WO2018010217A1 - 一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法 - Google Patents

一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法 Download PDF

Info

Publication number
WO2018010217A1
WO2018010217A1 PCT/CN2016/092012 CN2016092012W WO2018010217A1 WO 2018010217 A1 WO2018010217 A1 WO 2018010217A1 CN 2016092012 W CN2016092012 W CN 2016092012W WO 2018010217 A1 WO2018010217 A1 WO 2018010217A1
Authority
WO
WIPO (PCT)
Prior art keywords
anaerobic
membrane
mfc
anaerobic acid
fuel cell
Prior art date
Application number
PCT/CN2016/092012
Other languages
English (en)
French (fr)
Inventor
王新华
刘金梦
李秀芬
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US15/571,397 priority Critical patent/US10384968B2/en
Publication of WO2018010217A1 publication Critical patent/WO2018010217A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/005Osmotic agents; Draw solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2523Recirculation of concentrate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2684Electrochemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2688Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/08Use of membrane modules of different kinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/284Anaerobic digestion processes using anaerobic baffled reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a ternary sewage treatment method for coupling anaerobic acid producing, normal osmosis and microbial fuel cells, and belongs to the technical field of sewage treatment.
  • FO Forward osmosis
  • the FO process uses the osmotic pressure difference on both sides of the membrane as a driving force, so that the water molecules spontaneously pass through the semipermeable membrane, from the portion of the raw material liquid having a high water chemical potential to the portion of the liquid having a low chemical potential, since no external pressure is required, Therefore, the energy consumption required is low.
  • FO also has the advantages of good effluent quality and low membrane fouling tendency.
  • the organic matter contained in the sewage during this process is only retained by the FO membrane, but is not recycled.
  • Microbial Fuel Cell can convert organic matter in wastewater into electricity that can be recovered by the action of electricity-producing microorganisms, and has great potential in wastewater treatment.
  • MFC Microbial Fuel Cell
  • the main obstacle to the current application of MFC in wastewater treatment is that the effluent water quality is poor and cannot be directly discharged or reused.
  • the present invention creatively proposes a new coupling process of FO and MFC and an anaerobic reactor, which mainly utilizes the high-efficiency interception ability of the FO membrane for organic substances, realizes the improvement of sewage water quality and the enrichment of organic matter, and at the same time
  • the anaerobic acid-producing technology transforms the organic matter in the sewage into a small-molecule organic acid, thereby further improving the electricity-producing performance of the MFC, and finally constructing a new ternary for the purpose of simultaneously realizing wastewater reuse and bio-electricity recovery with low energy consumption.
  • Urban sewage treatment process mainly utilizes the high-efficiency interception ability of the FO membrane for organic substances, realizes the improvement of sewage water quality and the enrichment of organic matter, and at the same time
  • the anaerobic acid-producing technology transforms the organic matter in the sewage into a small-molecule organic acid, thereby further improving the electricity-producing performance of the MFC, and finally constructing a new ternary for the purpose of simultaneously realizing wastewater reuse
  • a first object of the present invention is to provide an anaerobic reactor that couples anaerobic acid, FO and MFC.
  • the anaerobic reactor mainly comprises an anaerobic acid generating device, a pumping liquid pool, a reverse osmosis (RO) membrane processing device, a microbial fuel cell (MFC) device, a sedimentation tank, an adsorption device; and the anaerobic acid production
  • the device comprises a microfiltration (MF) membrane module and a FO membrane module; the MF membrane module is connected to the sedimentation tank through a pipeline, and sinks
  • the sedimentation tank is connected to the adsorption device through a pipeline;
  • the FO membrane assembly is connected to the extraction liquid pool through a pipeline, and the extraction liquid pool is connected to the RO membrane treatment device;
  • the microbial fuel cell (MFC) device is connected to the anaerobic acid production device .
  • the anaerobic acid generator further includes a baffle.
  • an aeration tube is installed in a lower portion of the anaerobic acid generator.
  • one end of the air pump is coupled to the aeration tube and the other end extends to an upper portion of the anaerobic acid generator.
  • the settling tank is a chemical precipitation tank connected to a pH controller.
  • the pH controller is coupled to a first NaOH solution cell.
  • the upper middle portion of the settling tank is connected to the adsorption device via a line and a water pump.
  • the adsorption device is an activated carbon adsorption column.
  • the FO membrane module and the draw pool are circulated by a draw pump and a line.
  • the pumping liquid bath and the RO membrane processing device are configured to circulate through a high pressure pump and a line.
  • the material of the FO film in the FO membrane module is any one of a triacetate (CTA) film, a polyamide (TFC) film, and a polyether sulfone resin (PES).
  • CTA triacetate
  • TFC polyamide
  • PES polyether sulfone resin
  • the FO film has a membrane area of 0.025 m 2 .
  • the RO membrane in the RO membrane processing apparatus is any one of a cellulose acetate (CTA) membrane and a polyamide (TFC) composite membrane.
  • CTA cellulose acetate
  • TFC polyamide
  • the MF membrane in the MF membrane module is polyvinylidene fluoride (PVDF), polysulfone (PSF), polyacrylonitrile (PAN), polyvinyl chloride (PVC), polypropylene (PP). Any of the others.
  • PVDF polyvinylidene fluoride
  • PSF polysulfone
  • PAN polyacrylonitrile
  • PVC polyvinyl chloride
  • PP polypropylene
  • the MF membrane has a pore size of from 0.1 to 1 micron.
  • the MF membrane has a membrane area of 0.025 m 2 and a pore diameter of about 0.20 ⁇ m.
  • the MF membrane module is one of a flat membrane module, a hollow fiber membrane module, or a tubular membrane module.
  • the MFC is a single chamber air cathode MFC
  • the anode material is a carbon felt
  • the cathode material is an activated carbon-PTFE air cathode.
  • the MFC is a single chamber air cathode MFC having an effective volume of 160 mL, an anode material of carbon felt, an anode area of 40 cm 2 , a cathode material of activated carbon-PTFE air cathode, and a cathode area of 40 cm 2 .
  • the anaerobic acid generator and the MFC are cycled through a circulation pump and a line.
  • the anaerobic acid generator and the second NaOH solution tank are connected by an alkali pump and a line.
