WO2018006652A1 - 可调光玻璃、可控遮光装置、方法和车辆 - Google Patents

可调光玻璃、可控遮光装置、方法和车辆 Download PDF

Info

Publication number
WO2018006652A1
WO2018006652A1 PCT/CN2017/084154 CN2017084154W WO2018006652A1 WO 2018006652 A1 WO2018006652 A1 WO 2018006652A1 CN 2017084154 W CN2017084154 W CN 2017084154W WO 2018006652 A1 WO2018006652 A1 WO 2018006652A1
Authority
WO
WIPO (PCT)
Prior art keywords
light intensity
light
maximum
unit
control signal
Prior art date
Application number
PCT/CN2017/084154
Other languages
English (en)
French (fr)
Inventor
褚虓
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/741,910 priority Critical patent/US10682901B2/en
Publication of WO2018006652A1 publication Critical patent/WO2018006652A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/08Windows; Windscreens; Accessories therefor arranged at vehicle sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/18Windows; Windscreens; Accessories therefor arranged at the vehicle rear
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector

Definitions

  • the present disclosure relates to the field of controllable dimming technology, and more particularly to a dimmable glass, a controllable shading device, a method, and a vehicle.
  • the visor applied to the vehicle in the related art is mechanically designed and requires manual adjustment.
  • the driving direction of the vehicle changes, in order to avoid illumination interference, it is necessary to manually adjust the shading position of the visor, which is very unsafe for driving safety.
  • a light-shielding device capable of automatically adjusting the light transmittance, for example, a viewing room that needs to be light-transmitted or shaded according to different situations, or a toilet that needs to be blocked or unobstructed according to privacy conditions, and the like.
  • the technology does not provide a good controllable shading technique that automatically adjusts the light transmittance.
  • the main purpose of the present disclosure is to provide a dimmable glass, a controllable shading device, a method and a vehicle, at least partially solving the related art, which requires manual adjustment to change when the shading demand changes due to the mechanically designed shading plate.
  • the problem of shading position is to provide a dimmable glass, a controllable shading device, a method and a vehicle, at least partially solving the related art, which requires manual adjustment to change when the shading demand changes due to the mechanically designed shading plate.
  • the present disclosure provides a dimmable glass comprising a plurality of dimmable regions and a plurality of dimming units, one of which is respectively disposed on the plurality of dimmable regions a light unit, each of the plurality of dimming units being individually controllable to change its own light transmittance to adjust a transmittance of a corresponding dimmable region in which the dimming unit is disposed .
  • the dimmable glass further includes a glass substrate, wherein the plurality of dimming units are a plurality of electrochromic cells, and the plurality of electrochromic cells are arranged in an array on the glass substrate on;
  • Each of the electrochromic cells can be individually controlled to change color and change light transmittance. .
  • the dimmable glass comprises a liquid crystal dimming glass
  • the liquid crystal dimming glass comprises two glass substrates disposed opposite to each other;
  • the plurality of dimming units are a plurality of liquid crystal films, and the plurality of liquid crystal films are disposed in an array between the two glass substrates, and a transmittance of each of the plurality of liquid crystal films can pass through Adjust the voltage on it to change.
  • the present disclosure also provides a controllable shading device comprising the above dimmable glass:
  • the controllable shading device further includes: a light intensity detecting unit configured to detect a light intensity of light transmitted through the dimmable glass;
  • a light transmission control unit configured to adjust a light transmittance of the dimmable region according to the light intensity control.
  • controllable shading device of some embodiments of the present disclosure is applied to a vehicle, and the light intensity detecting unit is specifically configured to detect a light intensity of light that is transmitted through the dimmable glass toward the interior of the vehicle.
  • the light intensity detecting unit is further configured to detect a maximum intensity of light transmitted through the dimmable glass, determine an illumination direction of the light having the maximum intensity of the light to be a maximum light intensity direction, and output the emission a control signal, the maximum intensity of the light, and the direction of the maximum intensity;
  • the light transmission control unit is electrically connected to the light intensity detecting unit, and specifically configured to determine a to-be-dimmed region according to the maximum light intensity direction and the position of the light intensity detecting unit when receiving the emission control signal And controlling the light transmittance of the to-be-dimmed region; the to-be-dimmed region is a dimmable region to which a coincidence point of the light having the maximum light intensity and the dimmable glass belongs.
  • the light transmission control unit is further configured to compare the light intensity maximum value with a predetermined threshold light intensity, and control the penetration of the to-be-dimmed region when the light intensity maximum value is less than the predetermined threshold light intensity
  • the light rate is the initial light transmittance
  • the initial light transmittance is a light transmittance when the to-be-dimmed region is not initially adjusted.
  • the light intensity detecting unit is configured to determine an illumination direction of light having a maximum value of the light intensity with the position as an origin;
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • Each of the signal receivers is respectively disposed on a corresponding dimming unit
  • the signal generator is disposed at the light intensity detecting unit, and a position coordinate of the signal generator coincides with a position coordinate of the light intensity detector;
  • the signal generator is electrically connected to the light intensity detecting unit, and configured to emit an adjustment control signal to the dimmable glass along the maximum light intensity direction when receiving the emission control signal;
  • the signal receiver that receives the adjustment control signal is used to control the corresponding dimming unit to reduce the light transmittance.
  • the light intensity detecting unit is configured to respectively detect the maximum light intensity of the light transmitted through the dimmable glass at different detecting times, and determine the irradiation direction of the light having the maximum light intensity as the corresponding maximum light intensity. direction;
  • the controllable shading device further includes a storage unit and a comparison unit;
  • the storage unit is electrically connected to the light intensity detecting unit, and configured to store a first maximum light intensity direction, a second maximum light intensity direction, and a second maximum light intensity;
  • the first maximum light intensity direction is the light
  • the second maximum light intensity direction is the maximum light intensity direction determined by the light intensity detecting unit at the current detecting time
  • the second maximum light intensity is Describe the maximum light intensity detected by the light intensity detecting unit at the current detecting time;
  • the comparing unit is electrically connected to the storage unit and the light intensity detecting unit, respectively, for comparing the first maximum light intensity direction and the second maximum light intensity direction, and when the first maximum light And outputting a transformation control signal when the strong direction and the second maximum light intensity direction are different, and outputting a maintenance control signal when the first maximum light intensity direction and the second maximum light intensity direction are the same;
  • the light transmission control unit is electrically connected to the comparison unit, and is further configured to determine a first to-be-dimmed region when receiving the maintenance control signal, and control to maintain a transmittance of the first to-be-dimmed region, Determining, by the second to-be-dimmed region, the light transmittance of the second to-be-dimmed region when the conversion control signal is received; the first to-be-dimmed region having the first maximum light intensity direction And a dimmable region to which the coincidence point of the light and the dimmable glass belongs, wherein the second to-be-dimmed region belongs to a coincidence point of the light having the second maximum intensity direction and the dimming glass Dimmable area.
  • the light transmission control unit is further configured to control the light transmittance of the first to-be-dimmed region to be adjusted when the conversion control signal is received.
  • the comparing unit is further configured to receive a second maximum light intensity from the storage unit, compare the second maximum light intensity with a predetermined threshold light intensity, and when the second maximum light intensity is less than the predetermined Outputting a light transmission control signal when the threshold light intensity is set;
  • the light transmission control unit is further configured to control a light transmittance of the second to-be-dimmed region to be an initial transmittance when the light transmission control signal is received;
  • the initial light transmittance is a light transmittance when the to-be-dimmed region is not initially adjusted.
  • the light intensity detecting unit is configured to determine, according to its position, an illumination direction of light having the maximum light intensity as a corresponding maximum light intensity direction;
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • the signal generator is disposed at the light intensity detecting unit, and a position coordinate of the signal generator coincides with a position coordinate of the light intensity detector;
  • Each of the signal receivers is respectively disposed on a corresponding dimming unit
  • the signal generator is coupled to the comparison unit, configured to transmit a first adjustment control signal to the dimmable glass along the first maximum light intensity direction when receiving the maintenance control signal, when received Transmitting the control signal to the dimmable glass to emit a second adjustment control signal along the second maximum intensity direction;
  • the signal receiver receiving the first adjustment control signal is for controlling to maintain a transmittance of a corresponding first dimming unit; and the signal receiver receiving the second adjustment control signal is for controlling a corresponding second The dimming unit changes color and reduces light transmittance.
  • the signal receiver that receives the second adjustment control signal is further configured to control all dimming units within a predetermined distance from the second dimming unit to reduce light transmittance.
  • the dimmable glass is a front windshield, a side windshield or a rear windshield of the vehicle.
  • controllable shading method which is applied to the above controllable shading device, comprising:
  • the light intensity detecting unit detects the light intensity of the light transmitted through the dimmable glass; and the light transmission control unit adjusts the light transmittance of the dimmable area included in the dimmable glass according to the light intensity control.
  • controllable shading method described in the present disclosure further includes:
  • the light intensity detecting unit detects a maximum intensity of light transmitted through the tunable glass, determines an irradiation direction of light having a maximum value of the light intensity as a maximum light intensity direction, and outputs an emission control signal, the light a strong maximum and the maximum intensity direction;
  • the light transmission control unit When the light transmission control unit receives the emission control signal, determining a to-be-dimmed region according to the maximum light intensity direction and the position of the light intensity detecting unit, and controlling to decrease the light transmittance of the to-be-dimmed region ;
  • the to-be-dimmed area is a dimmable area to which a coincidence point of the light having the maximum light intensity and the dimmable glass belongs.
  • the signal generator is disposed at the light intensity detecting unit, and each of the signal receivers is respectively disposed in a corresponding dimming unit
  • the position coordinates of the signal generator coincide with the position coordinates of the light intensity detector
  • the step of determining, by the light intensity detecting unit, that the illumination direction of the light having the maximum value of the light intensity is the maximum light intensity direction includes: the light intensity detecting unit determining, according to the position thereof, an illumination direction of the light having the maximum light intensity;
  • the step of light rate includes: when the signal generator receives the emission control signal, the signal generator transmits an adjustment control signal to the dimmable glass along the maximum intensity direction; receiving the The signal receiver that adjusts the control signal controls the corresponding dimming unit to reduce the light transmittance.
  • controllable shading device further includes a storage unit and a comparison unit
  • controllable shading method further includes:
  • the light intensity detecting unit is configured to respectively detect a maximum light intensity of light transmitted through the dimmable glass at different detecting times, and determine that an irradiation direction of the light having the maximum light intensity is a corresponding maximum light intensity direction;
  • the storage unit stores a first maximum light intensity direction, a second maximum light intensity direction, and a second maximum light intensity; the first maximum light intensity direction is a maximum determined by the light intensity detecting unit at an adjacent previous detection time The direction of the light intensity, the second maximum light intensity direction is the maximum light intensity direction determined by the light intensity detecting unit at the current detection time, and the second maximum light intensity is the maximum detected by the light intensity detecting unit at the current detection time.
  • the comparing unit compares the first maximum light intensity direction and the second maximum light intensity direction, and outputs a transform control signal when the first maximum light intensity direction and the second maximum light intensity direction are different, And outputting a sustain control signal when the first maximum light intensity direction and the second maximum light intensity direction are the same;
  • the light transmission control unit determines a first to-be-dimmed region, and controls to maintain a transmittance of the first to-be-dimmed region;
  • the light transmission control unit determines a second to-be-dimmed region, and controls to decrease a transmittance of the second to-be-dimmed region;
  • the first to-be-dimmed area is a dimmable area to which a coincidence point of the light having the first maximum light intensity direction and the dimmable glass belongs, and the second to-be-dimmed area has the second maximum The dimmable region to which the light in the direction of the light intensity coincides with the point of coincidence of the dimmable glass.
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • the signal generator is disposed at the light intensity detecting unit, and each of the signal receivers is respectively disposed in a corresponding dimming unit On the time,
  • the step of determining, by the light intensity detecting unit, that the illumination direction of the light having the maximum light intensity is the corresponding maximum light intensity direction includes: the light intensity detecting unit is configured to determine the illumination of the light having the maximum light intensity with the position as the origin The direction is the corresponding maximum light intensity direction;
  • the light transmission control unit determines a first to-be-dimmed area, and the step of controlling the light transmittance of the first to-be-dimmed area is included : when the signal generator receives the sustain control signal, the signal generator transmits a first adjustment control signal to the dimmable glass along the first maximum light intensity direction; receiving the The signal receiver that adjusts the control signal maintains the transmittance of the corresponding first dimming unit;
  • the light transmission control unit determines a second to-be-dimmed region, and the step of controlling the light transmittance of the second to-be-dimmed region is included : when the signal generator receives the conversion control signal, the signal generator transmits a second adjustment control signal to the dimmable glass along the second maximum light intensity direction; receiving the The signal receiver of the second adjustment control signal controls the second dimming unit provided therein to reduce the light transmittance.
  • the present disclosure also provides a vehicle comprising the dimmable glass or controllable shading device described above.
  • FIG. 1 is a block diagram showing the structure of a controllable shading device according to some embodiments of the present disclosure
  • FIG. 2A is a schematic diagram of a first driving scene to which the controllable shading device is applied in some embodiments of the present disclosure
  • 2B is a schematic diagram of a second driving scene to which the controllable shading device is applied in some embodiments of the present disclosure
  • FIG. 3 is a flow chart showing the operation of the controllable shading device in some embodiments of the present disclosure
  • FIG. 4 is a structural block diagram of a controllable shading device described in some embodiments of the present disclosure.
  • FIG. 5 is a flow chart showing the operation of the controllable shading device in some embodiments of the present disclosure.
  • Figure 6 is a schematic illustration of a dimmable glass as described in some embodiments of the present disclosure.
  • Figure 7 is a cross-sectional view of the dimmable glass described in some embodiments of the present disclosure.
  • FIG 8 is a cross-sectional view of a liquid crystal dimming glass described in some embodiments of the present disclosure.
  • the dimmable glass includes a plurality of dimmable regions and a plurality of dimming units, and a dimming is respectively disposed on the plurality of dimmable regions.
