WO2019128934A1 - 光传送网中业务发送、接收方法及装置 - Google Patents

光传送网中业务发送、接收方法及装置 Download PDF

Info

Publication number
WO2019128934A1
WO2019128934A1 PCT/CN2018/123166 CN2018123166W WO2019128934A1 WO 2019128934 A1 WO2019128934 A1 WO 2019128934A1 CN 2018123166 W CN2018123166 W CN 2018123166W WO 2019128934 A1 WO2019128934 A1 WO 2019128934A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
odu
service
cell
interface frame
Prior art date
Application number
PCT/CN2018/123166
Other languages
English (en)
French (fr)
Inventor
张源斌
苑岩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/954,768 priority Critical patent/US11575458B2/en
Priority to EP18895040.6A priority patent/EP3734866A4/en
Publication of WO2019128934A1 publication Critical patent/WO2019128934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0064Admission Control
    • H04J2203/0067Resource management and allocation
    • H04J2203/0071Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • H04J2203/0091Time slot assignment

Definitions

  • the present application relates to the field of communications, such as a method and apparatus for transmitting and receiving services in an optical transport network.
  • the Optical Transport Network (OTN) standard is established by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T) and is an important standard for optical transmission equipment.
  • ITU-T International Telecommunication Union Telecommunication Standardization Sector
  • the ODUk rate is low
  • the low-speed ODUi (i ⁇ k) signal is used to indicate the ODUi signal lower than the ODUk rate; wherein the non-OTN signal refers to a variety of other signals than the optical transmission network signal, such as a Synchronous Digital Hierarchy (Synchronous Digital Hierarchy, SDH) signals, Ethernet signals, Fibre channel signals, and a variety of packet signals.
  • Synchronous Digital Hierarchy Synchronous Digital Hierarchy
  • SDH Synchronous Digital Hierarchy
  • Ethernet signals Ethernet signals
  • Fibre channel signals Fibre channel signals
  • packet signals a
  • the optical transport network signal includes two parts, overhead and payload. Taking OTUk as an example, the components of the optical transport network signal are further explained.
  • 1 is a schematic diagram of a frame structure of an OTUk in the related art.
  • an OTUk signal is composed of an OTUk frame.
  • the remaining part of the OTUk frame after the OTUk overhead is removed is called an optical channel data unit ODUk frame, and the ODUk frame is removed from the ODUk frame.
  • the remaining part after the overhead is called the Optical Payload Unit k (OPUk) frame.
  • OPUk payload The remaining part of the OPUk frame after the OPUk overhead is removed.
  • the OPUk payload can be used to install a non-OTN signal or multiple.
  • the low-speed ODUi (i ⁇ k) signal, the signal consisting of ODUk frames is called the ODUk signal.
  • the mapping methods used by the service signal to be loaded into the payload area of the optical transport network are mainly Asynchronous Mapping Procedure (AMP), Bit-Synchronous Mapping Procedure (BMP) and Generic Mapping Procedure (GMP), in which the use of BMP is very limited, that is, the optical transmission network signal and the service signal rate are completely synchronized and the rate ratio is in a specific relationship, and AMP and GMP do not require optical transmission network signals and services.
  • Signal rate synchronization, especially GMP is the primary method by which traffic signals are loaded into optical transport network signals.
  • FIG. 2 is a schematic diagram of dividing an OPUk payload into four time slots in the optical transmission standard in the related art.
  • multiple service signals are loaded into the optical transport network signal payload.
  • the method is to divide the optical transport network signal payload into n time slots, and then load the service signal into at least one time slot in the optical transport network signal payload, and the time slots are implemented by byte interleaving.
  • the OPUk payload is a 4-row 3808-column byte block with column numbers from 17 to 3824 (the first 17 columns correspond to OTUk overhead, ODUk overhead, and OPUk overhead), and line numbers range from 1 to 4.
  • an OPUk payload area of an OPUk frame is composed of 4*3808 bytes, arranged in 4 rows and 3808 columns as shown in FIG.
  • Figure 2 shows the case where the OPUk payload is divided into 4 slots by byte interleaving, that is, in column 3808, starting from column 17, a group of 4 adjacent bytes, 4 in each group
  • the bytes are divided into 4 different time slots TS1, TS2, TS3, TS4, that is, 4 consecutive bytes starting from column 17 respectively represent 4 time slots, so that all 4*3808 bytes in the OPUk payload
  • the OPU4 payload in the OTU4 of the 100G rate is divided into 80 time slots. Since the minimum ODUk in the optical transport network is ODU0 and the rate is 1.25G, it is theoretically said that the OPUk payload in all rate OTUk frames should be divided into 1.25G granular time slots, so that the ODU0 can be loaded most efficiently.
  • the OTUk rate is high, for example, the OTU4 rate is 100G, dividing the time slot according to the 1.25G granularity will result in a large number of time slots. For example, the OPU4 payload of the OTU4 needs to be divided into 80 time slots, and too many time slots result in multiple low speeds.
  • ODUi(i ⁇ k) is very difficult to implement when loading OTUk.
  • OTUCn (n is an integer greater than or equal to 1)
  • the slot granularity in OTUCn is not 1.25G, but 5G, but this will cause ODUi with a rate less than 5G to be loaded into OTUCn
  • the phenomenon of wasting space in the middle, the fixed time slot size also limits the number of services that an ODU can carry.
  • some operators do not maintain SDH equipment.
  • Some services with small bandwidth (less than 1G) also need to transition from SDH equipment to OTN equipment.
  • the relevant OTN equipment has a minimum granularity of 1.25G, which is directly beared and the bandwidth is wasted. There is also a need to improve the related OTN technology.
  • the embodiment of the present invention provides a method and a device for transmitting and receiving a service in an optical transport network, so as to avoid a situation in which the bandwidth is wasted due to the optical transmission service being transmitted by dividing the payload area into time slots.
  • An embodiment of the present application provides a method for transmitting a service in an optical transport network, including: mapping an optical transport data unit ODU service to a cell in a payload area of an OTN interface frame of an optical transport network, where the net The bearer region includes N cells of fixed size, one cell carries one ODU service, and N is an integer greater than or equal to 1; the OTN interface frame is encapsulated and transmitted.
  • a method for receiving a service in an optical transport network including: receiving an optical transport network OTN interface frame, where a payload area of the OTN interface frame includes N fixed-size messages A cell carries an ODU service, N is an integer greater than or equal to 1, and the ODU service is demapped from the N cells of the payload area of the OTN interface frame.
  • a service transmitting apparatus in an optical transport network comprising: a mapping module configured to map an optical transport data unit ODU service to a payload area of an optical transport network OTN interface frame
  • the payload area includes N cells of a fixed size, one of the cells carries one ODU service, and N is an integer greater than one
  • the sending module is configured to encapsulate and send the OTN interface frame.
  • a service receiving apparatus in an optical transport network including: a receiving module, configured to receive an optical transport network OTN interface frame, where a payload area of the OTN interface frame includes a fixed N cells of a size, one cell carries an ODU service, N is an integer greater than 1; a demapping module is configured to demap the N cells from the payload area of the OTN interface frame Describe the ODU business.
  • a storage medium having stored therein a computer program, wherein the computer program is configured to execute a service in the optical transport network described in the above embodiments at runtime Send or receive method.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to execute the computer program to perform the above embodiment A service transmission/reception method or a reception method in an optical transport network.
  • FIG. 1 is a schematic diagram of a frame structure of an OTUk in the related art
  • FIG. 2 is a schematic diagram of dividing an OPUk payload into four time slots in an optical transmission standard in the related art
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal in a method for transmitting a service in an optical transport network according to an embodiment of the present application;
  • FIG. 4 is a flowchart of a method for transmitting a service in an optical transport network according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of dividing an interface payload area according to a cell according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a service mapping multiplexing path according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a multi-channel ODU signal in an interface frame payload area distribution according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for receiving a service in an optical transport network according to an embodiment of the present application.
  • FIG. 9 is a block diagram of a service transmitting apparatus in an optical transport network according to an embodiment of the present application.
  • FIG. 10 is a block diagram of a service receiving apparatus in an optical transport network according to an embodiment of the present application.
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal in a method for transmitting a service in an optical transport network according to an embodiment of the present application.
  • the mobile terminal 10 can include at least one (only one of which is shown in FIG.
  • processor 102 can include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and A memory 104 configured to store data, for example, the above-described mobile terminal may further include a transmission device 106 and a input and output device 108 which are provided as communication functions. It will be understood by those skilled in the art that the structure shown in FIG. 3 is merely illustrative, and does not limit the structure of the above mobile terminal. For example, the mobile terminal 10 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 104 can be configured to store a computer program, such as a software program and a module of the application software, such as a computer program corresponding to the service transmission method in the optical transport network in the embodiment of the present application, and the processor 102 runs the computer stored in the memory 104.
  • the program thus performing various functional applications and data processing, implements the above method.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory, such as at least one magnetic storage device, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is arranged to receive or transmit data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 4 is a flowchart of a method for transmitting a service in an optical transport network according to an embodiment of the present application. As shown in FIG. The flow includes steps S402 and S404.
  • step S402 the optical transmission data unit ODU service is mapped to the cell of the payload area of the optical transport network OTN interface frame, where the payload area includes N cells of a fixed size, and one cell carries one cell.
  • ODU service where N is an integer greater than or equal to 1.
  • step S404 the OTN interface frame is encapsulated and transmitted.
  • the ODUi service is written into the N cells, and the interface frame is sent. Therefore, the related art can be avoided by dividing the payload area into The transmission of optical transmission services in a time slot manner results in a serious waste of bandwidth and improves the bandwidth utilization of the optical transmission network.
  • the cell includes a data cell and a control cell, wherein the data cell is configured to store the ODU service, and the control cell is configured to store the ODU service mapped to the In the control information of the cell, the control information includes at least one of overhead information and monitoring information.
  • the cell comprises a cell flag bit and a data area.
  • the first bit of the cell is the cell flag bit, and the identifier of the first bit is 1 or 0, where 1 indicates that the cell is a control cell, and 0 indicates The cell is a data cell.
  • the size of the payload area is N times the size of the cell (the size of the payload area may be divisible by the size of the cell, ie, the size of the payload area is In the case of an integer multiple of the size of the cell, the size of each cell is K bits, the size of the payload area is N*K, and the bandwidth size of each cell is the payload area. One-ninth of the bandwidth, where K is an integer greater than one.
