WO2018000516A1 - 一种单驱动刚柔耦合精密运动平台及其实现方法及应用 - Google Patents
一种单驱动刚柔耦合精密运动平台及其实现方法及应用 Download PDFInfo
- Publication number
- WO2018000516A1 WO2018000516A1 PCT/CN2016/093259 CN2016093259W WO2018000516A1 WO 2018000516 A1 WO2018000516 A1 WO 2018000516A1 CN 2016093259 W CN2016093259 W CN 2016093259W WO 2018000516 A1 WO2018000516 A1 WO 2018000516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rigid
- motion platform
- platform
- flexible
- drive
- Prior art date
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 27
- 238000010168 coupling process Methods 0.000 title claims abstract description 27
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 25
- 238000006073 displacement reaction Methods 0.000 claims abstract description 48
- 230000005489 elastic deformation Effects 0.000 claims description 23
- 238000013016 damping Methods 0.000 claims description 8
- 230000001965 increasing effect Effects 0.000 claims description 5
- 238000003754 machining Methods 0.000 claims description 4
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 230000001133 acceleration Effects 0.000 abstract description 7
- 230000008859 change Effects 0.000 description 10
- 230000003068 static effect Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 230000009193 crawling Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000725 suspension Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/26—Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
- B23Q1/34—Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
- B23Q1/36—Springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/26—Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
- B23Q1/34—Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00126—Static structures not provided for in groups B81C1/00031 - B81C1/00119
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67126—Apparatus for sealing, encapsulating, glassing, decapsulating or the like
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/44—Movable or adjustable work or tool supports using particular mechanisms
- B23Q1/56—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
- B23Q1/58—Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism a single sliding pair
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q2210/00—Machine tools incorporating a specific component
- B23Q2210/002—Flexures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/22—Feeding members carrying tools or work
- B23Q5/28—Electric drives
Definitions
- the invention relates to a motor driving technology, and more particularly to a single-drive rigid-flexible coupling precision motion platform, an implementation method thereof and an application thereof.
- High-speed precision motion platforms are widely used in semiconductor packaging and other fields. Uncertain changes in surface roughness between moving pairs in high-speed precision motion platforms can lead to uncertain changes in the magnitude of frictional resistance.
- the speed of the motion platform is relatively low, and the amplitude fluctuation of the above-mentioned frictional resistance is likely to cause a "crawling" phenomenon on the motion platform.
- the driver Under the action of the closed-loop control system, the driver will overcome the frictional resistance by increasing the driving force and compensate the positioning error of the motion platform. During the above compensation process, the motion platform will experience frequent "stationary ⁇ motion" state switching.
- the low-friction motion pair such as air bearing or magnetic suspension bearing has a high implementation cost, which limits its scope of use.
- the flexible hinge As a kind of external frictionless motion pair, the flexible hinge relies on elastic deformation to achieve continuous high-precision motion. Due to the limitation of working principle, the flexible hinge motion pair is mainly suitable for the movement of a small stroke. In large-stroke sports, flexible hinges are often used in conjunction with frictional motion pairs to form a macro-micro-composite motion platform to achieve high-precision, high-precision motion, which in turn compensates for large-scale motion.
- Patent 201410696217.0 proposes a one-dimensional platform for linear motor common stator double drive macro-micro integrated high-speed precision motion.
- the macro-motion outer frame and the micro-motion platform of the proposed macro-micro motion platform are respectively connected with two sets of linear motor movers.
- the macro-motion outer frame and the micro-motion platform are connected by a flexible hinge, and the macro-motion outer frame realizes macro-motion macro motion under the driving of the corresponding linear motor mover, and the micro-motion platform is in the corresponding linear motor mover
- the drive is dynamically compensated for the motion deviation of the above macro motion.
- the above-mentioned macro-micro composite motion principle is used to realize high-precision motion with large stroke.
- the control system needs to consider the switching control of macro motion and micro motion, and the control system is more complicated; (3) the mass of the moving part in the platform is large, which is not conducive to use in the occasion of high inertia such as high acceleration; 4) The feedback control system of the macro-motion platform still needs to consider the influence of the friction state in the positioning stage to ensure that the displacement deviation of the macro-motion platform during the positioning process is smaller than the limit deformation range of the flexible hinge motion pair.
- the object of the present invention is to realize simplified control and structural optimization of a motor drive platform.
- the present invention provides a single-drive rigid-flexible coupled precision motion platform, and an implementation method and application thereof.
- the invention provides a single-drive rigid-flexible coupled precision motion platform, which comprises a base, a linear guide, a rigid-flexible coupled motion platform, a linear drive and a displacement sensor, wherein the rigid-flexible coupling platform comprises a rigid frame, a flexible hinge and a core motion platform;
- the core motion platform of the rigid-flexible coupling platform is coupled to the rigid frame by a flexible hinge;
- the core motion platform of the rigid-flexible coupling platform is connected to a linear drive, and the rigid frame is connected to the linear guide fixed to the base through a rail slider, and the core motion platform is operated by the linear drive
- the displacement sensor is coupled to the core motion platform for measuring displacement of the core motion platform in the direction of motion.
- the linear actuator is a voice coil motor or a linear motor.
- a limit device and a damper are disposed between the rigid frame of the rigid-flexible coupling platform and the core motion platform.
