WO2018008233A1 - 車体の接合位置の最適化解析方法及び装置 - Google Patents

車体の接合位置の最適化解析方法及び装置 Download PDF

Info

Publication number
WO2018008233A1
WO2018008233A1 PCT/JP2017/015899 JP2017015899W WO2018008233A1 WO 2018008233 A1 WO2018008233 A1 WO 2018008233A1 JP 2017015899 W JP2017015899 W JP 2017015899W WO 2018008233 A1 WO2018008233 A1 WO 2018008233A1
Authority
WO
WIPO (PCT)
Prior art keywords
optimization analysis
mass
joint
vehicle body
optimization
Prior art date
Application number
PCT/JP2017/015899
Other languages
English (en)
French (fr)
Inventor
斉藤 孝信
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020187036571A priority Critical patent/KR102043701B1/ko
Priority to CN201780040044.9A priority patent/CN109416707B/zh
Publication of WO2018008233A1 publication Critical patent/WO2018008233A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an optimization analysis method and an optimization analysis apparatus for a joint location of an automobile body, and in particular, the vehicle body in consideration of the driving condition of the automobile in advance.
  • the present invention relates to an optimization analysis method and an optimization analysis apparatus for a joining position of a vehicle body for obtaining an optimum position of a joining point or a joint area to be added to the vehicle.
  • CAE computer-aided engineering
  • Patent Document 1 discloses a technique for optimizing components of a complex structure by topology optimization.
  • a structure such as a vehicle body is formed by joining a plurality of parts by welding or the like, and if the amount of joining at the part to be joined is increased (for example, addition of spot welding points), the entire structure It is known that the rigidity of the above is improved. However, it is desired to reduce the amount of bonding as much as possible from the viewpoint of cost.
  • the vehicle Inertia force acting on fittings or lid components arranged away from the center position greatly affects the deformation of the structure of the autmototive body.
  • the mass of the component (assembly; ASSY) in which multiple parts are combined may be 10 kg or more, and the mass is about 100 kg to 300 kg. This is because it cannot be ignored. Therefore, when evaluating and improving the performance of the vehicle body skeleton, it is desirable to consider the inertial force that acts on the fitting or the lid during actual travel.
  • the fitting is a general term for an engine, a transmission, a sheet, and the like
  • the lid is a generic term for a door, a trunk, a hood, and the like.
  • the present invention has been made in order to solve the above-described problems, and in a vehicle body skeleton model in which a plurality of parts are joined as a part set, even before a fitting or lid is determined.
  • the joint position of the vehicle body that can determine the additional joint point or the optimum joint position to be added to the part to be joined as the component set. It is an object of the present invention to provide an optimization analysis method and an optimization analysis apparatus.
  • the optimization analysis method of the joining position of the vehicle body according to the present invention includes a plurality of parts (shell elements) and / or solid elements (solid elements).
  • a vehicle body having a joint or a joint for joining the plurality of parts as a parts set and a fixed joint for fixing or linking a fitting or a lid.
  • the computer uses a skeletal model, the computer performs the following steps for optimization analysis of point joining or continuous joining used for joining the assembly of parts, and the computer joins in addition to the assembly of parts.
  • An optimization analysis module that sets an additional joint point or a joint candidate for the additional joint and a mass corresponding to a fitting or a lid to the body frame model and generates an optimization analysis model to be analyzed.
  • a Dell generation step an optimization analysis condition setting step in which a computer sets an optimization analysis condition for the optimization analysis model according to an instruction of an operator, and a computer operates the automobile with respect to the optimization analysis model
  • An optimization analysis step that performs an optimization analysis in consideration of the acting inertia force, and selects an additional joint point or an additional joint that satisfies the optimization analysis condition from the joint candidates, and includes the optimization analysis model
  • the mass is set at a predetermined position in an area where the fitting or lid is fixed or connected
  • the joining candidate is a joining point set in advance for each component set of the vehicle body skeleton model. Or it is set at a predetermined interval between the joints.
  • the optimization analysis method for the joint position of the vehicle body according to the present invention is characterized in that the predetermined position in the optimization analysis model generation step is on a straight line or a curve connecting the fixed connecting portions. It is what.
  • the optimization analysis method for the joining position of the vehicle body according to the present invention is such that, when the fitting or the lid is a rotary movable part that can rotate, the predetermined position is set to rotate the fitting or the lid. It is characterized in that it is set at a position excluding the rotationally movable central axis when moving.
  • the optimization analysis method for the joint position of the vehicle body according to the present invention may be configured such that the predetermined position in the optimization analysis model generation step is on a plane surrounded by a straight line or a curve connecting the fixed connecting portions. It is characterized by being on a curved surface (except on the straight line or curved line).
  • the optimization analysis method of the joint position of the vehicle body according to the present invention is the above invention, wherein the optimization analysis model generation step calculates a mass corresponding to a mass of the fitting or the lid by a mass element. And a rigid-body element that connects the mass element and the fixed connecting portion.
  • the optimization analysis method of the joint position of the vehicle body according to the present invention is the above invention, wherein the optimization analysis model generation step is set using a mass element and a beam element, and the mass element The sum of the masses of the beam elements corresponds to the mass of the fitting or lid fixed or connected to the fixed connecting part.
  • the optimization analysis method of the joint position of the vehicle body according to the present invention is the above invention, wherein the optimization analysis model generation step is set using a beam element having a mass corresponding to the mass of the fitting or the lid. It is characterized by doing.
  • the apparatus for optimizing the joining position of the vehicle body includes a plurality of parts composed of planar elements and / or three-dimensional elements, and joining points or joining parts for joining the plurality of parts as a part set. And using a vehicle body skeleton model for fixing or connecting a fitting or a lid, and optimizing point bonding or continuous bonding used for bonding the component set, An optimization analysis model to be set as an analysis target of an optimization analysis by setting an additional joint point or a joint candidate of an additional joint to be joined to a part set and a mass corresponding to a fitting or a lid in the body frame model An optimization analysis model generation unit for generating the optimization analysis condition setting unit for setting optimization analysis conditions for the optimization analysis model, and the optimization analysis model that acts when the vehicle is running An optimization analysis unit that performs optimization analysis in consideration of the ability, and selects an additional joint point or an additional joint that satisfies the optimization analysis condition from the joint candidates, and the optimization analysis model generation unit Thus, the mass is set at a predetermined position in a
  • the vehicle body joint position optimization analyzing apparatus is the above-described invention, wherein the predetermined position of the mass set by the optimization analysis model generation unit is a straight line or a curve connecting the fixed connection unit. It is characterized by the above.
  • the optimization analysis apparatus for the joining position of the vehicle body according to the present invention is configured such that, when the fitting or the lid is a rotary movable part that can rotate, the predetermined position is set to rotate the fitting or the lid. It is characterized in that it is set at a position excluding the rotationally movable central axis when moving.
  • the vehicle body joint position optimization analysis apparatus is configured such that the predetermined position of the mass set by the optimization analysis model generation unit is a straight line or a curve connecting the fixed connection unit. It is characterized by being on an enclosed plane or curved surface (except on the straight line or curved line).
  • the optimization analysis apparatus for the joint position of the vehicle body is configured such that the optimization analysis model generation unit calculates a mass corresponding to a mass of the fitting or the lid, a mass element, and the mass. It sets using the element and the rigid body element which connects the said fixed connection part, It is characterized by the above-mentioned.
  • the optimization analysis apparatus for the joint position of the vehicle body is configured such that the optimization analysis model generation unit is set using a mass element and a beam element, and the mass element and the beam element The sum of the masses of the material is equivalent to the mass of the fitting or the lid fixed or connected to the fixed connection part.
  • the optimization analysis device for the joint position of the vehicle body according to the present invention is set by using the beam element having a mass corresponding to the mass of the fitting or the lid. It is characterized by doing.
  • the present invention is composed of a plurality of parts composed of planar elements and / or three-dimensional elements, and an additional joint point or additional joint part for joining the plurality of parts as a part set, and fixing for fixing or connecting a fitting or a lid.
  • the computer uses a vehicle body skeleton model of an automobile having a connecting portion, the computer performs the following steps for optimization analysis of point joining or continuous joining used for joining the component set, and the computer Optimization to generate an optimization analysis model to be analyzed for optimization analysis by setting an additional joint point or additional joint candidate in a part assembly and a mass corresponding to a fitting or lid to the body frame model
  • An analysis model generation step and an optimization analysis condition setting step in which the computer sets an optimization analysis condition for the optimization analysis model according to an instruction from the operator.
  • the computer performs an optimization analysis on the optimization analysis model in consideration of an inertial force acting when the vehicle is running, and an additional joint point or an additional joint that satisfies the optimization analysis condition is selected as the joint candidate.
  • An optimization analysis step selected from the above, and in the optimization analysis model generation step the mass is a predetermined position in a region where the fitting or lid is fixed or connected to a fixed connection part of the vehicle body skeleton model.
  • the joint candidate is set at a predetermined interval between joint points or joints that are set in advance in each part set of the vehicle body skeleton model, so that a fitting or a lid is determined. Add to the above parts set to improve the rigidity of the car by performing an optimization analysis taking into account the inertial force acting on the fitting or lid during driving Optimum position of the consent or additional joints can be efficiently determined.
  • FIG. 1 is a block diagram of an apparatus for optimizing the joining position of vehicle bodies according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining a vehicle body skeleton model used in the present embodiment and joint points set in advance in the vehicle body skeleton model ((a): perspective view, (b): side view).
  • FIG. 3 is an explanatory diagram for explaining the vehicle body skeleton model used in the present embodiment and the fixed connection portion set in the vehicle body skeleton model.
  • FIG. 4 is a diagram illustrating an example of an optimization analysis model in which joint candidates are generated in the vehicle body skeleton model in the optimization analysis model generation step according to the present embodiment.
  • FIG. 5 is a diagram illustrating an example of an optimization analysis model in which mass elements are set in the vehicle body skeleton model in the optimization analysis model generation step according to the present embodiment.
  • FIG. 6 is a diagram showing an example of the optimization analysis model generated in the optimization analysis model generation step according to the present embodiment.
  • FIG. 7 is a flowchart showing a process flow of the optimization analysis method for the joining position of the vehicle body according to the present embodiment.
  • FIG. 8 is an explanatory diagram for explaining generation of a joint candidate in the optimization analysis model generation step and selection of a joint candidate in the optimization analysis step according to the present embodiment ((a): joint point, (b) ): Generation of junction candidates, (c): selection of additional junction points).
  • FIG. 9 is an explanatory diagram illustrating a predetermined position where a mass element is set in the optimization analysis model generation step according to the present embodiment.
  • FIG. 10 is a diagram illustrating another example of the optimization analysis model in which the mass element is set in the vehicle body skeleton model in the optimization analysis model generation step according to the present embodiment.
  • FIG. 11 is an explanatory diagram for explaining a mass element setting method in the optimization analysis model generation step according to the present embodiment.
  • FIG. 12 is an explanatory view for explaining an optimization analysis model as a comparative example in the embodiment ((a): no mass setting (Comparative Example 1), (b) with a rotating door component (Comparative Example 2). ).
  • FIG. 10 is a diagram illustrating another example of the optimization analysis model in which the mass element is set in the vehicle body skeleton model in the optimization analysis model generation step according to the present embodiment.
  • FIG. 11 is an explanatory diagram for explaining a mass element setting method in the optimization analysis model generation step according to the present embodiment.
  • FIG. 13 is an explanatory diagram for explaining the load restraint (load and constraint) conditions in static torsion of the vehicle body in the embodiment ((a): front side load application + rear side restraint, (b): front side restraint + rear. Side load).
  • FIG. 14 is a diagram illustrating an analysis result of additional joint points selected by an optimization analysis under a static torsion load condition in the example.
  • FIG. 15 is a graph showing the relationship between the number of additional joint points selected by the optimization analysis under the static torsional load condition and the rigidity improvement rate of the vehicle body in the example.
  • FIG. 16 is an explanatory diagram for explaining the load conditions assuming the traveling state of the automobile in the embodiment.
  • FIG. 17 is a diagram illustrating an analysis result of additional joint points selected by optimization analysis under load conditions assuming a lane change in the embodiment (part 1).
  • FIG. 18 is a diagram illustrating an analysis result of additional joint points selected by optimization analysis under load conditions assuming a lane change in the example (part 2).