  • the size of the payload area is the sum of N times the size of the cell and the F padding bits (the size of the payload area cannot divide the size of the cell, that is, the size of the payload area)
  • the size of each cell is K bits
  • the size of the payload area is N*K+F
  • the bandwidth of each cell is K/( N*K+F)*
  • the F padding bits are located at the end or in the middle of the payload area.
  • the number of ODU services is M
  • the ODU service number is Cj
  • j 1 to M
  • M is an integer greater than or equal to 1
  • the mapping the ODU service to the The cell of the payload area of the OTN interface frame includes: allocating a predetermined number of cells for each of the ODU services, wherein the jth of the ODU services are allocated in the N cells Sj cells; mapping the M ODU services to the predetermined number of cells, wherein the jth ODU service is mapped to the Sj cells of the N cells.
  • the method before allocating a predetermined number of cells for each of the ODU services, the method further includes determining, according to a bandwidth of the ODU service and a bandwidth of the cell, each of the ODU services. The predetermined number of cells allocated.
  • the Sj cells allocated for the jth of the ODU traffic are evenly distributed to the N-S1-S2-...-S of the N cells according to a sigma-delta algorithm. (j-1), in the idle cell, the method further includes: storing a rate difference between the jth the ODU service and the bandwidth of the payload area as overhead information in a control cell .
  • the method further includes: marking the cells carrying the ODU service in the N cells. Is already occupied.
  • the encapsulating and transmitting the OTN interface frame includes: when the OTN interface frame is an OTU frame, the signal type of each of the ODU services and each ODU service occupation The number of cells is stored in an OPU overhead area of the optical channel payload unit of the OTN interface frame, increasing an ODU overhead of the OTN interface frame and an OTU overhead of the optical channel transmission unit to form an OTU frame, and transmitting the OTU frame;
  • the OTN interface frame is a FlexO frame, and the signal type of each of the ODU services and the number of cells occupied by each of the ODU services are stored in a FlexO overhead area of the OTN interface frame.
  • the FlexO overhead, the positioning code, and the Forward Error Correction (FEC) of the OTN interface frame are formed to form a complete FlexO frame, and the FlexO frame is transmitted.
  • FEC Forward Error Correction
  • the method before the mapping the ODU service to the payload area of the OTN interface frame, the method further includes: converting the non-OTN type service to the ODU for a non-OTN type service business.
  • the embodiment of the present application further provides an optical transport network interface frame, including: a payload area, where the payload area includes N cells of a fixed size, where one cell is set to carry an ODU service, N Is an integer greater than or equal to 1.
  • each cell has a size of K bits, and the size of the payload area is N*K.
  • the bandwidth size of each cell is one-Nth of the bandwidth of the payload area, where K is an integer greater than one; where the size of the payload area is not an integer multiple of the size of the cell
  • the size of each cell is K bits, the size of the payload area is N*K+F, and the bandwidth size of each cell is K/(N*K+F)* Bandwidth, F ⁇ K, where F is a padding bit and F padding bits are located at the end or in the middle of the payload area.
  • the cell includes a data cell and a control cell, wherein the data cell is configured to store the ODU service, and the control cell is configured to store the ODU service mapped to the In the control information of the cell, the control information includes at least one of overhead information and monitoring information.
  • the cell comprises a cell flag bit and a data area.
  • the first bit of the cell is the cell flag bit, and the first bit identifier is 1 or 0, where 1 indicates that the cell is a control cell, and 0 indicates The cell is a data cell.
  • the optical transport network signal exists in the form of an optical transport network interface frame, and the signal rate and the frame format may be multiple, but any frame format is a fixed length frame, and the frame may be divided into an overhead area and Two parts of the payload area.
  • FIG. 5 is a schematic diagram of dividing the interface payload area according to the cell according to the embodiment of the present application, as shown in FIG. 5. As shown, the bandwidth of each cell is one-N of the interface frame payload bandwidth; if the payload area cannot be divided into integer multiples of cells, the payload is divided according to the maximum number of cells that can be divided, and the payload is divided. The remaining data of the area is padded.
  • the padding can be located at the end of the frame or in the middle of the frame.
  • the bandwidth of each cell is (K/(N*K+F)* frame payload bandwidth, where F is the frame.
  • the number of bits in the payload, F ⁇ K, N*K+F is the total number of bits in the payload area of the interface frame.
  • the number of services that can be transmitted in one interface frame is at most N.
  • the bandwidth of the cells can also be small, which improves the bandwidth utilization.
  • K it should not be too large.
  • the value means that the number of service bits to be buffered is large, and the delay is large; it should not be too small. Since the cells are divided into two types, some bits need to be occupied as indicators, and the value is too small, meaning that the indicator is The proportion of cells is too large, and a reasonable value is 129 bits. Of course, other values can be selected as needed.
  • each service allocates Sj cells, it needs to be evenly distributed among N cells. If all the service numbers of all the cells are 0, then all the cells with the service number 0 are in the order of the frames.
  • the S1 cells corresponding to the first service are evenly distributed into N cells.
  • the second service in all the cells with the service number 0, according to the frame in the frame.
  • the S2 cells corresponding to the second service are evenly distributed to the N-S1 cells with the service number 0 according to the Sigma-delta algorithm, and so on.
  • the cell includes K bits, which are divided into two parts, one part is a cell type identifier, and the other part is cell information.
  • One bit of the Kbit cell can be identified as a cell type, and 0 means K in the cell.
  • All of the 1 bits are services, and 1 means that all K-1 bits in the cell are control information.
  • the control cell compensation service rate and the cells allocated to the cells periodically appear in the cells.
  • the rate difference between the rates, these control cells play the role of rate padding, and can also be used to transmit additional overhead. For example, when the service rate is mapped to the cell, in order to ensure the transparent transmission of the clock of the service, the service rate needs to be transmitted relative to the optical.
  • the rate difference of the net interface frame payload rate is transmitted as overhead, so that the rate of the service can be recovered according to the overhead during the demapping, and the overhead needs to be placed in the control cell.
  • FIG. 6 is a schematic diagram of a service mapping multiplexing path according to an embodiment of the present application.
  • a non-OTN type service first mapping to an ODU signal according to a traditional mapping manner (AMP, BMP, GMP), and mapping To the interface frame payload area, for the OTN type signal, directly mapped to the interface frame payload area.
  • AMP traditional mapping manner
  • BMP BMP
  • GMP GMP
  • FIG. 7 is a schematic diagram of the distribution of multiple ODU signals in an interface frame payload area according to an embodiment of the present application. As shown in FIG. 7, the position of each ODU signal in each interface frame payload area is fixed.
  • Interface frames can be of the OTUk type or of the flexible OTN FlexO type.
  • FIG. 8 is a flowchart of a method for receiving a service in an optical transport network according to an embodiment of the present application, as shown in FIG. Step S802 and step S804 are included.
  • step S802 an optical transport network OTN interface frame is received, where the payload area of the OTN interface frame includes N cells of a fixed size, one cell carries an ODU service, and N is an integer greater than or equal to 1.
  • step S804 the ODU service is demapped from the N cells of the payload area of the OTN interface frame.
  • the ODU service is demapped from the N cells of the payload area of the OTN interface frame, it is possible to avoid transmitting optical transmission in the related art by dividing the payload area into time slots.
  • the service leads to a serious waste of bandwidth and improves the bandwidth utilization of the optical transport network.
  • de-mapping the ODU service from the N cells of the payload area of the OTN interface frame includes: obtaining each of the ODU services from an overhead area of the OTN interface frame The signal type and the number of cells Sj occupied by each of the ODU services; obtaining Sj according to the number of cells Sj occupied by each ODU service and the total number N of cells in the payload area The location of the cells in the N cells of the payload area; de-mapping the ODU service from the Sj cells according to the overhead information of the control cells occupied by the ODU service, The control cell is configured to store the ODU service mapped to the control information of the cell.
  • the signal type of each of the ODU services and the number of cells Sj occupied by each of the ODU services are included in the OTN interface frame.
  • the signal type of each of the ODU services and the number of cells occupied by each of the ODU services are obtained from the optical channel payload unit OPU overhead area of the OTN interface frame;
  • the signal type of each of the ODU services and the number of cells occupied by each of the ODU services are obtained from the FlexO overhead area of the OTN interface frame.
  • the method further includes: for a non-OTN type service, The ODU service is converted into the non-OTN type of service.
  • the method for receiving a service through an optical transport network includes: obtaining an optical signal from an optical port to obtain an interface frame, which may be an OTUk type or a FlexO type.
  • the service type information and the number of occupied cells Sj are obtained from the interface frame overhead.
  • the position of the Sj cells in the N cells of the interface frame payload area is obtained according to the Sigma-delta algorithm, according to the ODUi signal.
  • the overhead information of the occupied control cells demaps the ODUi signal from the Sj cells. For non-OTN type signals, the ODU signal is demapped to restore the original data service.
  • the two OTN devices transmit two Ethernet services with a bandwidth of 5GE through the OTU2.
  • the OTU2 payload area is divided by the cells provided in this application, and the slot allocation mode is not adopted.
  • Step 2 On the sending end, map the two 5GE Ethernets to the corresponding two ODUflexs, each of which has a bandwidth of about 5G.
  • Step 3 Calculate the number of cells occupied by each ODUflex according to the ODUflex bandwidth and the cell bandwidth.
  • each ODUflex needs to be allocated 238 cells.
  • Step 4 All the 238 cells occupied by the first ODUflex are evenly distributed to the OU of the OPU2 payload area according to the Sigma-delta algorithm in all the cells whose service numbers are 0 according to the order in the frame.
  • the rate difference between the first ODUflex and the OPU2 payload bandwidth is stored as overhead information in the control cell.
  • the 238 cells corresponding to the second ODUflex are evenly distributed to 476-238 according to the Sigma-delta algorithm.
  • the rate difference between the second ODUflex and the OPU2 payload bandwidth is stored as overhead information in the control cell.
  • Step 5 Add the OPU2 overhead, and store the information of each ODUflex type and the number of occupied cells in the OPU2 overhead area, add the ODU2 overhead and the OTU2 overhead, encapsulate the OTU2, and send it out from the optical port.
  • Step 6 At the receiving end, acquire OTU2 from the optical port, and recover the OPU2 overhead and payload from the OTU2.
  • Step 7 Obtain the type information about the first ODUflex and the number of occupied cells 238 from the OPU2 overhead, according to the number of cells occupied by the first ODUflex and the total number of cells in the OPU2 payload, according to Sigma-
  • the delta algorithm obtains the position of the first ODUflex 238 cells in the 476 cells of the interface frame payload area, and demaps the first ODUflex from 238 cells according to the overhead information of the control cells occupied by the ODUflex signal. signal. Get the second ODUflex in the same way.
