WO2018001280A1 - 光传送网中传送客户信号的方法及传送设备 - Google Patents

光传送网中传送客户信号的方法及传送设备 Download PDF

Info

Publication number
WO2018001280A1
WO2018001280A1 PCT/CN2017/090615 CN2017090615W WO2018001280A1 WO 2018001280 A1 WO2018001280 A1 WO 2018001280A1 CN 2017090615 W CN2017090615 W CN 2017090615W WO 2018001280 A1 WO2018001280 A1 WO 2018001280A1
Authority
WO
WIPO (PCT)
Prior art keywords
granularity
slot
signal
slots
payload
Prior art date
Application number
PCT/CN2017/090615
Other languages
English (en)
French (fr)
Inventor
苏伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17819277.9A priority Critical patent/EP3462647B1/en
Priority to JP2018567840A priority patent/JP6787597B2/ja
Priority to KR1020197001602A priority patent/KR102192294B1/ko
Publication of WO2018001280A1 publication Critical patent/WO2018001280A1/zh
Priority to US16/233,426 priority patent/US10771177B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a method and a transmission device for transmitting a client signal in an optical transport network.
  • OTN Optical Transport Network
  • OAM Operaation Administration and Maintenance
  • TCM Tumor Connection Monitoring
  • FEC Forward Error Correction
  • the OTN standard system defines four fixed-channel OTUs (Optical Channel Transport Units), which are OTU1, OTU2, OTU3, and OTU4, with line rate levels of 2.5G, 10G, 40G, and 100G, respectively.
  • the unit is bit/s, which is bits per second.
  • the four types of OTUs correspond to four ODUs (Optical Channel Data Units) of the same rate class, that is, ODU1, ODU2, ODU3, and ODU4.
  • ODU1 Optical Channel Data Units
  • ODU3 Optical Channel Data Units
  • ODU1 Optical Channel Data Unit
  • the payload area of the ODU2 can be divided into four time slots (TS, Tributary Slot), and each time slot is used to carry one ODU1 data.
  • the embodiments of the present invention provide a method for transmitting a client signal in an optical transport network and an optical transport network device, so as to solve the problem that the OTU adopts a fixed rate in the prior art and the bandwidth utilization of the optical fiber is not high.
  • a method for transmitting a client signal in an optical transport network comprising:
  • the OTN data plane can be flexibly divided according to the needs of the time slot to meet the customized transmission requirements of the customer service, and the same bearer container can carry different rate services to improve the bandwidth transmission efficiency.
  • the value of the n is determined according to at least one of a rate, a transmission distance, and a modulation format of the first client signal.
  • m is an integer greater than 1, the method further includes:
  • the optical data unit signal further includes an overhead of a third granular time slot, where the m Dividing another first granularity slot in one granularity slot into x third granularity slots includes: according to at least one of a rate of the received second client signal, a transmission distance, and a modulation format, the m Another first granularity slot in the first granularity slot is divided into x third granular slots; the method further includes:
  • the method further includes:
  • the third service signal is mapped into a payload of one or more fourth granular time slots of the z fourth granularity slots z, wherein z is a positive integer greater than 1, the optical payload unit signal signal It also includes the overhead of the fourth granular time slot.
  • the overhead of the first granularity slot is located in the optical payload unit signal overhead in the optical payload unit signal signal, and the overhead of the second granularity slot is located in the payload of the optical payload unit signal.
  • the overhead of the first granular time slot is located in an MSI field of an optical payload unit signal overhead, and an overhead of the first granularity time slot is used for Each first granularity slot is identified.
  • the method further includes:
  • the possible implementation in the ninth aspect of the first aspect includes:
  • an optical transport network device including:
  • a time slot dividing unit configured to divide a payload of the optical payload unit signal into m first granularity time slots, and divide one of the m first granularity time slots into n second time slots a granularity slot, wherein the first granularity slot rate is n times the second granularity slot rate, m is a positive integer, and n is a positive integer greater than one;
  • a signal mapping unit configured to map a first client signal into a payload of one or more second granular time slots of the n second granular time slots; adding a first to the optical payload unit signal Generating an optical data unit signal by the overhead of the granular time slot and the overhead of the second granular time slot;
  • a sending unit configured to send the optical data unit signal.
  • the time slot dividing unit is further configured to:
  • the signal mapping unit is further configured to:
  • the time slot dividing unit is further configured to: according to at least one of a rate, a transmission distance, and a modulation format of the third service signal, One of the x third granularity slots is divided into z fourth granular slots; the signal mapping unit is further configured to:
  • the signal signal also includes the overhead of the fourth granularity slot.
  • an optical transport network device including:
  • a memory for storing computer executable program code
  • a processor coupled to the memory
  • program code includes instructions that, when executed by the processor, cause the optical transport network device to perform the following operations:
  • one granularity slot of the m first granular slots is further divided into n smaller granularities.
  • the second granularity slot, the first client signal is mapped to one or more second granular time slots, and the time slot size can be flexibly divided according to requirements in the OTN data plane to meet the customized transmission requirement of the customer service, and the same bearer container hybrid bearer Different rate business, improve the belt Wide transmission efficiency.
  • FIG. 1 is a format diagram of an OTN frame according to an embodiment of the present invention.
  • 2 is a frame structure of an OTUCn frame defined by an OTUCn signal
  • FIG. 3 is a schematic diagram of a TS distribution using GMP mapping according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a payload time slot division of an OPUk in an ODUk according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a method for transmitting a client signal according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of performing multiple granularity time slot division on a payload of an optical payload unit signal according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of an optical payload unit signal after performing a plurality of granularity slot divisions on a payload of an optical payload unit signal according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of value taking of slot cost according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a slot pointer field according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an optical transmission network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an optical transport network device according to an embodiment of the present invention.
  • FIG. 1 is a diagram of an OTN frame format according to an embodiment of the present invention.
  • the OTN frame is a standard modular structure of 4080 columns ⁇ 4 rows, 16 columns of the OTN frame header are overhead bytes, 3808 columns in the middle are payloads, and 256 columns in the tail are FEC check bytes.
  • the OTN frame includes: FAS (Frame Alignment Signal) byte located in the 1st-7th column of the 1st row, and is used for providing frame synchronization positioning, and the 7th byte of the FAS is a multiframe indication (Multi -Frame Alignment Signal (MFAS), which is used to indicate the cost allocation when carrying multiple customer service data in time division multiplexing mode;
  • MFAS Multi -Frame Alignment Signal
  • OTUk OH Optical Channel Transport Unit-k Overhead, optical channel located in the 8th to 14th columns of the 1st row
  • the transmission unit k overhead bytes are used to provide the network management function at the optical channel transmission unit level; the ODUk OH (Optical Channel Data Unit-k Overhead, optical channel data unit k overhead in the 1-4th row, columns 1-14 Bytes for providing maintenance and operation functions;
  • OPUk OH Optical Channel Payload Unit-k Overhead
  • the OPUk OH byte includes a Payload Structure Identifier (PSI), and the PSI has 0-255 possible values under the MFAS indication, wherein the 0th byte is a customer service data type indication (Payload Type, PT). ), the rest are reserved bytes (Reserved, RES), reserved for future expansion;
  • the OPUk (Optical Channel Payload Unit-k) byte of the 17th to 3824th is used to provide the function of the customer service data bearer, and the customer service data to be transmitted is encapsulated into the OPUk;
  • the FEC byte of the 3825-4080 column is used to provide error detection and error correction.
  • the coefficient k represents the supported bit rate, and the different bit rates correspond to different kinds of OPUk, ODUk and OTUk.
  • OPUk and OPUk OH constitute an OPUk frame
  • OPUk frame, ODUk OH and FAS constitute an ODUk frame
  • ODUk frame, OTUk OH and FEC constitute an OTUk frame.
  • OTUCn Optical Channel Transport Unit-Cn
  • OTN OTN
  • n is a positive integer
  • the OTUCn interface provides electrical interface processing at a rate of n*100 Gbit/s, and the OTUCn signal contains 20*n 5 Gbit/s time slots.
  • the frame structure of the OTUCn frame defined by the OTUCn signal is as shown in FIG. 2, and the OTUCn frame is composed of n OTU subframes, and each OTU subframe is 4 rows and 3824 columns.
  • FA OH Framework Alignment Overhead
  • OTU OH is the OTUCn overhead byte, which manages and monitors OTUCn as a signal, and provides network management functions at the optical channel transmission unit level.
