CN110272171B - 一种同步回收水和电能的污水处理装置及方法 - Google Patents

一种同步回收水和电能的污水处理装置及方法 Download PDF

Info

Publication number
CN110272171B
CN110272171B CN201910675244.2A CN201910675244A CN110272171B CN 110272171 B CN110272171 B CN 110272171B CN 201910675244 A CN201910675244 A CN 201910675244A CN 110272171 B CN110272171 B CN 110272171B
Authority
CN
China
Prior art keywords
membrane
water
liquid
drawing liquid
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910675244.2A
Other languages
English (en)
Other versions
CN110272171A (zh
Inventor
王新华
孟曼丽
刘舒悦
任月萍
李秀芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201910675244.2A priority Critical patent/CN110272171B/zh
Publication of CN110272171A publication Critical patent/CN110272171A/zh
Priority to PCT/CN2019/113192 priority patent/WO2021012440A1/zh
Priority to US16/944,255 priority patent/US11208341B2/en
Application granted granted Critical
Publication of CN110272171B publication Critical patent/CN110272171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems

Abstract

本发明公开了一种同步回收水和电能的污水处理装置及方法,属于污水处理领域。本发明方法包括以下步骤:以城市污水作为进水,将泥水混合液作为进料液,通过蠕动泵进入膜组件的进料液通道,以盐水作为汲取液,通过高压泵进入膜组件的汲取液通道。利用FO膜两侧的渗透压差,使水从进料液侧流向汲取液侧,混合后的汲取液具有较高的压力,在流出的过程中推动涡轮机转动,进而产生电能。稀释后的汲取液通过汲取液回收系统,获得回用水,同时浓缩后的汲取液继续用于FO膜。本发明技术设计科学合理,对拓展正渗透膜在污水处理中的应用具有重要意义。

