WO2018004097A1 - 트랜지션 피스 조립체 및 이를 포함하는 연소기 - Google Patents

트랜지션 피스 조립체 및 이를 포함하는 연소기 Download PDF

Info

Publication number
WO2018004097A1
WO2018004097A1 PCT/KR2017/000840 KR2017000840W WO2018004097A1 WO 2018004097 A1 WO2018004097 A1 WO 2018004097A1 KR 2017000840 W KR2017000840 W KR 2017000840W WO 2018004097 A1 WO2018004097 A1 WO 2018004097A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition piece
cooling
piece assembly
combustor
cooling hole
Prior art date
Application number
PCT/KR2017/000840
Other languages
English (en)
French (fr)
Inventor
심영삼
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Publication of WO2018004097A1 publication Critical patent/WO2018004097A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03043Convection cooled combustion chamber walls with means for guiding the cooling air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the present invention relates to a transition piece assembly and a combustor comprising the same, and more particularly, to a transition piece assembly having an improved cooling efficiency for cooling a high temperature region formed on a side of a gas turbine transition piece and a combustor including the same. will be.
  • a turbine is a mechanical device that obtains rotational force by impulse or reaction force by using a flow of a compressive fluid such as steam or gas.
  • a steam is used as a steam turbine, and a gas turbine when a combustion gas is used.
  • the gas turbine is a compressor that rotates a rotating shaft by driving a compressor by sucking and compressing atmospheric air and then supplying a high pressure air to the combustor, a combustor for generating high-temperature and high-pressure combustion gas, and combustion gas discharged from the combustor. It is made to include.
  • the operation principle of the gas turbine is to first inhale air into the air, compress it to a compressor, and then send it to a combustor to produce high-temperature and high-pressure gas to operate the turbine and release the exhaust gas into the atmosphere. Is made of.
  • the compressor of the gas turbine takes in air from the atmosphere and supplies combustion air to the combustor.
  • the pressure and air temperature are increased because of the adiabatic compression process.
  • the compressed air introduced through the isothermal combustion process is mixed with and combusted to produce high energy combustion gas.
  • the high-temperature and high-pressure combustion gas from the combustor expands and converts into mechanical energy by impulse and reaction force on the rotor blades of the turbine.
  • the mechanical energy is supplied to the energy required to compress the air in the compressor, and the rest is used to drive the generator to produce power.
  • the combustor of the gas turbine comprises a liner portion and a transition piece.
  • the liner unit burns fuel together with compressed air to generate hot compressed gas, and the hot compressed gas flows into the turbine and expands to rotate the rotating shaft connected to the turbine.
  • the transition piece is for transferring the combustion gas generated from the combustor liner part to the turbine side, and is a part for increasing the speed of the hot gas.
  • the transition piece must be cooled by compressed air supplied from the compressor so that the outer wall is not damaged by the high temperature of the combustion gases.
  • the porous sleeve surrounds the transition piece, and the compressor discharge air flows inwards through the cooling hole formed in the porous sleeve and collides with and cools the outer wall of the transition piece.
  • the cooling air then flows along the space between the transition piece and the porous sleeve surrounding the transition piece and flows to the liner portion side.
  • a high temperature region is formed on the side of the transition piece.
  • the conventional transition piece includes a porous sleeve surrounding the transition piece, there is a problem in that cooling is not performed well because cooling air is not sufficiently introduced into the side surface.
  • An object of the present invention is to provide a transition piece assembly and a combustor including the improved cooling efficiency for cooling a high temperature region formed on the side of the transition piece.
  • the present invention for solving the above problems, the transition piece connecting the combustor liner and the turbine, the impact sleeve surrounding the transition piece, the cooling hole formed in the collision sleeve and the air formed inside the collision sleeve It provides a transition piece assembly comprising a guide for guiding the side of the transition piece.
  • the guide portion is formed near the cooling hole.
  • the guide portion may protrude to the inside of the collision sleeve.
  • the guide portion may protrude and form a tapered surface inclined toward the side of the transition piece.
  • the guide portion may be formed to form a step inside the collision sleeve.
  • the step of the guide portion is characterized in that it is made of a staircase shape.
  • the step of the guide portion is characterized in that consisting of a curve.
  • a combustor comprising a combustor liner for mixing and combusting compressed air with fuel and the transition piece assembly described above.
  • the transition piece assembly and the combustor comprising the same include a guide portion formed inside the impingement sleeve to guide the air to the side of the transition piece while increasing the inflow of cooling air to the side of the transition piece, Cooling can be made efficiently.
  • FIG. 1 is a side view schematically showing a combustor of a gas turbine.
  • FIG. 2 is a side cross-sectional view of a transition piece assembly according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the A-A portion of FIG.
  • FIG. 4 is a cross-sectional view illustrating a transition piece assembly according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a transition piece assembly according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a transition piece assembly according to a fourth embodiment of the present invention.
  • FIG. 1 is a side view schematically showing a combustor of a gas turbine
  • FIG. 2 is a side cross-sectional view of a transition piece assembly according to a first embodiment of the present invention
  • FIG. 3 is a sectional view of the AA portion of FIG. 5 is a cross-sectional view showing a transition piece assembly according to a second embodiment
  • FIG. 5 is a cross-sectional view showing a transition piece assembly according to a third embodiment of the present invention
  • FIG. 6 is a transition piece according to a fourth embodiment of the present invention. It is sectional drawing for showing an assembly.
  • the configuration of the gas turbine (not shown) in which the transition piece assembly of the present invention is installed is the same as the conventional gas turbine.
  • FIG. 1 schematically shows a combustor 1 of a gas turbine, the combustor 1 of the gas turbine comprising an ignition unit 52, a combustor liner 50 and a transition piece assembly 100.
  • the ignition unit 52 is a part for igniting the fuel
  • the combustor liner 50 is a part for burning the fuel together with the compressed air to generate a high temperature compressed gas.
  • the configuration of the ignition portion 52 and the combustor liner 50 of the combustor 1 of the present invention is the same as the configuration of the general ignition portion and the liner, the present invention is characterized in the transition piece assembly 100, with respect to Explain in detail.
  • the transition piece assembly 100 is to transfer the combustion gas generated from the combustor liner 50 to a turbine (not shown), and is to increase the speed of the hot gas.
  • the combustion gas of the high temperature and high pressure from the combustor 1 is introduced into the turbine (not shown) and expanded to impart impulse and reaction force to the rotor blades of the turbine and convert it into mechanical energy.
  • the mechanical energy is supplied to the energy required to compress the air in the compressor, and the rest is used to drive the generator to produce power.
  • the transition piece assembly 100 of the gas turbine according to the first embodiment of the present invention is a transition piece 110 connecting the combustor liner 50 and the turbine (not shown) of the gas turbine. ), A collision sleeve 120 surrounding the transition piece 110, a cooling hole 130 formed in the collision sleeve 120 and an inner side of the collision sleeve 120 to form air. Guide portion 200 for guiding to the side of 110.
  • the transition piece 110 is formed in a tube shape to connect a combustor liner 50 and a turbine (not shown) of the gas turbine, and to transfer the combustion gas generated from the combustor liner 50 to the turbine side. to be. Combustion gas is increased in velocity through the transition piece 110 and flows rapidly into the turbine.
  • the transition piece 110 may be formed in various shapes such as a cylinder, a square cylinder, etc. to match the cross-sectional shape of the combustor liner, but one end coupled with the combustor liner is formed in the same shape as the cross-sectional shape of the opposing combustor liner, the turbine side It is preferable that the other end coupled with is formed to have the same cross-sectional shape of the opposed turbine.
  • one end of the transition piece 110 is connected to the combustor liner 50, but in some applications a separate connector component may be located between the one end of the transition piece 110 and the combustor liner 50. .
  • the impact sleeve 120 surrounds the transition piece 110 in a radially spaced state and may have a cylindrical shape. Accordingly, a constant space 140 is formed between the transition piece 110 and the collision sleeve 120.
  • Cooling holes 130 are formed in all directions in the collision sleeve 120, and the cooling holes 130 may be arranged in accordance with a plurality of rows.
  • the cooling hole 130 may be formed in a circular or elliptical shape.
  • the guide part 200 is formed inside the collision sleeve 120 and serves to guide air to the side of the transition piece 110.
  • the guide part 200 is formed near the cooling hole 130, and according to the first embodiment, the guide part 200 protrudes to the inside of the collision sleeve 120.
  • the guide part 200 is formed in the lower inner side of the collision sleeve 120 and is positioned near the cooling hole 130.
  • the guide part 200 is formed to protrude so that the cooling air introduced through the cooling hole 130 can be guided toward the outer wall of the side surface of the transition piece 110. Furthermore, the cooling air flowing into the left side cooling hole 130a positioned on the left side of the cross-section AA of the transition piece assembly 100 is led to the left side, Cooling air flowing into the right cooling hole 130b located on the right side is guided to the right side.
  • the guide part 200 forms a wall at the end of the collision sleeve located on the right side of each cooling hole, and protrudes. For this reason, the cooling air introduced into the left cooling hole 130a may not be moved to the right by the guide parts 200 protruding to the right, and most of the cooling air is directed to the left.
  • the guide part 200 forms a wall at the end of the collision sleeve located on the left side of each cooling hole, and protrudes. For this reason, the cooling air introduced into the right cooling hole 130b does not move to the left side by the guide part 200 protruding on each left side, and is oriented so that most of the cooling air moves to the right side.
  • the cooling air is oriented intensively to the left and the right, respectively, so that the amount of air flowing increases, and the inflow of cooling air to each side portion also increases. Accordingly, the high temperature region formed on the side surface of the transition piece 110 can be effectively cooled.
  • the movement path of the cooling air is shown by the arrow in FIG.
  • transition piece assembly 2100 of the gas turbine according to the second embodiment of the present invention will be described with reference to FIG. 4.