  • Most of the overhead information in the OTUCn overhead is carried by the OTU OH of the first OTU subframe (OTU subframe #1), and the remaining small portion of the overhead information is carried by the remaining multiple OTU subframes.
  • the OTUCn frame is formed by adding FA OH and OTUCn overhead on the ODUCn (Optical Channel Data Unit-Cn) frame.
  • the ODUCn frame is composed of n ODU subframes, and each ODU subframe is 4 rows and 3824 columns.
  • the ODUCn frame is formed by adding an ODUCn overhead to the OPUCn (Optical Channel Payload Unit-Cn).
  • the OPUCn frame is composed of n OPU subframes, and each OPU subframe is 4 rows and 3810 columns.
  • Each OPU subframe includes 2 columns of overhead regions and 3808 columns of payload regions, and each OPU subframe includes 20 5 Gbit/s slots for carrying low-order services.
  • the serial OTUCn bit stream is transmitted through the optical module of the corresponding rate.
  • the mapping procedure refers to a method of mapping different types of services to be transmitted into an OPU Payload Area.
  • the present embodiment maps customer service data into the OPU using a GMP mapping procedure.
  • FIG. 3 is a schematic diagram of a TS distribution using GMP mapping according to an embodiment of the present invention.
  • the GMP OH in FIG. 3 is equivalent to the OPUk OH in FIG. 1.
  • the GMP OH in this embodiment includes an indication for adjusting the TS.
  • TS information, one or more TSs in FIG. 3 constitute a GMP block container to transmit customer service data.
  • Figure 3 illustrates the specific GMP mapping method by OPU2.
  • the payload area of the OPU2 frame is divided into 8 TSs, and 4 rows of each column form a time slot, which is sequentially identified as TS1, TS2, and TS3, until TS8, and the loop continues.
  • the time slot assignments for all columns of the payload area are completed.
  • the eight OPU2 frames form an 8-multiframe of OPU2.
  • the customer service data may be mapped to one or more time slots of the 8-multiframe payload area of the OPU2, and one or more of the 8-multiframes of the OPU2 may constitute an GMP block container to carry service data.
  • Three TSs are used to transmit service data, which are TS1, TS3 and TS4.
  • the customer business data When the customer business data is put into the GMP block container, it is placed in the unit of action. After being filled in the corresponding time slot of a row, a similar put operation is performed in the corresponding time slot of the next row.
  • the GMP block capacity at this time The number of TSs occupied by the device is three, and the mapping granularity is 3-byte (bytes).
  • the client data When the client data is put into the GMP block container, it is three clock cycles (determined by the clock information at the time of mapping).
  • the customer data of bytes is placed in the first row of columns 17, 19 and 20, and then the customer data of the other 3 bytes is placed in the first row of columns 25, 27 and 28 in the second clock cycle. , and so on, after a row is full, perform a similar put operation on the next line.
  • the process of transmitting the client signal in the OTN is: multiplexing the client signal to the ODUk through the GMP protocol; the ODUk adds Forward Error Correction (FEC) data to the OTUk; and then transmitting the OTUk.
  • FEC Forward Error Correction
  • the payload area of the ODUk is divided into n time slots TS (Tributary Slot, TS).
  • the 17th column to the 3824th column of the ODUk are payload areas, the payload area of the ODUk includes a total of 3808 columns, and the manner in which the payload area of the ODUk is divided into n time slots is as follows:
  • the time slot of the OPUk payload in each frame ODUk is divided. From the 17th column to the 3824th column of the ODUk, that is, from the 1st column to the 3808th column of the payload area of the ODUk, sequentially labeling each column from 1 to n, and the 3808th column of the payload area of the ODUk
  • the label is Mod(3808/n)
  • Mod(3808/n) represents the remainder obtained by dividing 3808 by n. Columns with the same label belong to the same time slot, each time slot occupies an int (3808/n) column, and the int (3808/n) represents 3808 divided by n and rounded down.
  • n when n is equal to 5, 3808/5 is equal to 761.6, Mod (3808/5) is equal to 3, and int (3808/5) is equal to 761.
  • n cannot divide 3808, the bytes in the columns corresponding to the remainder are filled.
  • n when n is equal to 5, 5 can divide 3805 columns, and the remaining 3 columns are filled. Since each time slot occupies an int (3808/n) column and each column contains 4 bytes, each time slot occupies 4*int (3808/n) bytes.
  • FIG. 5 is a schematic flowchart of a method for transmitting a client signal according to an embodiment of the present invention, where the method includes the following processes:
  • Step S501 dividing the payload of the optical payload unit OPU signal into m first granularity slots
  • the optical transport network device divides the payload area of the OPU signal into m first granularity slots, which may include: from the first column of the payload area of the OPU signal to the payload area of the OPU signal.
  • the M1 is sequentially cyclically numbered from 1 to m for every M byte in the payload area, and the bytes having the same label belong to the same first granularity slot, where M is a positive integer.
  • the optical transport network device divides the payload area of the OPU signal into m first granularity slots, which may include: from the first column of the payload area of the optical OPU signal to the net of the OPU signal In column 3808 of the flood zone, each column in the payload area is sequentially numbered from 1 to m, and the columns having the same label belong to the same first granularity slot.
  • the coefficient k in ODUk indicates the supported bit rate
  • the different bit rate corresponds to different kinds of OPUk, ODUk and OTUk
  • OPUk and OPUk OH constitute OPUk frame
  • OPUk frame, ODUk OH and FAS constitute ODUk frame
  • ODUk frame, OTUk OH and FEC form an OTUk frame.
  • Step S502 dividing one of the m first granular time slots into n second granular time slots, where the first granularity time slot rate is the second granularity time slot rate.
  • n times m is a positive integer, and n is a positive integer greater than one;
  • the existing ODUk such as ODU2
  • the granularity of these slots limits the effective bearer of the service to a certain extent, and cannot provide optimal bandwidth transmission efficiency.
  • the optical transport network device may further divide a first granularity slot rate of 2.5G into a second granularity slot rate, where the first granularity slot The rate is n times the second granularity slot rate, and n is an integer greater than 1, for example, the divided second granularity slot rate may be 1/2, 1/3 or 1/4 of the 2.5G rate.
  • the ratio of the first granularity slot rate to the second granularity slot rate may be determined according to the rate of the first client signal to be carried, for example, when the rate of the first client signal is 0.8G. Since the rate of the second granularity slot is 0.833G when the rate of 2.5G is divided into three second granularity slots, a first granularity slot rate can be divided into three 08533G second granularity slots. .
  • Step S503 Mapping the first client signal to a payload of a second granularity slot of the n second granular time slots;
  • the optical transmission network device can map the first client signal to three.
  • a second granular time slot in the second granularity slot. 6 is a schematic diagram of OPU2 payload time slot division.
  • TS a1-TS a4 is a first granularity slot
  • the rate is 2.5G
  • one first granularity slot TS a1 is divided into three second granularities.
  • the time slots TS b1, TS b2, TS b3, can map the first customer service signal of the 0.8G rate to the payload of the TS b1 time slot.
  • the first client signal occupies part or all of the first granular time slot divided into n second granular time slots, and other unoccupied first granular time slots may be used to carry other client signals, for example, Another client signal is mapped to one or more of the first granular time slots of the m first granular time slots except the first granular time slot divided into n second granular time slots A granular time slot.
  • Step S504 adding an overhead of a first granularity slot and an overhead of a second granularity slot to the OPU signal signal to generate an ODU signal;
  • the overhead of the first granularity slot is located in the OPU overhead in the ODU signal, and the overhead of the second granularity slot is located in the payload of the OPU signal.
  • the overhead of the first granularity slot is used to identify each first granularity slot, and the overhead of the first granularity slot may further include a slot for indicating whether the first granular slot is divided into other granularities. information.
  • the first granularity time slot overhead further includes another granularity indicating that the first granular time slot is divided. Information on the number of slots.
  • the second granularity slot overhead may be located in the first byte of each second granularity slot, and the overhead fragmentation information of the second granularity slot may be stored in the MFAS field.
  • Step S505 transmitting the ODU signal.
  • the transmitting the ODU signal by the optical transmission network device may be implemented by adding an OTU overhead to the ODU signal to generate an OTU signal, and transmitting the OTU signal.
  • the second granular time slot may be further advanced according to at least one of a service rate, a transmission distance, and a modulation format, for example, a smaller service rate needs to be carried.
  • the first granularity slot is referred to herein as the granularity slot of the first level
  • the second granularity slot is referred to as the granular slot of the second level
  • the second granularity slot is again divided.
  • the time slot is called the granularity time slot of the third level. As shown in FIG. 7, one time slot in the first level time slot is divided into the second level time slot, and the third level time slot can be further divided into the third level level.