  • FIG. 19 is a graph showing the relationship between the number of additional joint points selected by optimization analysis under load conditions assuming a lane change and the rigidity improvement rate of the vehicle body in the example.
  • FIG. 20 is a diagram illustrating an analysis result of a strain energy distribution of a vehicle body obtained by optimization analysis under a load condition assuming a lane change in the embodiment (part 1).
  • FIG. 21 is a diagram illustrating an analysis result of the strain energy distribution of the vehicle body obtained by the optimization analysis under the load condition assuming the lane change in the embodiment (part 2).
  • FIG. 22 is an explanatory diagram illustrating a load condition in which a load acts on the front side of the vehicle body in the traveling state of the automobile in the embodiment.
  • FIG. 23 is a diagram illustrating an analysis result of an additional joint selected by an optimization analysis under a load condition in which a load acts on the front side of the vehicle body in the traveling state of the automobile in the embodiment (part 1).
  • FIG. 24 is a diagram illustrating an analysis result of an additional joint point selected by an optimization analysis under a load condition in which a load acts on the front side of the vehicle body in the traveling state of the automobile in the embodiment (part 2).
  • a vehicle body joint position optimization analysis method and optimization analysis apparatus will be described below with reference to FIGS. Prior to the description of the optimization analysis method and the optimization analysis apparatus for the joint position of the vehicle body, the vehicle body skeleton model that is the subject of the present invention will be described.
  • FIG. 2 is an explanatory view for explaining a vehicle body skeleton model 21 used in the present embodiment and a joint point 25 preset in the vehicle body skeleton model 21 ((a): perspective view, (b): side view). ).
  • FIG. 3 is an explanatory diagram for explaining the vehicle body skeleton model 21 used in the present embodiment and the fixed connection portion 23 set in the vehicle body skeleton model 21.
  • the vehicle body skeleton model 21 used in the present invention is composed of a plurality of parts such as chassis parts. Each part of the vehicle body skeleton model 21 is modeled using planar elements and / or three-dimensional elements.
  • each part is provided with a joint point or a joint provided at a part to be joined as a part assembly.
  • a joining point 25 is set in advance at a part to be joined for each part assembly.
  • the vehicle body skeleton model 21 has a fixed connecting portion 23 for fixing or connecting a fitting or a lid.
  • the fixed connecting portion 23 there are a hinge 23a and a hinge 23b and a striker 23c for fixing or connecting a revolving door as shown in FIG. It is not limited to these.
  • the fixed connecting portion 23 is used to fix a fitting such as an engine mount for fixing the engine or a lid such as a slide door or a bonnet other than the revolving door. Includes those to be linked.
  • FIG. 1 is a block diagram of a vehicle body joint position optimization analyzing apparatus 1 according to an embodiment of the present invention.
  • the configuration of the vehicle body joint position optimization analysis apparatus 1 (hereinafter simply referred to as “optimization analysis apparatus 1”) according to the present embodiment will be described below mainly based on the block diagram shown in FIG.
  • the optimization analysis apparatus 1 optimizes additional joints or additional joints that add a plurality of parts constituting the vehicle body skeleton model 21 (see FIGS. 2 and 3) to a part to be joined as a part set.
  • the display device 3, the input device 5, the storage device 7, and the work data memory 9 are connected to the arithmetic processing unit 10, and each function is executed by a command from the arithmetic processing unit 10.
  • the display device 3 is used for displaying analysis results, and is composed of a liquid crystal monitor (LCD monitor) and the like.
  • the input device 5 is used for a display instruction of the body skeleton model file 20, an operator's condition input, and the like, and includes a keyboard, a mouse, and the like.
  • the storage device 7 is used for storing various files such as the vehicle body skeleton model file 20 and is configured by a hard disk or the like.
  • the work data memory 9 is used for temporary storage and calculation of data used in the arithmetic processing unit 10, and is composed of a RAM (Random Access Memory) or the like.
  • the arithmetic processing unit 10 includes an optimization analysis model generation unit 11, an optimization analysis condition setting unit 13, and an optimization analysis unit 15, and a CPU (central processing unit (central processing unit (central processing unit)). Each of these units functions when the CPU executes a predetermined program.
  • functions of each unit in the arithmetic processing unit 10 will be described.
  • the optimization analysis model generation unit 11 generates an additional joint point to be added to a part to be joined as a part set of the parts of the vehicle body skeleton model 21 or a joint candidate of the additional joint, and calculates the mass corresponding to the fitting or the lid as the body skeleton.
  • the model 21 is set and an optimization analysis model to be analyzed is generated.
  • FIG. 4 shows an example in which the joint candidate 31 is generated in the vehicle body skeleton model 21.
  • the joint candidates 31 are densely generated at predetermined intervals (10 mm intervals) between joint points 25 (see FIG. 1) set in advance in each component set of the vehicle body skeleton model 21.
  • the joint point 25 (see FIG. 2) set in advance in the vehicle body skeleton model 21 is not displayed.
  • FIG. 5 shows an example in which a mass corresponding to a fitting or a lid is set in the vehicle body skeleton model 21.
  • a mass element 41 having a mass corresponding to a revolving door as a lid is set, and the hinge 23a and the striker are set in order to set the mass element 41 at a predetermined position in a region where the revolving door is fixed or connected.
  • the mass element 41 is positioned on a straight line that connects the mass element 41 and the mass element 41 and the hinge 23a, and the mass element 41 and the striker 23c are connected by a rigid element 45.
  • FIG. 6 shows an example of the optimization analysis model 51 in which the junction candidate 31 is generated in the vehicle body skeleton model 21 (see FIG. 4) and the mass element 41 is set in the vehicle body skeleton model 21 (see FIG. 5).
  • the optimization analysis condition setting unit 13 sets optimization analysis conditions for the joint candidate 31 and sets two types of optimization analysis conditions, that is, an objective condition and a constraint condition.
  • the target condition is a condition set according to the purpose of the optimization analysis by the optimization analysis model 51. For example, the strain energy is minimized, the absorbed energy is maximized, and the generated stress is minimized. There is. Only one objective condition is set.
  • the constraint condition is a constraint imposed when performing the optimization analysis.
  • the optimization analysis model 51 generated from the vehicle body skeleton model 21 after joining the parts may have a predetermined rigidity. is there.
  • a plurality of constraint conditions can be set.
  • the optimization analysis unit 15 targets the joint candidate 31 in the optimization analysis model 51 and performs an optimization analysis in consideration of the inertial force acting when the vehicle is running. Significant junction candidates 31 that satisfy the optimization analysis conditions (objective conditions and constraint conditions) set by the condition setting unit 13 are selected.
  • Topology optimization can be applied to the optimization analysis by the optimization analysis unit 15.
  • discretization is preferable when the intermediate density is large, and is expressed by the following equation (1).
  • K ( ⁇ ) ⁇ p K (1)
  • K ( ⁇ ) Stiffness matrix that imposes a penalty on the stiffness matrix of the element
  • K Stiffness matrix of the element
  • Normalized density
  • p Penalty coefficient
  • the penalty coefficient often used for discretization is 2 or more, it has become clear that a value of 4 or more is preferable as the penalty coefficient in the optimization of the joint position according to the present invention.
  • optimization analysis unit 15 may perform a topology optimization process, or may be an optimization process by another calculation method. Therefore, as the optimization analysis unit 15, for example, commercially available analysis software using a finite element can be used.
  • FIG. 7 is a flowchart showing a process flow of the optimization analysis method for the joining position of the vehicle body according to the present embodiment.
  • An optimization analysis method (hereinafter simply referred to as “optimization method”) of the joining position of the vehicle body according to the present embodiment will be described below.
  • the method for optimizing the joining position is composed of a plurality of parts composed of planar elements and / or three-dimensional elements, and joining points 25 for joining the plurality of parts as a part set, and a fitting or a lid.
  • the vehicle body skeleton model 21 (see FIG. 2 and FIG. 3) having a fixed connection portion 23 to be fixed or connected is used to optimize the point bonding or continuous bonding used for bonding the component set.
  • an optimization analysis model generation step S1 an optimization analysis condition setting step S3, and an optimization analysis step S5 are provided.
  • FIG. 8 is an explanatory diagram for explaining the generation of the junction candidate 31 in the optimization analysis model generation step S1 and the selection of the junction candidate 31 in the optimization analysis step S5 according to the present embodiment ((a): junction).
  • FIG. 9 is an explanatory diagram illustrating a predetermined position where the mass element 41 is set in the optimization analysis model generation step S1 according to the present embodiment.
  • Optimization analysis model generation step S1 generates a joint candidate 31 to be added to a part to be joined as a part set for a plurality of parts constituting the vehicle body skeleton model 21 (see FIG. 4), and a mass corresponding to a fitting or a lid. 1 is set in the vehicle body skeleton model 21 (see FIG. 5), and an optimization analysis model 51 is generated (see FIG. 6).
  • the generation of the junction candidate 31 in the optimization analysis model generation step S1 can be performed by the following procedure.
  • joint points 25 are preset at a predetermined interval D at a portion where parts 27 constituting the vehicle body skeleton model 21 are joined as a part set.
  • the junction candidates 31 are densely set between the junction points 25 at a predetermined interval d ( ⁇ D).
  • the setting of the mass corresponding to the fitting or lid in the optimization analysis model generation step S1 is performed by placing the mass element 41 at a predetermined position in the region where the fitting or lid is fixed or coupled as shown in FIG. This is done by setting.
  • the predetermined position where the mass element 41 is set is connected to a plurality of fixed connecting portions 23 (hinge 23a, hinge 23b, striker 23c) (hinge 23a and striker 23c, hinge 23b and striker 23c, hinge). 23a and hinge 23b) on a straight line L (see FIG. 9A), or on a curve connecting the fixed connecting portions 23 along the shape of the vehicle body to which a lid or the like is attached.
  • a rotationally movable central axis when the revolving door is rotationally movable on a line connecting the hinges 23a and 23b of the revolving door.
  • the rotationally movable central axis is substantially at the same position as the boundary of the region where the revolving door is fixed or connected to the vehicle body skeleton model 21.
  • the line connecting the hinge 23a and the striker 23c of the revolving door and the line connecting the hinge 23b and the striker 23c are located inside the region where the revolving door is fixed or connected to the vehicle body skeleton model 21. To do.
  • the vehicle body skeleton model 21 has the inner part than the boundary of the region to which the fitting or the lid is fixed or connected. Alternatively, it is preferable in considering the inertial force acting on the lid in the optimization analysis step S5 described later.
  • the predetermined position for setting the mass corresponding to the fitting or lid is excluded on the straight line L connecting the plurality of fixed connecting portions 23 or the rotation movable central axis when the fitting or lid is rotationally movable among the curves. It is desirable to set it at a different position.
  • the predetermined position for setting the mass corresponding to the fitting or the lid is not limited to the straight line L or the curved line, but is on the plane P surrounded by the straight line L (see FIG. 9B). Or it is good also on the curved surface along the shape of the vehicle body enclosed with the said curve and to which the lid
  • the straight line L or the curved line is a boundary of the plane P or the curved surface, it is desirable to set a mass corresponding to a fitting or a lid inside the boundary. Therefore, it is more preferable to set the predetermined position for setting the mass corresponding to the fitting or lid on the plane P or the curved surface excluding the straight line L or the curved line.
  • the fixed connecting portions 23 are connected by a straight line so that two straight lines intersect each other, and the fitting is placed on the straight line. It is preferable to set the mass element 41 corresponding to. Also in this case, the fixed coupling portions may be connected by a curve in accordance with the curvature of the vehicle body, and the mass element 41 may be set on the curve.
  • FIG. 10 is a diagram illustrating another example of the optimization analysis model 51 in which the mass element 41 is set in the vehicle body skeleton model 21 in the optimization analysis model generation step S1 according to the present embodiment.
  • FIG. 11 is an explanatory diagram for explaining a setting method of the mass element 41 in the optimization analysis model generation step S1 according to the present embodiment.
  • the mass element 41 having a mass corresponding to the mass of the fitting or the lid is set at the predetermined position, and the mass element 41 and the fixed connecting portion 23 (the hinge 23a or the striker 23c) are used using the rigid element 45. Connect (see FIGS. 5 and 10).
  • FIG. 5 is an example in which one mass element 41 is set on the center of the straight line L connecting the fixed connecting portions 23. However, as shown in FIG. 41 may be set. When a plurality of mass elements 41 are set, the mass of each mass element 41 may be determined so that the sum of the mass of each mass element 41 corresponds to the mass of the fitting or the lid.
  • the mass element 41 having a mass corresponding to the mass of the fitting or the lid is set at the predetermined position, and the mass element 41 and the fixed connecting portion 23 are connected using the beam element 47 (FIG. 11A). reference).
  • the sum of the mass of each of the mass element 41 and the beam element 47 is set so as to correspond to the mass of the fitting or lid fixed or coupled to the fixed coupling portion 23.
  • the mass of the beam element 47 is determined by a cross-sectional area given as a cross-sectional characteristic of the beam element 47 and a material density given as a material property.
  • the cross-sectional area of the beam element 47 is determined by giving the radius of the beam element 47, for example.
  • the cross sectional characteristics and material characteristics necessary for transmitting the load due to the inertial force acting on the mass element 41 and the beam element 47 to the vehicle body skeleton are appropriately set in the beam element 47. There is a need to.
  • the beam element 47 is a linear element, and rod elements (rod elements) can be used as long as they can transmit a tensile load and a compressive load acting in the axial direction of the element.
