WO2018010655A1 - 形成码本的方法及其装置、基站和移动台 - Google Patents

形成码本的方法及其装置、基站和移动台 Download PDF

Info

Publication number
WO2018010655A1
WO2018010655A1 PCT/CN2017/092582 CN2017092582W WO2018010655A1 WO 2018010655 A1 WO2018010655 A1 WO 2018010655A1 CN 2017092582 W CN2017092582 W CN 2017092582W WO 2018010655 A1 WO2018010655 A1 WO 2018010655A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
sequence
auxiliary
base
training sequence
Prior art date
Application number
PCT/CN2017/092582
Other languages
English (en)
French (fr)
Inventor
侯晓林
刘敏
王新
蒋惠玲
吴伟
刘丹谱
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to JP2019500672A priority Critical patent/JP2019520772A/ja
Priority to CN201780037133.8A priority patent/CN109314554B/zh
Publication of WO2018010655A1 publication Critical patent/WO2018010655A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a method of forming a codebook and a device thereof, a base station and a mobile station that can be used in a wireless communication system.
  • Full-Dimensional Multiple Input Multiple Output Full Dimensional MIMO, FD-MIMO
  • Massive MIMO Large-Scale Multiple Input Multiple Output
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • the size of the codebook required for the FD-MIMO system and the massive MIMO system and the complexity of the hardware device also increase significantly as the number of system antennas and the number of beams that can be formed increase.
  • the reference signal overhead for beam sequence selection is correspondingly increased.
  • a hybrid beamforming method for an FD-MIMO system and a massive MIMO system has been proposed in which digital beamforming is performed in baseband processing, and then analog beamforming is performed in radio frequency (RF) processing to generate a fuze Shaped beams to reduce the complexity of hardware devices.
  • RF radio frequency
  • analog beamforming more beams can be formed by increasing the number of phases supported by the phase shifter.
  • a method of forming a codebook for a multiple input multiple output (MIMO) antenna array comprising: forming a first master codebook according to a first phase shift parameter, wherein the first master codebook Generating a first base beam sequence in a first spatial dimension; determining a first rotation parameter, wherein the first rotation parameter is for phase rotation of the first base beam sequence to generate a first auxiliary in a first spatial dimension a beam sequence; forming a first spatial dimension codebook according to the first master codebook and the first rotation parameter.
  • MIMO multiple input multiple output
  • a beam determining method performed by a base station a packet Include: generating a training sequence of the basic beam sequence according to the primary codebook, and transmitting a training sequence of the basic beam sequence to the mobile station; determining a preferred basis in the basic beam sequence according to feedback from the training sequence of the basic beam sequence received from the mobile station Beam; generating a training sequence of the auxiliary beam sequence according to the rotation parameter and the preferred base beam, and transmitting a training sequence of the auxiliary beam array to the mobile station, wherein the assistance is performed by rotating the preferred base beam according to the number indicated by the rotation parameter of the auxiliary codebook Beam sequence; a preferred auxiliary beam is determined in the auxiliary beam sequence based on feedback from the training sequence of the auxiliary beam sequence received from the mobile station.
  • a beam determining method performed by a mobile station, comprising: detecting a training sequence of a base beam sequence transmitted by a base station; and extracting from a base beam sequence according to a detection result of a training sequence of the base beam sequence Determining a preferred base beam, and feeding back information about the preferred base beam to the base station; detecting a training sequence of the auxiliary beam sequence transmitted by the base station; determining a preferred auxiliary beam from the auxiliary beam sequence according to the detection result of the training sequence of the auxiliary beam sequence, And feeding back information about the preferred auxiliary beam to the base station.
  • an apparatus for forming a codebook for a MIMO antenna array comprising: a primary codebook forming unit configured to form a first primary codebook according to a first phase shift parameter, wherein The first primary codebook is configured to generate a first basic beam sequence in a first spatial dimension; a rotation parameter determining unit configured to determine a first rotation parameter, wherein the first rotation parameter is configured to perform the first basic beam sequence Phase rotation to generate a first auxiliary beam sequence in a first spatial dimension; a dimension codebook forming unit configured to form a first spatial dimension codebook according to the first primary codebook and the first rotation parameter.
  • a base station comprising: a training sequence generating unit configured to generate a training sequence of a basic beam sequence according to a primary codebook; and a transmitting unit configured to send a training sequence of a basic beam sequence to the mobile station a beam determining unit configured to determine a preferred base beam in the base beam sequence based on feedback from the training sequence of the base beam sequence received from the mobile station, wherein the training sequence generating unit is further configured to assist in accordance with the rotation parameter and the preferred base beamforming a training sequence of the beam array; the transmitting unit is further configured to send a training sequence of the auxiliary beam sequence to the mobile station, wherein the auxiliary beam sequence is obtained by rotating the preferred base beam by the number indicated by the rotation parameter of the auxiliary codebook; the beam determining unit further A preferred auxiliary beam is determined in the auxiliary beam array based on feedback from the training sequence of the auxiliary beam sequence received from the mobile station.
  • a mobile station comprising: a detecting unit, configured a training sequence for detecting a basic beam sequence transmitted by the base station; the beam determining unit is configured to determine a preferred base beam from the basic beam array according to the detection result of the training sequence of the basic beam sequence; and the sending unit is configured to The base station feeds back information about the preferred base beam, wherein the detecting unit is further configured to detect a training sequence of the auxiliary beam sequence transmitted by the base station; the beam determining unit is further configured to detect the training sequence according to the auxiliary beam sequence As a result, a preferred auxiliary beam is determined from the auxiliary beam sequence, the transmitting unit being further configured to feed back information about the preferred auxiliary beam to the base station.
  • a method of forming a codebook and a device thereof, a base station and a mobile station according to the above aspect of the present invention form a codebook in a multi-stage manner, which enables the wireless communication system to support a large size while using a codebook size as small as possible
  • FIG. 1 is a flow chart showing a method of forming a codebook for a MIMO antenna array in accordance with one example of the present invention.
  • FIG. 4 is a flow chart showing a method of forming a second spatial dimension codebook in accordance with a method similar to that shown in FIG. 1, in accordance with an example of the present invention.
  • FIG. 5 is a flow chart showing a beam determining method performed by a base station according to an embodiment of the present invention.
  • FIG. 6 shows a flow chart of a beam determining method performed by a mobile station in accordance with an embodiment of the present invention.
  • FIG. 7 is a block diagram showing an apparatus for forming a codebook for a MIMO antenna array, in accordance with an embodiment of the present invention.
  • FIG. 8 is a block diagram showing a master codebook forming unit according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing a base station according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing a mobile station in accordance with an embodiment of the present invention.
  • a method and apparatus for forming a codebook for a MIMO antenna array, and a base station and a mobile station according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • the same reference numerals are used to refer to the same elements.
  • the embodiments described herein are illustrative only and are not intended to limit the scope of the invention.
  • the UEs described herein may include various types of user terminals, such as mobile terminals (or mobile stations) or fixed terminals, however, for convenience, the UE and the mobile station may sometimes be used interchangeably.
  • Embodiments of the present invention improve the codebook used in a MIMO system, as well as the process of selecting a beam from a beam sequence generated by a MIMO system.
  • embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is a flow chart showing a method 100 of forming a codebook for a MIMO antenna array, in accordance with one example of the present invention.
  • a first primary codebook is formed according to a first phase shift parameter, wherein the first primary codebook is used to generate a first basic beam sequence in a first spatial dimension.
  • the first spatial dimension can be a horizontal dimension or a vertical dimension.
  • the first phase shift parameter may indicate the number of phases supported by the phase shifter used to generate the first base beam sequence corresponding to the primary codebook.
  • the first phase shift parameter can be determined based on the number of phases supported by the phase shifter that can be set in the radio base station.
  • the first phase shift parameter may indicate a smaller amount, thereby reducing the hardware cost of the base station.
  • the phase shift sequence of the base station in the first spatial dimension may be obtained according to the first phase shift parameter N x :
  • the first spatial dimension may be [0, 2 ⁇ ].
  • the first primary codebook may also be formed according to the number of first basic beams in the first basic beam sequence that is desired to be generated and the number of antennas in the first spatial dimension in the MIMO antenna array.
  • the index matrix M x ⁇ K x may be formed according to the number K x of beam patterns of the first basic beam in the first basic beam sequence and the number M x of antennas in the first spatial dimension in the MIMO antenna array.
  • the first phase is then determined shifting parameter N x and the index matrix, forming a first master codebook.
  • the first master codebook can be formed according to the following formula (1)
  • a first rotation parameter is determined, wherein the first rotation parameter is used to phase rotate the first base beam sequence to generate a first auxiliary beam sequence in a first spatial dimension.
  • the first rotation parameter may indicate the number of first auxiliary beams corresponding to the first base beam in the first base beam sequence.
  • one of the first base beam sequences may be rotated by a number of times indicated by the first rotation parameter to obtain a first auxiliary beam sequence corresponding to the first base beam.
  • the first rotation parameter is 3
  • three first auxiliary beams corresponding to the first base beam can be obtained by rotating one first base beam in the first basic beam sequence three times.
  • each of the first base beams in the first base beam sequence corresponds to the 3 first auxiliary beams.
  • the first rotation parameter can be associated with an angle between two adjacent first base beams in the first base beam array.
  • an angle between adjacent two first basic beams may be equally divided according to a first rotation parameter to form a first auxiliary beam in the first auxiliary beam sequence.
  • the angle between two adjacent first base beams may indicate the width of a first base beam. Assuming that the first rotation parameter is 5, the width 5 of a first basic beam of a first basic beam can be equally divided to form five first auxiliary beams corresponding to the first basic beam.
  • the first auxiliary codebook can be formed according to the following formula (2)
  • An auxiliary beam #310, #320 and #330 are examples of the first base beam #310, #320 and #330.
  • the base beam can be increased by using the rotation parameter to increase
  • the number of beams that the MIMO antenna array can generate increases the resolution of the beam.
  • a first spatial dimension codebook is formed according to the first primary codebook and the first rotation parameter.
  • the first spatial dimension codebook may be formed according to the first primary codebook and the first auxiliary codebook.
  • the first primary codebook and the first secondary codebook may be inner producted to form a first spatial dimension codebook.
  • FIG. 4 is a flow chart showing a method 400 of forming a second spatial dimension codebook in accordance with a method similar to the method 100 shown in FIG. 1, in accordance with one example of the present invention.
  • a second primary codebook is formed according to the second phase shift parameter, wherein the second primary codebook is used to generate a second basic beam sequence in the second spatial dimension.
  • the first spatial dimension is a horizontal dimension
  • the second spatial dimension is a vertical dimension, and vice versa.
  • the second phase shift parameter may indicate the number of phases supported by the phase shifter used to generate the second base beam sequence corresponding to the master codebook.
  • the second phase shift parameter can be determined based on the number of phases supported by the phase shifter that can be set in the radio base station.
  • the phase shift sequence of the base station in the second spatial dimension may be obtained according to the second phase shift parameter N y :
  • the second spatial dimension may be [-0.5 ⁇ , 0.5 ⁇ ].
  • the second master codebook may also be formed according to the number of second base beams in the second base beam sequence that is desired to be generated and the number of antennas in the second spatial dimension in the MIMO antenna array.
  • the index matrix M y ⁇ K y may be formed according to the number of beam patterns K y of the second base beam in the second basic beam sequence and the number of antennas M y in the second spatial dimension in the MIMO antenna array, and then A second master codebook is formed based on the determined second phase shift parameter N x and the index matrix.
  • the second master codebook can be formed according to the following formula (3)
  • a second rotation parameter is determined, wherein the second rotation parameter is used to phase rotate the second base beam sequence to generate a second auxiliary beam sequence in the second spatial dimension.
  • the second rotation parameter may indicate the number of second auxiliary beams corresponding to the second base beam in the second base beam sequence.
  • a second base beam of the second base beam sequence may be rotated by a number of times indicated by the second rotation parameter to obtain a second auxiliary beam sequence corresponding to the second base beam.
  • the second rotation parameter is 3
  • three second auxiliary beams corresponding to the second base beam can be obtained by rotating one second base beam in the second basic beam sequence three times.
  • each of the second base beams in the second base beam sequence corresponds to the 3 second auxiliary beams.
  • the second rotation parameter can be associated with an angle between two adjacent second base beams in the second base beam array.
  • an angle between adjacent two second basic beams may be equally divided according to a second rotation parameter to form a second auxiliary beam in the second auxiliary beam sequence.
  • the angle between two adjacent second base beams may indicate the width of a second base beam. Assuming that the second rotation parameter is 5, the width 5 of a second basic beam of a second basic beam can be equally divided to form 5 second auxiliary beams corresponding to the second basic beam.
  • the second auxiliary codebook may be formed according to the second rotation parameter L y .
  • the second auxiliary codebook can be formed according to the following formula (4)
  • a second spatial dimension is formed according to the second primary codebook and the second rotation parameter.
  • the second spatial dimension codebook may be formed according to the second primary codebook and the second auxiliary codebook.
  • the second primary codebook and the second secondary codebook may be inner producted to form a second spatial dimension codebook.
  • the three-dimensional space codebook can then be formed by a first spatial dimension codebook obtained according to the method 100 shown in FIG. 1 and a second spatial dimension codebook obtained according to the method 400 shown in FIG.
  • a three-dimensional space codeword can be formed by the following formula (5):
  • the MIMO system can perform hybrid beamforming including digital beamforming and analog beamforming.
  • each codebook formed by the method of forming a codebook in accordance with an embodiment of the present invention can be used to simulate beamforming.
  • the codebook is formed in a multi-stage manner, which enables the wireless communication system to support using the smallest codebook size possible Use of massive MIMO or FD-MIMO.
  • individual codebooks formed in accordance with embodiments of the present invention are available for beam selection between a base station and a mobile station.
  • the respective codebooks formed according to the above embodiments are stored in advance in the base station.