  • Step 8 Demap the two ODUflexs separately, recover two 5GE Ethernet services, and complete the entire transmission.
  • Step 2 On the transmitting end, the 25GE Ethernet is mapped to the corresponding ODUflex, and the ODUflex bandwidth is about 25G. Each 5GE Ethernet service is mapped with the corresponding 5 ODUflex, and the corresponding ODUflex bandwidth is about 5G.
  • Step 3 Calculate the number of cells occupied by each ODUflex according to the ODUflex bandwidth and the cell bandwidth.
  • the 25G ODUflex occupies 2565 cells
  • each 5G ODUflex occupies 513 cells.
  • Step 4 In all the cells with the service number 0, according to the order in the frame, according to the Sigma-delta algorithm, 2565 cells occupied by the 25G ODUflex are evenly distributed into the 5130 cells of the FlexO payload area. The rate difference between the 25G ODUflex and the FlexO payload bandwidth is stored as overhead information in the control cell. For the first 5G ODUflex, in all the remaining cells with the service number 0, according to the order in the frame, the 513 cells corresponding to the first 5G ODUflex are evenly distributed to 5130 according to the Sigma-delta algorithm. - In 2565 cells with service number 0, the rate difference between the first ODUflex and the FlexO payload bandwidth is stored as overhead information in the control cell. And so on, until all ODUflex is loaded into the payload area of the FlexO.
  • step 5 the FlexO overhead is added, and each ODUflex type information and the number of occupied cells are stored in the FlexO overhead area, FEC check is added, and the FlexO frame is encapsulated and sent out from the optical port.
  • Step 6 At the receiving end, the FlexO frame is obtained from the optical port, and the FlexO overhead and the payload are recovered from the FlexO frame.
  • Step 7 Obtain the type information about the 25G ODUflex and the number of occupied cells 2565 from the FlexO overhead, and obtain the 25G according to the Sigma-delta algorithm according to the number of cells occupied by the 25G ODUflex and the total number of cells in the FlexO payload.
  • the position of the ODUflex 2565 cells in the 5130 cells of the interface frame payload area demaps the 25G ODUflex signal from 2565 cells according to the overhead information of the control cells occupied by the 25G ODUflex signal.
  • the remaining five 5G ODUflexs are obtained in the same way. .
  • step 8 the 25G ODUflex demaps and restores the 25GE Ethernet service, and the five 5G ODUflexs perform demapping to obtain five 5GE services to complete the entire transmission.
  • the technical solution of the present application may be embodied in the form of a software product in essence or in a form of a software product stored in a storage medium such as a read-only memory/random memory (Read Only Memory/Random Access Memory (ROM/RAM), a magnetic disk, and an optical disk include instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the embodiments of the present application.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
  • a service transmitting apparatus in an optical transport network is also provided.
  • the apparatus is configured to implement the foregoing embodiments and example embodiments, and details are not described herein.
  • the term "module" may implement a combination of at least one of software and hardware for a predetermined function.
  • the apparatus described in the following embodiments may be implemented in software, but hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 9 is a block diagram of a service transmitting apparatus in an optical transport network according to an embodiment of the present application. As shown in FIG. 9, a mapping module 92 and a transmitting module 94 are included.
  • the mapping module 92 is configured to map the optical transmission data unit ODU service to the cell of the payload area of the optical transport network OTN interface frame, where the payload area includes N cells of a fixed size, and one cell bearer An ODU service, where N is an integer greater than one.
  • the sending module 94 is configured to encapsulate and send the OTN interface frame.
  • the cell includes a data cell and a control cell, wherein the data cell is configured to store the ODU service, and the control cell is configured to store the ODU service mapped to the In the control information of the cell, the control information includes at least one of overhead information and monitoring information.
  • the cell comprises a cell flag bit and a data area.
  • the first bit of the cell is the cell flag bit, and the first bit identifier is 1 or 0, where 1 indicates that the cell is a control cell, and 0 indicates The cell is a data cell.
  • each cell in a case where the size of the payload area is N times the size of the cell, each cell has a size of K bits, and the size of the payload area is N*K.
  • the bandwidth size of each cell is one-Nth of the bandwidth of the payload area, where K is an integer greater than one; the size of the payload area is N times the size of the cell and F
  • the size of each cell is K bits
  • the size of the payload area is N*K+F
  • the bandwidth size of each cell is K/(N*K+F) *
  • An integer a predetermined number of cells are allocated for each of the ODU services, wherein the jth of the ODU services are allocated with Sj cells of the N cells; and the mapping unit is set to be M
  • the ODU service is mapped to the predetermined number of cells, wherein the jth ODU service is mapped to the Sj cells of the N cells.
  • the apparatus further includes: a determining unit configured to determine, according to a bandwidth of the ODU service and a bandwidth of the cell, each time before allocating a predetermined number of cells for each of the ODU services The predetermined number of cells allocated by the ODU service.
  • the -delta algorithm uniformly distributes the S1 cells allocated for the first ODU service to N cells; when j is greater than or equal to 2, the following steps are repeatedly performed until each of the ODU services is allocated There is a predetermined number of cells, wherein the initial value of j is 2; according to the order of the cells indicated as idle in the OTN interface frame, the allocation of the jth said ODU service according to the sigma-delta algorithm
  • the apparatus further includes: a storage unit, configured to evenly distribute the Sj cells allocated for the jth the ODU service to the N cells according to a sigma-delta algorithm When N-S1-S2-...-S(j-1) idle cells, the rate difference between the jth ODU service and the bandwidth of the payload area is stored as overhead information. In the control cell.
  • the apparatus further includes: an indication unit, configured to carry the ODU in the N cells in a process of mapping the M ODU services to the predetermined number of cells The cells of the service are marked as occupied.
  • the apparatus further includes: a first conversion module, configured to: before the mapping the ODU service to the payload area of the OTN interface frame, for the non-OTN type service, the non-OTN type The business is converted to the ODU business.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a service receiving device in an optical transport network is also provided.
  • the device is configured to implement the foregoing embodiments and example embodiments, and details are not described herein.
  • the term "module" may implement a combination of at least one of software and hardware for a predetermined function.
  • the apparatus described in the following embodiments may be implemented in software, but hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 10 is a block diagram of a service receiving apparatus in an optical transport network according to an embodiment of the present application. As shown in FIG. 10, the receiving module 102 and the demapping module 104 are included.
  • the receiving module 102 it is configured to receive an optical transport network OTN interface frame, where the payload area of the OTN interface frame includes N cells of a fixed size, one cell carries an ODU service, and N is an integer greater than 1. .
  • the ODU service is demapped from the N cells of the payload area of the OTN interface frame.
  • the demapping module 104 includes: an obtaining unit, configured to acquire, from an overhead area of the OTN interface frame, a signal type of each of the ODU services and a letter occupied by each of the ODU services.
  • the number of elements Sj is obtained according to the number of cells Sj occupied by each of the ODU services and the total number N of cells in the payload area, and the N pieces of Sj cells in the payload area are obtained.
  • the location in the cell a demapping unit, configured to demap the ODU service from the Sj cells according to the overhead information of the control cell occupied by the ODU service, where the control cell is configured to store the ODU service Mapped to the control information of the cell.
  • the acquiring unit is further configured to: when the OTN interface frame is an OTU frame, obtain each ODU from an optical channel payload unit OPU overhead area of the OTN interface frame.
  • the type of signal and the number of cells occupied by each of the ODU services is further configured to: when the OTN interface frame is an OTU frame, obtain each ODU from an optical channel payload unit OPU overhead area of the OTN interface frame.
  • the signal type of the service and the number of cells Sj occupied by each of the ODU services in the case where the OTN interface frame is a FlexO frame, each of the ODU services is obtained from a FlexO overhead area of the OTN interface frame.
  • the type of signal and the number of cells occupied by each of the ODU services is further configured to: when the O
  • the apparatus further includes: a second conversion module configured to, after de-mapping the ODU service from the N cells of the payload area of the OTN interface frame, for non-OTN A service of the type that converts the ODU service into the non-OTN type service.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present application also provide a storage medium having stored therein a computer program, wherein the computer program is configured to execute the steps of any one of the method embodiments described above.
  • the storage medium may be configured to store a computer program set to perform steps S11 and S12.
  • step S11 the optical transmission data unit ODU service is mapped to the cell of the payload area of the optical transport network OTN interface frame, wherein the payload area includes N cells of a fixed size, and one cell carries one cell.
  • ODU service where N is an integer greater than or equal to 1.
  • step S12 the OTN interface frame is encapsulated and transmitted.
  • the storage medium may be further configured to store a computer program set to perform steps S21 and S22.
  • step S21 an optical transport network OTN interface frame is received, where the payload area of the OTN interface frame includes N cells of a fixed size, one cell carries an ODU service, and N is an integer greater than or equal to 1.
  • step S22 the ODU service is demapped from the N cells of the payload area of the OTN interface frame.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), and a mobile hard disk.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk A variety of media that can store computer programs, such as a magnetic disk or an optical disk.
  • Embodiments of the present application also provide an electronic device including a memory and a processor having a computer program stored therein, the processor being configured to execute a computer program to perform the steps of any of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • the processor may be configured to perform steps S11 and S12 through a computer program.
  • step S11 the optical transmission data unit ODU service is mapped to the cell of the payload area of the optical transport network OTN interface frame, wherein the payload area includes N cells of a fixed size, and one cell carries one cell.
  • ODU service where N is an integer greater than or equal to 1.
  • step S12 the OTN interface frame is encapsulated and transmitted.
  • the processor may be further configured to perform step S21 and step S22 by a computer program.
  • step S21 the optical transport network OTN interface frame is received, where the payload area of the OTN interface frame includes N cells of a fixed size, one cell carries an ODU service, and N is an integer greater than or equal to 1.
  • step S22 the ODU service is demapped from the N cells of the payload area of the OTN interface frame.
  • modules or steps of the present application described above may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. For example, they may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by a computing device, and in some cases may be performed in a different order than that illustrated herein. Or the steps described, either separately as individual integrated circuit modules, or as a plurality of modules or steps in a single integrated circuit module. Thus, the application is not limited to any particular combination of hardware and software.