  • a second object of the present invention is to provide a sewage treatment method which utilizes the anaerobic reactor coupled with anaerobic acid production, FO and MFC of the present invention for sewage treatment, and the effluent can be directly discharged or reused, while Organic matter in sewage It can be recovered in the form of bioelectricity.
  • the sewage is municipal sewage.
  • the sewage treatment method comprises the following steps:
  • the FO membrane module is included in the anaerobic acid generator, and the osmotic pressure difference between the draw liquid and the raw material liquid on both sides of the FO membrane is used to make water permeable through the membrane to form water, and then the membrane effluent enters the subsequent RO system for further treatment.
  • the effluent can be directly reused; at the same time, the anaerobic acid production device contains a microfiltration (MF) membrane module to control the accumulation of salinity in the reactor, and the membrane effluent enters the sedimentation tank to remove total phosphorus in the form of phosphate precipitate in an alkaline environment. Then, the remaining ammonia nitrogen is adsorbed by the adsorption device, thereby ensuring that the effluent reaches the urban misuse water reuse standard;
  • MF microfiltration
  • the anaerobic acid generating device, the MFC and the FO film constitute a ternary combined process.
  • the anaerobic acid generator has two outlets for circulating the mixture between the anaerobic acid generator and the MFC.
  • the FO membrane is immersed in an anaerobic acid generator, and the water is lifted by means of the pumping liquid, and high-quality reclaimed water is obtained by filtering the RO membrane.
  • the anaerobic acid-producing device forms a certain hydraulic circulation, which not only improves mass transfer but also alleviates membrane fouling.
  • the NaOH solution refers to a 0.2 M NaOH solution having a pH of 12-14.
  • the MF membrane and the FO membrane are submerged under the liquid surface of the anaerobic acid generator.
  • the draw solution refers to a 0.5 M NaCl solution.
  • the FO film refers to any one of a triacetate (CTA) film, a polyamide (TFC) film, and a polyether sulfone resin (PES) having a membrane area of 0.025 m 2 .
  • CTA triacetate
  • TFC polyamide
  • PES polyether sulfone resin
  • the MF membrane is any one of polyvinylidene fluoride (PVDF), polysulfone (PSF), polyacrylonitrile (PAN), polyvinyl chloride (PVC), polypropylene (PP), and the like.
  • PVDF polyvinylidene fluoride
  • PSF polysulfone
  • PAN polyacrylonitrile
  • PVC polyvinyl chloride
  • PP polypropylene
  • the alkaline environment of the step (2) means that the pH is controlled by a pH controller of about 11.0.
  • the ammonia nitrogen in the MF effluent treated by the MF membrane module is removed by adsorption using an adsorption device containing activated carbon, and the amount of activated carbon is 50 g/L, and the residence time is 12 h.
  • the MFC is a single chamber air cathode MFC
  • the anode material is a carbon felt
  • the cathode material is an activated carbon-PTFE air cathode.
  • the MFC is a single chamber air cathode MFC having an effective volume of 160 mL, an anode material of carbon felt, an anode area of 40 cm 2 , a cathode material of activated carbon-PTFE air cathode, and a cathode area of 40 cm 2 .
  • the invention has the advantages that the ternary combination process newly couples the FO membrane with high-efficiency interception capability and low pollution characteristics with the MFC, and utilizes the high-efficiency interception ability of the FO membrane for the organic matter, thereby realizing the improvement of the sewage water quality and the enrichment of the organic acid. Not only can sewage reuse be realized, but the accumulated organic acid can improve the electricity production performance and realize the sewage resource.
  • the traditional integrated FO and MFC combination has been changed, and the system is easier to zoom in.
  • the existing FO and MFC coupling system replaces the proton exchange membrane in the traditional MFC with the FO membrane, and utilizes the large water flux of the FO membrane to promote the transfer of H + from the anode to the cathode to improve the electricity production performance.
  • the invention combines the FO and the MFC in a segmented manner, changes the role of the FO membrane as a proton exchange membrane, and uses the high-efficiency retention capability of the organic matter to realize the improvement of the sewage water quality and the enrichment of the organic acid, so that It can realize the reuse of sewage, and the accumulated organic acid can improve the electricity production performance.
  • MF membrane can control salt accumulation, prolong the operation time of FO membrane, and the MF membrane effluent can be used for further treatment of urban sewage reuse and municipal water quality (GB/T 18920-2002), which can be used for Flushing, greening, etc.
  • the addition of MF membrane can effectively reduce FO membrane fouling, and the FO membrane running time is significantly increased compared with the existing OsMFC.
  • the enriched organic matter can be converted into a small molecule organic acid, which is more easily utilized by MFC, thereby improving the electricity production performance.
  • the enriched organic matter can be recovered in the form of bioelectricity to realize the recycling of sewage.
  • 1 is a schematic structural view of a ternary combined anaerobic reactor for coupling anaerobic acid production, FO and MFC according to the present invention; in the figure, 1 inlet pool, 2 inlet pumps, 3 anaerobic acid generator, 4 air pump, 5 exposure Trachea, 6MF membrane module, 7 suction pump, 8 first NaOH solution tank, 9 pH controller, 10 sedimentation tank, 11 water pump, 12 adsorption device, 13FO membrane module, 14 skimmer pump, 15 skimmer tank, 16 high pressure Pump, 17RO membrane treatment unit, 18 baffles, 19 plus alkali pump, 20 second NaOH solution tank, 21 circulation pump, 22 MFC.
  • Figure 1 is a schematic view showing the structure of an anaerobic reactor of the present invention.
  • the ternary combined anaerobic reactor for coupling anaerobic acid producing, FO and MFC of the present invention mainly comprises an anaerobic acid generating device 3, a drawing liquid pool 14, a reverse osmosis (RO) membrane processing device 17, and a microbial fuel cell.
  • MFC mobile cellular fuel cell
  • sedimentation tank 10 sedimentation tank 10
  • adsorption device 12 sedimentation tank 10
  • the anaerobic acid production device includes a microfiltration (MF) membrane module 6
  • the FO membrane module 13 is connected to the sedimentation tank 10 through a pipeline, and the sedimentation tank 10 is connected to the adsorption device 12 through a pipeline;
  • the FO membrane module 13 is connected to the extraction liquid pool 15 through a pipeline, and the liquid is extracted.
  • the pool 15 is connected to the RO membrane treatment device 17; the microbial fuel cell device 22 is connected to the anaerobic acid generator 3.
  • the anaerobic acid generator 3 further includes a baffle 18.