  • a beam determining method performed by a base station according to an embodiment of the present invention will be described with reference to FIG. 5, and a beam determining method performed by a mobile station according to an embodiment of the present invention will be described with reference to FIG.
  • the base station may pre-store each codebook formed according to the above method 100 (for example, a master codebook of each dimension, an auxiliary codebook, etc.).
  • the base station can notify the mobile station of the codebook size information indicating the codebook size quasi-statically or dynamically, so that the mobile station can use the codebook according to the codebook.
  • the size information determines the search range for beam selection.
  • the base station can also be quasi-static in the presence of multiple available rotation parameters and the auxiliary beam sequence can be generated from the base beam sequence only by the rotation parameters without the need for an auxiliary codebook. Or dynamically notifying the mobile station of the rotation information indicating the rotation parameter, so that the mobile station determines the search range of the beam selection based on the rotation information.
  • the base station may quasi-statically notify the mobile station of the codebook size information and the rotation information through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the base station can dynamically notify the mobile station of the codebook size information and the rotation information through L1 layer signaling.
  • FIG. 5 is a flow chart showing a beam determination method 500 performed by a base station in accordance with one embodiment of the present invention.
  • a training sequence of the base beam sequence is generated according to the master codebook, and a training sequence (e.g., a reference signal) of the base beam sequence is transmitted to the mobile station.
  • the base beam sequence generated according to the master codebook may be a base beam sequence generated using the master codebook formed according to the above step S101.
  • the first phase shift parameter and/or the primary codebook size information indicating the codebook size may be determined according to the number of phases supported by the phase shifter used in the base station.
  • the primary codebook size information indicating the size of the primary codebook can be notified to the mobile station in a quasi-static or dynamic manner. Thereby, the mobile station can detect the training sequence of the base beam sequence based on the primary codebook size information.
  • the resource configuration may be predetermined to indicate resources for transmitting the training sequence.
  • the base station may send the training sequence of the basic beam sequence to the mobile station according to the predetermined resource configuration.
  • the base station changes the resource configuration for transmitting the training sequence as needed, notifies the mobile station in quasi-static or dynamic manner, and moves to the resource indicated by the resource configuration notified to the mobile station.
  • the station transmits a training sequence of the base beam sequence.
  • the base station may quasi-statically notify the mobile station of the resource configuration for transmitting the training sequence through RRC signaling.
  • the base station can dynamically notify the mobile station of the resource configuration for transmitting the training sequence through L1 layer signaling.
  • a preferred base beam is determined in the base beam sequence based on feedback from the training sequence of the base beam sequence received from the mobile station. Then, in step S503, a training sequence of the auxiliary beam sequence is generated according to the rotation parameter and the preferred base beam, and the training sequence of the auxiliary beam array is transmitted to the mobile station, wherein the rotation parameter of the auxiliary codebook is followed by the preferred base beam. The indicated number is rotated to obtain the auxiliary beam sequence.
  • the preferred base beam may be rotated according to the rotation parameters to obtain an auxiliary beam sequence corresponding to the preferred base beam.
  • the rotation parameter is 3
  • 3 auxiliary beams corresponding to the preferred base beam can be obtained by rotating the preferred base beam 3 times.
  • the width of the preferred base beam may be indicated according to the rotation parameter
  • the number is equally divided to form an auxiliary beam corresponding to the preferred base beam.
  • the auxiliary beam sequence may be a beam sequence generated using, for example, an auxiliary codebook formed according to the above formula (2) and a preferred base beam.
  • the rotation parameters are predetermined.
  • the base station can also notify the mobile station of the rotation information indicating the rotation parameter quasi-statically or dynamically.
  • the mobile station can detect the training sequence of the auxiliary beam sequence.
  • a resource configuration may be predetermined to indicate a resource for transmitting a training sequence.
  • the base station may send a training sequence of the auxiliary beam sequence to the mobile station according to the predetermined resource configuration.
  • the base station changes the resource configuration for transmitting the training sequence as needed, notifies the mobile station in quasi-static or dynamic manner, and moves to the resource indicated by the resource configuration notified to the mobile station.
  • the station transmits a training sequence of the auxiliary beam sequence.
  • a preferred auxiliary beam is determined in the auxiliary beam array based on feedback from the mobile station's training sequence for the auxiliary beam array.
  • the base station can transmit data to the mobile station using the determined preferred auxiliary beam.
  • Step S503 and step S504 may not be included.
  • the method shown in FIG. 5 may further include further determining a preferred base beam based on feedback from the training sequence of the auxiliary beam array received from the mobile station after selecting the preferred base beam from the base beam sequence in step S502. Whether the corresponding channel satisfies the predetermined channel quality. When the predetermined channel quality is satisfied, the base station can transmit data to the mobile station using the preferred base beam without performing step S503 and step S504.
  • the beam method shown in Figure 5 can be performed sequentially or in parallel for each spatial dimension to determine preferred beams in various spatial dimensions.
  • the base station can also generate a preferred three-dimensional beam for transmitting data to the mobile station based on preferred beams in respective spatial dimensions.
  • FIG. 6 shows a flow diagram of a beam determination method 600 performed by a mobile station in accordance with an embodiment of the present invention.
  • step S601 the training sequence of the basic beam sequence transmitted by the base station is detected.
  • Column. the method illustrated in FIG. 6 may further include receiving primary codebook size information indicating a size of the primary codebook.
  • the base beam sequence generated by the base station may be determined according to the primary codebook size information, and the training sequence of the base beam sequence is detected.
  • the basic beam sequence generated according to the primary codebook may be a basic beam sequence generated by the base station using the primary codebook formed according to the above step S101, and will not be described in detail herein.
  • the resource configuration may be predetermined to indicate the resources of the training sequence for use.
  • a training sequence of the base beam sequence is detected according to a predetermined resource configuration.
  • the method described in FIG. 6 may further include receiving a resource configuration for transmitting a training sequence notified by the base station.
  • a training sequence of the basic beam sequence may be detected according to the received resource configuration.
  • a preferred base beam may be determined from the basic beam sequence according to the detection result of the training sequence of the basic beam sequence, and information about the preferred base beam is fed back to the base station, so as to facilitate the base station to feed back the preferred base beam according to the mobile station.
  • the information determines a preferred base beam for the mobile station, and in turn generates an auxiliary beam sequence based on the preferred base beam and rotation parameters for the mobile station.
  • the information of the preferred base beam may be an index of the beam, channel quality information, and the like.
  • step S603 a training sequence of the auxiliary beam sequence transmitted by the base station can be detected.
  • the method illustrated in Figure 6 may further comprise receiving rotation information indicative of a rotation parameter.
  • the training sequence of the auxiliary beam sequence can be detected based on the rotation information.
  • step S603 the training sequence of the auxiliary beam sequence is detected according to the predetermined resource configuration.
  • the method described in FIG. 6 may further include receiving a resource configuration for transmitting a training sequence notified by the base station.
  • the training sequence of the auxiliary beam sequence may be detected according to the received resource configuration.
  • a preferred auxiliary beam is determined from the auxiliary beam sequence according to the detection result of the training sequence of the auxiliary beam sequence, and information about the preferred auxiliary beam is fed back to the base station.
  • the information of the auxiliary beam may be an index of the beam, channel quality information, or the like.
  • the training sequence of the auxiliary beam sequence is detected by step S603, and the auxiliary beam sequence is obtained from the detection result according to step S604. Determining the preferred auxiliary beam and The base station informs, however, that in accordance with an embodiment of the present invention, when the channel corresponding to the determined preferred base beam satisfies a predetermined channel quality (i.e., has a higher channel quality), the base station can transmit data to the mobile station using the preferred base beam. Therefore, the mobile station does not need to perform step S603 and step S604.
  • the base station forms a beam in a multi-stage manner, and accordingly the mobile station performs beam detection in a multi-stage manner, which makes the base station lower Hardware complexity can also increase the spatial resolution of the beams produced by the MIMO system and reduce the overhead of transmitting training sequences. Furthermore, in the case where the channel quality of the preferred base beam satisfies a predetermined transmission condition, multi-stage beam determination may not be required.
  • FIG. 7 is a block diagram showing an apparatus 700 for forming a codebook for a MIMO antenna array, in accordance with an embodiment of the present invention.
  • the apparatus 700 includes a main codebook forming unit 710, a rotation parameter determining unit 720, and a dimension codebook forming unit 730.
  • the device 700 may include other components in addition to the three units, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein.
  • the specific details of the operations performed by the apparatus 700 according to an embodiment of the present invention are the same as those described above with reference to FIGS. 1-4, repeated description of the same details is omitted herein to avoid repetition.
  • the master codebook forming unit 710 forms a first master codebook according to the first phase shift parameter, wherein the first master codebook is used to generate a first base beam sequence in a first spatial dimension.
  • the first spatial dimension can be a horizontal dimension or a vertical dimension.
  • the first phase shift parameter may indicate the number of phases supported by the phase shifter used to generate the first base beam sequence corresponding to the primary codebook.
  • the first phase shift parameter can be determined based on the number of phases supported by the phase shifter that can be set in the radio base station.
  • the first phase shift parameter may indicate a smaller amount, thereby reducing the hardware cost of the base station.
  • the phase shift sequence of the base station in the first spatial dimension may be obtained according to the first phase shift parameter N x :
  • the first spatial dimension may be [0, 2 ⁇ ].
  • the first primary codebook may also be formed according to the number of first basic beams in the first basic beam sequence that is desired to be generated and the number of antennas in the first spatial dimension in the MIMO antenna array.
  • FIG. 8 is a block diagram showing a master codebook forming unit 710 according to an embodiment of the present invention.
  • the master codebook forming unit 710 may include an index matrix forming module 810 and a master codebook forming module 820.
  • the index matrix forming module 810 can form an index matrix M x ⁇ K according to the number K x of beam patterns of the first base beam in the first basic beam sequence and the number M x of antennas in the first spatial dimension in the MIMO antenna array.
  • the master codebook module 820 may be formed in accordance with the first phase of the determined shifting parameter N x and the index matrix, forming a first master codebook.
  • the first master codebook can be formed according to the above formula (1)
  • the rotation parameter determination unit 720 determines a first rotation parameter, wherein the first rotation parameter is for phase rotation of the first base beam sequence to generate a first auxiliary beam sequence in a first spatial dimension.
  • the first rotation parameter may indicate the number of first auxiliary beams corresponding to the first base beam in the first base beam sequence.
  • one of the first base beam sequences may be rotated by a number of times indicated by the first rotation parameter to obtain a first auxiliary beam sequence corresponding to the first base beam.
  • the first rotation parameter is 3
  • three first auxiliary beams corresponding to the first base beam can be obtained by rotating one first base beam in the first basic beam sequence three times.
  • each of the first base beams in the first base beam sequence corresponds to the 3 first auxiliary beams.
  • the first rotation parameter can be associated with an angle between two adjacent first base beams in the first base beam array.
  • an angle between adjacent two first basic beams may be equally divided according to a first rotation parameter to form a first auxiliary beam in the first auxiliary beam sequence.
  • the angle between two adjacent first base beams may indicate the width of a first base beam. Assuming that the first rotation parameter is 5, the width 5 of a first basic beam of a first basic beam can be equally divided to form five first auxiliary beams corresponding to the first basic beam.
  • apparatus 700 may further include an auxiliary codebook forming unit to form a first auxiliary codebook according to a first rotation parameter L x.
  • the auxiliary codebook forming unit may form the first auxiliary codebook according to the above formula (2)
  • the dimension codebook forming unit 730 may form a first spatial dimension codebook according to the first master codebook and the first rotation parameter.
  • the first spatial dimension codebook may be formed according to the first primary codebook and the first auxiliary codebook.
  • the first primary codebook and the first secondary codebook may be inner producted to form a first spatial dimension codebook.
  • each unit in the apparatus 700 may further form a second spatial dimension codebook in a manner similar to forming a first spatial dimension codebook, and then form a three-dimensional space codebook according to the first spatial dimension codebook and the second spatial dimension codebook.
  • the primary codebook forming unit 710 can be configured according to the second phase shift parameter And forming a second master codebook, wherein the second master codebook is used to generate a second base beam sequence in a second spatial dimension. For example, when the first spatial dimension is a horizontal dimension, the second spatial dimension is a vertical dimension, and vice versa.
  • the second phase shift parameter may indicate the number of phases supported by the phase shifter used to generate the second base beam sequence corresponding to the master codebook.
  • the second phase shift parameter can be determined based on the number of phases supported by the phase shifter that can be set in the radio base station.
  • the phase shift sequence can be obtained according to the second phase shift parameter N y :
  • the second spatial dimension may be [-0.5 ⁇ , 0.5 ⁇ ].
  • the second master codebook may also be formed according to the number of second base beams in the second base beam sequence that is desired to be generated and the number of antennas in the second spatial dimension in the MIMO antenna array.
  • the index matrix M y ⁇ K y may be formed according to the number of beam patterns K y of the second base beam in the second basic beam sequence and the number of antennas M y in the second spatial dimension in the MIMO antenna array, and then A second master codebook is formed based on the determined second phase shift parameter N x and the index matrix.
  • the second master codebook can be formed according to the above formula (3).
  • the rotation parameter determination unit 720 can determine a second rotation parameter, wherein the second rotation parameter is for phase rotation of the second base beam sequence to generate a second auxiliary beam sequence in the second spatial dimension.