  • the transition piece assembly 2100 according to the second embodiment differs only in the structure of the transition piece assembly 100 and the shape of the guide part according to the first embodiment, and the rest of the configuration is the same. Therefore, the description of the transition piece 110, the impact sleeve 120 and the cooling hole 130 will be omitted, and will be described with respect to the different guide portion.
  • the guide part 2200 of the transition piece assembly according to the second embodiment is formed inside the lower portion of the impact sleeve 120 and is positioned near the cooling hole 130.
  • the guide portion 2200 is similar to the guide portion 200 of the transition piece assembly according to the first embodiment such that the cooling air introduced through the cooling hole 130 can be directed toward the outer wall portion of the side of the transition piece. It is formed to protrude.
  • the guide part 2200 is formed to protrude to form a tapered surface inclined toward the side of the transition piece 110.
  • the cooling air flowing into the left cooling hole 130a positioned on the left side of the transition piece assembly 2100 based on the center line a, which is the center of the left and right, is led to the left side
  • Cooling air flowing into the right cooling hole 130b located on the right side is guided to the right side.
  • the guide part 2200 forms a wall at the end of the collision sleeve located on the right side of each cooling hole, and the guide part 2200 is inclined toward the left side. It is formed in a state.
  • the cooling air introduced into the left cooling hole 130a may not be moved to the right by the guide parts 2200 protruding to the right, and most of the cooling air is directed to the left.
  • the guide portion 2200 can be more easily oriented because it forms a tapered surface inclined toward the left side.
  • the guide portion 2200 forms a wall at the end of the collision sleeve located on the left side of each cooling hole, and the guide portion 2200 is inclined toward the right side. Is formed. For this reason, the cooling air introduced into the right cooling hole 130b does not move to the left side by the guide parts 2200 protruding on the left side, and is oriented so that most of the cooling air moves to the right side. Furthermore, the guide portion 2200 can be more easily oriented because it forms a tapered surface inclined toward the right side.
  • the cooling air is oriented intensively to the left and the right, respectively, so that the amount of air flowing increases, and the inflow of cooling air to each side portion also increases. Accordingly, the high temperature region formed on the side surface of the transition piece 110 can be effectively cooled.
  • the movement path of the cooling air is shown by the arrow in FIG.
  • the transition piece assembly 3100 of the gas turbine according to the third embodiment of the present invention differs only in the structure of the transition piece assembly 100 and the shape of the guide part according to the first embodiment, and the rest of the configuration is the same. Therefore, the description of the transition piece 110, the impact sleeve 120 and the cooling hole 130 will be omitted, and will be described with respect to the different guide portion.
  • the guide part 3200 of the transition piece assembly is formed inside the lower portion of the collision sleeve 120 and is positioned near the cooling hole 130.
  • the guide part 3200 is formed to form a step inside the collision sleeve 120 so that the cooling air introduced through the cooling hole 130 can be guided toward the outer wall of the side surface of the transition piece 110. Furthermore, the cooling air flowing into the left cooling hole 130a positioned on the left side of the transition piece assembly 3100 based on the center line a, which is the center of the left and right, is led to the left side, Cooling air flowing into the right cooling hole 130b located on the right side is guided to the right side.
  • the step of the guide portion 3200 has a step shape.
  • a groove is formed at an end of the collision sleeve positioned at the left side of each cooling hole, and the thickness of the collision sleeve becomes thick and forms a step toward the left side.
  • the impact sleeve positioned on the left side is formed to have a lower height than the collision sleeve positioned on the right side, so that the left side cooling is performed like the guide portion 200 of the transition piece assembly according to the first embodiment. It has the same effect as the protruding wall is formed on the right side of the hole 130a. Therefore, the cooling air introduced into the left cooling hole 130a may not be moved to the right, but may be oriented such that most of the cooling air moves to the left along the guide part 3200 located at the left.
  • the thickness of the impact sleeve is thickened to the right to form a step (step).
  • the collision sleeve located on the right side is formed to have a lower height than the collision sleeve located on the left side, and thus the right side cooling is performed like the guide portion 200 of the transition piece assembly according to the first embodiment. It has the same effect as the protruding wall is formed on the left side of the hole 130b. Therefore, the cooling air introduced into the right cooling hole 130b may not be moved to the left side but may be oriented such that most of the cooling air moves to the right along the guide part 3200 located at the right side.
  • the cooling air is oriented intensively to the left and the right, respectively, so that the amount of air flowing increases, and the inflow of cooling air to each side portion also increases. Accordingly, the high temperature region formed on the side surface of the transition piece 110 can be effectively cooled.
  • the movement path of the cooling air is shown by the arrow in FIG.
  • transition piece assembly 4100 of the gas turbine according to the fourth embodiment of the present invention will be described with reference to FIG. 6.
  • the transition piece assembly 4100 according to the fourth embodiment differs only in the structure of the transition piece assembly 3100 and the shape of the guide part according to the third embodiment, and the rest of the configuration is the same. Therefore, the description of the transition piece 110, the impact sleeve 120 and the cooling hole 130 will be omitted, and will be described with respect to the different guide portion.
  • the guide portion 4200 of the transition piece assembly according to the fourth embodiment is formed inside the lower portion of the collision sleeve 120 and is positioned near the cooling hole 130. Similar to the guide part 3200 of the transition piece assembly according to the third exemplary embodiment, the guide part 4200 may direct cooling air introduced through the cooling hole 130 toward the outer wall of the side of the transition piece 110. In order to be able to, the impact sleeve 120 is formed in a stepped manner. However, the step of the guide portion 4200 is made of a curve. Furthermore, the cooling air flowing into the left cooling hole 130a positioned on the left side of the transition piece assembly 4100 based on the center line a, which is the center of the left and right, is led to the left side.
  • Cooling air flowing into the right cooling hole 130b located on the right side is guided to the right side.
  • the thickness may be thickened toward both sides in the center line (a) of the transition piece assembly so that the introduced cooling air is guided to the outside of the transition piece (110).
  • the step of the guide portion 4200 is made of a curve.
  • a groove is formed at an end of the collision sleeve located at the left side of each cooling hole, and the groove may be formed in a concave shape in a curved shape, so that the impact is gradually progressed toward the left side.
  • the height of the sleeve is increased to form a step.
  • the groove is not limited to a concave shape, and any one of a convex shape, a wavy shape, and the like formed in a curved line is irrelevant.
  • the impact sleeve positioned on the left side is formed to have a lower height than the collision sleeve positioned on the right side, so that the left side cooling is performed like the guide portion 200 of the transition piece assembly according to the first embodiment. It has the same effect as the protruding wall is formed on the right side of the hole 130a. Therefore, the cooling air introduced into the left cooling hole 130a may not be moved to the right but may be oriented such that most of the cooling air moves to the left along the guide part 4200 located at the left. Furthermore, since the guide part 4200 is formed in a curved shape and gradually increases in height and forms a step, the guide part 4200 can be easily oriented without losing energy of cooling air than rapidly forming a step.
  • a groove is formed at an end portion of the collision sleeve located at the right side of each cooling hole, and the groove may be formed in a concave shape in a curved shape, and thus the collision sleeve gradually toward the right side. The height of the becomes higher and forms a step.
  • the groove is not limited to a concave shape, and any one of a convex shape, a wavy shape, and the like formed in a curved line is irrelevant.
  • the collision sleeve located on the right side is formed to have a lower height than the collision sleeve located on the left side, and thus the right side cooling is performed like the guide portion 200 of the transition piece assembly according to the first embodiment. It has the same effect as the protruding wall is formed on the left side of the hole 130b. Therefore, the cooling air introduced into the right cooling hole 130b may not be moved to the left side but may be oriented such that most of the cooling air moves to the right side along the guide part 4200 located at the right side. Further, since the guide part 4200 is formed in a curved shape and gradually increases in height and forms a step, the guide part 4200 can be easily oriented without losing energy of cooling air than rapidly forming a step.
  • the cooling air is oriented intensively to the left and the right, respectively, so that the amount of air flowing increases, and the inflow of cooling air to each side portion also increases. Accordingly, the high temperature region formed on the side surface of the transition piece 110 can be effectively cooled.
  • the movement path of the cooling air is shown by the arrow in FIG.
  • the transition piece 110 Since the temperature of the combustion gas combusted in the combustor liner 50 is a very high temperature gas at about 1500 ° C., the transition piece 110 is compressed so that the outer wall is supplied from the compressor so as not to be damaged by the high temperature of the combustion gas. It must be cooled by air.
  • Compressed cooling air discharged from the compressor enters the space portion 140 between the transition piece and the collision sleeve through a plurality of cooling holes 130 formed in the impact sleeve 120 to collide with the outer wall portion of the transition piece and the outer wall.
  • the cooling air introduced into the cooling hole located in the lower portion of the impact sleeve is along the guides 200, 2200, 3200, 4200 formed in the lower inner portion of the impact sleeve
  • the cooling air introduced into the left cooling hole (130a) is a transition
  • the cooling air introduced into the right cooling hole 130b is oriented and moved to the right side of the transition piece 110.
  • Cooling air cooling the outer wall of the transition piece 110 in the space 140 between the transition piece and the collision sleeve moves to the space on the combustor liner 50 side to cool the outer wall of the liner as a result, and consequently the combustor It is mixed with the combustion gas in the inside.
  • the present invention relates to a transition piece assembly and a combustor comprising the same, and more particularly, to a transition piece assembly having an improved cooling efficiency for cooling a high temperature region formed on a side of a gas turbine transition piece and a combustor including the same. will be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

