WO2018010556A1 - Qled et procédé de fabrication associé - Google Patents

Qled et procédé de fabrication associé Download PDF

Info

Publication number
WO2018010556A1
WO2018010556A1 PCT/CN2017/091453 CN2017091453W WO2018010556A1 WO 2018010556 A1 WO2018010556 A1 WO 2018010556A1 CN 2017091453 W CN2017091453 W CN 2017091453W WO 2018010556 A1 WO2018010556 A1 WO 2018010556A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mixed
quantum dot
qled
luminescent
Prior art date
Application number
PCT/CN2017/091453
Other languages
English (en)
Chinese (zh)
Inventor
钱磊
杨一行
曹蔚然
向超宇
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2018010556A1 publication Critical patent/WO2018010556A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a QLED and a method for fabricating the same.
  • quantum dot-based light-emitting diodes Compared with organic light-emitting diodes, quantum dot-based light-emitting diodes (QLEDs, quantum dot light-emitting diodes) have the advantages of high color purity, long life, and the like, and can be prepared by using a printing process, which is generally regarded as the next generation display technology. A strong competitor.
  • the current mainstream QLED device structure is ITO (indium tin oxide) / HI L (hole injection layer) / HTL (hole transport layer) / EML (quantum dot light-emitting layer) / ETL (electron injection layer) / Al, where HIL is mainly PEDTO (polymer of 3,4-ethylenedioxythiophene monomer) and molybdenum oxide; HTL includes PVK (polyvinylcarbazole), TFB (1,2,4,5-tetra(trifluoromethyl) Benzene), poly-T PD (poly[bis(4-phenyl)(4-butylphenyl)amine] or 4-butyl-indole, fluorene-diphenylaniline homopolymer), etc.; and ETL The main use of inorganic nano-oxides, such as zinc oxide or titanium oxide; quantum dots as a luminescent material, by adjusting its size and composition to obtain different luminescent colors.
  • An object of the present invention is to provide a QLED, which aims to solve the problem that the exciton recombination efficiency is limited and the QLED luminous efficiency is affected in the QLE D device of the existing double-layer hole transport layer structure.
  • Another object of the present invention is to provide a method of preparing a QLED.
  • the present invention is achieved by a QLED comprising a substrate, a bottom electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, and a top electrode, which are sequentially stacked, and further includes a mixed heterojunction layer and/or a second mixed heterojunction layer, wherein the first mixed heterojunction layer is made of a mixture of a hole transport material and a luminescent quantum dot, and is disposed on the hole transport layer And the quantum dot light-emitting layer; the second mixed heterojunction layer is made of a mixture of an electron transport material and a light-emitting quantum dot, and is disposed between the electron transport layer and the quantum dot light-emitting layer.
  • a method for preparing a QLED includes the following steps:
  • the QLED provided by the present invention forms a planar mixed heterojunction structure by displacing quantum dots in a hole transport layer or an electron transport layer of a quantum dot light-emitting layer in a double-layer hole or electron transport layer of a QLED device.
  • the carrier potential of the carrier can be reduced by optimizing the energy level gradient design in the two-layer carrier transport structure (including the energy level position of the hole and electron transport material and the energy transfer rate with the quantum dot).
  • the exciton recombination region is expanded by the miscellaneous luminescence quantum dots in the adjacent carrier transport layer, thereby increasing the luminous efficiency and improving the performance of the QLED device.
  • This invention The preparation method of the QLED provided is simple, easy to control, and easy to realize industrialization.
  • FIG. 1 is a schematic diagram of a QLED structure including only a first mixed heterojunction layer according to an embodiment of the present invention
  • FIG. 2 is a QLED structure including a second mixed heterojunction layer provided by an embodiment of the present invention
  • FIG. 3 is a diagram of a Q containing a first mixed heterojunction layer and a second mixed heterojunction layer provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of energy transfer of a QLED according to an embodiment of the present invention.
  • an embodiment of the present invention provides a QLED, which includes a substrate 1, a bottom electrode 2, a hole injection layer 3, a hole transport layer 4, and a quantum dot light-emitting layer 6, which are sequentially stacked.