  • the mass of the rod element is set by a cross-sectional area (or radius) given as a cross-sectional characteristic and a material density given as a material characteristic.
  • the mass of the beam element 47 is determined by the cross-sectional area given as the cross-sectional characteristic of the beam element 47 and the material density given as the material characteristic. For example, the cross-sectional area is determined by giving the radius of the beam element 47. .
  • Optimization analysis condition setting step S3 is for setting an optimization analysis condition for the joint candidate 31.
  • the optimization analysis condition setting unit 13 performs the instruction according to the operator's instruction.
  • optimization analysis conditions set in the optimization analysis condition setting step S3 There are two types of optimization analysis conditions set in the optimization analysis condition setting step S3: objective conditions and constraint conditions.
  • the optimization analysis step S5 performs an optimization analysis on the analysis model generated in the optimization analysis model generation step S1 in consideration of the inertial force that acts when the vehicle is running, and is set in the optimization analysis condition setting step S3.
  • the additional joint point 33 or the additional joint portion that satisfies the optimization analysis condition is selected from the joint candidates 31, and the optimization analysis unit 15 performs the optimization analysis device 1.
  • optimization analysis is performed on the joint candidate 31 set in the component 27, and as shown in FIG.
  • Candidate candidates 31 satisfying the condition are selected as additional junction points 33, and candidate junctions 31 that are not selected are erased as erase junction points 35.
  • Topology optimization can be applied to the optimization analysis in the optimization analysis step S5. Furthermore, when applying the density method in topology optimization, it is preferable to set the penalty coefficient of the element to 4 or more to perform discretization.
  • the inertial force that acts on the fitting or lid when the vehicle is running is considered using the inertia relief method.
  • the inertia relief method is an analysis method that obtains stress and strain from the force acting on an object in constant acceleration motion while the object is supported (free support state) at the support point that is the reference for the coordinate of inertial force. It is used for static analysis of airplanes and ships in motion.
  • the joint point that joins a plurality of parts as a part set, and the fitting or the lid are fixed or connected.
  • an additional joint point 33 to be added to the component set or a joint candidate 31 of the additional joint part, and a mass corresponding to a fitting or a lid are set, and the joint candidate
  • the joint candidate By performing an optimization analysis for selecting an additional joint point 33 that maximizes the rigidity of the vehicle body skeleton model from among 31, taking into account the inertial force that acts on the fitting or lid when the vehicle is running, Even before the lid is determined, the optimum position of the additional joint 33 or the additional joint to be added in order to improve the rigidity of the automobile during traveling can be obtained.
  • the parts are assembled by not including the joint points set in advance in the vehicle body skeleton model as objects of the optimization analysis.
  • the joining point to be joined from being erased in the process of the optimization analysis and the parts to be separated from each other and the optimization analysis to be stopped at that time.
  • the joint point to be joined as a part set by spot welding is the target of analysis.
  • the optimization analysis method and the optimization analysis device for the joining position of the vehicle body according to the present invention are limited to the joint by spot welding.
  • the present invention can be applied to the case where an optimum joining position is obtained when joining a set of parts by continuous joining such as laser welding or arc welding.
  • the experiment targets the vehicle body skeleton model 21 shown in FIG. 2 and FIG. 3, sets the candidate joint 31 to be subjected to the optimization analysis to the vehicle body skeleton model 21, and the rotating door component as a lid on the fixed connection portion 23.
  • the optimization analysis of the joint position was performed using the optimization analysis model in which the mass corresponding to the rotating door component was set at a predetermined position in the fixed or connected region.
  • the mass of the vehicle body skeleton model 21 is about 300 kg, and the mass of the rotating door components set in the vehicle body skeleton model 21 is 10 kg per piece.
  • the 10 mass elements 41 are evenly arranged on the straight line connecting the upper hinge 23a and the striker 23c of the vehicle body skeleton model 21, and the mass element 41, the hinge 23a and the striker 23c are connected by the rigid element 45.
  • the mass analysis element 41 (see FIG. 10) in which the mass element 41 is set in the vehicle body skeleton model 21 (see FIG. 10) and the joining candidate 31 is generated is taken as an example of the invention in this embodiment.
  • FIG. 12 is an explanatory diagram for explaining optimization analysis models 61 and 71 as comparative examples in this embodiment ((a): no mass setting (comparative example 1), (b) presence of rotating door components ( Comparative Example 2)).
  • an optimization analysis model 61 (Comparative Example 1, FIG. 12A) in which only the joint candidate 31 is set in the vehicle body skeleton model 21 without setting the mass corresponding to the rotating door components.
  • the optimization analysis was also performed on the optimization analysis model 71 (see Comparative Example 2, FIG. 12B) in which the joint candidate 31 and the rotating door component model 73 were combined with the vehicle body skeleton model 21. .
  • the maximum body rigidity is set as the objective condition, and the additional joint point 33 (see FIG. 8) to be added is selected within the range of 0 to 600 points as the constraint condition.
  • the volume ratio was set as follows.
  • optimization analysis is performed for static torsion, and the mass element 41 corresponding to the rotating door component set in the optimization analysis models 51, 61, 71 is selected by the optimization analysis.
  • the influence on the additional junction 33 was examined.
  • FIG. 13 shows the static torsion load constraint conditions for the optimization analysis model 51.
  • Fig. 13 (a) shows a vertical suspension load (100N) on one side of the front suspension attachment position (A in Fig. 13 (a)) and a vertical downward load (100N) on the other side. Given, the rear sub-frame attachment position (B in FIG. 13A) of the vehicle body is constrained.
  • FIG. 13B constrains the front suspension mounting position (A in FIG. 13B) of the vehicle body, and vertically upwards to one of the subframe mounting positions (B in FIG. 13B) at the rear of the vehicle body. Load (100N), and a vertical downward load (100N) on the other side.
  • Stiffness in static torsion was evaluated by average torsional rigidity obtained as follows.
  • a straight line connecting the sub-frame mounting position (B in FIG. 13A) at the rear of the vehicle body is used as a reference (angle 0 °), and the load point (FIG. 13A).
  • the average inclination angle is obtained by averaging the inclination angle of the vehicle body viewed from the front side of the vehicle body when the load is applied to the middle A) from the front side of the vehicle body to the rear side.
  • the average torsional rigidity was obtained by dividing the load applied to the load point by the average inclination angle.
  • the average was obtained from the vehicle body rear side to the front side.
  • FIG. 14A shows the analysis result in the invention example.
  • FIG. 14B is an analysis result in Comparative Example 1.
  • FIG. 14C shows the analysis result in Comparative Example 2.
  • FIG. 14D shows a load constraint condition in the optimization analysis.
  • FIG. 15A is a graph showing the relationship between the number of additional joining points selected by the optimization analysis and the rigidity improvement rate of the vehicle body in Invention Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 15B shows the number of additional joint points selected by the optimization analysis and the rigidity improvement per point of the additional joint points 33 added by the optimization analysis in Invention Example 1, Comparative Example 1 and Comparative Example 2. It is a graph which shows the relationship with a rate.
  • the rigidity improvement rate of FIG. 15 was calculated
  • the rigidity improvement rate is a relative change in the average torsional rigidity obtained based on the average torsional rigidity before adding the additional joint 33 by the optimization analysis.
  • FIG. 16 is an explanatory diagram for explaining the load conditions assuming the traveling state of the automobile in the embodiment.
  • an optimization analysis model 51 in which a mass element 41 corresponding to the mass of a rotating door component is set in the vehicle body skeleton model 21, and an optimization analysis model 61 (invention example) in which no mass is set.
  • Comparative example 1) and an optimization analysis model 71 in which the vehicle body skeleton model 21 is combined with the rotating door component model 73 were used as the analysis target.
  • FIG. 17A and FIG. 18A are analysis results in the invention example.
  • FIG. 17B and FIG. 18B are analysis results in Comparative Example 1.
  • FIG. 17C and FIG. 18C are analysis results in Comparative Example 2.
  • FIG. 17D and FIG. 18D show load constraint conditions in the optimization analysis.
  • FIG. 19 (a) is a graph showing the relationship between the number of additional joint points selected by the optimization analysis and the rigidity improvement rate of the vehicle body in the invention example, comparative example 1 and comparative example 2.
  • FIG. 19B shows the number of additional joint points selected by the optimization analysis and the rigidity improvement per point of the additional joint points 33 selected by the optimization analysis in Invention Example 1, Comparative Example 1 and Comparative Example 2. It is a graph which shows the relationship with a rate.
  • the rigidity improvement rate is a relative change in the average torsional rigidity obtained on the basis of the average torsional rigidity of the vehicle body skeleton model 21 before performing the optimization analysis.
  • the comparative example 1 and the comparative example 2 the rigidity improved as the additional joint point 33 increased. Furthermore, as shown in FIG. 19 (b), the smaller the additional joint points 33, the higher the rigidity improvement rate (dot efficiency) per point, and the selection of the additional joint points 33 by the optimization analysis method according to the present invention. Indicates that this is being done properly.
  • the invention example and comparative example 2 in which the mass of the rotating door component is set are compared with the comparative example 1 in which the mass is not set, the invention example and the comparative example 2 are the addition of the additional junction 33 by the optimization analysis. As a result, the improvement in rigidity was high. Moreover, the rigidity improvement rate of the invention example which set mass, and the comparative example 2 were substantially equivalent.
  • FIG. 20 and 21 show the analysis results of the vehicle body strain energy distribution obtained in the optimization analysis and the additional joints 33 selected by the optimization analysis.
  • FIG. 20 and FIG. 21 show strain energy distributions with different viewpoints for the region where the rotating door component on the front side of the vehicle body is fixed and connected
  • FIG. 20 (a) and FIG. a) is an analysis result in the invention example in which the mass element 41 is set
  • FIGS. 20B and 21B are analysis results in the comparative example 1 in which no mass is set.
  • a vertical upward load (1000N) is applied to one of the front suspension mounting positions (A in FIG. 16 (b)) of the vehicle body.
  • the position of the additional joint 33 to be added for the purpose of improving the rigidity of the vehicle body was obtained by optimization analysis in the case where a vertical downward load (1000 N) acts on the other side.
  • FIG. 22A and FIG. 23A show the analysis results in the invention example.
  • FIG. 22B and FIG. 23B are analysis results in Comparative Example 1.
  • FIG. 22C and FIG. 23C are analysis results in Comparative Example 2.
  • FIGS. 22D and 23D show load constraint conditions in the optimization analysis.
  • the invention example and the comparative example 2 in which the mass is set are compared with the comparative example 1 in which the mass is not set, so that they are selected at the center pillar central portion and the rear pillar of the vehicle body. A difference was found in the position of the additional joint point 33.
  • FIG. 24 (a) is a graph showing the relationship between the number of additional joint points selected by the optimization analysis and the rigidity improvement rate of the vehicle body in the invention example, the comparative example 1 and the comparative example 2.
  • FIG. 24B shows the number of additional joint points selected by the optimization analysis and the additional joint point 33 selected by the rigidity improvement rate and the optimization analysis in Invention Example 1, Comparative Example 1 and Comparative Example 2. It is a graph which shows the relationship with the hit rigidity improvement rate.
  • the rigidity improvement rate is a relative change in the average torsional rigidity obtained on the basis of the average torsional rigidity of the vehicle body skeleton model 21 before performing the optimization analysis.
  • the invention example and the comparative example 2 are improved in rigidity by the additional joint point 33 selected by the optimization analysis.
  • the result was high.
  • the rigidity improvement rate of the invention example in which the mass is set and the comparative example 2 are substantially the same, and in the optimization analysis method according to the present invention, by setting the mass corresponding to the rotating door component, the rotating door It was shown that the inertial force acting on the component can be considered with high accuracy.
  • a vehicle body skeleton of a vehicle having a joint point for joining a plurality of parts as a part set and a fixed connecting part for fixing or connecting a fitting or a lid by the method for optimizing the joining position of the car body according to the present invention
  • a joint candidate 31 to be added to a part to be joined as the part set and a mass corresponding to a fitting or a lid are set, and the joint point that maximizes the rigidity of the vehicle body skeleton model from the joint candidates 31
  • the rigidity of the automobile during traveling is determined by taking into account the inertial force acting on the equipment or lid when the automobile is running, even before the equipment or lid is determined. It has been proved that the optimum additional junction 33 can be obtained efficiently for improving the resistance.
  • the optimization analysis is performed in consideration of the inertial force acting on the fitting or the lid during traveling, and the component is used to improve the rigidity of the automobile. It is possible to provide an optimization analysis method and an optimization analysis device for a joint position of a vehicle body that efficiently obtain an additional joint point to be added to a set or an optimum position of the additional joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本発明に係る車体の接合位置の最適化解析方法は、部品同士を接合する接合点25と、艤装品又は蓋物を固定又は連結する固定連結部23とを有する車体骨格モデル21を用い、前記部品同士の接合部位に追加する追加接合点33を求めるものであって、車体骨格モデル21に予め設定された接合点25同士の間に接合候補31を生成し、前記艤装品又は蓋物に相当する質量を設定する最適化解析モデル生成ステップS1と、最適化解析条件を設定する最適化解析条件設定ステップS3と、前記艤装品又は蓋物に作用する慣性力を考慮して、前記最適化解析条件を満たす追加接合点33を接合候補31の中から選出する最適化解析ステップS5とを備えたことを特徴とするものである。

