WO2018008787A1 - 알지네이트를 이용한 당알코올 형성 방법 - Google Patents

알지네이트를 이용한 당알코올 형성 방법 Download PDF

Info

Publication number
WO2018008787A1
WO2018008787A1 PCT/KR2016/007480 KR2016007480W WO2018008787A1 WO 2018008787 A1 WO2018008787 A1 WO 2018008787A1 KR 2016007480 W KR2016007480 W KR 2016007480W WO 2018008787 A1 WO2018008787 A1 WO 2018008787A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar alcohol
reactor
alginate
reaction
catalyst
Prior art date
Application number
PCT/KR2016/007480
Other languages
English (en)
French (fr)
Inventor
김도희
반충현
전원진
우희철
Original Assignee
서울대학교산학협력단
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 부경대학교 산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2018008787A1 publication Critical patent/WO2018008787A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases

Definitions

  • the present invention relates to a sugar alcohol formation method using alginate.
  • High value-added sugar alcohols such as mannitol, sorbitol, xylitol, etc. are used in various industrial fields, but are expensive because they do not produce much. Therefore, there is a demand for technology development that can increase the production of high value added sugar alcohols without causing environmental problems.
  • the present invention provides a sugar alcohol forming method using alginate.
  • the present invention provides an environmentally friendly sugar alcohol formation method.
  • the sugar alcohol forming method comprises the steps of providing an alginate and a catalyst in a reactor, supplying hydrogen to the reactor to pressurize, and performing a hydrogenation reaction of the alginate to form a sugar alcohol. It includes.
  • the reactor may be a high pressure reactor.
  • the catalyst may be an activated carbon catalyst loaded with metal.
  • the metal may be ruthenium.
  • the reactor may be pressurized to 10 ⁇ 100bar by the hydrogen. Preferably, the reactor may be pressurized to 40 ⁇ 60bar by the hydrogen.
  • the reaction may be carried out at 150 ⁇ 250 °C. Preferably, the reaction may be carried out at 170 ⁇ 220 °C.
  • the reaction may be performed for 1 to 24 hours. The reaction time may be adjusted according to the temperature at which the reaction is performed.
  • the alginate may be provided to the reactor with water.
  • the sugar alcohol may include a sugar alcohol having 5 to 6 carbon atoms.
  • the alginate may be hydrogenated to form a high value sugar alcohol such as mannitol, sorbitol, xylitol, or the like.
  • the sugar alcohol forming method is environmentally friendly because it does not use an organic solvent and an acid catalyst.
  • FIG. 1 is a process flow diagram illustrating a sugar alcohol formation method according to an embodiment of the present invention.
  • 2 and 3 are graphs showing the amount of sugar alcohols formed by hydrogenation of alginate according to embodiments of the present invention.
  • FIG. 1 is a process flow diagram illustrating a sugar alcohol formation method according to an embodiment of the present invention.
  • the sugar alcohol forming method may include the step of forming a sugar alcohol by performing a hydrogenation reaction (S30).
  • the reactor may be a high pressure reactor.
  • the alginate may be provided to the reactor with water.
  • the catalyst may be an activated carbon catalyst loaded with metal.
  • the metal may be ruthenium.
  • the reactor may be pressurized to 10 to 100 bar by providing the hydrogen to the reactor.
  • the reactor may be pressurized to 40 ⁇ 60bar by the hydrogen.