  • the electron transport layer 8 and the top electrode 9 further include a first mixed heterojunction layer 5 and/or a second mixed heterojunction layer 7, wherein the first mixed heterojunction layer 5 is composed of a hole transporting material and a light emitting layer a quantum dot is mixed and disposed between the hole transport layer 4 and the quantum dot light-emitting layer 6; the second mixed heterojunction layer 7 is made of a mixture of an electron transport material and a light-emitting quantum dot, and Provided between the electron transport layer 8 and the quantum dot light-emitting layer 6.
  • the first mixed heterojunction layer 5 may be disposed only between the hole transport layer 4 and the quantum dot light-emitting layer 6 to obtain a QLED.
  • a QLED includes a substrate 1 , a bottom electrode 2 , a hole injection layer 3 , a hole transport layer 4 , a first mixed heterojunction layer 5 , and quantum dot luminescence Layer 6, electron transport layer 8 and top electrode 9.
  • the second mixed heterojunction layer 7 may be disposed only between the electron transport layer 8 and the quantum dot light-emitting layer 6 to obtain a QLED.
  • a QLED includes a substrate 1 , a bottom electrode 2 , a hole injection layer 3 , a hole transport layer 4 , a quantum dot light emitting layer 6 , and a second mixed heterojunction which are sequentially stacked.
  • a QLED includes a substrate 1 which is sequentially stacked, a bottom electrode 2, a hole injection layer 3, a hole transport layer 4, a first mixed heterojunction layer 5, and quantum dot light emission.
  • balancing carrier injection and increasing the probability of exciton recombination are two important aspects of improving device performance.
  • the hole injection layer structure is adopted, and the hole injection barrier is reduced by the energy level gradient to achieve the purpose of balancing electron holes.
  • the recombination region of the excitons is expanded into the hole transport layer 4 by appropriately entangled the luminescent quantum dots in the functional layer adjacent to the quantum dot luminescent layer 6 in the double-layer hole transport layer structure.
  • the electron transporting ability of the hole transport layer 4 adjacent to the quantum dot light-emitting layer 6 is poor, it is impossible to effectively confine electrons in the quantum dot light-emitting layer 6, but due to adjacent transmission
  • the luminescent quantum dots are also suitably miscellaneous in the layer (the first mixed heterojunction layer 5), and the electrons that cannot enter the first mixed heterojunction layer 5 can be trapped by direct quantum dots or through holes.
  • the energy transfer of the material matrix further enhances the overall luminous efficiency.
  • the hole blocking ability of the electron transport layer 8 adjacent to the quantum dot light-emitting layer 6 is relatively insufficient to effectively confine holes in the quantum dot light-emitting layer 6, due to the adjacent transport layer (second mixed The luminescent layer is also suitably miscellaneous in the layer 7), and holes that cannot be blocked into the second mixed heterojunction layer 7 can be captured by direct quantum dots or transmitted through the matrix of the electronic material. Further improve the overall luminous efficiency.
  • the QLED level structure is as shown in FIG.
  • the selection of the substrate 1 is not specifically limited, and a flexible substrate may be used, or a hard substrate such as a glass substrate may be used.
  • the bottom electrode 2 is made of a conventional anode material including, but not limited to, ITO.
  • the hole injecting layer 3, the quantum dot emitting layer 6, and the electron transporting layer 8 can be made of a conventional material.
  • the top electrode 9 is made of a conventional cathode material, including a metal and an oxide thereof, and specifically may be aluminum.
  • the first mixed heterojunction layer 5 is made of a mixture of a hole transport material and luminescent quantum dots.
  • the hole transporting material and the luminescent quantum dot are both hole transporting materials and luminescent quantum dot materials conventional in the art.
  • the hole transporting material includes, but is not limited to, an organic oxide material, PVK, TFB, poly- TPD, wherein the organic oxide material includes, but is not limited to, molybdenum oxide, nickel oxide.
  • the mixing ratio of the hole transporting material and the luminescent quantum dot has a certain influence on the performance of the QLED.
  • the quantum yield efficiency of the luminescent quantum dots is 60-100% ⁇ , and the luminescent quantum dots have a weight percentage of 5- 30%, more preferably 5-20%.
  • the weight percentage of the luminescent quantum dots can be appropriately adjusted.