본 발명은 트랜지션 피스의 측면에 형성되는 고온 영역을 냉각시키기 위한 냉각 효율이 개선된 트랜지션 피스 조립체 및 이를 포함하는 연소기에 관한 것으로, 연소기 라이너와 터빈을 연결하는 트랜지션 피스와, 상기 트랜지션 피스를 둘러싸고 있는 충돌 슬리브와, 상기 충돌 슬리브에 형성되는 냉각홀 및 상기 충돌 슬리브의 내측에 형성되어 공기를 트랜지션 피스의 측면으로 유도하기 위한 가이드부를 포함하는 트랜지션 피스 조립체를 제공한다.

Description

트랜지션 피스 조립체 및 이를 포함하는 연소기
본 발명은 트랜지션 피스 조립체 및 이를 포함하는 연소기에 관한 것으로, 더욱 상세하게는 가스터빈의 트랜지션 피스의 측면에 형성되는 고온 영역을 냉각시키기 위한 냉각 효율이 개선된 트랜지션 피스 조립체 및 이를 포함하는 연소기에 관한 것이다.
터빈이란 증기, 가스와 같은 압축성 유체의 흐름을 이용하여 충동력 또는 반동력으로 회전력을 얻는 기계장치로서, 증기를 이용하면 증기터빈, 연소가스를 이용하면 가스터빈이라고 한다.
가스터빈은 대기의 공기를 흡입하여 압축한 후 연소기로 고압의 공기를 공급하는 압축기, 고온·고압의 연소가스를 생성하기 위한 연소기 및 연소기로부터 토출되는 연소가스에 의해 구동하여 회전축을 회전시키는 터빈을 포함하여 이루어진다. 가스터빈의 작동원리는 먼저 대기의 공기를 흡입하여 압축기로 압축한 후 연소기로 보내 고온, 고압의 가스를 만들어서 터빈을 동작시키고 배기가스를 대기 중으로 방출하는 것으로, 압축, 가열, 팽창, 방열의 단계로 이루어진다.
가스터빈의 압축기는 대기로부터 공기를 흡입하여 연소기에 연소용 공기를 공급하는 역할을 하며 단열압축과정을 거치므로 압력과 공기의 온도가 상승된다. 또한, 연소기에서는 등압연소과정을 거치며 유입된 압축공기를 연료와 혼합, 연소시켜 높은 에너지의 연소가스를 만들어낸다.
연소기에서 나온 고온·고압의 연소가스는 팽창되면서 터빈의 회전날개에 충동, 반동력을 주어 기계적인 에너지로 변환된다. 상기의 기계적 에너지는 압축기에서 공기를 압축하는데 필요한 에너지로 공급되며, 나머지는 발전기를 구동하는데 이용되어 전력을 생산하게 된다.
가스터빈의 연소기는 라이너부 및 트랜지션 피스를 포함하여 이루어진다. 라이너부는 연료를 압축공기와 함께 연소시켜 고온의 압축가스를 생성하고, 상기 고온의 압축가스는 터빈으로 유입되어 팽창하면서 터빈과 연결된 회전축을 회전시키게 된다. 트랜지션 피스(transition piece)는 연소기 라이너부로부터 생성된 연소가스를 터빈 측으로 전달하기 위한 것으로, 고온가스의 속도를 증가시키는 부분이다. 트랜지션 피스는 연소가스의 높은 온도에 의해 파손되지 않도록 외벽부가 압축기로부터 공급되는 압축공기에 의해 냉각되어야 한다.
이를 위해, 다공 슬리브가 상기 트랜지션 피스를 둘러싸며, 다공 슬리브에 형성된 냉각홀을 통하여 압축기 방출 공기가 내부로 유동하게 되고, 트랜지션 피스의 외벽부와 충돌하여 냉각시키게 된다. 그 후, 냉각 공기는 트랜지션 피스를 둘러싸는 다공 슬리브와 트랜지션 피스 사이의 공간을 따라 유동하여, 라이너부 측으로 유동된다.
이와 같은 종래 가스터빈의 구동 시 트랜지션 피스의 온도 분포를 살펴보면, 특히 트랜지션 피스의 측면에 고온의 영역이 형성된다.
하지만, 종래의 트랜지션 피스는 트랜지션 피스를 둘러싸는 다공 슬리브를 포함하고 있으나, 측면으로 냉각 공기가 충분히 유입되지 않아 냉각이 잘 이루어지지 않는다는 문제점이 있다.
이에 따라, 트랜지션 피스가 적절히 냉각되지 않아 연소가스의 높은 온도에 의해 파손될 위험성이 있으며, 가스터빈의 효율이 낮아지고 수명이 짧아진다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 트랜지션 피스의 측면에 형성되는 고온 영역을 냉각시키기 위한 냉각 효율이 개선된 트랜지션 피스 조립체 및 이를 포함하는 연소기를 제공하는 것에 목적이 있다.
상기의 과제를 해결하기 위한 본 발명은, 연소기 라이너와 터빈을 연결하는 트랜지션 피스와, 상기 트랜지션 피스를 둘러싸고 있는 충돌 슬리브와, 상기 충돌 슬리브에 형성되는 냉각홀 및 상기 충돌 슬리브의 내측에 형성되어 공기를 트랜지션 피스의 측면으로 유도하기 위한 가이드부를 포함하는 트랜지션 피스 조립체를 제공한다.
상기 가이드부는 상기 냉각홀 부근에 형성되는 것을 특징으로 한다.
상기 가이드부는 상기 충돌 슬리브의 내측으로 돌출 형성될 수 있다.
상기 가이드부는 상기 트랜지션 피스의 측면을 향해 기울어진 테이퍼면을 이루며 돌출 형성될 수 있다.
상기 가이드부는 상기 충돌 슬리브의 내측에 단차를 이루며 형성될 수 있다.
상기 가이드부의 단차는 계단 형상으로 이루어진 것을 특징으로 한다.
상기 가이드부의 단차는 곡선으로 이루어진 것을 특징으로 한다.
또한, 압축공기를 연료와 혼합하여 연소시키기 위한 연소기 라이너 및 상기의 트랜지션 피스 조립체를 포함하는 연소기를 제공한다.
본 발명에 따른 트랜지션 피스 조립체 및 이를 포함하는 연소기는, 충돌 슬리브의 내측에 형성되어 공기를 트랜지션 피스의 측면으로 유도하기 위한 가이드부를 포함하여 트랜지션 피스의 측면으로 냉각 공기의 유입이 증가되면서 고온 영역의 냉각이 효율적으로 이루어질 수 있다.
이에 따라, 트랜지션 피스의 냉각 효율이 개선됨에 따라 연소가스의 높은 온도에 의해 트랜지션 피스 조립체가 파손될 위험성이 낮아지며, 가스터빈의 효율이 높아지고 수명이 늘어나는 효과가 있다.
도 1은 가스터빈의 연소기를 개략적으로 도시한 측면도이다.
도 2는 본 발명의 제1 실시예에 따른 트랜지션 피스 조립체의 측단면도이다.
도 3은 도 2의 A-A 부분의 단면도이다.
도 4는 본 발명의 제2 실시예에 따른 트랜지션 피스 조립체를 나타내기 위한 단면도이다.
도 5는 본 발명의 제3 실시예에 따른 트랜지션 피스 조립체를 나타내기 위한 단면도이다.
도 6은 본 발명의 제4 실시예에 따른 트랜지션 피스 조립체를 나타내기 위한 단면도이다.
이하, 본 발명의 트랜지션 피스 조립체 및 이를 포함하는 연소기에 대한 바람직한 실시예를 첨부된 도 1 내지 6을 참조하여 설명하도록 한다.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있으며, 아래의 실시예는 본 발명의 권리범위를 한정하는 것이 아니라 본 발명의 청구범위에 제시된 구성요소의 예시적인 사항에 불과하다.