  • the function of the baffle is to increase the cross-flow rate and form a certain flushing effect on the membrane surface, thereby reducing membrane fouling.
  • An aeration tube 5 is attached to a lower portion of the anaerobic acid generator 3.
  • the upper portion of the aeration tube 5 and the anaerobic acid generator 3 is connected to the pipeline through the air pump 4; the air pump 4 circulates the biogas generated in the upper portion of the anaerobic acid generator 3 to the aeration tube 5 through the self-aeration system.
  • the anaerobic acid-producing zone forms a certain hydraulic cycle, which not only improves mass transfer but also alleviates membrane fouling.
  • the settling tank 10 is a chemical precipitation tank connected to a pH controller 9.
  • the pH controller 9 is connected to the first NaOH solution tank 8.
  • the upper middle portion of the sedimentation tank is connected to the adsorption device 12 through a line and a water pump 11.
  • the adsorption device 12 is an activated carbon adsorption column.
  • the FO membrane module 13 and the pumping liquid pool 15 are circulated by the pumping fluid pump 14 and the pipeline.
  • the concentrated draw is continued for the FO membrane for water extraction.
  • the retention of the FO film is achieved by using the osmotic pressure as the driving force.
  • the pumping liquid pool 15 and the RO membrane processing device 17 are configured to circulate through the high pressure pump 16 and the pipeline, and the concentrated salt on the RO membrane side is returned to the pumping liquid pool 15 through the high pressure pump 16 to realize the pumping liquid. Recycling recycling.
  • the water treated by the FO membrane and the RO membrane can achieve high quality water discharge requirements.
  • the MF membrane has a pore size of from 0.1 to 1 micron.
  • the MFC is a single chamber air cathode MFC
  • the anode material is carbon felt
  • the cathode material is an activated carbon-PTFE air cathode.
  • the anaerobic acid generator 3 and the MFC 22 are circulated by the circulation pump 21 and the piping.
  • the sludge mixture in the anaerobic acid generator 3 is continuously introduced into the MFC 22 through the circulation pump 21, and the enriched organic matter is converted into bioelectricity, and then returned to the anaerobic acid generator 3.
  • the second NaOH solution tank 20 is connected to the anaerobic acid generator 3 via an alkali pump 19 and a line.
  • the NaOH solution in the second NaOH solution tank 20 is incorporated into the outlet pipe of the MFC 22 by the addition of the alkali pump 19, and enters the anaerobic acid generator 3 with the MFC effluent to maintain the pH in the anaerobic acid generator 3.
  • the feed water pump 2 drives the sewage from the inlet tank 1 into the anaerobic acid producing zone 3, and the NaOH solution in the second NaOH solution tank 20 enters the anaerobic acid generating device 3 through the alkali pump 19, and acts on the aeration pipe 5 Mix quickly and evenly.
  • the air pump 4 circulates the biogas generated in the upper part of the anaerobic acid generating device 3 to the aeration tube 5, and adopts the self-aeration system to make the anaerobic acid-producing region It becomes a certain hydraulic cycle, which not only improves mass transfer but also alleviates membrane fouling.
  • the mixed liquid enters the MFC 22 under the action of the MFC circulating pump 21, converts the enriched organic matter into bioelectricity, and then returns to the anaerobic acid generating device 3.
  • a part of the mixed liquid forms water through the MF membrane module 6 under the action of the suction pump 7, and enters the sedimentation tank 10 to remove the phosphate.
  • the pH in the sedimentation tank 10 is controlled by the pH controller 9 and the first NaOH solution tank 8, and then The supernatant in the sedimentation tank 10 enters the adsorption device 12 under the action of the water pump 11, and finally obtains the reclaimed water that satisfies the requirements of "Urban Wastewater Recycling City Miscellaneous Water Quality" (GB/T 18920-2002).
  • Another part of the mixed liquid obtains water through the FO membrane module 13 under the action of the osmotic pressure difference on both sides of the FO membrane, and then the water is discharged into the subsequent RO membrane treatment device 17 for treatment, and can be directly reused, while the concentrated salt on the RO membrane side passes.
  • the high pressure pump 16 is returned to the pumping liquid pool 15 to effect regeneration of the pumping liquid.
  • a ternary combined anaerobic reactor of the structure shown in Figure 1 was employed.
  • the anaerobic reactor was operated at room temperature and the pH of the anaerobic acid producing zone of the reactor was controlled to be 8.5 ⁇ 0.5.
  • the influent is artificially prepared simulated urban sewage.
  • the water quality indicators are: TOC: 150 ⁇ 1.96mg/L, NH 3 -N: 22.7 ⁇ 1.27mg/L, TN: 27.13 ⁇ 1.88mg/L, TP: 2.29 ⁇ 0.18 Mg/L.
  • the FO membrane module 13 uses a triacetate membrane (CTA) with a membrane area of 0.025 m 2
  • the MF module 6 is a flat membrane module made of polyvinylidene fluoride (PVDF) with a membrane area of 0.025 m 2 and a pore diameter of about 0.2 ⁇ m.
  • the feed water pump 2 mixes the sewage from the inlet tank 1 into the anaerobic acid producing zone 3 and mixes with the NaOH solution pumped by the alkali pump 19, and rapidly mixes uniformly under the action of the aeration pipe 5, and the mixed liquid acts on the MFC circulation pump 21. Down into the MFC 22, the enriched organics are converted to bioelectricity and then returned to the anaerobic acid producing zone 3.
  • a part of the mixed liquid forms water through the MF membrane module 6 under the action of the suction pump 7, and enters the chemical precipitation tank 10 to remove the phosphate, and then passes through the activated carbon adsorption column 12 to obtain the "Urban Wastewater Recycling City Miscellaneous Water Quality" (GB) /T 18920-2002) Reclaimed water is required, and another part of the mixed liquid obtains water through the FO membrane module 13 under the action of the osmotic pressure difference, and then the water is discharged into the subsequent RO system for treatment, and can be directly reused.
  • GB Wastewater Recycling City Miscellaneous Water Quality
  • the aeration of the anaerobic acid-producing zone is circulated by the gas generated by itself and supplied through the aeration pipe 5, and a certain volume of sludge is discharged every day, the sludge residence time is 80 d, and the suspension concentration of the mixed liquid is 3 to 4 g/L.
  • the amount of aeration is 2 L/min.