  • the second rotation parameter may indicate the number of second auxiliary beams corresponding to the second base beam in the second base beam sequence.
  • a second base beam of the second base beam sequence may be rotated by a number of times indicated by the second rotation parameter to obtain a second auxiliary beam sequence corresponding to the second base beam.
  • the second rotation parameter is 3
  • three second auxiliary beams corresponding to the second base beam can be obtained by rotating one second base beam in the second basic beam sequence three times.
  • each of the second base beams in the second base beam sequence corresponds to the 3 second auxiliary beams.
  • the second rotation parameter can be associated with an angle between two adjacent second base beams in the second base beam array.
  • an angle between adjacent two second basic beams may be equally divided according to a second rotation parameter to form a second auxiliary beam in the second auxiliary beam sequence.
  • the angle between two adjacent second base beams may indicate the width of a second base beam. Assuming that the second rotation parameter is 5, the width 5 of a second basic beam of a second basic beam can be equally divided to form 5 second auxiliary beams corresponding to the second basic beam.
  • the second auxiliary codebook may be formed according to the second rotation parameter L y .
  • the second auxiliary codebook can be formed according to the above formula (4)
  • the dimension codebook forming unit 730 can form a second spatial dimension codebook according to the second master codebook and the second rotation parameter.
  • the second spatial dimension codebook may be formed according to the second primary codebook and the second auxiliary codebook.
  • the second primary codebook and the second secondary codebook may be inner producted to form a second spatial dimension codebook.
  • the apparatus 700 may further include a three-dimensional codebook forming unit.
  • the three-dimensional codebook forming unit may form a three-dimensional space codebook according to the first spatial dimension codebook and the second spatial dimension codebook.
  • the three-dimensional codebook forming unit may form a three-dimensional space codeword by the above formula (5).
  • the MIMO system can perform hybrid beamforming including digital beamforming and analog beamforming.
  • the respective codebooks formed by the apparatus for forming a codebook according to an embodiment of the present invention can be used for analog beamforming.
  • a codebook is formed in a multi-stage manner, which enables the wireless communication system to support using a codebook size as small as possible Use of massive MIMO or FD-MIMO.
  • individual codebooks formed in accordance with embodiments of the present invention are available for beam selection between a base station and a mobile station.
  • the respective codebooks formed according to the above embodiments are stored in advance in the base station.
  • a base station according to an embodiment of the present invention will be described with reference to FIG.
  • a mobile station according to an embodiment of the present invention will be described with reference to FIG.
  • each codebook formed by the above 700 may be stored in advance.
  • the base station can notify the mobile station of the codebook size information indicating the codebook size quasi-statically or dynamically, so that the mobile station can use the codebook according to the codebook.
  • the size information determines the search range for beam selection.
  • the base station may also notify the mobile station of the indication rotation in a quasi-static or dynamic manner in the case where there are multiple rotation parameters that can be used and the auxiliary beam sequence can be generated from the base beam sequence only by the rotation parameters without the need for an auxiliary codebook.
  • the rotation information of the parameter so that the mobile station determines the search range of the beam selection based on the rotation information.
  • the base station may quasi-statically notify the mobile station of the codebook size information and the rotation information through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the base station can dynamically notify the mobile station of the codebook size information and the rotation information through L1 layer signaling.
  • FIG. 9 is a block diagram showing a base station 900 in accordance with an embodiment of the present invention.
  • the base station 900 includes a training sequence generating unit 910, a transmitting unit 920, and a beam determining unit 930.
  • the base station 900 may include other components in addition to these three units, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein.
  • the specific details of the operations described below performed by the base station 900 according to an embodiment of the present invention are the same as those described above with reference to FIG. 5, repeated description of the same details is omitted herein to avoid redundancy.
  • the training sequence generation unit 910 generates a training sequence of the base beam sequence based on the master codebook.
  • the transmitting unit 920 transmits the training sequence of the generated base beam sequence to the mobile station.
  • the base beam sequence generated from the master codebook may be a base beam sequence generated using the master codebook formed by the master codebook forming unit 710.
  • the base station 900 may further include a version size determining unit to determine a first phase shift parameter and/or a master codebook size information indicating a codebook size according to a number of phases supported by a phase shifter used in the base station.
  • the sending unit may notify the mobile station to the training sequence of the basic codebook size detection basic beam size indicating the size of the primary codebook in a quasi-static or dynamic manner.
  • the resource configuration may be predetermined to indicate resources for transmitting the training sequence.
  • the sending unit 920 can send the training sequence of the basic beam sequence to the mobile station according to the predetermined resource configuration.
  • the base station may change the resource configuration for transmitting the training sequence as needed, the transmitting unit 920 notifies the mobile station of the configuration quasi-statically or dynamically, and the transmitting unit 920 uses the notification to the mobile station.
  • the resource indicated by the resource configuration sends the training sequence of the basic beam sequence to the mobile station.
  • the transmitting unit 920 can quasi-statically notify the mobile station of the resource configuration for transmitting the training sequence through RRC signaling.
  • the transmitting unit 920 can dynamically notify the mobile station of the resource configuration for transmitting the training sequence through L1 layer signaling.
  • the beam determining unit 930 can determine a preferred base beam in the base beam sequence based on feedback from the training sequence of the base beam sequence received from the mobile station.
  • the training sequence generation unit 910 can then generate a training sequence of the auxiliary beam sequence based on the rotation parameters and the preferred base beam, and the transmitting unit 920 can transmit the training sequence of the auxiliary beam array to the mobile station, wherein the assistance is performed by the pair of preferred base beams.
  • the number of rotations indicated by the rotation parameters of the codebook is rotated to obtain the auxiliary beam sequence.
  • the preferred base beam rotation may be rotated according to the rotation parameters to obtain an auxiliary beam sequence corresponding to the preferred base beam.
  • the rotation parameter is 3, and the 3 auxiliary beams corresponding to the preferred base beam can be obtained by rotating the preferred base beam 3 times. More specifically, in the case where the rotation parameter is associated with an angle between two adjacent base beams in the base beam array, the width of the preferred base beam may be equally divided according to the number indicated by the rotation parameter, To form an auxiliary beam corresponding to the preferred base beam.
  • the auxiliary beam sequence may be a beam sequence generated using, for example, an auxiliary codebook formed according to the above formula (2) and a preferred base beam.
  • the rotation parameters are predetermined. Further, similar to the main codebook size information, the transmitting unit 920 can also notify the mobile station of the rotation information indicating the rotation parameter quasi-statically or dynamically. Thus, the mobile station can detect the training sequence of the auxiliary beam sequence.
  • a resource configuration may be predetermined to indicate a resource for transmitting a training sequence.
  • the transmitting unit 920 can send a training sequence of the auxiliary beam sequence to the mobile station according to the predetermined resource configuration.
  • the base station may change the resource configuration for transmitting the training sequence as needed, and the transmitting unit 920 notifies the mobile station of quasi-static or dynamic, and indicates using the resource configuration notified to the mobile station.
  • the resource sends a training sequence of the auxiliary beam sequence to the mobile station.
  • beam determining unit 930 can determine a preferred auxiliary beam in the auxiliary beam array based on feedback from the mobile station's training sequence for the auxiliary beam array.
  • Base station 900 can transmit data to the mobile station using the determined preferred auxiliary beam.
  • the training sequence generation unit 910 generates a training sequence of the auxiliary beam sequence after determining the preferred base beam and transmits it to the mobile station through the transmitting unit 920, and determines the preferred auxiliary beam by the beam determining unit 930, however
  • base station 900 may not perform this operation.
  • the base station 900 may further include a channel quality determining unit to further determine whether the channel corresponding to the preferred base beam satisfies the predetermined channel quality according to the feedback of the training sequence of the auxiliary beam array received from the mobile station. When the predetermined channel quality is met, the base station can directly transmit data to the mobile station using the preferred base beam.
  • the training sequence generation unit 910, the transmitting unit 920, and the beam determining unit 930 may perform beam determination on the spatial dimensions sequentially or in parallel to determine preferred beams in respective spatial dimensions.
  • the base station can also generate a preferred three-dimensional beam for transmitting data to the mobile station based on preferred beams in respective spatial dimensions.
  • FIG. 10 is a block diagram showing a mobile station 1000 in accordance with an embodiment of the present invention.
  • the mobile station 1000 includes a detecting unit 1010, a beam determining unit 1020, and a transmitting unit 1030.
  • the mobile station 1000 may include other components in addition to these three units, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein. Further, since the specific details of the operations described below performed by the mobile station 1000 according to an embodiment of the present invention are the same as those described above with reference to FIG. 6, the repeated description of the same details is omitted herein to avoid redundancy.
  • the detecting unit 1010 detects a training sequence of the base beam sequence transmitted by the base station.
  • the method illustrated in FIG. 6 may further include receiving primary codebook size information indicating a size of the primary codebook.
  • the detecting unit 1010 can detect the training sequence of the base beam sequence according to the primary codebook size information.
  • the basic beam sequence generated according to the primary codebook may be a basic beam sequence generated by the base station using the primary codebook formed by the primary codebook forming unit 710, and will not be described in detail herein.
  • the resource configuration may be predetermined to indicate the resources of the training sequence for use.
  • the detecting unit 1010 detects the training sequence of the base beam sequence according to the predetermined resource configuration.
  • the mobile station described in FIG. 10 may further include a receiving unit to receive a resource configuration for transmitting a training sequence notified by the base station.
  • the detecting unit 1010 can detect the training sequence of the basic beam sequence according to the received resource configuration.
  • the beam determining unit 1020 may determine a preferred base beam from the base beam sequence according to the detection result of the training sequence of the base beam sequence, and the sending unit 1030 may feed back information about the preferred base beam to the base station, so that the base station feeds back according to the mobile station.
  • the information of the base beam determines a preferred base beam for the mobile station, and an auxiliary beam sequence is generated based on the preferred base beam and rotation parameters for the mobile station.
  • the information of the preferred base beam may be an index of the beam, channel quality information, and the like.
  • the detecting unit 1010 can also detect the training sequence of the auxiliary beam sequence transmitted by the base station.
  • the mobile station 1000 may further include a receiving unit to receive rotation information indicating a rotation parameter.
  • the detecting unit 1010 can detect the training sequence of the auxiliary beam sequence according to the rotation information.
  • the detecting unit 1010 may detect the training sequence of the auxiliary beam sequence according to the predetermined resource configuration.
  • the receiving unit in the mobile station may further receive a resource configuration notified by the base station for transmitting the training sequence.
  • the detecting unit 1010 can detect the auxiliary according to the received resource configuration. Training sequence of the beam sequence.
  • the beam determining unit 1020 may determine a preferred auxiliary beam from the auxiliary beam sequence based on the detection result of the training sequence of the auxiliary beam sequence, and the transmitting unit 1030 feeds back information about the preferred auxiliary beam to the base station.
  • the information of the auxiliary beam may be an index of the beam, channel quality information, or the like.
  • the base station can transmit data to the mobile station using the determined preferred auxiliary beam.
  • the mobile station 1000 feeds back the information about the preferred base beam to the base station
  • the training sequence of the auxiliary beam sequence is detected by the detecting unit 1010
  • the preferred auxiliary beam is determined from the auxiliary beam sequence by the beam determining unit 1020 according to the detection result.
  • the transmitting unit 1030 notifying the base station by the transmitting unit 1030, however, according to an embodiment of the present invention, when the channel corresponding to the determined preferred base beam satisfies a predetermined channel quality (ie, has a higher channel quality), the base station can use the preferred base beam to the mobile station send data. Therefore, the mobile station does not need to perform this operation.
  • the base station forms a beam in a multi-stage manner, and accordingly the mobile station performs beam detection in a multi-stage manner, which enables the base station to improve MIMO with lower hardware complexity.
  • the spatial resolution of the beams produced by the system and reduces the overhead of transmitting training sequences.
  • multi-stage beam determination may not be required.
  • the operations of the above-described apparatus 700, base station 900, and mobile station 1000 may be implemented by hardware, by software modules executed by a processor, and further by a combination of the two.
  • the software modules can be arranged in any format of storage medium, such as RAM (random access memory), flash memory, ROM (read only memory), EPROM (erasable programmable ROM), EEPROM (electrically erasable programmable ROM) , registers, hard drives, removable discs, and CD-ROM.
  • RAM random access memory
  • flash memory ROM (read only memory)
  • EPROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard drives, removable discs, and CD-ROM.
  • Such a storage medium is coupled to the processor such that the processor can write information to or read information from the storage medium.
  • Such storage media can also be accumulated in the processor.
  • Such a storage medium and processor can be arranged in an ASIC.
  • Such an ASIC can be arranged in device 700, base station 900, and mobile station 1000.
  • As a discrete component, such a storage medium and processor can be disposed in device 700, base station 900, and mobile station 1000.
  • the operations performed by the master codebook forming unit, the rotation parameter determining unit, and the dimension codebook forming unit in the above-described apparatus 700 may be performed by a processor.
  • the operations performed by the training sequence generating unit and the beam determining unit in the base station described above may be performed by a processor.
  • the detection unit in the above mobile station can be executed by a processor and The operation performed by the beam determining unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种形成码本的方法及其装置、基站和移动台。根据一个本发明实施例的形成码本的方法包括:根据第一相移参数形成第一主码本,其中第一主码本用于产生在第一空间维度上的第一基础波束序列;确定第一旋转参数,其中第一旋转参数用于对第一基础波束序列进行相位旋转,以生成第一空间维度上的第一辅助波束序列;根据第一主码本和第一旋转参数形成第一空间维度码本。