Abstract

本申请提供了一种光传送网中业务发送、接收方法及装置,其中,该光传送网中业务发送方法包括:将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数;封装并发送所述OTN接口帧。

Description

光传送网中业务发送、接收方法及装置
本申请要求在2017年12月28日提交中国专利局、申请号为201711463056.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如一种光传送网中业务发送、接收方法及装置。
背景技术
光传送网(Optical Transport Network,OTN)标准由国际电信联盟电信标准化部门(International Telecommunication Union Telecommunication Standardization Sector,ITU-T)制定,是光传输设备的重要标准,目前几乎所有的长距传输网络都由基于光传送网标准的设备组成。
光传送网有其标准的信号格式,包括光通道传输单元(Optical Transport Unit,OTUk)(k=1,2,3,4),FlexO以及未来定义的新的光传送网信号。光传送网信号用来装各种非OTN信号或多个低速光数据传输单元(Optical Data Unit,ODUi)(i=0,1,2,2e,3,4,flex)信号,且ODUi速率比ODUk速率低,以后用低速ODUi(i<k)信号表示比ODUk速率低的ODUi信号;其中非OTN信号指除过光传送网信号以外的多种其他信号,例如同步数字体系(Synchronous Digital Hierarchy,SDH)信号,以太网信号,光纤通道(Fibre channel)信号,以及多种分组(Packet)信号等。光传送网信号包含开销和净荷两部分,以OTUk为例,进一步说明光传送网信号的构成部分。图1是相关技术中OTUk的帧结构的示意图,如图1所示,OTUk信号由OTUk帧组成,OTUk帧中去掉OTUk开销后剩下的部分叫做光通道数据单元ODUk帧,ODUk帧中去掉ODUk开销后剩下的部分叫光通道净荷单元(Optical Payload Unit k,OPUk)帧,OPUk帧去掉OPUk开销后剩下的部分叫OPUk净荷,OPUk净荷可用来装一个非OTN信号或多个低速ODUi(i<k)信号,由ODUk帧组成的信号叫ODUk信号。
在相关光传送网信号定义中,业务信号装到光传送网净荷区域使用的映射方法主要有异步映射规程(Asynchronous Mapping Procedure,AMP),比特同步 映射规程(Bit-synchronous Mapping Procedure,BMP)和通用映射规程(Generic Mapping Procedure,GMP),其中BMP的使用有很大限制,即要求光传送网信号和业务信号速率完全同步且速率比值符合特定关系,AMP和GMP不要求光传送网信号和业务信号速率同步,尤其是GMP,是业务信号装到光传送网信号中的主要方法。
图2是相关技术中光传送标准中OPUk净荷划分为4个时隙的示意图,如图2所示,在相关光传送网的定义中,多个业务信号装到光传送网信号净荷中的方法是将光传送网信号净荷划分为n个时隙,然后将业务信号装入光传送网信号净荷中的至少一个时隙中,时隙以字节间插的方式实现。以光传送网信号OTUk作为例子,OPUk净荷是一个4行3808列的字节块,列号从17到3824(前17列对应OTUk开销、ODUk开销和OPUk开销),行号从1到4,图2中一个小方框代表一个字节,一个OPUk帧的OPUk净荷区由4*3808个字节组成,排成如图2所示的4行3808列。图2表示OPUk净荷被以字节间插的方式划分为4个时隙时的情况,即在3808列中,从列17开始,相邻的4个字节一组,每组中的4个字节分别划分到4个不同的时隙TS1,TS2,TS3,TS4,即从列17开始连续的4个字节分别表示4个时隙,这样OPUk净荷中的所有4*3808字节被划分为4个时隙,分别命名为TS1,TS2,TS3,TS4,m个时隙可以装一个ODUi(m小于OPUk净荷中的最大时隙数n,图2中n=4)。
按照相关的光传送网标准G.709,100G速率的OTU4中的OPU4净荷被划分为80个时隙。由于光传送网中最小的ODUk为ODU0,速率为1.25G,这样理论上说所有速率的OTUk帧中的OPUk净荷都应该划分为1.25G粒度的时隙,这样能够最高效的装下ODU0,但当OTUk速率很高时,例如OTU4速率为100G,按照1.25G粒度划分时隙会导致时隙数量很多,例如OTU4的OPU4净荷中需要划分80个时隙,时隙太多导致多个低速ODUi(i<k)在装入OTUk时硬件实现的难度很大。在超100G信号格式OTUCn中(n为大于等于1的整数),考虑到相关的硬件水平,OTUCn中的时隙粒度不是1.25G,而是5G,但这样会出现速率小于5G的ODUi装到OTUCn中时浪费空间的现象,固定的时隙大小也限制了一个ODU所能承载的业务数量。此外,针对一些运营商不在维护SDH设备,一些带宽小的业务(小于1G)也需要从SDH设备过渡到OTN设备,而相关OTN设备时隙颗粒度最小为1.25G,直接承载,带宽浪费严重,也需要对相 关的OTN技术进行改进。
针对相关技术中通过将净荷区域划分为时隙的方式传送光传送业务导致带宽浪费严重的情况,尚未提出改善方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种光传送网中业务发送、接收方法及装置,以避免相关技术中通过将净荷区域划分为时隙的方式传送光传送业务导致带宽浪费严重的情况。
本申请的一个实施例,提供了一种光传送网中业务发送方法,包括:将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数;封装并发送所述OTN接口帧。
根据本申请的另一个实施例,还提供了一种光传送网中业务接收方法,包括:接收光传送网OTN接口帧,其中,所述OTN接口帧的净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数;从所述OTN接口帧的净荷区域的所述N个信元中解映射出ODU业务。
根据本发明的另一个实施例,还提供了一种光传送网中业务发送装置,包括:映射模块,设置为将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个所述信元承载一个所述ODU业务,N为大于1的整数;发送模块,设置为封装并发送所述OTN接口帧。
根据本申请的另一个实施例,还提供了一种光传送网中业务接收装置,包括:接收模块,设置为接收光传送网OTN接口帧,其中,所述OTN接口帧的净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于1的整数;解映射模块,设置为从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述实施例所述 的光传送网中业务发送接收方法或接收方法。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述实施例所述的光传送网中业务发送接收方法或接收方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是相关技术中OTUk的帧结构的示意图;
图2是相关技术中光传送标准中OPUk净荷划分为4个时隙的示意图;
图3是本申请实施例的一种光传送网中业务发送方法的移动终端的硬件结构框图;
图4是根据本申请实施例的光传送网中业务发送方法的流程图;
图5是根据本申请实施例的按照信元划分接口帧净荷区域的示意图;
图6是根据本申请实施例的业务映射复用路径的示意图;
图7是根据本申请实施例的多路ODU信号在接口帧净荷区域分布的示意图;
图8是根据本申请实施例的光传送网中业务接收方法的流程图;
图9是根据本申请实施例的光传送网中业务发送装置的框图;
图10是根据本申请实施例的光传送网中业务接收装置的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图3是本申请实施例的一种 光传送网中业务发送方法的移动终端的硬件结构框图。如图3所示,移动终端10可以包括至少一个(图3中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,例如,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本申请实施例中的光传送网中业务发送方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如至少一个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的光传送网中业务发送方法,图4是根据本申请实施例的光传送网中业务发送方法的流程图,如图4所示,该流程包括步骤S402和步骤S404。
在步骤S402中,将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数。
在步骤S404中,封装并发送所述OTN接口帧。
通过上述步骤,由于将OTN接口帧的净荷区域划分为N个信元,将ODUi业务写入到N个信元中,发送接口帧,因此,可以避免相关技术中通过将净荷 区域划分为时隙的方式传送光传送业务导致带宽浪费严重的情况,提高光传送网带宽利用率。
在一实施例中,所述信元包括数据信元和控制信元,其中,所述数据信元设置为存放所述ODU业务,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中,所述控制信息包括开销信息和监控信息中的至少一种。
在一实施例中,所述信元包括信元标志位和数据区。
在一实施例中,所述信元的第一比特为所述信元标志位,所述第一比特的标识为1或0,其中,1表示所述信元为控制信元,0表示所述信元为数据信元。
在一实施例中,在所述净荷区域的大小是所述信元的大小的N倍(所述净荷区域的大小可以整除所述信元的大小,即所述净荷区域的大小是所述信元的大小的整数倍)的情况下,每个信元的大小为K比特,所述净荷区域的大小为N*K,每个信元的带宽大小为所述净荷区域的带宽的N分之一,其中,K为大于1的整数。
在所述净荷区域的大小是所述信元的大小的N倍与F个填充比特之和(所述净荷区域的大小不能整除所述信元的大小,即所述净荷区域的大小不是所述信元的大小的整数倍)的情况下,每个信元的大小为K比特,所述净荷区域的大小为N*K+F,每个信元的带宽大小为K/(N*K+F)*所述净荷区域的带宽,F<K,其中,F为填充比特,所述F个填充比特位于所述净荷区域的末尾或中间。
在一实施例中,ODU业务的个数为M,将所述ODU业务编号为Cj,j=1到M,M为大于或等于1的整数,其中,所述将所述ODU业务映射到所述OTN接口帧的所述净荷区域的信元中包括:为每个所述ODU业务分配预定数量的信元,其中,第j个所述ODU业务被分配有所述N个信元中的Sj个信元;将M个所述ODU业务映射到所述预定数量的信元中,其中,第j个所述ODU业务映射到所述N个信元中的所述Sj个信元。
在一实施例中,在为每个所述ODU业务分配预定数量的信元之前,所述方法还包括:根据所述ODU业务的带宽以及所述信元的带宽确定为每个所述ODU业务分配的所述预定数量的信元个数。
在一实施例中,所述为每个所述ODU业务分配预定数量的信元包括:当j=1时,所述N个信元标示为空闲信元,按照所述N个信元在所述OTN接口帧中的顺序,根据sigma-delta算法将为第1个所述ODU业务分配的所述S1个信元 均匀分布到所述N个信元;当j大于或等于2时,重复执行以下步骤,直到每个所述ODU业务都分配有预定数量的信元,其中,j的初始值为2;按照标示为空闲的信元在所述OTN接口帧中的顺序,根据sigma-delta算法将为第j个所述ODU业务分配的所述Sj个信元均匀分布到所述N个信元的N-S1-S2-...-S(j-1)个空闲信元中;j=j+1。