  • the device was operated for 80 days, the FO membrane was cleaned by physical backwashing, and the MF membrane was washed with 0.1% sodium hypochlorite for 5 hours. Compared to the integrated OsMFC, the FO film of the device has a lower trend of membrane fouling, higher throughput and longer running time.
  • the effluent quality of FO membrane is: TOC: 1.07 ⁇ 1.55mg/L, NH 3 -N: 14.52 ⁇ 1.37mg/L, TN: 16.30 ⁇ 1.87mg/L, TP: 0.25 ⁇ 0.24mg/L, after RO, COD and TP is 0, and NH 3 -N and TN is less than 5mg / L; MF membrane through chemical precipitation and effluent water quality of the activated carbon adsorption: COD: 20mg / L, TP : 0.1mg / l, NH 4 -N: 4.79 mg/L.
  • the MFC voltage output changes periodically, and the MFC voltage is always stable at about 440mV. Compared with the integrated OsMFC, it has a more stable power generation effect.
  • a ternary combined anaerobic reactor of the structure shown in Fig. 1 was used.
  • the anaerobic reactor was operated in a constant temperature chamber at a temperature of 30 ⁇ 0.5 ° C and a reactor pH of 9.5 ⁇ 0.5.
  • the influent is artificially prepared simulated urban sewage.
  • the water quality indicators are: TOC: 150 ⁇ 1.96mg/L, NH 3 -N: 22.7 ⁇ 1.27mg/L, TN: 27.13 ⁇ 1.88mg/L, TP: 2.29 ⁇ 0.18 Mg/L.
  • the FO membrane module 13 is a polyethersulfone membrane (PES) with a membrane area of 0.025 m 2
  • the MF module 6 is a flat membrane module made of polyvinylidene fluoride (PVDF) with a membrane area of 0.025 m 2 and a pore diameter of about 0.2 ⁇ m.
  • the membrane module was run for 23 days using a ternary combined anaerobic reactor.
  • the influent water quality is: TOC: 145.9 ⁇ 1.97mg/L, NH 3 -N: 27.11 ⁇ 1.27mg/L, TN: 31.5 ⁇ 0.85mg/L, TP: 2.57 ⁇ 0.15mg/L, FO effluent quality is TOC: 4.94 ⁇ 0.86mg/L, NH 3 -N: 24.08 ⁇ 2.68mg/L, TN: 25.41 ⁇ 2.69mg/L, TP: 0.5 ⁇ 0.19mg/L, COD and TP are 0 after RO treatment, and NH 3 -N and TN is less than 5mg / L; MF membrane through chemical precipitation and effluent water quality of the activated carbon adsorption: COD: 20mg / L, TP : 0.1mg / l, NH 4 -N: 4.05mg / L.
  • MFC is able to achieve a continuous and relatively stable voltage output, and the voltage is basically stable at 420mV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种耦合厌氧产酸、FO和MFC的三元组合厌氧反应器,主要包括厌氧产酸装置(3)、汲取液池(15)、RO膜处理装置(17)、微生物燃料电池装置MFC(22)、沉淀池(10)、吸附装置(12);厌氧产酸装置(3)中包括MF膜组件(6)、 FO膜组件(13);MF膜组件(6)通过管路与沉淀池(10)连接,沉淀池(10)通过管路与吸附装置(12)连接;FO膜组件(13)通过管路与汲取液池(15)连接,汲取液池(15)与RO膜处理装置(17)连接;微生物燃料电池装置MFC(22)与厌氧产酸装置(3)相连;以及利用耦合厌氧产酸、FO和MFC的三元组合厌氧反应器的污水处理方法。

Description

一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法 技术领域
本发明涉及了一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法,属于污水处理技术领域。
背景技术
随着经济社会的发展进步和人口数量的增加,生活用水及工业用水量亦随之增长。据国家环保部统计,2015年我国城市污水排放总量高达716.2亿吨,加之水体不断被污染,致使许多城市和地区都面临水资源危机。考虑到城市污水只含1%的污染物,且就近可得、水量稳定、易收集等特点,世界各国都将城市污水回用作为解决缺水问题的首选方案。目前,对于城市污水一般采用好氧生物处理,但该技术能耗较大。因此,必须寻找其他能耗较低的替代技术。
正渗透(forward osmosis,FO)膜分离技术由于其自身独特的优势,目前已经成为污水处理与回用方面的研究热点。FO过程利用膜两侧的渗透压差作为驱动力,使水分子自发地通过半透膜,从水化学势高的原料液部分渗透到水化学势低的汲取液部分,由于不需要外加压力,故所需能耗低。此外,FO还具有出水水质好,膜污染趋势小等优点。然而,在此过程中污水中所含的有机物仅仅是被FO膜截留,却未得到回收利用。