Description

車体の接合位置の最適化解析方法及び装置
 本発明は、自動車の車体(automotive body)の接合位置(joint location)の最適化解析(optimization analysis)方法及び最適化解析装置に関し、特に、予め自動車の走行状態(driving condition)を考慮して車体に追加する接合点(joining point)又は接合部(joint area)の最適な位置を求める車体の接合位置の最適化解析方法及び最適化解析装置に関する。
 近年、自動車産業においては環境問題に起因した車体の軽量化(weight reduction of automotive body)が進められており、車体の設計にコンピュータ支援工学(computer aided engineering)(以下、「CAE」という)解析は欠かせない技術となっている。このCAE解析では剛性解析(stiffness analysis)、衝突解析(crashworthiness analysis)、振動解析(vibration analysis)等が実施され、車体性能(performance of automotive body)の向上に大きく寄与している。また、CAE解析では単に車体性能を評価するだけでなく、数理最適化(mathematical optimization)、板厚最適化(thickness optimization)、形状最適化(shape optimization)、トポロジー最適化(topology optimization)などの最適化解析手法を用いることにより、車体の軽量化や、剛性(stiffness)や耐衝突性(crashworthiness)等の向上を達成した車体の設計支援をすることができる。
 例えば、特許文献1には、複雑な構造体のコンポーネントをトポロジー最適化により最適化する技術が開示されている。
特開2010-250818号公報
 また、車体のような構造体は、複数の部品を溶接(welding)等により接合することによって形成されており、接合する部位における接合量を増やせば(例えば、スポット溶接点の追加)構造体全体としての剛性は向上することが知られている。しかしながら、コストの観点から接合量をできるだけ少なくすることが望まれている。
 そこで、車体の剛性を向上させるために部品同士の接合を追加する位置を求めるための方法として、経験や勘などにより設定する方法や、応力(stress)解析により応力が大きい部位(part)に追加する方法がある。しかしながら、経験や勘により溶接位置を追加する位置を設定する方法では、剛性を向上させるために必要な位置を探して溶接位置を設定するのではないため、不用な位置に溶接を追加することになり、コストの面から効率が悪いと言わざるを得ない。また、応力解析により応力が大きい部位に追加する方法では、追加前と比較すると変化は見られるものの、溶接位置として追加した部位の近傍のみの特性が向上する反面、別の部位の特性が相対的に低下することになり、車体全体として評価したとき、追加する溶接位置が必ずしも最適とはいえない。
 また、溶接位置を追加したことによって、隣接する溶接位置同士が近すぎると、溶接する際、先に溶接した箇所に電流が流れて(分流(split flow))、追加で溶接したい箇所に十分な電流が流れず、溶接が不完全となってしまうことがある。
 そこで、車体の剛性等の性能を向上するために、特許文献1に開示された最適化技術を適用することが考えられるが、当該技術は、車体のような構造体を形成する溶接位置の最適化に関してどのように最適化技術を適用するかについて開示されていない。
 さらに、自動車車両(automotive vehicle)が実際に走行(drive)している状態を考えた場合、例えばレーンチェンジ(lane change)等により車体挙動(behavior on autmototive body)が変化する際には、車両の中心位置から離れて配設された艤装品(fittings)又は蓋物(lid component)に作用する慣性力(inertia force)が車体骨格(structure of autmototive body)の変形(deformation)に大きく影響を及ぼす。これは、艤装品又は蓋物であっても、複数の部品が組み合わされた構成部品(アセンブリ(assembly);ASSY)の質量が10kg以上となる場合もあり、質量が100kg~300kg程度である車体骨格に対して無視できないためである。そのため、車体骨格の性能を評価及び向上する際には、実際の走行時に艤装品又は蓋物に作用する慣性力を考慮することが望まれる。なお、本願発明において、艤装品はエンジン(engine)、トランスミッション(transmission)、シート(sheet)等を、蓋物はドア(door)、トランク(trunk)、フード(hood)等を総称するものである。
 しかしながら、一般的に、車体骨格の設計初期段階では車両の外観やデザインが決まっておらず、車両の外観やデザインに大きく左右される蓋物や艤装品は、設計後期段階において最終決定されることが多い。
 そのため、艤装品や蓋物の形状等が決定される前の段階において、実際の走行状態において艤装品や蓋物に作用する慣性力を考慮して車体骨格の性能を評価することは難しい。さらに、設計後期段階において艤装品や蓋物の形状等が決定されたとしても、艤装品や蓋物が配設された車両(フルボディ(full body))を対象としてCAE解析を行って車体骨格の性能を評価し、元に戻って車体骨格の設計や接合位置を修正し追加する時間的な余裕は新車開発にはない。そのため、従来は車体骨格のみを対象としCAE解析により車体骨格の性能評価及び設計が強いられていた。
 本発明は、上記のような課題を解決するためになされたものであり、複数の部品が部品組みとして接合された自動車の車体骨格モデルにおいて、艤装品又は蓋物が決定される前であっても、自動車の走行時において前記艤装品又は蓋物に作用する慣性力を考慮して、前記部品組みとして接合する部位に追加する追加接合点又は追加接合部の最適位置を求めることができる車体の接合位置の最適化解析方法及び最適化解析装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る車体の接合位置の最適化解析方法は、平面要素(shell elements)及び/又は立体要素(solid elements)からなる複数の部品(parts)を有してなり、該複数の部品を部品組み(parts set)として接合する接合点又は接合部と、艤装品又は蓋物を固定又は連結(link)する固定連結部とを有する自動車の車体骨格モデルを用いて、前記部品組みの接合に用いられる点接合又は連続接合の最適化解析を、コンピュータが以下の各ステップを行うものであって、コンピュータが、前記部品組みに追加して接合する追加接合点又は追加接合部の接合候補と、艤装品又は蓋物に相当する質量とを前記車体骨格モデルに設定し、最適化解析の解析対象とする最適化解析モデルを生成する最適化解析モデル生成ステップと、操作者の指示によりコンピュータが、前記最適化解析モデルに対して最適化解析条件を設定する最適化解析条件設定ステップと、コンピュータが、前記最適化解析モデルについて前記自動車の走行時に作用する慣性力を考慮して最適化解析を行い、前記最適化解析条件を満たす追加接合点又は追加接合部を前記接合候補の中から選出する最適化解析ステップとを備え、前記最適化解析モデル生成ステップにおいて、前記質量は、前記艤装品又は蓋物が固定又は連結される領域内の所定位置に設定され、かつ、前記接合候補は、前記車体骨格モデルの各部品組みに予め設定された接合点又は接合部同士の間に所定の間隔で設定されることを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析方法は、上記の発明において、前記最適化解析モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上としたことを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析方法は、上記の発明において、前記艤装品又は蓋物が回転可動する回転可動部品である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定したことを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析方法は、上記の発明において、前記最適化解析モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線若しくは曲線で囲まれた平面上若しくは曲面上(前記直線若しくは曲線の線上を除く)としたことを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析方法は、上記の発明において、前記最適化解析モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素(mass element)と、該質量要素と前記固定連結部を接続する剛体要素(rigid-body element)とを用いて設定することを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析方法は、上記の発明において、前記最適化解析モデル生成ステップは、質量要素とはり要素(beam elements)とを用いて設定し、該質量要素とはり要素とが有する質量の和は前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析方法は、上記の発明において、前記最適化解析モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析装置は、平面要素及び/又は立体要素からなる複数の部品を有してなり、該複数の部品を部品組みとして接合する接合点又は接合部と、艤装品又は蓋物を固定又は連結する固定連結部とを有する自動車の車体骨格モデルを用いて、前記部品組みの接合に用いられる点接合又は連続接合の最適化を行うものであって、前記部品組みに追加して接合する追加接合点又は追加接合部の接合候補と、艤装品又は蓋物に相当する質量とを前記車体骨格モデルに設定し、最適化解析の解析対象とする最適化解析モデルを生成する最適化解析モデル生成部と、前記最適化解析モデルに対して最適化解析条件を設定する最適化解析条件設定部と、前記最適化解析モデルについて前記自動車の走行時に作用する慣性力を考慮して最適化解析を行い、前記最適化解析条件を満たす追加接合点又は追加接合部を前記接合候補の中から選出する最適化解析部とを備え、前記最適化解析モデル生成部により、前記質量は、前記艤装品又は蓋物が固定又は連結される領域内の所定位置に設定され、かつ、前記接合候補は、前記車体骨格モデルの各部品組みに予め設定された接合点又は接合部同士の間に所定の間隔で設定されることを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析装置は、上記の発明において、前記最適化解析モデル生成部により設定される前記質量の所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上としたことを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析装置は、上記の発明において、前記艤装品又は蓋物が回転可動する回転可動部品である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定したことを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析装置は、上記の発明において、前記最適化解析モデル生成部により設定される前記質量の所定位置を、前記固定連結部を結ぶ直線若しくは曲線で囲まれた平面上若しくは曲面上(前記直線若しくは曲線の線上を除く)としたことを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析装置は、上記の発明において、前記最適化解析モデル生成部は、前記艤装品又は蓋物の質量に相当する質量を、質量要素と、該質量要素と前記固定連結部を接続する剛体要素とを用いて設定することを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析装置は、上記の発明において、前記最適化解析モデル生成部は、質量要素とはり要素とを用いて設定し、該質量要素とはり要素とが有する質量の和は前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とするものである。
 また、本発明に係る車体の接合位置の最適化解析装置は、上記の発明において、前記最適化解析モデル生成部は、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とするものである。