Description

一种同步回收水和电能的污水处理装置及方法
技术领域
本发明涉及一种同步回收水和电能的污水处理装置及方法,属于污水处理领域。
背景技术
膜生物反应器(MBRs)作为一种生物处理与膜分离技术相结合的新型污水处理技术,具有出水水质好且稳定、占地面积小、剩余污泥产量低等优势,在城市污水和工业废水处理领域得到了广泛应用,被誉为21世纪最有发展前途的水处理技术之一。然而,MBR还存在出水水质有待进一步提升、能耗较高、膜污染严重等问题。
正渗透膜生物反应器(OMBR)是国外学者于2008年提出的一种新型MBR替代工艺。它使用新型正渗透(FO)膜替代传统MBR中压力驱动式膜分离过程,是一种将生物处理和FO膜组合而成的新型工艺。根据FO膜组件与生物反应器的相对位置关系,OMBR可以分为浸没式OMBR(FO膜组件在生物反应器内)和外置式OMBR(FO膜组件在生物反应器外)。浸没式OMBR占地面积小,减少了泥水混合液的循环泵,但是FO膜组件不容易拆卸且膜污染控制效果略差。外置式OMBR便于拆卸且水力学条件好,更容易控制膜污染,但是增加了占地面积。FO膜的推动力是渗透压差,FO过程不需施加外加压力作为驱动力,水分子能够自发地从水化学势高的原料液部分渗透到水化学势低的汲取液部分。与压力驱动过程相比,FO膜具有更小的膜污染趋势。由于FO膜对污染物的截留性能更好,OMBR的出水水质优于传统MBR,可以直接进行回用。正是由于出水水质更好、膜污染趋势更小等特点,OMBR已经受到了越来越多的关注。
目前商用的FO膜包括两层,一层是起到截留作用的活性层,一层是起到支撑作用的支撑层。活性层比较薄且致密,抗污染能力较强,而支撑层较厚且多孔,易于产生膜污染。因此,在FO膜运行过程中存在两种膜朝向,一种是活性层朝向原料液(AL-FS),一种是支撑层朝向原料液(AL-DS)。与AL-DS相比,AL-FS膜污染趋势更小,但是膜通量更小。现有的OMBR运行时,考虑到FO膜面向的是含有各种污染物的活性污泥,为了减缓膜污染,一般采用AL-FS朝向。
事实上,在OMBR运行过程中,FO膜两侧存在盐差能,盐差能是不同溶液混合时产生的能量,与太阳能和风能相比,受气相和地理条件影响小,且在海洋中储量巨大。虽然FO过程中存在盐差能,但由于FO污水处理过程中产生的渗透水量太少,相应的功率密度(等于汲取液侧的压力乘以产水量)较小,盐差能的回收困难。压力延滞渗透(PRO)是利用盐差能进行产能的新型膜工艺。与FO膜相比,PRO在汲取液一侧施加小于渗透压差的外加压力,增加了渗透过程中产生的功率密度,从而可以回收盐差能。具体来说,在PRO中,水从进料液(低盐度)一侧通过半渗透膜流向汲取液(高盐度)一侧,由于PRO组件汲取液侧容积一定,混合后的汲取液和进料液与原本的汲取液相比具有更高的压力,可在流出的过程中推动涡轮机发电。目前,PRO主要处理对象为河水、湖水、海水等地表水,缺少在污水处理中的应用。此外,由于地表水中的污染物浓度较低,PRO运行过程中进料液中污染物的浓缩及其后处理都未涉及到。
发明内容
【技术问题】
现有的OMBR在运行时汲取液需要采用反渗透、膜蒸馏等技术进行回收,能耗较高,影响了技术的经济可行性。虽然FO过程中存在盐差能,但由于FO污水处理过程中产生的渗透水量太少,相应的功率密度(等于汲取液侧的压力乘以产水量)较小,盐差能的回收困难。
现有的PRO在运行时,对于进料液实际上是一个浓缩过程,即水透过FO膜进入汲取液而污染物被截留在进料液一侧,这就导致进料液存在碳、氮、磷等污染物的富集问题以及后续处理复杂的问题。
【技术方案】
为了解决上述问题,本发明提供了结合OMBR和PRO产能的工艺,建立了基于同步回收水和电能的新型污水处理技术,在保留OMBR优点的基础上,获取额外的电能,降低汲取液后处理的能耗。
本发明的第一个目的是提供一种同步回收水和电能的污水处理装置,所述装置包括进水池、生物反应器、FO膜组件、涡轮机、汲取液池和汲取液回收系统;所述进水池与生物反应器相连,所述FO膜组件包括汲取液通道、进料液通道和FO膜,所述FO膜将汲取液通道和进料液通道隔开,所述进料液通道的入口和进料液通道的出口均与生物反应器相连,所述汲取液池与汲取液通道的入口相连,所述汲取液通道的出口通过涡轮机与汲取液池相连,所述汲取液池与汲取液回收系统相连。