- the flexible hinge between the core motion platform of the rigid-flexible coupling platform and the rigid frame is symmetrically arranged.
- the rigid-flexible coupling motion platform is manufactured in one piece.
- the flexible hinge is a straight beam type or a slit type flexible hinge.
- the invention also provides a method for realizing a single-drive rigid-flexible coupled precision motion platform.
- the method is implemented by using the single-drive rigid-flexible coupled precision motion platform described above, comprising the following steps:
- the linear drive directly drives the core motion platform.
- the core motion platform When the driving force fails to statically rub the rigid frame of the customer service, the core motion platform generates a slight displacement through the elastic deformation of the flexible hinge to realize precise micro-feeding;
- the invention also provides an application of a single-drive rigid-flexible coupled precision motion platform, which is applied to a large-stroke precision machining device, and adopts the above-mentioned single-drive rigid-flexible coupled precision motion platform as Motor drive platform.
- the present invention also provides an application implementation method of a single-drive rigid-flexible coupled precision motion platform.
- the method is applied to a large-stroke precision machining device, and the motor drive is realized by the above-mentioned single-drive rigid-flexible coupled precision motion platform implementation method.
- the frictionless flexible hinge motion pair is used to realize high-precision continuous change displacement, which avoids the displacement “jitter” caused by sudden change of acceleration caused by the switching of the motion pair friction state under low speed conditions.
- the rigid-flexible motion platform design is adopted.
- the flexible hinge can actively adapt to the frictional change of the guide rail pair by its own elastic deformation, avoiding the switching of the motion pair friction state.
- the effect of “crawling” on continuous displacement positioning is conducive to achieving higher positioning accuracy.
- the motion platform adopts a single-drive closed-loop control system.
- the drivers and sensors used are connected to the core motion platform.
- the control system has simple design and higher reliability.
- the sports platform adopts a relatively compact design, which can achieve smaller motion quality than the macro-micro composite motion platform, and is more conducive to applications in high acceleration and other occasions.
- FIG. 1 is a schematic view showing the working principle of the rigid-flexible coupling motion platform of the present invention
- FIG. 2 is a schematic view of Embodiment A of the present invention.
- Figure 3 is a partially cutaway enlarged plan view showing an embodiment A of the present invention.
- Figure 4 is a front cross-sectional view and a partial enlarged view of Embodiment A of the present invention.
- FIG. 5 is a schematic view of Embodiment B of the present invention.
- Figure 6 is a partially cutaway enlarged plan view showing an embodiment B of the present invention.
- Figure 7 is a front cross-sectional view and a partial enlarged view of Embodiment B of the present invention.
- Figure 8 is a schematic view of Embodiment C of the present invention.
- Figure 9 is a partially cutaway enlarged plan view showing an embodiment C of the present invention.
- Figure 10 is a graph of the 1um precision micro-feed experimental data of the present invention.
- Figure 11 is a graph showing the data of the rapid positioning experiment of 100 mm of the present invention.
- Linear guide 1 rigid frame 201, core motion platform 202, flexible hinge 203, damper 3;
- Cross roller linear guide C1 motion platform rigid frame C201, core motion platform C202, flexible hinge C203, mover connector C301, base C4, crash block C6, voice coil motor mover C501, voice coil motor stator C502, Grating displacement sensor C7, damping device C8.
- the motion platform is mainly composed of a base A4, a linear guide A101, a guide rail slider A102, a rigid frame A201, a core motion platform A202, a flexible hinge A203, a grating displacement sensor A6, and a linear motor driver.
- the rigid frame A201 and the core motion platform A202 are connected by a flexible hinge A203, and the rigid frame A201 is connected to the base A4 by a linear guide motion pair.
- the linear motor driver is composed of a linear motor mover A501 and a linear motor stator A502.
- the linear motor mover A501 is connected to the core motion platform A202, and the linear motor mover A501 can apply a driving force to the core motion platform A202 under the action of electromagnetic force.
- the driving force can elastically deform the flexible hinge A203 and thereby cause the core motion platform A202 to generate a linear displacement along the length of the guide rail.
- the elastic deformation reaction force of the flexible hinge A203 can be used to overcome the friction between the moving pairs of the linear guides connected to the rigid frame A201, when the elastic deformation of the flexible hinge A203 is greater than the movement between the linear guides When the frictional force is equal to the resistance, the rigid frame A201 will be changed from the stationary state to the moving state.
- the displacement of the core motion platform A202 can be divided into two cases: a. when the elastic deformation force of the flexible hinge A203 is less than the static friction force of the motion pair, the displacement of the core motion platform A202 is the flexible hinge The elastic deformation amount of the A203 motion pair; b. When the elastic deformation force of the flexible hinge A203 is greater than the static friction force of the motion pair, the displacement of the core motion platform (A202) is the elasticity of the flexible hinge A203 The superposition of the amount of deformation and the rigid displacement of the rigid frame A201.
- the difference between the static friction coefficient and the dynamic friction coefficient of the linear guide motion causes a sudden change in resistance, causing a rigid impact on the motion platform, and causes The friction of the sports pair "crawls."
- the flexible hinge A203 can actively adapt to the sudden change of the frictional resistance caused by the switching of the friction state of the motion pair by the elastic deformation of the self, and alleviate the rigid impact of the sudden change of the frictional resistance on the core motion platform A202.