 本発明においては、平面要素及び/又は立体要素からなる複数の部品から構成され、該複数の部品を部品組みとして接合する追加接合点又は追加接合部と、艤装品又は蓋物を固定又は連結する固定連結部とを有する自動車の車体骨格モデルを用いて、前記部品組みの接合に用いられる点接合又は連続接合の最適化解析を、コンピュータが以下の各ステップを行うものであって、コンピュータが、前記部品組みにおける追加接合点又は追加接合部の接合候補と、艤装品又は蓋物に相当する質量とを前記車体骨格モデルに設定し、最適化解析の解析対象とする最適化解析モデルを生成する最適化解析モデル生成ステップと、操作者の指示によりコンピュータが、前記最適化解析モデルに対して最適化解析条件を設定する最適化解析条件設定ステップと、コンピュータが、前記最適化解析モデルについて前記自動車の走行時に作用する慣性力を考慮して最適化解析を行い、前記最適化解析条件を満たす追加接合点又は追加接合部を前記接合候補の中から選出する最適化解析ステップとを備え、前記最適化解析モデル生成ステップにおいて、前記質量は、前記艤装品又は蓋物が前記車体骨格モデルの固定連結部に固定又は連結される領域内の所定位置に設定され、かつ、前記接合候補は、前記車体骨格モデルの各部品組みに予め設定された接合点又は接合部同士の間に所定の間隔で設定されることにより、艤装品又は蓋物が決定される前であっても、走行時に該艤装品又は蓋物に作用する慣性力を考慮して最適化解析を行い、自動車の剛性を向上させるために前記部品組みに追加する追加接合点又は追加接合部の最適な位置を効率良く求めることができる。
図1は、本発明の実施の形態に係る車体の接合位置の最適化解析装置のブロック図である。 図2は、本実施の形態で用いる車体骨格モデルと、車体骨格モデルに予め設定されている接合点を説明する説明図である((a):斜視図、(b):側面図)。 図3は、本実施の形態で用いる車体骨格モデルと、車体骨格モデルに設定されている固定連結部を説明する説明図である。 図4は、本実施の形態に係る最適化解析モデル生成ステップにおいて、車体骨格モデルに接合候補が生成された最適化解析モデルの一例を示す図である。 図5は、本実施の形態に係る最適化解析モデル生成ステップにおいて、車体骨格モデルに質量要素が設定された最適化解析モデルの一例を示す図である。 図6は、本実施の形態に係る最適化解析モデル生成ステップにおいて生成された最適化解析モデルの一例を示す図である。 図7は、本実施の形態に係る車体の接合位置の最適化解析方法の処理の流れを示すフローチャート図である。 図8は、本実施の形態に係る最適化解析モデル生成ステップにおける接合候補の生成と、最適化解析ステップにおける接合候補の選出とを説明する説明図である((a):接合点、(b):接合候補の生成、(c):追加接合点の選出)。 図9は、本実施の形態に係る最適化解析モデル生成ステップにおいて、質量要素が設定される所定位置を説明する説明図である。 図10は、本実施の形態に係る最適化解析モデル生成ステップにおいて、車体骨格モデルに質量要素が設定された最適化解析モデルの他の例を示す図である。 図11は、本実施の形態に係る最適化解析モデル生成ステップにおいて、質量要素の設定方法を説明する説明図である。 図12は、実施例において、比較例とした最適化解析モデルを説明する説明図である((a):質量設定なし(比較例1)、(b)回転ドア構成部品有り(比較例2))。 図13は、実施例において車体の静ねじりにおける荷重拘束(load and constraint)条件を説明する説明図である((a):フロント側荷重付与+リア側拘束、(b):フロント側拘束+リア側荷重付与)。 図14は、実施例において、静ねじれ(static torsion)荷重条件における最適化解析により選出された追加接合点の解析結果を示す図である。 図15は、実施例において、静ねじれ荷重条件における最適化解析により選出された追加接合点数と車体の剛性向上率との関係を示すグラフである。 図16は、実施例において、自動車の走行状態を想定した荷重条件を説明する説明図である。 図17は、実施例において、レーンチェンジを想定した荷重条件における最適化解析により選出された追加接合点の解析結果を示す図である(その1)。 図18は、実施例において、レーンチェンジを想定した荷重条件における最適化解析により選出された追加接合点の解析結果を示す図である(その2)。 図19は、実施例において、レーンチェンジを想定した荷重条件における最適化解析により選出された追加接合点数と車体の剛性向上率との関係を示すグラフである。 図20は、実施例において、レーンチェンジを想定した荷重条件における最適化解析により得られた車体のひずみ(strain)エネルギー分布の解析結果を示す図である(その1)。 図21は、実施例において、レーンチェンジを想定した荷重条件における最適化解析により得られた車体のひずみエネルギー分布の解析結果を示す図である(その2)。 図22は、実施例において、自動車の走行状態において車体のフロント側に荷重が作用する荷重条件を説明する説明図である。 図23は、実施例において、自動車の走行状態において車体のフロント側に荷重が作用する荷重条件における最適化解析により選出された追加接合点の解析結果を示す図である(その1)。 図24は、実施例において、自動車の走行状態において車体のフロント側に荷重が作用する荷重条件における最適化解析により選出された追加接合点の解析結果を示す図である(その2)。
 本発明の実施の形態に係る車体の接合位置の最適化解析方法及び最適化解析装置を、図1~図10を参照して以下に説明する。なお、車体の接合位置の最適化解析方法及び最適化解析装置の説明に先立ち、本発明で対象とする車体骨格モデルについて説明する。
<車体骨格モデル>
 図2は、本実施の形態で用いる車体骨格モデル21と、車体骨格モデル21に予め設定されている接合点25を説明する説明図である((a):斜視図、(b):側面図)。図3は、本実施の形態で用いる車体骨格モデル21と、車体骨格モデル21に設定されている固定連結部23を説明する説明図である。本発明で用いる車体骨格モデル21は、図2及び図3に示すように、シャシー(chassis)部品等といった複数の部品で構成されたものである。車体骨格モデル21の各部品は、平面要素及び/又は立体要素を使ってモデル化されている。
 車体骨格モデル21において、各部品は部品組みとして接合する部位に設けられた接合点又は接合部が設けられており、例えば、部品同士がスポット溶接により接合された車体骨格モデル21においては、図2に示すように、部品組み毎に接合される部位に接合点25が予め設定されている。
 さらに、車体骨格モデル21は、図3に示すように、艤装品又は蓋物を固定又は連結する固定連結部23を有する。固定連結部23としては、図3に一例を示すように、回転ドア(revolving door)を固定又は連結するヒンジ(hinge)23a及びヒンジ23bやストライカー(striker)23cがあるが、固定連結部23はこれらに限定されるものではない。例えば、固定連結部23には、エンジンを固定するエンジンマウント(engine mount)等の艤装品を固定するものや、回転ドア以外のスライドドア(slide door)やボンネット(bonnet)等といった蓋物を固定又は連結するものを含む。
 車体骨格モデル21を構成する各部品の要素情報等や、各部品組みにおける接合点25(図2参照)、艤装品又は蓋物を固定又は連結する固定連結部23(図3参照)に関する情報は、車体骨格モデルファイル20(図1参照)に格納されている。
<最適化解析装置>
 図1は、本発明の実施の形態に係る車体の接合位置の最適化解析装置1のブロック図である。本実施の形態に係る車体の接合位置の最適化解析装置1(以下、単に「最適化解析装置1」という)の構成について、主に図1に示すブロック図に基づいて以下に説明する。
 本実施の形態に係る最適化解析装置1は、車体骨格モデル21(図2及び図3参照)を構成する複数の部品を部品組みとして接合する部位に追加する追加接合点又は追加接合部の最適化を行う装置であり、PC(パーソナルコンピュータ)等によって構成され、表示装置(display device)3、入力装置(input device)5、記憶装置(memory storage)7、作業用データメモリ(working data memory)9及び演算処理部(arithmetic processing unit)10を有している。
 そして、表示装置3、入力装置5、記憶装置7及び作業用データメモリ9は、演算処理部10に接続され、演算処理部10からの指令によってそれぞれの機能が実行される。
≪表示装置≫
 表示装置3は、解析結果の表示等に用いられ、液晶モニター(LCD monitor)等で構成される。
≪入力装置≫
 入力装置5は、車体骨格モデルファイル20の表示指示や操作者の条件入力等に用いられ、キーボードやマウス等で構成される。
≪記憶装置≫
 記憶装置7は、車体骨格モデルファイル20等の各種ファイルの記憶等に用いられ、ハードディスク等で構成される。
≪作業用データメモリ≫
 作業用データメモリ9は、演算処理部10で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)等で構成される。
≪演算処理部≫
 演算処理部10は、図1に示すように、最適化解析モデル生成部11と最適化解析条件設定部13と最適化解析部15とを有し、PC等のCPU(中央演算処理装置(central processing unit))によって構成される。これらの各部は、CPUが所定のプログラムを実行することによって機能する。以下、演算処理部10内の各部の機能を説明する。
≪最適化解析モデル生成部≫
 最適化解析モデル生成部11は、車体骨格モデル21の部品を部品組みとして接合する部位に追加する追加接合点又は追加接合部の接合候補を生成し、艤装品又は蓋物に相当する質量を車体骨格モデル21に設定し、最適化解析の解析対象とする最適化解析モデルを生成するものである。
 図4に、車体骨格モデル21に接合候補31を生成した一例を示す。接合候補31は、車体骨格モデル21の各部品組みにおいて予め設定された接合点25(図1参照)同士の間に、所定の間隔(10mm間隔)で密に生成されている。なお、図4において、車体骨格モデル21に予め設定された接合点25(図2参照)は表示されていない。
 図5に、車体骨格モデル21に艤装品又は蓋物に相当する質量を設定した一例を示す。図5では、蓋物である回転ドアに相当する質量を有する質量要素41が設定されており、回転ドアが固定又は連結される領域内の所定位置に質量要素41を設定するため、ヒンジ23aとストライカー23cとを結ぶ直線上に質量要素41が位置し、質量要素41とヒンジ23a、及び、質量要素41とストライカー23c、が剛体要素45によって接続されている。
 図6に、車体骨格モデル21に接合候補31を生成し(図4参照)、かつ車体骨格モデル21に質量要素41を設定(図5参照)した最適化解析モデル51の一例を示す。
≪最適化解析条件設定部≫
 最適化解析条件設定部13は、接合候補31に対して最適化解析条件を設定するものであり、目的条件と制約条件との2種類の最適化解析条件を設定する。
 目的条件は、最適化解析モデル51による最適化解析の目的に応じて設定される条件であり、例えば、ひずみエネルギーを最小にすることや、吸収エネルギーを最大にして発生応力を最小にすること等がある。目的条件は、1つだけ設定する。
 制約条件は、最適化解析を行う上で課す制約であり、例えば、各部品を接合した後の車体骨格モデル21から生成した最適化解析モデル51が、所定の剛性を有するようにすること等がある。制約条件は複数設定可能である。
≪最適化解析部≫
 最適化解析部15は、最適化解析モデル51における接合候補31を対象とし、自動車の走行時に作用する慣性力を考慮して最適化解析を行うものであり、接合候補31のうち、最適化解析条件設定部13で設定された最適化解析条件(目的条件、制約条件)を満たす有意な接合候補31を選出する。
 最適化解析部15による最適化解析には、トポロジー最適化を適用することができる。トポロジー最適化において密度法を用いる際に、中間的な密度が多い場合には離散化(discretization)が好ましく、下記式(1)であらわされる。
  K(ρ)=ρpK ・・・(1)
 ただし、
  K(ρ):要素の剛性マトリックス(stiffness matrix)にペナルティ(penalty)を課した剛性マトリックス
  K:要素の剛性マトリックス
  ρ:規格化された密度
  p:ペナルティ係数
 離散化によく用いられるペナルティ係数は2以上であるが、本発明に係る接合位置の最適化においては、ペナルティ係数として4以上の値が好ましいことが明らかになった。
 なお、最適化解析部15は、トポロジー最適化処理を行うものでもよいし、他の計算方式による最適化処理であってもよい。したがって、最適化解析部15としては、例えば、市販されている有限要素(finite element)を用いた解析ソフトを使用することができる。
