WO2017222578A1 - Channel training using a replica lane - Google Patents

Channel training using a replica lane Download PDF

Info

Publication number
WO2017222578A1
WO2017222578A1 PCT/US2016/052725 US2016052725W WO2017222578A1 WO 2017222578 A1 WO2017222578 A1 WO 2017222578A1 US 2016052725 W US2016052725 W US 2016052725W WO 2017222578 A1 WO2017222578 A1 WO 2017222578A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
data
sampling point
replica
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2016/052725
Other languages
English (en)
French (fr)
Inventor
Stanley Ames LACKEY, Jr.
Damon TOHIDI
Gerald R. Talbot
Edoardo Prete
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATI Technologies ULC
Advanced Micro Devices Inc
Original Assignee
ATI Technologies ULC
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATI Technologies ULC, Advanced Micro Devices Inc filed Critical ATI Technologies ULC
Priority to CN201680085663.5A priority Critical patent/CN109076036B/zh
Priority to JP2018556345A priority patent/JP6703134B2/ja
Priority to KR1020187033047A priority patent/KR102572281B1/ko
Priority to EP16200968.2A priority patent/EP3260983B1/en
Publication of WO2017222578A1 publication Critical patent/WO2017222578A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/14Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/06Speed or phase control by synchronisation signals the synchronisation signals differing from the information signals in amplitude, polarity or frequency or length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/10Arrangements for initial synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0041Delay of data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/043Pseudo-noise [PN] codes variable during transmission