Description

形成码本的方法及其装置、基站和移动台 技术领域
本发明涉及无线通信领域,并且具体涉及可以在无线通信系统中使用的形成码本的方法及其装置、基站和移动台。
背景技术
全维度多输入多输出(Full Dimensional MIMO,FD-MIMO)和大规模多输入多输出(Massive MIMO)天线从3GPP(第三代合作伙伴计划)研究的LTE(长期演进)Release 13开始进入标准化。与传统的MIMO系统相比,在FD-MIMO系统和大规模MIMO系统中,当移动台的数据增加时,基站能够使用更多天线进行数据传输,以提高系统吞吐量。
然而,FD-MIMO系统和大规模MIMO系统所需要的码本的大小以及硬件设备的复杂度也随着系统天线数和能够形成的波束数量的增加而显著增加。此外,用于波束序列选择的参考信号开销也相应地增加。
例如,已经提出了对于FD-MIMO系统和大规模MIMO系统的混合波束赋形方法,其中在基带处理中进行数字波束赋形,然后在射频(RF)处理中进行模拟波束赋形,从而生成赋形后的波束,以减少硬件设备的复杂度。在模拟波束赋形中,可通过增加移相器所支持的相位数量来形成更多的波束。然而,这导致在提高了波束分辨率的同时,提高了系统中硬件设备的实现复杂度并且增加了码本的大小。
发明内容
根据本发明的一个方面,提供了一种形成用于多输入多输出(MIMO)天线阵列的码本的方法,包括:根据第一相移参数形成第一主码本,其中第一主码本用于产生在第一空间维度上的第一基础波束序列;确定第一旋转参数,其中第一旋转参数用于对第一基础波束序列进行相位旋转,以生成第一空间维度上的第一辅助波束序列;根据第一主码本和第一旋转参数形成第一空间维度码本。
根据本发明的另一个方面,提供了一种由基站执行的波束确定方法,包 括:根据主码本生成基础波束序列的训练序列,并向移动台发送基础波束序列的训练序列;根据从移动台接收的对基础波束序列的训练序列的反馈,在基础波束序列中确定优选基础波束;根据旋转参数和优选基础波束生成辅助波束序列的训练序列,并向移动台发送辅助波束阵列的训练序列,其中通过对优选基础波束按照辅助码本的旋转参数所指示的数量进行旋转得到辅助波束序列;根据从移动台接收的对辅助波束序列的训练序列的反馈,在辅助波束序列中确定优选辅助波束。
根据本发明的另一个方面,提供了一种由移动台执行的波束确定方法,包括:检测基站发送的基础波束序列的训练序列;根据对基础波束序列的训练序列的检测结果,从基础波束序列中确定优选基础波束,并向基站反馈关于优选基础波束的信息;检测基站发送的辅助波束序列的训练序列;根据对辅助波束序列的训练序列的检测结果,从辅助波束序列中确定优选辅助波束,并向基站反馈关于优选辅助波束的信息。
根据本发明的另一个方面,提供了一种形成用于MIMO天线阵列的码本的装置,包括:主码本形成单元,配置为根据第一相移参数形成第一主码本,其中所述第一主码本用于产生在第一空间维度上的第一基础波束序列;旋转参数确定单元,配置为确定第一旋转参数,其中第一旋转参数用于对所述第一基础波束序列进行相位旋转,以生成第一空间维度上的第一辅助波束序列;维度码本形成单元,配置为根据所述第一主码本和所述第一旋转参数形成第一空间维度码本。
根据本发明的另一个方面,提供了一种基站,包括:训练序列生成单元,配置为根据主码本生成基础波束序列的训练序列;发送单元,配置为向移动台发送基础波束序列的训练序列;波束确定单元,配置为根据从移动台接收的对基础波束序列的训练序列的反馈,在基础波束序列中确定优选基础波束,其中训练序列生成单元还配置为根据旋转参数和优选基础波束生成辅助波束阵列的训练序列;发送单元还配置为向移动台发送辅助波束序列的训练序列,其中通过对优选基础波束按照辅助码本的旋转参数所指示的数量进行旋转得到辅助波束序列;波束确定单元还配置为根据从移动台接收的对辅助波束序列的训练序列的反馈,在辅助波束阵列中确定优选辅助波束。
根据本发明的另一个方面,提供了一种移动台,包括:检测单元,配置 为检测基站发送的基础波束序列的训练序列;波束确定单元,配置为根据对所述基础波束序列的训练序列的检测结果,从所述基础波束阵列中确定优选基础波束;发送单元,配置为向基站反馈关于所述优选基础波束的信息,其中所述检测单元还配置为检测基站发送的辅助波束序列的训练序列;所述波束确定单元还配置为根据对所述辅助波束序列的训练序列的检测结果,从所述辅助波束序列中确定优选辅助波束,发送单元还配置为向基站反馈关于所述优选辅助波束的信息。
根据本发明上述方面的形成码本的方法及其装置、基站和移动台,通过多阶段的方式形成码本,这使得无线通信系统能够在使用尽可能小的码本尺寸的情况下,支持大规模MIMO或FD-MIMO的使用。此外,相应地减少了用于波束序列选择的参考信号的开销。
附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目的、特征、优点将会变得更加清楚。
图1是示出了根据本发明的一个示例,形成用于MIMO天线阵列的码本的方法的流程图。
图2是示出了当在第一空间维度上的天线的数量=8,第一基础波束序列中的第一基础波束的波束样式的数量=8,并且第一相移参数=4时,根据第一主码本产生的第一基础波束序列的示意图。
图3是示出了当在第一空间维度上的天线的数量=8,第一基础波束序列中的第一基础波束的波束样式的数量=8,并且第一旋转参数=3时,根据第一辅助码本,对于图2中所示的第一基础波束序列中的第一基础波束相位旋转后生成的第一辅助波束序列的示意图。
图4是示出了根据本发明的一个示例,根据与图1中所示的方法类似的方法形成第二空间维度码本的方法流程图。
图5是示出了根据本发明的一个实施例、由基站执行的波束确定方法的流程图。
图6示出了根据本发明的实施例,由移动台执行的波束确定方法的流程图。
图7是示出了根据一个本发明实施例的形成用于MIMO天线阵列的码本的装置的框图。
图8是示出了根据一个本发明实施例的主码本形成单元的框图。
图9是示出了根据一个本发明实施例的基站的框图。
图10是示出了根据一个本发明实施例的移动台的框图。
具体实施方式
下面将参照附图来描述根据一个本发明实施例的形成用于MIMO天线阵列的码本的方法和装置、以及基站和移动台。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。此外,这里所述的UE可以包括各种类型的用户终端,例如移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用UE和移动台。
本发明的实施例改进了MIMO系统中所使用的码本,以及从MIMO系统所产生的波束序列中选择波束的过程。下面,将参照附图来描述本发明的实施例。
以下,参照图1描述根据一个本发明实施例的由基站执行的信道状态信息参考信号(CSI-RS)发送方法。图1是示出了根据本发明的一个示例,形成用于MIMO天线阵列的码本的方法100的流程图。如图1所示,在步骤S101中,根据第一相移参数形成第一主码本,其中所述第一主码本用于产生在第一空间维度上的第一基础波束序列。例如,第一空间维度可以是水平维度或垂直维度。
根据本发明的一个示例,第一相移参数可指示产生主码本对应的第一基础波束序列所使用的移相器所支持的相位数量。因而,可根据能够在无线基站中设置的移相器所支持的相位数量来确定第一相移参数。根据本发明的一个示例,第一相移参数可指示较小的数量,从而减少基站的硬件成本。可根据第一相移参数Nx获得基站在第一空间维度的相移序列:
Figure PCTCN2017092582-appb-000001
其中第一空间维度范围可以为[0,2π]。
此外,根据本发明的另一示例,还可根据希望产生的第一基础波束序列中第一基础波束的数量和MIMO天线阵列中在第一空间维度上的天线的数 量来形成第一主码本。具体地,可根据第一基础波束序列中的第一基础波束的波束样式的数量Kx和MIMO天线阵列中在第一空间维度上的天线的数量Mx可形成索引矩阵Mx×Kx,然后根据所确定的第一相移参数Nx和索引矩阵,形成第一主码本。例如,可根据以下公式(1)形成第一主码本
Figure PCTCN2017092582-appb-000002
Figure PCTCN2017092582-appb-000003
其中,mx=0,1...Mx-1;kx=0,1...Kx-1。
图2是示出了当在第一空间维度上的天线的数量Mx=8,第一基础波束序列中的第一基础波束的波束样式的数量Kx=8,并且第一相移参数Nx=4时,根据第一主码本
Figure PCTCN2017092582-appb-000004
产生的第一基础波束序列的示意图。如图2所示,根据第一主码本
Figure PCTCN2017092582-appb-000005
产生的第一基础波束序列在第一空间维度范围[0,2π]中分布,并且可覆盖第一空间维度范围。
返回图1,在步骤S102中,确定第一旋转参数,其中第一旋转参数用于对第一基础波束序列进行相位旋转,以生成第一空间维度上的第一辅助波束序列。根据本发明的一个示例,第一旋转参数可指示第一基础波束序列中的第一基础波束所对应的第一辅助波束的数量。
例如,可将第一基础波束序列中的一个第一基础波束旋转第一旋转参数所指示的次数,以获得与该第一基础波束对应的第一辅助波束序列。假设第一旋转参数为3,可通过将第一基础波束序列中的一个第一基础波束旋转3次来获得与该第一基础波束对应的3个第一辅助波束。换言之,当第一旋转参数为3时,第一基础波束序列中的每个第一基础波束对应于3个第一辅助波束。
此外,第一旋转参数可与第一基础波束阵列中的相邻的两个第一基础波束的之间的夹角相关联。例如,可根据第一旋转参数,将相邻的两个第一基础波束的之间的夹角进行等分,以形成所述第一辅助波束序列中的第一辅助波束。相邻的两个第一基础波束的之间的夹角可指示一个第一基础波束的宽度。假设第一旋转参数为5,可将一个第一基础波束的一个第一基础波束的宽度5等分,以形成该第一基础波束所对应的5个第一辅助波束。
根据本发明的一个示例,可根据第一旋转参数Lx形成第一辅助码本。例如,可根据以下公式(2)形成第一辅助码本
Figure PCTCN2017092582-appb-000006
Figure PCTCN2017092582-appb-000007
其中,mx=0,1...Mx-1;lx=0,1...Lx-1。
图3是示出了当在第一空间维度上的天线的数量Mx=8,第一基础波束序列中的第一基础波束的波束样式的数量Kx=8,并且第一旋转参数Lx=3时,根据第一辅助码本