在本发明的一种实施方式中,所述进水池与生物反应器相连的管道上安装有泵。
在本发明的一种实施方式中,所述生物反应器与进料液通道的入口相连的管道上安装有泵。
在本发明的一种实施方式中,所述汲取液池与汲取液通道的入口相连的管路上安装有高压泵。
在本发明的一种实施方式中,所述生物反应器的下部安装有曝气管,气泵一端与曝气管连接。
在本发明的一种实施方式中,所述汲取液回收系统包括电导率仪、高压泵和反渗透组件,其中,汲取液池、高压泵、反渗透组件和汲取液池依次连接构成循环,所述电导率仪与高压泵连接,并控制高压泵的开启和关闭,所述电导率仪的检测端位于汲取液池内部。
在一种实施方式中,所述膜组件由不锈钢或者有机塑料材质加工而成,所述FO膜组件还包括垫片,位于FO膜的一侧。
在本发明的一种实施方式中,所述FO膜是醋酸纤维(CTA)膜、聚酰胺(TFC)膜、水通道蛋白膜或聚醚砜树脂(PES)膜中的任一种。
本发明的第二个目的是提供一种同步回收水和电能的污水处理的方法,所述方法是利用上述污水处理装置进行处理污水。
在本发明的一种实施方式中,所述污水为城市污水,水质指标为:COD:200-500mg/L,NH4 +-N:20-50mg/L,TN:30-50mg/L,TP:2-7mg/L。
在本发明的一种实施方式中,所述方法,具体包括以下步骤:
1)以城市污水作为进水,进入生物反应器内与活性污泥混合后,经由泵将混合得到的泥水混合物泵入FO膜的进料液通道,汲取液通过高压泵进入膜组件中的汲取液通道,利用FO膜两侧的渗透压差,使水从进料液通道流向汲取液通道;
2)同时在汲取液通道侧施加一定的压力,稀释后的汲取液通过涡轮机并推动涡轮机转动,进而产生电能;当汲取液浓度过低时,汲取液回收系统启动,汲取液经过反渗透组件进行浓缩并回收得到水。
在本发明的一种实施方式中,所述泥水混合液循环速率为0.1-0.5L/min。
在本发明的一种实施方式中,所述接种污泥为SS为3-9g/L的活性污泥。
在本发明的一种实施方式中,所述汲取液为0.5-4M的NaCl、MgCl2、KCl、CaCl2溶液。
在本发明的一种实施方式中,所述在汲取液通道侧施加的压力小于FO膜两侧的渗透压。
在本发明的一种实施方式中,所述在汲取液通道侧施加的压力为4-8bar。
在本发明的一种实施方式中,所述当汲取液浓度过低时是指FO膜的渗透压小于汲取液通道侧施加的压力时。
本发明相对于现有技术取得的有益技术效果:
(1)本发明通过将OMBR和PRO的产能优势相结合,利用生物处理和FO膜截留回收污水的同时,具有较高压力的混合后的汲取液在流出的过程中推动涡轮机转动产电,构建得到了同步回收水和电能的新型污水处理装置和方法,使得能源利用更加充分。
(2)本发明的FO膜得到的浓水无需进行焚烧或进一步化学处理,只需回流至生物反应器,则可通过生物的作用除去碳、氮、磷等污染物,解决了现有的PRO在运行时的碳、氮、磷等污染物的富集问题,本发明方法处理更加经济、环保。
附图说明
图1为本发明的同步回收水和电能的污水处理装置的一种实施方式的结构示意图;图中,1—进水池,2—蠕动泵,3—生物反应器,4—气泵,5—蠕动泵,6—FO膜组件,7—涡轮机,8—高压泵,9—汲取液池,10—电导率仪,11—高压泵,12—反渗透组件。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
结合图1,具体介绍一下本发明的一种同步回收水和电能的污水处理装置,本发明的装置包括进水池1、生物反应器3、FO膜组件6、涡轮机7、汲取液池9和汲取液回收系统。进水池1通过蠕动泵2与生物反应器3相连,FO膜组件6包括汲取液通道、进料液通道、垫片和FO膜,垫片和FO膜平行安放且二者将汲取液通道和进料液通道隔开,进料液通道的入口和进料液通道的出口均与生物反应器3相连,汲取液池9通过高压泵8与汲取液通道的入口相连,汲取液通道的出口通过涡轮机7与汲取液池9相连,所述汲取液回收系统包括电导率仪10、高压泵11和反渗透组件12,且汲取液池9、高压泵11、反渗透组件12和汲取液池9依次连接构成循环,电导率仪10与高压泵11连接,用于控制高压泵的开启和关闭,电导率仪10的检测端位于汲取液池9的内部。