Definitions

  • Embodiments described herein relate to data communication and more particularly, to performing training of bit-serial data links.
  • the data throughput of integrated circuits continues to increase as applications' demand and consumption of data increases. For example, the rate of improvement in microprocessor speed continues to exceed the rate of improvement in memory speed. Increasing the rate at which data is transmitted increases the timing requirements of the circuitry used to transmit and receive the data.
  • data is transferred within these circuits using a global clock. For example, the rising edge of the clock may load the data coming in to a flip-flop, and then the data can be passed on or processed from the flip-flop.
  • a single clock is used in a data bus of multiple data lanes, with each data lane carrying a separate serial bitstream.
  • a training sequence is implemented to test delay settings between a transmitter and a receiver.
  • the transmitter is coupled to the receiver via a communication channel of multiple data lanes.
  • the communication channel includes an extra replica lane.
  • This extra replica lane may also be referred to as a periodic tracking (PT) lane.
  • the replica lane does not carry system data. Rather, the replica lane is configured for the transmission of test data only.
  • the transmitter periodically executes a series of training sequences on the replica lane while the data lanes are carrying normal system data.
  • the training sequences are performed in order to detect small timing changes on the replica lane due to temperature variations, power supply variations, and/or other factors.
  • control logic updates the phase timing in the replica lane and in the regular data lanes.
  • the transmitter sends a test pattern on the replica lane while simultaneously sending first data on at least a second lane of the channel. If the receiver detects one or more errors in the received test pattern on the replica lane, the transmitter and/or receiver determines that a sampling point is misaligned on the replica lane. In response to determining that the sampling point is misaligned on the replica lane, the transmitter and/or receiver performs a first adjustment to the sampling point of the first lane and performs the first adjustment to a sampling point of the second lane. The first adjustment to the sampling point of the second lane is equivalent to the first adjustment to the sampling point of the replica lane. After making the first adjustment to the sampling point of the second lane, the transmitter is configured to send second data on the second lane.
  • FIG. 1 is a block diagram of one embodiment of a transmitter and a receiver of a computing system.
  • FIG. 2 is a timing diagram of one embodiment of performing a training sequence on a replica lane.
  • FIG. 3 is a block diagram of one embodiment of a system with a transmitter and a communication channel.
  • FIG. 4 is a block diagram of one embodiment of a system with a receiver and a communication channel.
  • FIG. 5 is a diagram of one embodiment of a data eye.
  • FIG. 6 is a generalized flow diagram illustrating one embodiment of a method for adjusting the phase timing of a multi-lane channel.
  • FIG. 7 is a generalized flow diagram illustrating another embodiment of a method for utilizing a replica lane to adjust sampling points on other lanes of a channel.
  • Transmitter 105 is coupled to receiver 110 via channel 155.
  • Channel 155 includes any number of data lanes, depending on the embodiment.
  • Channel 155 also includes a replica lane, a clock lane, and/or one or more other lanes.
  • Computing system 100 also includes clock 145, clock 150, and one or more other components not shown to avoid obscuring the figure.
  • computing system 100 includes one or more processing units (e.g., processor, processor core, programmable logic device, application specific integrated circuit), one or more memory devices, and/or other components.
  • the one or more processing units are configured to execute instructions and/or perform one or more types of computations (e.g., floating point, integer, memory, I/O) depending on the embodiment.
  • the components of computing system 100 are interconnected by one or more communication buses.
  • transmitter 105 and receiver 110 are in the memory path of a processor.
  • the memory coupled to the processor is a double data rate synchronous dynamic random-access memory (DDR SDRAM).
  • DDR SDRAM double data rate synchronous dynamic random-access memory
  • the memory is implemented using other types of memory devices.
  • Transmitter 105 includes buffer 115 coupled to channel 155.
  • buffer 115 is a tri-state buffer for driving an output on channel 155 or creating a high impedance state when transmitter 105 is waiting to receive feedback from receiver 110 on the status of a training sequence.
  • Transmitter 105 also includes control logic 135 for generating training sequences, controlling delay settings for the lanes of channel 155, and/or performing other functions.
  • Transmitter 105 also includes counter 125 for counting supercycles.
  • a supercycle is 'N' clock cycles long, with 'N' being a positive integer.
  • a supercycle is eight clock cycles long, while in other embodiments, the supercycle is other numbers of clock cycles.
  • clock 145 provides the clock signal for clocking counter 125.
  • Receiver 110 includes buffer 120 for connecting to channel 155.
  • buffer 120 is a tri-state buffer for driving a feedback result on channel 155 or creating a high impedance state when receiver 1 10 is receiving data from transmitter 105.