  • the time slot assuming that the level I slot is 2.5G, and the level II slot can be 0.5G.
  • the third-level time slot can be 0.05G, and the service can be transmitted in the third-level time slot, and the service can be transmitted as small as 0.1G, which is obviously more flexible and resource-saving than the first-level time slot.
  • the overhead of the level 1 slot can be located in the overhead of the OPU, and the overhead of the level I slot can be located in the first byte of the level II slot, and the slot of the level III The overhead can be located in the first byte of the Level III time slot.
  • the overhead of the first-level time slot may include a Tributary Slot Pointer (TSP) of the first-level time slot, and the TSP of the first-level time slot may pass the MSI (Multiplex Structure Identifier) of the OPU overhead.
  • TSP Tributary Slot Pointer
  • the field carries, assuming that the payload of the OPU signal is divided into a level I slot, the second MSI in the MSI field, ie, the MSI value stored in the MSI [2], where the MFAS value is 2, is used Indicates that the MSI[2] stores the slot pointer indication of the first slot in the I-level slot, and the third MSI in the MSI field, that is, the MFAS value stored in the MSI[3] is 3,
  • the identifier in the MSI[3] is the slot pointer indication of the second slot in the slot of the first level, and so on, as shown in FIG. 8, the a+1th MSI in the MSI field, that is, the MSI [a] Store
  • the MFAS value of the slot i of the level II slot can be set to 0 to identify the slot pointer indication of the second level slot.
  • the MFAS value of the slot i of the level III slot can be set to 1 to identify the slot pointer indication of the II I-level slot to be stored at the III level.
  • the MFAS value of the slot i of the Nth slot can be set to N to identify the slot pointer indication of the Nth slot to be stored at the Nth level.
  • the content indicated by the slot pointer includes two fields, as shown in FIG. 9, specifically:
  • TS_Chi ld 1 bit, used to indicate whether the current time slot is nested with other granular time slots. If it is 0, it means that the current time slot does not nest the next time slot; if it is 1, it represents the current time slot. Set of time slots of other granularity.
  • whether the current time slot is nested with other granularity slots refers to whether the current time slot is divided into other granular time slots
  • the number of time slots of other granular time slots nested in the current time slot refers to The number of time slots of other granularity in which the current time slot is divided. Since the current time slot can only be divided into time slots with smaller rates, the other granular time slots mentioned herein can generally be referred to as the next level time slots.
  • the client signal transmission method of FIG. 5 only introduces a scheme of dividing one of the m first granularity slots into the second granularity slot. It should be noted that the second client signal may also be used. Dividing, according to at least one of a rate, a transmission distance, and a modulation format, another first granularity slot in the m first granularity slots into x third granularity slots, wherein the first granularity slot rate is the third x times the granularity slot rate, x is a positive integer greater than one. Taking FIG.
  • the payload portion of the OPU2 signal is divided into first granularity slots TS a1, TS a2, TS a3, TS a4, and the rate of each first granularity slot is 2.5G, according to the first customer service.
  • the signal rate is 0.8G
  • a first granularity time slot TS a1 is divided into second granular time slots TS b1, TS b2, TS b3, and the rate of each second granularity time slot is 0.833, and a second granularity can be used.
  • the slot TS b1 carries the first client traffic signal.
  • the rate of the second customer service signal for example, when the rate of the second customer service signal is 1.25G, another first granularity time slot TS A2 is divided into third granular time slots TS c1, TS c2, and the rate of each third granularity time slot is 1.25G, and a second granularity time slot TS c1 can be used to carry the second customer service signal.
  • FIG. 10 is a schematic structural diagram of an optical transport network device 100 according to an embodiment of the present invention.
  • the optical transport network device 100 can include a processor (eg, a motherboard) 1001, a memory 1002, an OTN circuit board 1003, a cross-board 1004, and an OTN tributary board 1005.
  • the direction of transmission of the service can be from the customer side to the line side, and also from the line side to the customer side.
  • the service sent or received by the client side is called the client side service, and the service received or sent by the line side is called the wavelength division side service.
  • the business process flow in both directions is a reverse process.
  • the processor 1001 is directly connected to the memory 1002, the OTN circuit board 1003, the cross board 1004, and the OTN tributary board 1005 via a bus, and is used for controlling and managing the OTN circuit board 1003, the cross board 1004, and the OTN tributary board 1005.
  • the OTN tributary board 1005 is used to complete the package mapping of the client signal (service signal).
  • the customer signal includes a variety of service types, such as ATM (Asynchronous Transfer Mode) service, SDH (Synchronous Digital Hierarchy) service, Ethernet service, CPRI (Common Pubic Radio Interface) service. , storage business, etc.
  • the tributary board 1005 is configured to receive a signal from the client side, map the received client signal package to an ODU (Optical Channel Data Unit) signal, and add a corresponding OTN management monitoring overhead.
  • ODU Optical Channel Data Unit
  • the ODU signal can be a low-order ODU signal, such as ODU0, ODU1, ODU2, ODU3, ODUflex, etc., and the OTN management monitoring overhead can be an ODU overhead.
  • ODU0, ODU1, ODU2, ODU3, ODUflex, etc. the OTN management monitoring overhead can be an ODU overhead.
  • Different types of client signals are packaged into different ODU signals in different ways.
  • the cross board 1004 is used to complete the full cross connection of the tributary board 1005 and the circuit board 1003, and realize flexible cross scheduling of the ODU signals. Specifically, the cross board 1004 can transmit the ODU signal from any one of the tributary boards to any one of the circuit boards, or transfer the OTU signal from any one of the circuit boards to any one of the circuit boards, and can also take the customer signal from any one of the branches. The board is transferred to any of the tributary boards.
  • the OTN circuit board 1003 is for forming an OTU signal into an OTU signal and transmitting it to the line side. Before the ODU signal forms an OTU signal, the OTN circuit board 1003 can multiplex the low order multi-channel ODU signal into the high order ODU signal. Then, the high-order ODU signal adds the corresponding OTN management monitoring overhead to form an OTU signal and transmits it to the optical transmission channel on the line side.
  • the high-order ODU signal signals may be ODU1, ODU2, ODU3, ODU4, etc.
  • the OTN management monitoring overhead may be an OTU overhead.
  • the processor 1001 interacts with the OTN tributary board 1005, the OTN circuit board 1003, and calls a program in the memory 1002 to control one or more of the OTN tributary board 1005 and the OTN circuit board 1003 in the transmission device.
  • the operation is as follows: dividing the payload of the OPU signal into m first granularity slots, and dividing one of the m first granularity slots into n second granular slots, where The first granularity slot rate is n times the second granularity slot rate, m is a positive integer, n is a positive integer greater than 1; mapping the first client signal into the n second granularity slots One or more payloads in which the second granularity slot is located; adding an overhead of the first granularity slot and an overhead of the second granularity slot to the OPU signal to generate an ODU signal; and transmitting the ODU signal.
  • sending the ODU signal may be implemented by adding an OTU overhead to the ODU signal to generate an
  • FIG. 11 is a simplified functional block diagram of an optical transport network device 110 according to an embodiment of the present invention.
  • the optical transport network device 110 includes:
  • the slot division unit 1101 is configured to divide the payload of the optical payload unit signal into m first granularity slots, and divide one of the m first granular slots into n first slots.
  • a granularity slot wherein the first granularity slot rate is n times the second granularity slot rate, m is a positive integer, and n is a positive integer greater than one;
  • the signal mapping unit 1102 is configured to map the first client signal into a payload of one or more second granular time slots of the n second granular time slots; add a first for the optical payload unit signal Generating an optical data unit signal by the overhead of a granularity slot and the overhead of the second granularity slot;
  • the sending unit 1103 is configured to send the optical data unit signal.
  • time slot dividing unit 1101 is further configured to:
  • the signal mapping unit 1102 is further configured to:
  • the time slot dividing unit 1101 is further configured to: according to at least one of a rate, a transmission distance, and a modulation format of the third service signal, a third one of the x third granularity time slots.
  • the granularity slot is divided into z fourth granular slots; the signal mapping unit 1102 is further configured to:
  • the signal signal also includes the overhead of the fourth granularity slot.
  • the techniques in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM. , a disk, an optical disk, etc., including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种光传送网中传送客户信号的方法和光传送网络设备,该方法包括:将光净荷单元信号的净荷划分为m个第一粒度时隙,将m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数,将第一客户信号映射到n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内,为光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号,发送光数据单元信号。采用本发明实施例,提高了带宽传送效率。