  • the unit, each of the plurality of dimming units can be individually controlled to change its own light transmittance to adjust the light transmittance of the corresponding dimmable region in which the dimming unit is disposed.
  • the light transmittance of the dimmable region included in the dimmable glass of some embodiments of the present disclosure can be individually adjusted, thereby facilitating automatic control of shading.
  • the dimmable glass according to some embodiments of the present disclosure may be applied to each scene that needs to automatically control the shading, for example, when the vehicle is running, it is convenient to automatically adjust the light for the driver to enter the vehicle according to externally.
  • the shading area can also be applied to a viewing window or a sun room that can be determined according to need, and can be applied to any scene that needs to adjust the light transmittance according to actual needs.
  • the dimmable light further includes a glass substrate, wherein the plurality of dimming units are a plurality of electrochromic cells, and the plurality of electrochromic cells are in an array form Arranged on the glass substrate;
  • Each of the electrochromic cells can be individually controlled to change color and change light transmittance.
  • the dimmable glass may comprise a plurality of arrays of electrochromic cells arranged on a glass substrate, and the color and transmittance of each electrochromic unit may be separate. Change to accommodate different color and transmittance requirements for each dimmable area.
  • the dimmable glass may include a liquid crystal dimming glass
  • the liquid crystal dimming glass comprises two glass substrates disposed opposite to each other;
  • the plurality of dimming units are a plurality of liquid crystal films, and the plurality of liquid crystal films are disposed in an array between the two glass substrates, and a transmittance of each of the plurality of liquid crystal films can pass through Adjust the voltage on it to change.
  • the dimmable glass may also include a liquid crystal dimming glass, and the transmittance of each liquid crystal film included in the liquid crystal dimming glass can be adjusted by adjusting the voltage thereon. Individually varied to accommodate different color and transmittance requirements for each dimmable area.
  • the type of the dimmable glass is not limited to the above embodiment, as long as it can Glass that is controlled to adjust the light transmittance is within the scope of the present disclosure.
  • the controllable shading device of some embodiments of the present disclosure includes the above-mentioned dimmable glass;
  • controllable shading device of some embodiments of the present disclosure further includes:
  • a light intensity detecting unit 11 for detecting a light intensity of light transmitted through the dimmable glass (not shown in FIG. 1);
  • the light transmission control unit 12 is connected to the light intensity detecting unit 11 for adjusting the light transmittance of the dimmable region according to the light intensity control.
  • the light transmission control unit 12 may be communicatively coupled to the dimmable glass.
  • controllable dimming device described in some embodiments of the present disclosure may be applied to a vehicle, but the controllable dimming device described in some embodiments of the present disclosure is not limited to a driving scenario applied to a vehicle, and may be applied to It is necessary to determine whether the anti-spy view window or the sun room can be applied to any scene that needs to adjust the light transmittance according to actual needs.
  • the controllable light-shielding device of some embodiments of the present disclosure detects light transmitted through the dimmable glass by using a dimmable glass including a plurality of dimmable regions capable of individually dimming, and passing the light intensity detecting unit
  • the light intensity is adjusted by the light transmission control unit according to the light intensity, so as to adjust the light transmittance of the corresponding dimmable region with the light intensity transmitted through the dimmable glass. Automatically adjusts the shading position of the dimmable glass.
  • the dimmable glass described in some embodiments of the present disclosure may be applied to a vehicle to improve driving comfort and safety.
  • the dimmable glass according to some embodiments of the present disclosure may be applied to a vehicle, and the light intensity detecting unit is specifically configured to detect a light intensity of light that is directed to the interior of the vehicle through the dimmable glass.
  • the dimmable glass can be used as the front windshield of the vehicle, as the side windshield and/or the rear windshield of the vehicle, and as the dimmable light of the front windshield of the vehicle.
  • the glass is taken as an example to illustrate the relationship between the discolored area of the dimmable glass, the driver, the sunlight, and the driving direction.
  • the dimmable glass 21 described in some embodiments of the present disclosure when the dimmable glass 21 described in some embodiments of the present disclosure is applied to a vehicle, the dimmable glass 21 is used as a front windshield of the vehicle, the driving direction of the vehicle is front, and the sun is available.
  • the driver 20 sits behind the dimmable glass 21, at which time the light to be dimmed area 22 on the dimmable glass 21 shown in FIG. 2A is exposed to the sunlight of the driver 20.
  • the light intensity is the largest, so the light transmittance of the dimmable region 22 included in the dimmable glass 21 It is lowered to prevent the driver 20 from being disturbed by sunlight and causing eye damage and disturbing driving.
  • the number 10 is the sun, and the direction of the arrow is the driving direction.
  • the dimmable glass 21 when the dimmable glass 21 according to some embodiments of the present disclosure is applied to a vehicle, the dimmable glass 21 is used as a front windshield of the vehicle, and the driving direction of the vehicle is the left front, and the sun is at the On the front upper side of the dimming glass, the driver 20 sits behind the dimmable glass 21, at which time the dimming area 22 on the dimmable glass 21 shown in FIG. 2B is irradiated to the driver's sunlight.
  • the light intensity is the largest, so that the light transmittance of the light-receiving area 22 included in the dimmable glass 21 is lowered to prevent the driver 20 from being disturbed by sunlight to cause eye damage and to interfere with driving.
  • the number 10 is the sun, and the direction of the arrow is the driving direction.
  • the light intensity detecting unit is further configured to detect a maximum intensity of light transmitted through the dimmable glass, and determine that an illumination direction of the light having the maximum value of the light intensity is a maximum light intensity direction. And outputting a emission control signal, the maximum intensity of the light, and the direction of the maximum intensity;
  • the light transmission control unit is electrically connected to the light intensity detecting unit, and specifically configured to determine a to-be-dimmed region according to the maximum light intensity direction and the position of the light intensity detecting unit when receiving the emission control signal And controlling the light transmittance of the to-be-dimmed region; the to-be-dimmed region is a dimmable region to which a coincidence point of the light having the maximum light intensity and the dimmable glass belongs.
  • the controllable light-shielding device detects the light intensity maximum value and the maximum light intensity direction of the light passing through the dimmable glass by the light intensity detecting unit, and determines, by the light transmission control unit, that if the driver needs to be reduced
  • the illumination intensity needs to be controlled to reduce the dimming area to be dimmed, and the light transmittance of the to-be-dimmed area is controlled by the light transmission control unit.
  • the controllable shading device described in some embodiments of the present disclosure is detected by the light intensity detecting unit through the dimmable glass.
  • the maximum light intensity of the light inside the vehicle and the direction of the maximum light intensity, and the light transmission control unit determines that the light to be dimmed by the light control unit needs to be controlled to reduce the light intensity received by the driver, and the light control unit controls the down adjustment.
  • the light intensity detecting unit is disposed inside the vehicle, and optionally the light intensity detecting unit is disposed at a driver position, the light intensity
  • the detecting unit can be realized by the wearing object, or can be implemented by a pendant, or the light intensity detecting unit can be disposed on the sunglasses worn by the driver, and various implementation manners can be used as long as The light intensity received by the driver in the vehicle can be accurately measured.
  • the light transmission control unit is further configured to compare the light intensity maximum value with a predetermined threshold light intensity, and control the to-be-dimmed region when the light intensity maximum value is less than the predetermined threshold light intensity
  • the light transmittance is an initial light transmittance; the initial light transmittance is a light transmittance when the to-be-dimmed region is not initially adjusted. That is, if the maximum light intensity is also less than the predetermined threshold light intensity, indicating that the external environment (the driving environment when applied to the vehicle) is cloudy or nighttime, etc., the light transmittance of the dimmable glass is not required. Make adjustments.
  • the light intensity detecting unit is configured to determine, according to its position, an illumination direction of light having a maximum value of the light intensity as a maximum light intensity direction;
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • Each of the signal receivers is respectively disposed on a corresponding electrochromic unit or a corresponding liquid crystal film;
  • the signal generator is disposed at the light intensity detecting unit, and a position coordinate of the signal generator coincides with a position coordinate of the light intensity detector;
  • the signal generator is electrically connected to the light intensity detecting unit, and configured to emit an adjustment control signal to the dimmable glass along the maximum light intensity direction when receiving the emission control signal;
  • the signal receiver receiving the adjustment control signal is for controlling a corresponding electrochromic unit to change color and reducing light transmittance; or the signal receiver receiving the adjustment control signal is for controlling a corresponding liquid crystal film Reduce the light transmittance.
  • the light source providing the maximum light intensity and the light intensity detecting unit must determine a straight line, and the straight line and the dimmable glass on the vehicle must meet at a point, and the electrochromic unit to which the point belongs is set.
  • the signal receiving unit receives the adjustment control signal emitted by the signal generator, thereby controlling the dimmable area electrochromic unit to change color and reduce light transmittance.
  • controllable shading device described in some embodiments of the present disclosure is applied to a vehicle, including a dimmable glass, a light intensity detecting unit, and a light transmission control unit, wherein
  • the dimmable glass comprises a glass substrate and a plurality of electrochromic cells arranged in an array disposed on the glass substrate, and each of the electrochromic cells can be individually controlled by the light transmission control unit Change color and change light transmittance;
  • the light intensity detecting unit is disposed at a driver position for detecting ambient light intensity by 360 degrees. Taking the position coordinates of the detector as an origin, determining the illumination direction of the light having the maximum intensity of the light is the direction of the maximum light intensity;
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • Each of the signal receivers is respectively disposed on a corresponding electrochromic unit
  • the signal generator is disposed at the light intensity detecting unit
  • the position coordinate of the signal generator coincides with the position coordinate of the light intensity detector, and at the same origin, the signal generator can emit the adjustment control signal along the direction of the maximum light intensity;
  • the light source and the light intensity detecting unit that provide the light having the maximum intensity of the light intensity must determine a straight line, and the straight line and the dimmable glass on the vehicle necessarily meet at a point, and each of the dimmable glass a signal receiver is disposed on each of the electrochromic units.
  • a signal receiver receives the adjustment control signal emitted by the signal generator, a voltage is applied to the electrochromic unit on which the signal receiver is disposed, so that the The color changing unit discolors and reduces the light transmittance to achieve the purpose of shading.
  • the electrochromic unit in some embodiments of the controllable shading device described in the present disclosure may also be replaced with a liquid crystal film, and the material used for the dimmable glass is not limited.
  • the light intensity detecting unit detects the ambient light intensity by 360°, and determines the maximum light intensity direction by using the position coordinate of the light intensity detecting unit as an origin;
  • S3 The signal receiver that receives the adjustment control signal controls the color change of the corresponding electrochromic unit and reduces the light transmittance.
  • the light intensity detecting unit is configured to respectively detect the maximum light intensity of the light that is transmitted through the dimmable glass to the interior of the vehicle at different detection times, and determine the light having the maximum light intensity.
  • the direction of illumination is the corresponding maximum intensity direction;
  • controllable shading device includes, besides, a dimmable glass (not shown in FIG. 4), a light intensity detecting unit 41, and a light transmission control unit 42.
  • the controllable shading device further includes a storage unit 43 and a comparison unit 44;
  • the storage unit 43 is electrically connected to the light intensity detecting unit 41 for storing the first maximum a direction of a light intensity, a second maximum intensity direction, and a second maximum light intensity;
  • the first maximum light intensity direction is a maximum light intensity direction determined by the light intensity detecting unit at an adjacent previous detection time
  • the second The maximum light intensity direction is the maximum light intensity direction determined by the light intensity detecting unit at the current detecting time
  • the second maximum light intensity is the maximum light intensity detected by the light intensity detecting unit at the current detecting time;
  • the comparing unit 44 is electrically connected to the storage unit 43 and the light intensity detecting unit 41, respectively, for comparing the first maximum light intensity direction and the second maximum light intensity direction, and when the first Outputting a transformation control signal when a maximum intensity direction and the second maximum intensity direction are different, and outputting a sustain control signal when the first maximum intensity and the second maximum intensity are the same;
  • the light transmission control unit 42 is electrically connected to the comparison unit 44, and is further configured to determine a first to-be-dimmed area when receiving the maintenance control signal, and control to maintain the light transmission of the first to-be-dimmed area Rate, when the conversion control signal is received, determining a second to-be-dimmed region, and controlling to decrease a transmittance of the second to-be-dimmed region; the first to-be-dimmed region having the first maximum light a dimmable region to which the coincident light beam and the dimming glass belong, and the second to-be-dimmed region is a coincidence point of the light having the second maximum light intensity direction and the dimmable glass The dimmable area to which it belongs.
  • the light intensity detecting unit 41 detects the maximum light intensity of the light that is transmitted through the dimmable glass to the interior of the vehicle at different detection times, and determines that the light intensity has the maximum.
  • the direction of illumination of the light intensity is the corresponding maximum intensity direction;
  • the detection time of the light intensity detecting unit 41 may be selected by setting the detection time every predetermined time, or may be the number of detection times set by the light intensity detecting unit 41 when the light intensity detected by the light intensity detecting unit 41 is relatively large. It may be selected according to the needs of the user, or may be selected by other selection strategies, and is not limited;
  • the maximum light intensity detected by the light intensity detecting unit 41 at the adjacent previous detecting time is the first maximum light intensity, and the direction of the light having the first maximum light intensity is determined to be the first maximum light intensity direction;
  • the maximum light intensity detected by the light intensity detecting unit 41 at the current detecting time is the second maximum light intensity, and the direction of the light having the first maximum light intensity is determined to be the first maximum light intensity direction;
  • the storage unit 43 stores the first maximum light intensity direction, the second maximum light intensity direction, and the maximum light intensity (ie, the second maximum light intensity) detected by the current detection time;
  • the comparing unit 44 compares the first maximum light intensity direction and the second maximum light intensity direction
  • the comparison unit 44 compares that the second maximum light intensity direction and the first maximum light intensity direction are different, that is, the current maximum light intensity direction and the maximum light intensity direction of the adjacent previous detection time are different, and the area to be adjusted needs to be changed.
  • the comparison unit 44 outputs a conversion control signal, and when the light transmission control unit 42 receives the conversion control signal, determines a second to-be-dimmed region, and controls to decrease the transmittance of the second to-be-dimmed region;
  • the second to-be-dimmed region is a dimmable region to which the coincidence point of the light having the second maximum light intensity direction and the dimmable glass belongs;