微生物燃料电池(Microbial Fuel Cell,MFC)借助产电微生物的作用可以将废水中的有机物转化成可以回收的电能,在污水处理方面具有较大的潜力。然而,目前限制MFC在污水处理中应用的主要障碍就是出水水质较差,无法直接达标排放或回用。
发明内容
为了解决上述问题,本发明创造性的提出了一种新的FO与MFC的耦合工艺和厌氧反应器,主要利用FO膜对有机物的高效截留能力,实现污水水质的提升以及有机物的富集,同时借助厌氧产酸技术将污水中的有机物转变成小分子的有机酸,从而进一步提高MFC的产电性能,最终构建低能耗的,以同步实现污水回用与生物电回收为目的的新型三元城市污水处理工艺。
本发明的第一个目的是提供一种耦合厌氧产酸、FO和MFC的厌氧反应器。
所述厌氧反应器主要包括厌氧产酸装置、汲取液池、反渗透(reverse osmosis,RO)膜处理装置、微生物燃料电池(MFC)装置、沉淀池、吸附装置;所述厌氧产酸装置中包括微滤(microfiltration,MF)膜组件、FO膜组件;所述MF膜组件通过管路与沉淀池连接,沉 淀池通过管路与吸附装置连接;所述FO膜组件通过管路与汲取液池连接,汲取液池与RO膜处理装置连接;所述微生物燃料电池(MFC)装置与厌氧产酸装置相连。
在一种实施方式中,所述厌氧产酸装置中还含有挡板。
在一种实施方式中,所述厌氧产酸装置内的下部安装有曝气管。
在一种实施方式中,气泵一端与曝气管连接,另一端延伸至厌氧产酸装置内的上部。
在一种实施方式中,所述沉淀池为化学沉淀池,与pH控制器相连。
在一种实施方式中,所述pH控制器与第一NaOH溶液池相连。
在一种实施方式中,所述沉淀池的中上部通过管路和水泵与吸附装置相连。
在一种实施方式中,所述吸附装置为活性炭吸附柱。
在一种实施方式中,所述FO膜组件与汲取液池通过汲取液泵和管路构成循环。
在一种实施方式中,所述汲取液池与RO膜处理装置通过高压泵和管路构成循环。
在一种实施方式中,所述FO膜组件中的FO膜的材质为三醋酸纤维(CTA)膜、聚酰胺(TFC)膜、聚醚砜树脂(PES)中的任意一种。
在一种实施方式中,所述FO膜的膜面积为0.025m2
在一种实施方式中,所述RO膜处理装置中的RO膜为醋酸纤维(CTA)膜、聚酰胺(TFC)复合膜中的任意一种。
在一种实施方式中,所述MF膜组件中的MF膜为聚偏氟乙烯(PVDF)、聚砜(PSF)、聚丙烯腈(PAN)、聚氯乙烯(PVC)、聚丙烯(PP)等的任意一种。
在一种实施方式中,所述MF膜的孔径为0.1-1微米。
在一种实施方式中,MF膜的膜面积为0.025m2,孔径为0.20μm左右。
在一种实施方式中,所述MF膜组件为平板膜组件、中空纤维膜组件或管式膜组件中一种。
在一种实施方式中,所述MFC为单室空气阴极MFC,阳极材料为碳毡,阴极材料为活性炭-PTFE空气阴极。
在一种实施方式中,所述MFC为单室空气阴极MFC,有效体积为160mL,阳极材料为碳毡,阳极面积为40cm2,阴极材料为活性炭-PTFE空气阴极,阴极面积为40cm2
在一种实施方式中,厌氧产酸装置与MFC通过循环泵和管路构成循环。
在一种实施方式中,厌氧产酸装置与第二NaOH溶液池,通过加碱泵和管路连接。
本发明的第二个目的是提供一种污水处理方法,所述方法是利用本发明的耦合厌氧产酸、FO和MFC的厌氧反应器进行污水处理,出水可以直接排放或者回用,同时污水中的有机物 能够以生物电的形式回收。
在一种实施方式中,所述污水,是城市污水。
所述污水处理方法,包括以下步骤:
1)以污水作为进水,通过进水泵进入厌氧产酸装置,同时通过加碱泵将NaOH溶液打入厌氧产酸区,在曝气作用下,使NaOH溶液迅速混合均匀;
2)在厌氧产酸装置中含有FO膜组件,利用FO膜两侧汲取液与原料液之间的渗透压差,使水透过膜形成出水,然后膜出水进入后续RO系统进一步处理,处理后出水可直接回用;同时厌氧产酸装置中含有微滤(MF)膜组件控制反应器中盐度积累,膜出水进入沉淀池在碱性环境下以磷酸盐沉淀的形式去除总磷,然后通过吸附装置吸附剩余的氨氮,从而保证出水达到城市杂用水回用标准;
3)厌氧产酸区的混合液通过循环泵连续进入MFC,然后再回流至厌氧产酸区,在此过程中,被截留的有机污染物以生物电的形式回收。
本发明中,厌氧产酸装置、MFC以及FO膜组成三元组合工艺。厌氧产酸装置设有两个出口用于混合液在厌氧产酸装置与MFC之间进行循环。FO膜浸没在厌氧产酸装置内,借助汲取液实现水的提升,再通过RO膜的过滤获得高品质的再生水。通过自曝气系统,使厌氧产酸装置形成一定的水力循环,既提高传质又可以缓解膜污染。
在一种实施方式中,所述NaOH溶液是指0.2M NaOH溶液,pH为12-14。
在一种实施方式中,MF膜和FO膜浸没在厌氧产酸装置的液面下。
在一种实施方式中,所述汲取液是指0.5M NaCl溶液。
在一种实施方式中,所述FO膜是指三醋酸纤维(CTA)膜、聚酰胺(TFC)膜、聚醚砜树脂(PES)中的任一种,膜面积为0.025m2
在一种实施方式中,所述MF膜为聚偏氟乙烯(PVDF)、聚砜(PSF)、聚丙烯腈(PAN)、聚氯乙烯(PVC)、聚丙烯(PP)等的任一种,膜面积为0.025m2,孔径为0.20μm左右。
在一种实施方式中,所述步骤(2)的碱性环境是指通过pH控制器控制pH 11.0左右。
在一种实施方式中,所述MF膜组件处理后的MF出水中的氨氮采用含有活性炭的吸附装置吸附来去除,活性炭用量为50g/L,停留时间12h。
在一种实施方式中,所述MFC为单室空气阴极MFC,阳极材料为碳毡,阴极材料为活性炭-PTFE空气阴极。
在一种实施方式中,所述MFC为单室空气阴极MFC,有效体积为160mL,阳极材料为碳毡,阳极面积为40cm2,阴极材料为活性炭-PTFE空气阴极,阴极面积为40cm2
本发明的优点在于:三元组合工艺将具有高效截留能力和低污染特性的FO膜与MFC进行全新的耦合,利用FO膜对有机物的高效截留能力,实现污水水质的提升以及有机酸的富集,不仅可以实现污水回用,而且积累的有机酸可以提高产电性能,实现污水资源化。
本发明相对现有工艺具有以下优点:
(1)改变了传统的一体式FO与MFC组合方式,系统更容易放大。已有的FO与MFC耦合系统(OsMFC)是用FO膜替代传统MFC中的质子交换膜,利用FO膜水通量较大这一特点,促进H+从阳极传递至阴极,以提高产电性能。而本发明是将FO与MFC进行分段式耦合,改变FO膜作为质子交换膜的作用,转而利用其对有机物的高效截留能力,实现污水水质的提升以及有机酸的富集,这样,不仅可以实现污水回用,而且积累的有机酸可以提高产电性能。除此之外,加入MF膜可控制盐积累,延长FO膜运行时间,且MF膜出水经进一步处理后,满足《城市污水再生利用城市杂用水水质》(GB/T 18920-2002),可用于冲厕、绿化等。MF膜的加入可有效减缓FO膜污染,相比于已有的OsMFC,FO膜运行时间明显增加。
(2)利用FO膜对有机物的高效截留能力,能够实现出水水质的提升以及有机物的富集。
