WO2018011861A1 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
WO2018011861A1
WO2018011861A1 PCT/JP2016/070450 JP2016070450W WO2018011861A1 WO 2018011861 A1 WO2018011861 A1 WO 2018011861A1 JP 2016070450 W JP2016070450 W JP 2016070450W WO 2018011861 A1 WO2018011861 A1 WO 2018011861A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
analysis
values
analyzer
parameter value
Prior art date
Application number
PCT/JP2016/070450
Other languages
English (en)
French (fr)
Inventor
夏世 朝野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CA3030100A priority Critical patent/CA3030100A1/en
Priority to US16/316,657 priority patent/US20190311891A1/en
Priority to CN201680087636.1A priority patent/CN109477815A/zh
Priority to PCT/JP2016/070450 priority patent/WO2018011861A1/ja
Priority to JP2018527266A priority patent/JPWO2018011861A1/ja
Priority to EP16908765.7A priority patent/EP3483601A4/en
Publication of WO2018011861A1 publication Critical patent/WO2018011861A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • H01J49/005Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction by collision with gas, e.g. by introducing gas or by accelerating ions with an electric field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters

Definitions

  • the present invention relates to an analysis apparatus, and more particularly, to an analysis apparatus capable of obtaining a result of analysis for each parameter value by changing a predetermined parameter value related to analysis in a plurality of stages.
  • the present invention provides a mass spectrometer such as a tandem quadrupole mass spectrometer or a Q-TOF mass spectrometer capable of changing the collision energy when ions are dissociated in a collision cell in a plurality of stages. Is preferred.
  • the tandem quadrupole mass spectrometer includes a quadrupole mass filter before and after a collision cell that dissociates ions by collision-induced dissociation (CID), and a specific mass selected by the quadrupole mass filter in the previous stage. Ions having a mass-to-charge ratio (precursor ions) are dissociated by colliding with a collision gas in the collision cell, and the product ions generated thereby are separated and detected by the quadrupole mass filter according to the mass-to-charge ratio. can do. Further, the Q-TOF mass spectrometer is obtained by replacing the subsequent quadrupole mass filter in the tandem quadrupole mass spectrometer with a time-of-flight mass spectrometer.
  • CID collision-induced dissociation
  • the dissociation efficiency of ions in the collision cell depends on the energy (hereinafter referred to as “collision energy” according to common usage) that is present when the precursor ions are introduced into the collision cell, and the dissociation efficiency is low.
  • the amount of product ions produced is small and the detection sensitivity is low.
  • the mode of ion dissociation by CID differs depending on the collision energy, the optimum value of the collision energy is naturally different if the precursor ions generated due to different compounds are different. Even if the precursor ions are the same in the above compounds, the optimum collision energy differs if the product ions to be observed are different.
  • the optimum value of the collision energy is previously determined for each MRM transition (combination of precursor ion and product ion) for the target compound, and set when analyzing the target sample. Control is performed to switch the collision energy in accordance with the MRM transition to be performed.
  • CE value the CE value is changed stepwise over a predetermined CE value range with a predetermined step width. Then, MRM measurement is performed under each CE value to obtain an ion intensity signal, and a CE value at which the ion intensity signal is maximized is obtained as an optimum CE value. For example, the value of the DC voltage applied to the entrance electrode of the collision cell or the ion guide disposed in the collision cell is changed in a stepwise manner.
  • This voltage value is also described as a CE value, and the term “voltage value” is used as it is.)
  • a CE value having a sufficiently high dissociation efficiency when the step width of the CE value is increased. There is a possibility can not be found.
  • the CE value step width is reduced, a CE value having sufficiently high dissociation efficiency can be found, but there is a problem that the number of measurement repetitions increases and tuning takes time.
  • the mass spectrometer described in Patent Document 1 first performs MRM measurement while changing the CE value with a rough step width, and compares the ion intensity to obtain the CE value that maximizes the ion intensity. locate. After that, MRM measurement is performed while changing the CE value with a fine step width in a narrow CE value range centered on the found CE value, and the CE value where the ion intensity is maximized is found by comparing the ion intensity. .
  • the optimum CE value can be found with a small number of measurements.
  • the mass spectrometer may use an analysis result obtained by performing MS / MS analysis under a plurality of different CE values.
  • the CE value is observed while observing the intensity of the product ion (oxonium ion) derived from the sugar chain while changing the CE value.
  • a method for estimating the sugar chain structure by utilizing the fact that the change in strength becomes specific to the sugar chain structure when the relationship between the ionic strength and the ionic strength is graphed.
  • Non-Patent Document 2 mass spectra (MS / MS spectra) obtained under different CE values are integrated to create mass spectra that allow observation of various product ions while leaving precursor ion peaks. Is disclosed. When performing such an analysis, if information for creating a target graph or mass spectrum can be obtained with a smaller number of measurements, the analysis efficiency can be improved accordingly.
  • the present invention has been made to solve the above-mentioned problems, and its main object is to perform the parameter value such as the CE value efficiently without a complicated control or data processing, that is, with a small number of measurements. It is to provide an analysis device that can find an optimum value. Another object of the present invention is to obtain an appropriate analysis result efficiently, that is, with a small number of measurements, when obtaining information about a sample based on the results of measurement and analysis under a plurality of different parameter values. It is an object of the present invention to provide an analyzer capable of obtaining the parameter value such as the CE value efficiently without a complicated control or data processing, that is, with a small number of measurements. It is to provide an analysis device that can find an optimum value. Another object of the present invention is to obtain an appropriate analysis result efficiently, that is, with a small number of measurements, when obtaining information about a sample based on the results of measurement and analysis under a plurality of different parameter values. It is an object of the present invention to provide an analyzer capable of obtaining
  • the first aspect of the present invention made to solve the above problems is an analyzer having a function of optimizing a parameter value which is one of analysis conditions so that an analysis result is good.
  • an analysis control unit that controls each unit of the apparatus so as to perform an analysis on each of a plurality of numerical values determined so that a change rate of the numerical value of the parameter value is substantially constant, and acquires an analysis result;
  • an optimum value determination unit for finding an optimum value of the parameter value based on an analysis result obtained under the control of the analysis control unit; It is characterized by having.
  • the analyzer according to the first aspect of the present invention and the second aspect to be described later is particularly capable of performing measurement and analysis by changing a parameter value which is one of analysis conditions. Regardless of the type of analyzer.
  • the parameter value is a voltage value applied to an element such as an electrode constituting the analyzer or to drive a component or element constituting the analyzer.
  • the analyzer according to the present invention is a mass spectrometer
  • the parameter value may be a voltage value for performing an operation on ions to be analyzed.
  • the analyzer according to the present invention is a mass spectrometer having a collision cell for dissociating ions derived from a sample, for example, a triple quadrupole mass spectrometer or a Q-TOF mass spectrometer, and the parameter value is a collision. It can be a voltage value that determines a collision energy value (CE value) when ions are dissociated in the cell.
  • CE value collision energy value
  • the above parameter values include a declustering potential, an ion guide for transporting ions to be analyzed, a sampling cone, and an orifice at the top.
  • the voltage value may be applied to an ion transport optical system such as a skimmer or a deflector that deflects the ion trajectory.
  • an ion transport optical system such as a skimmer or a deflector that deflects the ion trajectory.
  • the voltage value that is the parameter value is usually a voltage value that varies depending on the compound, that is, has a compound dependency.
  • Non-Patent Document 1 when the ion intensity in a specific MRM transition is observed while changing the CE value in a triple quadrupole mass spectrometer, the CE value at which the ion intensity is maximized by the MRM transition. In other words, the optimum CE value is different.
  • the ionic strength changes in a peak shape with respect to the change in the CE value, the peak width tends to become wider as the CE value becomes larger. Therefore, if the CE value is changed with the same step width, the change amount of the ion intensity with respect to one step width is large in the range where the CE value is relatively small, but in the range where the CE value is relatively large, with respect to one step width.
  • the amount of change in ionic strength is reduced. That is, even if each measurement is performed with a small step width in the range where the CE value is relatively large, it can be said that the measurement does not make much sense because the change in ion intensity is small.
