WO2016026348A1 - 一种处理信号的方法、装置及系统 - Google Patents

一种处理信号的方法、装置及系统 Download PDF

Info

Publication number
WO2016026348A1
WO2016026348A1 PCT/CN2015/082225 CN2015082225W WO2016026348A1 WO 2016026348 A1 WO2016026348 A1 WO 2016026348A1 CN 2015082225 W CN2015082225 W CN 2015082225W WO 2016026348 A1 WO2016026348 A1 WO 2016026348A1
Authority
WO
WIPO (PCT)
Prior art keywords
odtucn
opucn
oduflex
unit
optical channel
Prior art date
Application number
PCT/CN2015/082225
Other languages
English (en)
French (fr)
Inventor
苏伟
维塞斯⋅马腾
吴秋游
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES15834253T priority Critical patent/ES2728728T3/es
Priority to EP15834253.5A priority patent/EP3177029B1/en
Priority to EP18198552.4A priority patent/EP3509233A1/en
Publication of WO2016026348A1 publication Critical patent/WO2016026348A1/zh
Priority to US15/438,122 priority patent/US10440454B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a method, device and system for processing signals.
  • the optical transport network is the core technology of the next-generation transport network, including the technical specifications of the electrical layer and the optical layer. It has rich operation, management and maintenance (OAM) functions and powerful serial connection.
  • OAM optical management and maintenance
  • TCM Tandem Connection Monitoring
  • FEC Outward Error Correction
  • embodiments of the present invention provide a method, apparatus, and system for processing signals.
  • an embodiment of the present invention provides a method for processing a signal, including: mapping a received first client signal into a first ODUflex; mapping the first ODUflex to light composed of X time slots In the channel data branch unit Cn ODTUCn.X, the X is a non-integer; the ODTUCn.X is multiplexed into the optical channel payload unit Cn OPUCn.
  • each of said occupancy ODTUCn.1.2 x 1/2 x the number of OPUCn Time slot, x is equal to 1, 2, 3, 4 or 5.
  • the overhead of the OPUCn includes a payload structure indicating PSI, where the PSI includes a payload type PT indication and MSI multiplex structure indication, the indication is used to indicate the PT OPUCn carried occupying a non-integer number of slots client signal, the MSI is used to indicate the one or more occupied time slots ODTUCn.1.2 x .
  • the method further includes: mapping the received second client signal into the second ODUflex; mapping the second ODUflex to the Z time slots In the optical channel data tributary unit Cn ODTUCn.Z, the Z is an integer; the ODTUCn.Z is multiplexed into the OPUCn.
  • At least one of ODTUCn.1.2 x carrying the first client signal and at least one ODUUCn.1.2 y carrying other client signals share one of the OPUCn A time slot, each of the ODTUCn.1.2 y occupies 1/2 y time slots in the OPUCn, and y is equal to 1, 2, 3, 4 or 5.
  • the overhead of OPUCn OPU comprises multiplex frame identification OMFI, OMFI 8 bits of the overhead for indicating the position of each ODTUCn.1.2 x.
  • an embodiment of the present invention provides a method for processing a signal, including: determining, by demultiplexing a received optical channel payload unit OPUCn, an optical channel data tributary unit Cn ODTUCn composed of X time slots. . X, the X is a non-integer; the first ODUflex is obtained by performing demapping processing on the ODTUCn.X; and the first client signal is obtained by performing demapping processing on the first ODUflex.
  • the one or more ODTUCn.X ODTUCn.1.2 x each of said occupancy ODTUCn.1.2 x 1/2 x the number of OPUCn Time slot, x is equal to 1, 2, 3, 4 or 5.
  • the overhead of the OPUCn includes a payload structure indicating PSI, where the PSI includes a payload type PT indication and a multiplexing structure indication MSI, where PT said indication indicates the OPUCn carried occupying a non-integer number of slots client signal, the MSI is used to indicate the one or more occupied time slots ODTUCn.1.2 x; by the said The OPUCn performs demultiplexing processing to determine the optical channel data tributary unit Cn ODTUCn.X composed of X time slots, including: determining the one or more ODTUCn according to the PSI in the OPUCn obtained by parsing the OPUCn. The time slot occupied by 1.2 x determines the ODTUCn.X.
  • the OPUCn overhead includes an OPUCn multiframe identifier OMFI, and the 8 bits of the OMFI are used to indicate an overhead location of the ODTUCn.1.2 x ; ODTUCn.X by the demapping to obtain the first ODUflex, comprising: one or more overhead information ODTUCn.1.2 x determined according to the parsing said OPUCn OPUCn obtained in OMFI, determined in accordance with the The overhead information is demapping the ODTUCn.X to obtain the first ODUflex.
  • a network device in a third aspect, includes: a processing unit, configured to map the received first client signal into the first ODUflex; and map the first ODUflex to the X time slots In the optical channel data tributary unit Cn ODTUCn.X, the X is a non-integer; the ODTUCn.X is multiplexed into the optical channel payload unit Cn OPUCn.
  • the processing unit includes: a first mapping unit, configured to map the received first client signal into the first ODUflex; and a second mapping unit, configured to: Mapping the first ODUflex to an optical channel data tributary unit Cn ODTUCn.X consisting of X time slots, the X being a non-integer, and multiplexing unit for multiplexing the ODTUCn.X to light Channel payload unit Cn OPUCn.
  • the processing unit includes a processor and a computer readable medium; An instruction executable by the computer; when the instruction is executed by the processor, driving the processor to perform: mapping the received first client signal into the first ODUflex; mapping the first ODUflex to X In the optical channel data tributary unit Cn ODTUCn.X composed of time slots, the X is a non-integer; the ODTUCn.X is multiplexed into the optical channel payload unit Cn OPUCn.
  • the one or more ODTUCn.X ODTUCn.1.2 x, each of said occupancy ODTUCn.1.2 x in the OPUCn 1/2 x time slots, x is equal to 1, 2, 3, 4 or 5.
  • the overhead of the OPUCn includes a payload structure indicating PSI, where the PSI includes a payload type PT indication and a multiplexing structure indication MSI the indication used for indicating the PT OPUCn carried occupying a non-integer number of slots client signal, the MSI is used to indicate the one or more occupied time slots ODTUCn.1.2 x.
  • At least one ODTUCn.1.2 x carrying the first client signal is shared with at least one ODTUCn.1.2 y carrying other client signals.
  • a network apparatus including: a processing unit, configured to determine, by demultiplexing the received optical channel payload unit OPUCn, an optical channel data tributary unit Cn ODTUCn composed of X time slots .
  • X the X is a non-integer; the first ODUflex is obtained by performing demapping processing on the ODTUCn.X; and the first client signal is obtained by performing demapping processing on the first ODUflex.
  • the processing unit includes: a demultiplexing unit, configured to perform demultiplexing processing on the received optical channel payload unit OPUCn to determine that the X time slots are configured Optical channel data tributary unit Cn ODTUCn.X, said X is a non-integer; first a demapping unit, configured to obtain a first ODUflex by performing demapping processing on the ODTUCn.X, and a second demapping unit, configured to obtain a first client signal by performing demapping processing on the first ODUflex.
  • the processing unit includes a processor and a computer readable medium; the computer readable medium storing computer executable instructions; the instructions are When the processor is running, the processor is driven to perform: determining, by demultiplexing the received optical channel payload unit OPUCn, an optical channel data tributary unit Cn ODTUCn.X composed of X time slots, The X is a non-integer; the first ODUflex is obtained by performing demapping processing on the ODTUCn.X; and the first client signal is obtained by performing demapping processing on the first ODUflex.
  • the one or more ODTUCn.X ODTUCn.1.2 x composition each occupying the OPUCn ODTUCn.1.2 x 1 / 2 x time slots, x is equal to 1, 2, 3, 4 or 5.
  • the overhead of the OPUCn includes a payload structure indicating PSI, where the PSI includes a payload type PT indication and a multiplexing structure indication MSI, PT indication indicates the OPUCn carried occupying a non-integer number of slots client signal, the MSI is used to indicate the one or more occupied time slots ODTUCn.1.2 x; the demultiplexing means, Specifically, the time slot occupied by the one or more ODTUCn.1.2 x is determined according to the PSI in the OPUCn obtained by parsing the OPUCn to determine the ODTUCn.X.
  • the overhead contains OPUCn OPUCn multiplex frame identification OMFI, the overhead OMFI 8 bits for indicating the position of ODTUCn.1.2 x; the said first demapping unit, configured to parse the OPUCn the OPUCn the obtained OMFI in determining the one or more ODTUCn.1.2 x of overhead information, overhead information determined according to the ODTUCn.
  • X performs demapping processing to obtain the first ODUflex.
  • a communication system comprising any of the network devices provided by the fourth aspect and any of the network devices provided by the fifth aspect.
  • a computer readable medium for storing instructions that, when executed by a computer, cause the computer to perform any of the methods of the first aspect or the second aspect.
  • a seventh aspect provides an optical transport network frame structure, where the frame structure includes an optical channel payload unit Cn OPUCn overhead area and an OPUCn payload area, and the OPUCn includes a payload structure indicating PSI and an OPUCn multiframe identifier OMFI.
  • the PSI is used to indicate a time slot occupied by an optical channel data tributary unit Cn ODTUCn.
  • X composed of X time slots, and the X is a non-integer.
  • the PSI is further used to indicate a time slot occupied by an optical channel data tributary unit Cn ODTUCn.Y composed of Y time slots, where Y is Non-integer; the ODTUCn.Y is composed of one or more ODTUCn.1.2 y , each of the ODTUCn.1.2 y occupies 1/2 y time slots in the OPUCn; one of the ODTUCn.1.2 x and one The ODTUCn.1.2 y shares a time slot of the OPUCn payload area, where x, y are both equal to 1; the shared time slot in the OPUCn includes a plurality of data columns for carrying client signals, where The odd data columns are occupied by the ODTUCn.1.2 x and the even data columns are occupied by the ODTUCn.1.2 y .
  • the 8 bits of the OMFI are used to indicate the overhead location of each ODTUCn.1.2 x .
  • the method for processing a signal, the network device, the communication system, and the frame structure provided by the embodiment of the present invention carry a signal by occupying an ODUTUN.X of a non-integer number of time slots of the OPUCn, and can flexibly carry a small granularity service or a bandwidth of an OPUCn time slot bandwidth.
  • the integer multiple of the service has high bearer efficiency and low complexity, and is compatible with the existing optical transport network mapping multiplexing processing architecture.
  • the embodiments of the present invention provide smaller slot granularity under the existing framework, and improve mapping flexibility and scalability.
  • FIG. 1 is a schematic diagram of a frame structure of an OTUCn according to an embodiment of the present invention
  • FIG. 1b is a schematic structural diagram of another OTUCn frame according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of an OTUCn multiframe according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of ODTUCn.ts provided in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an OPUCn overhead structure provided in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a PSI provided in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of specific meanings of a PSI structure provided in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an ODTUCn.1.2 according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another ODTUCn.1.2 provided in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a process of mapping an ODUflex (25GE) to an OPUCn according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a process of mapping another ODUflex (25GE) to an OPUCn according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a process of mapping two-way ODUflex (25GE) to an OPUCn according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of multiplexing manners of ODTUCn.2.5 to 2.5 OPUCn 10G time slots provided in an embodiment of the present invention
  • FIG. 13 is a schematic diagram of multiplexing manners of 3-way ODTUCn.2.5 to OPUCn 10G time slots according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram showing another specific meaning of a PSI structure provided in an embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing specific meanings of still another PSI structure according to an embodiment of the present invention.
  • the method, the device and the system provided by the embodiments of the present invention are all based on the same principle and design, and the embodiments of the present invention can be combined with each other as long as they are not conflicting or parallel. limit.
  • one part introduces the A aspect
  • the other part introduces the B aspect.
  • the default A aspect and the B aspect can be combined.
  • the device introduced in the embodiment of the present invention may be provided with all the functions mentioned in the method introduced in the embodiment of the present invention for implementing the corresponding method.
  • the method introduced in the embodiment of the present invention may utilize the present invention.
  • the device of the embodiment is implemented.
  • the frame structure introduced in the embodiments of the present invention is common to both methods and devices, and can be combined with each other.
  • a plurality of transmission frames are defined in the existing standards, such as an optical channel data unit (ODUk) frame, an optical channel payload unit (k), and an optical channel payload unit (k).
  • a fully standardized Optical Channel Transport Unit-k (OTUk) frame Where k equals 0 to indicate a bit rate level of 1.25 Gbit/s, k equals 1 to indicate a bit rate level of 2.5 Gbit/s, k equals 2 to indicate a bit rate level of 10 Gbit/s, and k equals 3 to indicate a bit rate level of 40 Gbit/s. s, k equals 4 to indicate a bit rate level of 100 Gbit/s, and k equals to flex to indicate that the bit rate is resiliently configurable.
  • OTUk Optical Channel Transport Unit-k
  • OTUC1 represents a transmission frame corresponding to a 100G transmission rate
  • OTUC2 represents a transmission frame corresponding to a 200G transmission rate
  • the OTUCn frame structure contains 4 rows of 4080*n columns.
  • the optical channel payload unit Cn OPUCn payload area and the OPUCn overhead area constitute an OPUCn frame
  • the OPUCn frame and the optical channel data unit Cn ODUCn overhead area constitute an ODUCn frame, an ODUCn frame, an OTUCn overhead area, a frame header
  • the overhead area FAS and the FEC check area constitute an OTUCn frame.
  • the 1 to 7n columns in the first row indicate the overhead of the frame header
  • the (7n+1) to 14n columns in the first row are the OTUCn overhead regions
  • the 1 to 14n columns in the second to fourth rows are the ODUCn overhead regions.
  • the (14n+1) to 16n columns of 1 to 4 rows are the overhead areas of OPUCn, the (16n+1) to 3824n columns of the 1st to 4th rows are OPUCn payload areas, and the 1st to 4th rows (3824n+1) ⁇ 4080n is listed as the FEC check area.
  • Figure 1b shows another OTUCn frame structure.
  • the OTUCn frame structure includes 4 rows of 3824*n columns, but no FEC checksum.