在一实施例中,在根据sigma-delta算法将为第j个所述ODU业务分配的所述Sj个信元均匀分布到所述N个信元的N-S1-S2-...-S(j-1)个空闲信元中时,所述方法还包括:将所述第j个所述ODU业务与所述净荷区域的带宽之间的速率差作为开销信息存放在控制信元中。
在一实施例中,在将M个所述ODU业务映射到所述预定数量的信元的过程中,所述方法还包括:将所述N个信元中承载所述ODU业务的信元标示为已占用。
在一实施例中,所述封装并发送所述OTN接口帧包括:在所述OTN接口帧为OTU帧的情况下,将每个所述ODU业务的信号类型以及每个所述ODU业务占用的信元个数存放在所述OTN接口帧的光通道净荷单元OPU开销区域,增加所述OTN接口帧的ODU开销以及光通道传输单元OTU开销以形成OTU帧,并发送所述OTU帧;在所述OTN接口帧为FlexO帧的情况下,将每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数存放在所述OTN接口帧的FlexO开销区域,增加所述OTN接口帧的FlexO开销、定位码和前向纠错码(Forward Error Correction,FEC)以形成完整的FlexO帧,并发送所述FlexO帧。
在一实施例中,在所述将ODU业务映射到OTN接口帧的净荷区域中之前,所述方法还包括:对于非OTN类型的业务,将所述非OTN类型的业务转换为所述ODU业务。
本申请实施例还提供了一种光传送网接口帧,包括:净荷区域,其中,所述净荷区域包括固定大小的N个信元,其中,一个信元设置为承载一个ODU业务,N为大于或等于1的整数。
在一实施例中,在所述净荷区域的大小是所述信元的大小的整数倍的情况下,每个信元的大小为K比特,所述净荷区域的大小为N*K,每个信元的带宽大小为所述净荷区域的带宽的N分之一,其中,K为大于1的整数;在所述净 荷区域的大小不是所述信元的大小的整数倍的情况下,每个信元的大小为K比特,所述净荷区域的大小为N*K+F,每个信元的带宽大小为K/(N*K+F)*所述净荷区域的带宽,F<K,其中,F为填充比特,F个填充比特位于所述净荷区域的末尾或中间。
在一实施例中,所述信元包括数据信元和控制信元,其中,所述数据信元设置为存放所述ODU业务,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中,所述控制信息包括开销信息和监控信息中的至少一种。
在一实施例中,所述信元包括信元标志位和数据区。
在一实施例中,所述信元的第一比特为所述信元标志位,所述第一个比特标识为1或0,其中,1表示所述信元为控制信元,0表示所述信元为数据信元。
本申请实施例,光传送网信号是以光传送网接口帧的形式存在的,信号速率和帧格式可能有多种,但任何帧格式都是定长帧,且帧中可以分为开销区和净荷区两部分。
在光传送网接口帧格式的净荷区域,引入信元的概念,信元为占用固定数量的连续比特,将接口帧的净荷区域分为固定大小(或预定大小)的N个信元,每个信元大小为K个比特,N*K的结果为接口帧净荷区域的总比特数,图5是根据本申请实施例的按照信元划分接口帧净荷区域的示意图,如图5所示,每个信元的带宽大小为接口帧净荷带宽的N分之一;若净荷区域无法整分为整数倍的信元,按照最大可分的信元数目进行划分,将净荷区域余下的数据做填充,填充可位于帧的末尾,也可分布于帧中间,此时每个信元带宽大小为(K/(N*K+F)*帧净荷带宽,其中F为帧净荷中的填充比特(bit)数目,F<K,N*K+F为接口帧净荷区域的总比特数。通过本申请实施例,一个接口帧可传递的业务数最多为N,每个信元的带宽也可以很小,提高了带宽利用率。对于K的取值,不宜过大,过大的取值意味着需要缓存的业务比特数多,时延变大;也不宜过小,由于信元分为两种类型,需要占用一些比特作为指示符,取值过小,意味着指示符在信元中所占的比重太大,一个合理的取值为129比特,当然也可以根据需要选取其他取值。
当M个ODUi业务要装入光传送网接口帧的净荷区域时,首先针对每个ODUi业务分配一个业务编号,编号为1到M,每个业务的编号不能重复,假设第j个业务的编号为Ci(j=1到M),对每个帧中的N个信元进行分配,每个业务 分配给Sj个信元,Sj的大小和ODUi的速率相关,ODUi的速率越大则Sj越大。N个信元中的任一个,一旦分配给某个ODUi业务后就会被标示为已占用,并给此信元分配一个业务编号Cj,未被分配的信元业务编号为0,标示为空闲。每个业务分配Sj个信元时要求在N个信元中均匀分布,假设当前所有信元的业务编号都为0,则在所有业务编号都为0的信元中按照其在帧中的顺序,按照Sigma-delta算法将第一个业务对应的S1个信元均匀分配到N个信元中,对于第2个业务,在剩下的所有业务编号为0的信元中,按照其在帧中的顺序,按照Sigma-delta算法将第二个业务对应的S2个信元均匀分配到N-S1个业务编号为0的信元中,以后依次类推。信元包括K个bit,分为两部分,一部分为信元类型标识,另一部分为信元信息,可将Kbit信元中其中一个bit作为信元类型识别,为0表示此信元中的K-1个bit中全部是业务,为1表示此信元中的K-1个bit全部是控制信息。每个业务被分配了其业务编号对应的Sj个信元后,由于Sj个信元的速率高于业务的速率,所以信元中会定期出现控制信元补偿业务速率和分配给其的信元速率的速率差,这些控制信元起到速率填充的作用,同时还能用来传输额外的开销,例如业务速率映射到信元时为了保证业务的时钟透传,需要将业务速率相对于光传送网接口帧净荷速率的速率差作为开销传送,这样解映射时可以根据此开销恢复出业务的速率,这些开销就需要放到控制信元中。
图6是根据本申请实施例的业务映射复用路径的示意图,如图6所示,对于非OTN类型的业务,首先按照传统的映射方式(AMP、BMP、GMP)映射到ODU信号,在映射到接口帧净荷区域,对于OTN类型的信号,直接映射到接口帧净荷区域。
当M个ODUi业务要装入光传送网接口帧的净荷区域时,首先针对每个ODUi业务分配一个业务编号,编号为1到M,每个业务的编号不能重复,假设第j个业务的编号为Cj(j=1到M),对每个帧中的N个信元进行分配,每个业务分配给Sj个信元。N个信元中的任一个,一旦分配给某个ODUi业务后就会被标示为以占用,并给此信元分配一个业务编号Cj,未被分配的信元业务编号为0,标示为空闲。每个业务分配Sj个信元时要求在N个信元中均匀分布,假设当前所有信元的业务编号都为0,则在所有业务编号都为0的信元中按照其在帧中的顺序,按照Sigma-delta算法将第一个业务对应的S1个信元均匀分配到N个信元中,对于第2个业务,在剩下的所有业务编号为0的信元中,按照其在 帧中的顺序,按照Sigma-delta算法将第二个业务对应的S2个信元均匀分配到N-S1个业务编号为0的信元中,以后依次类推,直到所有的业务分配完毕,完成整个映射过程,图7是根据本申请实施例的多路ODU信号在接口帧净荷区域分布的示意图,如图7所示,每个ODU信号在每个接口帧净荷区域的位置都是固定的。
对接口帧净荷区域增加开销信息,将ODU信号类型以及所占用的信元个数存放在开销中,按顺序存放,最后将接口帧传送到对端。接口帧可以是OTUk类型也可以是灵活OTN FlexO类型。
实施例2
根据本申请的另一个实施例,还提供了一种光传送网中业务接收方法,图8是根据本申请实施例的光传送网中业务接收方法的流程图,如图8所示,该流程包括步骤S802和步骤S804。
在步骤S802中,接收光传送网OTN接口帧,其中,所述OTN接口帧的净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数。
在步骤S804中,从所述OTN接口帧的净荷区域的所述N个信元中解映射出ODU业务。
通过上述步骤,由于从所述OTN接口帧的净荷区域的所述N个信元中解映射出ODU业务,因此,可以避免相关技术中通过将净荷区域划分为时隙的方式传送光传送业务导致带宽浪费严重的情况,提高光传送网带宽利用率。
在一实施例中,从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务包括:从所述OTN接口帧的开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj;根据每个所述ODU业务所占用的信元个数Sj和所述净荷区域的信元总个数N,获取Sj个信元在所述净荷区域的所述N个信元中的位置;根据所述ODU业务所占用控制信元的开销信息,从所述Sj个信元中解映射出所述ODU业务,其中,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中。
在一实施例中,从所述OTN接口帧的开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj包括:在所述OTN接口帧为OTU帧的情况下,从所述OTN接口帧的光通道净荷单元OPU开销区域 中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj;在所述OTN接口帧为FlexO帧的情况下,从所述OTN接口帧的FlexO开销区域获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数。
在一实施例中,在从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务之后,所述方法还包括:对于非OTN类型的业务,将所述ODU业务转换为所述非OTN类型的业务。
通过光传送网接收业务的方法,包括:从光口获得光信号,得到接口帧,可为OTUk类型或FlexO类型。从接口帧开销中获取业务类型信息以及所占用的信元个数Sj。根据ODUi信号占用的信元个数Sj和帧净荷区域的信元总个数N,按照Sigma-delta算法获取Sj个信元在接口帧净荷区域N个信元中的位置,根据ODUi信号所占用控制信元的开销信息,从Sj个信元中解映射出ODUi信号。对于非OTN类型的信号,对ODU信号进行解映射,恢复原始的数据业务。
下面以具体示例对本申请实施例进行详细说明。
示例1
两个OTN设备通过OTU2传送两个带宽为5GE的以太网业务,OTU2净荷区域采用本申请提供的信元进行划分,不采用时隙的划分方式。
步骤1,OTU2的净荷区域大小为4*3808字节,将信元大小设置为32字节,一共可以划分出(4*3808)/32=476个信元,每个信元带宽为OPU2净荷带宽/476,所有的信元编号为0,每个信元的第一个比特为信元类型识别,为0表示此信元中的(32*8-1)个bit中全部是业务,为1表示此信元中的(32*8-1)个bit全部是控制信息。
步骤2,在发送端,将两个5GE以太网映射到对应的两个ODUflex中,每个ODUflex带宽为5G左右。
步骤3,根据ODUflex带宽以及信元带宽计算每个ODUflex占用的信元个数,此例中需要为每个ODUflex分配238个信元。
步骤4,在所有业务编号都为0的信元中按照其在帧中的顺序,按照Sigma-delta算法,将第一个ODUflex所占用的238个信元均匀分配到OPU2净荷区域476个信元中,将第一个ODUflex与OPU2净荷带宽之间的速率差作为开销信息存放在控制信元中。对于第2个ODUflex,在剩下的所有业务编号为0 的信元中,按照其在帧中的顺序,按照Sigma-delta算法将第二个ODUflex对应的238个信元均匀分配到476-238个业务编号为0的信元中,将第二个ODUflex与OPU2净荷带宽之间的速率差作为开销信息存放在控制信元中。
步骤5,添加OPU2开销,并将每个ODUflex类型信息以及所占用的信元个数存放在OPU2开销区域,增加ODU2开销以及OTU2开销,封装成OTU2,从光口发送出去。
步骤6,在接收端,从光口获取OTU2,并从OTU2恢复出OPU2开销和净荷。