도 1은 가스터빈의 연소기를 개략적으로 도시한 측면도, 도 2는 본 발명의 제1 실시예에 따른 트랜지션 피스 조립체의 측단면도, 도 3은 도 2의 A-A 부분의 단면도, 도 4는 본 발명의 제2 실시예에 따른 트랜지션 피스 조립체를 나타내기 위한 단면도, 도 5는 본 발명의 제3 실시예에 따른 트랜지션 피스 조립체를 나타내기 위한 단면도, 도 6은 본 발명의 제4 실시예에 따른 트랜지션 피스 조립체를 나타내기 위한 단면도이다.
본 발명의 트랜지션 피스 조립체가 설치되는 가스터빈(미도시)의 구성은 종래의 가스터빈과 동일하다.
우선, 도 1 내지 3을 참고하여 본 발명의 제1 실시 예에 따른 트랜지션 피스 조립체 및 이를 포함하는 연소기의 구조를 설명하도록 한다.
도 1에는 가스터빈의 연소기(1)가 개략적으로 도시되어 있으며, 가스터빈의 연소기(1)는 점화부(52), 연소기 라이너(50) 및 트랜지션 피스 조립체(100)를 포함하여 이루어진다. 점화부(52)는 연료를 점화시키는 부분이며, 연소기 라이너(50)는 연료를 압축공기와 함께 연소시켜 고온의 압축가스를 생성하는 부분이다. 본 발명의 연소기(1)의 점화부(52) 및 연소기 라이너(50)의 구성은 일반적인 점화부와 라이너의 구성과 동일하며, 본 발명은 트랜지션 피스 조립체(100)에 특징이 있는 바, 이에 대하여 자세하게 설명하도록 한다.
트랜지션 피스 조립체(100)는 연소기 라이너(50)로부터 생성된 연소가스를 터빈(미도시) 측으로 전달하기 위한 것으로, 고온가스의 속도를 증가시키는 부분이다.
상기의 연소기(1)에서 나온 고온·고압의 연소가스는 터빈(미도시) 측으로 유입되어 팽창되면서 터빈의 회전날개에 충동, 반동력을 주어 기계적인 에너지로 변환된다. 상기의 기계적 에너지는 압축기에서 공기를 압축하는데 필요한 에너지로 공급되며, 나머지는 발전기를 구동하는데 이용되어 전력을 생산하게 된다.
도 2 및 3에 도시된 바와 같이, 본 발명의 제1 실시 예에 따른 가스터빈의 트랜지션 피스 조립체(100)는 가스터빈의 연소기 라이너(50)와 터빈(미도시)을 연결하는 트랜지션 피스(110)와, 상기 트랜지션 피스(110)를 둘러싸고 있는 충돌 슬리브(120)와, 상기 충돌 슬리브(120)에 형성되는 냉각홀(130) 및 상기 충돌 슬리브(120)의 내측에 형성되어 공기를 트랜지션 피스(110)의 측면으로 유도하기 위한 가이드부(200)를 포함한다.
상기 트랜지션 피스(transition piece)(110)는 튜브 형상으로 형성되어 가스터빈의 연소기 라이너(50)와 터빈(미도시)을 연결하며, 연소기 라이너(50)로부터 생성된 연소가스를 터빈 측으로 전달하기 위함이다. 연소가스는 트랜지션 피스(110)를 통해 속도가 증가되어 터빈 내로 고속 유동한다. 상기 트랜지션 피스(110)는 연소기 라이너의 단면 형상에 맞게 원통, 사각통 등의 다양한 형상으로 형성될 수 있으나, 연소기 라이너와 결합되는 일단부는 대향하는 연소기 라이너의 단면 형상과 동일하게 형성되고, 터빈 측과 결합되는 타단부는 대향하는 터빈의 단면 형상과 동일하게 형성되는 것이 바람직하다.
본 일 실시예에서 트랜지션 피스(110)의 일단은 연소기 라이너(50)에 연결되지만, 일부 적용예에서는 별개의 커넥터 부품이 트랜지션 피스(110)의 일단과 연소기 라이너(50) 사이에 위치될 수 있다.
충돌 슬리브(120)는 반경방향으로 이격된 상태로 상기 트랜지션 피스(110)를 둘러싸며, 원통 형상으로 형성될 수 있다. 따라서, 상기 트랜지션 피스(110)와 충돌 슬리브(120) 사이에는 일정한 공간부(140)가 형성된다. 상기 충돌 슬리브(120)에는 냉각홀(130)이 사방으로 형성되어 있으며, 상기 냉각홀(130)은 다수의 열에 맞춰서 배열될 수 있다. 상기 냉각홀(130)은 원형 또는 타원형으로 형성될 수 있다.
가이드부(200)는 상기 충돌 슬리브(120)의 내측에 형성되어 공기를 트랜지션 피스(110)의 측면으로 유도하기 위한 역할을 한다. 상기 가이드부(200)는 상기 냉각홀(130) 부근에 형성되며, 제1 실시예에 따르면 상기 가이드부(200)는 상기 충돌 슬리브(120)의 내측으로 돌출 형성된다.
도 3에 도시된 바와 같이, 상기 가이드부(200)는 상기 충돌 슬리브(120)의 하부 내측에 형성되며, 냉각홀(130) 부근에 위치된다. 상기 가이드부(200)는 상기 냉각홀(130)을 통해 유입된 냉각 공기가 트랜지션 피스(110)의 측면의 외벽부를 향해 유도될 수 있도록 돌출 형성되어 있다. 더욱이, 상기 트랜지션 피스 조립체(100)의 크로스 단면(A-A)에서 좌우의 중심이 되는 중심선(a)을 기준으로 좌측에 위치한 좌측 냉각홀(130a)로 유입되는 냉각 공기는 좌측면으로 유도되도록 하고, 우측에 위치한 우측 냉각홀(130b)로 유입되는 냉각 공기는 우측면으로 유도되도록 한다.
이를 위해, 좌측 냉각홀(130a)의 경우에는 각각의 냉각홀의 우측에 위치한 충돌 슬리브 단부에 가이드부(200)가 벽을 형성하며 돌출되어 있다. 이로 인해, 좌측 냉각홀(130a)로 유입된 냉각 공기는 각 우측에 돌출 형성된 가이드부(200)에 의해 우측으로 이동하지 못하고 대부분의 냉각 공기가 좌측으로 이동하도록 배향된다. 또한, 우측 냉각홀(130b)의 경우에는 각각의 냉각홀의 좌측에 위치한 충돌 슬리브 단부에 가이드부(200)가 벽을 형성하며 돌출되어 있다. 이로 인해, 우측 냉각홀(130b)로 유입된 냉각 공기는 각 좌측에 돌출 형성된 가이드부(200)에 의해 좌측으로 이동하지 못하고 대부분의 냉각 공기가 우측으로 이동하도록 배향된다.
따라서, 각각 좌측 및 우측으로 냉각 공기가 집중적으로 배향되어 유동되는 공기의 양이 많아지면서, 각 측면부로의 냉각공기 유입 또한 증가하게 된다. 이에 따라, 트랜지션 피스(110)의 측면에 형성되는 고온 영역을 효과적으로 냉각시킬 수 있다. 참고로, 도 3에 냉각공기의 이동 경로를 화살표로 나타내었다.