  • the 1 to 7n columns in the first row indicate the overhead of the frame header
  • the (7n+1) to 14n columns in the first row are the overhead regions of the OTUCn
  • the 1 to 14n columns in the second to fourth rows are the overhead regions of the ODUCn.
  • the (14n+1) to 16n columns in the first to fourth rows are the overhead regions of OPUCn
  • the (16n+1) to 3824n columns in the first to fourth rows are the OPUCn payload regions.
  • the OPUCn frame structure is the first to fourth rows (14n+1) to 3824n columns.
  • the OPUCn payload area included therein includes 10n time slots (Tributary Slots), each time slot having a bandwidth of 10G, which can be used to carry 10G services.
  • 10n time slots Tributary Slots
  • a service with a relatively low rate or a rate that is not a multiple of 10G is used to carry the service by using an OTUCn frame in a multi-stage multiplexing or multiplexing manner, there is a problem that the complexity is high and the delay is long. If the service is directly carried by the OTUCn frame, the bandwidth utilization is low. The following describes the situation in which the OTUCn frame carries the 25G service as an example.
  • the two-level multiplexing or multiplexing may be performed by the ODUflex and the high-order High Order ODUk in the existing standard to carry the 25G service.
  • the client signal with the rate of 25G is first mapped to the ODUflex (the rate is 25G) through the bit synchronization mapping BMP (or other manner), and then the ODUflex is adopted by the GMP asynchronous mapping method (or other means).
  • the rate is 25G is mapped to ODTUCn.3 (ie, the virtual container occupying 3 10G slots of OPUCn), and finally ODTUCn.3 is multiplexed into OPUCn.
  • the 25G client signal will occupy three 10G time slots, and there is a waste of 5G bandwidth, which has a problem of low bearer efficiency.
  • the embodiment of the present invention further provides an embodiment, in which a time slot of a large particle (such as a time slot of 10G bandwidth) is divided into smaller bearer units, such as a bearer unit occupying 1.25G bandwidth, or a bearer occupying 2.5G bandwidth.
  • a unit, or a bearer unit occupying 5G bandwidth, etc. each corresponding bearer unit occupies 1/8 time slots, or 1/4 time slot, or 1/2 time slot.
  • the time slot of the large granularity can be used to carry the low-rate service, or the service carrying the non-integer multiple bandwidth of the single time slot bandwidth, and the carrying efficiency is high, and the processing complexity is low.
  • An embodiment of the present invention provides a method for processing a signal, the method comprising: mapping a received first client signal into a first ODUflex; mapping the first ODUflex to optical channel data consisting of X time slots In the branch unit Cn ODTUCn.X, the X is a non-integer; the ODTUCn.X is multiplexed into the optical channel payload unit Cn OPUCn.
  • the OPUCn here may refer to an OPUCn multiframe, such as a 10-OPUCn multiframe, a 256-OPUCn multiframe, and the like.
  • the one or more ODTUCn.X ODTUCn.1.2 x, each of said ODTUCn.1.2 x OPUCn occupying the slots is 1/2 x, x is equal to 2,3, 4 or 5.
  • the overhead of the OPUCn includes a payload structure indicating a PSI, where the PSI includes a payload type PT indication and a multiplexing structure indication MSI, where the PT indication is used to indicate that the OPUCn carries a non-integer number of occupations. gap client signal, the MSI is used to indicate the one or more occupied time slots ODTUCn.1.2 x.
  • the method may further include: mapping the received second client signal into the second ODUflex; and mapping the second ODUflex to the optical channel data branch unit Cn ODTUCn composed of Z time slots.
  • Z the Z is an integer; the ODTUCn.Z is multiplexed into the OPUCn.
  • At least one ODTUCn.1.2 x carrying the first client signal and at least one ODUUCn.1.2 y carrying other client signals share a time slot of the OPUCn, and each of the ODUUCn.1.2 y is occupied. 1/2 y time slots in the OPUCn, y is equal to 1, 2, 3, 4 or 5.
  • said OPUCn OPU overhead multiframe contains identification OMFI, the OMFI 8 bits for indicating ODTUCn.1.2 x overhead position.
  • the processing clock used by the OPUCn is the same as the processing clock used by the ODTUCn.1.2 x .
  • Figure 2 shows the slot division mode of OPUCn in the case of a padded column.
  • the 10 OPUCn frames constitute a 10-OPUCn multiframe, which contains 40 rows and 3824 columns.
  • the 16n+1 to 3816n columns are data columns for carrying client signals, and the 3816n+1 to 3824n columns are padded columns.
  • the time slot overhead is in the range of 14n+1 to 16n.
  • the time slot overhead corresponding to each time slot appears once every 10 OPUCn frames, and the OPU multiframe identifier (OPU Multi)
  • OPU Multi OPU multiframe identifier
  • OMFI OPU multiframe identifier
  • the number of time slots occupied by the corresponding client signal is not a whole number, it is possible that one time slot is occupied by a plurality of different client signals, and although the OMFI corresponding to the time slot still appears once every 10 OPUCn frames,
  • the overhead information corresponding to the client signal may appear once every 20 OPUCns, every 40 OPUCns, every 80 OPUCn frames, and this time needs to be utilized.
  • the 8 bits of OMFI are used to indicate the location and attribution of the corresponding overhead information. For details, please refer to the following.
  • the corresponding slot overhead is located in the 14n+A column of the Bth OPUCn frame of the 10-OPUCn multiframe and the 1st to 3rd rows of the 15n+A column, for a total of 6 bytes, marked as J1, J2, J3, J4, J5, J6.
  • ODTUCn.ts (same as the aforementioned ODTUCn.X) structure, consisting of ts time slots of 10-OPUCn multiframe and corresponding slot overhead, including 40 rows, 380*ts columns, and time corresponding to ts slots Gap overhead. Its structure is shown in Figure 3.
  • the time slot overhead corresponding to one time slot may be used to place mapping overhead information, for example, selecting the last time slot, that is, the corresponding time slot code is A ts .B ts , and B ts is ODTUCn
  • the maximum value of the code B among the time slots included in .ts, and A ts is the maximum value of the code A among the time slots having the code B maximum value.
  • the PSI Payment Structure
  • the PSI may be indicated according to the payload structure of the 256-multiframe of the OPUCn signal (Multi-Frame). Identifier) determines the allocation of each time slot in the OPUCn signal to determine ODTUCn.ts.
  • the MSI is a Multiplex Structure Identifier (MSI). As shown in Figure 4, it is located at 4 rows 15n+1, 5 to 8 bits of OMFI, indicating OPUCn 10 multiframe, the initial value is 0, and the value is per OPUCn frame. The increments are 1, 0 to 9, and the loops are repeated. One 0 to 9 represents an OPUCn 10 multiframe; the MSB is the Most Significant Bit (MSB), and the LSB is the Last Significant Bit (LSB).
  • MSB Most Significant Bit
  • LSB Last Significant Bit
  • the indication manner of the mapping overhead information C 8D in FIG. 4 extends the second and third bits of the first and second rows in the figure.
  • the existing standard of the second and third bit portions of the first and second rows in the figure is a reserved field.
  • the reserved field is used for carrying the mapping overhead information C 8D .
  • PSI [xy] and 10G time slots that is, PSI [2.1] to PSI [21.1] of the 14n+1th column indicate time slots TS 1.1 to TS 1.10, and PSI [2.2 of the 14th+2th column].
  • PSI [21.2] indicate time slots TS 2.1 to TS 2.10, and so on
  • PSI [2.n] to PSI [21.n] of the 15nth column indicate time slots TS n.1 to n.10.
  • FIG. 6 is a schematic diagram of overhead of a PSI according to an embodiment of the present invention.
  • Each time slot indicates that 2 bytes are occupied.
  • the first bit of the first byte indicates whether the corresponding time slot is occupied (Occupation). If it is occupied, the value is assigned to 1; otherwise, the value is 0.
  • the 2nd to 8th bits of the 1st byte and the 1st to 8th bits of the 2nd byte are 15 bits in total, indicating the branch port number (Tributary Port) assigned to the corresponding time slot, that is, the bearer in the time slot.
  • Low-order LO ODU (such as ODUflex) service indication.
  • the Payload Type (PT) is assigned 0x22, which is located in 4 rows and 14n+1 columns.
  • the bearer rate is not 10G integer multiple ODUflex service (for example, when 5G slot particles are used)
  • the Payload Type (PT) is assigned 0x23, which is located in 4 rows and 14n+1 columns.
  • the embodiments of the present invention may consist of one or more ODTUCn.X ODTUCn.1.2 x, each of said ODTUCn.1.2 x OPUCn occupying the slots is 1/2 x, x is equal to 2,3 , 4 or 5.
  • the PSI uses two bytes to describe the tributary port of a certain time slot, and the time slot belonging to the same port is occupied by the same ODTUCn.
  • the existing PSI can be extended. If one time slot is divided into two smaller subdivision time slots, one byte of the PSI can be used to describe one time slot.
  • the branch port to which the time slot belongs When a time slot is divided into four or eight subdivided time slots, the branch port to which the corresponding subdivided time slot belongs can be described by extending the existing PSI reserved field.
  • An ODTUCn can be used to map traffic or signals from a tributary port, ie an ODTUCn will correspond to a particular tributary port.
  • a ODTUCn.1.2 x may occupy a time slot after the division can be considered as a container map, the corresponding Ethernet traffic ODUflex signals or map may be mapped into the vessel. Since one ODTUCn can be composed of one or more ODTUCn.1.2 x , that is, the ODTUCn.1.2 x constituting the same ODTUCn also has a correspondence with the same tributary port.
  • a specific PSI field corresponds to a specific time slot or a subdivided time slot
  • the specific PSI field indicates the branch port to which the particular time slot or subdivided time slot belongs, and because of a specific branch
  • the port corresponds to one or more ODTUCn.1.2 x constituting the same ODTUCn, that is, the corresponding PSI indicates the subdivision slot occupied by one or more ODTUCn.1.2 x constituting the same ODTUCn.
  • the method provided by the embodiment of the present invention can simultaneously transmit services that occupy an integer multiple of the bandwidth of the time slot bandwidth, and services that are small granular services or occupy a non-integer multiple of the time slot bandwidth.
  • the division function of a single OPUCn 10G time slot is added in the embodiment of the present invention.
  • the corresponding data to be mapped needs to be mapped to ODTUCn.ts first, ts is the number of OPUCn slots occupied by ODTUCn.ts, and then ODTUCn.ts is multiplexed into OPUCn.
  • ODTUCn.1 the minimum granularity when mapping the data to be mapped into ODTUCn.ts is ODTUCn.1, that is, occupying one slot.
  • the embodiment of the present invention further divides ODTUCn.1.
  • a 10G ODTUCn.1 is divided into two smaller particles ODTUCn.1.2, each ODTUCn.1.2 occupies 1/2 time slot, occupies 5G bandwidth; similarly, a 10G ODTUCn.1 can be divided into 4 A smaller particle ODTUCn.1.4, each ODTUCn.1.4 occupies 1/4 time slot, occupies 2.5G bandwidth; or, divides a 10G ODTUCn.1 into 8 smaller particles ODTUCn.1.8, each ODTUCn.1.2 occupies 1/8 time slots and occupies 1.25G bandwidth; and so on.
  • ODTUCn.1 is divided into two ODTUCn.1.2, and other particles are similar.
  • ODTUCn.1.2 can have the following two structures.
  • the first type of ODTUCn.1.2 structure is based on an ODTUCn.1 (40 rows and 380 columns). As shown in FIG. 7, the time slots occupied by ODTUCn.1 are divided into columns, and two 40 rows and 190 column structures can be obtained. The two 40 rows and 190 columns are structured with ODTUCn.1.2, and each ODTUCn.1.2 is occupied. The gaps can be written as TS AB1 and TS AB2. As shown in FIG. 10, each ODTUCn.1.2 is equivalent to a time slot occupying 5G. ODTUCn.1.2 includes a payload area of 40 rows and 190 columns and corresponding overhead information.
  • the second ODTUCn.1.2 structure is based on 2 ODTUCn.1 (80 rows and 380 columns), 5G slot division is performed according to the column interval, the time slot is marked as ABC, and the time slot AB1 is obtained after division.
  • Time slot AB2 as shown in Figure 8, each 5G time slot is composed of one ODTUCn.1.2, that is, ODTUCn.1 is divided into two ODTUCn.1.2; the ODTUCn.1.2 structure is 80 rows and 190 columns, and the time slot overhead corresponding to the time slot is composed.
  • the time slot overhead indication is extended by OMFI.
  • the OMFI bits 1 to 4 are extended, and the initial value is 0.
  • the value is incremented by 1 for each OPUCn 10 multiframe, and the loops are sequentially looped from 0 to 15 to indicate the extended ODTUCn.1.X.
  • the time slot overhead of smaller particles See Table 1 for the meaning of the indication.
  • an Ethernet service that carries 25G by using multiple 10G time slots is taken as an example.
  • the bandwidth of each time slot and the corresponding bearer service bandwidth are only examples.
  • a plurality of 5G time slots may carry 7.5G services, or a 20G time slot may carry 10G services, and the like. There is no limit to this.
  • a 25GE client signal such as an Ethernet service signal
  • the first ODUflex may be at a rate of 25G.
  • the mapping method here can be
  • the mapping manner of the existing bit synchronization mapping BMP may be other mapping manners described in G.709/Y.1331, which is not limited in the embodiment of the present invention.
  • the first ODUflex is mapped into ODTUCn.X, where X is a non-integer, where X indicates that the ODTUCn.X will occupy X slots in the corresponding OPUCn.
  • X is a non-integer
  • X indicates that the ODTUCn.X will occupy X slots in the corresponding OPUCn.
  • the mapping method here is preferably a general mapping procedure GMP mapping, and may also be other mapping manners described in G.709/Y.1331, which is not limited by the embodiment of the present invention.
  • mapping the client signal into the first ODUflex is an optional step, for example, the received 25GE signal can be directly mapped into the corresponding ODTUCn.X.
  • the mapping method is the same as the method of mapping the first ODUflex into ODTUCn.X, because for ODTUCn.X, whether it is the first ODUflex or directly receiving the Ethernet signal, it is a service signal or a client signal.
