日に日本国特許庁に出願された特願2016-016592号に基づく優先権を主張するものであり、特願2016-016592号の全内容を本国際出願に援用する。 This application claims the priority of Japanese Patent Application No. 2016-016592 filed on Jan. 29, 2016 based on Japanese Patent Office, and the entire contents of Japanese Patent Application No. 2016-016592 I will use it.

Claims (4)

  1.  ニッケルイオンと、銅イオンとを含み、
     pHが4.0以上5.8以下である黒化めっき液。
    Containing nickel ions and copper ions,
    A blackening plating solution having a pH of 4.0 to 5.8.
  2.  アミド硫酸をさらに含む請求項1に記載の黒化めっき液。 The blackening plating solution according to claim 1, further comprising amidosulfuric acid.
  3.  ニッケルイオン濃度が2.0g/l以上20.0g/l以下、銅イオン濃度が0.005g/l以上1.02g/l以下である請求項1または2に記載の黒化めっき液。 The blackening plating solution according to claim 1 or 2, wherein the nickel ion concentration is 2.0 g / l or more and 20.0 g / l or less and the copper ion concentration is 0.005 g / l or more and 1.02 g / l or less.
  4.  透明基材の少なくとも一方の面上に銅層を形成する銅層形成工程と、
     前記銅層上に請求項1乃至3のいずれか一項に記載の黒化めっき液を用いて黒化層を形成する黒化層形成工程とを有する導電性基板の製造方法。
    A copper layer forming step of forming a copper layer on at least one surface of the transparent substrate;
    A method for producing a conductive substrate, comprising: forming a blackening layer on the copper layer using the blackening plating solution according to any one of claims 1 to 3.
PCT/JP2017/001987 2016-01-29 2017-01-20 Blackening plating solution and method for manufacturing conductive substrate WO2017130866A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017564216A JP6806093B2 (en) 2016-01-29 2017-01-20 Blackening plating solution, manufacturing method of conductive substrate
KR1020187021196A KR102611763B1 (en) 2016-01-29 2017-01-20 Blackening plating solution and conductive substrate manufacturing method
CN201780008167.4A CN108603301A (en) 2016-01-29 2017-01-20 The manufacturing method of melanism plating solution and conductive board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016592 2016-01-29
JP2016-016592 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130866A1 true WO2017130866A1 (en) 2017-08-03

Family

ID=59398844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001987 WO2017130866A1 (en) 2016-01-29 2017-01-20 Blackening plating solution and method for manufacturing conductive substrate

Country Status (5)

Country Link
JP (1) JP6806093B2 (en)
KR (1) KR102611763B1 (en)
CN (1) CN108603301A (en)
TW (1) TWI791427B (en)
WO (1) WO2017130866A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163289A (en) * 1985-01-14 1986-07-23 Nippon Kagaku Sangyo Kk Black electroplating bath by nickel and nickel alloy
JPH0368795A (en) * 1989-08-07 1991-03-25 K D K Kk Production of copper foil for printed circuit
JP2015151594A (en) * 2014-02-17 2015-08-24 住友金属鉱山株式会社 Method for forming thin line pattern and method for manufacturing conductive substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086132B2 (en) 2001-11-16 2008-05-14 株式会社ブリヂストン Transparent conductive film and touch panel
TWI236023B (en) * 2003-04-18 2005-07-11 Dainippon Printing Co Ltd Electromagnetic shielding sheet, front plate for display, and method for producing electromagnetic shielding sheet
JP5588597B2 (en) * 2007-03-23 2014-09-10 富士フイルム株式会社 Manufacturing method and manufacturing apparatus of conductive material
CN104321470B (en) * 2012-04-19 2017-03-15 迪普索尔化学株式会社 The electroplate liquid and coating method of corronil
CN103345337B (en) * 2013-07-15 2016-08-17 深圳南玻显示器件科技有限公司 Flexible touch screen and preparation method thereof
KR101416438B1 (en) * 2013-12-17 2014-07-10 와이엠티 주식회사 Metal mesh, touch screen sensor using the same and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163289A (en) * 1985-01-14 1986-07-23 Nippon Kagaku Sangyo Kk Black electroplating bath by nickel and nickel alloy
JPH0368795A (en) * 1989-08-07 1991-03-25 K D K Kk Production of copper foil for printed circuit
JP2015151594A (en) * 2014-02-17 2015-08-24 住友金属鉱山株式会社 Method for forming thin line pattern and method for manufacturing conductive substrate

Also Published As

Publication number Publication date
JPWO2017130866A1 (en) 2018-11-29
KR102611763B1 (en) 2023-12-07
KR20180103072A (en) 2018-09-18
TW201739966A (en) 2017-11-16
CN108603301A (en) 2018-09-28
TWI791427B (en) 2023-02-11
JP6806093B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
TW201539278A (en) Conductive substrate, conductive substrate laminate, method for producing conductive substrate, and method for producing conductive substrate laminate
WO2017130865A1 (en) Blackening plating solution and method for manufacturing conductive substrate
JP6597139B2 (en) Blackening plating solution, conductive substrate
WO2016190224A1 (en) Blackening plating solution and conductive substrate
CN107533403B (en) Conductive substrate and liquid crystal touch panel
WO2017130869A1 (en) Blackening plating solution and method for manufacturing conductive substrate
JP6500746B2 (en) Method of manufacturing conductive substrate
TWI762618B (en) conductive substrate
WO2017130866A1 (en) Blackening plating solution and method for manufacturing conductive substrate
TWI716534B (en) Conductive substrate
WO2016068153A1 (en) Conductive substrate production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564216

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187021196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744096

Country of ref document: EP

Kind code of ref document: A1