  • the analysis control unit has a plurality of CE values determined so that the change rate of the CE value is substantially constant.
  • Each part of the apparatus is controlled to perform an analysis on each of the CE values.
  • the step width is small in the range where the CE value is small, and the step width is large in the range where the CE value is relatively large.
  • substantially constant is used here is that, for example, when processing such as rounding, rounding down, and rounding up to round the numerical value of the parameter value is not performed, it is not constant in a strict sense.
  • the step width is constant in each predetermined CE value range, and the step width is increased stepwise for each CE value range in a direction in which the CE value is larger from a certain CE value range.
  • the optimization determination unit finds the optimum value of the parameter value based on the analysis result for each numerical value having a different parameter value obtained under the control of the analysis control unit.
  • the CE value that gives the maximum intensity by comparing the ionic strengths of product ions obtained for different CE values may be set as the optimum value. As described above, in the range where the CE value is large, the change in the ion intensity with respect to the change in the CE value becomes gradual.
  • the second aspect of the present invention which has been made to solve the above-mentioned problems, performs analysis on each sample while changing the parameter value which is one of the analysis conditions, and the sample based on the analysis result obtained thereby.
  • an analyzer that acquires information about a) an analysis control unit that controls each unit of the apparatus so as to perform an analysis on each of a plurality of numerical values determined so that a change rate of the numerical value of the parameter value is substantially constant, and acquires an analysis result;
  • b) an analysis result processing unit that acquires information on a sample based on a combination of a plurality of analysis results obtained under the control of the analysis control unit or based on a change in the analysis result with respect to a change in the parameter value; It is characterized by having.
  • the numerical value of the predetermined parameter value when changing the numerical value of the predetermined parameter value, the numerical value is changed not with a constant step width but with a variable step width in which the numerical change rate is substantially constant. This is the same as the first aspect.
  • the peak width that appears on the graph showing the relationship between the change in the CE value and the ion intensity tends to become wider as the CE value increases.
  • the larger the CE value the smaller the change in the product ion dissociation mode for the same step width.
  • the difference in analysis results is small.
  • the possibility of taking a specific analysis result is small, and appropriate information about the sample can be acquired.
  • the analysis result is a mass spectrum
  • the analysis result processing unit is a plurality of samples obtained under different parameter values.
  • the mass spectrum can be integrated.
  • the intensity of peaks on multiple mass spectra may simply be added, but depending on the purpose, the intensity may be appropriately weighted or known undesired peaks Appropriate treatment such as removal of the film may be added.
  • the analysis result may be a specific ion intensity signal
  • the analysis result processing unit may be configured to create a graph indicating a change in ion intensity signal with respect to a change in parameter value. According to this configuration, a graph specific to the structure of the target substance in the sample as disclosed in Non-Patent Document 1 can be generated with a smaller number of measurements than in the past, that is, efficiently. .
  • the optimum value of a parameter value such as a CE value can be found with a smaller number of measurements than in the case where the numerical value of the parameter value is changed with a constant step width. Can do.
  • the analyzer of the second aspect of the present invention when information on a sample is obtained on the basis of the results of measurement and analysis under a plurality of different parameter values, it is appropriate with a small number of measurements. Analysis results can be obtained.
  • FIG. 1 is a schematic configuration diagram of a triple quadrupole mass spectrometer that is a first embodiment of the present invention.
  • FIG. The schematic diagram which shows the change of the CE value at the time of CE value tuning in the triple quadrupole-type mass spectrometer of 1st Example, and the conventional apparatus.
  • the figure which shows an example of the CE value set at the time of CE value tuning in the triple quadrupole mass spectrometer of 1st Example.
  • the graph which shows the relationship between the CE value in a triple quadrupole-type mass spectrometer, and the ion intensity of a specific MRM transition.
  • the schematic block diagram of the triple quadrupole-type mass spectrometer which is 2nd Example of this invention.
  • FIG. 1 is a schematic configuration diagram of a triple quadrupole mass spectrometer according to the first embodiment.
  • the degree of vacuum is increased stepwise between the ionization chamber 11 that is substantially atmospheric pressure and the high-vacuum analysis chamber 14 that is evacuated by a high-performance vacuum pump (not shown).
  • the multistage differential exhaust system having the first and second intermediate vacuum chambers 12 and 13 is provided.
  • the ionization chamber 11 is provided with an ESI ionization probe 15 for spraying while applying a charge to the sample solution, and the ionization chamber 11 and the first intermediate vacuum chamber 12 at the next stage communicate with each other through a narrow capillary 16. ing.
  • the first intermediate vacuum chamber 12 and the second intermediate vacuum chamber 13 are separated by a skimmer 18 having a small hole at the top, and ions are converged in the first intermediate vacuum chamber 12 and the second intermediate vacuum chamber 13, respectively.
  • ion lenses 17 and 19 for transportation to the subsequent stage are installed.
  • the analysis chamber 14 has a front quadrupole mass filter 20 at the front stage and a rear quadrupole mass filter 23 and an ion detector at the rear stage across a collision cell 21 in which a multipole ion guide 22 is installed. 24 is installed.
  • the mass spectrometer 10 when the sample solution reaches the ESI ionization probe 15, the charged sample solution is sprayed from the tip of the probe 15.
  • the sprayed charged droplets are refined while being disrupted by electrostatic force, and ions derived from the sample jump out in the process.
  • the generated ions are sent to the first intermediate vacuum chamber 12 through the capillary 16, converged by the ion lens 17, and sent to the second intermediate vacuum chamber 13 through a small hole at the top of the skimmer 18.
  • the ions derived from the sample components are converged by the ion lens 19 and sent to the analysis chamber 14 and introduced into the space in the long axis direction of the front quadrupole mass filter 20.
  • ionization may be performed not only by ESI but also by APCI or APPI.
  • a predetermined voltage (a voltage in which a high-frequency voltage and a DC voltage are superimposed) is applied to each rod electrode of the front-stage quadrupole mass filter 20 and the rear-stage quadrupole mass filter 23, and a collision cell.
  • the CID gas is supplied into the gas chamber 21 so that a predetermined gas pressure is obtained.
  • ions fed to the front-stage quadrupole mass filter 20 only ions having a specific mass-to-charge ratio corresponding to the voltage applied to each rod electrode of the front-stage quadrupole mass filter 20 are included in the filter 20. And is introduced into the collision cell 21 as a precursor ion.
  • the precursor ions collide with the CID gas and dissociate to generate various product ions.
  • the mode of dissociation at this time depends on the dissociation conditions such as collision energy and gas pressure in the collision cell 21, so that the type of product ions generated is changed when the CE value is changed.
  • the generated various product ions are introduced into the post-quadrupole mass filter 23, only product ions having a specific mass-to-charge ratio corresponding to the voltage applied to each rod electrode of the post-quadrupole mass filter 23 are obtained. Passes through the filter 23 and reaches the ion detector 24 to be detected.
  • the detection signal from the ion detector 24 is converted into a digital value by the A / D converter 25 and input to the data processing unit 40.
  • the data processing unit 40 includes a tuning data processing unit 41 as a functional block.
  • the analysis control unit 30 that controls the operation of each unit includes a tuning CE value determination unit 31 and a tuning control unit 32 as functional blocks.
  • the central control unit 50 is provided with an input unit 51 and a display unit 52, and performs an input / output interface and overall control. Note that some of the functions of the central control unit 50, the analysis control unit 30, the data processing unit 40, etc. execute dedicated application software installed in advance on the computer using a general-purpose personal computer as a hardware resource. By doing so, it can be realized.
  • FIGS. 2 to 4 are explanatory diagrams at the time of CE value tuning in the triple quadrupole mass spectrometer of the present embodiment
  • FIG. 2 is a schematic diagram showing a change in CE value at the time of CE value tuning
  • FIG. FIG. 4 is a graph showing an example of the CE value set at the time of value tuning
  • FIG. 4 is a graph showing the relationship between the CE value and the ion intensity of a specific MRM transition.
  • the CE value determination unit 31 during tuning performs MRM measurement according to a predetermined MRM transition.
  • the CE value for executing is determined as follows.
  • Non-Patent Document 1 in a triple quadrupole mass spectrometer, when the relationship between CE value and ion intensity is examined for different MRM transitions, a graph as shown in FIG. 4 is obtained. It has been known. As can be seen from FIG. 4, the shape of the peak indicating the change in ionic strength substantially follows a Gaussian distribution, but the peak width increases as the CE value increases. That is, when the CE value is relatively large, the ionic strength changes more slowly than when the CE value is small. Conventionally, at the time of CE value tuning, as shown in FIG. 2A, the step of the CE value for performing the MRM measurement, that is, the step width u is constant regardless of the magnitude of the CE value.