  • ODTUCn.X is multiplexed into OPUCn.
  • OPUCn then forms OTUCn and sends it out.
  • the existing minimum slot needs to be further divided.
  • the further divided minimum particle or time slot in the embodiment of the present invention the minimum particle or time slot may occupy less than one time slot, for example, the minimum particle may occupy 0.3 time slots, or 0.6, 0.7, 0.75 time slots and so on.
  • such divided small particles or time slots may be referred to as ODTUCn.1.2 x
  • each ODTUCn.1.2 x occupies 1/2 x time slots in OPUCn, and x is equal to 1, 2, 3, 4, 5 ... correspondingly, ODTUCn.X can consist of one or more ODTUCn.1.2 x .
  • ODTUCn.X can be ODTUCn.2.5
  • ODTUCn.2.5 can be composed of 5 ODTUCn.1.2.
  • the ODTUCn.1 container may be divided into two 5G ODTUCn.1.2, where ODTUCn.1.2 is kept the same as the OPUCn processing clock.
  • ODTUCn.1.2 is kept the same as the OPUCn processing clock.
  • the same processing clock as OPUCn is used;
  • the first ODUflex (25GE) occupies 5 ODTUCn.1.2, get ODTUCn.2.5 (also That is, 2.5 10G TSs occupying OPUCn.
  • the first ODUflex (25GE) rate of the service to be mapped is 25G, it takes 5 ODTUCn.1.2; 5 ODTUCn.1.2 constitutes the carrier container ODTUCn.2.5.
  • first 10/2 is divided into each small particle ODTUCn.1.2 rate is 5G, then multiplied by 5 means ODUflex (25GE) needs to occupy 5 ODTUCn.1.2, 5 ODTUCn.1.2 constitutes container ODTUCn.2.5 Then, divide by 10 to represent the number of time slots of ODUUCn.2.5 occupying OPUCn, where each time slot of OPUCn represents 10G bandwidth. Then, the first ODUflex (25GE) can be mapped to ODTUCn.2.5 by GMP, and the mapping overhead (or overhead information) is added to the ODTUCn.2.5 overhead area.
  • the mapping granularity here can be 10 bytes, 5 bytes, 20 bytes, or the mapping granularity of other bytes.
  • the specific mapping overhead information Cm and CnD are as shown in FIG.
  • At least one ODTUCn.1.2 x carrying the first client signal and at least one ODUUCn.1.2 y carrying other client signals share a time slot of the OPUCn
  • each of the ODUTUn.1.2 y occupies 1/2 y time slots in the OPUCn
  • y is equal to 1, 2, 3, 4 or 5. That is, different small-granular services or services with non-integer multiple timeslot bandwidth can share one time slot of OPUCn.
  • a service occupies 5G bandwidth of 10G time slot, and B service occupies another 5G bandwidth of the same time slot, or A The service occupies 7.5G bandwidth, the B service occupies the 2.5G bandwidth, and the like, and the ratio of the bandwidth occupied by the specific service is not limited in the embodiment of the present invention.
  • more than two services can share one time slot, for example, four and eight different service signals share one time slot.
  • one time slot of the OPUCn may be shared by one ODTUCn.1.2 x and one ODTUCn.1.2 y , where x, y are both equal to 1; the time slot shared in the OPUCn includes multiple uses.
  • the inter-and-parallel interpolation method can reduce the delay of the service signal.
  • X is 2.5
  • ODTUCn.2.5 structure in the figure is 40 rows and 950 columns.
  • Figure 11 shows the multiplexing process of two ODTUCn.2.5 to OPUCn, which is equivalent to ODTUCn.5 multiplexing to TS A1.B1, TS A2.B2, ..., TS A5.B5; its multiplexing processing is shown in Figure 11. Shown.
  • the multiplex is multiplexed to OPUCn by ODTUCn.2.5 as an example.
  • multiplexing ODTUCn.2.5 more, such as multiplexing into 3 10G slots of OPUCn.
  • Table 2 shows 6 types. Possible way. Each 10G time slot of OPUCn is sequentially divided into parity columns at column intervals, odd columns are time slots TS A.B.1, and even columns are time slots TS A.B.2.
  • Figure 12 shows the first multiplexing mode.
  • ODTUCn.2.5 sequentially multiplexes 40 rows and 950 columns to TS A1.B1, TS A2.B2, and TS A3.B3 in the manner shown in the figure, which also occupies TS A1. B1, the odd and even columns of TS A2.B2, and the odd columns of TS A3.B3.
  • Figure 13 shows the three-way ODUflex (25GE) to OPUC4, which shows the second, third and fifth multiplexing modes of ODTUCn.2.5 to OPUCn.
  • ODTUC4.2.5#1 is multiplexed to OP4.24 TS 4.2 (odd column), TS 3.3 and TS 1.5;
  • ODTUC4.2.5#2 is multiplexed to OPUC4 TS 4.2 (even column), TS 1.4 and TS 1.7;
  • ODTUC4.2.5# 3 multiplexed to OPUC4 TS 2.3, TS 3.5 (odd column) and TS 4.8.
  • a 10-OPUCn multiframe includes 10 OPUCn frames, and each OPUCn frame includes 4 rows, and 14n+1 columns to 16n columns are OPUCn overhead regions, 16n.
  • the +1 column to 3824n column is the OPUCn payload area
  • the 3816n column to the 3824n column in the OPUCn payload area is an extra padding area
  • the remaining 3800n columns of the OPUCn payload area are used to carry service signals.
  • One of the OPUCn includes 10n time slots, and each time slot has a rate of 10G.
  • Each time slot occupies 380 columns of the corresponding data column in OPUCn, for example, the first time slot TS1.1 occupies 16n+1 column, 26n+1 column, 36n+1 column...3806n+1 column, the second time The slot TS2.1 occupies 16n+2 columns, 26n+2 columns, 36n+2 columns...3806n+2 columns, and the n+1th time slot TS1.2 occupies 17n+1 columns, 27n+1 columns, 37n+1 Column ... 3807n + 1 column, and so on.
  • each subdivided particle occupies data occupied by TS1.1 respectively.
  • Half of the column such as TS1.1.1 can occupy 16n+1 column, 36n+1 column ... 3796n+1 column and other odd columns
  • TS1.1.2 can occupy 26n+1 column, 46n+1 column ... 3806n+1 column .
  • there may be other allocation methods such as the first half of the data column is allocated to the time slot TS1.1.1, and the second half of the data column is allocated to the TS1.1.2, which is not limited in the embodiment of the present invention.
  • the manner in which the parity column spacing is allocated is a preferred solution because such a scheme can reduce the service delay.
  • each time slot occupies three rows and two columns of overhead
  • the overhead TSOH TS1.1 corresponding to the first time slot TS1.1 occupies the first OPUCn frame 1st to 3rd, 14n+ 1 column and 15n+1 column
  • the overhead TSOH TS2.1 corresponding to the 2nd time slot TS2.1 occupies the 1st to 3rd rows of the first OPUCn frame, the 14th+2th column and the 15n+2th column
  • the overhead TSOH TS2.1 corresponding to +1 time slot TS1.2 occupies the 1st to 3rd rows of the second OPUCn frame, the 14th+1th column and the 15n+1th column, and so on.
  • the existing overhead can be extended to extend the existing overhead TSOH TS1.1 to the mapping overhead of the two subdivided TS1.1.1 and TS1.1.2. Description of the information.
  • the mapping overhead information of the first TS1.1.1 may be described by the corresponding overhead position of the first 10-OPUCn multiframe, and another TS1 may be described by the corresponding overhead location of the next 10-OPUCn multiframe.
  • mapping overhead information For smaller granularity, this can be deduced.
  • the mapping overhead information of different subdivided particles can be indicated by extending the field of the OMFI.
  • the 5th to 8th bits of the OMFI are used to indicate the position of the OPUCn frame in which the OMFI is located in 10-OPUCn, and the 1st to 4th bits of the OMFI are used to indicate the identifier of the multiframe, that is, to indicate the current multiframe.
  • the initial value of OMFI can be 0, and the starting value can of course be other numbers.
  • the value of each 10-OPUCn multiframe is incremented by 1, and 0-15 is sequentially cycled.
  • the overhead information of TS1.1.1 and TS1.1.2 can appear once every 20 OPUCn frames, then the first to fourth bits are even and the fifth
  • the corresponding slot overhead in the OPUCn where the OMFI is 0000 can be used to carry the overhead information of TS1.1.1, and the first to fourth bits are odd and the fifth to eighth bits are 0000.
  • the corresponding slot overhead in the OPUCn where the OMFI is located can be used to carry the overhead information of TS1.1.2.
  • Table 1 The situation of other time slots is similar, as shown in Table 1.
  • the corresponding time slot overhead may occur once every 40 frames.
  • the first OMFI is ⁇
  • the overhead of the same time slot is carried in the nth multiframe and the n+4th multiframe indicated by 4 bits.
  • the 4th row 14n+1 to 15n of each OPUCn frame is a payload structure indicating PSI, wherein all PSIs in a 256-OPUCn multiframe are combined to transmit allocation information of corresponding 10n time slots.
  • the first byte that is, the first PSI byte of the first OPUCn frame carries a payload type indication for indicating Whether the OPUCn carries a client signal occupying a non-integer number of time slots.
  • the value may be 0x23.
  • the value When only the client signal occupying an integer number of time slots is carried, the value may be 0x22. Further optionally, when a client signal occupying a non-integer number of time slots is carried, and a client signal occupying an integer number of time slots is carried, the value may be a corresponding other value.
  • "only carrying a client signal occupying a non-integer number of time slots” may mean that the client signal is carried only by the granularity of 1/2 time slot bandwidth or 1/4 time slot bandwidth, such as when each time slot is When 10G bandwidth is used, the granularity of 5G or 2.5G is used to carry customer data.
  • the PSI can be further extended. For example, at this time, for each PSI byte corresponding to each 10G time slot, further allocation is performed, and the first bit of the first byte indicates whether the corresponding AB1 is occupied, and if occupied, the value is assigned to 1; otherwise, the value is assigned 0, the 7th to 8th bits of 7 bits are used to indicate the branch port number assigned by AB1.
  • the first bit of the second byte indicates whether the corresponding AB2 is occupied. If it is occupied, the value is 1; otherwise, the value is 0, and the 2nd to 8th bits are 7 bits to indicate the branch port number assigned by AB2. As shown in FIG.
  • the payload type (Pyload Type, PT) is assigned 0x24, and is located in 4 rows and 14n+1 columns.
  • the pattern indication is as shown in FIG. 15 , wherein the first bit of the first byte indicates whether the 10G time slot is occupied, and if occupied, the value is 1 Further, the second to eighth bits of the first byte and the second byte of the first to eighth bits have a total of 15 bits indicating the branch port number assigned to the corresponding time slot, that is, the LO carried in the time slot.
  • ODU service indication if not occupied, the value is 0, and the second bit of the first byte indicates whether the corresponding AB1 is occupied, and if occupied, the value is 1; otherwise, the value is 0, the 3rd to 8th bits A total of 6 bits are used to indicate the branch port number assigned by AB1, and the second bit of the second byte indicates whether the corresponding AB2 is occupied. If it is occupied, the value is 1; otherwise, the value is 0, 3 ⁇ 8 A total of 6 bits of bits are used to indicate the branch port number assigned by AB2, and the first bit of the second byte is reserved.
  • the embodiment of the invention further provides a method for processing a signal, comprising: determining, by demultiplexing the received optical channel payload unit OPUCn, an optical channel data tributary unit Cn ODTUCn.X composed of X time slots,
  • the X is a non-integer;
  • the first ODUflex is obtained by performing demapping processing on the ODTUCn.X;
  • the first client signal is obtained by performing demapping processing on the first ODUflex.
  • the OPUCn may be an OPUCn multiframe, such as a 10-OPUCn multiframe, a 256-OPUCn multiframe, and the like.
  • the one or more ODTUCn.X ODTUCn.1.2 x, each of said ODTUCn.1.2 x OPUCn occupying the slots is 1/2 x, x is equal to 2,3, 4 or 5.
  • ODTUCn.1.2 x also may occupy as 0.3, 0.6, 0.75 time slots, this embodiment does not limit the embodiment of the present invention.
  • the overhead of the OPUCn includes a payload type PT indication and a payload structure indication PSI, where the PT indication is used to indicate that the OPUCn carries a client signal occupying a non-integer number of slots; the PSI is used to indicate a time slot occupied by the one or more ODTUCn.1.2 x ; determining, by demultiplexing the OPUCn, an optical channel data tributary unit Cn ODTUCn.X consisting of X time slots, including: the obtained OPUCn OPUCn parsing the PSI in determining the one or more occupied time slots ODTUCn.1.2 x to determine the ODTUCn.X.
  • the overhead contains OPUCn OPUCn multiplex frame identification OMFI, the OMFI 8 bits for indicating the position of the overhead ODTUCn.1.2 x; ODTUCn.X by said demapping the ODUflex obtain the first, comprising: one or more overhead information according to the determined ODTUCn.1.2 x OPUCn parse the OPUCn obtained in OMFI, in accordance with the determined overhead information for the ODTUCn.X demapping processing to give the First ODUflex.
  • the corresponding PSI and OMFI can be obtained from the overhead information of the OPUCn, because the PSI indicates the time slot occupied by one or more ODTUCn.1.2 x constituting the ODTUCn.X, and the OMFI is Indicates the mapping overhead information of each ODTUCn.1.2 x , and determines the time slots occupied by one or more ODTUCn.1.2 x and the overhead information corresponding to the time slots occupied by these ODTUCn.1.2 x through PSI and OMFI.
  • the corresponding ODTUCn.X solution maps out the first ODUflex.
  • the specific structure in the corresponding frame is introduced.
  • the corresponding frame structure can be obtained by performing corresponding method steps.
  • the method provided by the embodiment of the present invention may have the step of adding overhead information, such as adding mapping information of the subdivided time slot to a corresponding overhead location to obtain a frame structure having the overhead information.
  • the extended PSI may be used to indicate the allocation of the corresponding subdivided time slots, and the OMFI is used to indicate the specific location where the corresponding mapping information is located.