(3)借助厌氧产酸技术,可以将富集的有机物转变成小分子的有机酸,更容易被MFC利用,从而提高产电性能。
(4)通过MFC可以将富集的有机物以生物电的形式回收,实现污水资源化。
附图说明
图1为本发明的耦合厌氧产酸、FO和MFC的三元组合厌氧反应器的结构示意图;图中,1进水池,2进水泵,3厌氧产酸装置,4气泵,5曝气管,6MF膜组件,7抽吸泵,8第一NaOH溶液池,9pH控制器,10沉淀池,11水泵,12吸附装置,13FO膜组件,14汲取液泵,15汲取液池,16高压泵,17RO膜处理装置,18挡板,19加碱泵,20第二NaOH溶液池,21循环泵,22MFC。
具体实施方式
下面结合实施例对本发明作进一步详述:
实施例1:三元组合厌氧反应器
图1为本发明的厌氧反应器的结构示意图。
本发明的耦合厌氧产酸、FO和MFC的三元组合厌氧反应器主要包括厌氧产酸装置3、汲取液池14、反渗透(reverse osmosis,RO)膜处理装置17、微生物燃料电池(MFC)装置22、沉淀池10、吸附装置12;所述厌氧产酸装置中包括微滤(microfiltration,MF)膜组件6、 FO膜组件13;所述MF膜组件6通过管路与沉淀池10连接,沉淀池10通过管路与吸附装置12连接;所述FO膜组件13通过管路与汲取液池15连接,汲取液池15与RO膜处理装置17连接;所述微生物燃料电池装置22与厌氧产酸装置3相连。
所述厌氧产酸装置3中还含有挡板18。挡板的作用是提高错流速率,对膜面形成一定的冲刷作用,从而减缓膜污染。
所述厌氧产酸装置3内的下部安装有曝气管5。曝气管5和厌氧产酸装置3的上部通过气泵4和管路联通;气泵4是将厌氧产酸装置3上部产生的生物气循环至曝气管5中,通过自曝气系统,使厌氧产酸区形成一定的水力循环,既提高传质又可以缓解膜污染。
可选地,沉淀池10为化学沉淀池,与pH控制器9相连。pH控制器9与第一NaOH溶液池8相连。沉淀池的中上部通过管路和水泵11与吸附装置12相连。
可选地,吸附装置12为活性炭吸附柱。
可选地,所述FO膜组件13与汲取液池15通过汲取液泵14和管路构成循环。浓缩后的汲取液继续用于FO膜进行水的提取。通过以渗透压为驱动力,实现FO膜的截留。
可选地,所述汲取液池15与RO膜处理装置17通过高压泵16和管路构成循环,RO膜一侧的浓盐通过高压泵16回流至汲取液池15中,以实现汲取液的再生循环利用。经FO膜和RO膜处理的水,可达到高品质出水要求。
可选地,所述MF膜的孔径为0.1-1微米。
可选地,所述MFC为单室空气阴极MFC,阳极材料为碳毡,阴极材料为活性炭-PTFE空气阴极。
厌氧产酸装置3与MFC 22通过循环泵21和管路构成循环。厌氧产酸装置3中的污泥混合液通过循环泵21连续进入MFC 22,使富集的有机物转换为生物电,然后再回流至厌氧产酸装置3中。
可选地,第二NaOH溶液池20与厌氧产酸装置3通过加碱泵19和管路连接。第二NaOH溶液池20中的NaOH溶液通过加碱泵19并入MFC 22的出水管中,并随MFC出水进入厌氧产酸装置3,以维持厌氧产酸装置3中的pH。
实施例2:三元组合厌氧反应器的工作原理
厌氧反应器组成及连接方式如图1所示。
进水泵2将污水从进水池1打入厌氧产酸区3,同时第二NaOH溶液池20中的NaOH溶液通过加碱泵19进入厌氧产酸装置3,并在曝气管5的作用下迅速混合均匀。其中,气泵4将厌氧产酸装置3上部产生的生物气循环至曝气管5中,通过自曝气系统,使厌氧产酸区形 成一定的水力循环,既提高传质又可以缓解膜污染。
混合液在MFC循环泵21的作用下进入MFC 22,使富集的有机物转换为生物电,然后再回流至厌氧产酸装置3。一部分混合液在抽吸泵7的作用下透过MF膜组件6形成出水,并进入沉淀池10去除磷酸盐,沉淀池10内pH由pH控制器9及第一NaOH溶液池8进行控制,然后沉淀池10中上清液在水泵11的作用下进入吸附装置12,并最终获得满足《城市污水再生利用城市杂用水水质》(GB/T 18920-2002)要求的再生水。另一部分混合液在FO膜两侧渗透压差的作用下透过FO膜组件13获得出水,然后出水进入后续RO膜处理装置17处理后,可直接回用,同时RO膜一侧的浓盐通过高压泵16回流至汲取液池15中,以实现汲取液的再生循环利用。
实施例3
采用如图1所示结构的三元组合厌氧反应器。该厌氧反应器在室温下运行,控制反应器的厌氧产酸区域的pH为8.5±0.5。进水为人工配制的模拟城镇污水,其水质指标为:TOC:150±1.96mg/L,NH3-N:22.7±1.27mg/L,TN:27.13±1.88mg/L,TP:2.29±0.18mg/L。FO膜组件13采用三醋酸纤维膜(CTA),膜面积为0.025m2,MF组件6采用平板膜组件,为聚偏氟乙烯(PVDF)材质,膜面积为0.025m2,孔径为0.2μm左右。进水泵2将污水从进水池1打入厌氧产酸区3与加碱泵19打入的NaOH溶液混合,在曝气管5的作用下迅速混合均匀,混合液在MFC循环泵21的作用下进入MFC 22,使富集的有机物转换为生物电,然后再回流至厌氧产酸区3。一部分混合液在抽吸泵7的作用下透过MF膜组件6形成出水,并进入化学沉淀池10去除磷酸盐,然后经过活性炭吸附柱12获得满足《城市污水再生利用城市杂用水水质》(GB/T 18920-2002)要求的再生水,另一部分混合液在渗透压差的作用下透过FO膜组件13获得出水,然后出水进入后续RO系统处理后,可直接回用。厌氧产酸区的曝气利用自身产生的气体进行循环并通过曝气管5供给,每天排一定体积的污泥,污泥停留时间为80d,混合液悬浮物浓度为3~4g/L,曝气量为2L/min。该装置运行80d,FO膜清洗采用物理反冲洗,MF膜清洗使用0.1%次氯酸钠浸泡5h。与一体式的OsMFC相比,本装置的FO膜具有更低的膜污染趋势,更高的通量以及更长的运行时间。FO膜出水水质为:TOC:1.07±1.55mg/L,NH3-N:14.52±1.37mg/L,TN:16.30±1.87mg/L,TP:0.25±0.24mg/L,经过RO之后,COD和TP为0,而NH3-N和TN小于5mg/L;MF膜出水经过化学沉淀和活性炭吸附后的出水水质为:COD:20mg/L,TP:0.1mg/l,NH4-N:4.79mg/L。MFC电压输出呈周期性变化规律,MFC的电压始终稳定在440mV左右,与一体式的OsMFC相比,具有更加稳定的产电效果。
实施例4
采用如图1所示结构的三元组合厌氧反应器,该厌氧反应器在恒温室中运行,温度控制在30±0.5℃,控制反应器pH为9.5±0.5。进水为人工配制的模拟城镇污水,其水质指标为:TOC:150±1.96mg/L,NH3-N:22.7±1.27mg/L,TN:27.13±1.88mg/L,TP:2.29±0.18mg/L。FO膜组件13采用聚醚砜膜(PES),膜面积为0.025m2,MF组件6采用平板膜组件,为聚偏氟乙烯(PVDF)材质,膜面积为0.025m2,孔径为0.2μm左右。采用三元组合厌氧反应器运行23d,膜组件未进行任何清洗。进水水质为:TOC:145.9±1.97mg/L,NH3-N:27.11±1.27mg/L,TN:31.5±0.85mg/L,TP:2.57±0.15mg/L,FO出水水质为TOC:4.94±0.86mg/L,NH3-N:24.08±2.68mg/L,TN:25.41±2.69mg/L,TP:0.5±0.19mg/L,经过RO处理后COD和TP为0,而NH3-N和TN小于5mg/L;MF膜出水经过化学沉淀和活性炭吸附后的出水水质为:COD:20mg/L,TP:0.1mg/l,NH4-N:4.05mg/L。MFC能够实现持续且相对稳定的电压输出,电压基本稳定在420mV。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (17)