进一步的,所述生物反应器3下部安装有曝气管,气泵一端与曝气管连接。
进一步的,所述膜组件由不锈钢或者有机塑料材质加工而成,所述FO膜是醋酸纤维(CTA)膜、聚酰胺(TFC)膜、水通道蛋白膜或聚醚砜树脂(PES)膜中的任一种。
上述装置的运行原理为:以城市污水作为进水,城市污水进入生物反应器内与活性污泥混合后,经由泵将混合得到的泥水混合物泵入FO膜的进料液通道,汲取液通过高压泵进入膜组件中的汲取液通道,利用FO膜两侧的渗透压差,使水从进料液通道流向汲取液通道;同时在汲取液通道侧施加一定的压力,稀释后的汲取液通过涡轮机并推动涡轮机转动,进而产生电能;当汲取液浓度过低时,汲取液回收系统启动,汲取液经过反渗透组件进行浓缩并回收得到水。
实施例2
利用图1所示的装置处理城市污水。
鉴于FO的结构(一层是起到截留作用的活性层,一层是起到支撑作用的支撑层。活性层比较薄且致密,抗污染能力较强,而支撑层较厚且多孔,易于产生膜污染),以及本发明中FO膜面向的是含有各种污染物的活性污泥,为了减缓FO膜污染,本实施例的OMBR运行时采用AL-FS朝向(活性层朝向进料液)。
进水为城市污水,水质:COD:350±12.2mg/L,NH4 +-N:24.88±1.50mg/L,TN:38.24±1.68mg/L,TP:2.08±0.13mg/L。生物反应器中SS(悬浮固体)为3g/L的活性污泥,汲取液为2M NaCl,汲取液侧施加的压力为6bar,膜朝向为AL-FS(活性层朝向进料液),运行24h。
出水水质:COD:10±2.45mg/L,NH4 +-N:4.41±0.40mg/L,TN:4.49±0.53mg/L,TP:0;平均水通量为7.79LMH,平均产电功率密度为1.4W/m2
可见,按照通常的做法(即FO膜朝向为AL-FS)最终得到的平均水通量仅为7.79LML,平均产电功率密度仅为1.4W/m2
实施例3
为了进一步提高平均产电功率,发明人尝试采用非常规的FO膜朝向,即AL-DS(活性层朝向汲取液),进行试验。
本实施例方法中,进水为城市污水,水质:COD:350±12.2mg/L,NH4 +-N:24.88±1.50mg/L,TN:38.24±1.68mg/L,TP:2.08±0.13mg/L。生物反应器中SS为3g/L的活性污泥,汲取液为2M NaCl,汲取液侧施加的压力为6bar,膜朝向为AL-DS(活性层朝向汲取液),运行4h。
出水水质:COD:10±1.51mg/L,NH4 +-N:5.12±0.90mg/L,TN:5.53±1.21mg/L,TP:0。平均水通量为12.19LML,平均产电功率密度为2.2W/m2
可以发现,将活性层朝向汲取液时(膜朝向为AL-DS),相同条件下的平均水通量为12.19LMH,平均产电功率密度为2.2W/m2,均为实施例2的1.57倍。此外,运行的24h过程中,水通量和功率密度始终高于实施例2的膜通量和功率密度。与AL-FS相比,AL-DS朝向运行时,FO膜的污染程度与实施例2中的相似,并未产生明显的堵塞。可见,膜朝向为AL-DS时,能够获得最优的运行效果。
实施例4
本实施例方法中,进水为城市污水,水质:COD:330±10.1mg/L,NH4 +-N:24.88±1.50mg/L,TN:38.24±1.68mg/L,TP:2.08±0.13mg/L。生物反应器中SS为3g/L的活性污泥,汲取液为2M NaCl,汲取液侧施加的压力为0bar,膜朝向为AL-DS(活性层朝向汲取液),运行4h。
出水水质:COD:12±2.45mg/L,NH4 +-N:5.11±0.30mg/L,TN:4.63±0.38mg/L,TP:0。平均水通量为13.54LMH,平均产电功率密度为0W/m2
可以发现,当汲取液侧不施加压力时,虽然通量也很稳定,但不产电。通过对膜面污染物的分析发现,加压运行后的膜面污染物为0.78g/m2,而不加压运行的膜面污染物为1.52g/m2。可见,加压运行后的膜面污染物明显减少,这表明加压运行较不加压运行的膜污染更轻。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (3)