  • Receiver 1 10 alsos include control logic 140 for detecting training sequence indications on channel 155, comparing received test patterns to expected values, controlling delay settings for the lanes of channel 155, and/or performing other functions.
  • Receiver 110 also includes counter 130 for counting supercycles.
  • clock 150 provides the clock signal for clocking counter 130.
  • receiver 1 10 uses a clock signal received on channel 155 as the clock signal for clocking counter 130.
  • Transmitter 105 is configured to send test patterns over the replica lane and one or more data lanes of channel 155.
  • the test patterns are utilized to determine the optimal sampling points of the replica lane and the data lane(s) of channel 155.
  • the delay of the replica lane and the data lane(s) is adjusted based on the results of the test patterns and then normal data operation may begin.
  • transmitter 105 is configured to send additional test patterns over the replica lane while the data lane(s) are carrying system data. If system 100 determines that the optimal sampling point for the replica lane has drifted since the previous test, then system 100 adjusts the sampling point of the replica lane so that it aligns with the optimal sampling point. System 100 also makes the equivalent adjustments to the sampling points of the data lane(s). In this way, a drift in the sampling point of the data lanes due to temperature variations, power supply variations, and/or other factors is corrected without interrupting the flow of system data.
  • Receiver 1 10 is configured to capture the test patterns sent by transmitter 105 on the replica lane and data lane(s). Receiver 1 10 then checks the captured test patterns for errors. In one embodiment, after sending the training pattern, transmitter 105 disables buffer 1 15 and waits for receiver 1 10 to send feedback regarding the captured test patterns. Receiver 110 enables buffer 120 and sends the feedback to transmitter 105 after determining if any errors were detected in the captured test patterns. Transmitter 105 captures the feedback and then uses the feedback (along with the feedback from other tests with other delay settings) to determine the data valid period (or "data eye") of the given data lane. After capturing the feedback, transmitter 105 determines whether to perform another test or to return to normal data operation. In another embodiment, receiver 110 makes adjustments to the delay settings of the replica lane and data lane(s) based on the number of detected errors in the captured test patterns.
  • System 100 is representative of any type of computing system or computing device which includes a transmitter 105 and a receiver 110.
  • system 100 is a computer, a server, a compute node, a processor, a processing device, a programmable logic device, a memory device, a processing in memory (PIM) node, a mobile device, a television, an entertainment system or device, and/or other types of systems or devices.
  • System 100 also includes any number of other transmitters and receivers in addition to transmitter 105 and receiver 1 10.
  • FIG. 2 a timing diagram 200 of one embodiment of performing a training sequence on a replica lane is shown.
  • the training sequence is implemented between a transmitter (e.g., transmitter 105 of FIG. 1) and a receiver (e.g., receiver 110 of FIG. 1) over a multi-lane channel (e.g., channel 155).
  • the multi-lane channel includes a replica lane and a plurality of data lanes for carrying system data.
  • the cycles of the system clock 202 are shown in the top row of timing diagram 200.
  • the cycles shown in the clock 202 row of timing diagram 200 represent supercycles.
  • a supercycle is 'N' system clocks, where 'N' is a positive integer greater than one and where 'N' is stored in a programmable register.
  • both the transmitter and the receiver include counters to count supercycles.
  • a supercycle is eight clock cycles in length, and the counters are modulo-8 counters.
  • the supercycle is other numbers of clock cycles.
  • Replica lane state 204 shows the state of the replica lane of the channel during the clock cycles shown in timing diagram 200.
  • Replica lane 206 shows the data being sent on the replica lane.
  • data lanes state 208 illustrates the state of the data lanes and data lanes 210 shows the data being sent on the data lanes during the clock cycles shown in timing diagram 200.
  • test data 215 on replica lane 206 and test data 220 on data lanes 210 is shown as test data 215 on replica lane 206 and test data 220 on data lanes 210.
  • the test pattem is a pseudo-random binary sequence.
  • the transmitter Prior to sending the test pattem on the replica lane and the data lanes, the transmitter sends a training sequence indication to let the receiver know a test pattern will be sent. When the receiver receives the training sequence indication on a given lane, the receiver gets ready to receive the test pattern on the given lane.
  • Test data 215 and test data 220 correspond to any number of tests which are performed with different delay settings.
  • the receiver receives the test patterns on the replica lane and data lanes and check whether there are any errors in the received test patterns.
  • the receiver sends feedback about the presence or absence of errors in the received test patterns to the transmitter. This occurs during the "wait" state of the replica and data lanes.
  • the system uses the results of the test patterns to identify the data eye of each of the replica lane and the data lanes. Then, based on the results of the test data, the system updates the phase timing on the replica lane and each of the data lanes. Each lane is updated independently of the other lanes based on the results of the received test patterns on the lane. It is noted that if the results indicate a given lane is already configured for the optimal sampling point, then the delay settings of the given lane are not adjusted during an update phase timing period.