Figure PCTCN2017092582-appb-000008
对于图2中所示的第一基础波束序列中的第一基础波束#210相位旋转后生成的第一辅助波束序列的示意图。如图3所示,在第一旋转参数Lx=3的情况下,对图2中所示的第一基础波束#210进行旋转3次旋转,以形成与第一基础波束#210对应的第一辅助波束#310、#320和#330。
从而,即使第一相移参数指示较小的数量(即,第一基础波束序列在第一空间维度上分辨率较低)的情况下,也可通过使用旋转参数对基础波束进行旋转,来增加MIMO天线阵列能够产生的波束的数量,提高了波束的分辨率。
返回图1,在步骤S103中,根据第一主码本和第一旋转参数形成第一空间维度码本。在如上所述根据第一旋转参数形成第一辅助码本的情况下,可根据第一主码本和所述第一辅助码本形成第一空间维度码本。例如,可对第一主码本和第一辅助码本进行内积,以形成第一空间维度码本。
此外,可对于另一空间维度进行与图1中所示的方法100类似的操作,以形成第二空间维度码本,然后根据第一空间维度码本和第二空间维度码本形成三维空间码本。图4是示出了根据本发明的一个示例,根据与图1中所示的方法100类似的方法形成第二空间维度码本的方法400流程图。
如图4所示,在步骤S401中,根据第二相移参数形成第二主码本,其中第二主码本用于产生在第二空间维度上的第二基础波束序列。例如,当第一空间维度是水平维度时第二空间维度是垂直维度,反之亦然。
根据本发明的一个示例,第二相移参数可指示产生主码本对应的第二基础波束序列所使用的移相器所支持的相位数量。因而,可根据能够在无线基站中设置的移相器所支持的相位数量来确定第二相移参数。可根据第二相移参数Ny获得基站在第二空间维度的相移序列:
Figure PCTCN2017092582-appb-000009
其中第二空间维度范围可以为[-0.5π,0.5π]。
此外,根据本发明的另一示例,还可根据希望产生的第二基础波束序列中第二基础波束的数量和MIMO天线阵列中在第二空间维度上的天线的数量来形成第二主码本。例如,根据第二基础波束序列中的第二基础波束的波束样式的数量Ky和MIMO天线阵列中在第二空间维度上的天线的数量My可形成索引矩阵My×Ky,然后可根据所确定的第二相移参数Nx和索引矩阵,形成第二主码本。又例如,可根据以下公式(3)形成第二主码本
Figure PCTCN2017092582-appb-000010
Figure PCTCN2017092582-appb-000011
其中,my=0,1...My-1;ky=0,1...Ky-1。
在步骤S402中,确定第二旋转参数,其中第二旋转参数用于对第二基础波束序列进行相位旋转,以生成第二空间维度上的第二辅助波束序列。根据本发明的一个示例,第二旋转参数可指示第二基础波束序列中的第二基础波束所对应的第二辅助波束的数量。
例如,可将第二基础波束序列中的一个第二基础波束旋转第二旋转参数所指示的次数,以获得与该第二基础波束对应的第二辅助波束序列。假设第二旋转参数为3,可通过将第二基础波束序列中的一个第二基础波束旋转3次来获得与该第二基础波束对应的3个第二辅助波束。换言之,当第二旋转参数为3时,第二基础波束序列中的每个第二基础波束对应于3个第二辅助波束。
此外,第二旋转参数可与第二基础波束阵列中的相邻的两个第二基础波束的之间的夹角相关联。例如,可根据第二旋转参数,将相邻的两个第二基础波束的之间的夹角进行等分,以形成所述第二辅助波束序列中的第二辅助波束。相邻的两个第二基础波束的之间的夹角可指示一个第二基础波束的宽度。假设第二旋转参数为5,可将一个第二基础波束的一个第二基础波束的宽度5等分,以形成该第二基础波束所对应的5个第二辅助波束。
根据本发明的一个示例,可根据第二旋转参数Ly形成第二辅助码本。例如,可根据以下公式(4)形成第二辅助码本
Figure PCTCN2017092582-appb-000012
Figure PCTCN2017092582-appb-000013
其中,my=0,1...My-1;ly=0,1...Ly-1。
然后在步骤S403中,根据第二主码本和第二旋转参数形成第二空间维 度码本。在如上所述根据第二旋转参数形成第二辅助码本的情况下,可根据第二主码本和所述第二辅助码本形成第二空间维度码本。例如,可对第二主码本和第二辅助码本进行内积,以形成第二空间维度码本。
然后,可通过根据图1中所示的方法100获得的第一空间维度码本和根据图4中所示的方法400获得的第二空间维度码本形成三维空间码本。例如,可通过以下公式(5)形成三维空间码字:
Figure PCTCN2017092582-appb-000014
其中
Figure PCTCN2017092582-appb-000015
表示对
Figure PCTCN2017092582-appb-000016
Figure PCTCN2017092582-appb-000017
进行内积,
Figure PCTCN2017092582-appb-000018
表示对
Figure PCTCN2017092582-appb-000019
Figure PCTCN2017092582-appb-000020
进行内积之后进行转置,其中
Figure PCTCN2017092582-appb-000021
Figure PCTCN2017092582-appb-000022
分别为码本
Figure PCTCN2017092582-appb-000023
Figure PCTCN2017092582-appb-000024
中的列向量。
如上所述,为了减少计算的复杂度,MIMO系统可进行包括数字波束赋形和模拟波束赋形的混合波束赋形。优选地,根据本发明实施例的形成码本的方法形成的各个码本可用于模拟波束赋形。
在根据本发明以上实施例的形成用于MIMO天线阵列的码本的方法中,通过多阶段的方式形成码本,这使得无线通信系统能够在使用尽可能小的码本尺寸的情况下,支持大规模MIMO或FD-MIMO的使用。
此外,根据本发明实施例形成的各个码本可用于在基站和移动台之间进行的波束选择。在此情况下,在基站中预先存储所需要的、根据上述实施例形成的各个码本。以下,参照图5描述根据一个本发明实施例的由基站执行的波束确定方法,并且参照图6描述根据一个本发明实施例的由移动台执行的波束确定方法。
在图5和图6所示的方法中,基站可预先存储根据上述方法100所形成的各个码本(例如,各个维度的主码本、辅助码本等)。在存在多种可使用的主码本和/或辅助码本的情况下,基站可准静态或动态地向移动台通知指示所述码本大小的码本大小信息,以便于移动台根据码本大小信息确定波束选择的搜索范围。
此外,在存在多种可使用的旋转参数并且仅通过旋转参数就可以根据基础波束序列产生辅助波束序列而不需要辅助码本的情况下,基站还可准静态 或动态地向移动台通知指示旋转参数的旋转信息,以便于移动台根据旋转信息确定波束选择的搜索范围。例如,基站可通过无线资源控制(RRC)信令,准静态地向移动台通知码本大小信息和旋转信息。又例如,基站可通过L1层信令,动态地向移动台通知码本大小信息和旋转信息。
图5是示出了根据本发明的一个实施例、由基站执行的波束确定方法500的流程图。如图5所示,在步骤S501中,根据主码本生成基础波束序列的训练序列,并向移动台发送基础波束序列的训练序列(例如,参考信号)。根据主码本生成的基础波束序列可以是使用根据上述步骤S101形成的主码本生成的基础波束序列。优选地,可根据希望基站中使用的移相器所支持的相位数量,确定第一相移参数和/或指示码本大小的主码本大小信息。并且可准静态或动态地向移动台通知指示所述主码本大小的主码本大小信息。从而,移动台可根据主码本大小信息检测基础波束序列的训练序列。
根据本发明的一个示例,可预先确定资源配置以指示用于发送训练序列的资源。在步骤S501中,基站可根据预先确定的资源配置,向移动台发送所述基础波束序列的训练序列。可替换地,根据本发明的另一个示例,基站根据需要改变用于发送训练序列的资源配置,准静态或动态地向移动台通知,并且使用向移动台通知的资源配置所指示的资源向移动台发送所述基础波束序列的训练序列。例如,基站可通过RRC信令准静态地向移动台通知用于发送训练序列的资源配置。又例如,基站可通过L1层信令,动态地向移动台通知用于发送训练序列的资源配置。
在步骤S502中,根据从移动台接收的对基础波束序列的训练序列的反馈,在基础波束序列中确定优选基础波束。然后在步骤S503中,根据旋转参数和优选基础波束生成辅助波束序列的训练序列,并向移动台发送所述辅助波束阵列的训练序列,其中通过对优选基础波束按照所述辅助码本的旋转参数所指示的数量进行旋转得到所述辅助波束序列。
例如,如以上在步骤S102中所描述的,可根据旋转参数,对优选基础波束进行旋转,以获得与优选基础波束对应的辅助波束序列。假设旋转参数为3,可通过将优选基础波束旋转3次来获得与优选基础波束对应的3个辅助波束。更具体地,在旋转参数与基础波束阵列中的相邻的两个基础波束的之间的夹角相关联的情况下,可将优选基础波束的宽度根据旋转参数所指示 的数量进行等分,以形成优选基础波束所对应的辅助波束。此外,辅助波束序列可以是,使用例如根据上述公式(2)形成的辅助码本和优选基础波束生成的波束序列。
根据本发明的一个示例,预先确定旋转参数。此外与主码本大小信息类似,基站也可准静态或动态地向移动台通知指示所述旋转参数的旋转信息。从而,移动台可检测辅助波束序列的训练序列。
此外如上所述,根据本发明的一个示例,可预先确定资源配置以指示用于发送训练序列的资源。在步骤S503中,基站可根据预先确定的资源配置,向移动台发送辅助波束序列的训练序列。可替换地,根据本发明的另一个示例,基站根据需要改变用于发送训练序列的资源配置,准静态或动态地向移动台通知,并且使用向移动台通知的资源配置所指示的资源向移动台发送辅助波束序列的训练序列。
最后,在步骤S504中,根据从移动台接收的对所述辅助波束阵列的训练序列的反馈,在所述辅助波束阵列中确定优选辅助波束。基站可使用所确定的优选辅助波束向移动台发送数据。
应注意,虽然在图5所示的波束确定方法500中包括在确定优选基础波束之后通过步骤S503生成辅助波束序列的训练序列,并且通过步骤S504确定优选辅助波束,然而在可替换的实施例中,可不包括步骤S503和步骤S504。具体地,图5中所示的方法还可包括在通过步骤S502从基础波束序列中选择了优选基础波束之后,根据从移动台接收的对辅助波束阵列的训练序列的反馈,进一步确定优选基础波束对应的信道是否满足预定信道质量。当满足预定信道质量时,基站可使用优选基础波束向移动台发送数据,而不需要进行步骤S503和步骤S504。