Description

光传送网中传送客户信号的方法及传送设备 技术领域
本发明涉及光通信技术领域,特别涉及光传送网中传送客户信号的方法及传送设备。
背景技术
OTN(Optical Transport Network,光传送网)是传送网络的核心技术,OTN具备丰富的OAM(Operation Administration and Maintenance,操作管理和维护)、强大的TCM(Tandem Connection Monitoring,串联连接监视)能力和带外FEC(Forward Error Correction,前向纠错)能力,能够实现大容量业务的灵活调度和管理。
OTN标准体系中定义了四种线路速率固定的OTU(Optical channel Transport Unit,光通道传送单元),分别为OTU1、OTU2、OTU3和OTU4,其线路速率级别分别为2.5G、10G、40G和100G,单位是bit/s,即比特每秒。这四种OTU分别对应四种相同速率等级的ODU(Optical channel Data Unit,光通道数据单元),即ODU1、ODU2、ODU3和ODU4。在进行信号复用时,可以将某一速率等级ODU复用到比该ODU更高阶的任一ODU,以提高数据传输速率。以ODU1复用到ODU2为例,则可以将ODU2的净荷区划分为4个时隙(TS,Tributary Slot),每个时隙用于承载一个ODU1数据。
随着新兴业务的大量兴起,例如5G(5th generation mobile networks)移动业务,4K(4000pixels,4000像素)、8K(8000pixels,8000像素)等视频业务,VR(Virtual Reality,虚拟业务)等,这些业务存在多样化的流量需求,并且对带宽的实时性要求也比较高,现有的固定时隙无法有效匹配。进一步,随着SDN(Software Defined Network,软件定义网络)的广泛渗透,客户定制化需求以及直接介入控制传送网络的需求也在不断增强,驱动传送网络需要更加智能化,不仅局限于控制平面的可编程,需要赋予数据平面同样具备可编程的能力,当前的固定时隙限制了该种能力,无法满足客户业务的定制化传送需求。
发明内容
本发明实施例提供一种光传送网中客户信号的传送方法及光传送网络设备,以解决现有技术中OTU采用固定速率导致光纤带宽利用率不高的问题。
一方面,提供了一种光传送网中的客户信号传送方法,所述方法包括:
将光净荷单元信号的净荷划分为m个第一粒度时隙,
将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号;
发送所述光数据单元信号。
通过执行上述步骤,在OTN数据平面实现根据需要灵活划分时隙大小,满足客户业务的定制化传送需求,同一承载容器混合承载不同速率业务,提高带宽传送效率。
结合第一方面,在第一方面的的第一种可能的实现方式中,所述n的取值根据所述第一客户信号的速率、传输距离以及调制格式中的至少一种来确定。
结合第一方面,在第一方面的第二种可能的实现方式中,m为大于1的整数,所述方法还包括:
将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙,其中所述第一粒度时隙速率为所述第三粒度时隙速率的x倍,x为大于1的正整数。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述光数据单元信号还包括第三粒度时隙的开销,其中将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙包括:根据接收到的第二客户信号的速率,传输距离以及调制格式中的至少一种,将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙;所述方法还包括:
将所述第二客户信号映射到所述x个第三粒度时隙中的一个或多个第三粒度时隙所在的净荷内。
结合第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述方法还包括:
根据第三业务信号的的速率,传输距离以及调制格式中的至少一种,将所述x个第三粒度时隙中的一个第三粒度时隙划分为z个第四粒度时隙,将所述第三业务信号映射到所述z个第四粒度时隙z中一个或多个第四粒度时隙所在的净荷内,其中z为大于1的正整数,所述光净荷单元信号信号还包括第四粒度时隙的开销。
结合第一方面,或者第一方面的第一种可能的实现方式到第四种可能的实现方式中任一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述第一粒度时隙的开销位于光净荷单元信号信号中的光净荷单元信号开销,所述第二粒度时隙的开销位于所述光净荷单元信号的净荷。
结合第一方面,在第一方面的第六种可能的实现方式中,所述第一粒度时隙的开销位于光净荷单元信号开销的MSI字段,所述第一粒度时隙的开销用于标识每个第一粒度时隙。
结合第一方面第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第一粒度时隙的开销还包括用于指示所述第一粒度时隙是否被划分为其他粒度的时隙的信息。
结合第一方面,在第一方面的第八种可能的实现方式中,所述方法还包括:
将第五客户信号映射到所述m个第一粒度时隙中除所述划分为n个第二粒度时隙的第一粒度时隙之外的其他第一粒度时隙中的一个或多个第一粒度时隙。
结合第一方面,或者第一方面的第一种可能的实现方式到第一方面的第八种可能的实现方式中任意一种可能的实现方式,在第一方面的第九中可能的实现方式中,所述将所述光净荷单元信号的净荷区划分为m个第一粒度时隙,包括:
从所述光净荷单元信号的净荷区的第1列到第所述光净荷单元信号的净荷区的第3808列,顺序地对净荷区内的每一列进行从1到m循环标号,具有相同标号的列属于同 一个第一粒度时隙。
第二方面,本发明实施例提供一种光传送网设备,包括:
时隙划分单元,用于将光净荷单元信号的净荷划分为m个第一粒度时隙,将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
信号映射单元,用于将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号;
发送单元,用于发送所述光数据单元信号。
结合第二方面,在第二方面的第一种可能的实现方式中,所述时隙划分单元还用于:
根据接收到的第二客户信号的速率,传输距离以及调制格式中的至少一种,将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙,其中所述第一粒度时隙速率为所述第三粒度时隙速率的x倍,x为大于1的正整数。
结合第二方面的第一种可能的实现方式,在第二发明的第二种可能的实现方式中,所述信号映射单元还用于:
将第二客户信号映射到所述x个第三粒度时隙中的一个或多个第三粒度时隙所在的净荷内。
结合第二方面,在第二方面的第三种可能的实现方式中,所述时隙划分单元还用于:根据第三业务信号的的速率,传输距离以及调制格式中的至少一种,将所述x个第三粒度时隙中的一个第三粒度时隙划分为z个第四粒度时隙;所述信号映射单元还用于:
将所述第三业务信号映射到所述z个第四粒度时隙z中一个或多个第四粒度时隙所在的净荷内,其中z为大于1的正整数,所述光净荷单元信号信号还包括第四粒度时隙的开销。
第三方面,本发明实施例提供一种光传送网设备,包括:
存储器,用于存储计算机可执行程序代码;
处理器,与所述存储器耦合;
其中所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述光传送网设备执行以下操作:
将光净荷单元信号的净荷划分为m个第一粒度时隙,
将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号;
发送所述光数据单元信号。
通过实施本发明实施例,将光净荷单元的净荷分为m个第一粒度时隙后,将m个第一粒度时隙中的一个粒度时隙进一步划分为粒度更小的n个第二粒度时隙,将第一客户信号映射到一个或多个第二粒度时隙,可以在OTN数据平面实现根据需要灵活划分时隙大小,满足客户业务的定制化传送需求,同一承载容器混合承载不同速率业务,提高带 宽传送效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的OTN帧格式图;
图2为OTUCn信号定义的OTUCn帧的帧结构;
图3为本发明实施例采用GMP映射的一种TS分布示例图;
图4为本发明实施例ODUk中OPUk的净荷时隙划分的示意图;
图5为本发明实施例提供的一种客户信号传送方法的流程示意图;
图6为本发明实施例对光净荷单元信号的净荷进行多种粒度时隙划分的示意图;
图7为本发明实施例对光净荷单元信号的净荷进行多种粒度时隙划分后的光净荷单元信号结构图;
图8为本发明实施例的时隙开销取值示意图;
图9为本发明实施例的时隙指针字段结构示意图;
图10为本发明实施例提供的光传送网络设备的结构示意图;