  • the corresponding client signal or service can be multiplexed into the allocated time slot in the OPUCn through the mapping step, such as by inserting the first ODUflex signal in the odd column of the data column of one slot, belonging to the same time slot.
  • the even columns of the data columns are inserted into the second ODUflex signal to achieve sharing of one time slot.
  • the first ODUflex signal and the second ODUflex signal may each occupy 5G bandwidth of the shared time slot.
  • the embodiment of the invention further provides a network device, comprising: a processing unit, configured to map the received first client signal into the first ODUflex; and map the first ODUflex to light composed of X time slots In the channel data branch unit Cn ODTUCn.X, the X is a non-integer; the ODTUCn.X is multiplexed into the optical channel payload unit Cn OPUCn.
  • the processing unit includes: a first mapping unit, configured to map the received first client signal into the first ODUflex; and a second mapping unit, configured to map the first ODUflex to the X
  • the X is non-integral a multiplexing unit for multiplexing the ODTUCn.X into the optical channel payload unit Cn OPUCn.
  • the processing unit comprises a processor and a computer readable medium; wherein the computer readable medium stores computer executable instructions; when the instructions are executed by the processor, the processor is driven to perform: Mapping the received first client signal into the first ODUflex; mapping the first ODUflex to an optical channel data tributary unit Cn ODTUCn.X consisting of X time slots, the X being a non-integer; The ODTUCn.X is multiplexed into the optical channel payload unit Cn OPUCn.
  • the one or more ODTUCn.X ODTUCn.1.2 x, each of said ODTUCn.1.2 x OPUCn occupying the slots is 1/2 x, x is equal to 2,3, 4 or 5.
  • the overhead of the OPUCn includes a payload structure indicating a PSI, where the PSI includes a payload type PT indication and a multiplexing structure indication MSI, where the PT indication is used to indicate that the OPUCn carries a non-integer occupied A time slot customer signal, the MSI is used to indicate the time slot occupied by the one or more ODTUCn.1.2 x .
  • At least one ODTUCn.1.2 x carrying the first client signal and at least one ODUUCn.1.2 y carrying other client signals share a time slot of the OPUCn, and each of the ODUUCn.1.2 y is occupied. 1/2 y time slots in the OPUCn, y is equal to 1, 2, 3, 4 or 5.
  • the embodiment of the invention further provides a network device, comprising: a processing unit, configured to determine, by demultiplexing the received optical channel payload unit OPUCn, an optical channel data tributary unit Cn ODTUCn composed of X time slots .
  • a processing unit configured to determine, by demultiplexing the received optical channel payload unit OPUCn, an optical channel data tributary unit Cn ODTUCn composed of X time slots .
  • X the X is a non-integer
  • the first ODUflex is obtained by performing demapping processing on the ODTUCn.X
  • the first client signal is obtained by performing demapping processing on the first ODUflex.
  • the processing unit includes: a demultiplexing unit, configured to perform demultiplexing on the received optical channel payload unit OPUCn to determine an optical channel data tributary unit Cn ODTUCn.
  • a demultiplexing unit configured to perform demultiplexing on the received optical channel payload unit OPUCn to determine an optical channel data tributary unit Cn ODTUCn.
  • X composed of X time slots.
  • the X is a non-integer
  • a first demapping unit is configured to pass the ODTUCn.X Performing a demapping process to obtain a first ODUflex
  • a second demapping unit configured to obtain a first client signal by performing demapping processing on the first ODUflex.
  • the processing unit comprises a processor and a computer readable medium; wherein the computer readable medium stores computer executable instructions; when the instructions are executed by the processor, the processor is driven to perform: Determining, by demultiplexing the received optical channel payload unit OPUCn, an optical channel data tributary unit Cn ODTUCn.X consisting of X time slots, the X being a non-integer; by performing the ODTUCn.X The demapping process obtains a first ODUflex; the first client signal is obtained by performing demapping processing on the first ODUflex.
  • the one or more ODTUCn.X ODTUCn.1.2 x, each of said ODTUCn.1.2 x OPUCn occupying the slots is 1/2 x, x is equal to 2,3, 4 or 5.
  • the overhead of the OPUCn includes a payload structure indicating a PSI, where the PSI includes a payload type PT indication and a multiplexing structure indication MSI, where the PT indication is used to indicate that the OPUCn carries a non-integer occupied a time slot of a client signal, the MSI is used to indicate a time slot occupied by the one or more ODTUCn.1.2 x ; the demultiplexing unit is specifically configured to use the OPUCn obtained by parsing the OPUCn PSI in determining the one or more ODTUCn.1.2 x to determine a time slot occupied by the ODTUCn.X.
  • the overhead of OPUCn OPUCn multiframe comprises identifying OMFI, the OMFI 8 bits for indicating the position of the overhead ODTUCn.1.2 x; the first demapping unit, particularly according to the parsing the OPUCn OPUCn OMFI obtained in determining the one or more ODTUCn.1.2 x overhead information to obtain a first ODUflex overhead information according to the determined ODTUCn.X the demapping process.
  • the above processor may be one of a digital signal processor DSP, a field programmable gate array FPGA or an application specific integrated circuit ASIC.
  • the method in the embodiment of the present invention can be performed by the network device provided by the embodiment of the present invention, that is, the network device provided by the embodiment of the present invention has the function of performing all or part of the foregoing methods.
  • the corresponding function may be implemented by a processing unit in the network device, and may be implemented by a corresponding refinement function module in the corresponding processing unit.
  • the present invention is implemented
  • the methods provided by the examples can be converted into instructions by programming or other means, by storing the instructions in a corresponding computer readable medium, or being solidified in corresponding hardware, and when these instructions are executed, they can be used for execution.
  • the processor of these instructions implements the method described in the embodiments of the present invention.
  • the embodiment of the invention further provides a communication system, which includes any of the above-mentioned network devices of the transmitting end and any network device of the receiving end.
  • Embodiments of the present invention also provide a computer readable medium for storing instructions that, when executed by a computer, cause the computer to perform any of the methods as described above.
  • An embodiment of the present invention further provides an optical transmission network frame structure, where the frame structure includes an optical channel payload unit Cn OPUCn overhead area and an OPUCn payload area, where the OPUCn includes a payload structure indication PSI and an OPUCn multiframe identifier OMFI,
  • the PSI is used to indicate a time slot occupied by an optical channel data tributary unit Cn ODTUCn.
  • X composed of X time slots, and the X is a non-integer.
  • the one or more ODTUCn.X ODTUCn.1.2 x, each of said ODTUCn.1.2 x OPUCn occupying the slots is 1/2 x, x is equal to 2,3, 4 or 5; the PSI is used to indicate a time slot occupied by each of the one or more ODTUCn.1.2 x .