  • the step width is not fixed here, but as shown in FIG. 2B, the step width is increased in the range where the CE value is large compared to the small range (here, u n > u m > u 1 ). ing.
  • the tuning CE value determination unit 31 is within a CE value change range (CE min to CE max ) for changing the CE value set or automatically determined by the user as shown in FIG.
  • the step width is determined so that the change rate of the CE value is substantially the target value. Assuming that a certain CE value is U 1 and a CE value one level larger than that is U 2 , the rate of change is (U 2 ⁇ U 1 ) / U 2 or (U 2 ⁇ U 1 ) / U 1 . is there. Therefore, as shown in FIG. 2B, the larger the CE value, the larger U 2 ⁇ U 1 , that is, the step width. Note that FIG. 2 merely shows a concept, and the step width u 1 having a small CE value in the CE value range is not necessarily smaller than the step width u in the conventional apparatus.
  • the target value of the change rate of the CE value may be set to a certain value such as 10% or 5%, but the user can set or change it appropriately, or the appropriate target value is automatically set. It may be determined manually.
  • the target value is automatically determined, for example, the total number of analyzes of the entire CE value change range is determined in advance, and the target value of the change rate can be calculated from the total number of analyzes and the CE value change range.
  • FIG. 3 shows the actual CE value when the CE value change range (CE min to CE max ) is 10 to 60 [V] and the target value of the change rate is 10%.
  • the CE value is an integer, and the numerical values after the decimal point are rounded off. Therefore, when the CE value is in the range of 10 to 15 [V], the step width is equally 1 [V], and when the CE value is in the range of 15 to 25 [V], the step width is equally 2 [V].
  • the step width increases. That is, as the CE value increases, the adjacent step width does not necessarily increase. In other words, although each CE value is calculated so that the change rate of the CE value is constant (10%), the actual CE value is not constant and is almost constant.
  • the tuning control unit 32 controls each part of the mass spectrometer 10 and executes MRM measurement under a predetermined MRM transition for the sample.
  • the voltage applied to the rod electrode of the mass filter 20 is set so that precursor ions having a specific mass-to-charge ratio specified by the MRM transition pass through the front-stage quadrupole mass filter 20.
  • the voltage applied to the rod electrode of the mass filter 23 is set so that product ions having a specific mass-to-charge ratio designated by the same MRM transition pass through the subsequent quadrupole mass filter 23.
  • the DC voltage applied to the ion guide 22 (or the entrance electrode of the collision cell 21) is switched so that the CE value is sequentially switched to, for example, the value shown in FIG.
  • the intensity signal data of the product ions that have passed through the subsequent quadrupole mass filter 23 are input to the data processing unit 40 every time the CE value is switched. This data is temporarily stored in the memory in the tuning data processing unit 41.
  • the tuning data processing unit 41 compares the ion intensity for each CE value and finds the CE value that gives the maximum intensity. Then, the found CE value is stored as the optimum value of the CE value for the MRM transition. As can be seen from FIG. 4, when the MRM transition is different, the optimum value of the CE value is also different. Therefore, when it is necessary to obtain the optimum value of the CE value for a plurality of MRM transitions, it differs as described above for each MRM transition. It is only necessary to perform MRM measurement on the CE value and find a CE value that maximizes the ion intensity based on the result.
  • the step width of the CE value is not constant but variable, and in the range where the CE value is large, the step width is larger than the small range. It is spreading.
  • the number of CE values for performing MRM measurement is 20.
  • 51 MRMs are required to cover the same CE value change range. Measurement is required.
  • the CE value that maximizes the ion intensity can be accurately found while greatly reducing the number of measurements, and the optimum analysis conditions can be automatically set. .
  • the CE value tuning has been described.
  • the sampling cone for transporting ions to the subsequent stage the cone voltage applied to the skimmer formed on the top of the orifice, the orifice voltage, the declustering potential, etc. It is obvious that the same method can be applied to optimization of other parameter values for various control in the analyzer and optimization of parameter values for control in various analyzers other than the mass spectrometer. .
  • FIG. 5 is a schematic configuration diagram of the triple quadrupole mass spectrometer according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the analysis control unit 30 includes an integrated spectrum acquisition time CE value determination unit 33 and an integrated spectrum acquisition time control unit 34, and the data processing unit 40 includes a spectrum primary storage unit 42 and a spectrum integration unit 43.
  • the integrated spectrum acquisition CE value determination unit 33 performs tuning in the first embodiment.
  • a plurality of CE values for performing product ion scan measurement are determined.
  • the number of CE values at which product ion scan measurement should be performed at this time may be smaller than the number of CE values at which MRM measurement should be performed during CE value tuning. The degree is sufficient. Therefore, the target value of the change rate of the CE value may be considerably larger than the target value at the time of CE value tuning, for example, 50%.
  • the integrated spectrum acquisition time control unit 34 controls each unit of the mass spectrometer 10 and executes product ion scan measurement for a predetermined precursor ion for the sample.
  • the voltage applied to the rod electrode of the mass filter 20 is set so that precursor ions having a specific mass-to-charge ratio specified in advance pass through the front quadrupole mass filter 20.
  • the voltage applied to the rod electrode of the subsequent quadrupole mass filter 23 is scanned so that mass scanning over a predetermined mass-to-charge ratio range is performed.
  • the DC voltage applied to the ion guide 22 (or the entrance electrode of the collision cell 21) is switched so as to sequentially switch to the determined CE value.
  • Data ion spectrum data over a predetermined mass-to-charge ratio range is input to the data processing unit 40 every time the CE value is switched. This data is temporarily stored in the spectrum temporary storage unit 42 corresponding to the CE value.
  • the spectrum integration unit 43 reads all the product ion spectrum data obtained for each CE value from the storage unit 42, and as shown in FIG. To create one mass spectrum.
  • the ion spectra in all the mass spectra are simply added for each mass-to-charge ratio, and the mass spectrum is created after adjusting the ion intensity axis appropriately.
  • step width of the CE value is constant as in the prior art, a mass spectrum in which the ion intensity is shifted tends to be created, for example, the amount of product ions that are easily generated especially when the CE value is large. is there.
  • the mass spectrum for each CE value tends to be specific with low similarity to each other. Thereby, an integrated mass spectrum in which various product ions are observed without any deviation can be created.
  • FIG. 7 is a schematic configuration diagram of the triple quadrupole mass spectrometer of the third embodiment.
  • the same components as those of the apparatus of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the CE value was obtained by MRM measurement under each CE value when the CE value was changed, not during the CE value tuning for optimizing the CE value.
  • the analysis control unit 30 includes a CE value dependent profile acquisition time CE value determination unit 35 and a CE value dependency profile acquisition time control unit 36
  • the data processing unit 40 includes a CE value dependency profile creation unit 44.
  • the CE value determining profile acquisition CE value determination unit 35 is the first embodiment.
  • a plurality of CE values for executing MRM measurement are determined in the same manner as the tuning CE value determination unit 31 in FIG.
  • the number of CE values to be subjected to MRM measurement may be the same as the number of CE values to be subjected to MRM measurement at the time of CE value tuning. Therefore, the target value of the change rate of the CE value is also equal to that at the time of CE value tuning. It may be about the same as the target value.
  • the CE value dependent profile acquisition time control unit 36 sequentially executes MRM measurement at each CE value determined according to a preset MRM transition for the target sample, as in the first embodiment. To do. Ion intensity data obtained by MRM measurement under different CE values is input to the CE value-dependent profile creation unit 44.
  • the CE value-dependent profile creation unit 44 creates a graph showing the relationship between the CE value and the ion intensity, that is, a CE value-dependent profile, as shown in FIG. 8, based on the obtained data.
  • the target sample is, for example, a sugar chain
  • the CE value-dependent profile is specific to the sugar chain structure. Therefore, the user can estimate the sugar chain structure based on the CE value-dependent profile thus obtained.
  • CE value dependent profile acquisition time CE value determination unit 36 ...
  • CE value dependent profile acquisition time control unit 40 Data Processing unit 41 ... Tuning time data processing unit 42 ... Spectrum primary storage unit 43 ... Spectrum integration unit 44 ...
  • CE value Presence profile generator 50 ... central control unit 51 ... input unit 52 ... display unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