可对各个空间维度顺序或并行执行图5中所示的波束方法,以确定在各个空间维度上的优选波束。此外,基站还可根据在各个空间维度上的优选波束生成用于向移动台发送数据的优选三维波束。
以下,参照图6描述与图5中所示的方法500对应的、由移动台执行的波束确定方法。图6示出了根据本发明的实施例,由移动台执行的波束确定方法600的流程图。
如图6所示,在步骤S601中,检测基站发送的基础波束序列的训练序 列。优选地,图6中所示的方法还可包括接收指示主码本大小的主码本大小信息。在步骤S601中,可根据主码本大小信息确定基站产生的基础波束序列,并且检测基础波束序列的训练序列。例如,根据主码本生成的基础波束序列可以是基站使用根据上述步骤S101形成的主码本生成的基础波束序列,在此不再详述。
根据本发明的一个示例,可预先确定资源配置以指示用于的训练序列的资源。在步骤S601中,根据预先确定的资源配置,检测基础波束序列的训练序列。可替换地,根据本发明的另一个示例,图6中所述的方法还可包括接收基站通知的用于发送训练序列的资源配置。在步骤S601中,可根据接收的资源配置,检测所述基础波束序列的训练序列。
在步骤S602中,可根据对基础波束序列的训练序列的检测结果,从基础波束序列中确定优选基础波束,并向基站反馈关于优选基础波束的信息,以便于基站根据移动台反馈的优选基础波束的信息确定对于该移动台的优选基础波束,进而根据对于该移动台的优选基础波束和旋转参数产生辅助波束序列。例如,优选基础波束的信息可以是该波束的索引、信道质量信息等。
然后,在步骤S603中,可检测基站发送的辅助波束序列的训练序列。优选地,图6中所示的方法还可包括接收指示旋转参数的旋转信息。在步骤S603中,可根据旋转信息检测辅助波束序列的训练序列。
在预先确定资源配置以指示用于的训练序列的资源的情况下,在步骤S603中,根据预先确定的资源配置,检测辅助波束序列的训练序列。可替换地,根据本发明的另一个示例,图6中所述的方法还可包括接收基站通知的用于发送训练序列的资源配置。在步骤S603中,可根据接收的资源配置,检测辅助波束序列的训练序列。
在步骤S604中,可根据对辅助波束序列的训练序列的检测结果,从辅助波束序列中确定优选辅助波束,并向基站反馈关于优选辅助波束的信息。例如,优选辅助波束的信息可以是该波束的索引、信道质量信息等。从而,基站可使用所确定的优选辅助波束向移动台发送数据。
应注意,虽然在图6所示的波束确定方法600中包括在向基站反馈关于优选基础波束的信息之后,通过步骤S603检测辅助波束序列的训练序列,并且通过步骤S604根据检测结果从辅助波束序列中确定优选辅助波束并向 基站通知,然而,根据本发明的实施例,当所确定优选基础波束对应的信道满足预定信道质量(即,具有较高的信道质量)时,基站可使用优选基础波束向移动台发送数据。因此,移动台不需要执行步骤S603和步骤S604。
在根据本发明以上实施例的由基站和移动台执行的波束确定方法中,基站以多阶段的方式形成波束,相应地移动台以多阶段的方式来进行波束检测,这使得基站以较低的硬件复杂度也能提高MIMO系统所产生的波束的空间分辨率,并且减少了发送训练序列的开销。此外,在优选基础波束的信道质量满足预定传输条件的情况下,可不需要进行多阶段的波束确定。
下面,参照图7来描述根据一个本发明实施例的形成用于MIMO天线阵列的码本的装置。图7是示出了根据一个本发明实施例的形成用于MIMO天线阵列的码本的装置700的框图。如图7所示,装置700包括主码本形成单元710、旋转参数确定单元720和维度码本形成单元730。除了这三个单元以外,装置700还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据一个本发明实施例的装置700执行的下述操作的具体细节与在上文中参照图1-4描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
主码本形成单元710根据第一相移参数形成第一主码本,其中所述第一主码本用于产生在第一空间维度上的第一基础波束序列。例如,第一空间维度可以是水平维度或垂直维度。
根据本发明的一个示例,第一相移参数可指示产生主码本对应的第一基础波束序列所使用的移相器所支持的相位数量。因而,可根据能够在无线基站中设置的移相器所支持的相位数量来确定第一相移参数。根据本发明的一个示例,第一相移参数可指示较小的数量,从而减少基站的硬件成本。可根据第一相移参数Nx获得基站在第一空间维度的相移序列:
Figure PCTCN2017092582-appb-000025
其中第一空间维度范围可以为[0,2π]。
此外,根据本发明的另一示例,还可根据希望产生的第一基础波束序列中第一基础波束的数量和MIMO天线阵列中在第一空间维度上的天线的数量来形成第一主码本。图8是示出了根据一个本发明实施例的主码本形成单元710的框图。如图7所示,主码本形成单元710可包括索引矩阵形成模块810和主码本形成模块820。索引矩阵形成模块810可根据第一基础波束序 列中的第一基础波束的波束样式的数量Kx和MIMO天线阵列中在第一空间维度上的天线的数量Mx可形成索引矩阵Mx×Kx,然后主码本形成模块820可根据所确定的第一相移参数Nx和索引矩阵,形成第一主码本。又例如,可根据以上述公式(1)形成第一主码本
Figure PCTCN2017092582-appb-000026
旋转参数确定单元720确定第一旋转参数,其中第一旋转参数用于对第一基础波束序列进行相位旋转,以生成第一空间维度上的第一辅助波束序列。根据本发明的一个示例,第一旋转参数可指示第一基础波束序列中的第一基础波束所对应的第一辅助波束的数量。
例如,可将第一基础波束序列中的一个第一基础波束旋转第一旋转参数所指示的次数,以获得与该第一基础波束对应的第一辅助波束序列。假设第一旋转参数为3,可通过将第一基础波束序列中的一个第一基础波束旋转3次来获得与该第一基础波束对应的3个第一辅助波束。换言之,当第一旋转参数为3时,第一基础波束序列中的每个第一基础波束对应于3个第一辅助波束。
此外,第一旋转参数可与第一基础波束阵列中的相邻的两个第一基础波束的之间的夹角相关联。例如,可根据第一旋转参数,将相邻的两个第一基础波束的之间的夹角进行等分,以形成所述第一辅助波束序列中的第一辅助波束。相邻的两个第一基础波束的之间的夹角可指示一个第一基础波束的宽度。假设第一旋转参数为5,可将一个第一基础波束的一个第一基础波束的宽度5等分,以形成该第一基础波束所对应的5个第一辅助波束。
根据本发明的一个示例,装置700还可包括辅助码本形成单元,以根据第一旋转参数Lx形成第一辅助码本。例如,辅助码本形成单元可根据上述公式(2)形成第一辅助码本
Figure PCTCN2017092582-appb-000027
维度码本形成单元730可根据第一主码本和第一旋转参数形成第一空间维度码本。在如上所述根据第一旋转参数形成第一辅助码本的情况下,可根据第一主码本和所述第一辅助码本形成第一空间维度码本。例如,可对第一主码本和第一辅助码本进行内积,以形成第一空间维度码本。
此外,装置700中的各个单元还可通过与形成第一空间维度码本类似的方式形成第二空间维度码本,然后根据第一空间维度码本和第二空间维度码本形成三维空间码本。具体地,主码本形成单元710可根据第二相移参数形 成第二主码本,其中第二主码本用于产生在第二空间维度上的第二基础波束序列。例如,当第一空间维度是水平维度时第二空间维度是垂直维度,反之亦然。
根据本发明的一个示例,第二相移参数可指示产生主码本对应的第二基础波束序列所使用的移相器所支持的相位数量。因而,可根据能够在无线基站中设置的移相器所支持的相位数量来确定第二相移参数。可根据第二相移参数Ny获得相移序列:
Figure PCTCN2017092582-appb-000028
其中第二空间维度范围可以为[-0.5π,0.5π]。
此外,根据本发明的另一示例,还可根据希望产生的第二基础波束序列中第二基础波束的数量和MIMO天线阵列中在第二空间维度上的天线的数量来形成第二主码本。例如,根据第二基础波束序列中的第二基础波束的波束样式的数量Ky和MIMO天线阵列中在第二空间维度上的天线的数量My可形成索引矩阵My×Ky,然后可根据所确定的第二相移参数Nx和索引矩阵,形成第二主码本。又例如,可根据上述公式(3)形成第二主码本
Figure PCTCN2017092582-appb-000029
旋转参数确定单元720可确定第二旋转参数,其中第二旋转参数用于对第二基础波束序列进行相位旋转,以生成第二空间维度上的第二辅助波束序列。根据本发明的一个示例,第二旋转参数可指示第二基础波束序列中的第二基础波束所对应的第二辅助波束的数量。
例如,可将第二基础波束序列中的一个第二基础波束旋转第二旋转参数所指示的次数,以获得与该第二基础波束对应的第二辅助波束序列。假设第二旋转参数为3,可通过将第二基础波束序列中的一个第二基础波束旋转3次来获得与该第二基础波束对应的3个第二辅助波束。换言之,当第二旋转参数为3时,第二基础波束序列中的每个第二基础波束对应于3个第二辅助波束。
此外,第二旋转参数可与第二基础波束阵列中的相邻的两个第二基础波束的之间的夹角相关联。例如,可根据第二旋转参数,将相邻的两个第二基础波束的之间的夹角进行等分,以形成所述第二辅助波束序列中的第二辅助波束。相邻的两个第二基础波束的之间的夹角可指示一个第二基础波束的宽度。假设第二旋转参数为5,可将一个第二基础波束的一个第二基础波束的宽度5等分,以形成该第二基础波束所对应的5个第二辅助波束。
根据本发明的一个示例,可根据第二旋转参数Ly形成第二辅助码本。例如,可根据上述公式(4)形成第二辅助码本
Figure PCTCN2017092582-appb-000030
然后,维度码本形成单元730可根据第二主码本和第二旋转参数形成第二空间维度码本。在如上所述根据第二旋转参数形成第二辅助码本的情况下,可根据第二主码本和所述第二辅助码本形成第二空间维度码本。例如,可对第二主码本和第二辅助码本进行内积,以形成第二空间维度码本。
此外,装置700还可包括三维码本形成单元。三维码本形成单元可根据第一空间维度码本和第二空间维度码本形成三维空间码本。例如,三维码本形成单元可通过上述公式(5)形成三维空间码字。
如上所述,为了减少计算的复杂度,MIMO系统可进行包括数字波束赋形和模拟波束赋形的混合波束赋形。优选地,根据本发明实施例的形成码本的装置形成的各个码本可用于模拟波束赋形。