步骤7,从OPU2开销中获取关于第一个ODUflex的类型信息以及所占用的信元数目238,根据第一个ODUflex所占用的信元数以及OPU2净荷中的总信元数,按照Sigma-delta算法获取第一个ODUflex 238个信元在接口帧净荷区域476个信元中的位置,根据ODUflex信号所占用控制信元的开销信息,从238个信元中解映射出第一个ODUflex信号。以同样的方式获取第二个ODUflex。
步骤8,分别对两个ODUflex进行解映射,恢复出两个5GE以太网业务,完成整个传输。
示例2
1个25GE以太网业务,5个5GE以太网业务通过1*50G的FlexO接口进行传送。
步骤1,FlexO帧的净荷区大小为(128*5140-1280)=656640比特,将信元大小设置为128比特,一共可以划分出656640/128=5130个信元,每个信元带宽为FlexO净荷带宽/5130,所有的信元编号为0,每个信元的第一个比特为信元类型识别,为0表示此信元中的(128-1)个bit中全部是业务,为1表示此信元中的(128-1)个bit全部是控制信息。
步骤2,在发送端,将25GE以太网映射到对应的ODUflex中,该ODUflex带宽大小为25G左右;将每个5GE以太网业务映射带对应的5个ODUflex中,相应的ODUflex带宽为5G左右。
步骤3,根据ODUflex带宽以及信元带宽计算每个ODUflex占用的信元个数,此例中25G ODUflex占用2565个信元,每个5G ODUflex占用513个信元。
步骤4,在所有业务编号都为0的信元中按照其在帧中的顺序,按照Sigma-delta算法,将25G ODUflex所占用的2565个信元均匀分配到FlexO净荷 区域5130个信元中,将25G ODUflex与FlexO净荷带宽之间的速率差作为开销信息存放在控制信元中。对于第1个5G ODUflex,在剩下的所有业务编号为0的信元中,按照其在帧中的顺序,按照Sigma-delta算法将第1个5G ODUflex对应的513个信元均匀分配到5130-2565个业务编号为0的信元中,将第1个ODUflex与FlexO净荷带宽之间的速率差作为开销信息存放在控制信元中。依此类推,直到所有的ODUflex都装到FlexO的净荷区域。
步骤5,添加FlexO开销,并将每个ODUflex类型信息以及所占用的信元数目存放在FlexO开销区域,增加FEC校验,封装成FlexO帧,从光口发送出去。
步骤6,在接收端,从光口获取FlexO帧,并从FlexO帧中恢复出FlexO开销和净荷。
步骤7,从FlexO开销中获取关于25G ODUflex的类型信息以及所占用的信元数目2565,根据25G ODUflex所占用的信元数以及FlexO净荷中的总信元数,按照Sigma-delta算法获取25G ODUflex 2565个信元在接口帧净荷区域5130个信元中的位置,根据25G ODUflex信号所占用控制信元的开销信息,从2565个信元中解映射出25G ODUflex信号。以同样的方式获取余下5个5G ODUflex。。
步骤8,25G ODUflex进行解映射,恢复出25GE以太网业务,5个5G ODUflex进行解映射获得5个5GE业务,完成整个传输。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质,例如只读内存/随机存储器(Read Only Memory/Random Access Memory,ROM/RAM)、磁碟、光盘中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例3
在本实施例中还提供了一种光传送网中业务发送装置,该装置设置为实现上述实施例及示例实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少一种的组合。以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可 能并被构想的。图9是根据本申请实施例的光传送网中业务发送装置的框图,如图9所示,包括映射模块92和发送模块94。
映射模块92,设置为将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于1的整数。
发送模块94,设置为封装并发送所述OTN接口帧。
在一实施例中,所述信元包括数据信元和控制信元,其中,所述数据信元设置为存放所述ODU业务,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中,所述控制信息包括开销信息和监控信息中的至少一种。
在一实施例中,所述信元包括信元标志位和数据区。
在一实施例中,所述信元的第一比特为所述信元标志位,所述第一个比特标识为1或0,其中,1表示所述信元为控制信元,0表示所述信元为数据信元。
在一实施例中,在所述净荷区域的大小是所述信元的大小的N倍的情况下,每个信元的大小为K比特,所述净荷区域的大小为N*K,每个信元的带宽大小为所述净荷区域的带宽的N分之一,其中,K为大于1的整数;在所述净荷区域的大小是所述信元的大小的N倍与F个填充比特之和的情况下,每个信元的大小为K比特,所述净荷区域的大小为N*K+F,每个信元的带宽大小为K/(N*K+F)*所述净荷区域的带宽,F<K,其中,F为填充比特,所述F个填充比特位于所述净荷区域的末尾或中间。
在一实施例中,所述映射模块92包括:分配单元,设置为所述ODU业务的个数为M,将所述ODU业务编号为Cj,j=1到M,M为大于或等于1的整数,为每个所述ODU业务分配预定数量的信元,其中,第j个所述ODU业务被分配有所述N个信元中的Sj个信元;映射单元,设置为将M个所述ODU业务映射到所述预定数量的信元中,其中,第j个所述ODU业务映射到所述N个信元中的所述Sj个信元。
在一实施例中,所述装置还包括:确定单元,设置为在为每个所述ODU业务分配预定数量的信元之前,根据所述ODU业务的带宽以及所述信元的带宽确定为每个所述ODU业务分配的所述预定数量的信元个数。
在一实施例中,分配单元,还设置为:当j=1时,所述N个信元标示为空闲信元,按照所述N个信元在所述OTN接口帧中的顺序,根据sigma-delta算 法将为第1个所述ODU业务分配的所述S1个信元均匀分布到N个信元;当j大于或等于2时,重复执行以下步骤,直到每个所述ODU业务都分配有预定数量的信元,其中,j的初始值为2;按照标示为空闲的信元在所述OTN接口帧中的顺序,根据sigma-delta算法将为第j个所述ODU业务分配的所述Sj个信元均匀分布到所述N个信元的N-S1-S2-...-S(j-1)个空闲信元中;j=j+1。
在一实施例中,所述装置还包括:存放单元,设置为在根据sigma-delta算法将为第j个所述ODU业务分配的所述Sj个信元均匀分布到所述N个信元的N-S1-S2-...-S(j-1)个空闲信元中时,将所述第j个所述ODU业务与所述净荷区域的带宽之间的速率差作为开销信息存放在控制信元中。
在一实施例中,所述装置还包括:标示单元,设置为在将M个所述ODU业务映射到所述预定数量的信元的过程中,将所述N个信元中承载所述ODU业务的信元标示为已占用。
在一实施例中,所述装置还包括:第一转换模块,设置为在所述将ODU业务映射到OTN接口帧的净荷区域中之前,对于非OTN类型的业务,将所述非OTN类型的业务转换为所述ODU业务。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例4
在本实施例中还提供了一种光传送网中业务接收装置,该装置设置为实现上述实施例及示例实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少一种的组合。以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。图10是根据本申请实施例的光传送网中业务接收装置的框图,如图10所示,包括接收模块102和解映射模块104。
在接收模块102中,设置为接收光传送网OTN接口帧,其中,所述OTN接口帧的净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于1的整数。
在解映射模块104中,设置为从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务。
在一实施例中,所述解映射模块104包括:获取单元,用于从所述OTN接口帧的开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj;根据每个所述ODU业务所占用的信元个数Sj和所述净荷区域的信元总个数N,获取Sj个信元在所述净荷区域的所述N个信元中的位置。解映射单元,设置为根据所述ODU业务所占用控制信元的开销信息,从所述Sj个信元中解映射出所述ODU业务,其中,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中。
在一实施例中,所述获取单元,还设置为:在所述OTN接口帧为OTU帧的情况下,从所述OTN接口帧的光通道净荷单元OPU开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj;在所述OTN接口帧为FlexO帧的情况下,从所述OTN接口帧的FlexO开销区域获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数。
在一实施例中,所述装置还包括:第二转换模块,设置为在从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务之后,对于非OTN类型的业务,将所述ODU业务转换为所述非OTN类型的业务。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例5
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一实施例中,在本实施例中,上述存储介质可以被设置为存储设置为执行步骤S11和步骤S12的计算机程序。
在步骤S11中,将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数。
在步骤S12中,封装并发送所述OTN接口帧。
在一实施例中,在本实施例中,上述存储介质还可以被设置为存储设置为执行步骤S21和步骤S22的计算机程序。
在步骤S21中,接收光传送网OTN接口帧,其中,所述OTN接口帧的净 荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数。
在步骤S22中,从所述OTN接口帧的净荷区域的所述N个信元中解映射出ODU业务。
在一实施例中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在一实施例中,在本实施例中,上述处理器可以被设置为通过计算机程序执步骤S11和步骤S12。
在步骤S11中,将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数。
在步骤S12中,封装并发送所述OTN接口帧。
在一实施例中,在本实施例中,上述处理器还可以被设置为通过计算机程序执行步骤S21和步骤S22。
在步骤S21中,接收光传送网OTN接口帧,其中,所述OTN接口帧的净荷区域包括固定大小的N个信元,一个信元承载一个ODU业务,N为大于或等于1的整数。
在步骤S22中,从所述OTN接口帧的净荷区域的所述N个信元中解映射出ODU业务。
在一实施例中,本实施例中的具体示例可以参考上述实施例及示例实施方式中所描述的示例,本实施例在此不再赘述。
本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,例如,它们可以用计算装置可执行的程序代码来实现, 从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (24)