<接合位置の最適化解析方法>
 図7は、本実施の形態に係る車体の接合位置の最適化解析方法の処理の流れを示すフローチャート図である。本実施の形態に係る車体の接合位置の最適化解析方法(以下、単に「最適化方法」という)について、以下に説明する。
 本実施の形態に係る接合位置の最適化方法は、平面要素及び/又は立体要素からなる複数の部品から構成され、前記複数の部品を部品組みとして接合する接合点25と、艤装品又は蓋物を固定又は連結する固定連結部23とを有する自動車の車体骨格モデル21(図2及び図3参照)を用いて、前記部品組みの接合に用いられる点接合又は連続接合の最適化を行うものであり、図7に示すように、最適化解析モデル生成ステップS1と、最適化解析条件設定ステップS3と、最適化解析ステップS5とを備えている。
 以下、各ステップについて説明する。なお、各ステップとも、コンピュータによって構成された最適化解析装置1が実行するものである。図8は、本実施の形態に係る最適化解析モデル生成ステップS1における接合候補31の生成と、最適化解析ステップS5における接合候補31の選出とを説明する説明図である((a):接合点25、(b):接合候補31の生成、(c):追加接合点33の選出)。図9は、本実施の形態に係る最適化解析モデル生成ステップS1において、質量要素41が設定される所定位置を説明する説明図である。
≪最適化解析モデル生成ステップS1≫
 最適化解析モデル生成ステップS1は、車体骨格モデル21を構成する複数の部品について、部品組みとして接合する部位に追加する接合候補31を生成し(図4参照)、艤装品又は蓋物に相当する質量を有する質量要素41を車体骨格モデル21に設定し(図5参照)、最適化解析モデル51を生成(図6参照)するものであり、図1に示す最適化解析装置1においては最適化解析モデル生成部11が行う。
 最適化解析モデル生成ステップS1における接合候補31の生成は、以下の手順で行うことができる。
 車体骨格モデル21においては、図8(a)に示すように、車体骨格モデル21を構成する部品27を部品組みとして接合する部位に、接合点25が所定の間隔Dで予め設定されているものとする。
 この場合、最適化解析モデル生成ステップS1においては、図8(b)に示すように、接合点25同士の間に所定の間隔d(<D)で接合候補31を密に設定する。
 さらに、最適化解析モデル生成ステップS1における艤装品又は蓋物に相当する質量の設定は、図5に例示すように、艤装品又は蓋物が固定又は連結される領域内の所定位置に質量要素41を設定することにより行う。
 質量要素41を設定する前記所定位置は、図9に示すように、複数の固定連結部23(ヒンジ23a、ヒンジ23b、ストライカー23c)を結ぶ(ヒンジ23aとストライカー23c、ヒンジ23bとストライカー23c、ヒンジ23aとヒンジ23b)直線L上(図9(a)参照)、若しくは、蓋物等が装着された車体の形状に沿って固定連結部23を結ぶ曲線上とする。
 艤装品又は蓋物が回転ドアのように回転可動する回転可動部品においては、前記回転ドアのヒンジ23aとヒンジ23bとを結ぶ線上に、前記回転ドアが回転可動する際の回転可動中心軸がある。そして、前記回転可動中心軸は、前記回転ドアが車体骨格モデル21に固定又は連結される領域の境界とほぼ同位置にある。
 これに対し、前記回転ドアのヒンジ23aとストライカー23cとを結ぶ線、及び、ヒンジ23bとストライカー23cとを結ぶ線は、前記回転ドアが車体骨格モデル21に固定又は連結される領域の内部に位置する。
 艤装品又は蓋物に相当する質量を車体骨格モデル21に設定するにあたっては、車体骨格モデル21において、艤装品又は蓋物が固定又は連結される領域の境界よりも内部とする方が、走行時に艤装品又は蓋物に作用する慣性力を後述する最適化解析ステップS5において考慮する上で好ましい。
 そのため、艤装品又は蓋物に相当する質量を設定する所定位置を、複数の固定連結部23を結ぶ直線L上又は前記曲線のうち、艤装品又は蓋物が回転可動する際の回転可動中心軸を除いた位置に設定することが望ましい。
 さらに、艤装品又は蓋物に相当する質量を設定する所定位置は、直線L上若しくは前記曲線の線上に限定されるものではなく、直線Lで囲まれた平面P上(図9(b)参照)、若しくは、前記曲線で囲まれて蓋物等が装着された車体の形状に沿った曲面上としても良い。
 ここで、直線L又は前記曲線は、平面P若しくは前記曲面の境界であるので、前記境界の内側に艤装品又は蓋物に相当する質量を設定することが望ましい。そのため、艤装品又は蓋物に相当する質量を設定する所定位置を、直線L上又は前記曲線の線上を除いた平面P上又は前記曲面上に設定することがより好ましい。
 また、例えば、艤装品が4点の固定連結部23で固定又は連結される場合には、2本の直線が互いに交差するように前記固定連結部23を直線で結び、前記直線上に艤装品に相当する質量要素41を設定することが好ましい。この場合においても、前記固定連結部同士を車体のもつ曲率に合わせて曲線で接続し、前記曲線上に質量要素41を設定しても良い。
 質量を前記所定位置に設定する具体的な質量設定方法として、例えば、以下の(1)乃至(3)がある。図10は、本実施の形態に係る最適化解析モデル生成ステップS1において、車体骨格モデル21に質量要素41が設定された最適化解析モデル51の他の例を示す図である。図11は、本実施の形態に係る最適化解析モデル生成ステップS1において、質量要素41の設定方法を説明する説明図である。
(1)前記所定位置に、艤装品又は蓋物の質量に相当する質量を有する質量要素41を設定し、質量要素41と固定連結部23(ヒンジ23a又はストライカー23c)とを剛体要素45を用いて接続する(図5及び図10参照)。
 図5は、固定連結部23を結ぶ直線Lの中心上に一個の質量要素41を設定した例であるが、図10に示すように、直線Lを均等に分割する点上に複数の質量要素41を設定しても良い。複数の質量要素41を設定する場合には、各質量要素41の質量の総和が艤装品又は蓋物の質量に相当するように、各質量要素41の質量を決定すれば良い。
(2)前記所定位置に、艤装品又は蓋物の質量に相当する質量の質量要素41を設定し、質量要素41と固定連結部23とをはり要素47を用いて接続する(図11(a)参照)。質量要素41とはり要素47それぞれの有する質量の和は、固定連結部23に固定又は連結される艤装品又は蓋物の質量に相当するように設定する。
 はり要素47の質量は、はり要素47の断面特性として与えられる断面積、及び、材料特性(material property)として与えられる材料密度(material density)により定められる。はり要素47の断面積は、例えば、はり要素47の半径を与えることにより決定される。
 さらに、後述する最適化解析ステップS5においては、質量要素41及びはり要素47に作用する慣性力による荷重を、車体骨格に伝達するために必要な断面特性及び材料特性を、はり要素47に適宜設定する必要がある。
 なお、はり要素47は、線状の要素であり、前記要素の軸方向に作用する引張荷重(tensile load)及び圧縮荷重(compressive load)を伝達できるものであればロッド要素(rod elements)(棒要素)であっても良く、前記ロッド要素の質量は、はり要素47と同様に、断面特性として与えられる断面積(又は半径)、及び、材料特性として与えられる材料密度により設定される。
(3)艤装品又は蓋物の質量に相当する質量を有するはり要素47のみを用いて設定する(図11(b)参照)。はり要素47の質量は、はり要素47の断面特性として与えられる断面積、及び、材料特性として与えられる材料密度により定められ、例えば、はり要素47の半径を与えることにより前記断面積が決定される。
≪最適化解析条件設定ステップS3≫
 最適化解析条件設定ステップS3は、接合候補31に対して最適化解析条件を設定するものであり、最適化解析装置1においては操作者の指示により最適化解析条件設定部13が行う。
 最適化解析条件設定ステップS3において設定される最適化解析条件としては、目的条件と制約条件との2種類がある。
≪最適化解析ステップS5≫
 最適化解析ステップS5は、最適化解析モデル生成ステップS1において生成された解析モデルについて、自動車の走行時に作用する慣性力を考慮して最適化解析を行い、最適化解析条件設定ステップS3で設定された最適化解析条件を満たす追加接合点33又は追加接合部を、接合候補31の中から選出するものであり、最適化解析装置1においては最適化解析部15が行う。
 例えば、図8に示す部品27においては、最適化解析ステップS5では、部品27に設定された接合候補31に対して最適化解析を行い、図8(c)に示すように、最適化解析条件を満たす接合候補31が追加接合点33として選出され、選出されなかった接合候補31は消去接合点35として消去される。
 最適化解析ステップS5における最適化解析には、トポロジー最適化を適用することができる。さらに、トポロジー最適化において密度法を適用する場合には、要素のペナルティ係数を4以上に設定して離散化を行うようにすることが好ましい。
 最適化解析において、自動車の走行時に艤装品又は蓋物に作用する慣性力は、慣性リリーフ法(inertia relief method)を用いて考慮する。慣性リリーフ法とは、慣性力の座標の基準となる支持点において、物体が支持された状態(自由支持状態)で等加速度運動中の物体に作用する力から応力やひずみを求める解析手法であり、運動中の飛行機や船の静解析(static analysis)に使用されている。
 以上のように、本実施の形態に係る車体の接合位置の最適化解析方法及び最適化解析装置によれば、複数の部品を部品組みとして接合する接合点と、艤装品又は蓋物を固定又は連結する固定連結部とを有する自動車の車体骨格モデルにおいて、前記部品組みに追加する追加接合点33又は追加接合部の接合候補31と、艤装品又は蓋物に相当する質量とを設定し、前記接合候補31の中から前記車体骨格モデルの剛性を最大とする追加接合点33を選出する最適化解析を、自動車の走行時に艤装品又は蓋物に作用する慣性力を考慮して行うことにより、艤装品又は蓋物が決定される前であっても、走行時における自動車の剛性を向上させるために追加する追加接合点33又は追加接合部の最適な位置を求めることができる。
 さらに、本発明に係る車体の接合位置の最適化解析方法及び最適化解析装置においては、車体骨格モデルに予め設定された接合点を最適化解析の対象に含めないことにより、部品同士を部品組みとして接合する接合点が、最適化解析の過程において消去されてしまって部品同士が離れてしまい、その時点で最適化解析が停止してしまうことを防ぐことができる。
 なお、上記の説明では、スポット溶接により部品組みとして接合する接合点を解析対象としていたが、本発明に係る車体の接合位置の最適化解析方法及び最適化解析装置は、スポット溶接による接合に限るものではなく、レーザー溶接やアーク溶接等の連続接合により部品組みを接合する際における最適な接合位置を求める場合に適用することができる。
 以下、本発明の効果を確認する実験を行ったので、これについて説明する。実験は、図2及び図3に示す車体骨格モデル21を対象とし、車体骨格モデル21に最適化解析の対象とする接合候補31を設定し、かつ固定連結部23に蓋物としての回転ドア構成部品が、固定又は連結される領域内の所定位置に、前記回転ドア構成部品に相当する質量を設定した最適化解析モデルを解析対象とし、接合位置の最適化解析を行った。
 本実施例において、車体骨格モデル21の質量は約300kgであり、車体骨格モデル21に設定される前記回転ドア構成部品の質量は一枚当たり10kgである。
 そこで、車体骨格モデル21の上側のヒンジ23aとストライカー23cとを結ぶ直線上に10個の質量要素41を均等に配置し、質量要素41とヒンジ23a及びストライカー23cとを剛体要素45で接続した最適化解析モデル21を解析対象とした(図10参照)。このとき、質量要素41の質量の総和が回転ドア構成部品の質量となるように、各質量要素41の質量(=1kg)を設定した。
 さらに、車体骨格モデル21に予め設定された接合点25(図2参照)同士の間に、図8(b)に示すように接合候補31を密に設定し、図6に示す質量要素41を10等分した最適化解析モデル51を生成した。このとき、接合候補31同士の間隔はd=10mmとした。
 ここで、車体骨格モデル21において接合点25は3906点であったため、最適化解析の対象となる接合候補31は10932点であった。
 このように、車体骨格モデル21に質量要素41を設定し(図10参照)、接合候補31を生成した最適化解析モデル51(図6参照)を本実施例における発明例とした。