MRMトランジションに対応した最適なコリジョンエネルギ(CE)値を自動的に決める際に、チューニング時CE値決定部(31)は所定のCE値変化範囲内でCE値の変化率が略一定になるようにMRM測定を実行する複数のCE値を決め、チューニング時制御部(32)は決められたCE値でMRM測定を実行する。従来はチューニング時のCE値のステップ幅が一定であるが、本発明ではCE値が相対的に大きい範囲では小さい範囲よりもステップ幅が大きくなる。CE値が大きい範囲ではCE値の変化に対するイオン強度の変化が緩やかになるので、ステップ幅を大きくしてもイオン強度の最大点に近いイオン強度を与えるCE値を最適値として見つけることができる。一方、CE値が大きい範囲ではステップ幅を大きくしているので、一定の小さいステップ幅でCE値を変えながらMRM測定を繰り返す場合に比べて測定回数を大幅に減らすことができ、測定の効率化を図ることができる。

Description

分析装置
 本発明は分析装置に関し、さらに詳しくは、分析に関する所定のパラメータ値を複数段階に変化させてそのパラメータ値毎に分析結果を得ることができる分析装置に関する。本発明は例えば、イオンをコリジョンセル内で解離させる際のコリジョンエネルギを複数段階に変化させることが可能であるタンデム四重極型質量分析装置やQ-TOF型質量分析装置などの質量分析装置に好適である。
 タンデム四重極型質量分析装置は、イオンを衝突誘起解離(CID)により解離させるコリジョンセルを挟んでその前後に四重極マスフィルタを備え、前段の四重極マスフィルタで選択された特定の質量電荷比を有するイオン(プリカーサイオン)をコリジョンセルにおいてコリジョンガスと衝突させることで解離させ、それにより生成されたプロダクトイオンを後段の四重極マスフィルタにおいて質量電荷比に応じて分離して検出することができる。また、Q-TOF型質量分析装置は、タンデム四重極型質量分析装置における後段の四重極マスフィルタを飛行時間型質量分析計に置き換えたものである。
 こうした質量分析装置においてコリジョンセルでのイオンの解離効率は、プリカーサイオンがコリジョンセルに導入される時点で有しているエネルギ(以下、慣用に従って「コリジョンエネルギ」という)に依存し、解離効率が低いと生成されるプロダクトイオンの量が少なく検出感度が低くなる。また一般に、CIDによるイオンの解離の態様はコリジョンエネルギによって相違するため、化合物が相違することで生成されるプリカーサイオンが相違するとコリジョンエネルギの最適値が相違するのはもちろんであるが、たとえ同一種の化合物でプリカーサイオンが同一であっても、観測したいプロダクトイオンが相違するとコリジョンエネルギの最適値は相違する。そのため、多重反応モニタリング(MRM)測定を行う際には、目的化合物についてMRMトランジション(プリカーサイオンとプロダクトイオンの組み合わせ)毎に予めコリジョンエネルギの最適値を調べておき、目的試料を分析する際に設定されるMRMトランジションに応じてコリジョンエネルギを切り換える制御が行われる。
 従来一般に、最適なコリジョンエネルギ値(以下、適宜「CE値」と略す)を調べるチューニングの際には、所定のCE値範囲に亘り所定のステップ幅で以てCE値を段階的に変化させながら、その各CE値の下でMRM測定を行ってイオン強度信号を取得し、イオン強度信号が最大になるCE値を最適なCE値として求めるようにしている(なお、実際にはCE値が段階的に変化されるのではなく例えばコリジョンセルの入口電極やコリジョンセル内に配置されるイオンガイドに印加される直流電圧の値が段階的に変化されるのであるが、本明細書中では慣用的にこの電圧値もCE値と記載することとし、一部、「電圧値」との用語をそのまま使用する。)この方法では、CE値のステップ幅を大きくすると十分に解離効率が高いCE値が見つからないおそれがある。一方、CE値のステップ幅を小さくすると十分に解離効率が高いCE値を見つけることが可能となるものの、測定の繰り返し回数が多くなってチューニングに時間が掛かってしまうという問題がある。
 上記問題を解決するために特許文献1に記載の質量分析装置では、まず粗いステップ幅でCE値を変化させつMRM測定を実行し、イオン強度を比較してイオン強度が最大になるCE値を見つける。そのあと、その見いだされたCE値を中心とする狭いCE値範囲で細かいステップ幅でCE値を変化させつつMRM測定を実行し、イオン強度を比較してイオン強度が最大になるCE値を見つける。このように粗密2段階のCE値の走査を行うことで、少ない測定回数で以て最適なCE値を見つけることができる。
 しかしながら、こうした方法では測定回数自体は少なくなるものの、複数のCE値の中から最もイオン強度が高くなるCE値を選択するような処理に比べて、制御、データ処理ともにアルゴリズムが複雑になる。また、CE値とイオン強度との関係が特殊な場合(例えば所定のCE値範囲内でイオン強度のピークが二以上存在する、或いはCE値の変化に対してイオン強度のピークが急峻である等)には、最適なCE値を適切に見つけられない場合がある。
 こうした課題はCE値の最適化に限らず、質量分析装置において最適化が必要な全ての制御パラメータ、例えばイオンレンズに印加されるレンズ電圧、デクラスタリング電位(DP)、エレクトロスプレイイオン化法や大気圧化学イオン化法等によるイオン源に用いられるネブライズガスや乾燥ガスのガス流量、そうしたイオン源や生成されたイオンをイオン源から後段へと輸送する加熱キャピラリの加熱温度、さらには大気圧光イオン化(APPI)イオン源が使用される場合のレーザ強度、などについても同様である。また、質量分析装置に限らず、他の様々な分析装置、例えばガスクロマトグラフ装置、液体クロマトグラフ装置、分光測定装置など、分析に関するパラメータ値を最適化する必要がある分析装置一般における課題でもある。
 また、質量分析装置では、CE値の最適化以外に、複数の異なるCE値の下でMS/MS分析を行うことで得られた分析結果を利用することがある。例えば非特許文献1には、測定対象物が糖ペプチドやN-結合型糖鎖である場合に、CE値を変化させながら糖鎖由来のプロダクトイオン(オキソニウムイオン)の強度を観測しCE値とイオン強度との関係をグラフ化するとその強度変化が糖鎖構造に特異的になることを利用し、糖鎖構造を推測する手法が開示されている。また、非特許文献2には、異なるCE値の下で得られたマススペクトル(MS/MSスペクトル)を統合することで、プリカーサイオンのピークを残しながら多様なプロダクトイオンが観測できるマススペクトルを作成することが開示されている。
 こうした分析を行う際にも、より少ない測定回数で以て目的とするグラフやマススペクトルを作成するための情報が得られれば、それだけ分析効率が向上する。
国際公開第2013/065173号
「EreximTM Application Suite LCMS- 8060/8050向け糖鎖定性・定量解析ソフトウェア」、[online]、株式会社島津製作所、[平成28年6月29日検索]、インターネット<URL: http://www.an.shimadzu.co.jp/lcms/erexim/index.htm> 「不純物分析に便利な機能"Stepped Collision Energy"」、[online]、サーモフィッシャーサイエンティフィック株式会社、[平成28年6月1日検索]、インターネット<URL: https://www.thermofisher.com/content/dam/LifeTech/japan/FAQs/_PDFs/Stepped-Collision-Energy-JA.pdf> 「A New, Fast and Sensititve LC/MS/MS Method for the Accurate Quantitation and Confirmation of Fluoroquinolone Antibiotics in Food Priducts」、[online]、Applied Biosystems社、[平成28年7月11日検索]、インターネット<URL: http://www3.appliedbiosystems.com/cms/groups/psm_marketing/documents/generaldocuments/cms_050556.pdf>
 本発明は上記課題を解決するために成されたものであり、その主たる目的は、複雑な制御やデータ処理を行うことなく、効率良くつまりは少ない測定回数で以てCE値等のパラメータ値の最適値を見つけることができる分析装置を提供することである。