- the core motion platform A202 can rely on the elastic deformation of the flexible hinge A203 to achieve continuous displacement change, and avoid the influence of the friction "crawling" condition on the motion positioning accuracy.
- the grating displacement sensor A6 is connected to the core motion platform A202, and the displacement of the core motion platform A202 in any case can be measured in real time.
- the displacement measurement of the grating displacement sensor A6 can be used as a feedback link to form a closed-loop control system with a linear motor driver or the like to realize high-precision motion positioning of the core motion platform A202.
- the linear motor driver acts on the flexible hinge A203 by the core motion platform A202 to easily cause the deformation amount of the flexible hinge A203 to exceed the limit elastic deformation amount.
- the core motion platform A202 will come into contact with the rigid frame A201 and constitute an integral rigid motion platform.
- a damping device A3 is disposed between the core motion platform A202 and the rigid frame A201 for mitigating the contact impact force of the core motion platform A202 with the rigid frame A201.
- a linear bearing unit is disposed between the rigid frame A201 and the core motion platform A202.
- an optical axis A702 is disposed between the two supporting ends of the rigid frame A201, and a linear bearing bushing A701 is mounted on the core moving platform A202.
- the degree of freedom of movement of the linear bearing bushing A701 is limited to the longitudinal direction of the optical axis A702.
- the optical axis A702 mounted on the rigid frame A201 and the linear bearing bushing A701 mounted on the core moving platform A202 together form a stiffness enhancing unit for improving the load carrying capacity of the core moving platform A202.
- the motion platform is mainly composed of a base B4, a linear guide B101, a guide rail slider B102, a rigid frame B201, a core motion platform B202, a flexible hinge B203, a grating displacement sensor B6, and a linear motor driver.
- the rigid frame B201 and the core motion platform B202 are connected by a movable hinge B203, and the rigid frame B201 is connected to the base B4 through a linear guide motion pair.
- the linear motor driver is composed of a linear motor mover B501 and a linear motor stator B502.
- the linear motor mover B501 is connected to the core motion platform B202, and the linear motor mover B501 can apply a driving force to the core motion platform B202 under the action of electromagnetic force.
- a damping device B3 is disposed between the core motion platform B202 and the rigid frame B201 for mitigating the The core motion platform B202 will have an impact force with the rigid frame B201.
- the main change of Embodiment B is to further improve the stiffness enhancement unit design employed in Example A to improve the load carrying capacity of the core motion platform.
- the rigid frame B201 is provided with a magnetic block II B702, and the core moving platform B202 is provided with a magnetic block I B701.
- the magnetic block II B702 is always located in the middle of the magnetic block I B701 during the movement of the platform.
- the magnetic block II B702 and the upper surface of the magnetic block I B701 have the same magnetic pole polarity, and the magnetic block II B702 and the lower surface of the magnetic block I B701 also have the same magnetic pole polarity.
- the magnetic block II B702 constrains the magnetic repulsion caused by the magnetic block I B701 between the magnetic blocks II B702, and further improves the carrying capacity of the core moving platform B202.
- the magnetic block II B702 and the magnetic block I B701 together form a non-contact stiffness enhancement unit.
- the motion platform is mainly composed of a base C401, a cross roller linear guide C1, a rigid frame C201, a core motion platform C202, a flexible hinge C203, a grating displacement sensor C7, and a voice coil motor.
- the rigid frame C201 and the core motion platform C202 are connected by a flexible hinge C203 motion pair, and the rigid frame C201 is connected to the base C401 through a linear guide motion pair.
- the voice coil motor driver is composed of a voice coil motor mover C501 and a straight voice coil motor stator C502.
- the voice coil motor mover C501 is connected to the core motion platform C202 via a mover connector C3.
- the voice coil motor mover C501 can apply a driving force to the core motion platform C202 under the action of electromagnetic force.
- the driving force can elastically deform the flexible hinge C203 and thereby cause the core motion platform C202 to generate a linear displacement along the longitudinal direction of the guide rail.
- the elastic deformation reaction force of the flexible hinge C203 can be used to overcome the friction between the moving pair of the linear guides connected to the rigid frame A201, when the elastic deformation of the flexible hinge C203 is greater than the movement between the linear guides When the frictional force is equal to the resistance, the rigid frame C201 will be changed from the stationary state to the moving state.
- the displacement of the core motion platform C202 can be divided into the same two cases as the embodiment A, and the method used to avoid the influence of friction "crawling" is also the same as that of the embodiment A.
- the grating displacement sensor C7 is connected to the core motion platform C202, and the displacement of the core motion platform C202 in any case can be measured in real time.
- the displacement measurement of the grating displacement sensor C7 can be used as a feedback link and a voice coil motor driver to form a closed loop control system, High-precision motion positioning of the core motion platform C202.
- the driving force of the voice coil motor driver acting on the flexible hinge C203 through the core motion platform C202 easily causes the deformation amount of the flexible hinge C203 to exceed the limit elastic deformation amount.
- the core motion platform C202 will come into contact with the rigid frame C201 and constitute an integral rigid motion platform.
- a damping device C8 is disposed between the core motion platform C202 and the rigid frame C201 for relieving the contact impact force of the core motion platform C202 with the rigid frame C201.