  • helium may be pressurized to 50 bar, and then the pressure may be reduced once or twice to purge the reactor.
  • the reactor may be heated to a reaction temperature of 150 ⁇ 250 °C using an electric furnace. Preferably the reactor may be heated to a reaction temperature of 170 ⁇ 220 °C.
  • the time for the internal temperature of the reactor to reach the reaction temperature may be adjusted within 30 minutes.
  • the reaction may be performed for 1 to 24 hours from the time when the reactor reaches the reaction temperature.
  • the reaction time may be appropriately adjusted according to the reaction temperature.
  • the sugar alcohol may include a sugar alcohol having 5 to 6 carbon atoms.
  • the sugar alcohol may include mannitol, sorbitol, xylitol and the like.
  • the reactor was heated to 180 ° C. using an electric furnace.
  • the propeller type stirrer was rotated at 1000 rpm.
  • the time at which the internal temperature of the reactor reached 180 ° C., the reaction temperature, was controlled within 30 minutes.
  • the reaction time was set to 0, 1, 2, 4, 8, 12, 16, 24, 48 hours from the time when the reactor reached 180 ° C.
  • Alginate was hydrogenated at the reaction temperature for the reaction time to form sugar alcohol.
  • Alginate was hydrogenated in the same manner as in Example 1 except that the reaction temperature was set to 210 ° C. to form sugar alcohols.
  • 0.2 mL of acetonitrile, 0.2 mL of pyridine, and 0.2 mL of BSTFA (N, O-Bis (trimethylsilyl) trifluoroacetamide) were injected into the glass vial, followed by derivatization in an electric oven at 65 ° C. for 2 hours.
  • the glass vial was taken out of the electric oven and immersed in cooling at room temperature to cool. 1 ⁇ l of the resultant was collected and analyzed for the production amount of sugar alcohol using gas chromatography.
  • 2 and 3 are graphs showing the amount of sugar alcohols formed by hydrogenation of alginate according to embodiments of the present invention.
  • 2 shows the analysis results when the reaction temperature is 180 ° C
  • FIG. 3 shows the analysis results when the reaction temperature is 210 ° C.
  • 2 and 3 represent the reaction time
  • the vertical axis represents the carbon yield.
  • the carbon yield can be obtained by the following Equation 1.
  • Carbon yield 100 x (number of carbon atoms in sugar alcohols such as mannitol, sorbitol, xylitol / 6) x (mole number of sugar alcohols such as mannitol, sorbitol, xylitol, etc. Confiscation of manluron and gluron)
  • Example 1 the maximum carbon yield of C6 sugar alcohol was 47.43% after 4 hours of reaction time, and the maximum carbon yield of C5 sugar alcohol was 13.63% after 24 hours of reaction time.
  • the maximum carbon yield of C6 sugar alcohol was 29.60% after 1 hour of reaction time, and the maximum carbon yield of C5 sugar alcohol was 11.01% after 2 hours of reaction time.
  • the production amount of C5 sugar alcohols at a reaction temperature of 180 ° C. may be the most arabitol (Arabitol) is formed, and then may be formed in the order of Xylitol and Adonitol.
  • the production amount of C6 sugar alcohol at the reaction temperature of 180 ° C may be the most sorbitol (Sorbitol) is formed, and then in the order of mannitol (Mannitol) and dulcitol (Dulcitol).
  • the alginate may be hydrogenated to form a high value sugar alcohol such as mannitol, sorbitol, xylitol, or the like.
  • the sugar alcohol forming method is environmentally friendly because it does not use an organic solvent and an acid catalyst.