  • the comparison unit 44 compares that the second maximum light intensity direction and the first maximum light intensity direction are the same, that is, the current maximum light intensity direction is the same as the maximum light intensity direction of the adjacent previous detection time, and the area to be adjusted does not need to be changed.
  • the comparison unit 44 outputs a sustain control signal, and when the light transmission control unit 42 receives the maintenance control signal, determines a first to-be-dimmed region, and controls to maintain a transmittance of the first to-be-dimmed region;
  • a to-be-dimmed region is a dimmable region to which a coincidence point of the light having the first maximum light intensity direction and the dimmable glass belongs.
  • the light transmission control unit is further configured to control, when the transformation control signal is received, to increase the transmittance of the first to-be-dimmed region, that is, when transmitting through the first to-be-dimmed region.
  • the light transmittance of the first to-be-dimmed region can be adjusted accordingly.
  • the comparing unit is further configured to receive a second maximum light intensity from the storage unit, compare the second maximum light intensity with a predetermined threshold light intensity, and when the second maximum light intensity is less than the predetermined Outputting a light transmission control signal when the threshold light intensity is strong;
  • the light transmission control unit is further configured to control a light transmittance of the second to-be-dimmed region to be an initial transmittance when the light transmission control signal is received, and the initial light transmittance is the to-be-dimmed Light transmittance when the area is initially unadjusted.
  • the comparison unit compares and obtains that the second maximum light intensity detected by the current detection time is less than a predetermined threshold light intensity, indicating that the light is not required to be shaded at a cloudy day or at night, the second to-be-dimmed region is not required.
  • the light transmittance is adjusted.
  • the light intensity detecting unit is configured to determine, according to the position thereof, an illumination direction of the light having the maximum light intensity as a corresponding maximum light intensity direction;
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • the signal generator is disposed at the light intensity detecting unit, and the signal generator is positioned Marking coincides with the position coordinates of the light intensity detector;
  • Each of the signal receivers is respectively disposed on a corresponding electrochromic unit or a corresponding liquid crystal film;
  • the signal generator is coupled to the comparison unit, the signal generator configured to transmit a first adjustment control signal to the dimmable glass along the first maximum intensity direction when receiving the maintenance control signal Transmitting, to the dimmable glass, a second adjustment control signal along the second maximum intensity direction when receiving the transformation control signal;
  • the signal receiver receiving the first adjustment control signal is for controlling the color and transmittance of the corresponding first electrochromic unit; the signal receiver receiving the second adjustment control signal is used for controlling Corresponding second electrochromic unit changes color and reduces light transmittance; or the signal receiver receiving the first adjustment control signal is used to control maintaining transmittance of the corresponding first liquid crystal film; The signal receiver of the second adjustment control signal is used to control the corresponding second liquid crystal film to reduce the light transmittance.
  • the light source providing the maximum intensity of the light and the light intensity detecting unit must determine a straight line, and the straight line and the dimmable glass on the vehicle must meet at a point, the electrochromic unit or liquid crystal to which the point belongs.
  • the signal receiving unit disposed on the film receives the first adjustment control signal or the second adjustment control signal emitted by the signal generator, thereby controlling the color and transmittance of the first electrochromic unit or controlling the second electrochromic unit. Changing the color and reducing the light transmittance, or controlling the transmittance of the first liquid crystal film or controlling the second liquid crystal film to lower the light transmittance.
  • the signal receiver that receives the second adjustment control signal is further configured to control all electrochromic units within a predetermined distance from the second electrochromic unit to change color and reduce light transmittance;
  • the signal receiver that receives the second adjustment control signal is further configured to control all liquid crystal films within a predetermined distance from the second liquid crystal film to reduce light transmittance.
  • the electrochromic unit or the electrochromic unit or the liquid crystal film around the liquid crystal film that receives the maximum light intensity on the dimmable glass usually receives light
  • the light intensity is usually relatively large, so that the control can also be simultaneously adjusted to the maximum.
  • the light transmittance of the electrochromic unit around the electrochromic unit of light intensity to enhance the light blocking effect.
  • controllable shading device described in some embodiments of the present disclosure is applied to a vehicle, including a dimmable glass, a light intensity detecting unit, a light transmission control unit, a storage unit, and a comparison unit, wherein
  • the dimmable glass comprises a glass substrate and a plurality of electrochromic cells arranged in an array disposed on the glass substrate, and each of the electrochromic cells can be individually controlled by the light transmission control unit Change color and change light transmittance;
  • the light intensity detecting unit is disposed at a driver's position for detecting the ambient light intensity 360 degrees, taking the position coordinates of the detector as an origin, and determining the direction of the light having the maximum intensity of the light intensity as the maximum light intensity direction;
  • the light intensity detecting unit may be present as a wearable object or may be implemented in a pendant manner;
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • the signal generator is disposed at the light intensity detecting unit, and a position coordinate of the signal generator coincides with a position coordinate of the light intensity detector;
  • Each of the signal receivers is respectively disposed on a corresponding electrochromic unit
  • the light intensity detecting unit determines a first maximum light intensity, a first maximum light intensity direction, a second maximum light intensity, and a second maximum light intensity direction;
  • the first maximum light intensity is a maximum light intensity detected by the light intensity detecting unit at an adjacent previous detecting time, and the first maximum light intensity direction is a direction of light having the first maximum light intensity;
  • the second maximum light intensity is a maximum light intensity detected by the light intensity detecting unit at a current detecting time, and the second maximum light intensity direction is a direction of light having the second maximum light intensity;
  • the memory stores a first maximum light intensity direction and a second maximum light intensity direction
  • the comparator compares the first maximum light intensity direction and the second maximum light intensity direction
  • the signal generator is electrically connected to the comparison unit;
  • the signal generator is configured to emit a first adjustment control signal to the dimmable glass along the first maximum light intensity direction when the sustain control signal is received;
  • the signal generator is further configured to transmit a second adjustment control signal to the dimmable glass along the second maximum light intensity direction when receiving the conversion control signal;
  • the signal receiver receiving the first adjustment control signal is configured to control maintaining a color and a light transmittance of the corresponding first electrochromic unit
  • the signal receiver receiving the second adjustment control signal is for controlling the corresponding second electrochromic unit to change color and reduce light transmittance.
  • the electrochromic unit in the second embodiment of the controllable shading device shown in FIG. 4 can also be replaced with a liquid crystal film, and the material used for the dimmable glass is not limited.
  • the light intensity detector 360° detects the ambient light intensity, and determines the maximum light intensity direction with the position coordinate of the light intensity detecting unit as the origin, and the light intensity detector determines the first maximum light intensity, the first maximum light intensity direction, and the second maximum Light intensity and second maximum light intensity direction;
  • the storage unit stores a first maximum light intensity direction and a second maximum light intensity direction
  • the comparison unit compares the first maximum light intensity direction and the second maximum light intensity direction, and outputs a sustain control signal when the comparison unit compares that the first maximum light intensity direction is the same as the second maximum light intensity direction, and the comparison unit obtains the comparison Outputting a transformation control signal when a maximum intensity direction is different from a second maximum intensity direction;
  • the signal receiver receiving the first adjustment control signal is used to control maintaining the color and transmittance of the corresponding first electrochromic unit; and the signal receiver for receiving the second adjustment control signal Controlling the corresponding second electrochromic unit to change color and reduce light transmittance.
  • the second maximum light intensity direction of the current detection time is the same as the first maximum light intensity direction of the adjacent previous detection time, it is not necessary to replace the to-be-dimmed area, and the transmittance of the first to-be-dimmed area is maintained. If the second maximum intensity direction of the current detection time is different from the first maximum light intensity direction of the adjacent previous detection time, the area to be dimmed needs to be replaced, and the second to-be-dimmed area is adjusted to be reduced. Light rate.
  • controllable shading method described in some embodiments of the present disclosure is applied to the above controllable shading device, including:
  • the light intensity detecting unit detects the light intensity of the light transmitted through the dimmable glass
  • the light transmission control unit adjusts the light transmittance of the dimmable region included in the dimmable glass according to the light intensity control.
  • controllable dimming method described in some embodiments of the present disclosure may be applied to a driving scene, but the controllable dimming method described in some embodiments of the present disclosure is not limited to the driving scene applied to the vehicle, and may be applied to According to the need to determine whether the anti-spy view window or the sun room, it can be applied to any scene that needs to adjust the light transmittance according to actual needs.
  • controllable shading method described in some embodiments of the present disclosure further includes:
  • the light intensity detecting unit detects a maximum intensity of light transmitted through the tunable glass, determines an irradiation direction of light having a maximum value of the light intensity as a maximum light intensity direction, and outputs an emission control signal, the light a strong maximum and the maximum intensity direction;
  • the light transmission control unit When the light transmission control unit receives the emission control signal, determining a to-be-dimmed region according to the maximum light intensity direction and the position of the light intensity detecting unit, and controlling to decrease the light transmittance of the to-be-dimmed region ;
  • the to-be-dimmed area is a dimmable area to which the coincidence point of the light having the maximum light intensity and the dimmable glass belongs.
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • the signal generator is disposed at the light intensity detecting unit, and each of the signal receivers is respectively disposed on a corresponding electrochromic
  • the position coordinates of the signal generator coincide with the position coordinates of the light intensity detector on a unit or a corresponding liquid crystal film
  • the step of determining, by the light intensity detecting unit, that the illumination direction of the light having the maximum value of the light intensity is the maximum light intensity direction includes: the light intensity detecting unit determining, according to the position thereof, an illumination direction of the light having the maximum light intensity;
  • the step of light rate includes: when the signal generator receives the emission control signal, the signal generator transmits an adjustment control signal to the dimmable glass along the maximum intensity direction; receiving the The signal receiver that adjusts the control signal controls the respective electrochromic cell or corresponding liquid crystal film to change color and reduce light transmittance.
  • controllable shading device further includes a storage unit and a comparison unit
  • controllable shading method further includes:
  • the light intensity detecting unit is configured to respectively detect a maximum light intensity of light transmitted through the dimmable glass at different detecting times, and determine that an irradiation direction of the light having the maximum light intensity is a corresponding maximum light intensity direction;
  • the storage unit stores a first maximum light intensity direction, a second maximum light intensity direction, and a second maximum light intensity; the first maximum light intensity direction is a maximum determined by the light intensity detecting unit at an adjacent previous detection time The direction of the light intensity, the second maximum light intensity direction is the maximum light intensity direction determined by the light intensity detecting unit at the current detection time, and the second maximum light intensity is the maximum detected by the light intensity detecting unit at the current detection time.
  • the comparing unit compares the first maximum light intensity direction and the second maximum light intensity direction, and outputs a transform control signal when the first maximum light intensity direction and the second maximum light intensity direction are different, when And outputting a maintenance control signal when the first maximum light intensity direction and the second maximum light intensity direction are the same;
  • the light transmission control unit determines a first to-be-dimmed region, and controls to maintain a transmittance of the first to-be-dimmed region;
  • the light transmission control unit determines a second to-be-dimmed region, and controls to decrease a transmittance of the second to-be-dimmed region;
  • the first to-be-dimmed area is a dimmable area to which a coincidence point of the light having the first maximum light intensity direction and the dimmable glass belongs, and the second to-be-dimmed area has the second maximum The dimmable region to which the light in the direction of the light intensity coincides with the point of coincidence of the dimmable glass.
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • the signal generator is disposed at the light intensity detecting unit, and each of the signal receivers is respectively disposed on a corresponding electrochromic
  • the light transmission control unit includes a signal generator and a plurality of signal receivers
  • the step of determining, by the light intensity detecting unit, that the illumination direction of the light having the maximum light intensity is the corresponding maximum light intensity direction includes: the light intensity detecting unit is configured to determine the illumination of the light having the maximum light intensity with the position as the origin The direction is a corresponding maximum light intensity direction; when the light transmission control unit receives the maintenance control signal, the light transmission control unit determines a first to-be-dimmed area, and controls to adjust the first to-be-tuned
  • the step of light transmittance of the light region includes: when the signal generator receives the sustain control signal, the signal generator is directed to the dimmable glass along the first maximum light intensity direction Transmitting a first adjustment control signal; the signal receiver receiving the first adjustment control signal maintaining a color and a transmittance of a corresponding first electrochromic unit; or, when the signal generator receives the The signal generator transmits a first adjustment control signal to the dimmable glass along the first maximum intensity direction while maintaining the control signal; the signal receiver control receiving the first adjustment control signal Maintaining
  • the light transmission control unit determines a second to-be-dimmed region, and the step of controlling the light transmittance of the second to-be-dimmed region is included : when the signal generator receives the conversion control signal, the signal generator transmits a second adjustment control signal to the dimmable glass along the second maximum light intensity direction; receiving the The signal receiver of the second adjustment control signal controls the second electrochromic unit provided thereto to change color and reduce light transmittance; or, when the signal generator receives the conversion control signal, the signal occurs Transmitting a second adjustment control signal to the dimmable glass along the second maximum light intensity direction; the signal receiver receiving the second adjustment control signal controls a corresponding second liquid crystal film to reduce light transmission rate.
  • some embodiments of the present disclosure also provide a vehicle, including the controllable shading device described in the above embodiments.
  • the vehicle in this embodiment may be a vehicle of various types and uses such as automobiles, trucks, and buses. Since the vehicle includes any of the above-described controllable shading devices, the same technical problem can be solved and the same technical effects can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种可调光玻璃(21)、可控遮光装置、方法和车辆。该可调光玻璃(21),包括多个可调光区域和多个调光单元,在多个可调光区域上分别设置有一个调光单元,多个调光单元中的每个调光单元均能够被单独控制改变其自身的透光率,以调节该调光单元所被设置在的相应可调光区域的透光率。