在根据本发明以上实施例的形成用于MIMO天线阵列的码本的装置中,通过多阶段的方式形成码本,这使得无线通信系统能够在使用尽可能小的码本尺寸的情况下,支持大规模MIMO或FD-MIMO的使用。
此外,根据本发明实施例形成的各个码本可用于在基站和移动台之间进行的波束选择。在此情况下,在基站中预先存储所需要的、根据上述实施例形成的各个码本。以下,参照图9描述根据一个本发明实施例的基站。并且参照图10描述根据一个本发明实施例的移动台。
在图9所示的基站中,可预先存储通过上述700所形成的各个码本(例如,各个维度的主码本、辅助码本等)。在存在多种可使用的主码本和/或辅助码本的情况下,基站可准静态或动态地向移动台通知指示所述码本大小的码本大小信息,以便于移动台根据码本大小信息确定波束选择的搜索范围。
此外,在存在多种可使用的旋转参数并且仅通过旋转参数就可以根据基础波束序列产生辅助波束序列而不需要辅助码本的情况下,基站还可准静态或动态地向移动台通知指示旋转参数的旋转信息,以便于移动台根据旋转信息确定波束选择的搜索范围。例如,基站可通过无线资源控制(RRC)信令,准静态地向移动台通知码本大小信息和旋转信息。又例如,基站可通过L1层信令,动态地向移动台通知码本大小信息和旋转信息。
图9是示出了根据一个本发明实施例的基站900的框图。如图9所示, 基站900包括训练序列生成单元910、发送单元920和波束确定单元930。除了这三个单元以外,基站900还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据一个本发明实施例的基站900执行的下述操作的具体细节与在上文中参照图5描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
训练序列生成单元910根据主码本生成基础波束序列的训练序列。发送单元920向移动台发送所生成的基础波束序列的训练序列。例如,根据主码本生成的基础波束序列可以是使用主码本形成单元710形成的主码本生成的基础波束序列。优选地,基站900还可包版本大小确定单元,以根据希望基站中使用的移相器所支持的相位数量,确定第一相移参数和/或指示码本大小的主码本大小信息。并且发送单元可准静态或动态地向移动台通知指示所述主码本大小的主码本大小信息检测基础波束序列的训练序列。
根据本发明的一个示例,可预先确定资源配置以指示用于发送训练序列的资源。发送单元920可根据预先确定的资源配置,向移动台发送所述基础波束序列的训练序列。可替换地,根据本发明的另一个示例,基站可根据需要改变用于发送训练序列的资源配置,发送单元920准静态或动态地向移动台通知该配置,并且发送单元920使用向移动台通知的资源配置所指示的资源向移动台发送所述基础波束序列的训练序列。例如,发送单元920可通过RRC信令准静态地向移动台通知用于发送训练序列的资源配置。又例如,发送单元920可通过L1层信令,动态地向移动台通知用于发送训练序列的资源配置。
波束确定单元930可根据从移动台接收的对基础波束序列的训练序列的反馈,在基础波束序列中确定优选基础波束。然后训练序列生成单元910可根据旋转参数和优选基础波束生成辅助波束序列的训练序列,并且发送单元920可向移动台发送所述辅助波束阵列的训练序列,其中通过对优选基础波束按照所述辅助码本的旋转参数所指示的数量进行旋转得到所述辅助波束序列。
例如,针对旋转参数确定单元720所描述的,可根据旋转参数,对优选基础波束旋转进行旋转,以获得与优选基础波束对应的辅助波束序列。假设 旋转参数为3,可通过将优选基础波束旋转3次来获得与优选基础波束对应的3个辅助波束。更具体地,在旋转参数与基础波束阵列中的相邻的两个基础波束的之间的夹角相关联的情况下,可将优选基础波束的宽度根据旋转参数所指示的数量进行等分,以形成优选基础波束所对应的辅助波束。此外,辅助波束序列可以是,使用例如根据上述公式(2)形成的辅助码本和优选基础波束生成的波束序列。
根据本发明的一个示例,预先确定旋转参数。此外与主码本大小信息类似,发送单元920也可准静态或动态地向移动台通知指示所述旋转参数的旋转信息。从而,移动台可检测辅助波束序列的训练序列。
此外如上所述,根据本发明的一个示例,可预先确定资源配置以指示用于发送训练序列的资源。发送单元920可根据预先确定的资源配置,向移动台发送辅助波束序列的训练序列。可替换地,根据本发明的另一个示例,基站可根据需要改变用于发送训练序列的资源配置,发送单元920准静态或动态地向移动台通知,并且使用向移动台通知的资源配置所指示的资源向移动台发送辅助波束序列的训练序列。
最后,波束确定单元930可根据从移动台接收的对所述辅助波束阵列的训练序列的反馈,在所述辅助波束阵列中确定优选辅助波束。基站900可使用所确定的优选辅助波束向移动台发送数据。
应注意,虽然在上述实施例中,训练序列生成单元910在确定优选基础波束之后生成辅助波束序列的训练序列并通过发送单元920向移动台发送,并且通过波束确定单元930确定优选辅助波束,然而在可替换的实施例中,基站900可不进行该操作。具体地,基站900还可包括信道质量确定单元,以根据从移动台接收的对辅助波束阵列的训练序列的反馈,进一步确定优选基础波束对应的信道是否满足预定信道质量。当满足预定信道质量时,基站可直接使用优选基础波束向移动台发送数据。
训练序列生成单元910、发送单元920和波束确定单元930可对各个空间维度顺序或并行地进行波束确定,以确定在各个空间维度上的优选波束。此外,基站还可根据在各个空间维度上的优选波束生成用于向移动台发送数据的优选三维波束。
以下,参照图10描述与图9中所示的基站对应的移动台。图10是示出了根据一个本发明实施例的移动台1000的框图。如图10所示,移动台1000包括检测单元1010、波束确定单元1020和发送单元1030。除了这三个单元以外,移动台1000还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据一个本发明实施例的移动台1000执行的下述操作的具体细节与在上文中参照图6描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
检测单元1010检测基站发送的基础波束序列的训练序列。优选地,图6中所示的方法还可包括接收指示主码本大小的主码本大小信息。检测单元1010可根据主码本大小信息检测基础波束序列的训练序列。例如,根据主码本生成的基础波束序列可以是基站使用主码本形成单元710形成的主码本生成的基础波束序列,在此不再详述。
根据本发明的一个示例,可预先确定资源配置以指示用于的训练序列的资源。检测单元1010根据预先确定的资源配置,检测基础波束序列的训练序列。可替换地,根据本发明的另一个示例,图10中所述的移动台还可包括接收单元,以接收基站通知的用于发送训练序列的资源配置。检测单元1010可根据接收的资源配置,检测所述基础波束序列的训练序列。
波束确定单元1020可根据对基础波束序列的训练序列的检测结果,从基础波束序列中确定优选基础波束,并且发送单元1030可向基站反馈关于优选基础波束的信息,以便于基站根据移动台反馈的优选基础波束的信息确定对于该移动台的优选基础波束,进而根据对于该移动台的优选基础波束和旋转参数产生辅助波束序列。例如,优选基础波束的信息可以是该波束的索引、信道质量信息等。
然后,检测单元1010还可检测基站发送的辅助波束序列的训练序列。如上所述,优选地,移动台1000还可包括接收单元,以接收指示旋转参数的旋转信息。检测单元1010可根据旋转信息检测辅助波束序列的训练序列。
在预先确定资源配置以指示用于的训练序列的资源的情况下,检测单元1010可根据预先确定的资源配置,检测辅助波束序列的训练序列。可替换地,根据本发明的另一个示例,移动台中的接收单元还可接收基站通知的用于发送训练序列的资源配置。检测单元1010可根据接收的资源配置,检测辅助 波束序列的训练序列。
波束确定单元1020可根据对辅助波束序列的训练序列的检测结果,从辅助波束序列中确定优选辅助波束,并且发送单元1030向基站反馈关于优选辅助波束的信息。例如,优选辅助波束的信息可以是该波束的索引、信道质量信息等。从而,基站可使用所确定的优选辅助波束向移动台发送数据。
应注意,虽然移动台1000在向基站反馈关于优选基础波束的信息之后,通过检测单元1010检测辅助波束序列的训练序列,并且通过波束确定单元1020根据检测结果从辅助波束序列中确定优选辅助波束并通过发送单元1030向基站通知,然而,根据本发明的实施例,当所确定优选基础波束对应的信道满足预定信道质量(即,具有较高的信道质量)时,基站可使用优选基础波束向移动台发送数据。因此,移动台不需要执行该操作。
在根据本发明以上实施例的基站和移动台中,基站以多阶段的方式形成波束,相应地移动台以多阶段的方式来进行波束检测,这使得基站以较低的硬件复杂度也能提高MIMO系统所产生的波束的空间分辨率,并且减少了发送训练序列的开销。此外,在优选基础波束的信道质量满足预定传输条件的情况下,可不需要进行多阶段的波束确定。
上述装置700、基站900和移动台1000的操作可以通过硬件实现,也可以通过由处理器执行的软件模块实现,并且进一步可以通过两者的组合实现。
软件模块可以被布置在任意格式的存储介质中,例如RAM(随机访问存储器)、闪存、ROM(只读存储器)、EPROM(可擦除可编程ROM)、EEPROM(电可擦除可编程ROM)、寄存器、硬盘、可移除盘以及CD-ROM。
这种存储介质连接到处理器,使得处理器可以向该存储介质写入信息或从该存储介质读取信息。这种存储介质还可以在处理器中累积。这种存储介质和处理器可以被布置在ASIC中。这种ASIC可以被布置在装置700、基站900和移动台1000中。作为分立组件,这种存储介质和处理器可以被布置在装置700、基站900和移动台1000中。例如,可通过处理器执行上述装置700中的主码本形成单元、旋转参数确定单元和维度码本形成单元执行的操作。又例如,可通过处理器执行上述基站中的训练序列生成单元和波束确定单元执行的操作。还例如,可通过处理器执行上述移动台中的检测单元和 波束确定单元执行的操作。
因此,通过使用上述实施例详细解释了本发明;然而,本领域技术人员应清楚本发明不限于在理解释的实施例。本发明在不背离由权利要求限定的本发明的范围的情况下可以被实现为校正的、修改的模式。因此,说明书的描述仅意图解释示例,并且不对本发明施加任何限制含义。