Abstract

알지네이트를 이용한 당알코올 형성 방법이 제공된다. 상기 당알코올 형성 방법은, 반응기에 알지네이트와 촉매를 제공하는 단계, 상기 반응기에 수소를 제공하여 가압하는 단계, 및 상기 알지네이트의 수소화 반응을 수행하여 당알코올을 형성하는 단계를 포함한다.

Description

알지네이트를 이용한 당알코올 형성 방법
본 발명은 알지네이트를 이용한 당알코올 형성 방법에 관한 것이다.
만니톨, 소르비톨, 자일리톨 등과 같은 고부가가치의 당알코올은 다양한 산업분야에서 사용되고 있으나 생산량이 많지 않아 가격이 비싸다. 따라서, 환경 문제를 야기하지 않으면서 고부가가치의 당알코올의 생산량을 증대시킬 수 있는 기술 개발이 요구되고 있다.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 알지네이트를 이용한 당알코올 형성 방법을 제공한다.
본 발명은 친환경적인 당알코올 형성 방법을 제공한다.
본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.
본 발명의 실시예들에 따른 당알코올 형성 방법은, 반응기에 알지네이트와 촉매를 제공하는 단계, 상기 반응기에 수소를 제공하여 가압하는 단계, 및 상기 알지네이트의 수소화 반응을 수행하여 당알코올을 형성하는 단계를 포함한다.
상기 반응기는 고압 반응기일 수 있다.
상기 촉매는 금속이 담지된 활성탄 촉매일 수 있다. 상기 금속은 루테늄일 수 있다.
상기 반응기는 상기 수소에 의해 10 ~ 100bar로 가압될 수 있다. 바람직하게는, 상기 반응기는 상기 수소에 의해 40 ~ 60bar로 가압될 수 있다. 상기 반응은 150 ~ 250℃에서 수행될 수 있다. 바람직하게는, 상기 반응은 170 ~ 220℃에서 수행될 수 있다. 상기 반응은 1 ~ 24시간 수행될 수 있다. 상기 반응이 수행되는 온도에 따라 상기 반응 시간이 조절될 수 있다.
상기 알지네이트는 물과 함께 상기 반응기에 제공될 수 있다.
상기 당알코올은 탄소수가 5 내지 6인 당알코올을 포함할 수 있다.
본 발명의 실시예들에 따른 당알코올 형성 방법은, 알지네이트를 수소화하여 만니톨, 소르비톨, 자일리톨 등과 같은 고부가가치의 당알코올을 형성할 수 있다. 상기 당알코올 형성 방법은 유기 용매와 산 촉매를 사용하지 않아 친환경적이다.
도 1은 본 발명의 일 실시예에 따른 당알코올 형성 방법을 나타내는 공정 흐름도이다.
도 2 및 도 3은 본 발명의 실시예들에 따른 알지네이트의 수소화 반응에 의해 형성된 당알코올의 생성량을 나타내는 그래프이다.
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.
[ 당알코올 형성 방법]
도 1은 본 발명의 일 실시예에 따른 당알코올 형성 방법을 나타내는 공정 흐름도이다.
도 1을 참조하면, 본 발명의 실시예들에 따른 당알코올 형성 방법은, 반응기에 알지네이트와 촉매를 제공하는 단계(S10), 상기 반응기에 수소를 제공하여 가압하는 단계(S20), 및 상기 알지네이트의 수소화 반응을 수행하여 당알코올을 형성하는 단계(S30)를 포함할 수 있다.
반응기에 알지네이트와 촉매를 제공한다(S10).
상기 반응기는 고압 반응기일 수 있다. 상기 알지네이트는 물과 함께 상기 반응기에 제공될 수 있다. 상기 촉매는 금속이 담지된 활성탄 촉매일 수 있다. 상기 금속은 루테늄일 수 있다.
상기 반응기에 수소를 제공하여 가압한다(S20).
상기 반응기에 상기 수소를 제공하여 상기 반응기는 10 ~ 100bar로 가압될 수 있다. 바람직하게는, 상기 반응기는 상기 수소에 의해 40 ~ 60bar로 가압될 수 있다. 상기 반응기에 상기 수소를 제공하기 전에 헬륨을 제공하여 상기 반응기를 50bar로 가압한 후 감압하는 과정을 1회 또는 2회 이상 수행하여 상기 반응기를 퍼지(purge)할 수 있다.
상기 알지네이트의 수소화 반응을 수행하여 당알코올을 형성한다(S30).
상기 반응기는 전기로를 이용하여 150 ~ 250℃의 반응 온도로 가열될 수 있다. 바람직하게는 상기 반응기는 170 ~ 220℃의 반응 온도로 가열될 수 있다. 상기 반응기의 내부 온도가 상기 반응 온도에 도달하는 시간은 30분 이내로 조절될 수 있다. 상기 반응은 상기 반응기가 상기 반응 온도에 도달한 시점부터 1 ~ 24시간 수행될 수 있다. 상기 반응 시간은 상기 반응 온도에 따라 적절하게 조절될 수 있다. 상기 당알코올은 탄소수가 5 내지 6인 당알코올을 포함할 수 있다. 상기 당알코올은 만니톨, 소르비톨, 자일리톨 등을 포함할 수 있다.
[실시예]
실시예 1