1.一种同步回收水和电能的污水处理的方法,其特征在于,所述方法是利用污水处理装置处理污水,所述装置包括进水池、生物反应器、FO膜组件、涡轮机、汲取液池和汲取液回收系统;所述进水池与生物反应器相连,所述FO膜组件包括汲取液通道、进料液通道和FO膜,所述FO膜将汲取液通道和进料液通道隔开,所述进料液通道的入口和进料液通道的出口均与生物反应器相连,所述汲取液池与汲取液通道的入口相连,所述汲取液通道的出口通过涡轮机与汲取液池相连,所述汲取液池与汲取液回收系统相连;所述汲取液池与汲取液通道的入口相连的管路上安装有高压泵;所述FO膜包括支撑层和活性层,所述活性层朝向汲取液;
所述方法,具体包括以下步骤:
以城市污水作为进水,进入生物反应器内与活性污泥混合后,经由泵将混合得到的泥水混合物泵入FO膜的进料液通道,汲取液通过高压泵进入膜组件中的汲取液通道,利用FO膜两侧的渗透压差,使水从进料液通道流向汲取液通道;同时在汲取液通道侧施加一定的压力,稀释后的汲取液通过涡轮机并推动涡轮机转动,进而产生电能;当汲取液浓度过低时,汲取液回收系统启动,汲取液经过反渗透组件进行浓缩并回收得到水;
所述在汲取液通道侧施加的压力小于FO膜两侧的渗透压;
进水为城市污水,水质:COD:350±12.2mg/L,NH4 +-N:24.88±1.50mg/L,TN:38.24±1.68mg/L,TP:2.08±0.13mg/L;生物反应器中SS为3g/L的活性污泥,汲取液为2M NaCl,汲取液侧施加的压力为6bar,膜朝向为AL-DS。
2.根据权利要求1所述的一种同步回收水和电能的污水处理的方法,其特征在于,所述汲取液回收系统包括电导率仪、高压泵和反渗透组件,其中,汲取液池、高压泵、反渗透组件和汲取液池依次连接构成循环,所述电导率仪与高压泵连接,所述电导率仪的检测端位于汲取液池内部。
3.根据权利要求1或2所述的一种同步回收水和电能的污水处理的方法,其特征在于,所述FO膜是醋酸纤维膜、聚酰胺膜、水通道蛋白膜或聚醚砜树脂膜中的任一种。
CN201910675244.2A 2019-07-25 2019-07-25 一种同步回收水和电能的污水处理装置及方法 Active CN110272171B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910675244.2A CN110272171B (zh) 2019-07-25 2019-07-25 一种同步回收水和电能的污水处理装置及方法
PCT/CN2019/113192 WO2021012440A1 (zh) 2019-07-25 2019-10-25 一种同步回收水和电能的污水处理装置及方法
US16/944,255 US11208341B2 (en) 2019-07-25 2020-07-31 Sewage treatment device and method for synchronously recovering water and electric energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910675244.2A CN110272171B (zh) 2019-07-25 2019-07-25 一种同步回收水和电能的污水处理装置及方法