Description

可调光玻璃、可控遮光装置、方法和车辆
相关申请的交叉引用
本申请主张在2016年7月7日在中国提交的中国专利申请No.201610532358.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及可控调光技术领域,尤其涉及一种可调光玻璃、可控遮光装置、方法和车辆。
背景技术
相关技术中的应用于车辆的遮光板为机械设计,需要手动调节。特别地,当车辆的行车方向改变时,为避免光照干扰,又需要手动调节遮光板的遮光位置,这对行车安全而言是很不安全的。
并且,在其他领域也需要采用能够自动调节透光率的遮光装置,例如需要根据不同的情况选择透光或遮光的观景房,或者是需要根据隐私情况遮挡或不遮挡的卫生间等,而相关技术中不能提供一种很好的能够自动调节透光率的可控遮光技术。
发明内容
本公开文本的主要目的在于提供一种可调光玻璃、可控遮光装置、方法和车辆,至少部分解决相关技术中由于采用机械设计的遮光板而导致的在遮光需求改变时需要手动调节才能改变遮光位置的问题。
为了达到上述目的,第一方面,本公开文本提供了一种可调光玻璃,包括多个可调光区域和多个调光单元,在所述多个可调光区域上分别设置有一个调光单元,所述多个调光单元中的每个调光单元均能够被单独控制改变其自身的透光率,以调节该调光单元所被设置在的相应可调光区域的透光率。
实施时,所述可调光玻璃还包括玻璃基底,其中,所述多个调光单元是多个电致变色单元,所述多个电致变色单元以阵列形式排列在所述玻璃基底 上;
每一所述电致变色单元能够单独被控制而改变颜色并改变透光率。。
实施时,所述可调光玻璃包括液晶调光玻璃;
所述液晶调光玻璃包括相对设置的两玻璃基板;
所述多个调光单元是多个液晶膜,所述多个液晶膜以阵列形式设置于所述两玻璃基板之间,所述多个液晶膜中的每一液晶膜的透光率能通过调节其上的电压而变化。
第二方面,本公开文本还提供了一种可控遮光装置,其中,包括上述的可调光玻璃:
所述可控遮光装置还包括:光强探测单元,用于探测透过所述可调光玻璃的光的光强;以及,
透光控制单元,用于根据所述光强控制调节所述可调光区域的透光率。
实施时,本公开文本一些实施例所述可控遮光装置应用于车辆,所述光强探测单元具体用于探测透过所述可调光玻璃射向车辆内部的光的光强。
实施时,所述光强探测单元还用于探测透过所述可调光玻璃的光的光强最大值,确定具有该光强最大值的光的照射方向为最大光强方向,并输出发射控制信号、所述光强最大值和所述最大光强方向;
所述透光控制单元,与所述光强探测单元电连接,具体用于当接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率;所述待调光区域为具有该最大光强的光线与所述可调光玻璃的重合点所属的可调光区域。
实施时,所述透光控制单元还用于比较所述光强最大值和预定阈值光强,并当所述光强最大值小于所述预定阈值光强时控制所述待调光区域的透光率为初始透光率;
所述初始透光率为所述待调光区域初始未被调节时的透光率。
实施时,所述光强探测单元用于以其位置为原点确定具有该光强最大值的光的照射方向;
所述透光控制单元包括信号发生器以及多个信号接收器;
每一所述信号接收器分别设置于一相应的调光单元上;
所述信号发生器设置于所述光强探测单元处,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合;
所述信号发生器与所述光强探测单元电连接,用于当接收到所述发射控制信号时向所述可调光玻璃沿着所述最大光强方向发射调节控制信号;
接收到所述调节控制信号的所述信号接收器用于控制相应的调光单元降低透光率。
实施时,所述光强探测单元用于在不同的探测时刻分别探测透过所述可调光玻璃的光的最大光强,确定具有该最大光强的光的照射方向为相应的最大光强方向;
所述可控遮光装置还包括存储单元和比较单元;
所述存储单元,与所述光强探测单元电连接,用于存储第一最大光强方向、第二最大光强方向和第二最大光强;所述第一最大光强方向是所述光强探测单元在相邻上一探测时刻确定的最大光强方向,所述第二最大光强方向是所述光强探测单元在当前探测时刻确定的最大光强方向,第二最大光强是所述光强探测单元在当前探测时刻探测到的最大光强;
所述比较单元,分别与所述存储单元和所述光强探测单元电连接,用于比较所述第一最大光强方向和所述第二最大光强方向,并当所述第一最大光强方向和所述第二最大光强方向不同时输出变换控制信号,当所述第一最大光强方向和所述第二最大光强方向相同时输出维持控制信号;
所述透光控制单元,与所述比较单元电连接,还用于当接收到所述维持控制信号时确定第一待调光区域,控制维持所述第一待调光区域的透光率,当接收到所述变换控制信号时确定第二待调光区域,控制调降所述第二待调光区域的透光率;所述第一待调光区域为具有该第一最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域,所述第二待调光区域为具有该第二最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域。
实施时,所述透光控制单元还用于当接收到所述变换控制信号时控制调升所述第一待调光区域的透光率。
实施时,所述比较单元还用于接收来自所述存储单元的第二最大光强,比较所述第二最大光强与预定阈值光强,并当所述第二最大光强小于所述预 定阈值光强时输出透光控制信号;
所述透光控制单元还用于当接收到所述透光控制信号时控制所述第二待调光区域的透光率为初始透光率;
所述初始透光率为所述待调光区域初始未被调节时的透光率。
实施时,所述光强探测单元用于以其位置为原点确定具有该最大光强的光的照射方向为相应的最大光强方向;
所述透光控制单元包括信号发生器以及多个信号接收器;
所述信号发生器设置于所述光强探测单元处,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合;
每一所述信号接收器分别设置于一相应的调光单元上;
所述信号发生器与所述比较单元连接,用于当接收到所述维持控制信号时向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号,当接收到所述变换控制信号时向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;
接收到所述第一调节控制信号的所述信号接收器用于控制维持相应的第一调光单元透光率;接收到所述第二调节控制信号的所述信号接收器用于控制相应的第二调光单元改变颜色并降低透光率。
实施时,接收到所述第二调节控制信号的所述信号接收器还用于控制距离所述第二调光单元预定距离内的所有调光单元都降低透光率。
实施时,所述可调光玻璃为所述车辆的前挡风玻璃、侧挡风玻璃或后挡风玻璃。
第三方面,本公开文本还提供了一种可控遮光方法,应用于上述的可控遮光装置,包括:
光强探测单元探测透过可调光玻璃的光的光强;透光控制单元根据所述光强控制调节所述可调光玻璃包括的可调光区域的透光率。
实施时,本公开文本所述的可控遮光方法还包括:
所述光强探测单元探测透过所述可调光玻璃的光的光强最大值,确定具有该光强最大值的光的照射方向为最大光强方向,并输出发射控制信号、所述光强最大值和所述最大光强方向;
当所述透光控制单元接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率;
所述待调光区域为具有该最大光强的光线与所述可调光玻璃的重合点所属的可调光区域。
实施时,当所述透光控制单元包括信号发生器以及多个信号接收器,信号发生器设置于所述光强探测单元处,每一所述信号接收器分别设置于一相应的调光单元上,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合时,
所述光强探测单元确定具有该光强最大值的光的照射方向为最大光强方向步骤包括:所述光强探测单元以其位置为原点确定具有该光强最大值的光的照射方向;
所述当所述透光控制单元接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率的步骤包括:当所述信号发生器接收到所述发射控制信号时,所述信号发生器向所述可调光玻璃沿着所述最大光强方向发射调节控制信号;接收到所述调节控制信号的所述信号接收器控制相应的调光单元降低透光率。
实施时,当所述可控遮光装置还包括存储单元和比较单元时,所述可控遮光方法还包括:
所述光强探测单元用于在不同的探测时刻分别探测透过所述可调光玻璃的光的最大光强,确定具有该最大光强的光的照射方向为相应的最大光强方向;
所述存储单元存储第一最大光强方向、第二最大光强方向和第二最大光强;所述第一最大光强方向是所述光强探测单元在相邻上一探测时刻确定的最大光强方向,所述第二最大光强方向是所述光强探测单元在当前探测时刻确定的最大光强方向,第二最大光强是所述光强探测单元在当前探测时刻探测到的最大光强;
所述比较单元比较所述第一最大光强方向和所述第二最大光强方向,并当所述第一最大光强方向和所述第二最大光强方向不同时输出变换控制信号, 当所述第一最大光强方向和所述第二最大光强方向相同时输出维持控制信号;
当所述透光控制单元接收到所述维持控制信号时,所述透光控制单元确定第一待调光区域,控制维持所述第一待调光区域的透光率;
当所述透光控制单元接收到所述变换控制信号时,所述透光控制单元确定第二待调光区域,控制调降所述第二待调光区域的透光率;
所述第一待调光区域为具有该第一最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域,所述第二待调光区域为具有该第二最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域。
实施时,当所述透光控制单元包括信号发生器以及多个信号接收器,信号发生器设置于所述光强探测单元处,每一所述信号接收器分别设置于一相应的调光单元上时,
所述光强探测单元确定具有该最大光强的光的照射方向为相应的最大光强方向步骤包括:所述光强探测单元用于以其位置为原点确定具有该最大光强的光的照射方向为相应的最大光强方向;
所述当所述透光控制单元接收到所述维持控制信号时,所述透光控制单元确定第一待调光区域,控制调降所述第一待调光区域的透光率的步骤包括:当所述信号发生器接收到所述维持控制信号时,所述信号发生器向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号;接收到所述第一调节控制信号的所述信号接收器维持相应的第一调光单元的透光率;
所述当所述透光控制单元接收到所述变换控制信号时,所述透光控制单元确定第二待调光区域,控制调降所述第二待调光区域的透光率的步骤包括:当所述信号发生器接收到所述变换控制信号时,所述信号发生器向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;接收到所述第二调节控制信号的所述信号接收器控制其设于的第二调光单元降低透光率。
第四方面,本公开文本还提供了一种车辆,包括上面所述的可调光玻璃或可控遮光装置。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本申请的主旨。
图1是本公开文本一些实施例中所述的可控遮光装置的结构框图;
图2A是本公开文本一些实施例中所述的可控遮光装置应用于的第一行车场景的示意图;
图2B是本公开文本一些实施例中所述的可控遮光装置应用于的第二行车场景的示意图;
图3是本公开文本一些实施例中所述的可控遮光装置的工作过程流程图;
图4是本公开文本一些实施例中所述的可控遮光装置的结构框图;
图5是本公开文本一些实施例中所述的可控遮光装置的工作过程流程图;
图6是本公开文本一些实施例中所述的可调光玻璃的示意图;
图7是本公开文本一些实施例中所述的可调光玻璃的横截面图;以及
图8是本公开文本一些实施例中所述的液晶调光玻璃的横截面图。
具体实施方式
下面将结合本公开文本一些实施例中的附图,对本公开文本一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开文本一部分实施例,而不是全部的实施例。基于本公开文本中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于 表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