图11为本发明实施例提供的光传送网络设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例的OTN帧格式图。如图1所示,OTN帧为4080列×4行的标准模块化结构,OTN帧头部的16列为开销字节,中部的3808列为净荷,尾部256列为FEC校验字节。该OTN帧包括:位于第1行第1-7列的FAS(Frame Alignment Signal,帧对齐信号)字节,用于提供帧同步定位的功能,FAS的第7个字节为复帧指示(Multi-Frame Alignment Signal,MFAS),用于指示以时分复用方式承载多个客户业务数据时的开销分配;位于第1行第8-14列的OTUk OH(Optical Channel Transport Unit-k Overhead,光通道传输单元k开销)字节,用于提供光通道传送单元级别的网络管理功能;位于第2-4行第1-14列的ODUk OH(Optical Channel Data Unit-k Overhead,光通道数据单元k开销)字节,用于提供维护和操作功能;位于第15-16列的OPUk OH(Optical Channel Payload Unit-k Overhead,光通道净荷单元k开销)字节,用于提供客户业务数据适配的功能。OPUk OH字节中包括净荷结构标识(Payload Structure Ident ifier,PSI),PSI在MFAS指示下分别对应有0-255个可能值,其中第0字节为客户业务数据类型指示(Payload Type,PT),其余为保留字节(Reserved,RES),留做未来扩展使用;位于 第17-3824列的OPUk(Optical Channel Payload Unit-k,光通道净荷单元k)字节,用于提供客户业务数据承载的功能,待传输的客户业务数据被封装入OPUk中;以及位于第3825-4080列的FEC字节,用于提供错误探测和纠错功能。系数k表示所支持的比特速率,不同的比特速率对应于不同种类的OPUk、ODUk和OTUk。其中,k=0表示比特速率为1.25Gbit/s,k=1表示比特速率为2.5Gbit/s,k=2表示比特速率为10Gbit/s,k=3表示比特速率为40Gbit/s,k=4表示比特速率为100Gbit/s。其中,OPUk和OPUk OH构成了OPUk帧,OPUk帧、ODUk OH和FAS构成ODUk帧,ODUk帧、OTUk OH和FEC构成了OTUk帧。
目前ITU-T(International Telecommunication Union-Telecommunication Sector,国际电信联盟-通信领域)标准组织针对超100Gbit/s OTN的应用,正在制定OTUCn(Optical Channel Transport Unit-Cn,光通道传输单元-Cn)(C为罗马数字100,n为正整数)接口。OTUCn接口提供了速率为n*100Gbit/s的电接口处理能力,OTUCn信号包含20*n个5Gbit/s时隙。
其中,OTUCn信号定义的OTUCn帧的帧结构如图2所示,OTUCn帧由n个OTU子帧组成,每个OTU子帧为4行3824列。其中,FA OH(Frame Alignment Overhead,帧对齐开销)为帧定位开销字节,提供帧同步定位的功能。OTU OH为OTUCn开销字节,将OTUCn作为一路信号进行管理和监控,提供光通道传输单元级别的网络管理功能。OTUCn开销中大部分开销信息通过第一路OTU子帧(OTU子帧#1)的OTU OH携带,其余小部分开销信息通过其余多路OTU子帧携带。OTUCn帧是在ODUCn(Optical Channel Data Unit-Cn,光通道数据单元-Cn)帧上添加FA OH以及OTUCn开销后形成的。ODUCn帧由n个ODU子帧组成,每个ODU子帧为4行3824列。ODUCn帧是在OPUCn(Opt ical Channel Payload Unit-Cn,光通道净荷单元-Cn)上添加ODUCn开销后形成。OPUCn帧由n个OPU子帧组成,每个OPU子帧为4行3810列。每个OPU子帧包含2列开销区和3808列净荷区,每个OPU子帧包含20个5Gbit/s时隙,用于承载低阶业务。在发送OTUCn帧之前,基于待传输的物理接口的类型对OTUCn帧的n个OTU子帧进行单字节或多字节间插处理,例如进行单字节或16字节间插处理,形成一路串行的OTUCn比特数据流,并通过相应速率的光模块发送。
映射规程是指将待发送的不同类型的各种业务映射入OPU净荷区(Payload Area)的方法。作为示例,本实施例采用GMP映射规程将客户业务数据映射入OPU中。图3为本发明实施例采用GMP映射的一种TS分布示例图,图3中的GMP OH相当于图1中的OPUk OH,本实施例的GMP OH中包含了用于对TS调整进行指示的TS信息,图3中的一个或多个TS组成GMP块容器来传送客户业务数据。
图3以OPU2来说明具体的GMP映射方法,OPU2帧的净荷区被划分为8个TS,每一列的4行组成一个时隙,依次标识为TS1、TS2、TS3,直到TS8,循环下去,直到完成净荷区的所有列的时隙分配。8个OPU2帧构成一个OPU2的8-复帧。客户业务数据可以映射到上述OPU2的8-复帧净荷区的一个或多个时隙中,上述OPU2的8-复帧中的一个或多个TS可以构成GMP块容器来承载业务数据,此处采用3个TS来传送业务数据,分别为TS1、TS3和TS4。
在将客户业务数据放入GMP块容器时,是以行为单位进行放入。在一行的相应时隙内放满后,再在下一行的相应时隙内执行类似的放入操作。如图3所示,此时GMP块容 器占用的TS数量为3个,映射粒度为3-byte(字节),在将客户数据放入GMP块容器时,是在一个时钟周期内(由映射时的时钟信息所决定)将3个bytes的客户数据分别放入到第17、19及20列的第一行,然后在第二个时钟周期内将另外3个bytes的客户数据放入到第25、27及28列的第一行,依次类推,在一行放满后,再在下一行执行类似的放入操作。
在OTN中发送客户信号的过程为:将客户信号通过GMP协议复用到ODUk;ODUk添加前向纠错(FEC,Forward Error Correct ion)数据成为OTUk;然后将OTUk进行传送。
具体的,在将所述客户信号复用到所述ODUk之前,将所述ODUk的净荷区划分为n个时隙TS(Tributary Slot,TS)。
所述ODUk的第17列到第3824列为净荷区,所述ODUk的净荷区共包含3808列,将所述ODUk的净荷区划分为n个时隙的方式如下:
如图4所示,对每帧ODUk中OPUk的净荷进行时隙划分。从ODUk的第17列到第3824列,即从ODUk的净荷区的第1列到第3808列,顺序地对每一列进行从1到n循环标号,ODUk的净荷区的第3808列的标号是Mod(3808/n),Mod(3808/n)表示3808除以n后得到的余数。具有相同标号的列属于同一个时隙,每个时隙占用int(3808/n)列,所述int(3808/n)表示3808除以n后向下舍入取整。例如,n等于5时,3808/5等于761.6,Mod(3808/5)等于3,int(3808/5)等于761。当n不能够整除3808时,余数对应的各列中的字节被填充,例如,n等于5时,5能够整除3805列,剩余的3列中的字节被填充。由于每个时隙占用int(3808/n)列,且每列包含4个字节,因此,每个时隙占用4*int(3808/n)个字节。
请参见图5,图5是本发明实施例提供的一种客户信号传送方法的流程示意图,该方法包括如下流程:
步骤S501、将光净荷单元OPU信号的净荷划分为m个第一粒度时隙;
一方面,光传送网络设备将OPU信号的净荷区划分为m个第一粒度时隙,可以包括:从所述OPU信号的净荷区的第1列到第所述OPU信号的净荷区的第3808列,顺序地对净荷区内的每M字节进行从1到m循环标号,具有相同标号的字节属于同一个第一粒度时隙,其中M为正整数。
另一方面,光传送网络设备将OPU信号的净荷区划分为m个第一粒度时隙,可以包括:从所述光OPU信号的净荷区的第1列到第所述OPU信号的净荷区的第3808列,顺序地对净荷区内的每一列进行从1到m循环标号,具有相同标号的列属于同一个第一粒度时隙。
ODUk中的系数k表示所支持的比特速率,不同的比特速率对应于不同种类的OPUk、ODUk和OTUk,OPUk和OPUk OH构成了OPUk帧,OPUk帧、ODUk OH和FAS构成ODUk帧,ODUk帧、OTUk OH和FEC构成了OTUk帧。现在以K=2,m=4为例,K=2表示ODU2的比特速率为10Gbit/s,m=4表示将ODU2所包括的OPU2信号的净荷划分为4个第一粒度时隙,每个第一粒度时隙的比特速率为2.5G。
步骤S502、将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
现有的ODUk,例如ODU2,其存在1.25G和2.5G两种固定时隙粒度,这些时隙粒度在一定程度上局限了业务的有效承载,无法提供最佳的带宽传送效率。在本发明的实施例中,如图6所示,光传送网络设备可以将2.5G的一个第一粒度时隙速率进行进一步的划分,划分为第二粒度时隙速率,其中第一粒度时隙速率是第二粒度时隙速率的n倍,n为大于1的整数,例如划分后的第二粒度时隙速率可以为2.5G速率的1/2,1/3或者1/4。在这里,第一粒度时隙速率和第二粒度时隙速率的比值,即n的值,可以根据需要承载的第一客户信号的速率决定,例如,当第一客户信号的速率为0.8G时,由于将2.5G的速率划分为3个第二粒度时隙时,第二粒度时隙的速率为0.833G,所以可以将一个第一粒度时隙速率划分为3个08833G的第二粒度时隙。
步骤S503、将第一客户信号映射到所述n个第二粒度时隙中一个第二粒度时隙所在的净荷内;