  • the replica lane After the first update to the phase timing of the replica lane and the data lanes, the replica lane sits idle while the data lanes carry system data 230. After a certain period of time, the system tests the replica lane to see if the phase timing of the replica lane has drifted. The system continues to send system data 230 on the data lanes while test data 225 is simultaneously sent on the replica lane. Then, after test data 225 is sent, the system determines if an adjustment should be made to the phase timing of the replica lane.
  • the system updates the phase timing on the replica lane, which is shown as update 235 in the replica lane state 204 row.
  • the system also performs the same update 240 to the phase timing of the data lanes based on the assumption that any drift on the replica lane will occur on the data lanes as well.
  • updates to the timing of the data lanes are performed while data transmission is active on the data lanes (e.g., while transmitting system data 230).
  • the data lanes temporarily pause transmission of data while timing parameters are adjusted during an update phase (e.g., 240). Both approaches are contemplated.
  • FIG. 3 a block diagram of one embodiment of a system 300 with a transmitter 305 and a communication channel 320 is shown.
  • Communication channel 320 is representative of any type of communication channel connecting a transmitter 305 and a receiver (not shown).
  • Communication channel 320 includes a replica lane 325A and any number of data lanes 325B-N depending on the embodiment.
  • Replica lane 325A is configured to carry test data to determine if the optimal sampling point has drifted since a previous test. In normal data operation, replica lane 325A is not utilized to carry system data but rather is idle. Each data lane 325B-N is configured to carry a serial bitstream of system data. Communication channel 320 also includes a clock lane (not shown) and/or one or more other lanes.
  • transmitter 305 includes control logic 310 and delay elements 315A-N.
  • Each individual set of delay element(s) 315A-N includes one or more delay elements to choose delay settings for a corresponding lane of lanes 325 A-N.
  • the one or more delay elements include a coarse delay adjustment and a fine delay adjustment to be applied to a single lane of lanes 325 A-N.
  • Transmitter 305 is configured to send test patterns on all of the lanes 325 A-N to test delay settings on lanes 325A-N during an initial testing period. For example, this initial testing period occurs on start-up or after a reset.
  • the transmitter disables its output buffer (e.g. buffer 1 15 of FIG. 1).
  • the output buffer is a tri-state buffer that is switched to a high impedance state by the transmitter 305 after the transmitter 305 has sent the test patterns to the receiver.
  • the receiver activates its output buffer and sends the feedback to the transmitter.
  • the feedback indicates if there were any errors in the received test patterns.
  • the feedback is a single bit.
  • the feedback utilizes multiple bits to indicate the number of errors.
  • the transmitter receives the feedback and utilizes the feedback to determine if the current delay settings were inside or outside of the data eye. After the transmitter receives the feedback, another test is performed or the transmitter goes into normal data operation
  • transmitter 305 transmits test patterns on each lane, and then the receiver (not shown) sends feedback to the transmitter 305 with a number of detected errors in each test partem.
  • Control logic 310 of transmitter 305 then utilizes this feedback to determine the data eye of each lane 325A-N.
  • the transmitter sends a plurality of test patterns with different delay settings for each lane 325 A-N of channel 320.
  • the feedback from the receiver for these test patterns is used by control logic 310 to determine the location of the data eye for each lane.
  • Control logic 310 adjusts each of delay elements 315A-N to cause the sampling point on the receiver for the corresponding lane to correspond to the optimal sampling point based on the location of the data eye.
  • Each of the adjustments to delay elements 315A-N is made independently of the adjustments to the other delay elements 315A-N.
  • system 300 goes into normal data operation.
  • data lanes 325B-N are utilized to carry system data while replica lane 325A is idle.
  • replica lane 325A is not used to carry system data.
  • system 300 periodically utilizes replica lane 325A to perform phase testing to see if the phase timing has drifted since the previous test.
  • phase timing on replica lane 325A drifts based on temperature variations, power supply variations, and/or factors.
  • System 300 performs the phase testing on replica lane 325A while the data lanes 325B-N are carrying system data. In this way, system 300 is able to test the phase timing of replica lane 325A without interrupting the flow of system data on data lanes 325B-N.