如图6中所示,本公开文本一些实施例所述的可调光玻璃包括多个可调光区域和多个调光单元,在所述多个可调光区域上分别设置有一个调光单元,所述多个调光单元中的每个调光单元均能够被单独控制改变其自身的透光率,以调节该调光单元所被设置在的相应可调光区域的透光率。
本公开文本一些实施例所述的可调光玻璃包括的可调光区域的透光率能够单独被调节,从而方便实现自动控制遮光。
在具体实施时,本公开文本一些实施例所述可调光玻璃可以被应用于各个需要自动控制遮光的场景,例如可以用于车辆行驶时便于自动为驾驶者根据外部射入车辆的光线而调节遮光区域,也可以应用于可根据需要确定是否防窥的观景窗或阳光房内,更可以应用于任何需要根据实际需要调节透光率的场景。
具体地,如图6和7中所示,所述可调光还包括玻璃基底,其中,所述多个调光单元是多个电致变色单元,所述多个电致变色单元以阵列形式排列在所述玻璃基底上;
每一所述电致变色单元能够单独被控制而改变颜色并改变透光率。
在实际操作时,根据一种具体实施方式,所述可调光玻璃可以包括设置于玻璃基底上的多个阵列排列的电致变色单元,每一个电致变色单元的颜色和透光率可以单独改变,以适应各个可调光区域不同的颜色和透光率的要求。
具体地,如图6和8中所示,所述可调光玻璃可以包括液晶调光玻璃;
所述液晶调光玻璃包括相对设置的两玻璃基板;
所述多个调光单元是多个液晶膜,所述多个液晶膜以阵列形式设置于所述两玻璃基板之间,所述多个液晶膜中的每一液晶膜的透光率能通过调节其上的电压而变化。
在实际操作时,根据另一种具体实施方式,所述可调光玻璃也可以包括液晶调光玻璃,该液晶调光玻璃包括的每一个液晶膜的透光率能够通过调节其上的电压而单独变化,以适应各个可调光区域不同的颜色和透光率的要求。
在具体实施时,所述可调光玻璃的类型并不限于以上实施例,只要是能 够被控制而调整透光率的玻璃都在本公开文本的保护范围之内。本公开文本一些实施例所述的可控遮光装置,包括上述的可调光玻璃;
如图1所示,本公开文本一些实施例所述的可控遮光装置还包括:
光强探测单元11,用于探测透过所述可调光玻璃(图1中未示)的光的光强;以及,
透光控制单元12,与所述光强探测单元11连接,用于根据所述光强控制调节所述可调光区域的透光率。
在实际操作时,所述透光控制单元12可以与所述可调光玻璃通信连接。
本公开文本一些实施例所述的可控调光装置可以应用于车辆,但是本公开文本一些实施例所述的可控调光装置并不限于应用于车辆的行车场景,也可以应用于可根据需要确定是否防窥的观景窗或阳光房内,更可以应用于任何需要根据实际需要调节透光率的场景。
本公开文本一些实施例所述的可控遮光装置通过采用包括多个能单独调光的可调光区域的可调光玻璃,并通过光强探测单元来探测透过该可调光玻璃的光的光强,通过透光控制单元根据该光强调节可调光区域的透光率,以能随着透过可调光玻璃的光强来调节相应的可调光区域的透光率,能够自动调节可调光玻璃的遮光位置。
具体地,本公开文本一些实施例所述的可调光玻璃可以应用于车辆,以提高行车舒适度和安全度。
本公开文本一些实施例所述的可调光玻璃可以应用于车辆,所述光强探测单元具体用于探测透过所述可调光玻璃射向车辆内部的光的光强。在实际操作时,所述可调光玻璃可以作为车辆的前挡风玻璃,也可以作为车辆的侧挡风玻璃和/或后挡风玻璃,下面以作为车辆的前挡风玻璃的可调光玻璃为例说明可调光玻璃的变色区域、驾驶者、太阳光和行车方向之间的关系。
如图2A所示,当本公开文本一些实施例所述的可调光玻璃21应用于车辆时,可调光玻璃21作为车辆的前挡风玻璃使用,车辆的行车方向是前方,太阳在可调光玻璃的左前上方,驾驶者20坐于可调光玻璃21的后方,此时图2A中示出的可调光玻璃21上的待调光区域22受到的照射至驾驶者20的太阳光的光强最大,因此该可调光玻璃21包括的该待调光区域22的透光率 被调低以免驾驶者20受太阳光的干扰而造成眼睛损伤以及干扰驾驶。在图2A中,标号为10的为太阳,箭头方向为行车方向。
如图2B所示,本公开文本一些实施例所述的可调光玻璃21应用于车辆时,可调光玻璃21作为车辆的前挡风玻璃使用,车辆的行车方向是左前方,太阳在可调光玻璃的前上方,驾驶者20坐于可调光玻璃21的后方,此时图2B中示出的可调光玻璃21上的待调光区域22受到的照射至驾驶者的太阳光的光强最大,因此该可调光玻璃21包括的该待调光区域22的透光率被调低以免驾驶者20受太阳光的干扰而造成眼睛损伤以及干扰驾驶。在图2B中,标号为10的为太阳,箭头方向为行车方向。
根据一种具体实施方式,所述光强探测单元还用于探测透过所述可调光玻璃的光的光强最大值,确定具有该光强最大值的光的照射方向为最大光强方向,并输出发射控制信号、所述光强最大值和所述最大光强方向;
所述透光控制单元,与所述光强探测单元电连接,具体用于当接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率;所述待调光区域为具有该最大光强的光线与所述可调光玻璃的重合点所属的可调光区域。
本公开文本一些实施例所述的可控遮光装置通过光强探测单元探测通过可调光玻璃的光的光强最大值以及最大光强方向,并通过透光控制单元确定如果需要降低驾驶者受到的光照强度需要控制调降的待调光区域,通过透光控制单元控制调降该待调光区域的透光率。在实际操作时,当本公开文本一些实施例所述的可调光玻璃应用于车辆时,本公开文本一些实施例所述的可控遮光装置通过光强探测单元探测通过可调光玻璃射向车辆内部的光的光强最大值以及最大光强方向,并通过透光控制单元确定如果需要降低驾驶者受到的光照强度需要控制调降的待调光区域,通过透光控制单元控制调降该待调光区域的透光率,以保护驾驶者。
当本公开文本一些实施例所述的可调光玻璃应用于车辆时,该光强探测单元设置于车辆内部,可选情况下所述光强探测单元设置于驾驶者位置处,所述光强探测单元可以以穿戴物实现,也可以以吊坠方式实现,或者所述光强探测单元可以设置于驾驶者佩戴的墨镜上,各种实现方式都可以,只要能 够准确地测得驾驶者在车辆内收到的光照强度即可。
可选地,所述透光控制单元还用于比较所述光强最大值和预定阈值光强,并当所述光强最大值小于所述预定阈值光强时控制所述待调光区域的透光率为初始透光率;所述初始透光率为所述待调光区域初始未被调节时的透光率。也即如果光强最大值也小于预定阈值光强,说明外部环境(当应用于车辆时驾驶环境)是阴天或者夜间等不需要遮光的情况,则不需要对可调光玻璃的透光率进行调节。
根据一种具体实施方式,所述光强探测单元用于以其位置为原点确定具有该光强最大值的光的照射方向为最大光强方向;
所述透光控制单元包括信号发生器以及多个信号接收器;
每一所述信号接收器分别设置于一相应的电致变色单元或一相应的液晶膜上;
所述信号发生器设置于所述光强探测单元处,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合;
所述信号发生器与所述光强探测单元电连接,用于当接收到所述发射控制信号时向所述可调光玻璃沿着所述最大光强方向发射调节控制信号;
接收到所述调节控制信号的所述信号接收器用于控制相应的电致变色单元改变颜色并降低透光率;或者,接收到所述调节控制信号的所述信号接收器用于控制相应的液晶膜降低透光率。
由于两点确定一条直线,提供光强最大值的光源处与光强探测单元必然确定一条直线,该直线与车上的可调光玻璃必然交汇在一点,该点所属的电致变色单元上设置的信号接收单元会接收到信号发生器发射的调节控制信号,从而控制该可调光区域电致变色单元改变颜色并降低透光率。
本公开文本一些实施例所述的可控遮光装置,应用于车辆,包括可调光玻璃、光强探测单元和透光控制单元,其中,
所述可调光玻璃,包括玻璃基底以及设置于所述玻璃基底上的呈阵列排列的多个电致变色单元,并每一所述电致变色单元能够单独被所述透光控制单元控制而改变颜色并改变透光率;
所述光强探测单元,设置于驾驶者位置处,用于360度探测环境光强, 以探测器位置坐标为原点,确定具有该光强最大值的光的照射方向为最大光强方向;
所述透光控制单元,包括信号发生器以及多个信号接收器;
每一所述信号接收器分别设置于一相应的电致变色单元上;
所述信号发生器设置于所述光强探测单元处;
所述信号发生器的位置坐标与所述光强探测器的位置坐标重合,同在原点,所述信号发生器可沿着最大光强方向可调光玻璃发射调节控制信号;
因为两点确定一直线,提供具有该光强最大值的光的光源和光强探测单元必然确定一条直线,该直线与车上的可调光玻璃必然交汇在一点,而可调光玻璃的每个电致变色单元上都设置有信号接收器,一旦一信号接收器接收到信号发生器发射的调节控制信号,即在该信号接收器设置于的电致变色单元上施加电压,使得该电致变色单元变色并降低透光率,以达到遮光的目的。
在实际操作时,本公开文本所述的可控遮光装置的一些实施例中的电致变色单元也可以被替换为液晶膜,对可调光玻璃采用的材料并不作限定。
如图3所示,本公开文本所述的可控遮光装置的一些实施例的具体实现过程如下:
S1:光强探测单元360°探测环境光强,以光强探测单元的位置坐标为原点确定最大光强方向;
S2:与光强探测单元位置坐标重合的信号发生沿着最大光强方向朝可调光玻璃发射调节控制信号;
S3:接收到所述调节控制信号的信号接收器控制相应的电致变色单元变色并降低透光率。
根据另一种具体实施方式,所述光强探测单元用于在不同的探测时刻分别探测透过所述可调光玻璃射向车辆内部的光的最大光强,确定具有该最大光强的光的照射方向为相应的最大光强方向;
如图4所示,本公开文本一些实施例所述的可控遮光装置上除了包括可调光玻璃(图4中未示出)、光强探测单元41和透光控制单元42之外,所述可控遮光装置还包括存储单元43和比较单元44;
所述存储单元43,与所述光强探测单元41电连接,用于存储第一最大 光强方向、第二最大光强方向和第二最大光强;所述第一最大光强方向是所述光强探测单元在相邻上一探测时刻确定的最大光强方向,所述第二最大光强方向是所述光强探测单元在当前探测时刻确定的最大光强方向,所述第二最大光强是所述光强探测单元在当前探测时刻探测到的最大光强;
所述比较单元44,分别与所述存储单元43和所述光强探测单元41电连接,用于比较所述第一最大光强方向和所述第二最大光强方向,并当所述第一最大光强方向和所述第二最大光强方向不同时输出变换控制信号,当所述第一最大光强和所述第二最大光强方向相同时输出维持控制信号;
所述透光控制单元42,与所述比较单元44电连接,还用于当接收到所述维持控制信号时确定第一待调光区域,控制维持所述第一待调光区域的透光率,当接收到所述变换控制信号时确定第二待调光区域,控制调降所述第二待调光区域的透光率;所述第一待调光区域为具有该第一最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域,所述第二待调光区域为具有该第二最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域。
在如图4所示的可控遮光装置在工作时,光强探测单元41会在不同的探测时刻分别探测透过可调光玻璃射向车辆内部的光的最大光强,并确定具有该最大光强的光的照射方向为相应的最大光强方向;
光强探测单元41的探测时刻的选取可以是每隔预定时间设定一次探测时刻,也可以是在光强探测单元41探测到的光强比较大的时间段设定的探测时刻的次数比较多,可以是根据使用者的需求来选取,也可以是通过其他的选取策略来选取,并不作限定;
光强探测单元41在相邻上一探测时刻探测到的最大光强为第一最大光强,确定具有第一最大光强的光的照射方向为第一最大光强方向;
光强探测单元41在当前探测时刻探测到的最大光强为第二最大光强,确定具有第一最大光强的光的照射方向为第一最大光强方向;
存储单元43存储第一最大光强方向、第二最大光强方向以及当前探测时刻探测得到的最大光强(即第二最大光强);
比较单元44比较该第一最大光强方向和第二最大光强方向;
如果比较单元44比较得到第二最大光强方向和第一最大光强方向不同时,即说明当前的最大光强方向和相邻上一探测时刻的最大光强方向不同,需要改变待调节区域,则比较单元44输出变换控制信号,当透光控制单元42接收到所述变换控制信号时确定第二待调光区域,控制调降所述第二待调光区域的透光率;所述第二待调光区域为具有该第二最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域;
如果比较单元44比较得到第二最大光强方向和第一最大光强方向相同时,即说明当前的最大光强方向和相邻上一探测时刻的最大光强方向相同,不需要改变待调节区域,则比较单元44输出维持控制信号,当透光控制单元42接收到所述维持控制信号时确定第一待调光区域,控制维持所述第一待调光区域的透光率;所述第一待调光区域为具有该第一最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域。