 また本発明の他の目的は、複数の異なるパラメータ値の下でそれぞれ測定や分析を行った結果に基づいて試料に関する情報を得る際に、効率良くつまりは少ない測定回数で以て適切な分析結果を得ることができる分析装置を提供することにある。
 上記課題を解決するために成された本発明の第1の態様は、分析結果が良好になるように分析条件の一つであるパラメータ値を最適化する機能を有する分析装置において、
 a)前記パラメータ値について数値の変化率が略一定であるように決められた複数の数値のそれぞれにおいて分析を実行するように当該装置の各部を制御してそれぞれ分析結果を取得する分析制御部と、
 b)前記分析制御部の制御の下で得られた分析結果に基づいて前記パラメータ値の最適な値を見つける最適値決定部と、
 を備えることを特徴としている。
 本発明に係る第1の態様、及び後述する第2の態様の分析装置は、分析条件の一つであるパラメータ値を変化させて測定や分析を行うことが可能でありさえすれば、特にその分析装置の種類を問わない。また、多くの場合、上記パラメータ値は分析装置を構成する電極等の素子に印加される又は分析装置を構成する部品や素子を駆動するために印加される電圧値である。例えば本発明に係る分析装置が質量分析装置である場合、上記パラメータ値は分析対象であるイオンに対する操作を行うための電圧値とすればよい。
 一例として、本発明に係る分析装置は試料由来のイオンを解離させるコリジョンセルを有する質量分析装置、例えばトリプル四重極型質量分析装置やQ-TOF型質量分析装置であり、上記パラメータ値はコリジョンセルでイオンを解離させる際のコリジョンエネルギ値(CE値)を決める電圧値とすることができる。また、本発明に係る分析装置が質量分析装置である場合、上記パラメータ値は、デクラスタリング電位や、分析対象であるイオンを後段に輸送するためのイオンガイド、サンプリングコーン、頂部にオリフィスが形成されたスキマー、イオンの軌道を偏向させるデフレクタなどのイオン輸送光学系に印加される電圧値であるものとしてもよい。なお、非特許文献3などにも開示されているように、前記パラメータ値である上記電圧値は、通常、化合物に応じて異なる、つまりは化合物依存性のある電圧値である。
 非特許文献1にも記載されているように、トリプル四重極型質量分析装置においてCE値を変化させつつ特定のMRMトランジションにおけるイオン強度を観測すると、MRMトランジションによってイオン強度が最大になるCE値つまりは最適なCE値は異なる。CE値の変化に対しイオン強度はピーク状に変化するが、そのピークの幅はCE値が大きくなるほど広くなる傾向にある。そのため、CE値を同じステップ幅で変化させると、CE値が相対的に小さい範囲では一つステップ幅に対するイオン強度の変化量は大きいが、CE値が相対的に大きい範囲では一つステップ幅に対するイオン強度の変化量が小さくなる。即ち、CE値が相対的に大きい範囲では小さいステップ幅でそれぞれ測定を行っても、イオン強度の変化が小さいためにあまり測定の意味がないということができる。
 これに対し、本発明の第1の態様に係る分析装置をタンデム四重極型質量分析装置に適用した場合、分析制御部は、CE値の変化率が略一定であるように決められた複数のCE値のそれぞれにおいて分析を実行するように当該装置の各部を制御する。CE値の変化率が略一定になるように複数のCE値を定めると、CE値が小さい範囲ではステップ幅は小さく、CE値が相対的に大きい範囲ではステップ幅は大きくなる。
 なお、ここで「略一定」としたのは、例えば、パラメータ値の数値を丸めるために四捨五入、切り捨て、切り上げなどの処理を行う場合に、厳密な意味での一定とはならないためである。こうした丸め処理を行うと、所定の各CE値範囲ではステップ幅が一定であり、且つ、或るCE値範囲からCE値が大きい方向のCE値範囲毎にステップ幅が段階的に大きくなる。
 CE値が大きくなるほどそのステップ幅は大きくなるので、CE値が小さいときのステップ幅をステップ幅一定である従来装置と同じにしたとすると測定回数は従来装置に比べて少なくて済む。そして最適化決定部は、上記分析制御部の制御の下で得られた、パラメータ値の異なる数値毎の分析結果に基づいて、そのパラメータ値の最適値を見つける。上記タンデム四重極型質量分析装置の例でいえば、異なるCE値毎に得られたプロダクトイオンのイオン強度を比較して最大の強度を与えるCE値を最適値とすればよい。上述したようにCE値が大きい範囲ではCE値の変化に対するイオン強度の変化は緩やかになるので、その範囲にイオン強度の最大点が存在する場合に、CE値のステップ幅が大きくても真のイオン強度の最大点に近いイオン強度が得られるCE値を的確に得ることができる。即ち、測定回数が少なくてもCE値の最適値を採り逃がすことがない。
 また上記課題を解決するために成された本発明の第2の態様は、分析条件の一つであるパラメータ値を変化させつつそれぞれ試料に対する分析を実行し、それによって得られた分析結果により試料に関する情報を取得する分析装置において、
 a)前記パラメータ値について数値の変化率が略一定であるように決められた複数の数値のそれぞれにおいて分析を実行するように当該装置の各部を制御してそれぞれ分析結果を取得する分析制御部と、
 b)前記分析制御部の制御の下で得られた複数の分析結果を合わせて、又は前記パラメータ値の変化に対するその分析結果の変化に基づいて、試料に関する情報を取得する分析結果処理部と、
 を備えることを特徴としている。
 この第2の態様でも、所定のパラメータ値の数値を変化させる際に、一定のステップ幅でなく数値の変化率が略一定であるような可変のステップ幅で以て数値を変化させるのは第1の態様と同じである。
 上述したようにトリプル四重極型質量分析装置では、CE値の変化とイオン強度との関係を示すグラフ上に現れるピークの幅はCE値が大きくなるほど広くなる傾向にある。これは、CE値が大きくなるほど同じステップ幅に対するプロダクトイオンの解離の態様の変化が小さくなることを意味する。そのため、CE値が大きい範囲では小さいステップ幅で測定を行っても分析結果の差が小さい。換言すれば、CE値が大きい範囲ではステップ幅を大きくしても特異的な分析結果を採り逃がす可能性は小さく、試料に関する適切な情報を取得することができる。
 本発明の第2の態様に係る分析装置をタンデム四重極型質量分析装置に適用した場合、上記分析結果はマススペクトルであり、上記分析結果処理部は異なるパラメータ値の下で得られた複数のマススペクトルを統合する構成とすることができる。マススペクトルを統合する際には、単に複数のマススペクトル上のピークの強度を加算してもよいが、目的に応じて、強度に適宜の重み付けを行ったり、或いは、既知である不所望のピークを除去したりする等の適宜の処理を加えてもよい。
 また別の例として、上記分析結果は特定のイオンの強度信号であり、上記分析結果処理部はパラメータ値の変化に対するイオン強度信号の変化を示すグラフを作成する構成としてもよい。この構成によれば、非特許文献1に開示されているような、試料中の目的物質の構造に特異的なグラフを従来よりも少ない測定回数で以て、つまりは効率良く作成することができる。
 本発明に係る第1の態様の分析装置によれば、一定のステップ幅でパラメータ値の数値を変化させる場合に比べて、少ない測定回数で以てCE値等のパラメータ値の最適値を見つけることができる。
 また本発明の第2の態様の分析装置によれば、複数の異なるパラメータ値の下でそれぞれ測定や分析を行った結果に基づいて試料に関する情報を得る際に、少ない測定回数で以て適切な分析結果を得ることができる。
本発明の第1実施例であるトリプル四重極型質量分析装置の概略構成図。 第1実施例のトリプル四重極型質量分析装置と従来装置とにおけるCE値チューニング時のCE値の変化を示す模式図。 第1実施例のトリプル四重極型質量分析装置におけるCE値チューニング時に設定されるCE値の一例を示す図。 トリプル四重極型質量分析装置におけるCE値と特定のMRMトランジションのイオン強度との関係を示すグラフ。 本発明の第2実施例であるトリプル四重極型質量分析装置の概略構成図。 本発明の第2実施例であるトリプル四重極型質量分析装置におけるマススペクトルの統合処理の説明図。 本発明の第3実施例であるトリプル四重極型質量分析装置の概略構成図。 本発明の第3実施例であるトリプル四重極型質量分析装置において作成されるイオン強度変化を示すグラフの一例を示す図。