  1. 一种耦合厌氧产酸、FO和MFC的厌氧反应器,其特征在于,所述厌氧反应器主要包括厌氧产酸装置、汲取液池、反渗透膜处理装置、微生物燃料电池装置、沉淀池、吸附装置;所述厌氧产酸装置中包括微滤膜组件、正渗透膜组件;所述微滤膜组件通过管路与沉淀池连接,沉淀池通过管路与吸附装置连接;所述正渗透膜组件通过管路与汲取液池连接,汲取液池与反渗透膜处理装置连接;所述微生物燃料电池装置与厌氧产酸装置相连。
  2. 根据权利要求1所述的厌氧反应器,其特征在于,所述厌氧产酸装置内的下部安装有曝气管;气泵一端与曝气管连接,另一端延伸至厌氧产酸装置内的上部。
  3. 根据权利要求1所述的厌氧反应器,其特征在于,所述正渗透膜组件与汲取液池,通过汲取液泵和管路构成循环。
  4. 根据权利要求1所述的厌氧反应器,其特征在于,所述汲取液池与反渗透膜处理装置通过高压泵和管路构成循环。
  5. 根据权利要求1所述的厌氧反应器,其特征在于,所述厌氧产酸装置与微生物燃料电池装置,通过循环泵和管路构成循环。
  6. 根据权利要求1所述的厌氧反应器,其特征在于,所述厌氧产酸装置中还含有挡板。
  7. 根据权利要求1所述的厌氧反应器,其特征在于,所述微生物燃料电池装置为单室空气阴极MFC,阳极材料为碳毡,阴极材料为活性炭-PTFE空气阴极。
  8. 一种厌氧污水处理方法,其特征在于,所述方法是利用权利要求1~7任一所述的耦合厌氧产酸、FO和MFC的厌氧反应器。
  9. 根据权利要求8所述的方法,其特征在于,所述方法具体是:
    1)以污水作为进水,通过进水泵进入厌氧产酸装置,同时通过加碱泵将NaOH溶液打入厌氧产酸区,在曝气作用下,使NaOH溶液迅速混合均匀;
    2)在厌氧产酸装置中含有正渗透膜组件,利用正渗透膜两侧汲取液与原料液之间的渗透压差,使水透过膜形成出水,然后膜出水进入后续反渗透膜处理装置进一步处理;同时厌氧产酸装置中含有微滤膜组件控制反应器中盐度积累,膜出水进入沉淀池在碱性环境下以磷酸盐沉淀的形式去除总磷,然后通过吸附装置吸附剩余的氨氮;
    3)厌氧产酸区的混合液通过循环泵连续进入微生物燃料电池装置,然后再回流至厌氧产酸区,在此过程中,被截留的有机污染物以生物电的形式回收。
  10. 根据权利要求9所述的方法,其特征在于,所述正渗透膜是指三醋酸纤维膜、聚酰胺膜、聚醚砜树脂中的任意一种;所述微滤膜为聚偏氟乙烯、聚砜、聚丙烯腈、聚氯乙烯、聚丙烯中的任意一种。
  11. 根据权利要求9所述的方法,其特征在于,所述NaOH溶液是指0.2M NaOH溶液, pH为12-14。
  12. 根据权利要求9所述的方法,其特征在于,微滤膜和正渗透膜浸没在厌氧产酸装置的液面下。
  13. 根据权利要求9所述的方法,其特征在于,所述汲取液是指0.5M NaCl溶液。
  14. 根据权利要求9所述的方法,其特征在于,所述步骤(2)的碱性环境是指通过pH控制器控制pH11.0左右。
  15. 根据权利要求9所述的方法,其特征在于,所述微滤膜组件处理后的微滤膜出水中的氨氮采用含有活性炭的吸附装置吸附来去除,活性炭用量为50g/L,停留时间12h。
  16. 根据权利要求9所述的方法,其特征在于,所述微生物燃料电池装置为单室空气阴极MFC,阳极材料为碳毡,阴极材料为活性炭-PTFE空气阴极。
  17. 根据权利要求9所述的方法,其特征在于,所述微生物燃料电池装置为单室空气阴极MFC,有效体积为160mL,阳极材料为碳毡,阳极面积为40cm2,阴极材料为活性炭-PTFE空气阴极,阴极面积为40cm2
PCT/CN2016/092012 2016-07-15 2016-07-28 一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法 WO2018010217A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/571,397 US10384968B2 (en) 2016-07-15 2016-07-28 Ternary sewage treatment method integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610559203.3A CN106045035B (zh) 2016-07-15 2016-07-15 一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法
CN201610559203.3 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018010217A1 true WO2018010217A1 (zh) 2018-01-18

Family

ID=57187565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092012 WO2018010217A1 (zh) 2016-07-15 2016-07-28 一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法

Country Status (3)

Country Link
US (1) US10384968B2 (zh)
CN (1) CN106045035B (zh)
WO (1) WO2018010217A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307413A (zh) * 2021-06-21 2021-08-27 天津绿诺环保科技有限公司 一种脱除合成氨工业废水中氨氮的装置及其处理方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3679150B1 (en) * 2017-09-05 2021-10-27 Vito NV Method and apparatus for in situ product recovery
CN109704452B (zh) * 2019-02-19 2021-07-09 南京师范大学 耦合生物电化学和正渗透膜生物反应器的水处理装置及方法
CN110156270B (zh) * 2019-06-11 2023-08-08 中铁第一勘察设计院集团有限公司 源分离尿液氮磷回收与水回用系统及其运行方法