  • the PSI is further used to indicate a time slot occupied by an optical channel data tributary unit Cn ODTUCn.Y composed of Y time slots, where Y is a non-integer; the ODTUCn.Y is one or more One ODTUCn.1.2 y , each of the ODTUCn.1.2 y occupies 1/2 y time slots in the OPUCn; one of the ODUTUn.1.2 x shares the OPUCn payload with one of the ODTUCn.1.2 y a time slot of a region, wherein x, y are both equal to 1; the time slot shared in the OPUCn includes a plurality of data columns for carrying client signals, wherein the odd data columns are occupied by the ODTUCn.1.2 x The even data column is occupied by the ODTUCn.1.2 y .
  • the 8 bits of the OMFI are used to indicate the overhead location of each ODTUCn.1.2 x .
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store various program codes. quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明实施例提供一种处理信号的方法、网络装置和系统,该方法包括:将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。本发明实施例提供的处理信号的方法能在传输小颗粒业务时提高承载效率,且复杂度较低。

Description

一种处理信号的方法、装置及系统 技术领域
本发明涉及光通信技术领域,具体涉及一种处理信号的方法、装置及系统。
背景技术
光传送网(Optical transport network,OTN)作为下一代传送网的核心技术,包括电层和光层的技术规范,具备丰富的操作、管理与维护(Operation Administration and Maintenance,OAM)功能、强大的串联连接监视(Tandem Connection Monitoring,TCM)功能和带外前向错误纠正(Forward Error Correction,FEC)功能,能够实现大容量业务的灵活调度和管理。
随着客户信号的速率的不断增大,OTN技术中用于传输客户信号的帧也在不断进化。目前国际电信联盟正在讨论一种新的超过100Gbit/s的传输帧。然而,当利用这种超高速率的传输帧去传输相对较低速率的业务时,需要利用现有的低速率传输帧进行多级复接或复用,复杂度较高,同时也会带来较大的时延。另一方面,如果不经过多级复接或复用直接利用高速率传输帧去承载客户信号,又存在着带宽利用率低的问题。
发明内容
有鉴于此,本发明实施例提供一种处理信号的方法、装置及系统。
第一方面,本发明实施例提供了一种处理信号的方法,包括:将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
结合第一方面,在第一种可能的实现方式中,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
结合第一方面及第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙。
结合以上所有实现方式,在第三种可能的实现方式中,该方法还包括:将接收到的第二客户信号映射到第二ODUflex中;将所述第二ODUflex映射到由Z个时隙组成的光通道数据支路单元Cn ODTUCn.Z中,所述Z为整数;将所述ODTUCn.Z复用到所述OPUCn中。
结合以上所有实现方式,在第四种可能的实现方式中,至少一个承载了所述第一客户信号的ODTUCn.1.2x与至少一个承载了其他客户信号的ODTUCn.1.2y共用所述OPUCn的一个时隙,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙,y等于1,2,3,4或5。可选的,一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn的一个时隙,其中,x,y均等于1;所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
结合以上所有实现方式,在第五种可能的实现方式中,所述OPUCn的开销中包含OPU复帧标识OMFI,所述OMFI的8个比特用于指示各个ODTUCn.1.2x的开销位置。
结合以上所有实现方式,在第六种可能的实现方式中,所述OPUCn所采用的处理时钟与ODTUCn.1.2x所采用的处理时钟同源。
第二方面,本发明实施例提供一种处理信号的方法,包括:通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。
结合第二方面,在第一种可能的实现方式中,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
结合第二方面的所有实施方式,在第二种可能的实现方式中,所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙;所述通过对所述OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,包括:根据解析所述OPUCn所获得的所述OPUCn中的PSI确定所述一个或多个ODTUCn.1.2x所占用的时隙以确定所述ODTUCn.X。
结合第二方面的所有实施方式,在第三种可能的实现方式中,所述OPUCn的开销中包含OPUCn复帧标识OMFI,所述OMFI的8个比特用于指示ODTUCn.1.2x的开销位置;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex,包括:根据解析所述OPUCn所获得的所述OPUCn中的OMFI确定所述一个或多个ODTUCn.1.2x的开销信息,根据所确定的开销信息对所述ODTUCn.X进行解映射处理得到所述第一ODUflex。
第三方面,提供一种网络装置,该网络装置包括:处理单元,用于将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
结合第三方面,在第一种可能的实现方式中,所述处理单元包括:第一映射单元,用于将接收到的第一客户信号映射到第一ODUflex中;第二映射单元,用于将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;复用单元,用于将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
结合第三方面以上所有的实现方式,在第二种可能的实现方式中,所述处理单元包括处理器和计算机可读介质;所述计算机可读介质中存储有计 算机可运行的指令;所述指令被所述处理器运行时,驱使所述处理器执行:将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
结合第三方面以上所有可能的实现方式,在第三种可能的实现方式中,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
结合第三方面以上所有可能的实现方式,在第四种可能的实现方式中,所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙。
结合第三方面以上所有可能的实现方式,在第五种可能的实现方式中,至少一个承载了所述第一客户信号的ODTUCn.1.2x与至少一个承载了其他客户信号的ODTUCn.1.2y共用所述OPUCn的一个时隙,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙,y等于1,2,3,4或5。可选的,一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn的一个时隙,其中,x,y均等于1;所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
第四方面,还提供一种网络装置,包括:处理单元,用于通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。
结合第四方面,在第一种可能的实现方式中,所述处理单元包括:解复用单元,用于对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;第一 解映射单元,用于通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;第二解映射单元,用于通过对所述第一ODUflex进行解映射处理得到第一客户信号。
结合第四方面所有实现方式,在第二种可能的实现方式中,所述处理单元包括处理器和计算机可读介质;所述计算机可读介质中存储有计算机可运行的指令;所述指令被所述处理器运行时,驱使所述处理器执行:通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。
结合第四方面所有实现方式,在第三种可能的实现方式中,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
结合第四方面所有实现方式,在第四种可能的实现方式中,所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙;所述解复用单元,具体用于根据解析所述OPUCn所获得的所述OPUCn中的PSI确定所述一个或多个ODTUCn.1.2x所占用的时隙以确定所述ODTUCn.X。
结合第四方面所有实现方式,在第五种可能的实现方式中,所述OPUCn的开销中包含OPUCn复帧标识OMFI,所述OMFI的8个比特用于指示ODTUCn.1.2x的开销位置;所述第一解映射单元,具体用于根据解析所述OPUCn所获得的所述OPUCn中的OMFI确定所述一个或多个ODTUCn.1.2x的开销信息,根据所确定的开销信息对所述ODTUCn.X进行解映射处理得到所述第一ODUflex。
第五方面,提供一种通信系统,该通信系统包括第四方面提供的任一网络装置和第五方面提供的任一网络装置。
第六方面,提供一种计算机可读介质,用于存储指令,所述指令被计算机运行时会驱使计算机执行第一方面或第二方面所述的任意一种方法。
第七方面,提供一种光传送网络帧结构,所述帧结构包括光通道净荷单元Cn OPUCn开销区和OPUCn净荷区,所述OPUCn包括净荷结构指示PSI和OPUCn复帧标识OMFI,所述PSI用于指示由X个时隙组成的光通道数据支路单元Cn ODTUCn.X所占用的时隙,所述X为非整数。
结合第七方面,在第一种实现方式中,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5;所述PSI用于指示所述一个或多个ODTUCn.1.2x各自所占用的时隙。
结合第七方面所有实现方式,在第二种实现方式中,所述PSI还用于指示由Y个时隙组成的光通道数据支路单元Cn ODTUCn.Y所占用的时隙,所述Y为非整数;所述ODTUCn.Y由一个或多个ODTUCn.1.2y组成,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙;一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn净荷区的一个时隙,其中,x,y均等于1;所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
结合第七方面所有实现方式,在第三种实现方式中,所述OMFI的8个比特用于指示各个ODTUCn.1.2x的开销位置。
本发明实施例提供的处理信号的方法、网络装置、通信系统和帧结构,通过占用OPUCn非整数个时隙的ODTUCn.X来承载信号,能灵活承载小颗粒业务或者带宽为OPUCn时隙带宽非整数倍的业务,承载效率高,且实现复杂度底,并可兼容现有的光传送网络映射复用处理架构。此外,因为映射步骤少,从而处理信号时带来的时延也小。最后,本发明实施例在现有的框架下提供了更小的时隙粒度,提高了映射的灵活性和可扩展性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明实施例提供的一种OTUCn的帧结构示意图;
图1b为本发明实施例提供的又一种OTUCn的帧结构示意图;
图2为本发明实施例中提供的OTUCn复帧结构示意图;
图3为本发明实施例中提供的ODTUCn.ts结构示意图;
图4为本发明实施例中提供的OPUCn开销结构示意图;
图5为本发明实施例中提供的PSI结构示意图;
图6为本发明实施例中提供的PSI结构具体含义示意图;
图7为本发明实施例中提供的一种ODTUCn.1.2结构示意图;
图8为本发明实施例中提供的又一种ODTUCn.1.2结构示意图;
图9为本发明实施例中提供的一路ODUflex(25GE)映射到OPUCn的过程示意图;
图10为本发明实施例中提供的另一路ODUflex(25GE)映射到OPUCn的过程示意图;
图11为本发明实施例中提供的两路ODUflex(25GE)映射复用到OPUCn的过程示意图;
图12为本发明实施例中提供的ODTUCn.2.5到2.5个OPUCn 10G时隙的复用方式示意图;
图13为本发明实施例中提供的3路ODTUCn.2.5到OPUCn 10G时隙的复用方式示意图;
图14为本发明实施例中提供的又一PSI结构具体含义示意图;
图15为本发明实施例中提供的再一PSI结构具体含义示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的方法、装置及系统均基于同样的原理和设计,本发明实施例介绍的只要不是相冲突的、或者并行的各个方面,都是可以相互结合的,本发明实施例不做限制。比如,某一部分介绍了A方面,另一部分介绍了B方面,只要A方面和B方面不相冲突,或者不是相并行的两个方案,那么默认A方面和B方面是可以结合的。具体的,比如本发明实施例介绍的装置可以具备本发明实施例介绍的方法中所提及的所有功能,以用于实现相应的方法;同理,本发明实施例介绍的方法可以利用本发明实施例的装置来实现。本发明实施例所介绍的帧结构对于方法和装置来说都是通用的,可以相互结合的。
对于OTN技术,国际电信联盟已经制定了相应的标准,如2012年02月公布的G.709/Y.1331,该标准的全部内容被结合到本申请文件中。
现有的标准中已经定义了多种速率的传输帧,如光通道数据单元k(Optical channel Data Uni t-k,ODUk)帧、光通道净荷单元k(Optical channel Payload Unit-k,OPUk)帧、完全标准化的光通道传输单元k(completely standardized Optical channel Transport Unit-k,OTUk)帧。其中,k等于0表示比特速率等级为1.25Gbit/s,k等于1表示比特速率等级为2.5Gbit/s,k等于2表示比特速率等级为10Gbit/s,k等于3表示比特速率等级为40Gbit/s,k等于4表示比特速率等级为100Gbit/s,k等于flex表示比特速率是弹性可配置的。有关现有的OTN传输帧的更具体的情况,可以参见2012年02月公布的G.709/Y.1331。
为满足流量不断增长的上层业务的传送需求,目前国际电信联盟正在讨论制定一种新的超100G速率的光通道传输单元Cn OTUCn帧。其中,C表示为罗马数字100,n表示倍数,比如OTUC1表示对应于100G传输速率的传输帧,OTUC2表示对应于200G传输速率的传输帧,以此类推。
如图1a所示,OTUCn帧结构含4行4080*n列。其中,光通道净荷单元Cn OPUCn净荷区和OPUCn开销区构成了OPUCn帧,OPUCn帧和光通道数据单元Cn ODUCn开销区构成ODUCn帧,ODUCn帧、OTUCn开销区、帧头指 示开销区FAS和FEC校验区构成了OTUCn帧。具体的,第1行的1~7n列为帧头指示开销,第1行的(7n+1)~14n列为OTUCn开销区,第2~4行的1~14n列为ODUCn开销区,第1~4行的(14n+1)~16n列为OPUCn的开销区,第1~4行的(16n+1)~3824n列为OPUCn净荷区,第1~4行的(3824n+1)~4080n列为FEC校验区。
如图1b所示,图1b给出了另一种OTUCn帧结构。该OTUCn帧结构中包括4行3824*n列,但是没有FEC校验区。其中,第1行的1~7n列为帧头指示开销,第1行的(7n+1)~14n列为OTUCn的开销区,第2~4行的1~14n列为ODUCn的开销区,第1~4行的(14n+1)~16n列为OPUCn的开销区,第1~4行的(16n+1)~3824n列为OPUCn净荷区。其中OPUCn帧结构为第1~4行第(14n+1)~3824n列。
无论是哪种OTUCn帧结构,其中包括的OPUCn净荷区均包括10n个时隙(Tributary Slot),每个时隙具有10G的带宽,能用于承载10G的业务。对于速率大于10G且速率正好为10G整数倍的业务,可以正好用整数个时隙去承载,承载效率高。但是对于速率相对较低或者速率不为10G整数倍的业务,通过多级复接或复用的方式用OTUCn帧去承载该业务时,会出现存在复杂度高、时延较长的问题,而如果直接利用OTUCn帧承载该业务,则带宽利用率较低。下面将以OTUCn帧承载25G业务为例,对上述的情形进行介绍。
在一种实施方式中,可以利用现有的标准中的ODUflex和高阶High Order ODUk进行两级复接或复用来承载25G业务。具体的,首先通过比特同步映射BMP的方式(或者G.709/Y.1331介绍的其他方式)将速率为25G的客户信号映射到ODUflex(速率为25G)中;然后通过通用映射规程GMP的方式(或其他方式)映射速率为25G的ODUflex到光通道数据支路单元ODTU(比如ODTUk.20,也即该占用OPUk的20个1.25G时隙,其中k=3或4)中;然后,将ODTU复用到高阶HO OPUk中;接着,将HO OPUk映射到光通道数据支路单元Cn ODTUCn.ts(即占用ts个10G时隙的虚拟容器);最后,将ODTUCn.ts复用到OPUCn中。可见,采用多级复接或复用的方式来承载25G的业务需要较多的处理步骤,增加了系统的复杂度,同时也会带来较长的时延。