可选地,所述透光控制单元还用于当接收到所述变换控制信号时控制调升所述第一待调光区域的透光率,也即当透过第一待调光区域的光的光强并非是当前探测时刻的最大光强时,可以相应调升所述第一待调光区域的透光率。
具体地,所述比较单元还用于接收来自所述存储单元的第二最大光强,比较所述第二最大光强与预定阈值光强,并当所述第二最大光强小于所述预定阈值光强时输出透光控制信号;
所述透光控制单元还用于当接收到所述透光控制信号时控制所述第二待调光区域的透光率为初始透光率,所述初始透光率为所述待调光区域初始未被调节时的透光率。
当所述比较单元比较得到当前探测时刻探测得到的第二最大光强小于预定阈值光强时,说明此时处于阴天或夜间等不需要遮光的情况,则不需对第二待调光区域的透光率进行调节。
具体地,所述光强探测单元用于以其位置为原点确定具有该最大光强的光的照射方向为相应的最大光强方向;
所述透光控制单元包括信号发生器以及多个信号接收器;
所述信号发生器设置于所述光强探测单元处,所述信号发生器的位置坐 标与所述光强探测器的位置坐标重合;
每一所述信号接收器分别设置于一相应的电致变色单元或一相应的液晶膜上;
所述信号发生器与所述比较单元连接,所述信号发生器用于当接收到所述维持控制信号时向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号,当接收到所述变换控制信号时向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;
接收到所述第一调节控制信号的所述信号接收器用于控制维持相应的第一电致变色单元的颜色和透光率;接收到所述第二调节控制信号的所述信号接收器用于控制相应的第二电致变色单元改变颜色并降低透光率;或者,接收到所述第一调节控制信号的所述信号接收器用于控制维持相应的第一液晶膜的透光率;接收到所述第二调节控制信号的所述信号接收器用于控制相应的第二液晶膜降低透光率。
由于两点确定一条直线,提供光强最大值的光源处与光强探测单元必然确定一条直线,该直线与车上的可调光玻璃必然交汇在一点,该点所属的电致变色单元或液晶膜上设置的信号接收单元会接收到信号发生器发射的第一调节控制信号或第二调节控制信号,从而控制维持第一电致变色单元的颜色和透光率或控制第二电致变色单元改变颜色并降低透光率,或者控制维持第一液晶膜的透光率或控制第二液晶膜降低透光率。
可选地,接收到所述第二调节控制信号的所述信号接收器还用于控制距离所述第二电致变色单元预定距离内的所有电致变色单元都改变颜色并降低透光率;或者,接收到所述第二调节控制信号的所述信号接收器还用于控制距离所述第二液晶膜预定距离内的所有液晶膜都降低透光率。
由于可调光玻璃上接收到最大光强的电致变色单元或液晶膜周围的电致变色单元或液晶膜通常接收的光的光强通常都比较大,因此可以控制也同时调降接收到最大光强的电致变色单元周围的电致变色单元的透光率,以加强遮光效果。
本公开文本一些实施例所述的可控遮光装置,应用于车辆,包括可调光玻璃、光强探测单元、透光控制单元、存储单元和比较单元,其中,
所述可调光玻璃,包括玻璃基底以及设置于所述玻璃基底上的呈阵列排列的多个电致变色单元,并每一所述电致变色单元能够单独被所述透光控制单元控制而改变颜色并改变透光率;
所述光强探测单元,设置于驾驶者位置处,用于360度探测环境光强,以探测器位置坐标为原点,确定具有该光强最大值的光的照射方向为最大光强方向;所述光强探测单元可以以穿戴物出现,也可以以吊坠方式实现;
所述透光控制单元包括设置于信号发生器以及多个信号接收器;
所述信号发生器设置于所述光强探测单元处,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合;
每一所述信号接收器分别设置于一相应的电致变色单元上;
所述光强探测单元确定第一最大光强、第一最大光强方向、第二最大光强和第二最大光强方向;
所述第一最大光强为所述光强探测单元在相邻上一探测时刻探测得到的最大光强,所述第一最大光强方向为具有该第一最大光强的光的方向;
所述第二最大光强为所述光强探测单元在当前探测时刻探测得到的最大光强,所述第二最大光强方向为具有该第二最大光强的光的方向;
存储器存储第一最大光强方向和第二最大光强方向;
比较器比较第一最大光强方向和第二最大光强方向;
当比较器比较得到第一最大光强方向与第二最大光强方向相同时输出维持控制信号,当比较器比较得到第一最大光强方向和第二最大光强方向不同时输出变换控制信号;
所述信号发生器与所述比较单元电连接;
所述信号发生器用于当接收到所述维持控制信号时向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号;
所述信号发生器还用于当接收到所述变换控制信号时向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;
所述信号发生器和所述多个信号接收器之间通信连接;
接收到所述第一调节控制信号的所述信号接收器用于控制维持相应的第一电致变色单元的颜色和透光率;
接收到所述第二调节控制信号的所述信号接收器用于控制相应的第二电致变色单元改变颜色并降低透光率。
在实际操作时,本公开文本如图4所示的可控遮光装置的第二具体实施例中的电致变色单元也可以被替换为液晶膜,对可调光玻璃采用的材料并不作限定。
如图5所示,本公开文本所述的可控遮光装置的一些实施例的工作过程如下:
S1:光强探测器360°探测环境光强,以光强探测单元的位置坐标为原点确定最大光强方向,光强探测器确定第一最大光强、第一最大光强方向、第二最大光强和第二最大光强方向;
S2:存储单元存储第一最大光强方向和第二最大光强方向;
S3:比较单元比较第一最大光强方向和第二最大光强方向,当比较单元比较得到第一最大光强方向与第二最大光强方向相同时输出维持控制信号,当比较单元比较得到第一最大光强方向与第二最大光强方向不同时输出变换控制信号;
S4:当信号发生器接收到所述维持控制信号时向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号;当信号发生器接收到所述变换控制信号时向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;
S5:接收到所述第一调节控制信号的所述信号接收器用于控制维持相应的第一电致变色单元的颜色和透光率;接收到所述第二调节控制信号的所述信号接收器用于控制相应的第二电致变色单元改变颜色并降低透光率。
也即,如果当前探测时刻的第二最大光强方向与相邻上一探测时刻的第一最大光强方向相同,则不需要更换待调光区域,维持第一待调光区域的透光率即可;如果当前探测时刻的第二最大光强方向与相邻上一探测时刻的第一最大光强方向不同,则需要更换待调光区域,改为调降第二待调光区域的透光率。
本公开文本一些实施例所述的可控遮光方法,应用于上述的可控遮光装置,包括:
光强探测单元探测透过可调光玻璃的光的光强;
透光控制单元根据所述光强控制调节所述可调光玻璃包括的可调光区域的透光率。
本公开文本一些实施例所述的可控调光方法可以应用于行车场景,但是本公开文本一些实施例所述的可控调光方法并不限于应用于车辆的行车场景,也可以应用于可根据需要确定是否防窥的观景窗或阳光房内,更可以应用于任何需要根据实际需要调节透光率的场景。
具体地,本公开文本一些实施例所述的可控遮光方法,还包括:
所述光强探测单元探测透过所述可调光玻璃的光的光强最大值,确定具有该光强最大值的光的照射方向为最大光强方向,并输出发射控制信号、所述光强最大值和所述最大光强方向;
当所述透光控制单元接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率;
所述待调光区域为具有该最大光强的光线与所述可调光玻璃的重合点属于的可调光区域。
具体地,当所述透光控制单元包括信号发生器以及多个信号接收器,信号发生器设置于所述光强探测单元处,每一所述信号接收器分别设置于一相应的电致变色单元或一相应的液晶膜上,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合时,
所述光强探测单元确定具有该光强最大值的光的照射方向为最大光强方向步骤包括:所述光强探测单元以其位置为原点确定具有该光强最大值的光的照射方向;
所述当所述透光控制单元接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率的步骤包括:当所述信号发生器接收到所述发射控制信号时,所述信号发生器向所述可调光玻璃沿着所述最大光强方向发射调节控制信号;接收到所述调节控制信号的所述信号接收器控制相应的电致变色单元或相应的液晶膜改变颜色并降低透光率。
具体地,当所述可控遮光装置还包括存储单元和比较单元时,所述可控遮光方法还包括:
所述光强探测单元用于在不同的探测时刻分别探测透过所述可调光玻璃的光的最大光强,确定具有该最大光强的光的照射方向为相应的最大光强方向;
所述存储单元存储第一最大光强方向、第二最大光强方向和第二最大光强;所述第一最大光强方向是所述光强探测单元在相邻上一探测时刻确定的最大光强方向,所述第二最大光强方向是所述光强探测单元在当前探测时刻确定的最大光强方向,第二最大光强是所述光强探测单元在当前探测时刻探测到的最大光强;
所述比较单元比较所述第一最大光强方向和所述第二最大光强方向,并当所述第一最大光强方向和所述第二最大光强方向不同时输出变换控制信号,当所述第一最大光强方向和所述第二最大光强方向相同时输出维持控制信号;
当所述透光控制单元接收到所述维持控制信号时,所述透光控制单元确定第一待调光区域,控制维持所述第一待调光区域的透光率;
当所述透光控制单元接收到所述变换控制信号时,所述透光控制单元确定第二待调光区域,控制调降所述第二待调光区域的透光率;
所述第一待调光区域为具有该第一最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域,所述第二待调光区域为具有该第二最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域。
具体地,当所述透光控制单元包括信号发生器以及多个信号接收器,信号发生器设置于所述光强探测单元处,每一所述信号接收器分别设置于一相应的电致变色单元或一相应的液晶膜上时,
所述光强探测单元确定具有该最大光强的光的照射方向为相应的最大光强方向步骤包括:所述光强探测单元用于以其位置为原点确定具有该最大光强的光的照射方向为相应的最大光强方向;所述当所述透光控制单元接收到所述维持控制信号时,所述透光控制单元确定第一待调光区域,控制调降所述第一待调光区域的透光率的步骤包括:当所述信号发生器接收到所述维持控制信号时,所述信号发生器向所述可调光玻璃沿着所述第一最大光强方向 发射第一调节控制信号;接收到所述第一调节控制信号的所述信号接收器维持相应的第一电致变色单元的颜色和透光率;或者,当所述信号发生器接收到所述维持控制信号时,所述信号发生器向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号;接收到所述第一调节控制信号的所述信号接收器控制维持相应的第一液晶膜的透光率;
所述当所述透光控制单元接收到所述变换控制信号时,所述透光控制单元确定第二待调光区域,控制调降所述第二待调光区域的透光率的步骤包括:当所述信号发生器接收到所述变换控制信号时,所述信号发生器向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;接收到所述第二调节控制信号的所述信号接收器控制其设于的第二电致变色单元改变颜色并降低透光率;或者,当所述信号发生器接收到所述变换控制信号时,所述信号发生器向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;接收到所述第二调节控制信号的所述信号接收器控制相应的第二液晶膜降低透光率。
基于相同的发明构思,本公开文本一些实施例还提供了一种车辆,包括上面实施例所述的可控遮光装置。
本实施例中的车辆可为汽车、卡车、公共汽车等各种类型及用途的车辆。该车辆由于包括上述任意一种可控遮光装置,因而可以解决同样的技术问题,并取得相同的技术效果。
以上所述是本公开文本的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开文本的保护范围。