- Figure 11.a shows a quick positioning case with a stroke of 100mm. Due to friction, when the driving force is small, the slider is at rest until the driving force is greater than the static friction (Fig. 11.b). During the braking process, the driving force acts on the core platform first, reducing the moving speed of the platform, and then acting on the rigid frame through the flexible hinge, so the core platform is braked before the rigid frame. When the rigid frame speed approaches 0, it enters the frictional four-wheel drive. At this time, the core platform completes the error compensation by the micro-feeding deformation of the flexible hinge (Fig. 11.c).
- the static position is 99.9968 mm, and the error is -0.0032%.
- the positioning accuracy reaches 99.9992mm with an error of -0.0008%.
- the elastic compensation is frictionless, the actual displacement is 99.9996, the relative error is -0.0004%, and the positioning accuracy is sub-micron.
- the core platform is connected to the rigid frame through the flexible hinge, when the driving force is insufficient to overcome the friction, the core platform is deformed by the flexible hinge to generate displacement, thereby achieving quick start.
- the speed is reduced, the driving force is also reduced, and the driving force is less than the static friction.
- the core platform continues to be displaced by the flexible hinge deformation. The entire process does not require algorithm switching, and the control is simple.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Linear Motors (AREA)
- Bearings For Parts Moving Linearly (AREA)
- Machine Tool Units (AREA)
- Details Of Measuring And Other Instruments (AREA)
- Machine Tool Sensing Apparatuses (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Vibration Prevention Devices (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
Claims (10)
- 一种单驱动刚柔耦合精密运动平台,其特征在于,包括机座、直线导轨、刚柔耦合运动平台、直线驱动器及位移传感器,其中刚柔耦合平台包括刚性框架、柔性铰链和核心运动平台;所述刚柔耦合平台的核心运动平台通过柔性铰链与所述刚性框架连接;所述刚柔耦合平台的核心运动平台与直线驱动器连接,所述刚性框架通过导轨滑块与固定在所述机座上的所述直线导轨连接,所述核心运动平台在所述直线驱动器作用下带动所述柔性铰链弹性变形,并通过柔性铰链带动所述刚性框架在所述直线导轨长度方向上自由运动;所述位移传感器与所述核心运动平台连接,用于测量核心运动平台在运动方向上的位移。
- 如权利要求1所述的单驱动刚柔耦合精密运动平台,其特征在于,所述直线驱动器为音圈电机或直线电机。
- 如权利要求1所述的单驱动刚柔耦合精密运动平台,其特征在于,在所述刚柔耦合平台的刚性框架与核心运动平台间设置有限位装置和阻尼器。
- 如权利要求1所述的单驱动刚柔耦合精密运动平台,其特征在于,刚柔耦合平台的所述核心运动平台与所述刚性框架之间的柔性铰链为对称布置。
- 如权利要求1-4其中之一所述的单驱动刚柔耦合精密运动平台,其特征在于,所述刚柔耦合运动平台为一体式加工制造。
- 如权利要求1-4其中之一所述的单驱动刚柔耦合精密运动平台,其特征在于,所述柔性铰链为直梁型或切口型柔性铰链。
- 如权利要求1-4其中之一所述的单驱动刚柔耦合精密运动平台,其特征在于,所述刚柔耦合运动平台内的核心运动平台与刚性框架还存在直线轴承、磁力支撑刚度加强结构。
- 一种单驱动刚柔耦合精密运动平台实现方法,其特征在于,本方法利用上述权利要求1-4其中之一所述的单驱动刚柔耦合精密运动平台实现,包括下述步骤:1)直线驱动器直接驱动核心运动平台,在驱动力未能客服刚性框架静摩擦时,核心运动平台通过柔性铰链的弹性变形产生微小位移,实现精密微进 给;2)当直线驱动器驱动力加大时,克服了摩擦力,带动刚性框架运动,而此时弹性变形增大,进入限位状态,所有的驱动力传递到刚性框架进行高速运动;3)当平台减速时,核心运动平台先制动,通过柔性铰链带动刚性框架制动,之后切换至另一限位装置和阻尼,衰减振动能量。
- 一种单驱动刚柔耦合精密运动平台的应用,其特征在于,所述单驱动刚柔耦合精密运动平台应用在大行程精密加工设备上,并采用如权力要求1、2、3或4其中之一所述的单驱动刚柔耦合精密运动平台作为电机驱动平台。
- 一种单驱动刚柔耦合精密运动平台的应用实现方法,其特征在于,本方法用于大行程精密加工设备,并利用上述权利要求8所述的方法实现电机驱动。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016003512.8T DE112016003512T5 (de) | 2016-06-29 | 2016-08-04 | Einzelantriebs-Starr-Flexible-Kopplungs-Präzisionsbewegungsplattform und ihre Realisierungsmethode und Verwendung |
KR1020187009622A KR101910522B1 (ko) | 2016-06-29 | 2016-08-04 | 단일 구동 리지드-플렉시블 커플링 정밀 운동 플랫폼 및 그의 구현 방법과 장치 |