在另一种实施方式中,先将速率为25G的客户信号通过比特同步映射BMP(或其他方式)映射到ODUflex(速率为25G)中,再采用GMP异步映射的方式(或其他方式)将ODUflex(速率为25G)映射到ODTUCn.3(即占用OPUCn的3个10G时隙的虚拟容器),最后复用ODTUCn.3到OPUCn中。这种实施方式中,25G的客户信号将占用3个10G的时隙,存在5G的带宽浪费,存在承载效率较低的问题。
本发明实施例还提供一种实施方式,通过将大颗粒的时隙(如10G带宽的时隙)分割成更小的承载单元,如占用1.25G带宽的承载单元,或者占用2.5G带宽的承载单元,或者占用5G带宽的承载单元等等,相应的每个承载单元分别占用1/8个时隙,或者占用1/4个时隙,或者占用1/2个时隙。通过这种方式,使得大颗粒的时隙可以用于承载低速率业务,或者承载单个时隙带宽的非整数倍带宽的业务,承载效率高,同时处理复杂度较低。
本发明实施例提供了一种处理信号的方法,该方法包括:将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。这里的OPUCn可以是指OPUCn复帧,如10-OPUCn复帧、256-OPUCn复帧等等。
可选的,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
其中,所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙。
可选的,该方法还可以进一步包括:将接收到的第二客户信号映射到第二ODUflex中;将所述第二ODUflex映射到由Z个时隙组成的光通道数据支路单元Cn ODTUCn.Z中,所述Z为整数;将所述ODTUCn.Z复用到所述OPUCn中。
可选的,至少一个承载了所述第一客户信号的ODTUCn.1.2x与至少一个承载了其他客户信号的ODTUCn.1.2y共用所述OPUCn的一个时隙,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙,y等于1,2,3,4或5。可选的,一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn的一个时隙,其中,x,y均等于1;所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
其中,所述OPUCn的开销中包含OPU复帧标识OMFI,所述OMFI的8个比特用于指示ODTUCn.1.2x的开销位置。
其中,所述OPUCn所采用的处理时钟与ODTUCn.1.2x所采用的处理时钟相同。
在详细描述本发明实施例方法之前,本申请将先结合具体附图说明本发明实施例中的提及OPUCn的时隙划分及ODTUCn的构造。
图2示出了OPUCn在带填充列的情况下的时隙划分方式,10个OPUCn帧构成一个10-OPUCn复帧,该复帧包含40行3824列。其中在该复帧净荷区16n+1~3816n列按列间隔依次划分为10n个10G时隙,编号为TS A.B(其中A=1…n,B=1…10;例如1.1,2.1,…,n.1,1.2,2.2,…,直到n.10),每个时隙包含40行380列。其中16n+1至3816n列为用于承载客户信号的数据列,3816n+1~3824n列为填充列。
时隙开销位于14n+1~16n列,当相应的客户信号占用的时隙为整数个时,每个时隙对应的时隙开销每10个OPUCn帧出现一次,通过OPU复帧标识(OPU Multi-Frame Identifier,OMFI)中的5~8比特进行指示(其值初始为0,以OPUCn帧为单位依次递增,当前帧计数到9后在下一OPUCn帧变为0,0~9依次循环),如图2所示。如果相应的客户信号占用的时隙数量为非整数个时,有可能一个时隙被多个不同客户信号占用,这时虽然对应于该时隙的OMFI仍然是每10个OPUCn帧出现一次,但是对于同一客户信号而言,对应于该客户信号的开销信息可能是每20个OPUCn、每40个OPUCn、每80个OPUCn帧才出现一次,这时候需要利用 OMFI的8个比特去指示相应的开销信息的位置和归属情况,详细内容请见后续阐述。对于时隙TS A.B,其对应的时隙开销位于10-OPUCn复帧的第B个OPUCn帧的第14n+A列和第15n+A列的1~3行,共6个字节,标记为J1,J2,J3,J4,J5,J6。例如TS 2.3(A=2,B=3),其开销位于10-OPUCn复帧的第3个OPUCn帧的第14n+2列和第15n+2列的1~3行。
ODTUCn.ts(与前述ODTUCn.X相同)结构,由10-OPUCn复帧的ts个时隙以及对应的时隙开销组成,包含40行,380*ts列,以及ts个时隙所对应的时隙开销。其结构如图3所示。可选的,可以将其中一个时隙所对应的时隙开销用于放置映射开销信息,例如选择为最后一个时隙,也即其对应的时隙编码为Ats.Bts,Bts为ODTUCn.ts所包含的时隙当中其编码B的最大值,Ats为具有编码B最大值的时隙当中编码A的最大值。
为了进一步确认ODTUCn.ts由10-OPUCn复帧中的哪ts个时隙以及对应的时隙开销组成,可以根据OPUCn信号的256-复帧(Multi-Frame)的净荷结构指示PSI(Payload Structure Identifier)确定OPUCn信号中的各个时隙的分配情况,从而确定ODTUCn.ts。如图4所示,PSI位于4行14n+1~15n列,也即为图中标记MSI的区域,对于该区域的单个字节标记为PSI[x.y](其中x=2~21,y=1…n),通过所有的PSI[x.y]分别指示10n个时隙的分配情况。MSI为复用结构指示(Multiplex Structure Identifier,MSI),如图4所示,位于4行15n+1,OMFI的5~8比特,指示OPUCn 10复帧,初始值为0,每OPUCn帧该值递增1,0~9依次循环,一个0~9代表一个OPUCn 10复帧;MSB为最高有效位(Most Significant Bit,MSB),LSB为最低有效位(Last Significant Bit,LSB)。
值得注意的是,图4中关于映射开销信息C8D的指示方式,扩展了图中第1、2行的第2、3比特。图中第1、2行的第2、3比特部分现有的标准为保留字段,本发明实施例中将该保留字段进行利用,用于承载映射开销信息C8D。通过扩展第1、2行的第2、3比特,本发明中的C8D能承载更多的映射开销信息,提高了开销字段的利用率,能为超高速的通信提供有效的开销信息。
图5是PSI[x.y]和10G时隙的对应关系,也即第14n+1列的PSI[2.1]~PSI[21.1]指示时隙TS 1.1~TS 1.10,第14n+2列的PSI[2.2]~PSI[21.2]指示时隙TS 2.1~TS 2.10,以此类推,第15n列的PSI[2.n]~PSI[21.n]指示时隙TS n.1~n.10。
图6是根据本发明实施例的PSI的开销示意图。每个时隙指示占用2个字节,第1个字节的第1比特表示对应的时隙是否占用(Occupation),若占用,则赋值为1;否则,赋值为0。第1个字节的第2~8比特和第2个字节第1~8比特共15比特表示对应的时隙所分配的支路端口号(Tributary Port),也即为该时隙中承载的低阶LO ODU(如ODUflex)业务指示。其中OPUCn信号在承载LO ODU业务采用10G时隙颗粒时,净荷类型(Payload Type,PT)赋值为0x22,位于4行14n+1列。OPUCn信号在承载速率为非10G整数倍ODUflex业务时(例如采用5G时隙颗粒时),净荷类型(Payload Type,PT)赋值为0x23,位于4行14n+1列。
本发明实施例中的ODTUCn.X可以由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。现有的标准中,PSI利用两个字节来描述某个时隙的支路端口,归属于同一个端口的时隙被同一个ODTUCn占用。当一个时隙被细分为更小的时隙时,可以通过扩展现有的PSI,如一个时隙被分为两个更小的细分时隙时,可以利用PSI的一个字节描述一个细分时隙归属的支路端口。当一个时隙被分为四个或八个细分时隙时,可以通过扩展现有的PSI保留字段来描述相应的细分时隙归属的支路端口。
一个ODTUCn可用于映射来自一个支路端口的业务或信号,也即一个ODTUCn会与一个特定的支路端口相对应。本发明实施例中,一个ODTUCn.1.2x可占用一个划分后的时隙,可以认为是一个映射容器,相应的ODUflex信号或者以太业务可以映射进该映射容器中。因为一个ODTUCn由一个或多个ODTUCn.1.2x可以构成,也即组成同一个ODTUCn的ODTUCn.1.2x也与同一个支路端口存在对应关系。如上所述,特定的PSI字段与特定的时隙或细分时隙对应,同时该特定的PSI字段指示了该特定的时隙或细分时隙归属的支路端口,又因为特定的支路端口与组成同一个 ODTUCn的一个或多个ODTUCn.1.2x是相对应的,也即相应的PSI指示了构成同一个ODTUCn的一个或多个ODTUCn.1.2x所占用的细分时隙。
本发明实施例提供的方法可以同时混传占用时隙带宽整数倍带宽的业务,以及小颗粒业务或占用时隙带宽非整数倍带宽的业务。
下面将详细描述如何利用现有的大带宽时隙高效传输小颗粒业务或者带宽为非整数倍时隙带宽的业务。
本发明实施例中增加了对单个OPUCn 10G时隙的划分功能。在OTN处理过程中,相应的待映射数据需要先映射到ODTUCn.ts中,ts为ODTUCn.ts所占用的OPUCn时隙的数量,然后将ODTUCn.ts复用到OPUCn中。通常,将待映射数据映射到ODTUCn.ts中时的最小粒度为ODTUCn.1,也即占用一个时隙。本发明实施例对ODTUCn.1进一步进行了划分。例如将一个10G的ODTUCn.1划分为2个更小的颗粒ODTUCn.1.2,每个ODTUCn.1.2占用1/2个时隙,占用5G带宽;同理可以将一个10G的ODTUCn.1划分为4个更小的颗粒ODTUCn.1.4,每个ODTUCn.1.4占用1/4个时隙,占用2.5G带宽;或者,将一个10G的ODTUCn.1划分为8个更小的颗粒ODTUCn.1.8,每个ODTUCn.1.2占用1/8个时隙,占用1.25G带宽;以此类推。
下面以ODTUCn.1划分为2个ODTUCn.1.2为例进行说明,其他的颗粒与此类似。ODTUCn.1.2可以有下面两种结构。
第一种ODTUCn.1.2结构:这种ODTUCn.1.2结构基于一个ODTUCn.1(40行380列)。如图7所示,将ODTUCn.1所占用的时隙按列进行划分,可以得到两个40行190列结构,这两个40行190列结构ODTUCn.1.2,每个ODTUCn.1.2占用的时隙可以记为TS A.B.1和TS A.B.2。如图10所示,每个ODTUCn.1.2相当于占用5G的时隙。ODTUCn.1.2包括为40行190列的净荷区以及对应的开销信息。
第二种ODTUCn.1.2结构:这种ODTUCn.1.2结构基于2个ODTUCn.1(80行380列),按列间隔进行5G时隙划分,时隙标记为A.B.C,经过划分得到时隙A.B.1和时隙A.B.2,如图8所示,每个5G时隙组成一个 ODTUCn.1.2,也即ODTUCn.1划分为两个ODTUCn.1.2;ODTUCn.1.2结构为80行190列,以及该时隙对应的时隙开销组成。
其中时隙开销指示通过对OMFI进行扩展,OMFI的1~4比特进行了扩展,初始值为0,每OPUCn 10复帧该值递增1,0~15依次循环,指示扩展的ODTUCn.1.X更小颗粒的时隙开销位置。其指示含义参见表1。
表1OMFI开销指示
Figure PCTCN2015082225-appb-000001
下面将结合附图,对本发明实施例提供的方法进行详细描述。
以利用多个10G时隙来承载25G的以太业务为例。值得注意的是,这里的每个时隙的带宽以及相应的承载的业务带宽仅为示例,比如还可以是多个5G时隙承载7.5G的业务,或者是20G时隙承载10G业务等等,对此不作限制。
可选的,首先将接收到25GE的客户信号,如以太业务信号,映射到第一ODUflex中,该第一ODUflex的速率可以为25G。这里的映射方式可 以是现有的比特同步映射BMP的映射方式,也可以是G.709/Y.1331中介绍的其他映射方式,本发明实施例对此不作限制。
然后,将该第一ODUflex映射到ODTUCn.X中,X为非整数,这里的X表示该ODTUCn.X将占用相应的OPUCn中X个时隙。以承载25GE的第一ODUflex为例,如果相应的OPUCn中每个时隙速率为10G,那么这里的ODTUCn.X中的X应该等于2.5。这里的映射方式优选为通用映射规程GMP映射,也可以是G.709/Y.1331中介绍的其他映射方式,本发明实施例对此不作限制。
值得注意的是,将客户信号映射进第一ODUflex是可选的步骤,比如可以直接将接收到的25GE的信号映射到相应的ODTUCn.X中。其映射方法与将第一ODUflex映射进ODTUCn.X的方法相同,因为对于ODTUCn.X来说,无论是第一ODUflex,还是直接接收到以太信号,都是业务信号或者客户信号。
最后,将ODTUCn.X复用到OPUCn中。然后OPUCn最终形成OTUCn并发送出去。
下面,将对第一ODUflex映射到ODTUCn.X中的步骤进行详细描述。
以25GE的业务为例,对于一个时隙速率为10G的OTN系统中,需要对已有的最小时隙再进一步进行划分。本发明实施例中进一步划分后的最小颗粒或者时隙,这种最小颗粒或者时隙可以是占用少于1个的时隙,比如这种最小颗粒可以占用0.3个时隙,或者0.6、0.7、0.75个时隙等等。优选的,这种划分后的小颗粒或时隙可以称为ODTUCn.1.2x,每个ODTUCn.1.2x占用OPUCn中的1/2x个时隙,x等于1,2,3,4,5……相应的,ODTUCn.X可以由一个或多个ODTUCn.1.2x组成。以25GE的业务为例,ODTUCn.X可以是ODTUCn.2.5,该ODTUCn.2.5可以由5个ODTUCn.1.2组成。
具体的,可以将ODTUCn.1容器划分2个5G的ODTUCn.1.2,其中ODTUCn.1.2保持和OPUCn处理时钟同源,优选的,采用和OPUCn相同的处理时钟;第一ODUflex(25GE)占用5个ODTUCn.1.2,得到ODTUCn.2.5(也 即占用OPUCn的2.5个10G TS。因为待映射业务第一ODUflex(25GE)速率为25G,需占用5个ODTUCn.1.2;5个ODTUCn.1.2组成承载容器ODTUCn.2.5,该计算过程即为(10/2)*5/10=5/2=2.5,首先10/2得到划分的每个小颗粒ODTUCn.1.2速率为5G,之后乘以5代表ODUflex(25GE)需要占用5个ODTUCn.1.2,5个ODTUCn.1.2组成容器ODTUCn.2.5,之后再除于10代表ODTUCn.2.5需占用OPUCn的时隙数量,这里OPUCn的每个时隙代表10G的带宽。然后,可以通过GMP的方式将第一ODUflex(25GE)映射到ODTUCn.2.5,并添加映射开销(或称开销信息)到ODTUCn.2.5开销区。这里的映射粒度可以是10字节,也可以是5字节,也可以是20字节,或者是其他字节的映射粒度。具体的映射开销信息Cm和CnD,如图9所示。
下面,将结合附图对将ODTUCn.X复用到OPUCn中的步骤进行详细描述。
本发明实施例中,至少一个承载了所述第一客户信号的ODTUCn.1.2x与至少一个承载了其他客户信号的ODTUCn.1.2y共用所述OPUCn的一个时隙,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙,y等于1,2,3,4或5。也即不同的小颗粒业务或者非整数倍时隙带宽的业务可以共用OPUCn的一个时隙,比如A业务占用一个10G时隙的5G带宽,B业务占用同一个时隙的另外5G带宽,或者A业务占用7.5G带宽,B业务占用2.5G带宽等等,具体不同的业务占用带宽的比率,本发明实施例不做限制。可选的,可以超过两个业务共用一个时隙,比如4个、8个不同的业务信号共用一个时隙。可选的,可以利用一个ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn的一个时隙,其中,x,y均等于1;所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。奇偶列间插的方式,可以减少业务信号的时延。
如图9和图10所示,X为2.5,图中ODTUCn.2.5结构为40行950列。
当其中1路ODUflex(25GE)占用了ODTUCn.5的一半容器后,其映射复用处理过程如图9所示;剩余的另一半容器,也即ODTUCn.2.5可以用于 承载另一路ODUflex(25GE),其映射复用处理过程如图10所示。
其中图11展示了两路ODTUCn.2.5到OPUCn的复用过程,等同于ODTUCn.5复用到TS A1.B1、TS A2.B2、…、TS A5.B5;其复用处理示意如图11所示。
除此之外,以ODTUCn.2.5复用到OPUCn为例描述。除了上述展示的复用方式外(复用到了OPUCn的5个时隙),可以考虑将ODTUCn.2.5复用更加集中,例如复用到OPUCn的3个10G时隙当中,表2展示了6种可能的方式。OPUCn的每个10G时隙按列间隔依次划分为奇偶列,奇列为时隙TS A.B.1,偶列为时隙TS A.B.2。
表2ODTUCn.2.5复用到OPUCn的六种方式
  TS#A1.B1 TS#A2.B2 TS#A3.B3
1 奇数列+偶数列 奇数列+偶数列 奇数列
2 奇数列+偶数列 奇数列+偶数列 偶数列
3 奇数列+偶数列 奇数列 奇数列+偶数列
4 奇数列+偶数列 偶数列 奇数列+偶数列
5 奇数列 奇数列+偶数列 奇数列+偶数列
6 偶数列 奇数列+偶数列 奇数列+偶数列
图12展示了第一种复用方式情况,ODTUCn.2.5按图所示方式依次复用40行950列到TS A1.B1,TS A2.B2,TS A3.B3,也即占用了TS A1.B1,TS A2.B2的奇列和偶列,以及TS A3.B3的奇列。
图13展示了三路ODUflex(25GE)到OPUC4的情况,其中分别展示了ODTUCn.2.5到OPUCn的第二、三和五种复用方式情况。ODTUC4.2.5#1复用到了OPUC4的TS 4.2(奇数列),TS 3.3and TS 1.5;ODTUC4.2.5#2复用到了OPUC4的TS 4.2(偶数列),TS 1.4and TS 1.7;ODTUC4.2.5#3复用到了OPUC4的TS 2.3,TS 3.5(奇数列)and TS 4.8.