CN110272170B (zh) * 2019-07-25 2020-11-03 江南大学 一种用于发酵废水的处理与回用的多级膜分离装置和方法
US11208341B2 (en) * 2019-07-25 2021-12-28 Jiangnan University Sewage treatment device and method for synchronously recovering water and electric energy
CN110451636B (zh) * 2019-07-30 2024-05-07 河北大学 一种膜生物反应器、污水处理系统及处理方法
CN113105071A (zh) * 2021-04-07 2021-07-13 江南大学 一种高cod高氨氮有机废水处理系统及其处理工艺
CN113336327A (zh) * 2021-04-13 2021-09-03 西安建筑科技大学 一种基于生物炭投加的厌氧膜生物反应器的增效方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332835A (zh) * 2013-07-29 2013-10-02 哈尔滨工业大学 厌氧膜生物反应器、正渗透、反渗透组合的污水处理系统
CN103449602A (zh) * 2013-09-17 2013-12-18 江南大学 一种减轻正渗透膜-生物反应器中盐度积累的方法
CN104681843A (zh) * 2015-02-10 2015-06-03 中国科学技术大学苏州研究院 一种正渗透膜-微生物燃料电池
CN105330106A (zh) * 2015-11-05 2016-02-17 河海大学 正渗透膜和厌氧膜并联的废水处理方法及装置
US20160137536A1 (en) * 2013-06-07 2016-05-19 Korea Institute Of Energy Research Bioelectrochemical system having polyvalent ion removing function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140224717A1 (en) * 2013-02-12 2014-08-14 Graham John Gibson Juby Wastewater treatment system with microbial fuel cell power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160137536A1 (en) * 2013-06-07 2016-05-19 Korea Institute Of Energy Research Bioelectrochemical system having polyvalent ion removing function
CN103332835A (zh) * 2013-07-29 2013-10-02 哈尔滨工业大学 厌氧膜生物反应器、正渗透、反渗透组合的污水处理系统
CN103449602A (zh) * 2013-09-17 2013-12-18 江南大学 一种减轻正渗透膜-生物反应器中盐度积累的方法
CN104681843A (zh) * 2015-02-10 2015-06-03 中国科学技术大学苏州研究院 一种正渗透膜-微生物燃料电池
CN105330106A (zh) * 2015-11-05 2016-02-17 河海大学 正渗透膜和厌氧膜并联的废水处理方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307413A (zh) * 2021-06-21 2021-08-27 天津绿诺环保科技有限公司 一种脱除合成氨工业废水中氨氮的装置及其处理方法和应用

Also Published As

Publication number Publication date
US20190119136A1 (en) 2019-04-25
CN106045035A (zh) 2016-10-26
US10384968B2 (en) 2019-08-20
CN106045035B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
WO2018010217A1 (zh) 一种耦合厌氧产酸、正渗透和微生物燃料电池的三元污水处理方法
CN102344227B (zh) 一种发制品废水循环利用装置及其处理方法
CN103102038B (zh) 一种浸没式双膜生物反应器及含盐污水处理方法
CN110272171B (zh) 一种同步回收水和电能的污水处理装置及方法
CN105541036A (zh) 一种印染行业废水回用处理系统及处理方法
CN109912118A (zh) 一种高盐分色纺废水资源化零排放系统和方法
CN110272170B (zh) 一种用于发酵废水的处理与回用的多级膜分离装置和方法
CN108083552A (zh) 一种纺织工业废水的处理方法
CN106219884A (zh) 高氨氮垃圾渗滤液的处理方法
CN105540953A (zh) 一种电解-电渗析复合水处理装置
US11208341B2 (en) Sewage treatment device and method for synchronously recovering water and electric energy
CN102145949B (zh) 一种制革深度处理废水循环利用装置及其方法
CN105399249B (zh) 一种市政污水深度处理的装置及方法
CN203360192U (zh) 一种难降解工业废水处理装置
CN105884093A (zh) 一种高碱度pta中水回用工艺
CN105293787B (zh) 一种冷轧碱性排放废水深度处理回用工艺系统和方法
CN206255958U (zh) 一种应用于海绵城市生态地面污水处理装置
CN210683539U (zh) 一种用于回收污水中碳、氮、磷和水的系统
CN104030528A (zh) 印染废水的处理方法
CN209778569U (zh) 一种老龄垃圾填埋场渗滤液处理系统
CN201952316U (zh) 制革深度处理废水循环利用装置
CN203890199U (zh) 印染废水处理装置
CN106007223A (zh) 一种耦合正渗透膜与微滤膜的厌氧污水处理方法
CN207671875U (zh) 一种印染废水的处理系统
CN204529559U (zh) 一种光催化氧化技术联合铁碳微电解处理反渗透浓水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908542

Country of ref document: EP

Kind code of ref document: A1