还是以第一粒度时隙速率为2.5G,第二粒度时隙速率为0.833G,第一客户信号速率为0.8G为例,在这里,光传送网络设备可以将第一客户信号映射到3个第二粒度时隙中的一个第二粒度时隙所在的净荷内。图6为OPU2净荷时隙划分的示意图,图6中,TS a1-TS a4为第一粒度时隙,速率为2.5G,其中一个第一粒度时隙TS a1倍划分为3个第二粒度时隙TS b1,TS b2,TS b3,可以将0.8G速率的第一客户业务信号映射到TS b1时隙所在的净荷。
在这里,第一客户信号占用了部分或全部的划分为n个第二粒度时隙的第一粒度时隙,其他未被占用的第一粒度时隙可以用于承载其他客户信号,例如可以将另一个客户信号映射到所述m个第一粒度时隙中除所述划分为n个第二粒度时隙的第一粒度时隙之外的其他第一粒度时隙中的一个或多个第一粒度时隙。
步骤S504、为所述OPU信号信号添加第一粒度时隙的开销和第二粒度时隙的开销生成ODU信号;
其中第一粒度时隙的开销位于ODU信号中的OPU开销,所述第二粒度时隙的开销位于所述OPU信号的净荷。所述第一粒度时隙的开销用于标识每个第一粒度时隙,第一粒度时隙的开销还可以包括用于指示所述第一粒度时隙是否被划分为其他粒度的时隙的信息。当所述第一粒度时隙的开销指示所述第一粒度时隙被划分为其他粒度时隙时,所述第一粒度时隙开销还包括指示所述第一粒度时隙被划分的其他粒度时隙个数的信息。第二粒度时隙开销可以位于每个第二粒度时隙的第一个字节,第二粒度时隙的开销分部信息可以存储在MFAS字段中。
步骤S505、发送所述ODU信号。
具体的,光传送网络设备发送ODU信号可以通过为ODU信号添加OTU开销生成OTU信号,发送所述OTU信号来实现。
在将第一粒度时隙划分为第二粒度时隙后,根据业务速率、传输距离以及调制格式中的至少一种因素,例如需要承载更小的业务速率,可以将第二粒度时隙进行进一步的划分,为了方便起见,在这里将第一粒度时隙称为第I级别的粒度时隙,将第二粒度时隙称为第II级别的粒度时隙,将第二粒度时隙再次划分后的时隙称为第III级别的粒度时隙,如图7所示,第I级别时隙中的一个时隙划分为第II级别时隙,第III级别时隙还可以再划分为第III级别时隙,假设第I级别时隙为2.5G,第II级别时隙可以为0.5G, 第III级别时隙可以0.05G,以第III级别时隙传输业务,可以传输小到0.1G的业务,显然比第I级别时隙更灵活更节约资源。由图8中可以看出,第I级别时隙的开销可以位于OPU的开销中,第I I级别时隙的开销可以位于第II级别时隙的第一个字节,第III级别时隙的开销可以位于第III级别时隙的第一个字节。第I级别时隙的开销可以包括第I级别度时隙的时隙指针指示(Tributary Slot Pointer,TSP),第I级别时隙的TSP可以通过OPU开销的MSI(Multiplex Structure Identifier,复用结构标识)字段携带,假设将OPU信号的净荷划分为了a个第I级别时隙后,MSI字段中的第二个MSI,即MSI[2]中存放MFAS值,在这里MFAS值为2,用来表示MSI[2]里面存放的是第I级别时隙中第一个时隙的时隙指针指示,MSI字段中的第三个MSI,即MSI[3]中存放的MFAS值为3,用来标识MSI[3]中存放的是第I级别时隙中第二个时隙的时隙指针指示,以此类推,具体如图8,MSI字段中的第a+1个MSI,即MSI[a+1]中存放的是第I级别时隙中第a+1个时隙的时隙指针指示。
如图8所示,对于第II级别时隙的时隙指针指示,可以将第II级别时隙的时隙i的MFAS值设为0来标识第II级别时隙的时隙指针指示存放在第II级别时隙的时隙i的第一个字节。同理,对于第III级别时隙的时隙指针指示,可以将第III级别时隙的时隙i的MFAS值设为1来标识第II I级别时隙的时隙指针指示存放在第III级别时隙的时隙i的第一个字节。以此类推,对于第N级别时隙的时隙指针指示,可以将第N级别时隙的时隙i的MFAS值设为N来标识第N级别时隙的时隙指针指示存放在第N级别时隙的时隙N的第一个字节。
时隙指针指示的内容包括两个字段,如图9所示,具体为:
1)TS_Chi ld:1比特,用于指示当前时隙是否嵌套其他粒度的时隙,若为0,代表当前时隙不嵌套下一级时隙;若为1,则代表当前时隙嵌套其他粒度的时隙。
2)TS_NUM/CID:7比特,该字段具备两种含义;当TS_Child=0时,该字段用于存放当前时隙承载的客户业务信息,例如客户业务ID(Identifier,标识)值,即CID(Client Service Identifier,客户业务标识);当TS_Child=1时,该字段用于存放当前时隙所嵌套的其他粒度的时隙数量,即TS_NUM(Tributary Slot Number,时隙数量)。
在这里,当前时隙是否嵌套其他粒度的时隙,指的是当前时隙是否被划分为其他粒度的时隙,当前时隙所嵌套的其他粒度时隙的时隙数量,指的是当前时隙被划分的其他粒度的时隙数量。由于当前时隙只能划分为速率更小的时隙,这里所说的其他粒度的时隙一般可以称作下一级别的时隙。
图5的客户信号传送方法只是介绍了将m个第一粒度时隙中的一个第一粒度时隙划分为n第二粒度时隙的方案,需要注意的是,还可以根据第二客户信号的速率,传输距离以及调制格式中的至少一种,将m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙,其中第一粒度时隙速率为第三粒度时隙速率的x倍,x为大于1的正整数。以图6为例,OPU2信号的净荷部分被划分为第一粒度时隙TS a1,TS a2,TS a3,TS a4,每个第一粒度时隙的速率为2.5G,根据第一客户业务信号的速率0.8G,将一个第一粒度时隙TS a1划分为第二粒度时隙TS b1,TS b2,TS b3,每个第二粒度时隙的速率为0.833,可以用一个第二粒度时隙TS b1来承载第一客户业务信号。在这里,也可以根据第二客户业务信号的速率,例如当第二客户业务信号的速率为1.25G时,将另一个第一粒度时隙TS  a2划分为第三粒度时隙TS c1,TS c2,每个第三粒度时隙的速率为1.25G,可以用一个第三粒度时隙TS c1来承载第二客户业务信号。
请参见图10,图10是本发明实施例提供的一种光传送网设备100的结构示意图。该光传送网设备100可以包括处理器(例如,主板)1001、存储器1002,OTN线路板1003、交叉板1004和OTN支路板1005。业务的传输方向可以从客户侧到线路侧,还可以从线路侧到客户侧。客户侧发送或接收的业务称为客户侧业务,线路侧接收或发送的业务称为波分侧业务。两个方向上的业务处理流程互为逆向过程。
处理器1001通过总线或直接与存储器1002、OTN线路板1003、交叉板1004、OTN支路板1005相连,用于对OTN线路板1003、交叉板1004、OTN支路板1005起控制管理的功能。
OTN支路板1005用于完成客户信号(业务信号)的封装映射。客户信号包括多种业务类型,例如ATM(Asynchronous Transfer Mode,异步传输模式)业务、SDH(Synchronous Digital Hierarchy,同步数字体系)业务、以太业务、CPRI(Common Publ ic Radio Interface,通用公共无线电接口)业务、存储业务等。具体地,支路板1005用于接收来自客户侧的信号,将接收到的客户信号封装映射到ODU(Optical Channel Data Unit,光通道数据单元)信号并添加相应的OTN管理监控开销。在OTN支路板1005上,ODU信号可以为低阶ODU信号,例如ODU0、ODU1、ODU2、ODU3、ODUflex等,OTN管理监控开销可以为ODU开销。针对不同类型的客户信号,采用不同的方式封装映射到不同的ODU信号中。
交叉板1004用于完成支路板1005和线路板1003的全交叉连接,实现ODU信号的灵活交叉调度。具体地,交叉板1004可以实现将ODU信号从任意一个支路板传输到任意一个线路板,或者将OTU信号从任意一个线路板传输到任意一个线路板,还可以将客户信号从任意一个支路板传输到任意一个支路板。
OTN线路板1003用于将ODU信号形成OTU信号并发送到线路侧。在ODU信号形成OTU信号之前,OTN线路板1003可以将低阶多路ODU信号复用到高阶ODU信号中。然后高阶ODU信号添加相应OTN管理监控开销形成OTU信号并发送到线路侧的光传输通道中。在OTN线路板1003上,高阶ODU信号信号可以为ODU1、ODU2、ODU3、ODU4等,OTN管理监控开销可以为OTU开销。
处理器1001与OTN支路板1005,OTN线路板1003交互,调用存储器1002中的程序,控制传送设备,例如传送设备中的OTN支路板1005和OTN线路板1003中的一种或多种执行如下操作:将OPU信号的净荷划分为m个第一粒度时隙,将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述OPU信号添加第一粒度时隙的开销和第二粒度时隙的开销生成ODU信号;发送所述ODU信号。具体的,发送ODU信号可以通过为ODU信号添加OTU开销生成OTU信号,发送所述OTU信号来实现。
以上包含的处理器所执行操作的具体实现方式可以参照图5以及对应实施例中由光传送网设备执行的对应步骤,本发明实施例不再赘述。
图11为本发明实施例一种光传送网设备110的简化功能方框图,该光传送网设备用 于传送客户信号,该光传送网设备110包括:
时隙划分单元1101,用于将光净荷单元信号的净荷划分为m个第一粒度时隙,将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
信号映射单元1102,用于将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号;