  • system 300 If system 300 detects a drift in the phase timing on replica lane 325 A, then system 300 corrects the timing of replica lane 325A by making an adjustment to delay element(s) 315A. Also, system 300 makes the same adjustments to the other delay element(s) 315B-N which will affect data lanes 325B-N. In many cases, the drift that has occurred in the phase timing on replica lane 325A will also have occurred on data lanes 325B-N. Accordingly, system 300 is able to correct for the drift in phase timing on all lanes 325 A-N by only performing tests on the single replica lane 325A. In one embodiment, system 300 is configured to perform these tests on single replica lane 325A at regular intervals. In another embodiment, system 300 is configured to perform tests on replica lane 325 A in response to detecting one or more conditions (e.g., increased error rate, temperature variation, power supply variation).
  • one or more conditions e.g., increased error rate, temperature variation, power supply variation.
  • FIG. 4 a block diagram of one embodiment of a system 400 with a communication channel 405 and a receiver 415 is shown. Similar to system 300 of FIG. 3, system 400 is configured to correct the phase timing of data lanes 410B-N based on detecting a drift in the phase timing of replica lane 41 OA. However, in contrast to system 300, system 400 makes the corrections in phase timing in receiver 415 using delay element(s) 420A-N. In this embodiment, rather than sending feedback to the transmitter (not shown), control logic 425 of receiver 415 utilizes the feedback on received test patterns to make adjustments to delay element(s) 420 A-N.
  • FIG. 5 a diagram of one embodiment of a data eye 500 is shown.
  • Data eye 500 is one example of a data valid period which is monitored by capturing the bit transitions on a lane of a channel (e.g., communication channel 320 of FIG. 3).
  • a system e.g., system 300
  • the system is configured to utilize feedback generated by the receiver (e.g., receiver 110 of FIG. 1) regarding the results of each test.
  • the system runs multiple tests at multiple delay settings, and when the feedback goes from bad (i.e., one or more errors) to good (i.e., no errors), the system recognizes that particular delay setting as coinciding with the opening 510 of data eye 500.
  • the system adds delay in small increments and performs additional tests, and when the feedback goes from good to bad, the system identifies the closing 520 of data eye 500.
  • the system then takes the average of the opening 510 and the closing 520 to calculate the center 530 of data eye 500.
  • the delay settings corresponding to the center 530 of data eye 500 are considered the optimal delay settings for the given lane of the channel.
  • the system performs these tests on the replica lane of the channel and then utilizes the results of these tests to update the delay settings for the data lanes of the channel.
  • FIG. 6 one embodiment of a method 600 for adjusting the phase timing of a multi-lane channel is shown.
  • the steps in this embodiment are shown in sequential order. It should be noted that in various embodiments of the method described below, one or more of the elements described are performed concurrently, in a different order than shown, or are omitted entirely. Other additional elements are also performed as desired. Any of the various systems or apparatuses described herein are configured to implement method 600.
  • a system with a transmitter coupled to a receiver via a multi-lane communication channel implements training sequences on multiple lanes of the channel concurrently (block 605).
  • the communication channel includes a replica lane and one or more data lanes.
  • the system updates the delay settings for the lanes to cause each lane to sample the incoming data at the optimal sampling point.
  • the system may utilize the data lanes for normal data operation (block 610).
  • the replica lane of the channel is idle.
  • the system determines if a given amount of time has elapsed since the last training sequence was implemented (conditional block 615). For example, the system has a timer which tracks the given amount of time, with the given amount of time being programmable and varying from embodiment to embodiment.
  • condition block 615 If the given amount of time has elapsed (conditional block 615, "yes” leg), then the system implements one or more training sequences on the replica lane while simultaneously sending system data on the data lanes (block 620). If the given amount of time has not elapsed (conditional block 615, "no” leg), then method 600 remains at conditional block 615. After block 620, the system determines if the training sequences implemented on the replica lane indicate that the optimal sampling point for the replica lane has drifted from the previous test (conditional block 625).
  • the system applies a first adjustment to the delay settings of the replica lane to realign the sampling point of the replica lane (block 630).
  • the system also applies the first adjustment to the delay settings of the data lanes of the channel to realign the sampling points of the data lanes (block 635).
  • the system operates under the assumption that any drift in the optimal sampling point on the replica lane will also occur on the data lanes. Accordingly, the system applies the same adjustment to the delay settings of the data lanes that the system applies to the delay settings of the replica lane.
  • method 600 returns to block 610 with the system continuing to utilize the data lanes for normal data operation.
  • FIG. 7 one embodiment of a method 700 for utilizing a replica lane to adjust sampling points on other lanes of a channel is shown.
  • the steps in this embodiment are shown in sequential order. It should be noted that in various embodiments of the method described below, one or more of the elements described are performed concurrently, in a different order than shown, or are omitted entirely. Other additional elements are also performed as desired. Any of the various systems or apparatuses described herein are configured to implement method 700.