다음으로는, 도 4를 참고하여 본 발명의 제2 실시예에 따른 가스터빈의 트랜지션 피스 조립체(2100)의 구조를 설명하도록 한다. 제2 실시예에 따른 트랜지션 피스 조립체(2100)는 제1 실시예에 따른 트랜지션 피스 조립체(100)의 구조와 가이드부의 형상만 상이할 뿐, 나머지 구성은 동일하다. 따라서, 트랜지션 피스(110), 충돌 슬리브(120) 및 냉각홀(130)에 대한 설명은 생략하며, 상이한 가이드부를 중심으로 설명하도록 한다.
도 4에 도시된 바와 같이, 제2 실시예에 따른 트랜지션 피스 조립체의 가이드부(2200)는 상기 충돌 슬리브(120)의 하부 내측에 형성되며, 냉각홀(130) 부근에 위치된다. 상기 가이드부(2200)는 제1 실시예에 따른 트랜지션 피스 조립체의 가이드부(200)와 유사하게 상기 냉각홀(130)을 통해 유입된 냉각 공기가 트랜지션 피스의 측면의 외벽부를 향해 유도될 수 있도록 돌출 형성되어 있다. 다만, 상기 가이드부(2200)는 상기 트랜지션 피스(110)의 측면을 향해 기울어진 테이퍼면을 이루며 돌출 형성된다. 더욱이, 상기 트랜지션 피스 조립체(2100)의 크로스 단면(A-A)에서 좌우의 중심이 되는 중심선(a)을 기준으로 좌측에 위치한 좌측 냉각홀(130a)로 유입되는 냉각 공기는 좌측면으로 유도되도록 하고, 우측에 위치한 우측 냉각홀(130b)로 유입되는 냉각 공기는 우측면으로 유도되도록 한다.
이를 위해, 좌측 냉각홀(130a)의 경우에는 각각의 냉각홀의 우측에 위치한 충돌 슬리브 단부에 가이드부(2200)가 벽을 형성하며 돌출되어 있고, 상기 가이드부(2200)는 좌측면을 향해 기울어진 상태로 형성된다. 이로 인해, 좌측 냉각홀(130a)로 유입된 냉각 공기는 각 우측에 돌출 형성된 가이드부(2200)에 의해 우측으로 이동하지 못하고 대부분의 냉각 공기가 좌측으로 이동하도록 배향된다. 더욱이, 상기 가이드부(2200)는 좌측면을 향해 기울어진 테이퍼면을 형성하기 때문에 더욱 용이하게 배향될 수 있다. 또한, 우측 냉각홀(130b)의 경우에는 각각의 냉각홀의 좌측에 위치한 충돌 슬리브 단부에 가이드부(2200)가 벽을 형성하며 돌출되어 있고, 상기 가이드부(2200)는 우측면을 향해 기울어진 상태로 형성된다. 이로 인해, 우측 냉각홀(130b)로 유입된 냉각 공기는 각 좌측에 돌출 형성된 가이드부(2200)에 의해 좌측으로 이동하지 못하고 대부분의 냉각 공기가 우측으로 이동하도록 배향된다. 더욱이, 상기 가이드부(2200)는 우측면을 향해 기울어진 테이퍼면을 형성하기 때문에 더욱 용이하게 배향될 수 있다.
따라서, 각각 좌측 및 우측으로 냉각 공기가 집중적으로 배향되어 유동되는 공기의 양이 많아지면서, 각 측면부로의 냉각공기 유입 또한 증가하게 된다. 이에 따라, 트랜지션 피스(110)의 측면에 형성되는 고온 영역을 효과적으로 냉각시킬 수 있다. 참고로, 도 4에 냉각공기의 이동 경로를 화살표로 나타내었다.
다음으로는, 도 5를 참고하여 본 발명의 제3 실시예에 따른 가스터빈의 트랜지션 피스 조립체(3100)의 구조를 설명하도록 한다. 제3 실시예에 따른 트랜지션 피스 조립체(3100)는 제1 실시예에 따른 트랜지션 피스 조립체(100)의 구조와 가이드부의 형상만 상이할 뿐, 나머지 구성은 동일하다. 따라서, 트랜지션 피스(110), 충돌 슬리브(120) 및 냉각홀(130)에 대한 설명은 생략하며, 상이한 가이드부를 중심으로 설명하도록 한다.
도 5에 도시된 바와 같이, 제3 실시예에 따른 트랜지션 피스 조립체의 가이드부(3200)는 상기 충돌 슬리브(120)의 하부 내측에 형성되며, 냉각홀(130) 부근에 위치된다. 상기 가이드부(3200)는 냉각홀(130)을 통해 유입된 냉각 공기가 트랜지션 피스(110)의 측면의 외벽부를 향해 유도될 수 있도록, 상기 충돌 슬리브(120)의 내측에 단차를 이루며 형성된다. 더욱이, 상기 트랜지션 피스 조립체(3100)의 크로스 단면(A-A)에서 좌우의 중심이 되는 중심선(a)을 기준으로 좌측에 위치한 좌측 냉각홀(130a)로 유입되는 냉각 공기는 좌측면으로 유도되도록 하고, 우측에 위치한 우측 냉각홀(130b)로 유입되는 냉각 공기는 우측면으로 유도되도록 한다.
본 일 실시예에서 상기 가이드부(3200)의 단차는 계단 형상으로 이루어진다. 구체적으로, 좌측 냉각홀(130a)의 경우에는 각각의 냉각홀의 좌측에 위치한 충돌 슬리브의 단부에 홈이 형성되어, 좌측으로 가면서 충돌 슬리브의 두께가 두꺼워지며 계단(step)을 형성하게 된다. 이로 인해, 좌측 냉각홀(130a)의 경우에는 좌측에 위치한 충돌 슬리브가 우측에 위치한 충돌 슬리브보다 높이가 낮게 형성되어 있어, 제1 실시예에 따른 트랜지션 피스 조립체의 가이드부(200)와 같이 좌측 냉각홀(130a)의 우측에 돌출된 벽이 형성된 것과 같은 효과를 가진다. 따라서, 좌측 냉각홀(130a)로 유입된 냉각 공기는 우측으로 이동하지 않고, 대부분의 냉각 공기가 좌측에 위치한 가이드부(3200)를 따라 좌측으로 이동하도록 배향될 수 있다.
또한, 우측 냉각홀(130b)의 경우에는 각각의 냉각홀의 우측에 위치한 충돌 슬리브의 단부에 홈이 형성되어, 우측으로 가면서 충돌 슬리브의 두께가 두꺼워지며 계단(step)을 형성하게 된다. 이로 인해, 우측 냉각홀(130b)의 경우에는 우측에 위치한 충돌 슬리브가 좌측에 위치한 충돌 슬리브보다 높이가 낮게 형성되어 있어, 제1 실시예에 따른 트랜지션 피스 조립체의 가이드부(200)와 같이 우측 냉각홀(130b)의 좌측에 돌출된 벽이 형성된 것과 같은 효과를 가진다. 따라서, 우측 냉각홀(130b)로 유입된 냉각 공기는 좌측으로 이동하지 않고, 대부분의 냉각 공기가 우측에 위치한 가이드부(3200)를 따라 우측으로 이동하도록 배향될 수 있다.
따라서, 각각 좌측 및 우측으로 냉각 공기가 집중적으로 배향되어 유동되는 공기의 양이 많아지면서, 각 측면부로의 냉각공기 유입 또한 증가하게 된다. 이에 따라, 트랜지션 피스(110)의 측면에 형성되는 고온 영역을 효과적으로 냉각시킬 수 있다. 참고로, 도 5에 냉각공기의 이동 경로를 화살표로 나타내었다.
다음으로는, 도 6을 참고하여 본 발명의 제4 실시예에 따른 가스터빈의 트랜지션 피스 조립체(4100)의 구조를 설명하도록 한다. 제4 실시예에 따른 트랜지션 피스 조립체(4100)는 제3 실시예에 따른 트랜지션 피스 조립체(3100)의 구조와 가이드부의 형상만 상이할 뿐, 나머지 구성은 동일하다. 따라서, 트랜지션 피스(110), 충돌 슬리브(120) 및 냉각홀(130)에 대한 설명은 생략하며, 상이한 가이드부를 중심으로 설명하도록 한다.