发送单元1103,用于发送所述光数据单元信号。
可选的,所述时隙划分单元1101还用于:
根据接收到的第二客户信号的速率,传输距离以及调制格式中的至少一种,将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙,其中所述第一粒度时隙速率为所述第三粒度时隙速率的x倍,x为大于1的正整数。
可选的,所述信号映射单元1102还用于:
将第二客户信号映射到所述x个第三粒度时隙中的一个或多个第三粒度时隙所在的净荷内。
可选的,所述时隙划分单元1101还用于:根据第三业务信号的的速率,传输距离以及调制格式中的至少一种,将所述x个第三粒度时隙中的一个第三粒度时隙划分为z个第四粒度时隙;所述信号映射单元1102还用于:
将所述第三业务信号映射到所述z个第四粒度时隙z中一个或多个第四粒度时隙所在的净荷内,其中z为大于1的正整数,所述光净荷单元信号信号还包括第四粒度时隙的开销。
以上光传送网络设备包含的各单元所执行操作的具体实现方式可以参照图5以及相应实施例的光传送网络设备执行的步骤,不再赘述。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种光传送网中传送客户信号的方法,其特征在于,所述方法包括:
    将光净荷单元信号的净荷划分为m个第一粒度时隙;
    将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
    将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号;
    发送所述光数据单元信号。
  2. 如权利要求1所述的方法,其特征在于,所述n的取值根据所述第一客户信号的速率、传输距离以及调制格式中的至少一种来确定。
  3. 如权利要求1所述的方法,其特征在于,m为大于1的整数,所述方法还包括:
    将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙,其中所述第一粒度时隙速率为所述第三粒度时隙速率的x倍,x为大于1的正整数。
  4. 如权利要求3所述的方法,其特征在于,所述光数据单元信号还包括第三粒度时隙的开销,其中将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙包括:根据接收到的第二客户信号的速率,传输距离以及调制格式中的至少一种,将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙;所述方法还包括:
    将所述第二客户信号映射到所述x个第三粒度时隙中的一个或多个第三粒度时隙所在的净荷内。
  5. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    根据第三业务信号的的速率,传输距离以及调制格式中的至少一种,将所述x个第三粒度时隙中的一个第三粒度时隙划分为z个第四粒度时隙,将所述第三业务信号映射到所述z个第四粒度时隙z中一个或多个第四粒度时隙所在的净荷内,其中z为大于1的正整数,所述光净荷单元信号信号还包括第四粒度时隙的开销。
  6. 如权利要求1-5中任一权利要求所述的方法,其中所述第一粒度时隙的开销位于光净荷单元信号信号中的光净荷单元信号开销,所述第二粒度时隙的开销位于所述光净荷单元信号的净荷。
  7. 如权利要求1所述的方法,其特征在于,所述第一粒度时隙的开销位于光净荷单元信号开销的MSI字段,所述第一粒度时隙的开销用于标识每个第一粒度时隙。
  8. 如权利要求7所述的方法,其特征在于,所述第一粒度时隙的开销还包括用于指示所述第一粒度时隙是否被划分为其他粒度的时隙的信息。
  9. 如权利要求8所述的方法,其特征在于,当所述第一粒度时隙的开销指示所述第一粒度时隙被划分为其他粒度时隙时,所述第一粒度时隙开销还包括指示所述第一粒度时隙被划分的其他粒度时隙个数的信息。
  10. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    将第五客户信号映射到所述m个第一粒度时隙中除所述划分为n个第二粒度时隙的第一粒度时隙之外的其他第一粒度时隙中的一个或多个第一粒度时隙。
  11. 如权利要求1-10中任一权利要求所述的方法,其特征在于,所述将所述光净荷单元信号的净荷区划分为m个第一粒度时隙,包括:
    从所述光净荷单元信号的净荷区的第1列到第所述光净荷单元信号的净荷区的第3808列,顺序地对净荷区内的每一列进行从1到m循环标号,具有相同标号的列属于同一个第一粒度时隙。
  12. 如权利要求1-10中任一权利要求所述的方法,其特征在于,所述将所述光净荷单元信号的净荷区划分为m个第一粒度时隙,包括:
    从所述光净荷单元信号的净荷区的第1列到第所述光净荷单元信号的净荷区的第3808列,顺序地对净荷区内的每M字节进行从1到m循环标号,具有相同标号的字节属于同一个第一粒度时隙,其中M为正整数。
  13. 一种光传送网设备,其特征在于,包括:
    时隙划分单元,用于将光净荷单元信号的净荷划分为m个第一粒度时隙,将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
    信号映射单元,用于将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号;
    发送单元,用于发送所述光数据单元信号。
  14. 如权利要求13所述的设备,其特征在于,所述时隙划分单元还用于:
    根据接收到的第二客户信号的速率,传输距离以及调制格式中的至少一种,将所述m个第一粒度时隙中的另一个第一粒度时隙划分为x个第三粒度时隙,其中所述第一粒度时隙速率为所述第三粒度时隙速率的x倍,x为大于1的正整数。
  15. 如权利要求14所述的设备,其特征在于,所述信号映射单元还用于:
    将第二客户信号映射到所述x个第三粒度时隙中的一个或多个第三粒度时隙所在的净荷内。
  16. 如权利要求14所述的设备,其特征在于,所述时隙划分单元还用于:根据第三业务信号的的速率,传输距离以及调制格式中的至少一种,将所述x个第三粒度时隙中的一个第三粒度时隙划分为z个第四粒度时隙;所述信号映射单元还用于:
    将所述第三业务信号映射到所述z个第四粒度时隙z中一个或多个第四粒度时隙所在的净荷内,其中z为大于1的正整数,所述光净荷单元信号信号还包括第四粒度时隙的开销。
  17. 一种光传送网设备,其特征在于,包括:
    存储器,用于存储计算机可执行程序代码;
    处理器,与所述存储器耦合;
    其中所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述光传送网设备执行以下操作:
    将光净荷单元信号的净荷划分为m个第一粒度时隙,
    将所述m个第一粒度时隙中的一个第一粒度时隙划分为n个第二粒度时隙,其中所述第一粒度时隙速率为所述第二粒度时隙速率的n倍,m为正整数,n为大于1的正整数;
    将第一客户信号映射到所述n个第二粒度时隙中的一个或多个第二粒度时隙所在的净荷内;为所述光净荷单元信号添加第一粒度时隙的开销和第二粒度时隙的开销生成光数据单元信号;
    发送所述光数据单元信号。
PCT/CN2017/090615 2016-06-30 2017-06-28 光传送网中传送客户信号的方法及传送设备 WO2018001280A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17819277.9A EP3462647B1 (en) 2016-06-30 2017-06-28 Method for transporting client signal in optical transport network, and transport device
JP2018567840A JP6787597B2 (ja) 2016-06-30 2017-06-28 光伝送ネットワーク内でのクライアント信号の送信方法および光伝送デバイス
KR1020197001602A KR102192294B1 (ko) 2016-06-30 2017-06-28 광 전송 네트워크에서 클라이언트 신호를 송신하는 방법 및 광 전송 디바이스
US16/233,426 US10771177B2 (en) 2016-06-30 2018-12-27 Method for transmitting client signal in optical transport network, and optical transport device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610503838.1 2016-06-30
CN201610503838.1A CN107566074B (zh) 2016-06-30 2016-06-30 光传送网中传送客户信号的方法及传送设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/233,426 Continuation US10771177B2 (en) 2016-06-30 2018-12-27 Method for transmitting client signal in optical transport network, and optical transport device