  • a transmitter sends one or more test patterns to a receiver on a first lane of a multi- lane channel while simultaneously sending first data on a second lane of the channel (block 705).
  • the transmitter and receiver are components within a host system.
  • the first lane may also be referred to as a "replica lane".
  • the one or more test patterns are sent to the receiver on the first lane as part of training sequences to test delay settings on the first lane between the transmitter and the receiver. These training sequences are used to determine the location of the data eye for the first lane and to determine if the data eye (and the corresponding optimal sampling point) has shifted from a previous test.
  • the system determines if a current sampling point for the first lane is misaligned based on the results of the test patterns received by the receiver (conditional block 710). For example, the system runs multiple tests on the first lane at multiple delay settings, and when the received test patterns go from having one or more errors to having no errors, the system recognizes that particular delay setting as coinciding with the opening of the data eye. The system adds delay in small increments and performs additional tests, and when the received test patterns go from having no errors to having one or more errors, the system identifies the closing of the data eye. The system takes the average of the opening and the closing of the data eye to calculate the center (or optimal sampling point) of the data eye. The system then determines if this new optimal sampling point matches the first lane's actual sampling point. In other embodiments, the system utilizes other suitable techniques for determining if the optimal sampling point has drifted for the first lane.
  • the system determines that the current sampling point for the first lane is misaligned based on the results of the test patterns received by the receiver (conditional block 710, "yes" leg), then the system makes a first adjustment to the sampling point of the first lane to bring the sampling point back into alignment with the optimal sampling point (block 715). Also, the system makes the first adjustment to the sampling point of a second lane of the channel (block 720). The system also makes the first adjustment to the sampling points of one or more other lanes of the channel. For example, in one embodiment, the system makes the first adjustment to the sampling points of all of the data lanes of the channel. If the system determines the sampling point for the first lane is aligned properly based on the results of the test patterns received by the receiver (conditional block 710, "no" leg), then the transmitter sends second data on the second lane (block 725).
  • Variations in the signal delay occur for the first lane and the other lanes in a similar fashion due to temperature variation, power supply variation, and/or other factors. Accordingly, detecting a change in the optimal sampling point for the first lane typically indicates that the other lanes have experienced a similar drift in the data eye and that a change to correct the first lane is also the same change that is needed to correct the other lanes of the channel. Therefore, the first adjustment made for the second lane (and for any other lanes) of the channel is the same as the first adjustment made to the first lane. For example, if the first adjustment is an increase in the delay added to the first lane by one fourth of a clock cycle, then the delay is increased for the other lanes by one fourth of a clock cycle.
  • the delay is decreased for the other lanes by one eighth of a clock cycle.
  • other delay increments are added or removed from lanes in an equivalent manner to the adjustment made to the first lane.
  • the adjustments to the sampling point are made by the transmitter. In another embodiment, the adjustments to the sampling point are made by the receiver.
  • the transmitter sends second data on the second lane (block 725).
  • the transmitter also sends additional data on one or more other lanes of the channel after making adjustments to the sampling points used for other lanes.
  • method 700 ends.
  • program instructions of a software application are used to implement the methods and/or mechanisms previously described.
  • the program instructions describe the behavior of hardware in a high-level programming language, such as C.
  • a hardware design language HDL
  • the program instructions are stored on a non-transitory computer readable storage medium. Numerous types of storage media are available.
  • the storage medium is accessible by a computing system during use to provide the program instructions and accompanying data to the computing system for program execution.
  • the computing system includes at least one or more memories and one or more processors configured to execute program instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Power Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Dc Digital Transmission (AREA)
PCT/US2016/052725 2016-06-24 2016-09-21 Channel training using a replica lane Ceased WO2017222578A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680085663.5A CN109076036B (zh) 2016-06-24 2016-09-21 一种用于传输数据的方法及系统
JP2018556345A JP6703134B2 (ja) 2016-06-24 2016-09-21 レプリカレーンを使用したチャネルトレーニング
KR1020187033047A KR102572281B1 (ko) 2016-06-24 2016-09-21 레플리카 레인을 사용한 채널 트레이닝
EP16200968.2A EP3260983B1 (en) 2016-06-24 2016-11-28 Channel training using a replica lane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/192,287 2016-06-24
US15/192,287 US10749756B2 (en) 2016-06-24 2016-06-24 Channel training using a replica lane