 以下、本発明の第1実施例であるトリプル四重極型質量分析装置について、添付図面を参照して説明する。図1は第1実施例のトリプル四重極型質量分析装置の概略構成図である。
 本実施例の質量分析装置10は、略大気圧であるイオン化室11と図示しない高性能の真空ポンプにより真空排気される高真空の分析室14との間に、段階的に真空度が高められた第1、第2中間真空室12、13を備えた多段差動排気系の構成である。イオン化室11には、試料液に電荷を付与しながら噴霧するESI用イオン化プローブ15が設置され、イオン化室11と次段の第1中間真空室12との間は細径のキャピラリ16を通して連通している。第1中間真空室12と第2中間真空室13との間は頂部に小孔を有するスキマー18で隔てられ、第1中間真空室12と第2中間真空室13にはそれぞれ、イオンを収束させつつ後段へ輸送するためのイオンレンズ17、19が設置されている。分析室14には、多重極型イオンガイド22が内部に設置されたコリジョンセル21を挟んで前段には前段四重極マスフィルタ20が、後段には後段四重極マスフィルタ23及びイオン検出器24が設置されている。
 この質量分析装置10において、ESI用イオン化プローブ15に試料液が到達すると、該プローブ15先端から電荷が付与された試料液が噴霧される。噴霧された帯電液滴は静電気力により分裂しながら微細化され、その過程で試料由来のイオンが飛び出す。生成されたイオンはキャピラリ16を通して第1中間真空室12に送られ、イオンレンズ17で収束されてスキマー18頂部の小孔を経て第2中間真空室13に送られる。そして、試料成分由来のイオンはイオンレンズ19で収束されて分析室14に送られ、前段四重極マスフィルタ20の長軸方向の空間に導入される。なお、ESIに限らず、APCIやAPPIによりイオン化を行ってもよいことは当然である。
 MS/MS分析時には、前段四重極マスフィルタ20及び後段四重極マスフィルタ23の各ロッド電極にはそれぞれ所定の電圧(高周波電圧と直流電圧とが重畳された電圧)が印加され、コリジョンセル21内には所定ガス圧となるようにCIDガスが供給される。前段四重極マスフィルタ20に送り込まれた各種イオンの中で、前段四重極マスフィルタ20の各ロッド電極に印加されている電圧に応じた特定の質量電荷比を有するイオンのみが該フィルタ20を通過し、プリカーサイオンとしてコリジョンセル21に導入される。コリジョンセル21内でプリカーサイオンはCIDガスに衝突して解離し、各種のプロダクトイオンが生成される。このときの解離の態様は、コリジョンエネルギやコリジョンセル21内のガス圧などの解離条件に依存するから、CE値を変化させると生成されるプロダクトイオンの種類も変化する。生成された各種プロダクトイオンが後段四重極マスフィルタ23に導入されると、後段四重極マスフィルタ23の各ロッド電極に印加されている電圧に応じた特定の質量電荷比を有するプロダクトイオンのみが該フィルタ23を通過し、イオン検出器24に到達し検出される。
 イオン検出器24による検出信号はA/D変換器25においてデジタル値に変換され、データ処理部40に入力される。データ処理部40はチューニング時データ処理部41を機能ブロックとして含む。また各部の動作をそれぞれ制御する分析制御部30は、チューニング時CE値決定部31と、チューニング時制御部32とを機能ブロックとして含む。中央制御部50には入力部51や表示部52が付設され、入出力のインターフェイスや統括的な制御を担う。なお、中央制御部50、分析制御部30、データ処理部40などの機能の一部は、汎用のパーソナルコンピュータをハードウエア資源とし該コンピュータに予めインストールされた専用のアプリケーションソフトウエアをコンピュータ上で実行することにより実現されるものとすることができる。
 次に、本実施例のトリプル四重極型質量分析装置において特徴的なCE値チューニング時の動作について、図2~図4を参照して説明する。図2~図4は本実施例のトリプル四重極型質量分析装置におけるCE値チューニング時の説明図であり、図2はCE値チューニング時のCE値の変化を示す模式図、図3はCE値チューニング時に設定されるCE値の一例を示す図、図4はCE値と特定のMRMトランジションのイオン強度との関係を示すグラフである。
 例えば入力部51からのユーザの指示に基づき、中央制御部50から分析制御部30にCE値チューニングの実行が指示されると、チューニング時CE値決定部31は所定のMRMトランジションに従ったMRM測定を実行するCE値を以下のように決定する。
 例えば非特許文献1中にも記載されているように、トリプル四重極型質量分析装置において、CE値とイオン強度との関係を異なるMRMトランジションについて調べると図4に示すようなグラフになることが知られている。図4から分かるように、イオン強度の変化を示すピークの形状はほぼガウス分布に従ったものとなるが、そのピークの幅はCE値が大きくなるほど大きくなる。即ち、CE値が相対的に大きいときには小さいときに比べてイオン強度の変化が緩やかになる。従来、CE値チューニング時には、図2(a)に示すように、CE値の大きさに依らずMRM測定を実行するCE値の刻み、つまりステップ幅uは一定であるが、上述したようにイオン強度の変化が緩やかであればステップ幅を小さくしておく意味はあまりなく、ステップ幅を広げてもイオン強度の変化を適切に捉えることが可能である。そこで、ここではステップ幅を一定とせず、図2(b)に示すように、CE値が大きい範囲では小さい範囲に比べてステップ幅を広げる(ここではun>um>u1)ようにしている。
 即ち、チューニング時CE値決定部31は、図2中に示すようにユーザにより設定された又は自動的に決められた、CE値を変化させるCE値変化範囲(CEmin~CEmax)の中で、そのCE値の変化率がほぼ目標値になるようにステップ幅を決める。いま、或るCE値をU1、それよりも一段階大きいCE値をU2としたとき、変化率は(U2-U1)/U2又は(U2-U1)/U1である。したがって、図2(b)に示すように、CE値が大きくなるほどU2-U1、つまりステップ幅は大きくなる。なお、図2はあくまでも概念を示すものであり、CE値範囲の中でCE値が小さいステップ幅u1を従来装置におけるステップ幅uよりも小さくするとは限らない。
 CE値の変化率の目標値を小さくするほどCE値のステップ幅は相対的に小さくなりイオン強度の最大点を確実に捉えられる可能性が高まるものの、それだけ測定回数が増える。そこで、CE値の変化率の目標値は10%、5%など、或る決まった値としておいてもよいが、ユーザが適宜に設定又は変更できるようにするか、或いは適宜の目標値が自動的に決められるようにしてもよい。目標値を自動的に決める際には例えば、CE値変化範囲全体の分析総回数を予め決めておき、その分析総回数とCE値変化範囲とから変化率の目標値を計算することができる。
 いま一例として、CE値変化範囲(CEmin~CEmax):10~60[V]、変化率の目標値:10%としたときの、実際のCE値の数値を図3に示す。ただし、電圧調整の制御が複雑になるのを避けるためCE値は整数とし、小数点以下の数値は四捨五入で丸めている。そのため、CE値が10~15[V]の範囲ではステップ幅は等しく1[V]であり、CE値が15~25[V]の範囲ではステップ幅は等しく2[V]であり、段階的にステップ幅は大きくなる。つまり、CE値が大きくなるに伴い、隣接するステップ幅が必ず大きくなるというわけではない。言い換えれば、ここではCE値の変化率が一定(10%)になるように各CE値が計算されるものの、実際のCE値では変化率は一定ではなく、あくまでもほぼ一定となっている。
 上記のようにしてMRM測定を実行すべきCE値が定まると、チューニング時制御部32は質量分析装置10の各部を制御して試料に対する所定のMRMトランジションの下でのMRM測定を実行する。このとき、MRMトランジションで指定されている特定の質量電荷比を有するプリカーサイオンが前段四重極マスフィルタ20を通過するように、該マスフィルタ20のロッド電極に印加される電圧は設定される。また、同じMRMトランジションで指定されている特定の質量電荷比を有するプロダクトイオンが後段四重極マスフィルタ23を通過するように、該マスフィルタ23のロッド電極に印加される電圧は設定される。また、CE値が例えば図3に示した値に順次切り替わるように、イオンガイド22(又はコリジョンセル21の入口電極)に印加される直流電圧が切り替えられる。そして、データ処理部40には、そのCE値の切り替え毎に、後段四重極マスフィルタ23を通り抜けたプロダクトイオンの強度信号データが入力される。このデータはチューニング時データ処理部41内のメモリに一時的に記憶される。