  • the thickness of the first mixed heterojunction layer 5 is too thin to effectively capture carriers, the thickness of the first mixed heterojunction layer 5 is too thick to introduce high resistance, and therefore, the first The thickness of the mixed heterojunction layer 5 is preferably from 10 to 100 nm.
  • the second mixed heterojunction layer 7 is made of a mixture of an electron transporting material and luminescent quantum dots.
  • the electron transporting material and the luminescent quantum dot are conventional electron transport materials and luminescent quantum dot materials in the art.
  • the electron transporting material includes, but is not limited to, a metal oxide, a ⁇ - ⁇ family semiconductor material, an m-vi semiconductor material, and an im-vn semiconductor material, wherein the metal oxide includes, but is not limited to, aluminum, At least one of magnesium, indium, gallium, a miscellaneous metal oxide, zinc oxide, and titanium oxide;
  • the Group VII semiconductor materials include, but are not limited to, ZnS, ZnSe, CdS; the ⁇ -VI semiconductor materials include, but are not limited to, InP, GaP; and the ⁇ - ⁇ -Vn semiconductor materials include, but are not limited to, CuInS, CuGaS.
  • the mixing ratio of the electron transporting material and the luminescent quantum dot has a certain influence on the performance of the QLED.
  • the quantum yield efficiency of the luminescent quantum dots is 60-100% ⁇ , and the luminescent quantum dots have a weight percentage of 5- 30%, more preferably 5-20%.
  • the quantum yield efficiency is not in this range, and the weight percentage of the luminescent quantum dots can be appropriately adjusted.
  • the thickness of the second mixed heterojunction layer 7 is too thin to effectively capture carriers, the thickness of the second mixed heterojunction layer 7 is too thick to introduce high resistance, and therefore, the second The thickness of the mixed heterojunction layer 7 is preferably from 10 to 100 nm.
  • the QLED provided by the embodiment of the present invention forms a planar mixed heterogeneity by displacing quantum dots in a hole transport layer or an electron transport layer of a quantum dot light-emitting layer in a double-layer hole or electron transport layer of a QLED device.
  • the junction structure on the one hand, can reduce the carrier by optimizing the energy level gradient design in the two-layer carrier transport structure (including the energy level position of the hole and electron transport material and the energy transfer rate between the quantum dots) Injecting the barrier; on the other hand, while reducing the injection barrier, the exciton recombination region is expanded by the miscellaneous luminescence quantum dots in the adjacent carrier transport layer, thereby increasing the luminous efficiency and improving the performance of the QLED device.
  • the QLED described in the examples of the present invention can be obtained by the following method.
  • an embodiment of the present invention further provides a method for preparing a QLED, including the following steps:
  • a method of sequentially depositing a bottom electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, and a top electrode on the substrate may be implemented by a conventional method in the art.
  • the first mixed heterojunction layer in the embodiment of the present invention may deposit a first mixed heterojunction mixed solution containing a hole transporting material and a luminescent quantum dot on the hole transporting layer by a solution processing method.
  • the solution processing method includes, but is not limited to, spin coating and printing.
  • the second mixed heterojunction layer in the embodiment of the present invention may deposit a second mixed heterojunction mixed solution containing an electron transporting material and a luminescent quantum dot on the quantum dot emitting layer by a solution processing method. among them
  • Embodiments of the present invention may obtain a QLED containing a first mixed heterojunction layer by depositing the first mixed heterojunction mixed solution only in the hole transport layer; The second mixed heterojunction mixed solution is deposited on the light emitting layer to obtain a QLED containing the second mixed heterojunction layer.
  • the first mixed heterojunction mixed solution is deposited on the hole transport layer, and the second mixed heterojunction mixed solution is deposited on the quantum dot emitting layer to obtain the same first The QLED of the mixed heterojunction layer and the second mixed heterojunction layer.
  • the method for preparing the QLED provided by the embodiment of the invention has the advantages of simple process, easy control, and easy industrialization.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