Publications (1)

Publication Number Publication Date
WO2017222578A1 true WO2017222578A1 (en) 2017-12-28

Family

ID=60675203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/052725 Ceased WO2017222578A1 (en) 2016-06-24 2016-09-21 Channel training using a replica lane

Country Status (5)

Country Link
US (2) US10749756B2 (enExample)
JP (1) JP6703134B2 (enExample)
KR (1) KR102572281B1 (enExample)
CN (1) CN109076036B (enExample)
WO (1) WO2017222578A1 (enExample)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749756B2 (en) 2016-06-24 2020-08-18 Advanced Micro Devices, Inc. Channel training using a replica lane
JP7620232B2 (ja) * 2020-09-29 2025-01-23 日本電信電話株式会社 情報処理システム、情報処理方法およびプログラム
US11558120B1 (en) * 2021-09-30 2023-01-17 United States Of America As Represented By The Administrator Of Nasa Method for deskewing FPGA transmitter channels directly driving an optical QPSK modulator
US11906585B2 (en) * 2021-12-16 2024-02-20 Samsung Electronics Co., Ltd. Methods and systems for performing built-in-self-test operations without a dedicated clock source
US12321294B1 (en) * 2023-03-30 2025-06-03 Advanced Micro Devices, Inc. Data lane variation compensation for data rate enhancement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080130815A1 (en) * 2006-12-05 2008-06-05 Kumar S Reji Selective tracking of serial communication link data
US7467056B2 (en) * 2007-03-09 2008-12-16 Nortel Networks Limited Method and apparatus for aligning multiple outputs of an FPGA
US7500131B2 (en) * 2004-09-07 2009-03-03 Intel Corporation Training pattern based de-skew mechanism and frame alignment
US8307265B2 (en) * 2009-03-09 2012-11-06 Intel Corporation Interconnection techniques
US9030341B2 (en) * 2012-06-27 2015-05-12 Broadcom Corporation Compensation for lane imbalance in a multi-lane analog-to-digital converter (ADC)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469748A (en) * 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
US6178213B1 (en) * 1998-08-25 2001-01-23 Vitesse Semiconductor Corporation Adaptive data recovery system and methods
US20020093986A1 (en) * 2000-12-30 2002-07-18 Norm Hendrickson Forward data de-skew method and system
US6907552B2 (en) * 2001-08-29 2005-06-14 Tricn Inc. Relative dynamic skew compensation of parallel data lines
US7072355B2 (en) 2003-08-21 2006-07-04 Rambus, Inc. Periodic interface calibration for high speed communication
US7400670B2 (en) 2004-01-28 2008-07-15 Rambus, Inc. Periodic calibration for communication channels by drift tracking
US7095789B2 (en) * 2004-01-28 2006-08-22 Rambus, Inc. Communication channel calibration for drift conditions
US7516029B2 (en) * 2004-06-09 2009-04-07 Rambus, Inc. Communication channel calibration using feedback
US7590789B2 (en) * 2007-12-07 2009-09-15 Intel Corporation Optimizing clock crossing and data path latency
US20110040902A1 (en) 2009-08-13 2011-02-17 Housty Oswin E Compensation engine for training double data rate delays
US8582706B2 (en) * 2009-10-29 2013-11-12 National Instruments Corporation Training a data path for parallel data transfer
KR101110820B1 (ko) * 2010-05-28 2012-02-27 주식회사 하이닉스반도체 슬레이브 장치, 마스터 장치와 슬레이브 장치를 포함하는 시스템 및 동작방법, 칩 패키지
US8681839B2 (en) 2010-10-27 2014-03-25 International Business Machines Corporation Calibration of multiple parallel data communications lines for high skew conditions
US8767531B2 (en) * 2010-10-27 2014-07-01 International Business Machines Corporation Dynamic fault detection and repair in a data communications mechanism
US8774228B2 (en) * 2011-06-10 2014-07-08 International Business Machines Corporation Timing recovery method and apparatus for an input/output bus with link redundancy
US8826092B2 (en) * 2011-10-25 2014-09-02 International Business Machines Corporation Characterization and validation of processor links
US9577816B2 (en) * 2012-03-13 2017-02-21 Rambus Inc. Clock and data recovery having shared clock generator
US9071407B2 (en) * 2012-05-02 2015-06-30 Ramnus Inc. Receiver clock test circuitry and related methods and apparatuses
US8760946B2 (en) * 2012-05-22 2014-06-24 Advanced Micro Devices Method and apparatus for memory access delay training
US20140281085A1 (en) 2013-03-15 2014-09-18 Gregory L. Ebert Method, apparatus, system for hybrid lane stalling or no-lock bus architectures
CN103560785B (zh) * 2013-10-28 2017-05-10 中国电子科技集团公司第四十一研究所 一种产生相位相干信号的方法与装置
US9036757B1 (en) 2014-09-23 2015-05-19 Oracle International Corporation Post-cursor locking point adjustment for clock data recovery
DE112015006953B4 (de) * 2015-09-26 2025-07-10 Intel Corporation Training einer gültigen lane
US10749756B2 (en) 2016-06-24 2020-08-18 Advanced Micro Devices, Inc. Channel training using a replica lane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500131B2 (en) * 2004-09-07 2009-03-03 Intel Corporation Training pattern based de-skew mechanism and frame alignment
US20080130815A1 (en) * 2006-12-05 2008-06-05 Kumar S Reji Selective tracking of serial communication link data
US7467056B2 (en) * 2007-03-09 2008-12-16 Nortel Networks Limited Method and apparatus for aligning multiple outputs of an FPGA
US8307265B2 (en) * 2009-03-09 2012-11-06 Intel Corporation Interconnection techniques
US9030341B2 (en) * 2012-06-27 2015-05-12 Broadcom Corporation Compensation for lane imbalance in a multi-lane analog-to-digital converter (ADC)