下面将结合附图对本发明实施例的帧结构和开销进行详细说明。
本发明实施例提供一种帧结构,如图2所示,10-OPUCn复帧包括10个OPUCn帧,每个OPUCn帧包括4行,从14n+1列至16n列为OPUCn开销区,第16n+1列到3824n列为OPUCn净荷区,OPUCn净荷区中第3816n列到3824n列为多余的填充区,OPUCn净荷区其余3800n列用于承载业务信号。其中一个OPUCn包括10n个时隙,每个时隙速率为10G。每个时隙占用OPUCn中的相应数据列的380列,比如第1个时隙TS1.1占用16n+1列、26n+1列、36n+1列……3806n+1列,第2个时隙TS2.1占用16n+2列、26n+2列、36n+2列……3806n+2列,第n+1个时隙TS1.2占用17n+1列、27n+1列、37n+1列……3807n+1列,以此类推。
当1个时隙被分为更小的颗粒时,如TS1.1被细分为两个TS 1.1.1和TS1.1.2时,那么每个细分的颗粒分别占有TS1.1所占有的数据列中的一半,如TS1.1.1可以占有16n+1列、36n+1列……3796n+1列等奇数列,TS1.1.2可以占有26n+1列、46n+1列……3806n+1列。当然,也可以有其他分配方法,如前一半的数据列分配给其中时隙TS1.1.1,后一半的数据列分配给TS1.1.2,本发明实施例对此不作限制。需要说明的是,奇偶列间隔分配的方式为优选的方案,因为这种方案能减小业务延时。
如图2所示,每个时隙占用三行两列的开销,比如第1个时隙TS1.1所对应的开销TSOH TS1.1占用第一个OPUCn帧第1~3行,第14n+1列和第15n+1列,第2个时隙TS2.1对应的开销TSOH TS2.1占用第一个OPUCn帧第1~3行,第14n+2列和第15n+2列,第n+1个时隙TS1.2对应的开销TSOH TS2.1占用第二个OPUCn帧第1~3行,第14n+1列和第15n+1列,以此类推。
当1个时隙被分为更小的颗粒时,可以对现有的开销进行扩展,将现有的开销TSOH TS1.1扩展为对两个细分的TS1.1.1和TS1.1.2的映射开销信息的描述。可选的,也可以通过第一个10-OPUCn复帧的相应的开销位置描述第一个TS1.1.1的映射开销信息,通过下一个10-OPUCn复帧的相应的开销位置描述另一个TS1.1.2的映射开销信息。对于更小的粒度,可以以此类推。
具体的,如表1所示,可以通过扩展OMFI的字段来指示不同的细分颗粒的映射开销信息。其中,OMFI的第5~8个比特用于指示该OMFI所在的OPUCn帧在10-OPUCn中的位置,OMFI的第1~4个比特用于指示复帧的标识,即用于指示当前复帧为第几个复帧。OMFI的初始值可以为0,起始值当然也可以为其他数,每个10-OPUCn复帧该值递增1,0~15依次循环。对于将10G时隙细分为两个5G的情况来说,TS1.1.1和TS1.1.2的开销信息每个20个OPUCn帧即可出现一次,那么第1~4个比特为偶数时且第5~8个为0000时的OMFI所在的OPUCn中的相应的时隙开销可以用于承载TS1.1.1的开销信息,而第1~4个比特为奇数时且第5~8个比特为0000时的OMFI所在的OPUCn中的相应的时隙开销可以用于承载TS1.1.2的开销信息。其他时隙的情况类似,详见表1。值得注意的,当细分的颗粒更小时,如将10G的时隙细分为4个2.5G的颗粒时,相应的时隙开销可能会每40帧才出现一次,这时OMFI的第1~4比特指示的第n个复帧和第n+4个复帧中承载了相同的时隙的开销。
其中,每一个OPUCn帧的第4行第14n+1至15n列为净荷结构指示PSI,其中一个256-OPUCn复帧中所有的PSI组合在一起用于传输相应的10n个时隙的分配信息。如图4所示,在一个256-OPUCn复帧的PSI组成的信息中,第一字节,也即第一个OPUCn帧的第一个PSI字节处承载有净荷类型指示,用于指示OPUCn中是否承载了占用非整数个时隙的客户信号。当只承载了占用非整数个时隙的客户信号时,其值可以0x23,当只承载了占用整数个时隙的客户信号时,其值可以是0x22。进一步可选的,当即承载了占用非整数个时隙的客户信号时,又承载了占用整数个时隙的客户信号时,其值可以为相应的其他值。这里所说的“只承载了占用非整数个时隙的客户信号”可以是指,仅利用1/2时隙带宽或1/4时隙带宽的粒度承载客户信号,如当每个时隙为10G带宽时,利用5G或2.5G的粒度去承载客户数据。
更具体的,当以小于1个时隙的粒度承载业务时,可以对PSI进行进一步的扩展。比如,此时对于每个10G时隙对应的2个PSI字节,进一步进行分配,第一字节的第1比特表示对应的A.B.1是否占用,若占用,则赋值为1;否则,赋值为0,第2~8比特共7比特用于指示A.B.1所分配的支路端口号, 第二字节的第1比特表示对应的A.B.2是否占用,若占用,则赋值为1;否则,赋值为0,第2~8比特共7比特用于指示A.B.2所分配的支路端口号,如图14所述;OPUCn信号在混合承载速率为10G整数倍LO ODU业务和非10G整数倍ODUflex业务时,净荷类型(Payload Type,PT)赋值为0x24,位于4行14n+1列。此时对于每个10G时隙对应的2个PSI字节,其图案指示如图15所述,其中第1个字节的第1比特表示该10G时隙是否占用,若占用,则赋值为1,进一步第1个字节的第2~8比特和第2个字节第1~8比特共15比特表示对应的时隙所分配的支路端口号,也即为该时隙中承载的LO ODU业务指示;若不被占用,则赋值为0,进一步第一字节的第2比特表示对应的A.B.1是否占用,若占用,则赋值为1;否则,赋值为0,第3~8比特共6比特用于指示A.B.1所分配的支路端口号,第二字节的第2比特表示对应的A.B.2是否占用,若占用,则赋值为1;否则,赋值为0,第3~8比特共6比特用于指示A.B.2所分配的支路端口号,第二字节的第1比特保留。
本发明实施例还提供一种处理信号的方法,包括:通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。所述OPUCn可以是OPUCn复帧,如10-OPUCn复帧,256-OPUCn复帧等等。
可选的,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。当然,ODTUCn.1.2x可选的,还可以占用如0.3个,0.6个,0.75个时隙,本发明实施例不做限制。
其中,所述OPUCn的开销中包括净荷类型PT指示和净荷结构指示PSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号;所述PSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙;所述通过对所述OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,包括:根据解析所述OPUCn所获得的所述OPUCn中的PSI确定所述一个或多个ODTUCn.1.2x所占用的时隙以确定所述ODTUCn.X。
具体的,所述OPUCn的开销中包含OPUCn复帧标识OMFI,所述OMFI的8个比特用于指示ODTUCn.1.2x的开销位置;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex,包括:根据解析所述OPUCn所获得的所述OPUCn中的OMFI确定所述一个或多个ODTUCn.1.2x的开销信息,根据所确定的开销信息对所述ODTUCn.X进行解映射处理得到所述第一ODUflex。
如前面所述,通过解析OPUCn,可以从OPUCn的开销信息中得到相应的PSI和OMFI,因为PSI指示了构成ODTUCn.X所述一个或多个ODTUCn.1.2x所占用的时隙,而OMFI则指示了各个ODTUCn.1.2x的映射开销信息,通过PSI和OMFI确定一个或多个ODTUCn.1.2x所占用的时隙,以及这些ODTUCn.1.2x所占用的时隙所对应的开销信息后,从相应的ODTUCn.X解映射出第一ODUflex。
本发明实施例提供的方法中,介绍了相应的帧中的具体结构,可以理解,可以通过执行相应的方法步骤来获得相应的帧结构。比如,本发明实施例提供的方法可以具有添加开销信息的步骤,如添加细分时隙的映射信息到相应的开销位置以获得具有这些开销信息的帧结构。进一步还可利用扩展的PSI指示相应的细分时隙的分配情况,利用OMFI指示相应的映射信息所在的具体的位置。再如可以通过映射的步骤将相应的客户信号或者业务复用进OPUCn中分配好的时隙中,如通过在一个时隙的数据列的奇数列插入第一ODUflex信号、在属于同一个时隙的数据列的偶数列插入第二ODUflex信号的方式来实现共用一个时隙,如第一ODUflex信号和第二ODUflex信号可各占共享时隙的5G带宽。这些步骤的具体实施顺序,本发明实施例不做限制。
本发明实施例还提供了一种网络装置,包括:处理单元,用于将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
可选的,所述处理单元包括:第一映射单元,用于将接收到的第一客户信号映射到第一ODUflex中;第二映射单元,用于将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整 数;复用单元,用于将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
可选的,所述处理单元包括处理器和计算机可读介质;所述计算机可读介质中存储有计算机可运行的指令;所述指令被所述处理器运行时,驱使所述处理器执行:将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
可选的,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
可选的,所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙。
可选的,至少一个承载了所述第一客户信号的ODTUCn.1.2x与至少一个承载了其他客户信号的ODTUCn.1.2y共用所述OPUCn的一个时隙,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙,y等于1,2,3,4或5。
可选的,一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn的一个时隙,其中,x,y均等于1;所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
本发明实施例还提供一种网络装置,包括:处理单元,用于通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。
可选的,所述处理单元包括:解复用单元,用于对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;第一解映射单元,用于通过对所述ODTUCn.X 进行解映射处理得到第一ODUflex;第二解映射单元,用于通过对所述第一ODUflex进行解映射处理得到第一客户信号。
可选的,所述处理单元包括处理器和计算机可读介质;所述计算机可读介质中存储有计算机可运行的指令;所述指令被所述处理器运行时,驱使所述处理器执行:通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。
可选的,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
可选的,所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙;所述解复用单元,具体用于根据解析所述OPUCn所获得的所述OPUCn中的PSI确定所述一个或多个ODTUCn.1.2x所占用的时隙以确定所述ODTUCn.X。
可选的,所述OPUCn的开销中包含OPUCn复帧标识OMFI,所述OMFI的8个比特用于指示ODTUCn.1.2x的开销位置;所述第一解映射单元,具体用于根据解析所述OPUCn所获得的所述OPUCn中的OMFI确定所述一个或多个ODTUCn.1.2x的开销信息,根据所确定的开销信息对所述ODTUCn.X进行解映射处理得到所述第一ODUflex。
上述的处理器可以是数字信号处理器DSP、现场可编程门阵列FPGA或专用集成电路ASIC中的一种。
可以理解,本发明实施例中的方法都可以被本发明实施例提供的网络装置执行,也就是说本发明实施例提供的网络装置具有执行上述全部或部分方法的功能。具体的,相应的功能可以由网络装置中的处理单元实现,具体的可以由相应的处理单元中相对应的细化的功能模块实现。或者,本发明实施 例提供的方法,均可以通过编程或者其他方式转化成指令,通过将这些指令存储在相应的计算机可读介质中,或者固化在相应的硬件中,当这些指令被执行时,可以驱使用于执行这些指令的处理器去实现本发明实施例介绍的方法。
本发明实施例还提供一种通信系统,所述通信系统包括上述任意一种发送端的网络装置和任意一种接收端的网络装置。
本发明实施例还提供一种计算机可读介质,用于存储指令,所述指令被计算机运行时会驱使计算机执行任一如前述的方法。
本发明实施例还提供一种光传送网络帧结构,所述帧结构包括光通道净荷单元Cn OPUCn开销区和OPUCn净荷区,所述OPUCn包括净荷结构指示PSI和OPUCn复帧标识OMFI,所述PSI用于指示由X个时隙组成的光通道数据支路单元Cn ODTUCn.X所占用的时隙,所述X为非整数。
可选的,所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5;所述PSI用于指示所述一个或多个ODTUCn.1.2x各自所占用的时隙。
可选的,所述PSI还用于指示由Y个时隙组成的光通道数据支路单元Cn ODTUCn.Y所占用的时隙,所述Y为非整数;所述ODTUCn.Y由一个或多个ODTUCn.1.2y组成,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙;一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn净荷区的一个时隙,其中,x,y均等于1;所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
可选的,所述OMFI的8个比特用于指示各个ODTUCn.1.2x的开销位置。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种处理信号的方法,其特征在于,所述方法包括:
    将接收到的第一客户信号映射到第一ODUflex中;
    将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;
    将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
  2. 根据权利要求1所述方法,其特征在于:
    所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
  3. 根据权利要求2所述方法,其特征在于:
    所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙。
  4. 根据权利要求1至3任意一项所述方法,其特征在于,所述方法还包括:
    将接收到的第二客户信号映射到第二ODUflex中;
    将所述第二ODUflex映射到由Z个时隙组成的光通道数据支路单元Cn ODTUCn.Z中,所述Z为整数;
    将所述ODTUCn.Z复用到所述OPUCn中。
  5. 根据权利要求2至4任意一项所述方法,其特征在于:
    至少一个承载了所述第一客户信号的ODTUCn.1.2x与至少一个承载了其他客户信号的ODTUCn.1.2y共用所述OPUCn的一个时隙,每个所述 ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙,y等于1,2,3,4或5。
  6. 根据权利要求5所述方法,其特征在于:
    一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn的一个时隙,其中,x,y均等于1;
    所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
  7. 根据权利要求2至6任意一项所述方法,其特征在于:
    所述OPUCn的开销中包含OPU复帧标识OMFI,所述OMFI的8个比特用于指示各个ODTUCn.1.2x的开销位置。
  8. 根据权利要求2至7任意一项所述方法,其特征在于:
    所述OPUCn所采用的处理时钟与ODTUCn.1.2x所采用的处理时钟同源。
  9. 一种处理信号的方法,其特征在于,所述方法包括:
    通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;
    通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;
    通过对所述第一ODUflex进行解映射处理得到第一客户信号。
  10. 根据权利要求9所述方法,其特征在于:
    所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
  11. 根据权利要求10所述方法,其特征在于:
    所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了 占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙;
    所述通过对所述OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,包括:根据解析所述OPUCn所获得的所述OPUCn中的PSI确定所述一个或多个ODTUCn.1.2x所占用的时隙以确定所述ODTUCn.X。
  12. 根据权利要求10或11所述方法,其特征在于:
    所述OPUCn的开销中包含OPUCn复帧标识OMFI,所述OMFI的8个比特用于指示ODTUCn.1.2x的开销位置;
    通过对所述ODTUCn.X进行解映射处理得到第一ODUflex,包括:根据解析所述OPUCn所获得的所述OPUCn中的OMFI确定所述一个或多个ODTUCn.1.2x的开销信息,根据所确定的开销信息对所述ODTUCn.X进行解映射处理得到所述第一ODUflex。
  13. 一种网络装置,其特征在于,所述网络装置包括:
    处理单元,用于将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
  14. 根据权利要求13所述网络装置,其特征在于,所述处理单元包括:
    第一映射单元,用于将接收到的第一客户信号映射到第一ODUflex中;
    第二映射单元,用于将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;
    复用单元,用于将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
  15. 根据权利要求13所述网络装置,其特征在于:
    所述处理单元包括处理器和计算机可读介质;
    所述计算机可读介质中存储有计算机可运行的指令;
    所述指令被所述处理器运行时,驱使所述处理器执行:将接收到的第一客户信号映射到第一ODUflex中;将所述第一ODUflex映射到由X个时隙组成的光通道数据支路单元Cn ODTUCn.X中,所述X为非整数;将所述ODTUCn.X复用到光通道净荷单元Cn OPUCn中。
  16. 根据权利要求13至15所述任意一项所述网络装置,其特征在于:
    所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
  17. 根据权利要求13至16任意一项所述网络装置,其特征在于:
    所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙。
  18. 根据权利要求13至17任意一项所述网络装置,其特征在于:
    至少一个承载了所述第一客户信号的ODTUCn.1.2x与至少一个承载了其他客户信号的ODTUCn.1.2y共用所述OPUCn的一个时隙,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙,y等于1,2,3,4或5。
  19. 根据权利要求18所述网络装置,其特征在于:
    一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn的一个时隙,其中,x,y均等于1;
    所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
  20. 一种网络装置,其特征在于,所述网络装置包括:
    处理单元,用于通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。
  21. 根据权利要求20所述网络装置,其特征在于,所述处理单元包括:
    解复用单元,用于对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;
    第一解映射单元,用于通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;
    第二解映射单元,用于通过对所述第一ODUflex进行解映射处理得到第一客户信号。
  22. 根据权利要求20所述网络装置,其特征在于:
    所述处理单元包括处理器和计算机可读介质;