  1. 一种光传送网中业务发送方法,包括:
    将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个所述信元承载一个所述ODU业务,N为大于或等于1的整数;
    封装并发送所述OTN接口帧。
  2. 根据权利要求1所述的方法,其中,
    所述信元包括数据信元和控制信元,其中,所述数据信元设置为存放所述ODU业务,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中,所述控制信息包括开销信息和监控信息中的至少一种。
  3. 根据权利要求2所述的方法,其中,
    所述信元包括信元标志位和数据区。
  4. 根据权利要求3所述的方法,其中,
    所述信元的第一比特为所述信元标志位,所述第一比特的标识为1或0,其中,1表示所述信元为所述控制信元,0表示所述信元为所述数据信元。
  5. 根据权利要求1所述的方法,其中,
    在所述净荷区域的大小是所述信元的大小的N倍的情况下,每个所述信元的大小为K比特,所述净荷区域的大小为N*K,每个所述信元的带宽大小为所述净荷区域的带宽的N分之一,其中,K为大于1的整数;
    在所述净荷区域的大小是所述信元的大小的N倍与F个填充比特之和的情况下,每个所述信元的大小为K比特,所述净荷区域的大小为N*K+F,每个所述信元的带宽大小为K/(N*K+F)*所述净荷区域的带宽,F<K,其中,F为所述填充比特,所述F个填充比特位于所述净荷区域的末尾或中间。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述ODU业务的个数为M,将所述ODU业务编号为Cj,j=1到M,M为大于或等于1的整数,其中,所述将所述ODU业务映射到所述OTN接口帧的所述净荷区域的信元中包括:
    为每个所述ODU业务分配预定数量的信元,其中,第j个所述ODU业务被分配有所述N个信元中的Sj个信元;
    将M个所述ODU业务映射到所述预定数量的信元中,其中,第j个所述ODU业务映射到所述N个信元中的所述Sj个信元。
  7. 根据权利要求6所述的方法,在为每个所述ODU业务分配预定数量的信元之前,所述方法还包括:
    根据所述ODU业务的带宽以及所述信元的带宽,确定为每个所述ODU业务分配的所述预定数量的信元个数。
  8. 根据权利要求6所述的方法,其中,所述为每个所述ODU业务分配预定数量的信元包括:
    当j=1时,所述N个信元标示为空闲信元,按照所述N个信元在所述OTN接口帧中的顺序,根据sigma-delta算法将为第1个所述ODU业务分配的所述S1个信元均匀分布到所述N个信元中;
    当j大于或等于2时,重复执行以下步骤,直到每个所述ODU业务都分配有所述预定数量的信元,其中,j的初始值为2;按照标示为空闲的信元在所述OTN接口帧中的顺序,根据所述sigma-delta算法将为第j个所述ODU业务分配的所述Sj个信元均匀分布到所述N个信元的N-S1-S2-...-S(j-1)个所述空闲信元中;j=j+1。
  9. 根据权利要求8所述的方法,在根据sigma-delta算法将为第j个所述ODU业务分配的所述Sj个信元均匀分布到所述N个信元的N-S1-S2-...-S(j-1)个所述空闲信元中时,所述方法还包括:
    将所述第j个所述ODU业务与所述净荷区域的带宽之间的速率差作为开销信息存放在所述控制信元中。
  10. 根据权利要求7至9中任一项所述的方法,在将M个所述ODU业务映射到所述预定数量的信元的过程中,所述方法还包括:
    将所述N个信元中承载所述ODU业务的信元标示为已占用。
  11. 根据权利要求1至5、7至9中任一项所述的方法,其中,所述封装并发送所述OTN接口帧,包括:
    在所述OTN接口帧为OTU帧的情况下,将每个所述ODU业务的信号类型以及每个所述ODU业务占用的信元个数存放在所述OTN接口帧的光通道净荷单元OPU开销区域,增加所述OTN接口帧的ODU开销以及光通道传输单元OTU开销以形成OTU帧,并发送所述OTU帧;
    在所述OTN接口帧为FlexO帧的情况下,将每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数存放在所述OTN接口帧的FlexO 开销区域,增加所述OTN接口帧的FlexO开销、定位码和前向纠错码FEC以形成完整的FlexO帧,并发送所述FlexO帧。
  12. 根据权利要求1至5、7至9中任一项所述的方法,在所述将ODU业务映射到OTN接口帧的净荷区域中之前,所述方法还包括:
    对于非OTN类型的业务,将所述非OTN类型的业务转换为所述ODU业务。
  13. 一种光传送网中业务接收方法,包括:
    接收光传送网OTN接口帧,其中,所述OTN接口帧的净荷区域包括固定大小的N个信元,一个所述信元承载一个光传输数据单元ODU业务,N为大于或等于1的整数;
    从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务。
  14. 根据权利要求13所述的方法,其中,从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务包括:
    从所述OTN接口帧的开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj;
    根据每个所述ODU业务所占用的信元个数Sj和所述净荷区域的信元总个数N,获取Sj个信元在所述净荷区域的所述N个信元中的位置;
    根据所述ODU业务所占用控制信元的开销信息,从所述Sj个信元中解映射出所述ODU业务,其中,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中。
  15. 根据权利要求14所述的方法,其中,从所述OTN接口帧的开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj包括:
    在所述OTN接口帧为OTU帧的情况下,从所述OTN接口帧的光通道净荷单元OPU开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj;
    在所述OTN接口帧为FlexO帧的情况下,从所述OTN接口帧的FlexO开销区域获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数。
  16. 根据权利要求13至15中任一项所述的方法,在从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务之后,所述方法还包括:
    对于非OTN类型的业务,将所述ODU业务转换为所述非OTN类型的业务。
  17. 一种光传送网中业务发送装置,包括:
    映射模块,设置为将光传输数据单元ODU业务映射到光传送网OTN接口帧的净荷区域的信元中,其中,所述净荷区域包括固定大小的N个信元,一个所述信元承载一个所述ODU业务,N为大于1的整数;
    发送模块,设置为封装并发送所述OTN接口帧。
  18. 根据权利要求17所述的装置,其中,所述映射模块包括:
    分配单元,设置为所述ODU业务的个数为M,将所述ODU业务编号为Cj,j=1到M,M为大于或等于1的整数,为每个所述ODU业务分配预定数量的信元,其中,第j个所述ODU业务被分配有所述N个信元中的Sj个信元;
    映射单元,设置为将M个所述ODU业务映射到所述预定数量的信元中,其中,第j个所述ODU业务映射到所述N个信元中的所述Sj个信元。
  19. 根据权利要求18所述的装置,所述分配单元,还设置为
    当j=1时,所述N个信元标示为空闲信元,按照所述N个信元在所述OTN接口帧中的顺序,根据sigma-delta算法将为第1个所述ODU业务分配的所述S1个信元均匀分布到所述N个信元中;
    当j大于或等于2时,重复执行以下步骤,直到每个所述ODU业务都分配有预定数量的信元,其中,j的初始值为2;按照标示为空闲的信元在所述OTN接口帧中的顺序,根据sigma-delta算法将为第j个所述ODU业务分配的所述Sj个信元均匀分布到所述N个信元的N-S1-S2-...-S(j-1)个所述空闲信元中;j=j+1。
  20. 根据权利要求18或19所述的装置,所述装置还包括:
    标示单元,设置为在将M个所述ODU业务映射到所述预定数量的信元的过程中,将所述N个信元中承载所述ODU业务的信元标示为已占用。
  21. 一种光传送网中业务接收装置,包括:
    接收模块,设置为接收光传送网OTN接口帧,其中,所述OTN接口帧的净荷区域包括固定大小的N个信元,一个所述信元承载一个所述ODU业务,N为大于1的整数;
    解映射模块,设置为从所述OTN接口帧的净荷区域的所述N个信元中解映射出所述ODU业务。
  22. 根据权利要求21所述的装置,所述解映射模块包括:
    获取单元,设置为从所述OTN接口帧的开销区域中获取每个所述ODU业务的信号类型以及每个所述ODU业务所占用的信元个数Sj;根据每个所述ODU业务所占用的信元个数Sj和所述净荷区域的信元总个数N,获取Sj个信元在所述净荷区域的所述N个信元中的位置;
    解映射单元,设置为根据所述ODU业务所占用控制信元的开销信息,从所述Sj个信元中解映射出所述ODU业务,其中,所述控制信元设置为存放所述ODU业务映射到所述信元的控制信息中。
  23. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行权利要求1-16中任一项所述的光传送网中业务发送接收方法或接收方法。
  24. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1-16中任一项所述的光传送网中业务发送接收方法或接收方法。
PCT/CN2018/123166 2017-12-28 2018-12-24 光传送网中业务发送、接收方法及装置 WO2019128934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/954,768 US11575458B2 (en) 2017-12-28 2018-12-24 Service transmitting and receiving methods and devices for optical transport network (OTN)
EP18895040.6A EP3734866A4 (en) 2017-12-28 2018-12-24 PROCESS AND DEVICE FOR TRANSMITTING AND RECEIVING SERVICES IN AN OPTICAL TRANSPORT NETWORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711463056.0 2017-12-28
CN201711463056.0A CN109981209B (zh) 2017-12-28 2017-12-28 光传送网中业务发送、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2019128934A1 true WO2019128934A1 (zh) 2019-07-04