 決められた全てのCE値に対するイオン強度信号データが得られると、チューニング時データ処理部41は各CE値に対するイオン強度を比較して、最大の強度を与えるCE値を見つける。そして、みつけたCE値をそのMRMトランジションに対するCE値の最適値として記憶する。図4からも分かるように、MRMトランジションが異なるとCE値の最適値も異なるため、複数のMRMトランジションについてCE値の最適値を求める必要がある場合には、MRMトランジション毎に上述したように異なるCE値に対するMRM測定を実行し、その結果に基づいてイオン強度が最大となるCE値を見つければよい。
 以上のように本実施例のトリプル四重極型質量分析装置では、CE値チューニングを行う際にCE値のステップ幅を一定ではなく可変とし、CE値が大きい範囲では小さな範囲よりもステップ幅を広げている。図3の例では、MRM測定を実行するCE値の数は20であるが、例えばステップ幅を1[V]一定とした場合には同じCE値変化範囲全体をカバーするのに51回のMRM測定が必要になる。このように本実施例のトリプル四重極型質量分析装置では、測定回数を大幅に減らしながらイオン強度が最大となるCE値を的確に見つけ、最適な分析条件を自動的に設定することができる。
 なお、上記説明ではCE値のチューニングについて述べたが、イオンを後段へ輸送するためのサンプリングコーンやオリフィスが頂部に形成されたスキマーなどに印加されるコーン電圧やオリフィス電圧、デクラスタリング電位など、質量分析装置におけるそのほかの様々な制御用のパラメータ値の最適化や、質量分析装置以外の様々な分析装置における制御用のパラメータ値の最適化にも同様の手法を適用可能であることは明白である。
 次に、本発明の第2実施例であるトリプル四重極型質量分析装置について、添付図面を参照して説明する。図5は第2実施例のトリプル四重極型質量分析装置の概略構成図であり、第1実施例の装置と同じ構成要素には同じ符号を付して詳しい説明を省略する。
 この第2実施例のトリプル四重極型質量分析装置では、CE値を最適化するCE値チューニング時ではなく、異なるCE値の下でプロダクトスキャン測定を行うことで得られた複数のマススペクトル(MS/MSスペクトル)を統合して一つのマススペクトルを作成する際に、第1実施例と同様のCE値決定手法を用いる。そのために、分析制御部30は統合スペクトル取得時CE値決定部33、及び統合スペクトル取得時制御部34を含み、データ処理部40はスペクトル一次記憶部42及びスペクトル統合部43を含む。
 例えば入力部51からのユーザの指示に基づき、中央制御部50から分析制御部30に統合スペクトル作成処理の実行が指示されると、統合スペクトル取得時CE値決定部33は第1実施例におけるチューニング時CE値決定部31と同様にして、プロダクトイオンスキャン測定を実行する複数のCE値を決定する。ただし、一般的に、このときにプロダクトイオンスキャン測定を実行すべきCE値の点数はCE値チューニング時にMRM測定をすべきCE値の点数に比べて少なくてよく、数点~多くても十点程度で十分である。したがって、CE値の変化率の目標値は例えば50%等、CE値チューニング時における目標値に比べてかなり大きくてよい。
 CE値が定まると、統合スペクトル取得時制御部34は質量分析装置10の各部を制御して試料に対する所定のプリカーサイオンに対するプロダクトイオンスキャン測定を実行する。このとき、予め指定されている特定の質量電荷比を有するプリカーサイオンが前段四重極マスフィルタ20を通過するように、該マスフィルタ20のロッド電極に印加される電圧は設定される。また、所定の質量電荷比範囲に亘る質量走査が行われるように、後段四重極マスフィルタ23のロッド電極に印加される電圧は走査される。また、決められたCE値に順次切り替わるように、イオンガイド22(又はコリジョンセル21の入口電極)に印加される直流電圧が切り替えられる。そして、データ処理部40には、そのCE値の切り替え毎に、所定の質量電荷比範囲に亘るプロダクトイオンスペクトルデータが入力される。このデータはCE値に対応してスペクトル一時記憶部42に一時的に記憶される。
 決められた全てのCE値に対するプロダクトイオンスペクトルデータが得られると、スペクトル統合部43は、CE値毎に得られたプロダクトイオンスペクトルデータを全て記憶部42から読み出し、図6に示すように、それらを統合して一つのマススペクトルを作成する。最も単純な統合処理としては、単に質量電荷比毎に全てのマススペクトルにおけるイオン強度を加算し、イオン強度軸を適当に調整したうえでマススペクトルを作成すればよい。また、必要に応じてイオン強度に適宜の重み付けを行ったうえで加算処理する等、適宜の処理を加えてもよい。
 従来のようにCE値のステップ幅が一定であると、特にCE値が大きいときに生成され易いプロダクトイオンの量が多くなる等、イオン強度に片寄りが生じたマススペクトルが作成される傾向にある。これに対し、CE値が大きくなるほどステップ幅を広げることで、各CE値に対するマススペクトルが互いに類似性の低い特異的なものとなり易い。それによって、様々プロダクトイオンが片寄りなく観測される統合マススペクトルを作成することができる。
 続いて、本発明の第3実施例であるトリプル四重極型質量分析装置について、添付図面を参照して説明する。図7は第3実施例のトリプル四重極型質量分析装置の概略構成図であり、第1実施例の装置と同じ構成要素には同じ符号を付して詳しい説明を省略する。
 この第3実施例のトリプル四重極型質量分析装置では、CE値を最適化するCE値チューニング時ではなく、CE値を変化させたときにそれぞれのCE値の下のMRM測定で得られたイオン強度の変化を示すプロファイルを作成する際に、第1実施例と同様のCE値を決定手法を用いる。そのために、分析制御部30はCE値依存プロファイル取得時CE値決定部35、及びCE値依存プロファイル取得時制御部36を含み、データ処理部40はCE値依存プロファイル作成部44を含む。
 例えば入力部51からのユーザの指示に基づき、中央制御部50から分析制御部30に統合スペクトル作成処理の実行が指示されると、CE値依存プロファイル取得時CE値決定部35は第1実施例におけるチューニング時CE値決定部31と同様にして、MRM測定を実行する複数のCE値を決定する。このときにMRM測定を実行すべきCE値の点数はCE値チューニング時にMRM測定をすべきCE値の点数と同程度でよく、それ故に、CE値の変化率の目標値もCE値チューニング時における目標値と同程度でよい。
 CE値が定まると、CE値依存プロファイル取得時制御部36は第1実施例と同様に、目的試料に対して、予め設定されているMRMトランジションに従って決められた各CE値におけるMRM測定を順次実行する。異なるCE値の下でMRM測定によって得られたイオン強度データがCE値依存プロファイル作成部44に入力される。CE値依存プロファイル作成部44は、得られたデータに基づいて、図8に示すような、CE値とイオン強度との関係を示すグラフ、つまりCE値依存プロファイルを作成する。目的試料が例えば糖鎖である場合、CE値依存プロファイルはその糖鎖構造に特異的なものとなる。そのため、ユーザはこうして得られたCE値依存プロファイルに基づいて糖鎖構造を推定することができる。
 また、上記実施例はいずれも本発明の一例であるから、上記記載以外の点において、本発明の趣旨の範囲で適宜に変形、追加、修正を行っても本願請求の範囲に包含されることは明らかである。
10…質量分析装置
11…イオン化室
12…第1中間真空室
13…第2中間真空室
14…分析室
15…ESI用イオン化プローブ
16…キャピラリ
17、19…イオンレンズ
18…スキマー
19…イオンレンズ
20…前段四重極マスフィルタ
21…コリジョンセル
22…多重極型イオンガイド
23…後段四重極マスフィルタ
24…イオン検出器
25…A/D変換器
30…分析制御部
31…チューニング時CE値決定部
32…チューニング時制御部
33…統合スペクトル取得時CE値決定部
34…統合スペクトル取得時制御部
35…CE値依存プロファイル取得時CE値決定部
36…CE値依存プロファイル取得時制御部
40…データ処理部
41…チューニング時データ処理部
42…スペクトル一次記憶部
43…スペクトル統合部
44…CE値依存プロファイル作成部
50…中央制御部
51…入力部
52…表示部