GB1808926.8A GB2561990B (en) | 2016-06-29 | 2016-08-04 | Single-drive rigid-flexible coupling precision motion platform |
JP2018528289A JP6476351B1 (ja) | 2016-06-29 | 2016-08-04 | 単一駆動の剛性‐フレキシブルカップリングされる精密移動ステージ及びその実現方法、並びにアプリケーション |
US15/844,571 US10661399B2 (en) | 2016-06-29 | 2017-12-17 | Single-drive rigid-flexible coupling precision motion platform and realization method and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610508540.X | 2016-06-29 | ||
CN201610508540.XA CN106002312B (zh) | 2016-06-29 | 2016-06-29 | 一种单驱动刚柔耦合精密运动平台及其实现方法及应用 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/844,571 Continuation US10661399B2 (en) | 2016-06-29 | 2017-12-17 | Single-drive rigid-flexible coupling precision motion platform and realization method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018000516A1 true WO2018000516A1 (zh) | 2018-01-04 |
Family
ID=57105657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/093259 WO2018000516A1 (zh) | 2016-06-29 | 2016-08-04 | 一种单驱动刚柔耦合精密运动平台及其实现方法及应用 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10661399B2 (zh) |
JP (1) | JP6476351B1 (zh) |
KR (1) | KR101910522B1 (zh) |
CN (1) | CN106002312B (zh) |
DE (1) | DE112016003512T5 (zh) |
GB (1) | GB2561990B (zh) |
WO (1) | WO2018000516A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110829880A (zh) * | 2019-07-25 | 2020-02-21 | 浙江师范大学 | 一种t型爬行式压电驱动平台 |
CN110829882A (zh) * | 2019-07-25 | 2020-02-21 | 浙江师范大学 | 一种t型压电驱动装置 |
CN113162362A (zh) * | 2021-04-15 | 2021-07-23 | 深圳市泰道精密机电有限公司 | 一种高推力密度的直线电机及电机模组 |
CN115648132A (zh) * | 2022-12-13 | 2023-01-31 | 西北电子装备技术研究所(中国电子科技集团公司第二研究所) | 一种芯片倒装键合用高承载精密运动平台 |
CN116381892A (zh) * | 2023-04-21 | 2023-07-04 | 广东工业大学 | 一种基于直驱式气浮平台的二级宏微相机镜头调焦装置 |
CN116967796A (zh) * | 2023-09-22 | 2023-10-31 | 无锡星微科技有限公司杭州分公司 | 一种气浮直线平台的移动组件 |
CN117047499A (zh) * | 2023-10-11 | 2023-11-14 | 无锡星微科技有限公司杭州分公司 | 纳米定位精度控制器及运动平台 |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104440343B (zh) * | 2014-11-26 | 2017-05-10 | 广东工业大学 | 直线电机共定子双驱动宏微一体化高速精密运动一维平台 |
CN104889951A (zh) * | 2015-06-08 | 2015-09-09 | 广东工业大学 | 动态特性可调宏微一体化复合平台 |
CN106002312B (zh) * | 2016-06-29 | 2018-01-23 | 广东工业大学 | 一种单驱动刚柔耦合精密运动平台及其实现方法及应用 |
CN106500587A (zh) * | 2016-10-17 | 2017-03-15 | 广东工业大学 | 一种白光干涉仪z轴宏微精密调焦装置及其调焦方法 |
CN106594070B (zh) * | 2016-12-21 | 2019-09-27 | 西安理工大学 | 基于柔性结构的次纳米级精密驱动工作台 |
CN106685178B (zh) * | 2017-03-03 | 2023-06-06 | 安徽大学 | 一种基于永磁同步直线电机的粘弹阻尼结构及其应用 |
CN106891306B (zh) * | 2017-04-25 | 2019-05-28 | 西安理工大学 | 基于变刚度柔性结构的磁辅助激励精密驱动工作台 |
CN108279561B (zh) * | 2017-12-19 | 2021-02-12 | 广东工业大学 | 基于降低扰动带宽的摩擦力补偿及实现的方法及运动平台 |
CN108015561B (zh) * | 2017-12-19 | 2023-10-03 | 广东工业大学 | 一种扩大单驱动刚柔耦合工作面积的运动平台 |
CN107971765B (zh) * | 2017-12-29 | 2023-06-27 | 河南工业大学 | 一种可调超高加速度宏微运动平台 |
CN108655435B (zh) * | 2018-04-12 | 2020-05-08 | 上海交通大学 | 车床微作动平台与车床系统 |
CN108959796B (zh) * | 2018-07-18 | 2022-05-20 | 哈尔滨工业大学 | 一种大惯量旋转载荷卫星的刚柔磁耦合动力学建模方法 |
CN109194191B (zh) * | 2018-07-20 | 2023-12-26 | 吉林大学 | 具有定量可调自适应预紧功能的大载荷压电驱动装置 |
CN108696056B (zh) * | 2018-08-20 | 2023-11-03 | 广东云驰时代技术有限公司 | 一种用于环形生产线的直线电机 |
CN109143858B (zh) * | 2018-08-23 | 2021-08-24 | 广东工业大学 | 一种基于扰动力测量补偿的刚柔耦合运动平台控制方法 |
CN109243520B (zh) * | 2018-10-23 | 2024-04-12 | 安徽理工大学 | 一种宏微双驱动精密定位平台及其控制方法 |