Family

ID=67066584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123166 WO2019128934A1 (zh) 2017-12-28 2018-12-24 光传送网中业务发送、接收方法及装置

Country Status (4)

Country Link
US (1) US11575458B2 (zh)
EP (1) EP3734866A4 (zh)
CN (1) CN109981209B (zh)
WO (1) WO2019128934A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024752A4 (en) * 2019-09-24 2022-10-05 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SERVICE PROCESSING AND STORAGE MEDIUM

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111713117B (zh) * 2018-02-09 2022-04-12 华为技术有限公司 一种光传送网中业务数据的处理方法及装置
CN114866618A (zh) * 2019-04-30 2022-08-05 华为技术有限公司 光传送网中的数据传输方法及装置
CN112291030A (zh) * 2019-07-24 2021-01-29 深圳市中兴微电子技术有限公司 一种数据接收、数据发送方法和装置
CN112671462B (zh) * 2019-10-15 2023-11-17 华为技术有限公司 一种业务数据的传输方法、相关设备以及数字处理芯片
CN117221770A (zh) * 2019-10-15 2023-12-12 华为技术有限公司 业务信号处理方法及设备
CN112788442B (zh) * 2019-11-08 2022-09-27 烽火通信科技股份有限公司 一种低速业务在otn网络中的承载方法及系统
CN112865910A (zh) * 2019-11-28 2021-05-28 中兴通讯股份有限公司 一种数据传输方法、装置、终端设备和存储介质
CN112511916A (zh) * 2020-02-28 2021-03-16 中兴通讯股份有限公司 光传送网中业务处理方法、处理装置和电子设备
CN112511260A (zh) * 2020-02-28 2021-03-16 中兴通讯股份有限公司 光传送网中业务处理方法、处理装置和电子设备
CN112511920A (zh) * 2020-03-27 2021-03-16 中兴通讯股份有限公司 光传送网中业务处理方法、处理装置和电子设备
EP4135338A4 (en) * 2020-04-27 2023-10-11 Huawei Technologies Co., Ltd. SERVICE PROCESSING METHOD, APPARATUS AND DEVICE
CN114051023B (zh) * 2021-11-11 2023-05-23 烽火通信科技股份有限公司 光业务单元帧开销处理方法、装置、设备及可读存储介质
CN116743877A (zh) * 2022-03-03 2023-09-12 中兴通讯股份有限公司 待映射内容的映射方法、装置、存储介质及电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098595A (zh) * 2007-04-17 2011-06-15 华为技术有限公司 一种光传送网中客户信号传送方法及相关设备
US9313563B1 (en) * 2012-08-31 2016-04-12 Pmc-Sierra Us, Inc. System and method for network switching
US9473832B2 (en) * 2014-11-13 2016-10-18 Fujitsu Limited GCC0 tunneling over an OTN transport network

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7664139B2 (en) * 2005-09-16 2010-02-16 Cisco Technology, Inc. Method and apparatus for using stuffing bytes over a G.709 signal to carry multiple streams
CN101291179B (zh) * 2007-04-17 2011-03-23 华为技术有限公司 一种光传送网中客户信号传送方法及相关设备
CN101800912B (zh) * 2009-02-10 2016-08-10 华为技术有限公司 客户信号映射和解映射的实现方法及装置
EP2518913B1 (en) * 2009-12-24 2013-12-11 Huawei Technologies Co., Ltd. Generic mapping procedure (gmp) mapping method, gmp de-mapping method and devices therefor
JP5408339B2 (ja) * 2010-03-30 2014-02-05 富士通株式会社 送信装置及び受信装置、並びに送信方法及び受信方法
KR101507996B1 (ko) * 2010-11-30 2015-04-07 한국전자통신연구원 클라이언트 신호 매핑 장치 및 그 방법
EP2566118B1 (en) * 2011-09-01 2013-08-28 Alcatel Lucent Network element for switching time division multiplex signals
EP2747318B1 (en) * 2012-12-19 2015-03-25 Alcatel Lucent Method and apparatus for transmitting signals in an optical transport network
KR102284042B1 (ko) * 2013-09-04 2021-07-30 삼성전자주식회사 송신 장치, 수신 장치 및 그 신호 처리 방법
US20160044393A1 (en) * 2014-08-08 2016-02-11 Futurewei Technologies, Inc. System and Method for Photonic Networks
CN105429726B (zh) * 2014-09-22 2018-01-23 华为技术有限公司 光传输网的业务映射处理方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098595A (zh) * 2007-04-17 2011-06-15 华为技术有限公司 一种光传送网中客户信号传送方法及相关设备
US9313563B1 (en) * 2012-08-31 2016-04-12 Pmc-Sierra Us, Inc. System and method for network switching
US9473832B2 (en) * 2014-11-13 2016-10-18 Fujitsu Limited GCC0 tunneling over an OTN transport network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734866A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024752A4 (en) * 2019-09-24 2022-10-05 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SERVICE PROCESSING AND STORAGE MEDIUM

Also Published As

Publication number Publication date
CN109981209A (zh) 2019-07-05
EP3734866A4 (en) 2021-02-24
US20210091870A1 (en) 2021-03-25
EP3734866A1 (en) 2020-11-04
CN109981209B (zh) 2022-01-28
US11575458B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2019128934A1 (zh) 光传送网中业务发送、接收方法及装置
US20220006556A1 (en) Method and apparatus for mapping and de-mapping in an optical transport network
EP3462647B1 (en) Method for transporting client signal in optical transport network, and transport device
WO2019213901A1 (zh) 光传送网中低速业务数据的处理方法、装置和系统
US20100221005A1 (en) Method for realizing time slot partition and spending process of an optical payload unit in an optical transmission network
KR102056093B1 (ko) 광 전송 네트워크의 서비스 매핑 처리 방법, 장치 및 시스템
WO2016026348A1 (zh) 一种处理信号的方法、装置及系统
JP6636653B2 (ja) マルチサービス伝送及び受信方法並びに装置
US20230076208A1 (en) Service processing method and apparatus in otn and electronic device
EP4106342A1 (en) Method and apparatus for service processing in optical transport network, and electronic device
US20200328816A1 (en) Signal sending and receiving method, apparatus, and system
CN105577319A (zh) 通过光通道传输单元信号发送、接收信号的方法及装置
EP4106233A1 (en) Service processing method and apparatus in optical transport network, and electronic device
CN102098595B (zh) 一种光传送网中客户信号传送方法及相关设备
CN112788442B (zh) 一种低速业务在otn网络中的承载方法及系统
WO2023221966A1 (zh) 一种传输数据的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895040

Country of ref document: EP

Effective date: 20200728