Also Published As

Publication number Publication date
JP6703134B2 (ja) 2020-06-03
US20210028995A1 (en) 2021-01-28
US11805026B2 (en) 2023-10-31
JP2019525507A (ja) 2019-09-05
CN109076036B (zh) 2022-01-28
US10749756B2 (en) 2020-08-18
KR102572281B1 (ko) 2023-08-29
KR20190011727A (ko) 2019-02-07
US20170373944A1 (en) 2017-12-28
CN109076036A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US11805026B2 (en) Channel training using a replica lane
US8644085B2 (en) Duty cycle distortion correction
EP3211822B1 (en) Multi-wire open-drain link with data symbol transition based clocking
EP2976866B1 (en) Timestamp correction in a multi-lane communication link with skew
US20090276559A1 (en) Arrangements for Operating In-Line Memory Module Configurations
US7995695B2 (en) Data alignment method for arbitrary input with programmable content deskewing info
US20160261257A1 (en) Timing Prediction Circuit and Method
US8391436B2 (en) Receiving apparatus, transmission apparatus, and transmission method
CN100399312C (zh) 自动硬件数据链路初始化方法和系统
US11264972B2 (en) Synchronizing pulse-width modulation control
US9800400B1 (en) Clock phase alignment in data transmission
EP3260983B1 (en) Channel training using a replica lane
US7555085B1 (en) CDR algorithms for improved high speed IO performance
US10103837B2 (en) Asynchronous feedback training
EP3260984B1 (en) Asynchronous feedback training
US10467171B2 (en) Detecting the drift of the data valid window in a transaction
EP3814868A1 (en) Precision timing between systems

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018556345

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187033047

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906482

Country of ref document: EP

Kind code of ref document: A1