CN109465651B (zh) * | 2018-11-30 | 2023-11-28 | 广东工业大学 | 摩擦式刚度切换装置及使用其的刚柔耦合运动平台和方法 |
CN109465652B (zh) * | 2018-11-30 | 2023-09-22 | 广东工业大学 | 接触式刚度切换装置及使用其的刚柔耦合运动平台和方法 |
CN109465650B (zh) * | 2018-11-30 | 2023-07-25 | 广东工业大学 | 气缸式刚度切换装置及使用其的刚柔耦合运动平台和方法 |
CN109531184B (zh) * | 2018-12-13 | 2023-10-03 | 广东工业大学 | 一种两边调节刚度的刚柔耦合平台及运动平台 |
CN109648354B (zh) * | 2018-12-13 | 2023-07-25 | 广东工业大学 | 一种中间调节刚度的刚柔耦合平台及运动平台 |
CN109613824A (zh) | 2018-12-13 | 2019-04-12 | 广东工业大学 | 一种滚珠丝杠驱动的刚柔耦合运动平台及控制方法 |
CN109866038A (zh) * | 2019-04-02 | 2019-06-11 | 山东大学 | 一种用于减轻预滑动摩擦的伺服进给装置及控制方法 |
CN110187721A (zh) * | 2019-05-05 | 2019-08-30 | 湖北久之洋红外系统股份有限公司 | 一种千分度精密云台运动控制装置及方法 |
CN110142504B (zh) * | 2019-05-09 | 2021-08-24 | 广东工业大学 | 一种用于激光武器的刚柔耦合振镜装置 |
CN110142647B (zh) * | 2019-05-20 | 2023-09-29 | 华中科技大学 | 一种液体静压导轨稳态性能实时测量装置及方法 |
CN110345157A (zh) * | 2019-06-14 | 2019-10-18 | 广东工业大学 | 一种多驱动多测刚柔耦合复合控制实验平台 |
CN110941181B (zh) * | 2019-08-29 | 2023-01-20 | 广东工业大学 | 一种压电陶瓷连接的刚柔耦合运动平台控制方法 |
US11626815B2 (en) * | 2019-10-23 | 2023-04-11 | Guangdong University Of Technology | High-precision rigid-flexible coupling rotating platform and control method thereof |
CN110941241A (zh) * | 2019-10-23 | 2020-03-31 | 广东工业大学 | 一种刚柔耦合旋转平台 |
CN110928238B (zh) * | 2019-10-23 | 2022-05-13 | 广东工业大学 | 一种刚柔耦合旋转平台及其控制方法 |
CN111128798B (zh) * | 2019-11-18 | 2023-05-16 | 广东工业大学 | 一种薄膜拉伸横向对位机构及应用其的对位装置 |
CN112096739B (zh) * | 2020-08-05 | 2021-12-21 | 佛山市华道超精科技有限公司 | 一种气浮导轨式可切换刚柔耦合运动平台 |
CN112483832A (zh) * | 2020-10-27 | 2021-03-12 | 佛山市华道超精科技有限公司 | 刚柔耦合超精双轴转台 |
CN112548598B (zh) * | 2020-12-03 | 2022-03-04 | 佛山市华道超精科技有限公司 | 一种模式切换刚柔耦合运动平台及控制方法 |
CN113359478B (zh) * | 2021-07-15 | 2023-07-25 | 广东工业大学 | 单自由度直线运动平台非均匀导轨摩擦参数的辨识方法 |
CN113790988B (zh) * | 2021-10-20 | 2024-07-05 | 天津大学 | 基于柔性机构的宏微耦合次摆线微纳划痕实验机 |
CN114613721B (zh) * | 2022-05-10 | 2022-07-26 | 上海隐冠半导体技术有限公司 | 一种运动台及运动装置 |
CN114922935B (zh) * | 2022-05-18 | 2023-12-08 | 佛山市华道超精科技有限公司 | 一种刚柔耦合位力复合执行机构及恒力控制方法 |
CN115026621B (zh) * | 2022-07-26 | 2024-10-01 | 北京慧摩森电子系统技术有限公司 | 一种加工机床、三自由度自动运载装置及其控制方法 |
CN115208124B (zh) * | 2022-09-16 | 2022-12-20 | 中国科学院宁波材料技术与工程研究所 | 一种集成主动阻尼的精密运动平台及其控制架构 |
CN115841936B (zh) * | 2023-02-16 | 2023-04-25 | 上海隐冠半导体技术有限公司 | 运动平台用限位装置、运动平台及电子束检测装置 |
CN116884886B (zh) * | 2023-09-06 | 2023-11-24 | 北京华卓精科科技股份有限公司 | 一种精密力位输出装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102490020A (zh) * | 2011-11-18 | 2012-06-13 | 江苏大学 | 一种简易精密位移台 |
CN102528473A (zh) * | 2012-03-05 | 2012-07-04 | 广东工业大学 | 同轴宏微复合直线运动平台装置 |
CN103170845A (zh) * | 2013-03-01 | 2013-06-26 | 广东工业大学 | 一种同轴宏微复合直线运动平台装置及其精度补偿方法 |
CN102490021B (zh) * | 2011-11-18 | 2013-11-20 | 江苏大学 | 一种宏/微二维位移台 |
US20150091231A1 (en) * | 2013-09-27 | 2015-04-02 | Samsung Electronics Co., Ltd. | Stage device and semiconductor fabrication apparatus including the same |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1292801A (en) * | 1968-07-17 | 1972-10-11 | Tracked Hovercraft Ltd | Linear motor reaction rail assembly |
US4733143A (en) * | 1982-06-01 | 1988-03-22 | Anorad Corporation | Linear motor |
DE9421715U1 (de) * | 1994-11-15 | 1996-07-25 | Kleindiek, Stephan, 52070 Aachen | Elektromechanische Positioniereinheit |
JP2001267226A (ja) * | 2000-03-21 | 2001-09-28 | Nikon Corp | 駆動装置及び露光装置、並びにデバイス及びその製造方法 |
JP3817120B2 (ja) * | 2000-07-07 | 2006-08-30 | 住友重機械工業株式会社 | 移動テーブルの変位制御方法、部材加工方法、x−yステージ装置、該x−yステージ装置の製造方法 |