Claims (10)

  1.  分析結果が良好になるように分析条件の一つであるパラメータ値を最適化する機能を有する分析装置において、
     a)前記パラメータ値について数値の変化率が略一定であるように決められた複数の数値のそれぞれにおいて分析を実行するように当該装置の各部を制御してそれぞれ分析結果を取得する分析制御部と、
     b)前記分析制御部の制御の下で得られた分析結果に基づいて前記パラメータ値の最適な値を見つける最適値決定部と、
     を備えることを特徴とする分析装置。
  2.  請求項1に記載の分析装置であって、
     前記パラメータ値は電圧値であることを特徴とする分析装置。
  3.  請求項2に記載の分析装置であって、
     前記パラメータ値は化合物依存性のある電圧値であることを特徴とする分析装置。
  4.  請求項2又は3に記載の分析装置であって、
     当該装置は質量分析装置であり、前記パラメータ値は分析対象であるイオンに対する操作を行うための電圧値であることを特徴とする分析装置。
  5.  請求項4に記載の分析装置であって、当該装置は試料由来のイオンを解離させるコリジョンセルを有する質量分析装置であり、
     前記パラメータ値は、前記コリジョンセルでイオンを解離させる際のコリジョンエネルギ値を決める電圧値であることを特徴とする分析装置。
  6.  請求項4に記載の分析装置であって、
     前記パラメータ値は、分析対象であるイオンを後段に輸送するためのイオン輸送光学系に印加される電圧値であることを特徴とする分析装置。
  7.  分析条件の一つであるパラメータ値を変化させつつそれぞれ試料に対する分析を実行し、それによって得られた分析結果により試料に関する情報を取得する分析装置において、
     a)前記パラメータ値について数値の変化率が略一定であるように決められた複数の数値のそれぞれにおいて分析を実行するように当該装置の各部を制御してそれぞれ分析結果を取得する分析制御部と、
     b)前記分析制御部の制御の下で得られた複数の分析結果を合わせて、又は前記パラメータ値の変化に対するその分析結果の変化に基づいて試料に関する情報を取得する分析結果処理部と、
     を備えることを特徴とする分析装置。
  8.  請求項7に記載の分析装置であって、当該装置は試料由来のイオンを解離させるコリジョンセルを有する質量分析装置であり、
     前記パラメータ値は、前記コリジョンセルでイオンを解離させる際のコリジョンエネルギ値であることを特徴とする分析装置。
  9.  請求項8に記載の分析装置であって、
     前記分析結果はマススペクトルであり、前記分析結果処理部は異なるパラメータ値の下で得られたマススペクトルを統合することを特徴とする分析装置。
  10.  請求項8に記載の分析装置であって、
     前記分析結果は特定のイオンの強度信号であり、前記分析結果処理部はパラメータ値の変化に対するイオン強度信号の変化を示すグラフを作成することを特徴とする分析装置。
PCT/JP2016/070450 2016-07-11 2016-07-11 分析装置 WO2018011861A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3030100A CA3030100A1 (en) 2016-07-11 2016-07-11 Analyzer
US16/316,657 US20190311891A1 (en) 2016-07-11 2016-07-11 Analyzer
CN201680087636.1A CN109477815A (zh) 2016-07-11 2016-07-11 分析装置
PCT/JP2016/070450 WO2018011861A1 (ja) 2016-07-11 2016-07-11 分析装置
JP2018527266A JPWO2018011861A1 (ja) 2016-07-11 2016-07-11 分析装置
EP16908765.7A EP3483601A4 (en) 2016-07-11 2016-07-11 ANALYSIS DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070450 WO2018011861A1 (ja) 2016-07-11 2016-07-11 分析装置

Publications (1)

Publication Number Publication Date
WO2018011861A1 true WO2018011861A1 (ja) 2018-01-18

Family

ID=60953036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070450 WO2018011861A1 (ja) 2016-07-11 2016-07-11 分析装置

Country Status (6)

Country Link
US (1) US20190311891A1 (ja)
EP (1) EP3483601A4 (ja)
JP (1) JPWO2018011861A1 (ja)
CN (1) CN109477815A (ja)
CA (1) CA3030100A1 (ja)
WO (1) WO2018011861A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167705B2 (ja) * 2018-12-26 2022-11-09 株式会社島津製作所 質量分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014476A (ja) * 2007-07-04 2009-01-22 Shimadzu Corp 質量分析装置
WO2012124020A1 (ja) * 2011-03-11 2012-09-20 株式会社島津製作所 質量分析装置
WO2013065173A1 (ja) 2011-11-04 2013-05-10 株式会社島津製作所 質量分析装置
WO2015092862A1 (ja) * 2013-12-17 2015-06-25 株式会社島津製作所 質量分析装置及び質量分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0511332D0 (en) * 2005-06-03 2005-07-13 Micromass Ltd Mass spectrometer
CA2636822C (en) * 2006-01-11 2015-03-03 Mds Inc., Doing Business Through Its Mds Sciex Division Fragmenting ions in mass spectrometry
CN102169791B (zh) * 2010-02-05 2015-11-25 岛津分析技术研发(上海)有限公司 一种串级质谱分析装置及质谱分析方法
US8595374B2 (en) * 2010-12-08 2013-11-26 At&T Intellectual Property I, L.P. Method and apparatus for capacity dimensioning in a communication network
EP2674963B1 (en) * 2011-02-10 2016-11-16 Shimadzu Corporation Quadrupole type mass spectrometer
JP5780355B2 (ja) * 2012-03-22 2015-09-16 株式会社島津製作所 質量分析装置
JP5385420B2 (ja) * 2012-04-23 2014-01-08 日本特殊陶業株式会社 微粒子検知システム
WO2014045360A1 (ja) * 2012-09-20 2014-03-27 株式会社島津製作所 質量分析装置
JP5892258B2 (ja) * 2012-11-13 2016-03-23 株式会社島津製作所 タンデム四重極型質量分析装置
JP6176049B2 (ja) * 2013-10-11 2017-08-09 株式会社島津製作所 タンデム四重極型質量分析装置
EP3062332A1 (de) * 2015-02-25 2016-08-31 Universität Innsbruck Verfahren und Vorrichtung zur chemischen Ionisation eines Gasgemisches

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014476A (ja) * 2007-07-04 2009-01-22 Shimadzu Corp 質量分析装置
WO2012124020A1 (ja) * 2011-03-11 2012-09-20 株式会社島津製作所 質量分析装置
WO2013065173A1 (ja) 2011-11-04 2013-05-10 株式会社島津製作所 質量分析装置
WO2015092862A1 (ja) * 2013-12-17 2015-06-25 株式会社島津製作所 質量分析装置及び質量分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483601A4 *

Also Published As

Publication number Publication date
CN109477815A (zh) 2019-03-15
EP3483601A1 (en) 2019-05-15
EP3483601A4 (en) 2019-06-19
JPWO2018011861A1 (ja) 2018-11-29
US20190311891A1 (en) 2019-10-10
CA3030100A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
US9698002B2 (en) Method and apparatus for mass analysis utilizing ion charge feedback
US9536717B2 (en) Multiple ion injection in mass spectrometry
JP5201220B2 (ja) Ms/ms型質量分析装置
US8927927B2 (en) Mass spectrometer
JP5408107B2 (ja) Ms/ms型質量分析装置及び同装置用プログラム
JP6090479B2 (ja) 質量分析装置
JP6305543B2 (ja) 標的化した質量分析
WO2012124020A1 (ja) 質量分析装置
JP6202103B2 (ja) 質量分析装置及び質量分析方法
US20240203716A1 (en) Methods and apparatus for mass spectrometry
EP2299471A1 (en) Quadrupole mass analyzer
US9455128B2 (en) Methods of operating a fourier transform mass analyzer
CN110073208B (zh) 质谱分析装置
JP5737144B2 (ja) イオントラップ質量分析装置
WO2018163926A1 (ja) タンデム型質量分析装置及び該装置用プログラム
WO2018011861A1 (ja) 分析装置
JP2006278024A (ja) Ms/ms型質量分析装置
US11201047B2 (en) Time-of-flight mass spectrometer
CN112444587A (zh) Srm采集的可调停留时间
US20230343574A1 (en) Characterizing quadrupole transmitting window in mass spectrometers
JP2008089543A (ja) イオントラップ形質量分析装置およびその質量分析方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527266

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3030100

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016908765

Country of ref document: EP

Effective date: 20190211