Claims (25)

  1. 一种形成用于多输入多输出(MIMO)天线阵列的码本的方法,包括:
    根据第一相移参数形成第一主码本,其中所述第一主码本用于产生在第一空间维度上的第一基础波束序列;
    确定第一旋转参数,其中所述第一旋转参数用于对所述第一基础波束序列进行相位旋转,以生成第一空间维度上的第一辅助波束序列;
    根据所述第一主码本和所述第一旋转参数形成第一空间维度码本。
  2. 如权利要求1所述的方法,还包括:
    根据第一旋转参数形成第一辅助码本,其中
    所述根据所述第一主码本和所述第一旋转参数形成第一空间维度码本包括:
    根据所述第一主码本和所述第一辅助码本形成第一空间维度码本。
  3. 如权利要求2所述的方法,其中所述根据所述第一主码本和所述第一辅助码本形成第一空间维度码本包括:
    对所述第一主码本和所述第一辅助码本进行内积,以形成第一空间维度码本。
  4. 如权利要求1所述的方法,其中
    所述第一相移参数指示在第一空间维度上的相移的数量;以及
    所述第一旋转参数指示所述第一基础波束序列中的第一基础波束所对应的第一辅助波束的数量。
  5. 如权利要求4所述的方法,其中所述根据第一相移参数形成第一主码本包括:
    根据所述第一基础波束序列中的第一基础波束的波束样式的数量和所述MIMO天线阵列中在第一空间维度上的天线的数量形成索引矩阵;以及
    根据所述第一相移参数和所述索引矩阵,形成第一主码本。
  6. 如权利要求4所述的方法,其中
    所述第一旋转参数与所述第一基础波束阵列中的相邻的两个第一基础波束的之间的夹角相关联。
  7. 如权利要求6所述的方法,其中
    根据所述第一旋转参数,将相邻的两个第一基础波束的之间的夹角进行等分,以形成所述第一辅助波束序列中的第一辅助波束。
  8. 如权利要求1所述的方法,还包括:
    根据第二相移参数形成第二主码本,其中所述第二主码本用于产生在第二空间维度上的第二基础波束序列;
    确定第二旋转参数,其中第二旋转参数用于对所述第二基础波束序列进行相位旋转,以生成第二空间维度上的第二辅助波束序列;
    根据所述第二主码本和所述第二旋转参数形成第二空间维度码本;以及
    根据所述第一空间维度码本和所述第二空间维度码本形成三维空间码本。
  9. 如权利要求1-8中任意一项所述的方法,其中
    所述码本是用于模拟波束赋形的码本。
  10. 一种由基站执行的波束确定方法,包括:
    根据主码本生成基础波束序列的训练序列,并向移动台发送所述基础波束序列的训练序列;
    根据从移动台接收的对所述基础波束序列的训练序列的反馈,在所述基础波束序列中确定优选基础波束;
    根据旋转参数和优选基础波束生成辅助波束序列的训练序列,并向移动台发送所述辅助波束阵列的训练序列,其中通过对优选基础波束按照所述辅助码本的旋转参数所指示的数量进行旋转得到所述辅助波束序列;
    根据从移动台接收的对所述辅助波束序列的训练序列的反馈,在所述辅助波束序列中确定优选辅助波束。
  11. 如权利要求10所述的方法,还包括:
    准静态或动态地向移动台通知指示所述主码本大小的主码本大小信息和指示所述旋转参数的旋转信息。
  12. 如权利要求10所述的方法,其中
    根据预先确定的资源配置,向移动台发送所述基础波束序列的训练序列和/或所述辅助波束序列的训练序列。
  13. 如权利要求10所述的方法,还包括:
    准静态或动态地向移动台通知用于发送训练序列的资源配置,其中
    根据向移动台通知的资源配置,向移动台发送所述基础波束序列的训练序列和/或所述辅助波束序列的训练序列。
  14. 一种由移动台执行的波束确定方法,包括:
    检测基站发送的基础波束序列的训练序列;
    根据对所述基础波束序列的训练序列的检测结果,从所述基础波束序列中确定优选基础波束,并向基站反馈关于所述优选基础波束的信息;
    检测基站发送的辅助波束序列的训练序列;
    根据对所述辅助波束序列的训练序列的检测结果,从所述辅助波束序列中确定优选辅助波束,并向基站反馈关于所述优选辅助波束的信息。
  15. 如权利要求14所述的方法,还包括:
    接收指示所述主码本大小的主码本大小信息和指示所述旋转参数的旋转信息,其中
    所述检测基站发送的基础波束序列的训练序列包括:
    根据所述主码本大小信息,检测基站发送的基础波束序列的训练序列;以及
    所述检测基站发送的辅助波束序列的训练序列包括:
    根据所述旋转信息,检测基站发送的辅助波束序列的训练序列。
  16. 如权利要求14所述的方法,其中
    根据预先确定的资源配置,检测所述基础波束序列的训练序列和/或所述辅助波束序列的训练序列。
  17. 如权利要求14所述的方法,还包括:
    接收基站通知的用于发送训练序列的资源配置,其中
    根据所述资源配置,检测所述基础波束序列的训练序列和/或所述辅助波束序列的训练序列。
  18. 一种形成用于多输入多输出(MIMO)天线阵列的码本的装置,包括:
    主码本形成单元,配置为根据第一相移参数形成第一主码本,其中所述第一主码本用于产生在第一空间维度上的第一基础波束序列;
    旋转参数确定单元,配置为确定第一旋转参数,其中第一旋转参数用于对所述第一基础波束序列进行相位旋转,以生成第一空间维度上的第一辅助 波束序列;
    维度码本形成单元,配置为根据所述第一主码本和所述第一旋转参数形成第一空间维度码本。
  19. 如权利要求18所述的装置,还包括:
    辅助码本形成单元,配置为根据第一旋转参数形成第一辅助码本,其中
    维度码本形成单元对所述第一主码本和所述第一辅助码本进行内积,以形成第一空间维度码本。
  20. 如权利要求18所述的装置,其中
    所述第一相移参数指示在第一空间维度上的相移的数量;以及
    所述第一旋转参数指示所述第一基础波束序列中的第一基础波束所对应的第一辅助波束的数量。
  21. 如权利要求20所述的装置,其中所述主码本形成单元包括:
    索引矩阵形成模块,配置为根据所述第一基础波束序列中的第一基础波束的波束样式的数量和所述MIMO天线阵列中在第一空间维度上的天线的数量形成索引矩阵;以及
    主码本形成模块,配置为根据所述第一相移参数和所述索引矩阵,形成第一主码本。
  22. 如权利要求20所述的装置,其中
    所述第一旋转参数与所述第一基础波束阵列中的相邻的两个第一基础波束的之间的夹角相关联。
  23. 如权利要求18所述的装置,其中
    所述主码本形成单元还配置为根据第二相移参数形成第二主码本,其中所述第二主码本用于产生在第二空间维度上的第二基础波束序列;
    所述旋转参数确定单元还配置为其中第二旋转参数用于对所述第二基础波束序列进行相位旋转,以生成第二空间维度上的第二辅助波束序列;
    所述维度码本形成单元还配置为根据所述第二主码本和所述第二旋转参数形成第二空间维度码本,以及
    所述装置还包括:
    三维码本形成单元,配置为根据所述第一空间维度码本和所述第二空间维度码本形成三维码本。
  24. 一种基站,包括:
    训练序列生成单元,配置为根据主码本生成基础波束序列的训练序列;
    发送单元,配置为向移动台发送所述基础波束序列的训练序列;
    波束确定单元,配置为根据从移动台接收的对所述基础波束序列的训练序列的反馈,在所述基础波束序列中确定优选基础波束,其中
    所述训练序列生成单元还配置为根据旋转参数和优选基础波束生成辅助波束阵列的训练序列;
    所述发送单元还配置为向移动台发送所述辅助波束序列的训练序列,其中通过对优选基础波束按照所述辅助码本的旋转参数所指示的数量进行旋转得到所述辅助波束序列;
    所述波束确定单元还配置为根据从移动台接收的对所述辅助波束序列的训练序列的反馈,在所述辅助波束阵列中确定优选辅助波束。
  25. 一种移动台,包括:
    检测单元,配置为检测基站发送的基础波束序列的训练序列;
    波束确定单元,配置为根据对所述基础波束序列的训练序列的检测结果,从所述基础波束阵列中确定优选基础波束;
    发送单元,配置为向基站反馈关于所述优选基础波束的信息,其中
    所述检测单元还配置为检测基站发送的辅助波束序列的训练序列;
    所述波束确定单元还配置为根据对所述辅助波束序列的训练序列的检测结果,从所述辅助波束序列中确定优选辅助波束,
    发送单元还配置为向基站反馈关于所述优选辅助波束的信息。
PCT/CN2017/092582 2016-07-12 2017-07-12 形成码本的方法及其装置、基站和移动台 WO2018010655A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019500672A JP2019520772A (ja) 2016-07-12 2017-07-12 コードブック形成方法及びその装置、基地局、移動局
CN201780037133.8A CN109314554B (zh) 2016-07-12 2017-07-12 形成码本的方法及其装置、基站和移动台

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610547359.X 2016-07-12
CN201610547359.XA CN107623540A (zh) 2016-07-12 2016-07-12 形成码本的方法及其装置、基站和移动台

Publications (1)

Publication Number Publication Date
WO2018010655A1 true WO2018010655A1 (zh) 2018-01-18

Family

ID=60952816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092582 WO2018010655A1 (zh) 2016-07-12 2017-07-12 形成码本的方法及其装置、基站和移动台

Country Status (3)

Country Link
JP (1) JP2019520772A (zh)
CN (2) CN107623540A (zh)
WO (1) WO2018010655A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809396B (zh) * 2018-04-27 2021-06-08 大连理工大学 低分辨率移相器的天线选择与模拟波束成形联合设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164805A1 (en) * 2008-12-31 2010-07-01 Huaning Niu Arrangements for beam refinement in a wireless network
CN102801455A (zh) * 2012-07-31 2012-11-28 华为技术有限公司 波束码本生成方法、波束搜索方法及相关装置
CN102938662A (zh) * 2011-08-15 2013-02-20 上海贝尔股份有限公司 用于3d天线配置的码本设计方法
CN105308880A (zh) * 2014-05-23 2016-02-03 联发科技股份有限公司 高效波束训练方法以及相关通信装置和网络控制装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120002750A1 (en) * 2009-03-17 2012-01-05 Kari Juhani Hooli Method and Apparatus for Codebook-Based Precoding in MIMO Systems
CN103973351B (zh) * 2013-02-05 2017-12-22 华为技术有限公司 一种无线通信系统中使用码本进行通信的方法及基站
WO2014158208A1 (en) * 2013-03-29 2014-10-02 Intel Corporation Orthogonal beamforming for multiple user multiple-input and multiple-output (mu-mimo)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164805A1 (en) * 2008-12-31 2010-07-01 Huaning Niu Arrangements for beam refinement in a wireless network
CN102938662A (zh) * 2011-08-15 2013-02-20 上海贝尔股份有限公司 用于3d天线配置的码本设计方法
CN102801455A (zh) * 2012-07-31 2012-11-28 华为技术有限公司 波束码本生成方法、波束搜索方法及相关装置
CN105308880A (zh) * 2014-05-23 2016-02-03 联发科技股份有限公司 高效波束训练方法以及相关通信装置和网络控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Scenarios for UE-Specific Elevation Beamforming and FD-MIMO", 3GPP TSG RAN WG1 MEETING #72BIS RL-131428, 19 April 2013 (2013-04-19), XP050697273 *

Also Published As

Publication number Publication date
JP2019520772A (ja) 2019-07-18
CN109314554B (zh) 2022-02-11
CN107623540A (zh) 2018-01-23
CN109314554A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
JP6546692B2 (ja) ビーム参照信号の送信方法、ビーム選択方法、基地局、およびユーザ端末
JP2017531352A5 (zh)
CN108886430B (zh) 参考信号发送方法、信道状态信息反馈方法、基站和移动台
JP6808683B2 (ja) Mimo通信に利用されるコンピュータ・プログラム、記憶媒体、ユーザー装置及び基地局
US20150003325A1 (en) Progressive channel state information
CN110278016B (zh) 一种信号传输方法和网络设备以及终端设备
EP3096483B1 (en) Channel state information feedback method and apparatus, user equipment and base station
TWI751282B (zh) 一種上行訊號的傳輸方法及相關設備
TW201513597A (zh) 通訊控制裝置、通訊控制方法及終端裝置
US10063358B2 (en) Pilot signal sending and receiving method and apparatus
EP3358752A1 (en) Method and apparatus for selecting a resource, and electronic device
EP3704801B1 (en) Codebook design for virtualized active antenna system (aas)
WO2016001951A1 (ja) 送信制御装置及びプログラム
US10027388B2 (en) Wireless transmission precoding
US20130064147A1 (en) Base station and communication method of base station
WO2018010655A1 (zh) 形成码本的方法及其装置、基站和移动台
WO2017076208A1 (zh) 一种信道状态信息反馈、数据传输方法及装置
WO2016183803A1 (zh) 天线阵列的信道信息反馈方法与装置
CN108370265B (zh) 一种确定预编码矩阵的方法及装置
EP3616458B1 (en) Apparatuses, methods, computer programs, and computer program products for interference avoidance
CN113169777A (zh) 波束对准
CN107710640B (zh) 使用二维天线的无线通信系统中提供反馈信号的方法、设备
JPWO2019097661A1 (ja) ユーザ装置及び基地局装置
JP7035031B2 (ja) チャネル状態測定方法、送信方法、移動局及び基地局
US20180212665A1 (en) Codebook, and method and apparatus for generating a precoder based on the codebook

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826991

Country of ref document: EP

Kind code of ref document: A1