US7504751B2 (en) * | 2002-09-11 | 2009-03-17 | Braun Gmbh | Small electric appliance with a drive mechanism for generating an oscillatory motion |
US7308747B2 (en) | 2003-01-21 | 2007-12-18 | Insitutec, Inc. | Method of positioning a platform relative to a fixed frame and a small scale positioning device |
JP4493919B2 (ja) * | 2003-01-22 | 2010-06-30 | 株式会社アイエイアイ | 位置決め装置 |
CA2422341A1 (en) * | 2003-03-17 | 2004-09-17 | Hirofumi Tamai | Integrated wireless linear motor |
CN2621876Y (zh) * | 2003-04-14 | 2004-06-30 | 浙江大学 | 基于压电驱动器的二维超精密定位、抑振微动工作平台 |
JP2005230965A (ja) * | 2004-02-19 | 2005-09-02 | Koyo Seiko Co Ltd | 研削装置 |
JP2006195919A (ja) * | 2005-01-17 | 2006-07-27 | Brother Ind Ltd | テーブル装置及びその制御方法 |
JP4782710B2 (ja) * | 2006-03-02 | 2011-09-28 | 住友重機械工業株式会社 | ステージ装置 |
EP2027966B1 (en) * | 2007-08-20 | 2010-04-21 | Soonhan Engineering Corp. | Sample traveling stage with flexure mechanism module to absorb the deformation of the slide |
US8310128B2 (en) * | 2008-05-07 | 2012-11-13 | The Board Of Trustees Of The University Of Illinois | High precision silicon-on-insulator MEMS parallel kinematic stages |
JP2009302290A (ja) * | 2008-06-13 | 2009-12-24 | Ulvac Japan Ltd | 載置台搬送装置及び搬送処理装置 |
WO2015060916A1 (en) * | 2013-07-25 | 2015-04-30 | Essbaum Alexander Dankwart | Rocket launch tower |
US9360319B2 (en) * | 2013-09-05 | 2016-06-07 | Freescale Semiconductor, Inc. | Multiple sense axis MEMS gyroscope having a single drive mode |
CN103963033B (zh) * | 2014-05-20 | 2016-06-29 | 广东工业大学 | 基于应力刚化原理的刚度频率可调一维微动平台 |
CN104440343B (zh) * | 2014-11-26 | 2017-05-10 | 广东工业大学 | 直线电机共定子双驱动宏微一体化高速精密运动一维平台 |
CN104889951A (zh) * | 2015-06-08 | 2015-09-09 | 广东工业大学 | 动态特性可调宏微一体化复合平台 |
CN204700849U (zh) * | 2015-06-08 | 2015-10-14 | 广东工业大学 | 动态特性可调宏微一体化复合平台 |
CN105500301B (zh) * | 2015-11-23 | 2017-08-11 | 清华大学 | 二维纳米伺服平台及采用光栅的测量方法 |
CN106002312B (zh) * | 2016-06-29 | 2018-01-23 | 广东工业大学 | 一种单驱动刚柔耦合精密运动平台及其实现方法及应用 |
CN206123167U (zh) * | 2016-06-29 | 2017-04-26 | 广东工业大学 | 一种单驱动刚柔耦合精密运动平台 |
-
2016
- 2016-06-29 CN CN201610508540.XA patent/CN106002312B/zh active Active
- 2016-08-04 WO PCT/CN2016/093259 patent/WO2018000516A1/zh active Application Filing
- 2016-08-04 GB GB1808926.8A patent/GB2561990B/en active Active
- 2016-08-04 DE DE112016003512.8T patent/DE112016003512T5/de not_active Withdrawn
- 2016-08-04 JP JP2018528289A patent/JP6476351B1/ja active Active
- 2016-08-04 KR KR1020187009622A patent/KR101910522B1/ko active IP Right Grant
-
2017
- 2017-12-17 US US15/844,571 patent/US10661399B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102490020A (zh) * | 2011-11-18 | 2012-06-13 | 江苏大学 | 一种简易精密位移台 |
CN102490021B (zh) * | 2011-11-18 | 2013-11-20 | 江苏大学 | 一种宏/微二维位移台 |
CN102528473A (zh) * | 2012-03-05 | 2012-07-04 | 广东工业大学 | 同轴宏微复合直线运动平台装置 |
CN103170845A (zh) * | 2013-03-01 | 2013-06-26 | 广东工业大学 | 一种同轴宏微复合直线运动平台装置及其精度补偿方法 |
US20150091231A1 (en) * | 2013-09-27 | 2015-04-02 | Samsung Electronics Co., Ltd. | Stage device and semiconductor fabrication apparatus including the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110829880B (zh) * | 2019-07-25 | 2024-02-20 | 浙江师范大学 | 一种t型爬行式压电驱动平台 |
CN110829882A (zh) * | 2019-07-25 | 2020-02-21 | 浙江师范大学 | 一种t型压电驱动装置 |
CN110829880A (zh) * | 2019-07-25 | 2020-02-21 | 浙江师范大学 | 一种t型爬行式压电驱动平台 |