스테인레스 스틸 고압 반응기(내부 용량 100 mL)에 증류수 30mL, 5% 루테늄이 담지된 활성탄 촉매 0.1g, 및 알지네이트 0.3g을 주입하고, 프로펠러형 교반기를 상기 반응기 중앙에 위치시키고, 상기 반응기를 밀폐시켰다.
상기 밀폐된 반응기를 50bar의 헬륨으로 가압한 후, 상기 헬륨을 감압하였다. 상기 헬륨의 가압 및 감압 과정을 3회 실시하였다.
상기 밀폐된 반응기에 50bar의 수소로 가압한 후, 상기 수소를 감압하였다. 상기 수소의 가압 및 감압 과정을 2회 실시하고, 50bar의 수소로 가압한 후 상기 반응기를 밀폐시켰다.
전기로를 사용하여 상기 반응기를 180℃로 가열하였다. 상기 프로펠러형 교반기는 1000rpm으로 회전되었다. 상기 반응기의 내부 온도가 반응 온도인 180℃에 도달하는 시간은 30분 이내로 조절되었다. 상기 반응기가 180℃에 도달한 시점부터 반응 시간을 0, 1, 2, 4, 8, 12, 16, 24, 48시간으로 설정하였다. 상기 반응 온도에서 상기 반응 시간 동안 알지네이트를 수소화하여 당알코올을 형성하였다.
상기 반응 시간이 경과하면 상기 전기로를 제거하고, 상기 반응기를 냉수에 담구어 냉각시켰다.
실시예 2
상기 반응 온도를 210℃로 설정한 것을 제외하고 상기 실시예 1과 동일한 방법으로 알지네이트를 수소화하여 당알코올을 형성하였다.
[분석예]
상기 실시예 1과 2의 반응 결과물로부터 유리 피펫을 이용하여 샘플을 채취하고 0.2㎛ 필터를 상기 5% 루테늄이 담지된 활성탄 촉매와 상기 반응 결과물을 분리하였다. 상기 분리된 반응 결과물을 0.2mL 채취하여 유리 바이알(내부 용량 5mL)에 옮겨 동결 건조하였다.
상기 유리 바이알에 아세토나이트릴 0.2mL, 피리딘 0.2mL, 및 BSTFA(N,O-Bis(trimethylsilyl)trifluoroacetamide) 0.2mL를 주입하고, 65℃ 전기 오븐에서 2시간 동안 유도체화를 진행하였다.
상기 유도체화 시간이 경과하면, 상기 유리 바이알을 상기 전기 오븐에서 꺼내어 상온의 냉각에 담구어 냉각시켰다. 상기 결과물을 1㎕ 채취하여 가스 크로마토그래피를 이용하여 당알코올의 생성량을 분석하였다.
도 2 및 도 3은 본 발명의 실시예들에 따른 알지네이트의 수소화 반응에 의해 형성된 당알코올의 생성량을 나타내는 그래프이다. 도 2는 반응 온도가 180℃인 경우의 분석 결과를 나타내고, 도 3은 반응 온도가 210℃인 경우의 분석 결과를 나타낸다. 도 2와 도 3의 가로축은 반응 시간을 나타내고, 세로축은 탄소 수율을 나타낸다. 상기 탄소 수율은 하기 수학식 1로 구할 수 있다.
[수학식 1]
탄소 수율 = 100 x (만니톨, 소르비톨, 자일리톨 등의 당알코올에 포함된 탄소 원자의 수/6) x (반응 결과물에 포함된 만니톨, 소르비톨, 자일리톨 등의 당알코올의 몰수/주입된 알지네이트에 포함된 만루론산과 글루론산의 몰수)
도 2 및 도 3을 참조하면, 반응 온도가 상승하면 최대 탄소 수율에 도달하는 시간이 단축되지만, 상기 수율은 감소될 수 있다. 실시예 1과 실시예 2를 살펴보면 180℃와 210℃의 두 반응 온도에서 탄소 원자수 6개(C6)의 당알코올이 먼저 최대 탄소 수율에 도달하며, 탄소 원자수 5개(C5)의 당알코올의 최대 탄소 수율은 C6 당알코올의 탄소 수율이 감소되는 과정에 나타난다. 그리고 이와 함께 C3 당알코올 및 C4 당알코올의 탄소 수율이 증가한다.
도 2를 참조하면, 실시예 1에서는 반응 시간 4시간 경과 후 C6 당알코올의 최대 탄소 수율이 47.43%로 나타났고, 반응 시간 24시간 경과 후 C5 당알코올의 최대 탄소 수율이 13.63%로 나타났다.
도 3을 참조하면, 실시예 2에서는 반응 시간 1시간 경과 후 C6 당알코올의 최대 탄소 수율이 29.60%로 나타났고, 반응 시간 2시간 경과 후 C5 당알코올의 최대 탄소 수율이 11.01%로 나타났다.
이와 같이, C5 당알코올 및 C6 당알코올을 생성하기 위해서는 210℃보다 180℃의 저온 반응이 유리하다. 또, 180℃의 반응 온도에서 C5 당알코올의 생성량은 아라비톨(Arabitol)이 가장 많이 형성될 수 있고, 다음 자일리톨(Xylitol)과 아도니톨(Adonitol)의 순으로 형성될 수 있다. 180℃의 반응 온도에서 C6 당알코올의 생성량은 소르비톨(Sorbitol)이 가장 많이 형성될 수 있고, 다음 만니톨(Mannitol)과 덜시톨(Dulcitol)의 순으로 형성될 수 있다.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명의 실시예들에 따른 당알코올 형성 방법은, 알지네이트를 수소화하여 만니톨, 소르비톨, 자일리톨 등과 같은 고부가가치의 당알코올을 형성할 수 있다. 상기 당알코올 형성 방법은 유기 용매와 산 촉매를 사용하지 않아 친환경적이다.