도 6에 도시된 바와 같이, 제4 실시예에 따른 트랜지션 피스 조립체의 가이드부(4200)는 상기 충돌 슬리브(120)의 하부 내측에 형성되며, 냉각홀(130) 부근에 위치된다. 상기 가이드부(4200)는 제3 실시예에 따른 트랜지션 피스 조립체의 가이드부(3200)와 유사하게 냉각홀(130)을 통해 유입된 냉각 공기가 트랜지션 피스(110)의 측면의 외벽부를 향해 유도될 수 있도록, 상기 충돌 슬리브(120)의 내측에 단차를 이루며 형성된다. 다만, 상기 가이드부(4200)의 단차는 곡선으로 이루어진다. 더욱이, 상기 트랜지션 피스 조립체(4100)의 크로스 단면(A-A)에서 좌우의 중심이 되는 중심선(a)을 기준으로 좌측에 위치한 좌측 냉각홀(130a)로 유입되는 냉각 공기는 좌측면으로 유도되도록 하고, 우측에 위치한 우측 냉각홀(130b)로 유입되는 냉각 공기는 우측면으로 유도되도록 한다. 나아가, 도면에 도시되어 있지는 않으나, 유입된 냉각 공기가 트랜지션 피스(110)의 외측으로 유도될 수 있도록, 트랜지션 피스 조립체의 중심선(a)에서 양 사이드로 갈수록 두께가 두꺼워지는 형상일 수도 있다.
본 일 실시예에서 상기 가이드부(4200)의 단차는 곡선으로 이루어진다. 구체적으로, 좌측 냉각홀(130a)의 경우에는 각각의 냉각홀의 좌측에 위치한 충돌 슬리브의 단부에 홈이 형성되며, 상기 홈은 곡선을 이루며 오목한 모양으로 형성될 수 있고, 이에 따라 좌측으로 갈수록 서서히 충돌 슬리브의 높이가 높아지며 단차를 형성하게 된다. 여기서, 상기 홈은 오목한 모양으로 한정되지 않고, 곡선으로 형성되는 볼록한 모양, 물결 모양 등의 어느 것이라도 무관하다. 이로 인해, 좌측 냉각홀(130a)의 경우에는 좌측에 위치한 충돌 슬리브가 우측에 위치한 충돌 슬리브보다 높이가 낮게 형성되어 있어, 제1 실시예에 따른 트랜지션 피스 조립체의 가이드부(200)와 같이 좌측 냉각홀(130a)의 우측에 돌출된 벽이 형성된 것과 같은 효과를 가진다. 따라서, 좌측 냉각홀(130a)로 유입된 냉각 공기는 우측으로 이동하지 않고, 대부분의 냉각 공기가 좌측에 위치한 가이드부(4200)를 따라 좌측으로 이동하도록 배향될 수 있다. 더욱이, 상기 가이드부(4200)는 곡선으로 형성되어 서서히 높이가 높아지며 단차를 형성하기 때문에, 급격히 단차를 형성하는 것보다 냉각 공기의 에너지의 손실 없이 용이하게 배향할 수 있다.
또한, 우측 냉각홀(130b)의 경우에는 각각의 냉각홀의 우측에 위치한 충돌 슬리브의 단부에 홈이 형성되며, 상기 홈은 곡선을 이루며 오목한 모양으로 형성될 수 있고, 이에 따라 우측으로 갈수록 서서히 충돌 슬리브의 높이가 높아지며 단차를 형성하게 된다. 여기서, 상기 홈은 오목한 모양으로 한정되지 않고, 곡선으로 형성되는 볼록한 모양, 물결 모양 등의 어느 것이라도 무관하다. 이로 인해, 우측 냉각홀(130b)의 경우에는 우측에 위치한 충돌 슬리브가 좌측에 위치한 충돌 슬리브보다 높이가 낮게 형성되어 있어, 제1 실시예에 따른 트랜지션 피스 조립체의 가이드부(200)와 같이 우측 냉각홀(130b)의 좌측에 돌출된 벽이 형성된 것과 같은 효과를 가진다. 따라서, 우측 냉각홀(130b)로 유입된 냉각 공기는 좌측으로 이동하지 않고, 대부분의 냉각 공기가 우측에 위치한 가이드부(4200)를 따라 우측으로 이동하도록 배향될 수 있다. 더욱이, 상기 가이드부(4200)는 곡선으로 형성되어 서서히 높이가 높아지며 단차를 형성하기 때문에, 급격히 단차를 형성하는 것보다 냉각 공기의 에너지의 손실 없이 용이하게 배향할 수 있다.
따라서, 각각 좌측 및 우측으로 냉각 공기가 집중적으로 배향되어 유동되는 공기의 양이 많아지면서, 각 측면부로의 냉각공기 유입 또한 증가하게 된다. 이에 따라, 트랜지션 피스(110)의 측면에 형성되는 고온 영역을 효과적으로 냉각시킬 수 있다. 참고로, 도 6에 냉각공기의 이동 경로를 화살표로 나타내었다.
다음으로는, 본 발명의 가스터빈의 트랜지션 피스 조립체(100, 2100, 3100, 4100)에서 트랜지션 피스(110)가 냉각되는 과정을 간략하게 살펴보도록 한다.
상기 연소기 라이너(50) 내에서 연소된 연소가스의 온도는 약 1500℃로 매우 고온의 가스이기 때문에, 상기 트랜지션 피스(110)는 연소가스의 높은 온도에 의해 파손되지 않도록 외벽부가 압축기로부터 공급되는 압축공기에 의해 냉각되어야 한다.
압축기에서 배출된 압축 냉각 공기는 상기 충돌 슬리브(120)에 형성된 다수의 냉각홀(130)을 통해 상기 트랜지션 피스와 충돌 슬리브 사이의 공간부(140)로 진입하여, 트랜지션 피스의 외벽부와 부딪히며 외벽부를 냉각시키게 된다. 이때, 상기 충돌 슬리브의 하부에 위치한 냉각홀로 유입된 냉각공기는 충돌 슬리브의 하부 내측에 형성된 가이드부(200, 2200, 3200, 4200)를 따라서, 좌측 냉각홀(130a)로 유입된 냉각공기는 트랜지션 피스(110)의 좌측면으로, 우측 냉각홀(130b)로 유입된 냉각공기는 트랜지션 피스(110)의 우측면으로 배향되어 이동하게 된다.
상기와 같이 가이드부(200, 2200, 3200, 4200)에 의해 트랜지션 피스(110)의 측면부로 냉각 공기가 유도되면서 측면부로의 공기 유입이 증가하게 된다. 이에 따라, 유속 증가로 인해 압력이 하강하게 되고, 충돌 슬리브(120)의 외부 유체 대비 낮은 압력을 형성하게 되어 충돌 슬리브의 내부로 공기가 유입된다. 결과적으로, 트랜지션 피스(110)의 측면부에 형성되는 고온 영역의 냉각이 효율적으로 이루어질 수 있다.
상기 트랜지션 피스와 충돌 슬리브 사이의 공간부(140)에서 트랜지션 피스(110)의 외벽부를 냉각시킨 냉각 공기는 연소기 라이너(50) 측의 공간부로 이동하여 라이너의 외벽부 또한 냉각시킨 뒤, 결과적으로 연소기 내의 연소가스와 혼합된다.
본 발명은 트랜지션 피스 조립체 및 이를 포함하는 연소기에 관한 것으로, 더욱 상세하게는 가스터빈의 트랜지션 피스의 측면에 형성되는 고온 영역을 냉각시키기 위한 냉각 효율이 개선된 트랜지션 피스 조립체 및 이를 포함하는 연소기에 관한 것이다.