 図12は、本実施例において、比較例とした最適化解析モデル61,71を説明する説明図である((a):質量設定なし(比較例1)、(b)回転ドア構成部品有り(比較例2))。本実施例においては、比較例として、回転ドア構成部品に相当する質量を設定せずに車体骨格モデル21に接合候補31のみを設定した最適化解析モデル61(比較例1、図12(a)参照)、及び、車体骨格モデル21に接合候補31と回転ドア構成部品モデル73とを組み合わせた最適化解析モデル71(比較例2、図12(b)参照)についても、最適化解析を実施した。
 本実施例では、最適化解析条件として、目的条件には車体剛性の最大化を設定し、制約条件には追加する追加接合点33(図8参照)を0~600点の範囲内で選出するように体積率を設定した。
 本実施例では、まず、静ねじりを対象として最適化解析を行い、最適化解析モデル51,61,71に設定された回転ドア構成部品の相当する質量要素41が、最適化解析により選出される追加接合点33に及ぼす影響について検討した。
 図13に、最適化解析モデル51を対象とした静ねじれの荷重拘束条件を示す。図13(a)は、車体のフロントサスペンション(front suspension)取付位置(図13(a)中A)の一方に鉛直方向上向きの荷重(100N)を、他方に鉛直方向下向きの荷重(100N)を与え、車体のリア(rear)のサブフレーム(sub-frame)取付位置(図13(a)中B)を拘束したものである。
 一方、図13(b)は、車体のフロントサスペンション取付位置(図13(b)中A)を拘束し、車体リアのサブフレーム取付位置(図13(b)中B)の一方に鉛直方向上向きの荷重(100N)を、他方に鉛直方向下向きの荷重(100N)を与えたものである。
 静ねじりにおける剛性は、以下のように求めた平均ねじれ剛性(torsional rigidity)により評価した。例えば、図13(a)の場合においては、まず、車体リアのサブフレーム取付位置(図13(a)中B)を結ぶ直線を基準とし(角度0°)、荷重点(図13(a)中A)に荷重を与えたときの車体前方側から見た車体の傾斜角度を、車体フロント側からリア側にわたって平均することにより、平均傾斜角度を求める。そして、前記荷重点に与えた荷重を、前記平均傾斜角度により除して平均ねじり剛性を求めた。同様に、図13(b)の場合においては、車体リア側からフロント側にわたって平均し求めた。
 図14に、静ねじれを対象とした最適化解析により選出された追加接合点33を示す(追加接合点数=600点)。図14(a)は、発明例における解析結果である。図14(b)は、比較例1における解析結果である。図14(c)は、比較例2における解析結果である。図14(d)は、当該最適化解析における荷重拘束条件である。ここで、図14に示す解析結果は、フロント荷重とリア荷重とを総合して得られたものであり、重み付けを、フロント荷重:リア荷重=1:1として複合最適化したものである。
 図14において、発明例、比較例1及び比較例2の結果を比較すると、最適化解析により選出された追加接合点33の位置に顕著な差異は見られなかった。
 図15(a)は、発明例1、比較例1及び比較例2における、最適化解析により選出された追加接合点数と、車体の剛性向上率との関係を示すグラフである。図15(b)は、発明例1、比較例1及び比較例2における、最適化解析により選出された追加接合点数と、最適化解析により追加された追加接合点33の1点当たりの剛性向上率との関係を示すグラフである。なお、図15の剛性向上率は、フロント荷重とリア荷重とによる剛性の平均値から求めた。ここで、剛性向上率は、最適化解析により追加接合点33を追加する前の平均ねじり剛性を基準として求めた、平均ねじり剛性の相対変化である。
 図15(a)に示すように、発明例1、比較例1及び比較例2のいずれにおいても、最適化解析により追加される追加接合点33の個数が増加するにつれて剛性は向上した。さらに、図15(b)に示すように、追加接合点33が少ないほど1点当たりの剛性向上率(=打点効率)は高い結果となり、本発明に係る最適化解析方法による追加接合点33の選出が適正に行われていることを表している。
 しかしながら、図15に示す発明例1、比較例1及び比較例2の結果を比較すると、剛性向上率及び最適化解析により追加される追加接合点33の1点あたりの剛性向上率の変化(打点効率)の双方とも、発明例、比較例1及び比較例2に差異は見られなかった。
 次に、自動車の走行状態において回転ドア構成部品に作用する慣性力を考慮して最適化解析を行い、回転ドア構成部品に相当する質量の設定が、最適化解析により選出される追加接合点33の位置と車体の剛性とに及ぼす影響について検討した。図16は、実施例において、自動車の走行状態を想定した荷重条件を説明する説明図である。
 まず、走行状態にある自動車がレーンチェンジする場合を想定して、図16(a)に示すように、車体フロント側のサブフレーム取付位置に4か所の荷重点(図16(a)中C)を設定し、各荷重点に1000Nの荷重が作用する場合における追加接合点33の最適化解析を行った。ここで、最適化解析において算出された車体の剛性は、荷重点に付与した荷重を各荷重点における変位で除した値により評価した。
 前述の静ねじりと同様に、車体骨格モデル21に回転ドア構成部品の質量に相当する質量要素41を設定した最適化解析モデル51(発明例)、質量を設定しなかった最適化解析モデル61(比較例1)、及び、車体骨格モデル21に回転ドア構成部品モデル73を組み合わせた最適化解析モデル71(比較例2)を解析対象とした。
 図17及び図18に、最適化解析により選出された追加接合点33の結果を示す(追加接合点=600点)。図17(a)及び図18(a)は、発明例における解析結果である。図17(b)及び図18(b)は、比較例1における解析結果である。図17(c)及び図18(c)は、比較例2における解析結果である。図17(d)及び図18(d)は、当該最適化解析における荷重拘束条件である。
 図17及び図18において、質量を設定した発明例及び比較例2と、質量を設定しなかった比較例1とを比較すると、車体のセンターピラー(center pillar)上部及びサイドシル(sill)において、選出された追加接合点33の位置に違いが見られた。一方、発明例と比較例2とを比較すると、選出された接合点の位置に違いはほぼ見られなかった。したがって、回転ドア構成部品に相当する質量を有する質量要素41を設定することにより、走行時において回転ドア構成部品に作用する慣性力を精度良く評価できることが示された。
 図19(a)は、発明例、比較例1及び比較例2における、最適化解析により選出された追加接合点数と、車体の剛性向上率との関係を示すグラフである。図19(b)は、発明例1、比較例1及び比較例2における、最適化解析により選出された追加接合点数と、最適化解析により選出された追加接合点33の1点当たりの剛性向上率との関係を示すグラフである。前述の静ねじりと同様に、剛性向上率は、最適化解析を行う前の車体骨格モデル21の平均ねじり剛性を基準として求めた平均ねじり剛性の相対変化である。
 図19(a)に示すように、発明例、比較例1及び比較例2のいずれにおいても、追加接合点33が増加するにつれて剛性は向上した。さらに、図19(b)に示すように、追加接合点33が少ないほど1点当たりの剛性向上率(打点効率)は高い結果となり、本発明に係る最適化解析方法による追加接合点33の選出が適正に行われていることを表している。
 さらに、回転ドア構成部品の質量を設定した発明例及び比較例2と、質量を設定しなかった比較例1とを比較すると、発明例及び比較例2は最適化解析による追加接合点33の追加による剛性向上が高い結果となった。また、質量を設定した発明例及び比較例2の剛性向上率は、ほぼ同等であった。
 図20及び図21に、最適化解析において得られた車体のひずみエネルギー分布と最適化解析により選出された追加接合点33との解析結果を示す。ここで、図20及び図21は、車体フロント側の回転ドア構成部品が、固定及び連結される領域について視点を変えてひずみエネルギー分布を表示したものであり、図20(a)及び図21(a)は質量要素41を設定した発明例における解析結果、図20(b)及び図21(b)は質量を設定しなかった比較例1における解析結果である。
 図20及び図21より、比較例1に比べると、発明例においては、剛体要素45を介して質量要素41が接続される固定連結部23(ヒンジ23a及びストライカー23c)近傍の部位(図中の破線領域)においてひずみエネルギーが高くなっており、当該部位においては、より多くの追加接合点33が最適化解析によって選出されていることが分かる。
 さらに、自動車の走行時に作用する荷重の他の態様として、図16(b)に示すように、車体のフロントサスペンション取付位置(図16(b)中A)の一方に鉛直方向上向きの荷重(1000N)を、他方に鉛直方向下向きの荷重(1000N)が作用する場合を対象とし、車体の剛性向上を目的として追加する追加接合点33の位置を最適化解析により求めた。
 図22及び図23に、最適化解析により選出された追加接合点33の結果を示す(追加接合点=600点)。図22(a)及び図23(a)は、発明例における解析結果である。図22(b)及び図23(b)は、比較例1における解析結果である。図22(c)及び図23(c)は、比較例2における解析結果である。図22(d)及び図23(d)は、当該最適化解析における荷重拘束条件である。
 図22及び図23において、質量を設定した発明例及び比較例2と、質量を設定しなかった比較例1とを比較すると、車体のセンターピラー中央部及びリアピラー(rear pillar)において、選出された追加接合点33の位置に違いが見られた。
 一方、発明例と比較例2とを比較すると、選出された追加接合点33の位置に違いはほぼ見られなかった。したがって、回転ドア構成部品に相当する質量を有する質量要素41を設定することにより、走行時において回転ドア構成部品に作用する慣性力を精度良く評価できることが示された。
 図24(a)は、発明例、比較例1及び比較例2における、最適化解析により選出された追加接合点数と、車体の剛性向上率との関係を示すグラフである。図24(b)は、発明例1、比較例1及び比較例2における、最適化解析により選出された追加接合点数と、剛性向上率及び最適化解析により選出された追加接合点33の1点当たりの剛性向上率との関係を示すグラフである。前述の静ねじりと同様に、剛性向上率は、最適化解析を行う前の車体骨格モデル21の平均ねじり剛性を基準として求めた平均ねじり剛性の相対変化である。
 図24(a)に示すように、発明例、比較例1及び比較例2のいずれにおいても、最適化解析により選出される追加接合点33の個数が増加するにつれて剛性は向上した。さらに、図24(b)に示すように、追加接合点33の個数が少ないほど1点当たりの剛性向上率(打点効率)は高い結果となり、本発明に係る最適化解析方法による追加接合点33の選出が適正に行われていることを表している。
 さらに、質量を設定した発明例及び比較例2と、質量を設定しなかった比較例1とを比較すると、発明例及び比較例2は最適化解析により選出された追加接合点33による剛性向上が高い結果となった。また、質量を設定した発明例及び比較例2の剛性向上率は、ほぼ同等であり、本発明に係る最適化解析方法において、回転ドア構成部品に相当する質量を設定することで、前記回転ドア構成部品に作用する慣性力を精度良く考慮できることが示された。
 以上より、本発明に係る車体の接合位置の最適化解析方法により、複数の部品を部品組みとして接合する接合点と、艤装品又は蓋物を固定又は連結する固定連結部とを有する自動車の車体骨格モデルにおいて、前記部品組みとして接合する部位に追加する接合候補31と、艤装品又は蓋物に相当する質量とを設定し、接合候補31の中から前記車体骨格モデルの剛性を最大とする追加接合点33を選出する最適化解析において、自動車の走行時に艤装品又は蓋物に作用する慣性力を考慮して行うことにより、艤装品又は蓋物が決定される前であっても、走行時における自動車の剛性を向上させるのに最適な追加接合点33を効率良く求めることができることが実証された。
 本発明によれば、艤装品又は蓋物が決定される前であっても、走行時に艤装品又は蓋物に作用する慣性力を考慮して最適化解析を行い、自動車の剛性を向上させるために部品組みに追加する追加接合点又は追加接合部の最適な位置を効率良く求める車体の接合位置の最適化解析方法及び最適化解析装置を提供することができる。
  1 最適化解析装置
  3 表示装置
  5 入力装置
  7 記憶装置
  9 作業用データメモリ
 10 演算処理部
 11 最適化解析モデル生成部
 13 最適化解析条件設定部
 15 最適化解析部
 20 車体骨格モデルファイル
 21 車体骨格モデル
 23 固定連結部
 23a ヒンジ(上側)
 23b ヒンジ(下側)
 23c ストライカー
 25 接合点
 27 部品
 31 接合候補
 33 追加接合点(最適化解析後)
 35 消去接合点(最適化解析後)
 41 質量要素
 45 剛体要素
 47 はり要素
 51 最適化解析モデル
 61 最適化解析モデル(比較例1)
 71 最適化解析モデル(比較例2)
 73 回転ドア構成部品モデル