Claims (12)

  1. 반응기에 알지네이트와 촉매를 제공하는 단계;
    상기 반응기에 수소를 제공하여 가압하는 단계; 및
    상기 알지네이트의 수소화 반응을 수행하여 당알코올을 형성하는 단계를 포함하는 당알코올 형성 방법.
  2. 제 1 항에 있어서,
    상기 반응기는 고압 반응기인 것을 특징으로 하는 당알코올 형성 방법.
  3. 제 1 항에 있어서,
    상기 촉매는 금속이 담지된 활성탄 촉매인 것을 특징으로 하는 당알코올 형성 방법.
  4. 제 3 항에 있어서,
    상기 금속은 루테늄인 것을 특징으로 하는 당알코올 형성 방법.
  5. 제 1 항에 있어서,
    상기 반응기는 상기 수소에 의해 10 ~ 100bar로 가압되는 것을 특징으로 하는 당알코올 형성 방법.
  6. 제 5 항에 있어서,
    상기 반응기는 상기 수소에 의해 40 ~ 60bar로 가압되는 것을 특징으로 하는 당알코올 형성 방법.
  7. 제 5 항에 있어서,
    상기 반응은 150 ~ 250℃에서 수행되는 것을 특징으로 하는 당알코올 형성 방법.
  8. 제 7 항에 있어서,
    상기 반응은 170 ~ 220℃에서 수행되는 것을 특징으로 하는 당알코올 형성 방법.
  9. 제 7 항에 있어서,
    상기 반응은 1 ~ 24시간 수행되는 것을 특징으로 하는 당알코올 형성 방법.
  10. 제 7 항에 있어서,
    상기 반응이 수행되는 온도에 따라 상기 반응 시간이 조절되는 것을 특징으로 하는 당알코올 형성 방법.
  11. 제 1 항에 있어서,
    상기 알지네이트는 물과 함께 상기 반응기에 제공되는 것을 특징으로 하는 당알코올 형성 방법.
  12. 제 1 항에 있어서,
    상기 당알코올은 탄소 원자수가 5 내지 6인 당알코올을 포함하는 것을 특징으로 하는 당알코올 형성 방법.
PCT/KR2016/007480 2016-07-04 2016-07-11 알지네이트를 이용한 당알코올 형성 방법 WO2018008787A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160084336 2016-07-04
KR10-2016-0084336 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018008787A1 true WO2018008787A1 (ko) 2018-01-11

Family

ID=60912914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007480 WO2018008787A1 (ko) 2016-07-04 2016-07-11 알지네이트를 이용한 당알코올 형성 방법

Country Status (1)

Country Link
WO (1) WO2018008787A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950812A (en) * 1988-02-22 1990-08-21 Fina Research S.A. Single-step catalytic process for the direct conversion of polysaccharides to polyhydric alcohols
US20040176619A1 (en) * 2001-06-11 2004-09-09 Dominic Vanoppen Ruthenium catalysts on a s102-based carrier material for catalytic hydrogenation of saccharides
KR20050024230A (ko) * 2003-09-03 2005-03-10 에스케이 주식회사 당류의 수소화에 의한 당알코올류 제조방법
US7135308B1 (en) * 2006-02-28 2006-11-14 Propulsion Logic, Llc Process for the production of ethanol from algae
KR20100091162A (ko) * 2007-10-04 2010-08-18 바이오 아키텍쳐 랩, 인크. 바이오연료 생산
KR20100096408A (ko) * 2009-02-24 2010-09-02 에스케이에너지 주식회사 해조류 추출물로부터 불균일계 촉매를 이용한 가수분해를 통해 바이오 연료를 제조하는 방법
KR20120123202A (ko) * 2011-04-19 2012-11-08 한국화학연구원 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 루테늄-제올라이트계 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950812A (en) * 1988-02-22 1990-08-21 Fina Research S.A. Single-step catalytic process for the direct conversion of polysaccharides to polyhydric alcohols
US20040176619A1 (en) * 2001-06-11 2004-09-09 Dominic Vanoppen Ruthenium catalysts on a s102-based carrier material for catalytic hydrogenation of saccharides
KR20050024230A (ko) * 2003-09-03 2005-03-10 에스케이 주식회사 당류의 수소화에 의한 당알코올류 제조방법
US7135308B1 (en) * 2006-02-28 2006-11-14 Propulsion Logic, Llc Process for the production of ethanol from algae
KR20100091162A (ko) * 2007-10-04 2010-08-18 바이오 아키텍쳐 랩, 인크. 바이오연료 생산
KR20100096408A (ko) * 2009-02-24 2010-09-02 에스케이에너지 주식회사 해조류 추출물로부터 불균일계 촉매를 이용한 가수분해를 통해 바이오 연료를 제조하는 방법
KR20120123202A (ko) * 2011-04-19 2012-11-08 한국화학연구원 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 루테늄-제올라이트계 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법