Claims (8)

  1. 연소기 라이너와 터빈을 연결하는 트랜지션 피스;
    상기 트랜지션 피스를 둘러싸고 있는 충돌 슬리브;
    상기 충돌 슬리브에 형성되는 냉각홀; 및
    상기 충돌 슬리브의 내측에 형성되어 공기를 트랜지션 피스의 측면으로 유도하기 위한 가이드부;
    를 포함하는 트랜지션 피스 조립체.
  2. 제1항에 있어서,
    상기 가이드부는 상기 냉각홀 부근에 형성되는 것을 특징으로 하는 트랜지션 피스 조립체.
  3. 제2항에 있어서,
    상기 가이드부는 상기 충돌 슬리브의 내측으로 돌출 형성된 트랜지션 피스 조립체.
  4. 제3항에 있어서,
    상기 가이드부는 상기 트랜지션 피스의 측면을 향해 기울어진 테이퍼면을 이루며 돌출 형성된 트랜지션 피스 조립체.
  5. 제2항에 있어서,
    상기 가이드부는 상기 충돌 슬리브의 내측에 단차를 이루며 형성된 트랜지션 피스 조립체.
  6. 제5항에 있어서,
    상기 가이드부의 단차는 계단 형상으로 이루어진 것을 특징으로 하는 트랜지션 피스 조립체.
  7. 제5항에 있어서,
    상기 가이드부의 단차는 곡선으로 이루어진 것을 특징으로 하는 트랜지션 피스 조립체.
  8. 압축공기를 연료와 혼합하여 연소시키기 위한 연소기 라이너; 및
    제1항 내지 제7항 중 어느 한 항의 트랜지션 피스 조립체;
    를 포함하는 연소기.
PCT/KR2017/000840 2016-06-28 2017-01-24 트랜지션 피스 조립체 및 이를 포함하는 연소기 WO2018004097A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0081029 2016-06-28
KR20160081029 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018004097A1 true WO2018004097A1 (ko) 2018-01-04

Family

ID=57850914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000840 WO2018004097A1 (ko) 2016-06-28 2017-01-24 트랜지션 피스 조립체 및 이를 포함하는 연소기

Country Status (5)