Claims (20)

  1. 一种可调光玻璃,包括多个可调光区域和多个调光单元,在所述多个可调光区域上分别设置有一个调光单元,所述多个调光单元中的每个调光单元均能够被单独控制改变其自身的透光率,以调节该调光单元所被设置在的相应可调光区域的透光率。
  2. 如权利要求1所述的可调光玻璃,还包括玻璃基底,其中,所述多个调光单元是多个电致变色单元,所述多个电致变色单元以阵列形式排列在所述玻璃基底上;
    每一所述电致变色单元能够单独被控制而改变颜色并改变透光率。
  3. 如权利要求1所述的可调光玻璃,其中,
    所述可调光玻璃包括液晶调光玻璃;
    所述液晶调光玻璃包括相对设置的两玻璃基板;
    所述多个调光单元是多个液晶膜,所述多个液晶膜以阵列形式设置于所述两玻璃基板之间,所述多个液晶膜中的每一液晶膜的透光率能通过调节其上的电压而变化。
  4. 一种可控遮光装置,包括如权利要求1至3中任一权利要求所述的可调光玻璃:
    所述可控遮光装置还包括:光强探测单元,用于探测透过所述可调光玻璃的光的光强;以及,
    透光控制单元,用于根据所述光强控制调节所述可调光区域的透光率。
  5. 如权利要求4所述的可控遮光装置,其中,所述可控遮光装置应用于车辆,所述光强探测单元具体用于探测透过所述可调光玻璃射向车辆内部的光的光强。
  6. 如权利要求4或5所述的可控遮光装置,其中,所述光强探测单元还用于探测透过所述可调光玻璃的光的光强最大值,确定具有该光强最大值的光的照射方向为最大光强方向,并输出发射控制信号、所述光强最大值和所述最大光强方向;
    所述透光控制单元,与所述光强探测单元电连接,具体用于当接收到所 述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率;所述待调光区域为具有该最大光强的光线与所述可调光玻璃的重合点所属的可调光区域。
  7. 如权利要求6所述的可控遮光装置,其中,所述透光控制单元还用于比较所述光强最大值和预定阈值光强,并当所述光强最大值小于所述预定阈值光强时控制所述待调光区域的透光率为初始透光率;
    所述初始透光率为所述待调光区域初始未被调节时的透光率。
  8. 如权利要求6所述的可控遮光装置,其中,
    所述光强探测单元用于以其位置为原点确定具有该光强最大值的光的照射方向;
    所述透光控制单元包括信号发生器以及多个信号接收器;
    每一所述信号接收器分别设置于一相应的调光单元上;
    所述信号发生器设置于所述光强探测单元处,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合;
    所述信号发生器与所述光强探测单元电连接,用于当接收到所述发射控制信号时向所述可调光玻璃沿着所述最大光强方向发射调节控制信号;
    接收到所述调节控制信号的所述信号接收器用于控制相应的调光单元降低透光率。
  9. 如权利要求4或5所述的可控遮光装置,其中,所述光强探测单元用于在不同的探测时刻分别探测透过所述可调光玻璃的光的最大光强,确定具有该最大光强的光的照射方向为相应的最大光强方向;
    所述可控遮光装置还包括存储单元和比较单元;
    所述存储单元,与所述光强探测单元电连接,用于存储第一最大光强方向、第二最大光强方向和第二最大光强;所述第一最大光强方向是所述光强探测单元在相邻上一探测时刻确定的最大光强方向,所述第二最大光强方向是所述光强探测单元在当前探测时刻确定的最大光强方向,第二最大光强是所述光强探测单元在当前探测时刻探测到的最大光强;
    所述比较单元,分别与所述存储单元和所述光强探测单元电连接,用于比较所述第一最大光强方向和所述第二最大光强方向,并当所述第一最大光 强方向和所述第二最大光强方向不同时输出变换控制信号,当所述第一最大光强方向和所述第二最大光强方向相同时输出维持控制信号;
    所述透光控制单元,与所述比较单元电连接,还用于当接收到所述维持控制信号时确定第一待调光区域,控制维持所述第一待调光区域的透光率,当接收到所述变换控制信号时确定第二待调光区域,控制调降所述第二待调光区域的透光率;所述第一待调光区域为具有该第一最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域,所述第二待调光区域为具有该第二最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域。
  10. 如权利要求9所述的可控遮光装置,其中,所述透光控制单元还用于当接收到所述变换控制信号时控制调升所述第一待调光区域的透光率。
  11. 如权利要求9所述的可控遮光装置,其中,所述比较单元还用于接收来自所述存储单元的第二最大光强,比较所述第二最大光强与预定阈值光强,并当所述第二最大光强小于所述预定阈值光强时输出透光控制信号;
    所述透光控制单元还用于当接收到所述透光控制信号时控制所述第二待调光区域的透光率为初始透光率;
    所述初始透光率为所述待调光区域初始未被调节时的透光率。
  12. 如权利要求9所述的可控遮光装置,其中,所述光强探测单元用于以其位置为原点确定具有该最大光强的光的照射方向为相应的最大光强方向;
    所述透光控制单元包括信号发生器以及多个信号接收器;
    所述信号发生器设置于所述光强探测单元处,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合;
    每一所述信号接收器分别设置于一相应的调光单元上;
    所述信号发生器与所述比较单元连接,用于当接收到所述维持控制信号时向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号,当接收到所述变换控制信号时向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;
    接收到所述第一调节控制信号的所述信号接收器用于控制维持相应的第一调光单元的透光率;接收到所述第二调节控制信号的所述信号接收器用于控制相应的第二调光单元降低透光率。
  13. 如权利要求12所述的可控遮光装置,其中,接收到所述第二调节控制信号的所述信号接收器还用于控制距离所述第二调光单元预定距离内的所有电致变色单元都降低透光率。
  14. 如权利要求5所述的可控遮光装置,其中,所述可调光玻璃为所述车辆的前挡风玻璃、侧挡风玻璃或后挡风玻璃。
  15. 一种可控遮光方法,应用于如权利要求4至14中任一权利要求所述的可控遮光装置,包括:
    光强探测单元探测透过可调光玻璃的光的光强;
    透光控制单元根据所述光强控制调节所述可调光玻璃包括的可调光区域的透光率。
  16. 如权利要求15所述的可控遮光方法,还包括:
    所述光强探测单元探测透过所述可调光玻璃的光的光强最大值,确定具有该光强最大值的光的照射方向为最大光强方向,并输出发射控制信号、所述光强最大值和所述最大光强方向;
    当所述透光控制单元接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率;
    所述待调光区域为具有该最大光强的光线与所述可调光玻璃的重合点所属的可调光区域。
  17. 如权利要求16所述的可控遮光方法,其中,当所述透光控制单元包括信号发生器以及多个信号接收器,信号发生器设置于所述光强探测单元处,每一所述信号接收器分别设置于一相应的调光单元上,所述信号发生器的位置坐标与所述光强探测器的位置坐标重合时,
    所述光强探测单元确定具有该光强最大值的光的照射方向为最大光强方向步骤包括:所述光强探测单元以其位置为原点确定具有该光强最大值的光的照射方向;
    所述当所述透光控制单元接收到所述发射控制信号时,根据该最大光强方向和所述光强探测单元的位置确定待调光区域,控制调降所述待调光区域的透光率的步骤包括:当所述信号发生器接收到所述发射控制信号时,所述 信号发生器向所述可调光玻璃沿着所述最大光强方向发射调节控制信号;接收到所述调节控制信号的所述信号接收器控制相应的调光单元降低透光率。
  18. 如权利要求15所述的可控遮光方法,当所述可控遮光装置还包括存储单元和比较单元时,所述可控遮光方法还包括:
    所述光强探测单元用于在不同的探测时刻分别探测透过所述可调光玻璃的光的最大光强,确定具有该最大光强的光的照射方向为相应的最大光强方向;
    所述存储单元存储第一最大光强方向、第二最大光强方向和第二最大光强;所述第一最大光强方向是所述光强探测单元在相邻上一探测时刻确定的最大光强方向,所述第二最大光强方向是所述光强探测单元在当前探测时刻确定的最大光强方向,第二最大光强是所述光强探测单元在当前探测时刻探测到的最大光强;
    所述比较单元比较所述第一最大光强方向和所述第二最大光强方向,并当所述第一最大光强方向和所述第二最大光强方向不同时输出变换控制信号,当所述第一最大光强方向和所述第二最大光强方向相同时输出维持控制信号;
    当所述透光控制单元接收到所述维持控制信号时,所述透光控制单元确定第一待调光区域,控制维持所述第一待调光区域的透光率;
    当所述透光控制单元接收到所述变换控制信号时,所述透光控制单元确定第二待调光区域,控制调降所述第二待调光区域的透光率;
    所述第一待调光区域为具有该第一最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域,所述第二待调光区域为具有该第二最大光强方向的光线与所述可调光玻璃的重合点所属的可调光区域。
  19. 如权利要求18所述的可控遮光方法,其中,当所述透光控制单元包括信号发生器以及多个信号接收器,信号发生器设置于所述光强探测单元处,每一所述信号接收器分别设置于一相应的调光单元上时,
    所述光强探测单元确定具有该最大光强的光的照射方向为相应的最大光强方向步骤包括:所述光强探测单元用于以其位置为原点确定具有该最大光强的光的照射方向为相应的最大光强方向;
    所述当所述透光控制单元接收到所述维持控制信号时,所述透光控制单 元确定第一待调光区域,控制调降所述第一待调光区域的透光率的步骤包括:当所述信号发生器接收到所述维持控制信号时,所述信号发生器向所述可调光玻璃沿着所述第一最大光强方向发射第一调节控制信号;接收到所述第一调节控制信号的所述信号接收器维持相应的第一调光单元的透光率;
    所述当所述透光控制单元接收到所述变换控制信号时,所述透光控制单元确定第二待调光区域,控制调降所述第二待调光区域的透光率的步骤包括:当所述信号发生器接收到所述变换控制信号时,所述信号发生器向所述可调光玻璃沿着所述第二最大光强方向发射第二调节控制信号;接收到所述第二调节控制信号的所述信号接收器控制其设于的第二调光单元降低透光率。
  20. 一种车辆,包括如权利要求4至14中任一项所述的可控遮光装置。
PCT/CN2017/084154 2016-07-07 2017-05-12 可调光玻璃、可控遮光装置、方法和车辆 WO2018006652A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/741,910 US10682901B2 (en) 2016-07-07 2017-05-12 Light-dimmable glass, controllable light shielding device, controllable light shielding method, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610532358.8 2016-07-07
CN201610532358.8A CN106200187B (zh) 2016-07-07 2016-07-07 可调光玻璃、可控遮光装置、方法和车辆