Claims (14)

  1.  平面要素及び/又は立体要素からなる複数の部品を有してなり、該複数の部品を部品組みとして接合する接合点又は接合部と、艤装品又は蓋物を固定又は連結する固定連結部とを有する自動車の車体骨格モデルを用いて、前記部品組みの接合に用いられる点接合又は連続接合の最適化解析を、コンピュータが以下の各ステップを行う車体の接合位置の最適化解析方法であって、
     コンピュータが、前記部品組みに追加して接合する追加接合点又は追加接合部の接合候補と、艤装品又は蓋物に相当する質量とを前記車体骨格モデルに設定し、最適化解析の解析対象とする最適化解析モデルを生成する最適化解析モデル生成ステップと、
     操作者の指示によりコンピュータが、前記最適化解析モデルに対して最適化解析条件を設定する最適化解析条件設定ステップと、
     コンピュータが、前記最適化解析モデルについて前記自動車の走行時に作用する慣性力を考慮して最適化解析を行い、前記最適化解析条件を満たす追加接合点又は追加接合部を前記接合候補の中から選出する最適化解析ステップとを備え、
     前記最適化解析モデル生成ステップにおいて、前記質量は、前記艤装品又は蓋物が固定又は連結される領域内の所定位置に設定され、かつ、前記接合候補は、前記車体骨格モデルの各部品組みに予め設定された接合点又は接合部同士の間に所定の間隔で設定されることを特徴とする車体の接合位置の最適化解析方法。
  2.  前記最適化解析モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上としたことを特徴とする請求項1記載の車体の接合位置の最適化解析方法。
  3.  前記艤装品又は蓋物が回転可動する回転可動部品である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定したことを特徴とする請求項2記載の車体の接合位置の最適化解析方法。
  4.  前記最適化解析モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線若しくは曲線で囲まれた平面上若しくは曲面上(前記直線若しくは曲線の線上を除く)としたことを特徴とする請求項1記載の車体の接合位置の最適化解析方法。
  5.  前記最適化解析モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素と、該質量要素と前記固定連結部を接続する剛体要素とを用いて設定することを特徴とする請求項1乃至4のいずれか一項に記載の車体の接合位置の最適化解析方法。
  6.  前記最適化解析モデル生成ステップは、質量要素とはり要素を用いて設定し、該質量要素とはり要素が有する質量の和は前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とする請求項1乃至4のいずれか一項に記載の車体の接合位置の最適化解析方法。
  7.  前記最適化解析モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とする請求項1乃至4のいずれか一項に記載の車体の接合位置の最適化解析方法。
  8.  平面要素及び/又は立体要素からなる複数の部品を有してなり、該複数の部品を部品組みとして接合する接合点又は接合部と、艤装品又は蓋物を固定又は連結する固定連結部とを有する自動車の車体骨格モデルを用いて、前記部品組みの接合に用いられる点接合又は連続接合の最適化を行う車体の接合位置の最適化解析装置であって、
     前記部品組みに追加して接合する追加接合点又は追加接合部の接合候補と、艤装品又は蓋物に相当する質量とを前記車体骨格モデルに設定し、最適化解析の解析対象とする最適化解析モデルを生成する最適化解析モデル生成部と、
     前記最適化解析モデルに対して最適化解析条件を設定する最適化解析条件設定部と、
     前記最適化解析モデルについて前記自動車の走行時に作用する慣性力を考慮して最適化解析を行い、前記最適化解析条件を満たす追加接合点又は追加接合部を前記接合候補の中から選出する最適化解析部とを備え、
     前記最適化解析モデル生成部により、前記質量は、前記艤装品又は蓋物が固定又は連結される領域内の所定位置に設定され、かつ、前記接合候補は、前記車体骨格モデルの各部品組みに予め設定された接合点又は接合部同士の間に所定の間隔で設定されることを特徴とする車体の接合位置の最適化解析装置。
  9.  前記最適化解析モデル生成部により設定される前記質量の所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上としたことを特徴とする請求項8記載の車体の接合位置の最適化解析装置。
  10.  前記艤装品又は蓋物が回転可動する回転可動部品である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定したことを特徴とする請求項9記載の車体の接合位置の最適化解析装置。
  11.  前記最適化解析モデル生成部により設定される前記質量の所定位置を、前記固定連結部を結ぶ直線若しくは曲線で囲まれた平面上若しくは曲面上(前記直線若しくは曲線の線上を除く)としたことを特徴とする請求項8記載の車体の接合位置の最適化解析装置。
  12.  前記最適化解析モデル生成部は、前記艤装品又は蓋物の質量に相当する質量を、質量要素と、該質量要素と前記固定連結部を接続する剛体要素とを用いて設定することを特徴とする請求項8乃至11のいずれか一項に記載の車体の接合位置の最適化解析装置。
  13.  前記最適化解析モデル生成部は、質量要素とはり要素を用いて設定し、該質量要素とはり要素が有する質量の和は前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とする請求項8乃至11のいずれか一項に記載の車体の接合位置の最適化解析装置。
  14.  前記最適化解析モデル生成部は、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とする請求項8乃至11のいずれか一項に記載の車体の接合位置の最適化解析装置。
PCT/JP2017/015899 2016-07-05 2017-04-20 車体の接合位置の最適化解析方法及び装置 WO2018008233A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187036571A KR102043701B1 (ko) 2016-07-05 2017-04-20 차체의 접합 위치의 최적화 해석 방법 및 장치
CN201780040044.9A CN109416707B (zh) 2016-07-05 2017-04-20 车身的接合位置的最优化分析方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-133517 2016-07-05
JP2016133517A JP6222302B1 (ja) 2016-07-05 2016-07-05 車体の接合位置の最適化解析方法及び装置

Publications (1)

Publication Number Publication Date
WO2018008233A1 true WO2018008233A1 (ja) 2018-01-11

Family

ID=60205935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015899 WO2018008233A1 (ja) 2016-07-05 2017-04-20 車体の接合位置の最適化解析方法及び装置

Country Status (4)

Country Link
JP (1) JP6222302B1 (ja)
KR (1) KR102043701B1 (ja)
CN (1) CN109416707B (ja)
WO (1) WO2018008233A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109033606A (zh) * 2018-07-19 2018-12-18 北京长城华冠汽车技术开发有限公司 汽车前雨刮安装支架的优化设计方法和装置
CN111684451A (zh) * 2018-02-09 2020-09-18 杰富意钢铁株式会社 车身的粘接位置的优化解析方法及优化解析装置
WO2022163047A1 (ja) * 2021-01-27 2022-08-04 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
JP2022115053A (ja) * 2021-01-27 2022-08-08 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
JP7327577B1 (ja) 2022-05-25 2023-08-16 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614301B1 (ja) * 2018-09-14 2019-12-04 Jfeスチール株式会社 車体の振動特性の適正化解析方法及び装置
CN110197501B (zh) * 2019-05-29 2021-09-28 海信集团有限公司 图像处理方法和设备
JP6769536B1 (ja) * 2019-09-30 2020-10-14 Jfeスチール株式会社 自動車のパネル部品の振動騒音低減解析方法及び解析装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076240A (ja) * 2009-09-29 2011-04-14 Mazda Motor Corp 車両の企画支援システム
WO2014073018A1 (ja) * 2012-11-06 2014-05-15 Jfeスチール株式会社 構造体の接合位置の最適化解析方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126684B2 (en) 2009-04-10 2012-02-28 Livermore Software Technology Corporation Topology optimization for designing engineering product
JP5348291B2 (ja) * 2012-03-15 2013-11-20 Jfeスチール株式会社 構造体を構成する部品形状の最適化解析装置
CN104685338B (zh) * 2012-09-26 2017-03-08 杰富意钢铁株式会社 板部件评价方法、板部件评价装置以及汽车用板部件的制造方法
JP5585672B2 (ja) * 2013-02-01 2014-09-10 Jfeスチール株式会社 形状最適化解析方法及び装置
JP5585671B2 (ja) * 2013-02-01 2014-09-10 Jfeスチール株式会社 形状最適化解析方法及び装置
JP6323289B2 (ja) * 2014-10-03 2018-05-16 Jfeスチール株式会社 車体フレームの接合構造および接合部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076240A (ja) * 2009-09-29 2011-04-14 Mazda Motor Corp 車両の企画支援システム
WO2014073018A1 (ja) * 2012-11-06 2014-05-15 Jfeスチール株式会社 構造体の接合位置の最適化解析方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAITO, TAKANOBU ET AL.: "A study of optimization for automotive parts and structures by using inertia relief, Advances in Structural and Multidisciplinary Optimization", PROCEEDINGS OF THE 11TH WORLD CONGRESS OF STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 12 June 2015 (2015-06-12), pages 185 - 190, XP055450813, Retrieved from the Internet <URL:http://web.aeromech.usyd.edu.au/WCSM02015/978-0-646-94394-7.html> [retrieved on 20170705] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684451A (zh) * 2018-02-09 2020-09-18 杰富意钢铁株式会社 车身的粘接位置的优化解析方法及优化解析装置
US20210024142A1 (en) * 2018-02-09 2021-01-28 Jfe Steel Corporation Automotive body adhesive bonding position optimization analysis method and optimization analysis device
CN111684451B (zh) * 2018-02-09 2024-03-01 杰富意钢铁株式会社 车身的粘接位置的优化解析方法及优化解析装置
CN109033606A (zh) * 2018-07-19 2018-12-18 北京长城华冠汽车技术开发有限公司 汽车前雨刮安装支架的优化设计方法和装置
WO2022163047A1 (ja) * 2021-01-27 2022-08-04 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
JP2022115053A (ja) * 2021-01-27 2022-08-08 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
JP7115613B1 (ja) 2021-01-27 2022-08-09 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
JP7327577B1 (ja) 2022-05-25 2023-08-16 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム
WO2023228526A1 (ja) * 2022-05-25 2023-11-30 Jfeスチール株式会社 車体の接合位置の最適化解析方法、装置及びプログラム、並びに車体の製造方法

Also Published As

Publication number Publication date
JP2018005677A (ja) 2018-01-11
JP6222302B1 (ja) 2017-11-01
KR20190008351A (ko) 2019-01-23
KR102043701B1 (ko) 2019-11-12
CN109416707B (zh) 2023-10-31
CN109416707A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018008233A1 (ja) 車体の接合位置の最適化解析方法及び装置
KR102240212B1 (ko) 차체의 접합 위치의 최적화 해석 방법 및 장치
WO2019155730A1 (ja) 車体の接着位置の最適化解析方法及び最適化解析装置
JP6090400B1 (ja) 車体の剛性解析方法
EP4148408A1 (en) Automotive-body-adhesion-position optimization-analysis method and device
WO2021240964A1 (ja) 車体の接合位置の最適化解析方法及び装置
JP6098699B1 (ja) 車両の走行解析方法
JP7287336B2 (ja) 車体の接合位置の最適化解析方法及び装置
JP2019128868A (ja) 車体部品の補剛部材の形状最適化解析方法及び装置
Jans et al. Reducing body development time by integrating NVH and durability analysis from the start
Butkunas Analysis of vehicle structures
Van der Auweraer et al. Breakthrough technologies for virtual prototyping of automotive and aerospace structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036571

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823841

Country of ref document: EP

Kind code of ref document: A1