Similar Documents

Publication Publication Date Title
Chan et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins
KR970707143A (ko) 2'-데옥시-2', 2'-디플루오로뉴클레오시드의 단리 및 정제 방법(Process for Purifying and lsolating 2´-Deoxy-2´, 2´-Difluoronucleosides)
Ganesh et al. Synthesis of septanosides through an oxyglycal route
WO1993005060A1 (de) Funktionalisierte trägermaterialien für gleichzeitige synthese und direktmarkierung von oligonukleotiden als primer für matrizenabhängige enzymatische nukleinsäuresynthesen
Rao et al. Iodine–sodium cyanoborohydride-mediated reductive ring opening of 4, 6-O-benzylidene acetals of hexopyranosides
Mastihubová et al. Lipase-catalysed preparation of acetates of 4-nitrophenyl β-D-xylopyranoside and their use in kinetic studies of acetyl migration
WO2018008787A1 (ko) 알지네이트를 이용한 당알코올 형성 방법
Gubu et al. Bioorthogonal Metabolic DNA Labelling using Vinyl Thioether‐Modified Thymidine and o‐Quinolinone Quinone Methide
Motoyama et al. α-Selective Glycosylation of 3, 6-Oo-Xylylene-Bridged Glucosyl Fluoride
Lehmann et al. The stereochemistry of the addition of glycerol to D-galactal, catalyzed by β-D-galactosidase
CN114324639B (zh) 一种混合模式弱阳离子固相萃取材料及其制备方法与应用
Zhang et al. Comparative studies on the O-sialylation with four different α/β-oriented (N-acetyl)-5-N, 4-O-carbonyl-protected p-toluenethiosialosides as donors
Heuckendorff et al. Removal of some common glycosylation by-products during reaction work-up
Watanabe et al. A versatile intermediate, d-4, 5-bis (dibenzyl phosphoryl)-myo-inositol derivative for synthesis of inositol phosphates. Synthesis of 1, 2-cyclic-4, 5-, 1, 4, 5-, and 2, 4, 5-trisphosphate
CN108982733A (zh) 一种分析多糖组成结构的方法
Řezanka et al. N-acylated bacteriohopanehexol-mannosamides from the thermophilic bacterium Alicyclobacillus acidoterrestris
Pham et al. Alkaloids from Alangium j avanicum and Alangium g risolleoides that Mediate Cu2+-Dependent DNA Strand Scission
CN109956956B (zh) 一种并环吡啶酮化合物的制备方法
Kononov et al. Conjugates of polyhedral boron compounds with carbohydrates. 2. Unexpected easy closo-to nido-transformation of a carborane–carbohydrate conjugate in neutral aqueous solution
Nokami et al. Ionic‐Liquid Tag with Multiple Functions in Electrochemical Glycosylation
Malyarenko et al. Four new steroidal glycosides, protolinckiosides A–D, from the starfish Protoreaster lincki
Amin et al. Chromatographic conditions for separation phosphates of 32P-labeled phosphates of major polynuclear aromatic hydrocarbon—deoxyribonucleoside adducts
Cho et al. 6‐Phenylpyrrolocytidine: An Intrinsically Fluorescent, Environmentally Responsive Nucleoside Analogue
WO2017131305A1 (ko) 아스퍼질러스 속 균 유래의 조효소를 이용하는 안토시아닌 올리고머의 제조 방법
Viari et al. Characterization and sequencing of normal and modified oligonucleotides by 252Cf plasma desorption mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908229

Country of ref document: EP

Kind code of ref document: A1