Publications (1)

Publication Number Publication Date
WO2018006652A1 true WO2018006652A1 (zh) 2018-01-11

Family

ID=57473119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084154 WO2018006652A1 (zh) 2016-07-07 2017-05-12 可调光玻璃、可控遮光装置、方法和车辆

Country Status (3)

Country Link
US (1) US10682901B2 (zh)
CN (1) CN106200187B (zh)
WO (1) WO2018006652A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190719A2 (en) 2017-04-13 2018-10-18 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies
CN114198010A (zh) * 2020-09-17 2022-03-18 丰田自动车株式会社 信息处理装置、建筑物以及方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200187B (zh) 2016-07-07 2019-04-09 京东方科技集团股份有限公司 可调光玻璃、可控遮光装置、方法和车辆
CN107264245A (zh) * 2017-06-27 2017-10-20 观致汽车有限公司 车用天窗机构及其调节方法、车辆
CN107165542A (zh) * 2017-07-19 2017-09-15 南京盈润建筑工程配套有限公司 一种智能遮阳集成系统窗及其控制系统
CN107255877B (zh) * 2017-08-09 2021-04-13 京东方科技集团股份有限公司 一种光学结构及其控制方法、显示器件
CN110753634A (zh) * 2017-10-18 2020-02-04 深圳市柔宇科技有限公司 调光片、调光方法、控制装置、电子装置和存储介质
CN108215733B (zh) * 2018-01-02 2021-01-12 京东方科技集团股份有限公司 前挡玻璃光强调节方法、装置、系统及前挡玻璃、汽车
CN109986937B (zh) 2018-03-26 2020-07-17 京东方科技集团股份有限公司 一种防炫目装置、控制方法及车辆
CN109849626B (zh) * 2019-01-16 2022-03-04 深圳壹账通智能科技有限公司 透光度调节方法、装置、计算机可读存储介质及终端设备
US20200409208A1 (en) * 2019-06-27 2020-12-31 Wicue, Inc. Liquid crystal dimmable film
CN114514131B (zh) * 2019-09-26 2024-04-23 Agc株式会社 控制器、控制器与调光窗的组合、具备该组合的车辆和该组合的用途
CN110834523A (zh) * 2019-11-26 2020-02-25 奇瑞汽车股份有限公司 一种自适应的电子遮阳板及其控制方法
CN111474797B (zh) * 2020-05-08 2024-01-30 深圳市光羿科技有限公司 一种电致变色玻璃的控制方法及电致变色玻璃
CN111752414B (zh) * 2020-06-22 2024-03-19 京东方科技集团股份有限公司 触控显示系统及其驱动方法、车辆
US11635664B2 (en) * 2020-12-07 2023-04-25 Wicue, Inc. Liquid crystal film window providing display and dimming operations
CN112706591B (zh) * 2021-01-14 2022-09-13 南京天擎汽车电子有限公司 车窗透光度调节方法、装置、设备和介质
CN113442693B (zh) * 2021-04-12 2024-10-11 安波福电子(苏州)有限公司 用于透光装置的透光控制方法及透光控制系统
CN113442692B (zh) * 2021-08-06 2023-01-13 广东电网有限责任公司 一种基于定位系统的车载自动遮阳板
CN113820896B (zh) * 2021-10-28 2023-10-20 京东方科技集团股份有限公司 一种智能窗户及其调光方法
US11776497B2 (en) * 2021-11-19 2023-10-03 GM Global Technology Operations LLC Global and local contrast control with brightness and shading adjustment of smart glass display
CN118329780B (zh) * 2024-06-14 2024-09-06 湖南旗滨光能科技有限公司 光伏玻璃检测方法、检测设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067690A (ja) * 2000-08-31 2002-03-08 Auto Network Gijutsu Kenkyusho:Kk 液晶バイザ
US20060158715A1 (en) * 2005-01-19 2006-07-20 Hitachi, Ltd. Variable transmissivity window system
CN201127131Y (zh) * 2007-11-30 2008-10-01 张家荣 玻璃明暗度调整装置
JP2009143470A (ja) * 2007-12-17 2009-07-02 Yamaha Corp 車両用防眩装置
CN102241235A (zh) * 2010-05-11 2011-11-16 财团法人工业技术研究院 遮挡逆光装置
CN104626937A (zh) * 2013-11-12 2015-05-20 昆达电脑科技(昆山)有限公司 遮阳防眩装置
CN106200187A (zh) * 2016-07-07 2016-12-07 京东方科技集团股份有限公司 可调光玻璃、可控遮光装置、方法和车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067690A (ja) * 2000-08-31 2002-03-08 Auto Network Gijutsu Kenkyusho:Kk 液晶バイザ
US20060158715A1 (en) * 2005-01-19 2006-07-20 Hitachi, Ltd. Variable transmissivity window system
CN201127131Y (zh) * 2007-11-30 2008-10-01 张家荣 玻璃明暗度调整装置
JP2009143470A (ja) * 2007-12-17 2009-07-02 Yamaha Corp 車両用防眩装置
CN102241235A (zh) * 2010-05-11 2011-11-16 财团法人工业技术研究院 遮挡逆光装置
CN104626937A (zh) * 2013-11-12 2015-05-20 昆达电脑科技(昆山)有限公司 遮阳防眩装置
CN106200187A (zh) * 2016-07-07 2016-12-07 京东方科技集团股份有限公司 可调光玻璃、可控遮光装置、方法和车辆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190719A2 (en) 2017-04-13 2018-10-18 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies
CN114198010A (zh) * 2020-09-17 2022-03-18 丰田自动车株式会社 信息处理装置、建筑物以及方法
CN114198010B (zh) * 2020-09-17 2024-02-23 丰田自动车株式会社 信息处理装置、建筑物以及方法

Also Published As

Publication number Publication date
US20190118624A1 (en) 2019-04-25
US10682901B2 (en) 2020-06-16
CN106200187B (zh) 2019-04-09
CN106200187A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018006652A1 (zh) 可调光玻璃、可控遮光装置、方法和车辆
US9869886B2 (en) Adaptive spectacles for motor vehicle drivers or passengers
US20220382087A1 (en) Light shielding plate assembly and control method thereof, control device and vehicle
JP7030523B2 (ja) 制御可能なマスキングディスプレイを有する透明なディスプレイ
US10598970B2 (en) Device and method for reducing the dazzle effect in a room of a building
US10583773B2 (en) Vehicle-mounted system and vehicle
US10154200B2 (en) Imager with active exposure correction
US9566946B2 (en) Systems, methods, and computer readable media for protecting an operator against glare
US9170643B2 (en) Display system containing an adaptive semi-transparent display device and means for detecting the landscape viewed by the user
US20230221610A1 (en) Method for controlling electrochromic glass, and electrochromic glass
US9504128B2 (en) Image display device and control method thereof
CN112351914A (zh) 车辆客厢的光标测系统
US11971559B2 (en) Stereoscopic display using microLED technology
US9505290B2 (en) Method and device for daytime motor vehicle driving assistance
JP5947464B1 (ja) 光学装置
US20190322162A1 (en) Method for controlling light transmittance
CN114312253A (zh) 车辆遮光装置的控制方法、车辆和存储介质
KR102041346B1 (ko) 시인성 및 화질을 향상시키기 위한 전광판 및 전광판 시스템
CN104297945A (zh) 实时太阳能感光自动调光安全镜片装置
EP4083692A1 (en) Combined fast-switch tintable visor
CN106004365A (zh) 一种自动防眩目装置
KR101639685B1 (ko) 카메라용 액티브 필터 장치 및 그 액티브 필터링 방법
KR102127158B1 (ko) 차량 글라스의 명암 조절시스템 및 그 방법
US20200026103A1 (en) Adjustable Window Transparency Control System
US11941779B2 (en) Dynamic positional control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17823464

Country of ref document: EP

Kind code of ref document: A1