    所述计算机可读介质中存储有计算机可运行的指令;
    所述指令被所述处理器运行时,驱使所述处理器执行:通过对接收到的光通道净荷单元OPUCn进行解复用处理确定由X个时隙组成的光通道数据支路单元Cn ODTUCn.X,所述X为非整数;通过对所述ODTUCn.X进行解映射处理得到第一ODUflex;通过对所述第一ODUflex进行解映射处理得到第一客户信号。
  23. 根据权利要求20至22所述任意一项所述网络装置,其特征在于:
    所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5。
  24. 根据权利要求20至23任意一项所述网络装置,其特征在于:
    所述OPUCn的开销中包括净荷结构指示PSI,所述PSI中包括净荷类型PT指示和复用结构指示MSI,所述PT指示用于指示所述OPUCn中承载了占用非整数个时隙的客户信号,所述MSI用于指示所述一个或多个ODTUCn.1.2x所占用的时隙;
    所述解复用单元,具体用于根据解析所述OPUCn所获得的所述OPUCn中的PSI确定所述一个或多个ODTUCn.1.2x所占用的时隙以确定所述ODTUCn.X。
  25. 根据权利要求20至24任意一项所述网络装置,其特征在于:
    所述OPUCn的开销中包含OPUCn复帧标识OMFI,所述OMFI的8个比特用于指示ODTUCn.1.2x的开销位置;
    所述第一解映射单元,具体用于根据解析所述OPUCn所获得的所述OPUCn中的OMFI确定所述一个或多个ODTUCn.1.2x的开销信息,根据所确定的开销信息对所述ODTUCn.X进行解映射处理得到所述第一ODUflex。
  26. 一种通信系统,其特征在于,所述通信系统包括权利要求13至19任意一项所述网络装置和权利要求20至25任意一项所述网络装置。
  27. 一种计算机可读介质,用于存储指令,所述指令被计算机运行时会驱使计算机执行如权利要求1至12任一所述的方法。
  28. 一种光传送网络帧结构,所述帧结构包括光通道净荷单元Cn OPUCn开销区和OPUCn净荷区,所述OPUCn包括净荷结构指示PSI和OPUCn复帧标识OMFI,其特征在于:
    所述PSI用于指示由X个时隙组成的光通道数据支路单元Cn ODTUCn.X所占用的时隙,所述X为非整数。
  29. 根据权利要求28所述帧结构,其特征在于:
    所述ODTUCn.X由一个或多个ODTUCn.1.2x组成,每个所述ODTUCn.1.2x占用所述OPUCn中的1/2x个时隙,x等于1,2,3,4或5;
    所述PSI用于指示所述一个或多个ODTUCn.1.2x各自所占用的时隙。
  30. 根据权利要求29所述帧结构,其特征在于:
    所述PSI还用于指示由Y个时隙组成的光通道数据支路单元Cn ODTUCn.Y所占用的时隙,所述Y为非整数;
    所述ODTUCn.Y由一个或多个ODTUCn.1.2y组成,每个所述ODTUCn.1.2y占用所述OPUCn中的1/2y个时隙;
    一个所述ODTUCn.1.2x与一个所述ODTUCn.1.2y共用所述OPUCn净荷区的一个时隙,其中,x,y均等于1;
    所述OPUCn中被共用的时隙包括多个用于承载客户信号的数据列,其中,奇数数据列被所述ODTUCn.1.2x所占用,偶数数据列被所述ODTUCn.1.2y所占用。
  31. 根据权利要求29或30所述帧结构,其特征在于:
    所述OMFI的8个比特用于指示各个ODTUCn.1.2x的开销位置。
PCT/CN2015/082225 2014-08-22 2015-06-24 一种处理信号的方法、装置及系统 WO2016026348A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES15834253T ES2728728T3 (es) 2014-08-22 2015-06-24 Procedimiento de procesamiento de señales y aparatos de red
EP15834253.5A EP3177029B1 (en) 2014-08-22 2015-06-24 Signal processing method and network apparatus
EP18198552.4A EP3509233A1 (en) 2014-08-22 2015-06-24 Signal processing method, apparatus, and system
US15/438,122 US10440454B2 (en) 2014-08-22 2017-02-21 Signal processing method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410418517.2A CN105451102B (zh) 2014-08-22 2014-08-22 一种处理信号的方法、装置及系统
CN201410418517.2 2014-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/438,122 Continuation US10440454B2 (en) 2014-08-22 2017-02-21 Signal processing method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016026348A1 true WO2016026348A1 (zh) 2016-02-25

Family

ID=55350177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082225 WO2016026348A1 (zh) 2014-08-22 2015-06-24 一种处理信号的方法、装置及系统

Country Status (5)

Country Link
US (1) US10440454B2 (zh)
EP (2) EP3177029B1 (zh)
CN (1) CN105451102B (zh)
ES (1) ES2728728T3 (zh)
WO (1) WO2016026348A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018714A (ko) * 2016-06-30 2019-02-25 후아웨이 테크놀러지 컴퍼니 리미티드 광 전송 네트워크에서 클라이언트 신호를 송신하는 방법 및 광 전송 디바이스
WO2020051851A1 (zh) * 2018-09-13 2020-03-19 华为技术有限公司 光传送网中的数据传输方法及装置
CN113395613A (zh) * 2020-03-11 2021-09-14 华为技术有限公司 一种业务承载的方法、装置和系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451102B (zh) * 2014-08-22 2019-05-28 华为技术有限公司 一种处理信号的方法、装置及系统
US10637604B2 (en) * 2014-10-24 2020-04-28 Ciena Corporation Flexible ethernet and multi link gearbox mapping procedure to optical transport network
CN110401506B (zh) * 2016-05-27 2021-04-09 华为技术有限公司 一种业务传送方法和第一传送设备
WO2019061406A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 一种业务数据发送方法及装置
WO2019071369A1 (zh) 2017-10-09 2019-04-18 华为技术有限公司 光网络中数据传输方法及光网络设备
WO2019090696A1 (zh) * 2017-11-10 2019-05-16 华为技术有限公司 光传输单元信号的传输方法和装置
US10985847B2 (en) 2017-12-21 2021-04-20 Cisco Technology, Inc. Security over optical transport network beyond 100G
CN110365439B (zh) * 2018-04-09 2021-09-03 中兴通讯股份有限公司 信号映射方法、装置、服务器及计算机可读存储介质
CN112042138B (zh) * 2018-05-10 2022-02-01 华为技术有限公司 光传送网中低速业务数据的处理方法、装置和系统
CN110557217B (zh) 2018-06-01 2021-08-03 华为技术有限公司 一种业务数据的处理方法及装置
CN111356037B (zh) 2018-12-21 2021-08-20 深圳市海思半导体有限公司 光传送网线路带宽切换方法及装置
CN111435898B (zh) * 2019-01-14 2022-11-01 中兴通讯股份有限公司 一种信号传输方法及装置、网络设备
CN110266511B (zh) * 2019-04-11 2021-10-15 中国联合网络通信集团有限公司 带宽配置方法和装置
CN112584259B (zh) * 2019-09-30 2022-08-09 华为技术有限公司 一种光传送网中的业务处理的方法、装置和系统
CN114500692A (zh) * 2022-02-11 2022-05-13 重庆邮电大学 一种时间敏感网络帧抢占优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834688A (zh) * 2009-03-09 2010-09-15 华为技术有限公司 光传送网中的映射、解映射方法及装置
CN102316391A (zh) * 2011-09-08 2012-01-11 中兴通讯股份有限公司 一种数据映射、解映射方法及系统
US20130004169A1 (en) * 2011-06-30 2013-01-03 Exar Corporation EFFICIENT METHOD TO EXTRACT A LOWER ORDER (LO) OPTICAL CHANNEL DATA UNIT (ODU)j SIGNAL FROM HIGHER ORDER (HO) OPTICAL CHANNEL TRANSPORT UNIT (OTU)k SIGNAL
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN103533464A (zh) * 2013-09-13 2014-01-22 华为技术有限公司 迁移数据的方法和通信节点

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373847C (zh) * 2004-12-14 2008-03-05 华为技术有限公司 在光传送网中传输低速率业务信号的方法
JP2007096822A (ja) * 2005-09-29 2007-04-12 Fujitsu Ltd 信号多重化装置およびそのスタッフ制御方法
KR101041569B1 (ko) * 2008-11-13 2011-06-15 한국전자통신연구원 클라이언트 신호 전송장치, 클라이언트 신호 전송에서의 종속슬롯 매핑 및 디매핑 장치 및 그 방법
US20100142947A1 (en) * 2008-12-08 2010-06-10 Jong-Yoon Shin Apparatus and method for pseudo-inverse multiplexing/de-multiplexing transporting
CN101841741B (zh) * 2009-03-16 2015-04-08 华为技术有限公司 光通道传送单元信号的传输方法和装置
CN101854220A (zh) * 2009-04-01 2010-10-06 华为技术有限公司 一种业务数据发送、接收的方法和装置
GB2495673A (en) * 2010-07-30 2013-04-17 Fujitsu Ltd Signal storage method, frame generating device, frame receiving device and transmission system
US9191115B2 (en) * 2011-02-03 2015-11-17 Tejas Networks Ltd Method for configuring end-to-end lower order ODU network trails across optical transport network
JP5659910B2 (ja) * 2011-03-29 2015-01-28 富士通株式会社 フレームマッピング装置及びフレームマッピング方法
US8494363B2 (en) * 2011-04-21 2013-07-23 Cortina Systems, Inc. Signal format conversion apparatus and methods
US9385943B2 (en) * 2011-09-19 2016-07-05 Infinera Corporation Encoding and processing of signaling messages for ODU SMP
US9048967B2 (en) * 2011-09-23 2015-06-02 Fujitsu Limited Asymmetric OTN network traffic support
US20130084062A1 (en) * 2011-09-29 2013-04-04 Nec Laboratories America, Inc. Hitless protection for transmitting traffic in high-speed switching system
JP5835059B2 (ja) * 2012-03-29 2015-12-24 富士通株式会社 データ伝送装置及びデータ伝送方法
CN106301661B (zh) * 2012-07-30 2018-10-19 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
US9288006B1 (en) * 2012-09-21 2016-03-15 Pmc-Sierra Us, Inc. Demultiplexing high-order to low-order ODU signals in an optical transport network
CN103716108B (zh) * 2012-09-29 2018-08-03 中兴通讯股份有限公司 光传送网的数据映射方法及装置
CN103997387B (zh) * 2013-02-18 2018-08-24 中兴通讯股份有限公司 数据的映射、复用、解复用和解映射方法及装置
WO2014147743A1 (ja) * 2013-03-19 2014-09-25 富士通株式会社 伝送装置、伝送システム、及び伝送方法
US9621291B2 (en) * 2013-06-18 2017-04-11 Mitsubishi Electric Corporation Optical communication cross-connection devices and signal processing method thereof
CN105451102B (zh) * 2014-08-22 2019-05-28 华为技术有限公司 一种处理信号的方法、装置及系统
US9853722B1 (en) * 2016-06-17 2017-12-26 Ciena Corporation Systems and methods for path protection switching due to client protection switching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834688A (zh) * 2009-03-09 2010-09-15 华为技术有限公司 光传送网中的映射、解映射方法及装置
US20130004169A1 (en) * 2011-06-30 2013-01-03 Exar Corporation EFFICIENT METHOD TO EXTRACT A LOWER ORDER (LO) OPTICAL CHANNEL DATA UNIT (ODU)j SIGNAL FROM HIGHER ORDER (HO) OPTICAL CHANNEL TRANSPORT UNIT (OTU)k SIGNAL
CN102316391A (zh) * 2011-09-08 2012-01-11 中兴通讯股份有限公司 一种数据映射、解映射方法及系统
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN103533464A (zh) * 2013-09-13 2014-01-22 华为技术有限公司 迁移数据的方法和通信节点

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018714A (ko) * 2016-06-30 2019-02-25 후아웨이 테크놀러지 컴퍼니 리미티드 광 전송 네트워크에서 클라이언트 신호를 송신하는 방법 및 광 전송 디바이스
KR102192294B1 (ko) * 2016-06-30 2020-12-17 후아웨이 테크놀러지 컴퍼니 리미티드 광 전송 네트워크에서 클라이언트 신호를 송신하는 방법 및 광 전송 디바이스
WO2020051851A1 (zh) * 2018-09-13 2020-03-19 华为技术有限公司 光传送网中的数据传输方法及装置
CN113395613A (zh) * 2020-03-11 2021-09-14 华为技术有限公司 一种业务承载的方法、装置和系统
CN113395613B (zh) * 2020-03-11 2022-08-19 华为技术有限公司 一种业务承载的方法、装置和系统

Also Published As

Publication number Publication date
US10440454B2 (en) 2019-10-08
EP3177029B1 (en) 2019-04-10
ES2728728T3 (es) 2019-10-28
US20170230736A1 (en) 2017-08-10
CN105451102A (zh) 2016-03-30
EP3177029A4 (en) 2017-08-16
EP3177029A1 (en) 2017-06-07
CN105451102B (zh) 2019-05-28
EP3509233A1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2016026348A1 (zh) 一种处理信号的方法、装置及系统
JP6787597B2 (ja) 光伝送ネットワーク内でのクライアント信号の送信方法および光伝送デバイス
CN101291179B (zh) 一种光传送网中客户信号传送方法及相关设备
CN109981209B (zh) 光传送网中业务发送、接收方法及装置
EP2228930B1 (en) Frame generating apparatus and frame generating method
WO2019213901A1 (zh) 光传送网中低速业务数据的处理方法、装置和系统
CN1773898B (zh) 在光传输网络上传输客户层信号的方法及设备
CN109478941B (zh) 一种多路业务传送、接收方法及装置
CN111865887B (zh) 光传送网中的数据传输方法及装置
EP2472748B1 (en) Method and communication node for adjusting bandwidth
US20100221005A1 (en) Method for realizing time slot partition and spending process of an optical payload unit in an optical transmission network
CN103533464B (zh) 迁移数据的方法和通信节点
EP2079177B1 (en) Method and device to adjust the signal of the optical transport network
CN110401506A (zh) 一种业务传送方法和第一传送设备
WO2023134508A1 (zh) 一种光传送网中的业务处理的方法、装置和系统
CN102098595B (zh) 一种光传送网中客户信号传送方法及相关设备
CN105657583B (zh) 分组业务信号发送方法、装置及接收方法、装置
WO2020051851A1 (zh) 光传送网中的数据传输方法及装置
CN117692822A (zh) 一种光传送网中的数据帧的处理方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015834253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834253

Country of ref document: EP