Une QLED comprend un substrat (1) empilé de manière séquentielle, une électrode inférieure (2), une couche d'injection de trous (3), une couche de transport de trous (4), une couche électroluminescente à points quantiques (6), une couche de transport d'électrons (8) et une électrode supérieure (9). La QLED comprend en outre une première hétérojonction hybride (5) et/ou une seconde hétérojonction hybride (7). La première hétérojonction hybride (5) est fabriquée par mélange d'un matériau de transport de trous et de points quantiques émettant de la lumière, et est disposée entre la couche de transport de trous (4) et la couche électroluminescente à points quantiques (6). La seconde hétérojonction hybride (7) est fabriquée par mélange d'un matériau de transport d'électrons et de points quantiques électroluminescentes, et est disposée entre la couche de transport d'électrons (8) et la couche électroluminescente à points quantiques (6).
PCT/CN2017/091453 2016-07-14 2017-07-03 Qled et procédé de fabrication associé WO2018010556A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610563128.8A CN106098956A (zh) 2016-07-14 2016-07-14 一种qled及其制备方法
CN201610563128.8 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018010556A1 true WO2018010556A1 (fr) 2018-01-18

Family

ID=57221073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091453 WO2018010556A1 (fr) 2016-07-14 2017-07-03 Qled et procédé de fabrication associé

Country Status (2)

Country Link
CN (1) CN106098956A (fr)
WO (1) WO2018010556A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539166A4 (fr) * 2016-11-14 2020-06-17 Boe Technology Group Co. Ltd. Diode électroluminescente à points quantiques et son procédé de fabrication, panneau d'affichage et appareil d'affichage
CN112018249A (zh) * 2019-05-30 2020-12-01 云谷(固安)科技有限公司 发光器件及其制造方法、显示装置
CN114284461A (zh) * 2021-12-24 2022-04-05 合肥福纳科技有限公司 一种量子点发光二极管及其制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098956A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法
CN106972110A (zh) * 2017-05-02 2017-07-21 深圳市华星光电技术有限公司 有机发光二极管组件及其制备方法、显示面板和电子设备
CN108962130A (zh) 2017-05-23 2018-12-07 Tcl集团股份有限公司 一种应用于视频显示过程中的预设反向驱动方法
CN108962129A (zh) * 2017-05-23 2018-12-07 Tcl集团股份有限公司 一种qled器件及其反向电压驱动模式
CN108962133A (zh) * 2017-05-23 2018-12-07 Tcl集团股份有限公司 一种qled器件及其反向电流驱动模式
CN108934097B (zh) * 2017-05-23 2021-08-10 Tcl科技集团股份有限公司 一种基于电磁波的qled驱动方法
CN108962131A (zh) * 2017-05-23 2018-12-07 Tcl集团股份有限公司 一种基于三角波的qled驱动方法
CN108932925A (zh) * 2017-05-23 2018-12-04 Tcl集团股份有限公司 一种基于正弦波的qled驱动方法
CN108932926A (zh) * 2017-05-23 2018-12-04 Tcl集团股份有限公司 一种qled器件及其反向交替驱动模式
CN108962127A (zh) * 2017-05-23 2018-12-07 Tcl集团股份有限公司 一种qled器件及其反向驱动模式
CN108962128A (zh) * 2017-05-23 2018-12-07 Tcl集团股份有限公司 一种基于方波的qled驱动方法
CN109148702B (zh) * 2017-06-19 2020-07-21 Tcl科技集团股份有限公司 量子点与载体交联的混合薄膜及制备方法与qled器件
CN109148701A (zh) * 2017-06-19 2019-01-04 Tcl集团股份有限公司 量子点与载体交联的混合薄膜及制备方法与qled器件
CN107833976A (zh) * 2017-10-24 2018-03-23 深圳市华星光电半导体显示技术有限公司 Qled器件的制作方法及qled器件
CN109935733B (zh) * 2017-12-15 2021-11-23 深圳Tcl工业研究院有限公司 一种n型ZnO薄膜及其制备方法与QLED器件
US11121339B2 (en) * 2018-05-11 2021-09-14 Nanosys, Inc. Quantum dot LED design based on resonant energy transfer
CN108767129B (zh) * 2018-05-31 2021-01-26 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板
CN110600619B (zh) * 2018-06-12 2021-03-12 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
CN109119543B (zh) * 2018-08-31 2020-07-28 嘉兴纳鼎光电科技有限公司 异质结结构量子点及其合成方法与应用
CN109671855A (zh) * 2018-12-20 2019-04-23 电子科技大学 基于超薄介电间隔层的钙钛矿发光器件及其制备方法
CN110112305B (zh) * 2019-05-24 2023-04-07 京东方科技集团股份有限公司 Qled器件及其制作方法、显示面板及显示装置
CN112331783B (zh) * 2019-12-09 2023-06-06 广东聚华印刷显示技术有限公司 交流驱动的发光器件及其制备方法、发光装置
CN112151648B (zh) * 2020-10-27 2022-08-12 合肥福纳科技有限公司 一种量子点发光二极管及其制备方法
US11730008B2 (en) 2021-02-16 2023-08-15 Sharp Kabushiki Kaisha Light emitting layer including quantum dots with improved charge carrier mobility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694131A (zh) * 2012-06-04 2012-09-26 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法以及显示装置
CN205177887U (zh) * 2015-11-10 2016-04-20 Tcl集团股份有限公司 一种量子点发光二极管
CN106098956A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035973A1 (fr) * 2004-09-30 2006-04-06 Semiconductor Energy Laboratory Co., Ltd. Element et dispositif electroluminescents
KR101440232B1 (ko) * 2013-05-23 2014-09-12 삼성토탈 주식회사 이방성 금속 나노입자를 이용한 발광효율이 증대된 광변환 발광소자
CN104064690B (zh) * 2014-06-27 2016-08-17 北京科技大学 具有双层结构电子传输层的有机发光二极管及其制备方法
CN104650862B (zh) * 2015-01-22 2016-08-24 南京邮电大学 一种白色荧光发射的石墨烯量子点的制备及其应用
CN105720206A (zh) * 2016-05-06 2016-06-29 Tcl集团股份有限公司 一种qled器件及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694131A (zh) * 2012-06-04 2012-09-26 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法以及显示装置
CN205177887U (zh) * 2015-11-10 2016-04-20 Tcl集团股份有限公司 一种量子点发光二极管
CN106098956A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539166A4 (fr) * 2016-11-14 2020-06-17 Boe Technology Group Co. Ltd. Diode électroluminescente à points quantiques et son procédé de fabrication, panneau d'affichage et appareil d'affichage
CN112018249A (zh) * 2019-05-30 2020-12-01 云谷(固安)科技有限公司 发光器件及其制造方法、显示装置
CN112018249B (zh) * 2019-05-30 2024-05-07 云谷(固安)科技有限公司 发光器件及其制造方法、显示装置
CN114284461A (zh) * 2021-12-24 2022-04-05 合肥福纳科技有限公司 一种量子点发光二极管及其制备方法
CN114284461B (zh) * 2021-12-24 2024-03-19 江苏穿越光电科技有限公司 一种量子点发光二极管及其制备方法