Country Link
US (1) US10495311B2 (ko)
EP (1) EP3263840B1 (ko)
JP (1) JP6346318B2 (ko)
KR (1) KR101877675B1 (ko)
WO (1) WO2018004097A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6960345B2 (ja) * 2018-02-01 2021-11-05 三菱パワー株式会社 ガスタービン燃焼器及びトランジションピースフロースリーブ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085488A (ko) * 2000-02-25 2001-09-07 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 가스 터빈용 연소기 및 연소기 라이너 유동 슬리브와연소기 라이너 냉각 방법
JP2003286863A (ja) * 2002-03-29 2003-10-10 Hitachi Ltd ガスタービン燃焼器及びガスタービン燃焼器の冷却方法
JP2008169837A (ja) * 2007-01-09 2008-07-24 General Electric Co <Ge> 翼形、スリーブ及び燃焼器アセンブリの組立方法
JP2011102580A (ja) * 2009-11-11 2011-05-26 General Electric Co <Ge> 冷却を強化したタービンエンジン用の燃焼器組立体
KR20150085745A (ko) * 2014-01-16 2015-07-24 두산중공업 주식회사 냉각슬리브를 포함하는 라이너, 플로우슬리브 및 가스터빈연소기

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146186A (ja) 1998-11-10 2000-05-26 Hitachi Ltd ガスタービン燃焼器
US7827801B2 (en) * 2006-02-09 2010-11-09 Siemens Energy, Inc. Gas turbine engine transitions comprising closed cooled transition cooling channels
JP2007309247A (ja) * 2006-05-19 2007-11-29 Mitsubishi Heavy Ind Ltd ガスタービン
US8281600B2 (en) * 2007-01-09 2012-10-09 General Electric Company Thimble, sleeve, and method for cooling a combustor assembly
US8127553B2 (en) * 2007-03-01 2012-03-06 Solar Turbines Inc. Zero-cross-flow impingement via an array of differing length, extended ports
US7757492B2 (en) 2007-05-18 2010-07-20 General Electric Company Method and apparatus to facilitate cooling turbine engines
US8448443B2 (en) * 2007-10-11 2013-05-28 General Electric Company Combustion liner thimble insert and related method
US8151570B2 (en) * 2007-12-06 2012-04-10 Alstom Technology Ltd Transition duct cooling feed tubes
US9046269B2 (en) * 2008-07-03 2015-06-02 Pw Power Systems, Inc. Impingement cooling device
US8291711B2 (en) * 2008-07-25 2012-10-23 United Technologies Corporation Flow sleeve impingement cooling baffles
US8387397B2 (en) * 2009-01-27 2013-03-05 General Electric Company Flow conditioner for use in gas turbine component in which combustion occurs
US20100269513A1 (en) * 2009-04-23 2010-10-28 General Electric Company Thimble Fan for a Combustion System
JP5579011B2 (ja) * 2010-10-05 2014-08-27 株式会社日立製作所 ガスタービン燃焼器
US9127551B2 (en) * 2011-03-29 2015-09-08 Siemens Energy, Inc. Turbine combustion system cooling scoop
US20120297784A1 (en) * 2011-05-24 2012-11-29 General Electric Company System and method for flow control in gas turbine engine
US9267687B2 (en) * 2011-11-04 2016-02-23 General Electric Company Combustion system having a venturi for reducing wakes in an airflow
US8479518B1 (en) * 2012-07-11 2013-07-09 General Electric Company System for supplying a working fluid to a combustor
US9739201B2 (en) * 2013-05-08 2017-08-22 General Electric Company Wake reducing structure for a turbine system and method of reducing wake
US10422235B2 (en) * 2014-05-29 2019-09-24 General Electric Company Angled impingement inserts with cooling features
JP6204881B2 (ja) * 2014-06-26 2017-09-27 東京エレクトロン株式会社 被処理体を処理する方法
EP2960436B1 (en) * 2014-06-27 2017-08-09 Ansaldo Energia Switzerland AG Cooling structure for a transition piece of a gas turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085488A (ko) * 2000-02-25 2001-09-07 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 가스 터빈용 연소기 및 연소기 라이너 유동 슬리브와연소기 라이너 냉각 방법
JP2003286863A (ja) * 2002-03-29 2003-10-10 Hitachi Ltd ガスタービン燃焼器及びガスタービン燃焼器の冷却方法
JP2008169837A (ja) * 2007-01-09 2008-07-24 General Electric Co <Ge> 翼形、スリーブ及び燃焼器アセンブリの組立方法
JP2011102580A (ja) * 2009-11-11 2011-05-26 General Electric Co <Ge> 冷却を強化したタービンエンジン用の燃焼器組立体
KR20150085745A (ko) * 2014-01-16 2015-07-24 두산중공업 주식회사 냉각슬리브를 포함하는 라이너, 플로우슬리브 및 가스터빈연소기

Also Published As

Publication number Publication date
US10495311B2 (en) 2019-12-03
EP3263840B1 (en) 2019-06-19
EP3263840A1 (en) 2018-01-03
KR20180002013A (ko) 2018-01-05
US20170370582A1 (en) 2017-12-28
JP6346318B2 (ja) 2018-06-20
JP2018003830A (ja) 2018-01-11
KR101877675B1 (ko) 2018-07-12

Similar Documents

Publication Publication Date Title
EP2211111B1 (en) Bundled multi-tube injection nozzle assembly for a turbomachine
WO2016167445A1 (ko) 초임계 이산화탄소 사이클을 이용한 하이브리드 발전 시스템
WO2013012258A2 (ko) 가스 엔진용 예연소실 구조체
JP2014181701A (ja) ガスタービン燃焼器の燃焼モジュールのための流れスリーブ組立体
ITMI991208A1 (it) Dispositivo per il posizionamento di ugelli di uno stadio statorico eper il raffreddamento di dischi rotorici in turbine a gas
EP1433924B1 (en) Gas turbine engine with recuperation
RU2667849C2 (ru) Камера сгорания газотурбинного двигателя, оснащенная средствами отклонения воздуха для уменьшения следа, создаваемого свечой зажигания
JP2015135111A (ja) 冷却スリーブ付きライナー、冷却スリーブ付きフロースリーブ、及びガスタービン燃焼器
WO2018004097A1 (ko) 트랜지션 피스 조립체 및 이를 포함하는 연소기
WO2017026875A1 (ko) 가스터빈 블레이드
WO2017175918A1 (ko) 초 저공해 연소기
CN105972637B (zh) 具有双壁的燃烧室
US20220056806A1 (en) Structure for assembling turbine blade seals, gas turbine including the same, and memthod of assembling turbine blade seals
WO2016003020A1 (ko) 연소기 어셈블리
WO2018009019A1 (ko) 디스크 조립체 및 그를 포함하는 터빈
US9617913B2 (en) Tool for manipulating cross-fire tube in combustor assembly, combustor maintenance assembly and method
KR20200047979A (ko) 터빈 베인 및 링세그먼트와 이를 포함하는 가스 터빈
KR102051988B1 (ko) 이중관 라이너 내부 유동가이드를 포함하는 가스 터빈 엔진의 연소기, 및 이를 포함하는 가스터빈
KR102084162B1 (ko) 터빈 스테이터, 터빈 및 이를 포함하는 가스터빈
JP4987427B2 (ja) 作動ガス流入路の冷却構造を備える常圧燃焼タービンシステム
KR20200104177A (ko) 터빈 베인, 터빈 블레이드 및 이를 포함하는 가스 터빈
KR20180128661A (ko) 베인 어셈블리를갖는 가스터빈
US10801347B2 (en) Sealing assembly and gas turbine including the same
AR018616A1 (es) Metodo para la recuperacion de calor de productos de combustion (gases de combustion) de un combustible, disposicion para transferir y recuperar calor deproductos de combustion, dispositivo de arranque y conjunto de quemador
KR101937589B1 (ko) 터빈의 터빈 블레이드와 터빈 베인 및 이를 포함하는 터빈 및 가스터빈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820374

Country of ref document: EP

Kind code of ref document: A1