CN110829882B (zh) * | 2019-07-25 | 2024-04-26 | 浙江师范大学 | 一种t型压电驱动装置 |
CN113162362A (zh) * | 2021-04-15 | 2021-07-23 | 深圳市泰道精密机电有限公司 | 一种高推力密度的直线电机及电机模组 |
CN115648132A (zh) * | 2022-12-13 | 2023-01-31 | 西北电子装备技术研究所(中国电子科技集团公司第二研究所) | 一种芯片倒装键合用高承载精密运动平台 |
CN115648132B (zh) * | 2022-12-13 | 2023-04-18 | 西北电子装备技术研究所(中国电子科技集团公司第二研究所) | 一种芯片倒装键合用高承载精密运动平台 |
CN116381892A (zh) * | 2023-04-21 | 2023-07-04 | 广东工业大学 | 一种基于直驱式气浮平台的二级宏微相机镜头调焦装置 |
CN116381892B (zh) * | 2023-04-21 | 2023-12-12 | 广东工业大学 | 一种基于直驱式气浮平台的二级宏微相机镜头调焦装置 |
CN116967796A (zh) * | 2023-09-22 | 2023-10-31 | 无锡星微科技有限公司杭州分公司 | 一种气浮直线平台的移动组件 |
CN116967796B (zh) * | 2023-09-22 | 2023-12-29 | 无锡星微科技有限公司杭州分公司 | 一种气浮直线平台的移动组件 |
CN117047499B (zh) * | 2023-10-11 | 2024-01-19 | 无锡星微科技有限公司杭州分公司 | 纳米定位精度控制器及运动平台 |
CN117047499A (zh) * | 2023-10-11 | 2023-11-14 | 无锡星微科技有限公司杭州分公司 | 纳米定位精度控制器及运动平台 |
Also Published As
Publication number | Publication date |
---|---|
GB2561990B (en) | 2019-06-12 |
GB2561990A (en) | 2018-10-31 |
US20180104779A1 (en) | 2018-04-19 |
GB2561990A8 (en) | 2018-11-21 |
DE112016003512T5 (de) | 2018-05-24 |
CN106002312B (zh) | 2018-01-23 |
KR20180063112A (ko) | 2018-06-11 |
JP6476351B1 (ja) | 2019-02-27 |
KR101910522B1 (ko) | 2018-10-22 |
GB201808926D0 (en) | 2018-07-18 |
JP2019509617A (ja) | 2019-04-04 |
CN106002312A (zh) | 2016-10-12 |
US10661399B2 (en) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018000516A1 (zh) | 一种单驱动刚柔耦合精密运动平台及其实现方法及应用 | |
TW510885B (en) | Vibration damping apparatus for elevator system | |
CN101642907B (zh) | 二自由度平动并联机器人机构 | |
WO2022028260A1 (zh) | 一种气浮导轨式可切换刚柔耦合运动平台 | |
CN108279561B (zh) | 基于降低扰动带宽的摩擦力补偿及实现的方法及运动平台 | |
CN104105941A (zh) | 具有被约束的配重的坐标测量机 | |
CN102444670A (zh) | 气浮结构 | |
CN106594070B (zh) | 基于柔性结构的次纳米级精密驱动工作台 | |
CN109143858B (zh) | 一种基于扰动力测量补偿的刚柔耦合运动平台控制方法 | |
CN101561013B (zh) | 一种主动控制气体轴承姿态的装置 | |
CN1415456A (zh) | 超精密微位移导轨磁悬浮方法及其装置 | |
CN110658688B (zh) | 一种工件台系统及光刻设备 | |
CN110524499B (zh) | 磁浮导轨运动平台 | |
Villar et al. | 75 mm stroke flexure stage for the LNE watt balance experiment | |
US20020135240A1 (en) | Linear driving device | |
KR101705154B1 (ko) | 고하중용 탄성힌지기반 수직평면 미세구동 스테이지 | |
CN107664923B (zh) | 一种用于光刻运动台系统的微动台及其控制方法 | |
CN109465652A (zh) | 接触式刚度切换装置及使用其的刚柔耦合运动平台和方法 | |
CN109465650B (zh) | 气缸式刚度切换装置及使用其的刚柔耦合运动平台和方法 | |
KR102239002B1 (ko) | 연결 유닛 및 이를 갖는 비히클 | |
CN109465651A (zh) | 摩擦式刚度切换装置及使用其的刚柔耦合运动平台和方法 | |
Tsumura et al. | Magnetically preloaded aerostatic guideway for high speed nanometer positioning | |
JP2001261263A (ja) | エレベータの制振装置 | |
CN110370228B (zh) | 一种大行程柔性铰链平台 | |
Wang et al. | Design, modeling and control of a novel parallel kinematics servo gantry for high precision tracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 112016003512 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187009622 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 201808926 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20160804 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018528289 Country of ref document: JP Ref document number: 1808926.8 Country of ref document: GB |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16906913 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16906913 Country of ref document: EP Kind code of ref document: A1 |