Also Published As

Publication number Publication date
CN106098956A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018010556A1 (fr) Qled et procédé de fabrication associé
US20210013438A1 (en) Quantum dot light-emitting diode and preparation method therefor, and light-emitting module and display apparatus
CN105206715B (zh) 一种激子限域结构的qled及其制备方法
CN106450018B (zh) Qled及其制备方法
CN111384256B (zh) 量子点发光二极管及其制备方法
CN103904178A (zh) 量子点发光器件
CN106803546A (zh) 一种量子点发光二极管及其制备方法
TW201840019A (zh) 發光器件及其製備方法、顯示裝置
CN211700337U (zh) 多层发光量子点器件
US11329243B2 (en) Quantum dot light-emitting diode device and manufacturing method thereof
CN109980105A (zh) 一种qled器件
WO2022143822A1 (fr) Dispositif photoélectrique
CN112467058B (zh) 一种三元激基复合物复合材料主体及其oled器件制备
CN112349853B (zh) 电致发光器件及其制备方法和显示装置
CN108878664A (zh) 量子点发光二极管及其制备方法与应用
CN108649130A (zh) 一种叠层蓝光有机电致发光器件及其制造工艺
WO2017201776A1 (fr) Structure de dispositif oled blanc à trois couleurs primaires ainsi que dispositif électroluminescent et dispositif d'affichage associés
CN110544746B (zh) 发光二极管及其制备方法
WO2022143826A1 (fr) Dispositif photoélectrique
WO2022143832A1 (fr) Dispositif optoélectronique
WO2022143960A1 (fr) Dispositif photoélectrique
WO2022143825A1 (fr) Dispositif photoélectrique
WO2022143829A1 (fr) Dispositif photoélectrique
WO2022143830A1 (fr) Dispositif photoélectrique
WO2022143823A1 (fr) Dispositif photoélectrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17826893

Country of ref document: EP

Kind code of ref document: A1