Publications (1)

Publication Number Publication Date
WO2018001280A1 true WO2018001280A1 (zh) 2018-01-04

Family

ID=60785937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090615 WO2018001280A1 (zh) 2016-06-30 2017-06-28 光传送网中传送客户信号的方法及传送设备

Country Status (6)

Country Link
US (1) US10771177B2 (zh)
EP (1) EP3462647B1 (zh)
JP (1) JP6787597B2 (zh)
KR (1) KR102192294B1 (zh)
CN (1) CN107566074B (zh)
WO (1) WO2018001280A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533640A (ja) * 2018-08-03 2021-12-02 中興通訊股▲ふん▼有限公司Zte Corporation サービス構成方法、装置及びシステム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803692B2 (ja) * 2016-06-30 2020-12-23 グローリー株式会社 現金処理システム、現金処理方法及び携帯端末
CN107566074B (zh) * 2016-06-30 2019-06-11 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN110224946B (zh) 2018-03-01 2022-05-27 中兴通讯股份有限公司 一种业务发送方法及装置、业务接收方法及装置
CN110266612B (zh) * 2018-03-12 2022-01-25 中兴通讯股份有限公司 数据传输方法及装置、网络设备及存储介质
US10873391B2 (en) * 2018-03-27 2020-12-22 Viavi Solutions Inc. MFAS-aligned pseudorandom binary sequence (PRBS) patterns for optical transport network (OTN) testing
CN110830426B (zh) * 2018-08-13 2022-04-08 中兴通讯股份有限公司 映射开销传送/接收方法、装置、otn设备及存储介质
CN110830858B (zh) * 2018-08-13 2022-07-12 中兴通讯股份有限公司 客户业务数据传送方法、装置、光传送网设备及存储介质
CN111989933B (zh) * 2018-09-13 2022-05-10 华为技术有限公司 光传送网中的数据传输方法及装置
CN111740801B (zh) * 2019-03-25 2021-12-10 华为技术有限公司 一种业务数据的处理方法及装置
CN111131935B (zh) * 2019-12-27 2022-03-29 上海欣诺通信技术股份有限公司 Otn倒换方法、装置、设备及存储介质
CN113099323A (zh) * 2020-01-08 2021-07-09 华为技术有限公司 光信号传送方法和相关装置
CN112511916A (zh) * 2020-02-28 2021-03-16 中兴通讯股份有限公司 光传送网中业务处理方法、处理装置和电子设备
CN112511915A (zh) * 2020-02-28 2021-03-16 中兴通讯股份有限公司 光传送网中业务处理方法、处理装置和电子设备
CN113542933B (zh) * 2020-04-15 2023-03-28 华为技术有限公司 一种带宽调整的方法以及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833471A1 (en) * 1996-09-27 1998-04-01 Deutsche Thomson-Brandt Gmbh Method for data transfer between two or more stations via communication channel and transmitting station and a receiving station for the use in the method
CN101180841A (zh) * 2005-05-26 2008-05-14 Nxp股份有限公司 通信资源分配的电子设备及方法
CN102056031A (zh) * 2009-11-10 2011-05-11 华为技术有限公司 传输多路业务的方法和装置
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657839B1 (en) * 2004-11-12 2010-02-10 Alcatel Lucent Method and apparatus for transporting a client layer signal over an optical transport network (OTN)
CN100589365C (zh) * 2007-09-14 2010-02-10 中兴通讯股份有限公司 一种光传输网中光净荷单元的时隙划分与开销处理的方法
CN101615967B (zh) * 2008-06-26 2011-04-20 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101635867B (zh) * 2008-07-21 2012-08-08 华为技术有限公司 光信号的复用映射和解复用映射方法、装置及系统
CN101378399B (zh) * 2008-09-28 2012-04-04 华为技术有限公司 业务数据映射和解映射方法及装置
US20100142947A1 (en) 2008-12-08 2010-06-10 Jong-Yoon Shin Apparatus and method for pseudo-inverse multiplexing/de-multiplexing transporting
CN102006270B (zh) * 2009-08-28 2013-06-26 华为技术有限公司 链路能力信息的协商方法、网络设备和通信系统
CN102239651B (zh) * 2009-09-17 2015-09-09 华为技术有限公司 光传送网中的动态无损调整
CN102036132B (zh) * 2009-09-30 2013-04-24 华为技术有限公司 时隙端口号分配方法、装置及系统
JP5461229B2 (ja) 2010-02-25 2014-04-02 日本電信電話株式会社 クライアント信号収容多重処理装置、クライアント信号クロスコネクト装置、クライアント信号収容多重処理方法
US8982775B2 (en) * 2010-11-02 2015-03-17 Infinera Corporation GMPLS signaling for networks having multiple multiplexing levels
WO2013185327A1 (zh) * 2012-06-14 2013-12-19 华为技术有限公司 传送、接收客户信号的方法和装置
WO2014013602A1 (ja) * 2012-07-20 2014-01-23 富士通株式会社 伝送装置
CN102820951B (zh) * 2012-07-30 2016-12-21 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
US20140255028A1 (en) 2013-03-08 2014-09-11 Altera Corporation Sub-rate mapping for lowest-order optical data unit
CN105451102B (zh) * 2014-08-22 2019-05-28 华为技术有限公司 一种处理信号的方法、装置及系统
CN105429726B (zh) * 2014-09-22 2018-01-23 华为技术有限公司 光传输网的业务映射处理方法、装置及系统
US10063321B2 (en) * 2014-11-28 2018-08-28 Nippon Telegraph And Telephone Corporation Framer, optical transmission device, and framing method
US10230457B2 (en) * 2014-11-28 2019-03-12 Nippon Telegraph And Telephone Corporation Framer and framing method
EP3208957B1 (en) * 2014-11-28 2019-07-10 Nippon Telegraph and Telephone Corporation Optical transmission system and resource optimization method
CN107566074B (zh) * 2016-06-30 2019-06-11 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
JP6636653B2 (ja) * 2016-07-22 2020-01-29 華為技術有限公司Huawei Technologies Co.,Ltd. マルチサービス伝送及び受信方法並びに装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833471A1 (en) * 1996-09-27 1998-04-01 Deutsche Thomson-Brandt Gmbh Method for data transfer between two or more stations via communication channel and transmitting station and a receiving station for the use in the method
CN101180841A (zh) * 2005-05-26 2008-05-14 Nxp股份有限公司 通信资源分配的电子设备及方法
CN102056031A (zh) * 2009-11-10 2011-05-11 华为技术有限公司 传输多路业务的方法和装置
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3462647A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533640A (ja) * 2018-08-03 2021-12-02 中興通訊股▲ふん▼有限公司Zte Corporation サービス構成方法、装置及びシステム
EP3840293A4 (en) * 2018-08-03 2021-12-15 ZTE Corporation METHOD, DEVICE AND SYSTEM FOR CONFIGURATION OF SERVICE INFORMATION
JP7291204B2 (ja) 2018-08-03 2023-06-14 中興通訊股▲ふん▼有限公司 サービス構成方法、装置及びシステム

Also Published As

Publication number Publication date
US20190140759A1 (en) 2019-05-09
JP6787597B2 (ja) 2020-11-18
CN107566074A (zh) 2018-01-09
CN107566074B (zh) 2019-06-11
US10771177B2 (en) 2020-09-08
EP3462647B1 (en) 2022-09-28
KR102192294B1 (ko) 2020-12-17
KR20190018714A (ko) 2019-02-25
JP2019519999A (ja) 2019-07-11
EP3462647A4 (en) 2019-05-01
EP3462647A1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2018001280A1 (zh) 光传送网中传送客户信号的方法及传送设备
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
CN101051879B (zh) 低速业务复用及解复用的方法和装置
US8948205B2 (en) Method and apparatus for mapping and de-mapping in an optical transport network
EP2037604B1 (en) Method and apparatus for synchronous cross-connect switching in optical transport network
US10608766B2 (en) Multi-service transport and receiving method and apparatus
WO2019128934A1 (zh) 光传送网中业务发送、接收方法及装置
CN110401506B (zh) 一种业务传送方法和第一传送设备
US20220239379A1 (en) Signal Sending and Receiving Method, Apparatus, and System
CN101854220A (zh) 一种业务数据发送、接收的方法和装置
CN102098595B (zh) 一种光传送网中客户信号传送方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567840

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001602

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017819277

Country of ref document: EP

Effective date: 20181228