Publications (2)

Publication Number Publication Date
CN110272171A CN110272171A (zh) 2019-09-24
CN110272171B true CN110272171B (zh) 2021-05-04

Family

ID=67965251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910675244.2A Active CN110272171B (zh) 2019-07-25 2019-07-25 一种同步回收水和电能的污水处理装置及方法

Country Status (2)

Country Link
CN (1) CN110272171B (zh)
WO (1) WO2021012440A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208341B2 (en) 2019-07-25 2021-12-28 Jiangnan University Sewage treatment device and method for synchronously recovering water and electric energy
CN110272171B (zh) * 2019-07-25 2021-05-04 江南大学 一种同步回收水和电能的污水处理装置及方法
CN110550833A (zh) * 2019-10-17 2019-12-10 长春工程学院 一种用于回收污水中碳、氮、磷和水的系统及方法
CN111285525B (zh) * 2020-02-24 2021-02-02 山东大学 一种基于余热回收及除盐的逆流式prmd-pro系统及方法
CN112499728B (zh) * 2020-12-09 2022-02-01 江南大学 一种生产海藻酸钙同步回收正渗透汲取液的污水处理方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO329120B1 (no) * 2005-12-22 2010-08-30 Statkraft Dev As Fremgangsmate og system for a utfore vedlikehold pa en membran som har halvgjennomtrengelige egenskaper
KR101144316B1 (ko) * 2009-10-28 2012-05-11 한국건설기술연구원 정삼투와 역삼투 조합형 막분리 하폐수 고도처리장치와, 상기 하폐수 고도처리를 위한 막분리공정 제어장치 및 제어방법
KR20140073312A (ko) * 2012-12-06 2014-06-16 한국건설기술연구원 하수처리수와 해수를 사용하는 정삼투, 역삼투 및 압력지연삼투 공정을 이용한 담수 및 전력 생산장치 및 그 방법
CN103172189A (zh) * 2013-04-09 2013-06-26 中国科学院化学研究所 一种利用渗透能发电的装置
GB2499740B (en) * 2013-04-19 2015-09-16 Ide Technologies Ltd Osmosis apparatus
CN203807297U (zh) * 2014-03-04 2014-09-03 厦门理工学院 一种污水处理及海水淡化装置
CN203938503U (zh) * 2014-07-02 2014-11-12 华中科技大学 一种基于压力延滞渗透与反渗透的海水淡化装置及其系统
CN105481180B (zh) * 2015-12-28 2019-03-22 清华大学 一种污水处理的方法和装置
GB201605070D0 (en) * 2016-03-24 2016-05-11 Applied Biomimetic As Power generation process
US10981116B2 (en) * 2016-03-09 2021-04-20 EnrgiStream Pty Etd Process and system for treating waste water and generating power
CN105776519A (zh) * 2016-03-17 2016-07-20 厦门理工学院 一种正渗透膜生物反应器处理回用畜禽养殖废水的方法
CN106007170B (zh) * 2016-05-18 2019-01-11 四川大学 移动床生物膜反应器-正渗透-反渗透复合式废水处理装置及含氮有机废水处理方法
CN106186591B (zh) * 2016-09-09 2020-01-17 哈尔滨工程大学 一种多级外置式正渗透mbr处理船舶生活污水的系统及方法
CN106745518B (zh) * 2016-12-14 2023-07-04 华中科技大学 一种基于压力延滞渗透及反渗透的双行程海水淡化装置
CN110272171B (zh) * 2019-07-25 2021-05-04 江南大学 一种同步回收水和电能的污水处理装置及方法

Also Published As

Publication number Publication date
WO2021012440A1 (zh) 2021-01-28
CN110272171A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN110272171B (zh) 一种同步回收水和电能的污水处理装置及方法
US10384968B2 (en) Ternary sewage treatment method integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane
CN101786768B (zh) 一种正渗透膜生物反应器
CN103145219B (zh) 一种城市污水碳源回收处理方法及装置
CN110272170B (zh) 一种用于发酵废水的处理与回用的多级膜分离装置和方法
CN105461157A (zh) 一种高盐高有机物废水的零排放方法
CN102295377B (zh) 一种烯烃聚合催化剂生产废水的深度处理回用方法
KR20140073312A (ko) 하수처리수와 해수를 사용하는 정삼투, 역삼투 및 압력지연삼투 공정을 이용한 담수 및 전력 생산장치 및 그 방법
US11208341B2 (en) Sewage treatment device and method for synchronously recovering water and electric energy
CN104591457A (zh) 正渗透耦合膜蒸馏处理废水的装置及方法
CN104609621A (zh) 一种高盐废水的处理方法
CN104591456A (zh) 一种高盐氨氮废水的处理方法
KR101179489B1 (ko) 정삼투 현상을 이용한 저에너지형 수처리 시스템
CN113023880A (zh) 一种mbr膜生物反应器的曝气装置
CN104591423B (zh) 一种高盐高氨氮废水的处理方法
CN112499728B (zh) 一种生产海藻酸钙同步回收正渗透汲取液的污水处理方法
CN106007223A (zh) 一种耦合正渗透膜与微滤膜的厌氧污水处理方法
CN203807297U (zh) 一种污水处理及海水淡化装置
CN110395853B (zh) 一种自旋转式厌氧正渗透膜生物反应器及其应用
CN105330106A (zh) 正渗透膜和厌氧膜并联的废水处理方法及装置
CN204529559U (zh) 一种光催化氧化技术联合铁碳微电解处理反渗透浓水系统
CN112456685A (zh) 一种海水淡化处理系统及处理方法
CN201098608Y (zh) 一体式膜过滤器及其过滤系统
CN110734174A (zh) 一种利用正渗透技术的油气田废水处理系统及方法
CN205635173U (zh) 一种废水处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant