WO2017221595A1 - 単相誘導電動機 - Google Patents

単相誘導電動機 Download PDF

Info

Publication number
WO2017221595A1
WO2017221595A1 PCT/JP2017/018617 JP2017018617W WO2017221595A1 WO 2017221595 A1 WO2017221595 A1 WO 2017221595A1 JP 2017018617 W JP2017018617 W JP 2017018617W WO 2017221595 A1 WO2017221595 A1 WO 2017221595A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary coil
induction motor
phase induction
capacitor
conductive state
Prior art date
Application number
PCT/JP2017/018617
Other languages
English (en)
French (fr)
Inventor
大山 敦
吉田 俊哉
Original Assignee
株式会社荏原製作所
学校法人東京電機大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017028276A external-priority patent/JP6908236B2/ja
Application filed by 株式会社荏原製作所, 学校法人東京電機大学 filed Critical 株式会社荏原製作所
Priority to EP17815065.2A priority Critical patent/EP3474435A4/en
Publication of WO2017221595A1 publication Critical patent/WO2017221595A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/06Controlling the motor in four quadrants
    • H02P23/07Polyphase or monophase asynchronous induction motors

Definitions

  • the present technology relates to a single-phase induction motor.
  • Single phase induction motors are used in many fields, such as pumps, compressors, and air conditioners.
  • One type of single-phase induction motor is a capacitor starting type single-phase induction motor using a starting capacitor. This capacitor is used for supplying an appropriate voltage to the main coil and the auxiliary coil in the starting process of the single-phase induction motor.
  • various methods have been used to obtain the starting torque of a capacitor starting type single-phase induction motor. For example, a starting capacitor having a large capacity may be used to obtain a starting torque.
  • a starting torque may be obtained by using two capacitors connected in parallel to secure a high capacitance at the time of starting.
  • the capacitor and the coil connected to it act as a loss member and reduce the driving efficiency of the motor. Therefore, when the capacity of the capacitor is increased in order to increase the starting torque, the driving efficiency of the induction motor at the rated speed operation is lowered.
  • the present technology has been made in view of the above problems, and one of its purposes is to reduce loss during rated speed operation and improve driving efficiency in a capacitor starting type single-phase induction motor. .
  • Patent Document 1 requires a plurality of capacitors. Another object of the present technology is to obtain a starting torque economically in a single-phase induction motor.
  • This technique is intended to at least partially solve at least a part of the above-described problems.
  • the main coil, the auxiliary coil connected in parallel to the main coil, the capacitor connected in series to the auxiliary coil, and the current supplied from the capacitor to the auxiliary coil are controlled.
  • a governor circuit, and the governor circuit transitions the auxiliary coil from the non-conducting state to the conducting state and transitions again to the non-conducting state once during less than a half cycle of the input power supply voltage of the single-phase induction motor. It is characterized by a single-phase induction motor in which start control that repeats the operation is performed and a current flows from the capacitor to the auxiliary coil when the auxiliary coil is in a conductive state.
  • the governor circuit includes a triac connected in series to the auxiliary coil, and a control circuit connected to the triac and generating a gate signal of the triac, based on the gate signal
  • the single-phase induction motor according to the first embodiment is characterized in that the starting control is performed by switching the triac.
  • the operation of transitioning from the non-conducting state to the conducting state and transitioning again to the non-conducting state is performed once during a half cycle of the input power supply voltage and during one cycle of the input power supply voltage.
  • the input power supply voltage is positive and negative, twice each, once during the cycle of the input power supply voltage, once when the input power supply voltage is positive or negative, or the input power supply
  • the single-phase induction motor according to the first embodiment is characterized in that the governor circuit is set to repeat once during a predetermined number of periods of voltage.
  • the amount of charge stored in the starting capacitor can be changed by appropriately setting the cycle in which the auxiliary coil transition operation occurs.
  • the governor circuit performs the start-up control in a period from when power is supplied to the single-phase induction motor until the single-phase induction motor reaches a predetermined rotational speed, and single-phase induction
  • the single-phase induction motor according to the first embodiment is configured to perform steady control after the electric motor reaches the predetermined rotation speed.
  • the starting torque is obtained in the starting control without increasing the capacity of the starting capacitor. Therefore, it is possible to improve the driving efficiency of the motor at the time of steady control by suppressing the influence of the starting capacitor acting as a capacitive load.
  • the auxiliary coil in the steady control, is always in a conductive state, and is characterized by the single-phase induction motor according to the fourth aspect.
  • the single-phase induction motor according to the fourth aspect is characterized in that the auxiliary coil is always in a non-conductive state in the steady control.
  • the starting capacitor is disconnected from the circuit of the single-phase induction motor during steady control. Therefore, there is no influence from the starting capacitor that works as a capacitive load, and the driving efficiency of the motor during steady control can be improved.
  • the governor circuit causes the auxiliary coil to transition from a non-conducting state to a conducting state when the absolute value of the input power supply voltage exceeds a predetermined voltage in the starting control, and the capacitor and the auxiliary
  • the single-phase induction motor according to the first embodiment is characterized in that when the resonance current by the coil becomes substantially zero, the non-conduction state is changed again.
  • the governor circuit performs the start control for a predetermined period after the input power supply voltage is supplied, and shifts to the steady control after the predetermined time has elapsed.
  • the governor circuit performs the start control for a predetermined period after the input power supply voltage is supplied, and shifts to the steady control after the predetermined time has elapsed.
  • the resonance frequency of the resonance circuit constituted by the auxiliary coil and the capacitor when the rotor of the single-phase induction motor is stopped is at least twice the frequency of the input power supply voltage.
  • the resonance frequency determined by the capacitance of the starting capacitor and the inductance of the auxiliary coil can be set as appropriate. Thereby, a peak current is generated in the field coil based on the resonance frequency determined by the capacity of the starting capacitor, and the instantaneous starting torque can be increased.
  • the triac gate signal connected in series to the auxiliary coil is turned on when the predetermined voltage is one fifth or more of the peak voltage of the input power supply voltage.
  • the triac is a single-phase induction motor according to the second aspect, which is turned off when the absolute value of the input power supply voltage is substantially equal to the peak voltage of the input power supply voltage.
  • a period from when the triac gate signal is turned on to when it is turned off is shorter than a half period of a resonance period of a resonance circuit including the auxiliary coil and the capacitor.
  • a single-phase induction motor having a main coil, an auxiliary coil connected in parallel to the main coil, a first capacitor connected in series to the auxiliary coil, and the first capacitor.
  • a second capacitor connected in parallel and connected in series to the auxiliary coil, and connected between the first capacitor and the auxiliary coil, controls the current supplied from the first capacitor to the auxiliary coil.
  • a first governor circuit configured as described above, wherein the first governor circuit changes the auxiliary coil from a non-conductive state to a conductive state once during less than a half cycle of the input power supply voltage of the single-phase induction motor. The start control is repeated to make the transition and the transition to the non-conductive state again, and the current flows from the first capacitor to the auxiliary coil when the auxiliary coil is in the conductive state. Is characterized by a single-phase induction motor.
  • the first governor circuit is in a normally conductive state between the first capacitor and the auxiliary coil in steady control. It is characterized by a single-phase induction motor that performs or is always non-conductive.
  • the number of starting capacitors connected to the auxiliary coil 2 can be appropriately selected by using the first governor circuit during the steady control.
  • the single-phase induction motor according to the thirteenth aspect is connected between the second capacitor and the auxiliary coil, and is supplied from the second capacitor to the auxiliary coil.
  • a second governor circuit configured to control a current to be generated, wherein the second governor circuit is configured to turn off the auxiliary coil once during less than a half cycle of the input power supply voltage of the single-phase induction motor.
  • a single-phase induction motor that performs start-up control that repeats an operation of transitioning from a conduction state to a conduction state and then transitioning to a non-conduction state again, and current flows from the second capacitor to the auxiliary coil when the auxiliary coil is in a conduction state.
  • the starting torque can be obtained by the peak current flowing from the second capacitor to the auxiliary coil.
  • the absolute value of the input power supply voltage of the single-phase induction motor is one fifth of the peak voltage of the input power supply voltage.
  • the first governor circuit causes the first capacitor and the auxiliary coil to transition from a non-conductive state to a conductive state
  • the second governor circuit includes the second capacitor and the auxiliary coil. It is characterized by a single-phase induction motor that makes a transition from a non-conductive state to a conductive state.
  • a sufficient starting torque can be obtained from the input power source energy.
  • the first governor circuit changes a state between the first capacitor and the auxiliary coil from a non-conductive state to a conductive state.
  • a single-phase induction motor is characterized in that the timing of transition is different from the timing of transition of the second governor circuit from the non-conducting state to the conducting state between the second capacitor and the auxiliary coil.
  • the peak current flowing in the auxiliary coil 2 flows twice or more during less than a half cycle of the input power supply voltage.
  • the period during which the maximum output torque of the single phase induction motor is maintained can be lengthened.
  • the capacity of the first capacitor and the capacity of the second capacitor can be arbitrarily selected. It features a single-phase induction motor.
  • a single-phase induction motor a main coil, an auxiliary coil connected in parallel to the main coil, a first capacitor connected in series to the auxiliary coil, and the first capacitor
  • a first governor circuit connected between the auxiliary coils and configured to control a current supplied from the first capacitor to the auxiliary coil, and the first governor circuit includes the single governor circuit.
  • the single-phase induction motor according to the nineteenth aspect further includes a path capable of connecting between the first governor circuit and the main coil, and the first governor circuit includes:
  • the steady-state control is characterized by a single-phase induction motor that is always connected to the path, thereby directly conducting between the main coil and the auxiliary coil having an impedance different from that of the main coil.
  • FIG. 1 shows a block diagram of a capacitor starting single-phase induction motor including a governor circuit according to an embodiment of the present technology.
  • FIG. The waveform of the input voltage at the time of start control based on one Embodiment of this technique, the waveform of the electric current which flows through a main coil and an auxiliary
  • An example of the main coil at the time of steady control and the waveform of the current which flows through an auxiliary coil, and a triac gate signal concerning one embodiment of this art is shown.
  • An example of the main coil at the time of steady control and the waveform of the current which flows through an auxiliary coil, and a triac gate signal concerning one embodiment of this art is shown.
  • FIG. 4 shows an example of a waveform of a main coil voltage, a triac gate signal, and a current flowing in an auxiliary coil when the control circuit shown in FIG. 3 is used.
  • the circuit diagram of the control circuit which concerns on 2nd embodiment of this technique is shown.
  • FIG. 6 shows an example of a waveform of a main coil voltage, a triac gate signal, and a waveform of a current flowing through an auxiliary coil when the control circuit shown in FIG. 5 is used.
  • movement flowchart of a governor circuit etc. based on one Embodiment of this technique is shown. 8 shows waveforms of various signals obtained when the operation shown in FIG. 7 is performed.
  • FIG. 1 shows a block diagram of a capacitor starting single phase induction motor 10 according to an embodiment of the present technology.
  • a capacitor starting type single-phase induction motor 10 includes a main coil 1, an auxiliary coil 2, and a starting capacitor 3 and a triac 4 inserted in series with the auxiliary coil 2.
  • the capacitor starting type single-phase induction motor 10 further includes a control circuit 5.
  • the control circuit 5 is connected to both the AC input power supply F and the triac 4.
  • a circuit composed of the triac 4 and the control circuit 5 is referred to as a governor circuit 6.
  • the control circuit 5 (or the governor circuit 6) controls the current supplied from the starting capacitor 3 to the auxiliary coil 2 after the single-phase induction motor 10 is turned on, thereby adjusting the output torque of the single-phase induction motor 10. To do.
  • the control circuit 5 (or the governor circuit 6) monitors the rotational speed of the rotor (rotor) of the single-phase induction motor 10.
  • the governor circuit performs start-up control that repeats the operation of transitioning the non-conduction state / conduction state of the auxiliary coil 2 during a period from when the single-phase induction motor 10 is turned on until the rotation of the rotor reaches a predetermined rotation speed.
  • FIG. 2A shows various signal waveforms during start control according to an embodiment of the present technology.
  • the horizontal axis represents time (t), and the waveform of the voltage V of the input power supply F is shown at the top stage, and the second stage from the top flows through the main coil 1 during start control corresponding to the input power supply voltage waveform.
  • the waveform of current Im is shown.
  • FIG. 2A shows the waveform of the current Ia flowing through the auxiliary coil 2 at the start control in the third stage, and the waveform of the gate signal Ir of the triac 4 at the start control at the bottom stage.
  • the scale of time (t) on the horizontal axis is the same for each stage.
  • the phase of the current Ia flowing through the auxiliary coil 2 is advanced by about a quarter cycle (90 °) with respect to the phase of the current Im flowing through the main coil 1.
  • the current Ia flowing through the auxiliary coil 2 has a waveform with a sharp periodic peak.
  • the peak of the absolute value of the current Ia flowing through the auxiliary coil 2 appears once during the half cycle of the input power supply voltage V.
  • the auxiliary coil current Ia has the same fundamental frequency as the power supply frequency.
  • the period during which the current Ia of the auxiliary coil 2 flows is less than a half cycle of the input power supply voltage V.
  • the period during which the current Ia of the auxiliary coil 2 flows is, for example, a period of about three quarters of the half cycle of the power supply voltage V in FIG. 2A.
  • the absolute value of the peak current flowing through the auxiliary coil 2 is much larger than the absolute value of the peak current of the main coil 1 (for example, about 3 times in FIG. 2A).
  • the absolute value of the current Ia flowing through the auxiliary coil 2 increases rapidly when it starts to flow, reaches a peak when the current Im of the main coil 1 is approximately zero, and then decreases rapidly and converges.
  • the control circuit 5 monitors the input power supply voltage V of the input power supply F, and when the absolute value of the input power supply voltage V (or the voltage Vm of the main coil 1) exceeds a predetermined first voltage vf1, the gate of the triac 4 Turn on the signal.
  • the predetermined first voltage vf1 is preferably a certain amount with respect to the power supply voltage V, for example, about one fifth or more of the absolute value peak of the power supply voltage V. This is because the input power source energy can be used as the starting torque.
  • the gate signal Ir of the triac 4 is turned on when the absolute value of the input power supply voltage V is almost the maximum 1 ⁇ 2.
  • the input power supply F and the auxiliary coil 2 transition from non-conduction to conduction.
  • a current flows from the starting capacitor 3 to the auxiliary coil 2 due to the resonance state generated by the starting capacitor 3 and the auxiliary coil 2. Since the fundamental wave component of the current has an appropriate phase difference with respect to the main coil current lm and is supplied with a large amplitude, the single-phase induction motor 10 obtains a large starting torque.
  • the gate signal of the triac 4 is turned off to prepare for the supply of the peak current at the next timing.
  • the period from when the gate signal of the triac 4 is turned on to when it is turned off is set shorter than the half period of the resonance period of the resonance circuit constituted by the auxiliary coil 2 and the starting capacitor 3 in order to stop the resonance current in a half period. May be.
  • the triac 4 is preferably turned off when the absolute value of the input power supply voltage V is large (for example, approximately equal to the peak voltage of the power supply voltage V). This is because the energy charged in the starting capacitor 3 can be increased.
  • a resonance state is created by the capacity of the starting capacitor 3 and the impedance of the auxiliary coil 2, and the excitation current at the time of starting is set. Increase to obtain the starting torque of the single phase induction motor. Start by shortening the period from when the triac 4 is turned on to when it is turned off, that is, by lengthening the period after the triac 4 is turned off until the next time the triac 4 is turned on A large starting torque can be obtained by sufficiently charging the capacitor 3.
  • the starting capacitor is set so that the resonance frequency of the resonance circuit composed of the auxiliary coil 2 and the starting capacitor 3 when the rotor of the single-phase induction motor 10 is stopped is at least twice the frequency of the input power supply F. 3 capacitance is set.
  • the governor circuit 6 may select the transition operation to repeat once during the half cycle of the input power supply voltage V of the single-phase induction motor 10, or during one cycle of the input power supply voltage V, When the input power supply voltage V is positive and negative, it may be selected to repeat twice, once each.
  • the transition operation is performed once during one cycle of the input power supply voltage V, once when the voltage is positive or negative, that is, once during one cycle, or a predetermined number of cycles (for example, two cycles). You may choose to repeat once in between. By increasing the period in which the transition operation occurs, the starting capacitor 3 can store more charge.
  • the control circuit 5 (or the governor circuit 6) performs steady control for controlling the triac gate signal Ir to be always on or always off after reaching the rated rotational speed.
  • ⁇ Steady control> 2B and 2C both show the waveform of the current Im flowing through the main coil 1 of the single-phase induction motor 10 during steady control (upper part of the figure), the waveform of the current Ia flowing through the auxiliary coil 2 (middle part of the figure), and the triac 4
  • the waveform of the gate signal Ir is shown in the lower part of the figure.
  • the triac 4 gate signal Ir is always on during steady control. Therefore, the auxiliary coil 2 is not disconnected from the circuit of the single-phase induction motor 10 during steady control.
  • the single phase induction motor 10 is driven by the current Ia of the auxiliary coil 2 and the current Im of the main coil 1.
  • the driving efficiency of the motor at the time of steady control is not greatly reduced.
  • the gate signal Ir of the triac 4 is always off during steady control. Therefore, the auxiliary coil 2 is disconnected from the circuit of the induction motor 10 during steady control, and the induction motor 10 is single-phase driven by the current Im flowing through the main coil 1.
  • the starting capacitor 3 is in a non-conductive state, so the starting capacitor 3 does not work as a capacitive loss member, and the motor is driven by the starting capacitor 3. There is no reduction in efficiency.
  • FIG. 3 shows a circuit diagram of the control circuit 5 according to the first embodiment of the present technology.
  • the control circuit 5 includes a control power supply 31, a voltage monitoring circuit 32 that monitors the input power supply voltage V, a current monitoring circuit 33 that monitors the current Ia of the auxiliary coil 2, a CPU (central processing unit) 34, and a diode 35. Including.
  • the control circuit 5 has an input side connected to the power supply F and an output side connected to the auxiliary coil 2 and the triac 4.
  • the control power supply 31 is connected to the input power supply F and provides power for driving the control circuit 5.
  • the CPU 34 generates a gate signal Ir for the triac 4 based on signals from the voltage monitoring circuit 32 and the current monitoring circuit 33.
  • the voltage monitoring circuit 32 determines whether or not the absolute value of the voltage Vm of the main coil 1 exceeds a predetermined first voltage vf1 during start control. When a predetermined first voltage vf1 is exceeded, the CPU 34 generates a triac 4 gate-on signal based on a signal from the voltage monitoring circuit 32. When the triac 4 is turned on, the starting capacitor 3 is discharged and an exciting current flows through the auxiliary coil 2. Thereby, the electric motor 10 can obtain a starting torque.
  • the voltage monitoring circuit 32 determines whether or not the absolute value of the voltage Vm of the main coil 1 exceeds a predetermined second voltage vf2 at the start control. When the predetermined second voltage vf2 is exceeded, the CPU 34 generates a triac 4 gate-off signal based on the signal from the voltage monitoring circuit 32.
  • the current monitoring circuit 33 determines whether or not the current Ia to the auxiliary coil 2 is substantially zero during start control. When the current Ia to the auxiliary coil 2 is substantially zero, the CPU 34 turns off the gate of the triac 4. When the triac 4 is turned off, the auxiliary coil 2 transitions to a non-conducting state and the starting capacitor 3 is charged.
  • FIG. 4 shows various signal waveforms when the control circuit 5 shown in FIG. 3 is used.
  • 4 shows the voltage Vm waveform of the main coil 1 (upper part of FIG. 4), the gate signal Ir waveform of the triac 4 (middle part of FIG. 4), and the waveform of the current Ia of the auxiliary coil 2 (lower part of FIG. 4).
  • the triac 4 is controlled to turn on when the absolute value of the main coil 1 voltage Vm exceeds a predetermined first voltage vf1. Thereafter, when the absolute value of the main coil 1 voltage Vm exceeds a predetermined second voltage vf2, the gate signal Ir of the triac 4 is turned off.
  • the second voltage vf2 is preferably set to a large absolute value of the main coil 1 voltage Vm (for example, a value approximately equal to the peak voltage of the power supply voltage Vm as shown in FIG. 4). This is because the energy charged in the starting capacitor 3 can be increased.
  • the triac 4 is controlled to be turned off when the current Ia to the auxiliary coil 2 is substantially zero.
  • FIG. 5 shows a circuit diagram of the control circuit 5 according to the second embodiment of the present technology.
  • the control circuit 5 includes a control power supply 31, a voltage monitoring circuit 32 that monitors the voltage of the input power supply F, a CPU 34, and a diode 35.
  • the CPU 34 includes a timer circuit 36.
  • the control circuit 5 has an input side connected to the power supply F and an output side connected to the triac 4.
  • the CPU 34 generates the gate signal Ir of the triac 4 based on the signal from the voltage monitoring circuit 32 and the signal from the timer circuit 36.
  • the voltage monitoring circuit 32 determines whether or not the absolute value of the voltage Vm of the main coil 1 exceeds a predetermined first voltage vf1 during start control. When the predetermined first voltage vf1 is exceeded, the CPU 34 generates a triac gate-on signal.
  • the timer circuit 36 sets the time from when the gate signal Ir of the triac 4 is turned on to when it is turned off.
  • the CPU 34 generates a gate-off signal for the triac 4 after the first predetermined period has elapsed since the gate signal for the triac 4 is turned on.
  • the triac 4 is controlled to be turned off.
  • FIG. 6 shows various signal waveforms according to an embodiment when the control circuit 5 shown in FIG. 5 is used.
  • FIG. 6 shows the voltage Vm waveform (upper part of FIG. 6) of the main coil 1, the gate signal Ir of the triac 4 (middle part of FIG. 6), and the current Ia waveform of the auxiliary coil 2 (lower part of FIG. 6).
  • the triac 4 is controlled to be turned on when the voltage Vm exceeds the predetermined first voltage vf1, and after the first predetermined period has elapsed since being turned on, the gate signal Ir to the triac is Controlled off.
  • the auxiliary coil current Ia becomes substantially zero, the triac 4 is controlled to be turned off.
  • FIG. 7 shows an operation flowchart of the governor circuit 6 and the like according to an embodiment of the present technology when the control circuit 5 shown in FIG. 3 is used.
  • control power supply 31 is turned on and the control circuit 5 is activated.
  • the main coil 1 is energized. (Step 701).
  • the timer circuit 36 starts counting (step 702).
  • the timer circuit 36 sets a second predetermined period from when the governor circuit 6 that allows current to flow to the auxiliary coil 2 during start-up control to be turned off.
  • the second predetermined period is set longer than, for example, a period until the rated rotational speed is reached based on a period until the rotational speed of the motor reaches the rating.
  • the timer circuit 36 determines whether or not the second predetermined period has elapsed (step 703). If it is determined in step 703 that the second predetermined period has not elapsed, start control in steps 704 to 710 is performed.
  • the voltage monitoring circuit 32 determines whether the absolute value of the voltage Vm of the main coil 1 exceeds a predetermined first voltage vf1 (step 704). If it is determined in step 704 that the absolute value of the voltage Vm of the main coil 1 has exceeded the predetermined first voltage vf1, the CPU 34 turns on the gate signal of the triac 4 (step 705). When the triac 4 is turned on, the auxiliary coil 2 is energized (step 706). When the auxiliary coil 2 is energized, a resonance state is generated by the starting capacitor 3 and the auxiliary coil 2, and a current flows from the starting capacitor 3 to the auxiliary coil 2.
  • the voltage monitoring circuit 32 determines whether or not the absolute value of the voltage Vm of the main coil 1 exceeds a predetermined second voltage vf2. Further, the current monitoring circuit 33 determines whether or not the energization current Ia of the auxiliary coil 2 has passed zero (or whether it is substantially zero) (step 707).
  • the CPU 34 When the auxiliary coil current Ia passes through zero, the CPU 34 turns off the gate of the triac 4 (step 708). On the other hand, when the absolute value of the voltage Vm of the main coil 1 exceeds the predetermined second voltage vf2, the CPU 34 turns off the gate signal Ir of the triac 4 (step 709). If the auxiliary coil current Ia does not pass through zero, or if the absolute value of the voltage Vm of the main coil 1 does not exceed the predetermined second voltage vf2, the process returns to step 707.
  • the governor circuit 6 turns off the energization to the auxiliary coil 2 (step 710).
  • step 703 When it is determined in step 703 that the second predetermined period has elapsed by the timer circuit 36, the process proceeds to step 710. Within the second predetermined period, the motor reaches the rated speed. After the second predetermined period has elapsed, in steps 711 to 712, steady control of the motor is performed.
  • the CPU 34 always turns on the gate signal of the triac 4 (step 711).
  • the auxiliary coil 2 is always energized, and the motor is driven by the current flowing through the main coil 1 and the auxiliary coil 2 (step 712).
  • the motor maintains the rated rotational speed.
  • the triac 4 gate signal may be always turned off during steady control.
  • the auxiliary coil 2 is always energized and the motor is driven independently by the current Im flowing through the main coil 1.
  • FIG. 8 shows waveforms of various signals according to an embodiment when the operation shown in FIG. 7 is performed.
  • FIG. 8 shows the voltage Vm waveform of the main coil 1 (the top stage of FIG. 8), the gate signal Ir of the triac 4 (the second stage of FIG. 8), and the current Ia waveform of the auxiliary coil 2 (the third stage of FIG. 8). Show. Further, FIG. 8 shows the voltage waveform of the control power supply 31 (fourth stage in FIG. 8), the ON / OFF of the governor circuit 6 (fifth stage in FIG. 8), and the rotational speed of the motor (bottom stage in FIG. 8). The start control is performed within a second predetermined period in which the governor circuit 6 is on.
  • the gate signal Ir of the triac 4 is repeatedly turned on and off according to the magnitude of the voltage Vm of the main coil 1. After the number of rotations of the motor reaches the rating and the second predetermined period elapses, the control shifts to steady control. In the steady control, the governor circuit 6 is always turned off, and the triac gate signal is always turned on.
  • FIG. 9A to 9C are a block diagram of the single-phase induction motor 10 (FIG. 9A) and diagrams showing various signal waveforms in the single-phase induction motor 10 shown in FIG. 9A according to the third embodiment of the present technology (FIG. 9B and FIG. 9B). FIG. 9C).
  • the single-phase induction motor 10 according to this embodiment includes one or more starting capacitors (for example, connected in parallel to the first starting capacitor 3 and connected in series to the auxiliary coil 2).
  • the second starting capacitor 7) is different from the single-phase induction motor 10 shown in FIG.
  • a single-phase induction motor 10 shown in FIG. 9A includes an input power supply F, a main coil 1, an auxiliary coil 2, a first starting capacitor 3, a second starting capacitor 7, a first governor circuit 6, a rotor, 8.
  • the main coil 1 is connected to the input power source F, and the auxiliary coil 2 is connected to the main coil 1 in parallel.
  • the first starting capacitor 3 is connected to the auxiliary coil 2 in series.
  • the second starting capacitor 7 is connected in parallel with the first starting capacitor 3 and is connected in series to the auxiliary coil 2.
  • the first governor circuit 6 is connected between the first starting capacitor 3 and the auxiliary coil 2.
  • the first governor circuit 6 appropriately controls the timing for turning on / off the triac 4 (see FIG.
  • the first governor circuit 6 has the same configuration as the governor circuit 6 shown in FIG. 1, but is shown as a switch in FIG. 9A.
  • the first governor circuit 6 is in a non-conducting state between the first starting capacitor 3 and the auxiliary coil 2 once during the start control, during less than a half cycle of the input power supply voltage V of the single-phase induction motor 10. The operation of transitioning to the conductive state and transitioning to the non-conductive state is repeated periodically.
  • the first governor circuit 6 is configured such that a peak current flows from the first starting capacitor 3 to the auxiliary coil 2 when the first starting capacitor 3 and the auxiliary coil 2 are transitioned to a conductive state.
  • the first governor circuit 6 operates in the same manner as the governor circuit 6 shown in FIG.
  • FIG. 9B shows the waveform of the current Im flowing through the main coil 1 of the single-phase induction motor 10 and the waveform of the current Ia flowing through the auxiliary coil 2 at the time of start control at the upper stage, with the horizontal axis being time (t). Shows the waveform of the voltage V of the input power supply F (or the voltage Vm of the main coil 1).
  • the current Ia flowing through the auxiliary coil 2 has a periodic waveform having a sharp peak.
  • the current Ia of the auxiliary coil 2 shown in FIG. 9B is obtained by adding the current flowing through the second starting capacitor 7 to the current flowing from the first starting capacitor 3 to the auxiliary coil 2. Therefore, according to this embodiment, as shown in FIG.
  • the current Ia becomes larger than the current Ia flowing through the auxiliary coil 2 shown in FIG. 1 by the amount of current flowing through the second starting capacitor 7. Therefore, a starting torque larger than the starting torque obtained when using the single-phase induction motor 10 shown in FIG. 1 can be obtained.
  • the absolute value of the voltage V (voltage Vm of the main coil 1) of the input power supply F is equal to or higher than a predetermined first voltage vf1 (
  • the auxiliary coil 2 is preferably transitioned from the non-conducting state to the conducting state when the peak voltage of the absolute value of the power supply voltage V is about one fifth or more.
  • FIG. 9C shows the waveform of the current Im flowing through the main coil 1 of the single-phase induction motor 10 shown in FIG. 9A and the waveform of the current Ia flowing through the auxiliary coil 2 at the time of steady control, with the horizontal axis being time (t). .
  • FIG. 9C As shown, a current Im flows through the main coil 1 and a current Ia flows through the auxiliary coil Ia. The current Ia is advanced by about a quarter of the period phase with respect to the current Im by the first starting capacitor 3.
  • Single-phase induction motor 10 is driven by current Im of main coil 1 and current Ia of auxiliary coil 2.
  • the current Ia of the auxiliary coil 2 is the sum of the currents flowing through the first starting capacitor 3 and the second starting capacitor 7.
  • the single-phase induction motor 10 has a current Ia of the auxiliary coil 2 consisting only of the current flowing through the second starting capacitor 7. And driven by the current Im of the main coil 1.
  • the first governor circuit 6 is used to appropriately select the conduction state (always conducting state, always non-conducting state) between the first starting capacitor 3 and the auxiliary coil 2. be able to. That is, at the time of steady control, the number of starting capacitors (capacitor capacity) connected to the auxiliary coil 2 can be appropriately selected.
  • FIG. 10A to 10C are a block diagram (FIG. 10A) of the single-phase induction motor 10 according to the fourth embodiment of the present technology, and diagrams showing various signal waveforms in the single-phase induction motor 10 shown in FIG. 10A (FIG. 10B and FIG. 10B). FIG. 10C).
  • the single-phase induction motor 10 according to the present embodiment includes one or more governor circuits (for example, the second governor circuit 9 in FIG. 10A) in addition to the first governor circuit 6. Different from the electric motor 10.
  • Each of the one or more governor circuits is connected between the auxiliary coil 2 and one starting capacitor connected in parallel to the first starting capacitor 3. A description of the same configuration as that of the single-phase induction motor 10 shown in FIG. 10A is omitted.
  • FIG. 10A is an example of a block diagram of the single-phase induction motor 10 during start control.
  • a single-phase induction motor 10 shown in FIG. 10A includes a second governor circuit 9.
  • the second governor circuit 9 is connected between the auxiliary coil 2 and the second starting capacitor 7 connected in parallel to the first starting capacitor 3.
  • the second governor circuit 9 is configured to control the current supplied from the second starting capacitor 7 to the auxiliary coil 2.
  • the second governor circuit 9 has a second start capacitor once during the start control, during less than a half cycle of the input power supply voltage V of the single-phase induction motor 10.
  • the operation of transitioning from the non-conducting state to the conducting state between 7 and the auxiliary coil 2 and transitioning to the non-conducting state is repeated periodically.
  • the first governor circuit 6 and the second governor circuit 9 are controlled so as to have different on / off timings.
  • FIG. 10B shows the waveform of the current Im flowing through the main coil 1 of the single-phase induction motor 10 and the waveform of the current Ia flowing through the auxiliary coil 2 at the time of starting control at the upper stage, with the horizontal axis being time (t). Shows the waveform of the voltage V of the input power supply F. The scale of time (t) on the horizontal axis is the same for each stage. In FIG. 10B, two peaks occur intermittently in the current Ia of the auxiliary coil 2 during less than a half cycle of the input power supply voltage V.
  • One peak of the current Ia occurs at the timing when the first governor circuit 6 makes a transition between the first starting capacitor 3 and the auxiliary coil 2 from the non-conductive state to the conductive state, and the other one peak is the second peak. This occurs at a timing when the governor circuit 9 makes a transition between the second starting capacitor 7 and the auxiliary coil 2 from the non-conductive state to the conductive state.
  • the first governor circuit 6 and the second governor circuit 9 are used to establish a non-interval between the first starting capacitor 3 and the auxiliary coil 2 during less than a half cycle of the input power supply voltage V.
  • the timing of transition from the conductive state to the conductive state is different from the timing of transition between the second starting capacitor 7 and the auxiliary coil 2 from the non-conductive state to the conductive state.
  • the present embodiment it is possible to appropriately select the timing for transitioning between each starting capacitor and the auxiliary coil 2 from the non-conductive state to the conductive state during less than a half cycle of the input power supply voltage V. .
  • the timing for each of the plurality of governor circuits to transition from the non-conductive state to the conductive state are adjusted. As a result, the manner of rotational movement of the rotor 8 can be appropriately adjusted.
  • the first governor circuit 6 is configured so that the absolute value of the voltage V of the input power supply F is not less than a predetermined first voltage vf1, for example, about one fifth or more of the peak voltage of the absolute value of the power supply voltage V.
  • the first starting capacitor 3 and the auxiliary coil 2 are transitioned from the non-conducting state to the conducting state, and the second governor circuit 9 conducts between the second starting capacitor 7 and the auxiliary coil 2 from the non-conducting state. It is preferable to transition to a state.
  • the capacity of the first starting capacitor 3 and the capacity of the second starting capacitor 7 can be arbitrarily selected.
  • the magnitude of the peak of the current Ia of the auxiliary coil 2 generated during less than a half cycle of the input power supply voltage V can be set.
  • the manner of rotational movement of the rotor 8 can be adjusted.
  • FIG. 10C shows the waveform of the current Im flowing through the main coil 1 of the single-phase induction motor 10 shown in FIG. 10A and the waveform of the current Ia flowing through the auxiliary coil 2 at the time of steady control, with the horizontal axis being time (t).
  • the first starting capacitor 3 and the auxiliary coil 2 are always in a conductive state (that is, the gate signal Ir (see FIG. 1) of the triac 4 of the first governor circuit 6 is always on), and the second starting The capacitor 7 and the auxiliary coil 2 are always non-conductive (that is, the triac gate signal of the second governor circuit 9 is always off) or always conductive (that is, the triac gate signal of the second governor circuit 9 is always constant).
  • the current Im flows through the main coil 1, and the current Ia whose phase phase is advanced by about a quarter of the current Im flows through the auxiliary coil Ia.
  • the current Ia of the auxiliary coil 2 is a current that flows only through the first starting capacitor 3.
  • the single-phase induction motor 10 is driven by the current Ia of the auxiliary coil 2 and the current Im of the main coil 1 during steady control.
  • the single-phase induction motor 10 is single-phase driven by the current Im of the main coil 1.
  • the first governor circuit 6 is used to appropriately select the conduction state (always conducting state, always non-conducting state) between the first starting capacitor 3 and the auxiliary coil 2, Further, the conduction state (always conducting state, always non-conducting state) between the second starting capacitor 7 and the auxiliary coil 2 can be appropriately selected using the second governor circuit 9. Thereby, at the time of steady control, the number (capacitor capacity
  • FIGS. 11A and 11B are block diagrams (FIGS. 11A and 11B) of the single-phase induction motor 10 and diagrams showing various signal waveforms in the single-phase induction motor 10 (FIG. 11C) according to the fifth embodiment of the present technology. It is.
  • the single-phase induction motor 10 according to this embodiment has a path 11 that can be directly connected between the main coil 1 and the auxiliary coil 2 without the first starting capacitor 3. It differs from the single phase induction motor 10 shown in FIG.
  • the path 11 is configured to be directly connectable between the first governor circuit 6 and the main coil 1.
  • the first governor circuit 6 is configured to be switchable between the first starting capacitor 3 and the auxiliary coil 2 or between the path 11 and the auxiliary coil 2.
  • the first governor circuit 6 has one end connected to the auxiliary coil 2 and the other end connected to the path 11 or the first starting capacitor 3. Therefore, the first governor circuit 6 includes the main coil 1 and the auxiliary coil 2 without passing through the first starting capacitor 3 in addition to switching between conduction / non-conduction between the first starting capacitor 3 and the auxiliary coil 2. And is configured to switch between direct conduction.
  • FIG. 11A is a block diagram of single-phase induction motor 10 during start control.
  • the first governor circuit 6 is not connected to the path 11.
  • the first governor circuit 6 causes the first starting capacitor 3 and the auxiliary coil 2 to transition from the non-conductive state to the conductive state once during less than a half cycle of the input power supply voltage V of the single-phase induction motor 10. The operation of transitioning to the non-conductive state is repeated periodically.
  • the first governor circuit 6 is configured such that a peak current flows from the first starting capacitor 3 to the auxiliary coil 2 when the first starting capacitor 3 and the auxiliary coil 2 are transitioned to a conductive state.
  • the first governor circuit 6 operates in the same manner as the governor circuit 6 shown in FIG. Accordingly, the waveform of the current Ia flowing through the auxiliary coil 2 at the start control is the same as the waveform of the auxiliary coil 2 current Ia shown in FIG. 2A.
  • FIG. 11B is a block diagram of the single-phase induction motor 10 during steady control according to the present embodiment
  • FIG. 11C is a diagram illustrating various signal waveforms in the single-phase induction motor 10 during steady control.
  • the first governor circuit 6 is always connected to the path 11, disconnects the first starting capacitor 3 from the circuit of the single-phase induction motor 10, and connects only the auxiliary coil 2 in parallel with the main coil 1.
  • the first starting capacitor 3 is not connected to the auxiliary coil 2, if the impedance of the main coil 1 and the impedance of the auxiliary coil 2 are the same, the current Ia of the auxiliary coil 2 and the main coil 1 It is in phase with the current Im.
  • a difference is provided between the impedance of the main coil 1 and the impedance of the auxiliary coil 2. Since the phase of the current is determined according to the impedance of the coil, a difference is provided between the impedance of the main coil 1 and the impedance of the auxiliary coil 2 (for example, the number of turns of the main coil 1 is set to be larger than the number of turns of the auxiliary coil 2).
  • the impedance of the main coil 1 and the impedance of the auxiliary coil 2 for example, the number of turns of the main coil 1 is set to be larger than the number of turns of the auxiliary coil 2.
  • the single-phase induction motor 10 is driven by the current Ia of the auxiliary coil 2 and the current Im of the main coil 1 having the phase difference shown in FIG. 11C.
  • a phase difference is provided between the current Ia of the auxiliary coil 2 and the current Im of the main coil 1 using the difference in impedance of the coil to create a rotating magnetic field, The single phase induction motor 10 can be driven.
  • FIG. 11A and 11B schematically depict the first governor circuit 6. More specifically, the first governor circuit 6 is configured as shown in FIG. 11D.
  • the two triacs 4 (first triac 4a and second triac 4b) are connected in parallel to the main coil 1 and in series to the auxiliary coil 2, respectively.
  • the first triac 4 a is connected between the first starting capacitor 3 and the auxiliary coil 2
  • the second triac 4 b is connected between the path 11 and the auxiliary coil 2.
  • the control circuit 5 appropriately controls the timing for turning on / off the first triac 4a and the second triac 4b.
  • the control circuit 5 controls on / off of the first triac 4a so that a peak current flows from the first start capacitor 3 to the auxiliary coil 2, and controls the second triac 4b to be always off. . Further, during the continuity control, the control circuit 5 controls the first triac 4a to be always off and controls the second triac 4b to be always on.
  • SYMBOLS 1 Main coil, 2 ... Auxiliary coil, 3 ... (1st) starting capacitor, 4 ... Triac, 5 ... Control circuit, 6 ... (1st) governor circuit, 7 ... 2nd starting capacitor, 8 ... Rotor, DESCRIPTION OF SYMBOLS 9 ... 2nd governor circuit, 10 ... Capacitor starting type single phase induction motor, 31 ... Control power supply, 32 ... Voltage monitoring circuit, 33 ... Current monitoring circuit, 35 ... Diode, 36 ... Timer circuit

Abstract

大きな始動トルクを得ることのできるコンデンサ始動単相誘導電動機を提供する。 単相誘導電動機であって,主コイルと、該主コイルに並列接続された補助コイルと、補助コイルに直列接続されたコンデンサと、コンデンサから補助コイルに供給される電流の制御を行うガバナ回路とを備え、ガバナ回路は、単相誘導電動機の入力電源の電圧の半周期未満の間に1回、補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行う。補助コイルが導通状態のときにコンデンサから補助コイルに電流が流れ、始動トルクを得ることができる。

Description

単相誘導電動機
本技術は、単相誘導電動機に関する。
 単相誘導電動機は、多くの分野、例えば、ポンプや、コンプレッサ、空調装置に利用されている。単相誘導電動機の一つに、始動コンデンサを用いたコンデンサ始動型単相誘導電動機がある。このコンデンサは、単相誘導電動機の始動工程で、主コイル及び補助コイルに適当な電圧を供給するために用いられる。従来、コンデンサ始動型単相誘導電動機の始動トルクを得るために様々な手法が用いられてきた。例えば、始動トルクを得るために容量の大きな始動コンデンサを用いることがあった。また、例えば、特許文献1に記載の技術では、2つの並列接続されたコンデンサを用いて、始動時には高い静電容量を確保して始動トルクを得ることがあった。
特開2012-115034号公報
 しかしながら、モータが定格回転数に到達すると、コンデンサとそれに接続されたコイルは損失部材として働き、モータの駆動効率を低下させる。従って、始動トルクを大きくするためにコンデンサの容量を増やすと、定格回転数運転時の誘導電動機の駆動効率は低下する。本技術は、上記課題に鑑みてなされたものであり、その目的の一つは、コンデンサ始動型単相誘導電動機において、定格回転数運転時の損失を低減し、駆動効率を改善することにある。
 また、特許文献1における構成では、コンデンサが複数必要となる。本技術の他の目的の一つは、単相誘導電動機において、経済的に始動トルクを得ることにある。
 本技術は、上述の課題の少なくとも一部を少なくとも部分的に解決することを意図している。
 第1の形態によれば、主コイルと、前記主コイルと並列接続された補助コイルと、前記補助コイルに直列接続されたコンデンサと、前記コンデンサから前記補助コイルに供給される電流の制御を行うガバナ回路とを備え、前記ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記コンデンサから前記補助コイルに電流が流れる、単相誘導電動機を特徴とする。
 この一形態によれば、ガバナ回路の非導通状態、導通状態の遷移を周期的に制御することにより、始動コンデンサの容量と、補助コイルのインピーダンスで確定する共振状態を作り出し、始動時の励磁電流を増加させることができる。これにより単相誘導電動機において大きな始動トルクを得ることができる。
 第2の形態によれば、前記ガバナ回路は、前記補助コイルに直列接続されたトライアックと、前記トライアックに接続され、前記トライアックのゲート信号を生成する制御回路とを備え、前記ゲート信号に基づいて前記トライアックを切替え制御することによって前記始動制御を行う第1の形態に記載の単相誘導電動機を特徴とする。
 第3の形態によれば、前記非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を前記入力電源電圧の半周期の間に1回、前記入力電源電圧の1周期の間に、前記入力電源電圧が正及び負のときに各1回であわせて2回、前記入力電源電圧の1周期の間に、前記入力電源電圧が正又は負のときに1回、または前記入力電源電圧の所定数周期の間に1回、繰り返すよう、前記ガバナ回路は設定されている、第1の形態に記載の単相誘導電動機を特徴とする。
 この一形態によれば、補助コイルの遷移動作が生ずる周期を適宜設定することで、始動コンデンサに蓄えられる電荷量を変化させることができる。
 第4の形態によれば前記ガバナ回路は、前記単相誘導電動機に電源が投入されてから前記単相誘導電動機が所定の回転速度に到達するまでの期間に前記始動制御を行い、単相誘導電動機が前記所定の回転速度に到達したのちは、定常制御を行うよう構成された第1の形態に記載の単相誘導電動機を特徴とする。
 この一形態によれば、始動制御においては始動コンデンサの容量を増やすことなく、始動トルクを得ている。従って、容量性負荷として働く始動コンデンサの影響を抑えて、定常制御時のモータの駆動効率を改善することができる。
 第5の形態によれば前記定常制御において、前記補助コイルは常時導通状態にされる、第4の形態に記載の単相誘導電動機を特徴とする。
 第6の形態によれば前記定常制御において、前記補助コイルは常時非導通状態にされる、第4の形態に記載の単相誘導電動機を特徴とする。
 この一形態によれば、定常制御時において、始動コンデンサは単相誘導電動機の回路から切り離されている。従って容量性負荷として働く始動コンデンサによる影響はなく、定常制御時のモータの駆動効率を改善することができる。
 第7の形態によれば前記ガバナ回路は、前記始動制御において、前記入力電源電圧の絶対値が所定の電圧以上になると前記補助コイルを非導通状態から導通状態に遷移させ、前記コンデンサと前記補助コイルによる共振電流が略ゼロとなったときに再び非導通状態に遷移させる、第1の形態に記載の単相誘導電動機を特徴とする。
 第8の形態によれば、前記ガバナ回路は、入力電源電圧が供給されてから所定期間、前記始動制御を行い、前記所定時間経過後は前記定常制御に移行する、第1の形態に記載の単相誘導電動機を特徴とする。
 第9の形態によれば前記単相誘導電動機のロータが停止時の前記補助コイルと前記コンデンサで構成される共振回路の共振周波数が、前記入力電源電圧の周波数の2倍以上になるように、前記コンデンサの静電容量が設定されている第1から8の形態に記載の単相誘導電動機を特徴とする。
 この一形態によれば、始動コンデンサの静電容量と補助コイルのインダクタンスにより確定される共振周波数を適宜設定することができる。これにより、始動コンデンサの容量で確定される共振周波数に基づいて界磁コイルに尖頭電流を発生させ、瞬時始動トルクを大きくすることができる。
 第10の形態によれば、前記補助コイルに直列接続されたトライアックのゲート信号は、前記所定の電圧が、前記入力電源電圧のピーク電圧の5分の1以上のときにオンされる、第7の形態に記載の単相誘導電動機を特徴とする。
 第11の形態によれば、前記トライアックは、前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧にほぼ等しいときにオフにされる、第2の形態に記載の単相誘導電動機を特徴とする。
 第12の形態によれば、前記トライアックのゲート信号をオンにしてからオフにするまでの期間は、前記補助コイルと前記コンデンサで構成される共振回路の共振周期の半周期よりも短い、第2の形態に記載の単相誘導電動機を特徴とする。
 第13の形態によれば、単相誘導電動機であって,主コイルと、前記主コイルに並列接続された補助コイルと、前記補助コイルに直列接続された第1コンデンサと、前記第1コンデンサに並列接続され、かつ前記補助コイルに直列接続された第2コンデンサと、前記第1コンデンサと前記補助コイルとの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第1ガバナ回路と、を備え、前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成される、単相誘導電動機を特徴とする。
 この一形態によれば、始動制御時に、第2コンデンサにより、単相誘導電動機の始動トルクを大きくすることが可能になる。
 第14の形態によれば、第13の形態に記載の単相誘導電動機であって、前記第1ガバナ回路は、定常制御において、前記第1コンデンサと前記補助コイルとの間を常時導通状態とする、あるいは常時非導通状態とする、単相誘導電動機を特徴とする。
 この一形態によれば、定常制御時に、第1ガバナ回路を用いて、補助コイル2に接続される始動コンデンサの数を適宜選択することができる。
 第15の形態によれば、第13の形態に記載の単相誘導電動機であって、前記第2コンデンサと、前記補助コイルとの間に接続され、前記第2コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第2ガバナ回路とをさらに備え、前記第2ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第2コンデンサから前記補助コイルに電流が流れる、単相誘導電動機を特徴とする。
 この一形態によれば、始動制御時に、第1コンデンサから補助コイルへ流れる尖頭電流に加えて、第2コンデンサから補助コイルへ流れる尖頭電流により、始動トルクを得ることができる。
 第16の形態によれば、第15の形態に記載の単相誘導電動機であって、前記単相誘導電動機の前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧の5分の1以上の間に、前記第1ガバナ回路は、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させ、前記第2ガバナ回路は、前記第2コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させる、単相誘導電動機を特徴とする。
 この一形態によれば、入力電源エネルギーから十分な始動トルクを得ることができる。
 第17の形態によれば、第15または第16に記載の単相誘導電動機であって、前記第1ガバナ回路が、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させるタイミングと、前記第2ガバナ回路が、前記第2コンデンサと補助コイルとの間を非導通状態から導通状態に遷移させるタイミングとは異なる、単相誘導電動機を特徴とする。
 この一形態によれば、入力電源電圧の半周期未満の間に、補助コイル2に流れる尖頭電流が2回以上流れることになる。その結果、単相誘導電動機の最大出力トルクが維持される期間を長くすることができる。
 第18の形態によれば、第15から第17のいずれか1形態に記載の単相誘導電動機であって、前記第1コンデンサの容量と、前記第2コンデンサの容量とは任意に選択可能である、単相誘導電動機を特徴とする。
 この一形態によれば、入力電源電圧の半周期未満の間に発生する補助コイルに流れる尖頭電流の大きさを変え、それによりロータの回転運動の仕方を適宜調整することができる。
 第19の形態によれば、単相誘導電動機であって,主コイルと、前記主コイルに並列接続された補助コイルと、前記補助コイルに直列接続された第1コンデンサと、前記第1コンデンサと、前記補助コイルの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うように構成された第1ガバナ回路と、を備え、前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成される、単相誘導電動機、単相誘導電動機を特徴とする。
 第20の形態によれば、第19の形態に記載の単相誘導電動機であって、前記第1ガバナ回路と前記主コイルとの間を接続可能なパスをさらに備え、前記第1ガバナ回路は、定常制御において、前記パスに常時接続され、それにより前記主コイルと、前記主コイルと異なるインピーダンスを有する前記補助コイルとの間を直接導通させる、単相誘導電動機を特徴とする。
本技術の一実施形態に係る、ガバナ回路を備えるコンデンサ始動型単相誘導電動機のブロック図を示す。 本技術の一実施形態に係る、始動制御時の入力電圧の波形、主コイル、補助コイルを流れる電流の波形、及びトライアックのゲート信号を示す。 本技術の一実施形態に係る、定常制御時の主コイル、補助コイルを流れる電流の波形、及びトライアックのゲート信号の一例を示す。 本技術の一実施形態に係る、定常制御時の主コイル、補助コイルを流れる電流の波形、及びトライアックのゲート信号の一例を示す。 本技術の第一実施形態に係る制御回路の回路図を示す。 図3に示す制御回路を用いた場合の、主コイル電圧の波形と、トライアックのゲート信号と、補助コイルに流れる電流の波形の一例を示す。 本技術の第二実施形態に係る制御回路の回路図を示す。 図5に示す制御回路を用いた場合の、主コイル電圧の波形と、トライアックのゲート信号と、補助コイルに流れる電流の波形の一例を示す。 本技術の一実施形態に係る、ガバナ回路等の動作フローチャートを示す。 図7に示す動作を行った場合に得られる各種信号の波形を示す。 本技術の第三実施形態に係る、始動制御時における単相誘導電動機のブロック図である。 本技術の第三実施形態に係る、始動制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第三実施形態に係る、定常制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第四実施形態に係る、始動制御時における単相誘導電動機のブロック図である。 本技術の第四実施形態に係る、始動制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第四実施形態に係る、定常制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第五実施形態に係る、始動制御時における単相誘導電動機のブロック図である。 本技術の第五実施形態に係る、定常制御時における単相誘導電動機のブロック図である。 本技術の第五実施形態に係る、定常制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第五実施形態に係る、始動制御時における単相誘導電動機のブロック図である。
 以下、本技術の一実施形態に係るコンデンサ始動型の単相誘導電動機、及びその動作を図面に基づいて説明する。添付図面において、同一または類似の要素には同一または類似の参照符号が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
 図1は、本技術の一実施形態に係るコンデンサ始動型単相誘導電動機10のブロック図を示す。図1に示すように、コンデンサ始動型単相誘導電動機10は、主コイル1と、補助コイル2と、該補助コイル2と直列に挿入された始動コンデンサ3及びトライアック4を備える。コンデンサ始動型単相誘導電動機10は、さらに制御回路5を備えている。該制御回路5は、交流の入力電源Fと、トライアック4の双方に接続されている。なお、本明細書において、トライアック4および制御回路5で構成される回路をガバナ回路6と称する。制御回路5(あるいはガバナ回路6)は、単相誘導電動機10の電源投入後、始動コンデンサ3から補助コイル2に供給される電流の制御を行い、これにより単相誘導電動機10の出力トルクを調節する。制御回路5(あるいはガバナ回路6)は、単相誘導電動機10のロータ(回転子)の回転数を監視している。単相誘導電動機10に電源が投入されてからロータの回転が所定の回転速度に達するまでの期間、ガバナ回路は補助コイル2の非導通状態/導通状態を遷移させる動作を繰り返す始動制御を行う。
<始動制御>
 図2Aは、本技術の一実施形態による始動制御時の各種信号波形を示す。横軸を時間(t)として、最上段に、入力電源Fの電圧Vの波形を示し、上から第2段目に、当該入力電源電圧波形に対応する、始動制御時の主コイル1を流れる電流Imの波形を示す。また、図2Aは、第3段目に、始動制御時の補助コイル2を流れる電流Iaの波形を示し、最下段に始動制御時のトライアック4のゲート信号Ir波形を示す。横軸の時間(t)のスケールは各段同じである。補助コイル2に流れる電流Iaの位相は、主コイル1に流れる電流Imの位相に対し約4分の1周期(90°)進んでいる。
 図2Aに示すように、補助コイル2に流れる電流Iaは、周期的なピークがシャープな形状の波形を有する。図2Aにおいて補助コイル2に流れる電流Iaの絶対値のピークは、入力電源電圧Vの半周期の間に1回現れている。補助コイル電流Iaは電源周波数と同じ基本波周波数を持つ。補助コイル2の電流Iaが流れる期間は、入力電源電圧Vの半周期未満である。補助コイル2の電流Iaが流れる期間は、例えば、図2Aにおいては電源電圧Vの半周期の約4分の3の期間である。さらに、補助コイル2に流れるピーク電流の絶対値は、主コイル1のピーク電流の絶対値よりもはるかに大きい(例えば、図2Aでは約3倍)。図2Aでは、補助コイル2に流れる電流Iaの絶対値は、流れ始めると急増して、主コイル1の電流Imの大きさが大凡ゼロの時点でピークに至り、その後急減して収束する。
 制御回路5(あるいはガバナ回路6)は、始動制御時に補助コイル2へ尖頭電流を供給するため、始動制御時ではトライアック4のオン(ON)/オフ(OFF)を行うタイミングを適宜制御する。制御回路5は、入力電源Fの入力電源電圧Vを監視しており、入力電源電圧V(あるいは主コイル1の電圧Vm)の絶対値が所定の第1電圧vf1以上になると、トライアック4のゲート信号をオンにする。前記所定の第1電圧vf1は、電源電圧Vに対してある程度の大きさ、例えば、電源電圧Vの絶対値のピークの約5分の1以上が好ましい。入力電源エネルギーを始動トルクとして使うことができるためである。例えば、図2Aでは、トライアック4のゲート信号Irは、入力電源電圧Vの絶対値が、ほぼ最大の1/2のときにオンにされている。
 ゲートオン信号によってトライアック4がオンにされると入力電源Fと補助コイル2との間が非導通から導通に遷移する。トライアック4がオンになった直後に、始動コンデンサ3と、補助コイル2により生じる共振状態により、始動コンデンサ3から補助コイル2へ電流が流れる。該電流の基本波成分は主コイル電流lmに対して、適切な位相差を持ち、且つ大きな振幅で供給されるため,単相誘導電動機10は大きな始動トルクを得る。
 その後、次のタイミングでの尖頭電流の供給に備えるためトライアック4のゲート信号をオフにする。トライアック4のゲート信号をオンにしてからオフにするまでの期間は、共振電流を半周期で停止させるため、補助コイル2と始動コンデンサ3で構成される共振回路の共振周期の半周期より短く設定してもよい。
 そして、トライアック4を流れる電流が略ゼロとなった時点で,トライアック4のゲートは完全にオフされ、次にトライアック4がオンにされるまでの期間、始動コンデンサ3は充電された状態を保っている。なお、トライアック4は、入力電源電圧Vの絶対値が大きい(例えば、電源電圧Vのピーク電圧にほぼ等しい)ときにオフにするのが好ましい。始動コンデンサ3に充電するエネルギーを大きくすることができるからである。
 このように本実施形態では、トライアック4のオン、オフの切替えタイミングを周期的に制御することにより、始動コンデンサ3の容量と、補助コイル2のインピーダンスで共振状態を作り出し、始動時の励磁電流を増加させて単相誘導電動機の始動トルクを得る。トライアック4がオンにされてからオフに移行されるまでの期間を短くすることで、すなわちトライアック4がオフにされてから次にトライアック4がオンにされるまでの期間を長くすることで、始動コンデンサ3を十分に充電して、大きな始動トルクを得ることができる。
 本実施形態では、さらに、始動コンデンサ3の静電容量と補助コイル2のインダクタンスにより定められる共振周波数を適宜設定することにより、界磁コイルに尖頭電流を発生させ、瞬時始動トルクを大きくすることができる。例えば、単相誘導電動機10のロータが停止しているときの補助コイル2と、始動コンデンサ3とで構成される共振回路の共振周波数が入力電源Fの周波数の2倍以上になるように始動コンデンサ3の静電容量を設定する。
 本実施形態では、さらにガバナ回路6に補助コイル2を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を行う周期を適宜選択することができる。例えば、ガバナ回路6は、当該遷移動作を、単相誘導電動機10の入力電源電圧Vの半周期の間に1回繰り返すよう選択してもよいし、入力電源電圧Vの1周期の間に、入力電源電圧Vが正及び負のときに各1回であわせて2回繰り返すよう選択してもよい。あるいはまた、当該遷移動作を、入力電源電圧Vの1周期の間に、該電圧が正又は負のときに1回、すなわち1周期の間に1回、あるいはまた所定数周期(例えば2周期)の間に1回繰り返すよう選択してもよい。遷移動作が生ずる周期を長くすることで、始動コンデンサ3はより多くの電荷を蓄えることができる。
 本技術によると、始動コンデンサ3の容量を大きくすることなく、あるいは始動コンデンサ3を複数用いることなく、経済的にモータ始動時のトルクを増大することができる。
 始動トルクにより単相誘導電動機10のロータが回転を始め、その回転数がある程度に達すると、単相誘導電動機10の回転数は定格回転数に到達する。制御回路5(あるいはガバナ回路6)は、定格回転数に到達後にトライアックのゲート信号Irを常時オン又は常時オフに制御する定常制御を行う。
<定常制御>
 図2B及び図2Cはともに、定常制御時の単相誘導電動機10の主コイル1を流れる電流Imの波形(図上段)と、補助コイル2を流れる電流Iaの波形(図中段)と、トライアック4のゲート信号Ir波形(図下段)を示す。
 図2Bでは、定常制御時でトライアック4のゲート信号Irは常時オンである。従って、定常制御時に補助コイル2は単相誘導電動機10の回路から切り離されることはない。単相誘導電動機10は補助コイル2の電流Iaと主コイル1の電流Imにより駆動される。本技術では、始動コンデンサ3の容量を増やすことなく始動トルクを得ているので、コンデンサ始動型単相誘導電動機10であっても、定常制御時のモータの駆動効率は大きく低下しない。
 図2Cでは、定常制御時でトライアック4のゲート信号Irは常時オフである。従って、定常制御時に補助コイル2は誘導電動機10の回路から切り離されて、誘導電動機10は主コイル1に流れる電流Imによる単相駆動となる。本実施形態においては、モータが定格回転数に到達しても、始動コンデンサ3は非導通状態にあるため、始動コンデンサ3が容量性の損失部材として働くことはなく、始動コンデンサ3によるモータの駆動効率の低下は生じない。
<制御回路>
 次に、図1に示した制御回路5について図3から図6を用いて詳細に説明する。
 図3は、本技術の第一実施形態に係る制御回路5の回路図を示す。制御回路5は、制御電源31と、入力電源電圧Vを監視する電圧監視回路32と、補助コイル2の電流Iaを監視する電流監視回路33と、CPU(central processing unit)34と、ダイオード35を含む。制御回路5は入力側が電源Fに接続され、出力側が補助コイル2、及びトライアック4に接続されている。
 制御電源31は、入力電源Fに接続されており、制御回路5を駆動する電力を提供する。CPU34は、電圧監視回路32及び電流監視回路33からの信号に基づいて、トライアック4のゲート信号Irを生成する。
 電圧監視回路32は、始動制御時に、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたか否かを判定する。所定の第1電圧vf1を超えた場合に、CPU34は、電圧監視回路32からの信号に基づいてトライアック4のゲートオン信号を生成する。トライアック4がオンにされると、始動コンデンサ3は放電し、補助コイル2に励磁電流が流れる。これにより、電動機10は始動トルクを得ることができる。
 また、電圧監視回路32は、始動制御時に、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えたか否かを判定する。所定の第2電圧vf2を超えた場合に、CPU34は、電圧監視回路32からの信号に基づいてトライアック4のゲートオフ信号を生成する。
 電流監視回路33は、始動制御時に、補助コイル2への電流Iaが略ゼロであるか否かを判定する。補助コイル2への電流Iaが略ゼロである場合に、CPU34はトライアック4のゲートをオフする。トライアック4がオフされると、補助コイル2は非導通状態に遷移し、始動コンデンサ3は充電される。
 図4は、図3に示す制御回路5を用いた場合の各種の信号波形を示す。図4は、主コイル1の電圧Vm波形(図4上段)と、トライアック4のゲート信号Ir波形(図4中段)と、補助コイル2の電流Iaの波形(図4下段)をそれぞれ示す。図3に関して述べたように、トライアック4は、主コイル1電圧Vmの絶対値が所定の第1電圧vf1を超えた場合にオンに制御される。その後、主コイル1電圧Vmの絶対値が所定の第2電圧vf2を超えた場合に、トライアック4のゲート信号Irがオフにされる。第2電圧vf2は、好ましくは、主コイル1電圧Vmの絶対値の大きい値(例えば、図4に示すように電源電圧Vmのピーク電圧にほぼ等しい値)に設定される。始動コンデンサ3に充電するエネルギーを大きくすることができるからである。トライアック4へのゲート信号Irがオフにされた後、補助コイル2への電流Iaが略ゼロの時点で、トライアック4はオフに制御される。
 図5は、本技術の第二実施形態に係る制御回路5の回路図を示す。制御回路5は、制御電源31と、入力電源Fの電圧を監視する電圧監視回路32と、CPU34と、ダイオード35を含む。CPU34はタイマー回路36を含む。制御回路5は入力側が電源Fに接続され、出力側がトライアック4に接続されている。CPU34は、電圧監視回路32からの信号、及びタイマー回路36からの信号に基づいて、トライアック4のゲート信号Irを生成する。
 電圧監視回路32は、始動制御時に、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたか否かを判定する。所定の第1電圧vf1を超えた場合に、CPU34はトライアックのゲートオン信号を生成する。
 タイマー回路36は、トライアック4のゲート信号Irがオンにされてからオフにするまでの時間を設定する。CPU34は、トライアック4のゲート信号がオンにされてから第1所定期間経過後に、トライアック4のゲートオフ信号を生成する。そして、補助コイル2への電流Iaが略ゼロの時点で、トライアック4はオフに制御される。
 図6は、図5に示す制御回路5を用いた場合の一実施形態による各種信号波形を示す。図6は、主コイル1の電圧Vm波形(図6上段)と、トライアック4のゲート信号Ir(図6中段)と、補助コイル2の電流Ia波形(図6下段)をそれぞれ示す。図5に関して述べたように、トライアック4は、電圧Vmが所定の第1電圧vf1を超えた場合にオンに制御され、オンにされてから第1所定期間経過後に、トライアックへのゲート信号Irがオフに制御される。補助コイル電流Iaが略ゼロになるとトライアック4はオフに制御される。
 図7は、図3に示す制御回路5を用いた場合の、本技術の一実施形態に係るガバナ回路6等の動作フローチャートを示す。
 まず、制御電源31が投入され、制御回路5を起動する。そして、主コイル1が通電する。(ステップ701)。
 制御回路5が起動されると、タイマー回路36は、カウントを開始する(ステップ702)。本実施形態においては、タイマー回路36は、始動制御時に補助コイル2に電流を流すガバナ回路6をオンにしてからオフにするまでの第2所定期間を設定する。第2所定期間は、モータの回転数が定格に達するまでの期間に基づいて、例えば、定格回転数に達するまでの期間よりも長く設定される。
 次に、タイマー回路36は、第2所定期間が経過したかを判定する(ステップ703)。ステップ703にて、第2所定期間経過していないと判定された場合には、ステップ704から710による始動制御を行う。
 電圧監視回路32は、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたかを判定する(ステップ704)。ステップ704において、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたと判定された場合に、CPU34は、トライアック4のゲート信号をオンにする(ステップ705)。トライアック4がオンにされると、補助コイル2が通電される(ステップ706)。補助コイル2が通電されると、始動コンデンサ3と、補助コイル2により共振状態が生じ、始動コンデンサ3から補助コイル2へ電流が流れる。
 次に、電圧監視回路32は、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えたか否かを判定する。また、電流監視回路33は、補助コイル2の通電電流Iaがゼロを通過したか否か(あるいは略ゼロであるか否か)を判定する(ステップ707)。
 補助コイル電流Iaがゼロを通過した場合、CPU34はトライアック4のゲートをオフにする(ステップ708)。一方、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えた場合に、CPU34はトライアック4のゲート信号Irをオフにする(ステップ709)。また、補助コイル電流Iaがゼロを通過していない場合や、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えていない場合には、ステップ707へ戻る。
 そして、トライアック4のゲート信号がオフにされ、かつトライアック4のゲートがオフされた場合に、ガバナ回路6は補助コイル2への通電をオフにする(ステップ710)。
 ステップ703にて、タイマー回路36により第2所定期間経過したと判定された場合には、ステップ710へ進む。第2所定期間内に、モータは定格回転数に到達する。第2所定期間経過後、ステップ711から712ではモータの定常制御を行う。
 CPU34はトライアック4のゲート信号を常時オンにする(ステップ711)。トライアック4がオンにされると、補助コイル2は常時通電され、主コイル1及び補助コイル2を流れる電流によりモータを駆動する(ステップ712)。そして、モータは定格回転数を維持する。
 なお、他の実施形態においては、定常制御時にトライアック4のゲート信号を常時オフにしてもよい。この場合、補助コイル2は常時通電オフとなり、モータは主コイル1に流れる電流Imによる単独駆動となる。
 図8は、図7に示す動作を行った場合の、一実施形態による各種信号の波形を示す。図8は、主コイル1の電圧Vm波形(図8最上段)と、トライアック4のゲート信号Ir(図8第2段)と、補助コイル2の電流Ia波形(図8第3段)をそれぞれ示す。さらに図8は、制御電源31の電圧波形(図8第4段)、ガバナ回路6のオン、オフ(図8第5段)、モータの回転数(図8最下段)をそれぞれ示す。ガバナ回路6がオンしている第2所定期間内に、始動制御を行う。始動制御においては、トライアック4のゲート信号Irは、主コイル1の電圧Vmの大きさに応じてオン、オフを繰り返す。モータの回転数が定格に達し、第2所定期間経過後に、定常制御に移行する。定常制御においては、ガバナ回路6は常時オフにされ、トライアックのゲート信号は常時オンとなる。
 図9Aから図9Cは本技術の第三実施形態に係る、単相誘導電動機10のブロック図(図9A)、および図9Aに示す単相誘導電動機10における各種信号波形を示す図(図9Bおよび図9C)である。本実施形態に係る単相誘導電動機10は、第1の始動コンデンサ3に加えて、該第1の始動コンデンサ3に並列接続され、かつ補助コイル2に直列接続された1以上の始動コンデンサ(例えば、第2の始動コンデンサ7)を備える点で、図1に示す単相誘導電動機10と異なる。
 図9Aに示す単相誘導電動機10は、入力電源Fと、主コイル1と、補助コイル2と、第1の始動コンデンサ3と、第2の始動コンデンサ7と、第1ガバナ回路6と、ロータ8とを備える。主コイル1は入力電源Fに接続され、補助コイル2は主コイル1に並列に接続されている。第1の始動コンデンサ3は、補助コイル2に直列接続されている。第2の始動コンデンサ7は、第1の始動コンデンサ3と並列接続され、かつ補助コイル2に直列接続されている。第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間に接続されている。第1ガバナ回路6は、トライアック4(図1参照)のオン/オフを行うタイミングを適宜制御し、あたかも第1の始動コンデンサ3と補助コイル2の間の導通/非導通を切り替えるスイッチのように動作する。従って、第1ガバナ回路6は、図1に示すガバナ回路6と同一の構成を有するが、図9Aでは、スイッチとして示される。
<始動制御>
 第1ガバナ回路6は、始動制御時において、単相誘導電動機10の入力電源電圧Vの半周期未満の間に1回、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を周期的に繰り返す。そして、第1ガバナ回路6が、第1の始動コンデンサ3と補助コイル2との間を導通状態に遷移させたときに第1の始動コンデンサ3から補助コイル2に尖頭電流が流れるよう構成される。なお、第1ガバナ回路6は、図1に示すガバナ回路6と同様の動作をするため、ここでは詳細な動作説明は省略する。
 図9Bは、横軸を時間(t)として、上段に始動制御時における単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示し、下段に入力電源F(あるいは主コイル1の電圧Vm)の電圧Vの波形を示す。補助コイル2を流れる電流Iaは、ピークがシャープな形状の、周期的な波形を有する。図9Bに示す補助コイル2の電流Iaは、第1の始動コンデンサ3から補助コイル2へ流れる電流に、第2の始動コンデンサ7を流れる電流が加わっている。従って、本実施形態によると、図9Bに示すように、第2の始動コンデンサ7を流れる電流分だけ、図1に示す補助コイル2に流れる電流Iaよりも、電流Iaが大きくなる。従って、図1に示す単相誘導電動機10を用いたときに得られる始動トルクよりも、より大きな始動トルクを得ることができる。なお、入力電源Fのエネルギー(電源電力)に基づいて十分な始動トルクを得るために、入力電源Fの電圧V(主コイル1の電圧Vm)の絶対値が、所定の第1電圧vf1以上(例えば、電源電圧Vの絶対値のピーク電圧の約5分の1以上)のときに、補助コイル2を非導通状態から導通状態へ遷移させることが好ましい。
<定常制御>
 図9Cは、横軸を時間(t)として、定常制御時における図9Aに示す単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示す。第1の始動コンデンサ3と補助コイル2との間が常時導通状態である場合(すなわち、第1ガバナ回路6のトライアック4のゲート信号Ir(図1参照)が常時オンの場合)、図9Cに示すように、主コイル1には電流Imが、補助コイルIaには電流Iaが流れる。電流Iaは、第1の始動コンデンサ3により、電流Imに対し約4分の1周期位相が進んでいる。単相誘導電動機10は、主コイル1の電流Imと、補助コイル2の電流Iaとにより駆動される。このとき、補助コイル2の電流Iaは、第1の始動コンデンサ3と、第2の始動コンデンサ7とを流れる電流の合計となる。一方、第1の始動コンデンサ3と補助コイル2との間が常時非導通状態である場合、単相誘導電動機10は、第2の始動コンデンサ7を流れる電流のみからなる補助コイル2の電流Iaと、主コイル1の電流Imとにより駆動される。
 本実施形態においては、定常制御時に、第1ガバナ回路6を用いて、第1の始動コンデンサ3と補助コイル2との間の導通状態(常時導通状態、常時非導通状態)を、適宜選択することができる。すなわち、定常制御時において、補助コイル2に接続される始動コンデンサの数(コンデンサ容量)を適宜選択することができる。
 図10Aから図10Cは本技術の第四実施形態に係る、単相誘導電動機10のブロック図(図10A)および、図10Aに示す単相誘導電動機10における各種信号波形を示す図(図10Bおよび図10C)である。本実施形態に係る単相誘導電動機10は、第1ガバナ回路6に加え、さらに1以上のガバナ回路(例えば、図10Aの第2ガバナ回路9)を備える点で、図9Aに示す単相誘導電動機10と異なる。該1以上のガバナ回路のそれぞれは、第1の始動コンデンサ3に並列接続された1つの始動コンデンサと、補助コイル2との間に接続される。図10Aに示す単相誘導電動機10と同等の構成については説明を省略する。
<始動制御>
 図10Aは始動制御時における単相誘導電動機10のブロック図の一例である。図10Aに示す単相誘導電動機10は、第2ガバナ回路9を備える。第2ガバナ回路9は、第1の始動コンデンサ3に並列接続された第2の始動コンデンサ7と、補助コイル2との間に接続されている。第2ガバナ回路9は、第2の始動コンデンサ7から補助コイル2に供給される電流の制御を行うよう構成される。第2ガバナ回路9は、図9Aに示す第1ガバナ回路6と同様に、始動制御時において、単相誘導電動機10の入力電源電圧Vの半周期未満の間に1回、第2の始動コンデンサ7と補助コイル2との間を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を周期的に繰り返す。本実施形態では、一例として、第1ガバナ回路6と第2ガバナ回路9のオン/オフのタイミングが異なるように制御する。
 図10Bは、横軸を時間(t)として、上段に始動制御時における単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示し、下段に入力電源Fの電圧Vの波形を示す。横軸の時間(t)のスケールは各段同じである。図10Bでは、入力電源電圧Vの半周期未満の間に、補助コイル2の電流Iaに2回のピークが断続的に生じている。電流Iaの1つのピークは、第1ガバナ回路6が、第1の始動コンデンサ3と補助コイル2の間を非導通状態から導通状態へ遷移させるタイミングで生じ、他の1つのピークは、第2ガバナ回路9が第2の始動コンデンサ7と補助コイル2の間を非導通状態から導通状態へ遷移させるタイミングで生じる。
 本実施形態においては、第1ガバナ回路6と、第2ガバナ回路9とを用いて、入力電源電圧Vの半周期未満の間に、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングを、第2の始動コンデンサ7と補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングと異ならせる。これにより、入力電源電圧Vの半周期未満の間に2つの電流Iaのピークを生じさせることができ、単相誘導電動機10の単位時間当たりの最大トルク維持時間を長くすることができる。その結果、単位時間当たりの単相誘導電動機10の始動トルク量を増大することができる。なお、各始動コンデンサと補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングを同じにしてもよい。この場合、入力電源電圧Vの半周期未満の間に、電流Iaに1回のピークが生じる。そして、電流Iaのピークの大きさは、2つの始動コンデンサの各々から補助コイル2へ流れる電流を合計した値となる。
 このように、本実施形態においては、入力電源電圧Vの半周期未満の間に、各始動コンデンサと補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングを適宜選択することができる。複数のガバナ回路をそれぞれ非導通状態から導通状態へ遷移させるタイミングを適宜選択することで、入力電源電圧Vの半周期未満の間に生じるピークの間隔、ピークの数、ピークの大きさを調整することができ、その結果、ロータ8の回転運動の仕方を適宜調整することができる。
 なお、入力電源Fの電圧Vの絶対値が、所定の第1電圧vf1以上、例えば、電源電圧Vの絶対値のピーク電圧の約5分の1以上の間に、第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態に遷移させ、第2ガバナ回路9は、第2の始動コンデンサ7と補助コイル2との間を非導通状態から導通状態に遷移させることが好ましい。
 また、第1の始動コンデンサ3の容量と、第2の始動コンデンサ7の容量とは任意に選択可能である。第1の始動コンデンサ3の容量と、第2の始動コンデンサ7の容量とを適宜選択することで、入力電源電圧Vの半周期未満の間に生じる補助コイル2の電流Iaのピークの大きさを調整することができ、その結果、ロータ8の回転運動の仕方を調整することができる。
 <定常制御>
 図10Cは、横軸を時間(t)として、定常制御時における図10Aに示す単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示す図である。例えば、第1の始動コンデンサ3と補助コイル2との間が常時導通状態(すなわち、第1ガバナ回路6のトライアック4のゲート信号Ir(図1参照)が常時オン)であり、第2の始動コンデンサ7と補助コイル2との間が常時非導通状態(すなわち、第2ガバナ回路9のトライアックのゲート信号が常時オフ)あるいは常時導通状態(すなわち、第2ガバナ回路9のトライアックのゲート信号が常時オン)である場合には、図10Cに示すように、主コイル1には電流Imが流れ、補助コイルIaには、電流Imに対し約4分の1周期位相の進んだ電流Iaが流れる。なお、第2の始動コンデンサ7と補助コイル2との間が常時非導通状態のとき、補助コイル2の電流Iaは、第1の始動コンデンサ3のみを流れる電流となる。そして、単相誘導電動機10は、定常制御時に補助コイル2の電流Iaと主コイル1の電流Imとにより駆動される。
 一方、例えば、第1の始動コンデンサ3と補助コイル2との間が常時非導通状態であり、第2の始動コンデンサ9と補助コイル2との間が常時非導通状態である場合、第1の始動コンデンサ3と、第2の始動コンデンサ7とは共に単相誘導電動機10の回路から切り離される。従って、単相誘導電動機10は、主コイル1の電流Imによる単相駆動となる。
 本実施形態においては、定常制御時において、第1ガバナ回路6を用いて第1の始動コンデンサ3と補助コイル2との間の導通状態(常時導通状態、常時非導通状態)を適宜選択し、また、第2ガバナ回路9を用いて第2の始動コンデンサ7と補助コイル2との間の導通状態(常時導通状態、常時非導通状態)を適宜選択することができる。これにより、定常制御時において、補助コイル2に接続される始動コンデンサの数(コンデンサ容量)を適宜選択することができる。
 図11A~図11Cは本技術の第五実施形態に係る、単相誘導電動機10のブロック図(図11Aおよび図11B)および、該単相誘導電動機10における各種信号波形を示す図(図11C)である。図11A及び図11Bに示すように、本実施形態に係る単相誘導電動機10は、主コイル1と補助コイル2との間を、第1の始動コンデンサ3を介さずに直接接続可能なパス11を備える点で、図1に示す単相誘導電動機10と異なる。パス11は、第1ガバナ回路6と、主コイル1との間を直接接続可能に構成される。また、第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間、あるいはパス11と補助コイル2との間を切り替え可能に構成される。すなわち第1ガバナ回路6は、一端を補助コイル2に接続され、他端は、パス11、あるいは第1の始動コンデンサ3に接続可能である。従って、第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間の導通/非導通の切り替えに加えて、第1の始動コンデンサ3を介さずに主コイル1と補助コイル2とを直接導通させるかを切り替えるように構成される。
<始動制御>
 図11Aは始動制御時における単相誘導電動機10のブロック図である。始動制御時においては、第1ガバナ回路6は、パス11に接続されない。第1ガバナ回路6は、単相誘導電動機10の入力電源電圧Vの半周期未満の間に1回、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を周期的に繰り返す。そして、第1ガバナ回路6が、第1の始動コンデンサ3と補助コイル2との間を導通状態に遷移させたときに第1の始動コンデンサ3から補助コイル2に尖頭電流が流れるよう構成される。すなわち、始動制御時において、本実施形態にかかる第1ガバナ回路6は、図1に示すガバナ回路6と同様の動作をする。従って、始動制御時における、補助コイル2を流れる電流Iaの波形は、図2Aに示す補助コイル2電流Iaの波形と同じである。
<定常制御>
 図11Bは本実施形態に係る定常制御時における単相誘導電動機10のブロック図であり、図11Cは、定常制御時における単相誘導電動機10における各種信号波形を示す図である。定常制御時において、第1ガバナ回路6は、パス11に常時接続され、第1の始動コンデンサ3を単相誘導電動機10の回路から切り離し、補助コイル2のみを主コイル1と並列接続する。この場合、第1の始動コンデンサ3は補助コイル2に接続されていないので、主コイル1のインピーダンスと、補助コイル2のインピーダンスが同じであれば、補助コイル2の電流Iaと、主コイル1の電流Imとは同相となる。本実施形態においては、主コイルに流れる電流Imと補助コイル2に流れる電流Iaとの間に位相差を設けるために、主コイル1のインピーダンスと、補助コイル2のインピーダンスに差を設ける。電流の位相は、コイルのインピーダンスに応じて決定されるため、主コイル1のインピーダンスと、補助コイル2のインピーダンスに差を設ける(例えば、主コイル1の巻き数を補助コイル2の巻き数よりも大きくし、主コイル1のインピーダンスを補助コイル2のインピーダンスよりも大きくする)ことで、主コイルに流れる電流Imと補助コイル2に流れる電流Iaとの間に位相差を生じさせることができる。そして、単相誘導電動機10は、図11Cに示される位相差のある補助コイル2の電流Iaと主コイル1の電流Imにより駆動される。本実施形態においては、始動コンデンサを利用せずに、コイルのもつインピーダンスの差を利用して、補助コイル2の電流Iaと主コイル1の電流Imに位相差を設けて、回転磁界をつくり、単相誘導電動機10を駆動することができる。
 なお、図11A、Bは第1ガバナ回路6を略式的に描いたものである。第1ガバナ回路6はより詳細には図11Dに示されるように構成される。2つのトライアック4(第1トライアック4a及び第2トライアック4b)は、主コイル1と並列に、補助コイル2に直列にそれぞれ接続される。第1トライアック4aは、第1の始動コンデンサ3と補助コイル2の間に接続され、第2トライアック4bは、パス11と補助コイル2の間に接続される。制御回路5は、第1トライアック4a、および第2トライアック4bのオン/オフを行うタイミングをそれぞれ適宜制御する。始動制御時において制御回路5は、第1の始動コンデンサ3から補助コイル2に尖頭電流が流れるように第1トライアック4aのオン/オフを制御すると共に、第2トライアック4bを常時オフに制御する。また、定常性制御時において、制御回路5は、第1トライアック4aを常時オフに制御すると共に、第2トライアック4bを常時オンに制御する。
1…主コイル、2…補助コイル、3…(第1の)始動コンデンサ、4…トライアック、5…制御回路、6…(第1)ガバナ回路、7…第2の始動コンデンサ、8…ロータ、9…第2ガバナ回路、10…コンデンサ始動型単相誘導電動機、31…制御電源、32…電圧監視回路、33…電流監視回路、35…ダイオード、36…タイマー回路

Claims (20)

  1.  単相誘導電動機であって,
     主コイルと、
     前記主コイルに並列接続された補助コイルと、
     前記補助コイルに直列接続されたコンデンサと、
     前記コンデンサから前記補助コイルに供給される電流の制御を行うガバナ回路と
     を備え、
     前記ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記コンデンサから前記補助コイルに電流が流れる、単相誘導電動機。
  2.  前記ガバナ回路は、
     前記補助コイルに直列接続されたトライアックと、
     前記トライアックに接続され、前記トライアックのゲート信号を生成する制御回路と
    を備え、前記ゲート信号に基づいて前記トライアックを切替え制御することによって前記始動制御を行う請求項1に記載の単相誘導電動機。
  3.  前記非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を、
     前記入力電源電圧の半周期の間に1回、
     前記入力電源電圧の1周期の間に、前記入力電源電圧が正及び負のときに各1回であわせて2回、
     前記入力電源電圧の1周期の間に、前記入力電源電圧が正又は負のときに1回、または
     前記入力電源電圧の所定数周期の間に1回、
     繰り返すよう、前記ガバナ回路は設定されている、請求項1に記載の単相誘導電動機。
  4.  前記ガバナ回路は、前記単相誘導電動機に電源が投入されてから前記単相誘導電動機が所定の回転速度に到達するまでの期間に前記始動制御を行い、単相誘導電動機が前記所定の回転速度に到達したのちは、定常制御を行うよう構成された請求項1に記載の単相誘導電動機。
  5.  前記定常制御において、前記補助コイルは常時導通状態にされる、請求項4に記載の単相誘導電動機。
  6.  前記定常制御において、前記補助コイルは常時非導通状態にされる、請求項4に記載の単相誘導電動機。
  7.  前記ガバナ回路は、前記始動制御において、前記入力電源電圧の絶対値が所定の電圧以上になると前記補助コイルを非導通状態から導通状態に遷移させ,前記コンデンサと前記補助コイルによる共振電流が略ゼロとなったときに再び非導通状態に遷移させる、請求項1に記載の単相誘導電動機。
  8.  前記ガバナ回路は、入力電源電圧が供給されてから,所定期間、前記始動制御を行い、前記所定時間経過後は前記定常制御に移行する、請求項1に記載の単相誘導電動機
  9.  前記単相誘導電動機のロータが停止時の前記補助コイルと前記コンデンサで構成される共振回路の共振周波数が、前記入力電源電圧の周波数の2倍以上になるように、前記コンデンサの静電容量が設定されている請求項1から8記載の単相誘導電動機。
  10.  前記補助コイルに直列接続されたトライアックのゲート信号は、前記所定の電圧が前記入力電源電圧のピーク電圧の5分の1以上のときにオンされる、請求項7に記載の単相誘導電動機。
  11.  前記トライアックは、前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧にほぼ等しいときにオフにされる、請求項2に記載の単相誘導電動機。
  12.  前記トライアックのゲート信号をオンにしてからオフにするまでの期間は、前記補助コイルと前記コンデンサで構成される共振回路の共振周期の半周期よりも短い、請求項2に記載の単相誘導電動機。
  13.  単相誘導電動機であって,
     主コイルと、
     前記主コイルに並列接続された補助コイルと、
     前記補助コイルに直列接続された第1コンデンサと、
     前記第1コンデンサに並列接続され、かつ前記補助コイルに直列接続された第2コンデンサと、
     前記第1コンデンサと前記補助コイルとの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第1ガバナ回路と、
     を備え、
     前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成される、単相誘導電動機。
  14.  請求項13に記載の単相誘導電動機であって、前記第1ガバナ回路は、定常制御において、前記第1コンデンサと前記補助コイルとの間を常時導通状態とする、あるいは常時非導通状態とする、単相誘導電動機。
  15.  請求項13に記載の単相誘導電動機であって、
     前記第2コンデンサと、前記補助コイルとの間に接続され、前記第2コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第2ガバナ回路と
     をさらに備え、
     前記第2ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第2コンデンサから前記補助コイルに電流が流れる、単相誘導電動機。
  16.  請求項15に記載の単相誘導電動機であって、
     前記単相誘導電動機の前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧の5分の1以上の間に、前記第1ガバナ回路は、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させ、前記第2ガバナ回路は、前記第2コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させる、単相誘導電動機。
  17.  請求項15または請求項16に記載の単相誘導電動機であって、
     前記第1ガバナ回路が、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させるタイミングと、前記第2ガバナ回路が、前記第2コンデンサと補助コイルとの間を非導通状態から導通状態に遷移させるタイミングとは異なる、単相誘導電動機。
  18.  請求項15から請求項17のいずれか1項に記載の単相誘導電動機であって、前記第1コンデンサの容量と、前記第2コンデンサの容量とは任意に選択可能である、単相誘導電動機。
  19.  単相誘導電動機であって,
     主コイルと、
     前記主コイルに並列接続された補助コイルと、
     前記補助コイルに直列接続された第1コンデンサと、
     前記第1コンデンサと、前記補助コイルの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うように構成された第1ガバナ回路と、
    を備え、
     前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成される、単相誘導電動機。
  20.  請求項19に記載の単相誘導電動機であって、
     前記第1ガバナ回路と前記主コイルとの間を接続可能なパスをさらに備え、
     前記第1ガバナ回路は、定常制御において、前記パスに常時接続され、それにより前記主コイルと、前記主コイルと異なるインピーダンスを有する前記補助コイルとの間を直接導通させる、単相誘導電動機。
PCT/JP2017/018617 2016-06-20 2017-05-18 単相誘導電動機 WO2017221595A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17815065.2A EP3474435A4 (en) 2016-06-20 2017-05-18 SINGLE-PHASE INDUCTION MOTOR

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016121622 2016-06-20
JP2016-121622 2016-06-20
JP2017028276A JP6908236B2 (ja) 2016-06-20 2017-02-17 単相誘導電動機
JP2017-028276 2017-02-17

Publications (1)

Publication Number Publication Date
WO2017221595A1 true WO2017221595A1 (ja) 2017-12-28

Family

ID=60783200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018617 WO2017221595A1 (ja) 2016-06-20 2017-05-18 単相誘導電動機

Country Status (1)

Country Link
WO (1) WO2017221595A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4723608U (ja) * 1971-04-02 1972-11-16
JPS5752389A (en) * 1980-09-16 1982-03-27 Hitachi Ltd Starting circuit for split-phase capacitor run motor
JPS5910179A (ja) * 1982-07-08 1984-01-19 Taitetsuku:Kk 単相インダクシヨンモ−タの起動回路
US20060097687A1 (en) * 2004-10-22 2006-05-11 Byrnes Howard P Jr Variable speed motor control circuit
JP2012115034A (ja) 2010-11-24 2012-06-14 Tsubaki Emerson Co 単相モータの逆回転防止方法及び単相モータ制御回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4723608U (ja) * 1971-04-02 1972-11-16
JPS5752389A (en) * 1980-09-16 1982-03-27 Hitachi Ltd Starting circuit for split-phase capacitor run motor
JPS5910179A (ja) * 1982-07-08 1984-01-19 Taitetsuku:Kk 単相インダクシヨンモ−タの起動回路
US20060097687A1 (en) * 2004-10-22 2006-05-11 Byrnes Howard P Jr Variable speed motor control circuit
JP2012115034A (ja) 2010-11-24 2012-06-14 Tsubaki Emerson Co 単相モータの逆回転防止方法及び単相モータ制御回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474435A4 *

Similar Documents

Publication Publication Date Title
WO2010130978A1 (en) A motor controller and related method
CN105375831B (zh) 永磁电机驱动电路
WO2015154697A1 (zh) 排水泵用直流无刷电动机系统、及其控制方法和控制装置
JP6168421B2 (ja) 電力変換装置、電力変換方法、モータシステム
JP2013225998A (ja) 整流回路及び、それを用いたモータ駆動装置
CN101242144B (zh) 一种控制dc-dc转换器的方法
Khedkar et al. Comparative study of asymmetric bridge and split AC supply converter for switched reluctance motor
CN109660158B (zh) 电机恒速控制电路及方法
CN108880352B (zh) 永磁同步电机反电动势调平衡装置及方法
WO2017221595A1 (ja) 単相誘導電動機
JP6908236B2 (ja) 単相誘導電動機
CN109578310B (zh) 风扇转速控制电路
Wijaya et al. Reducing induction motor starting current using magnetic energy recovery switch (MERS)
JP6994698B2 (ja) 単相誘導電動機
Darbali-Zamora et al. Single phase induction motor alternate start-up and speed control method for renewable energy applications
KR102246884B1 (ko) 전력 변환 회로
JP2018014876A (ja) モータ駆動回路、モータを駆動方法、及びこれを利用するモータ
CN104836491B (zh) 一种无电容直流变换器无刷直流电机驱动系统
KR102299110B1 (ko) 전력 변환 회로
US20130181641A1 (en) Unipolar switching apparatus of switched reluctance motor
CN105790647B (zh) 一种永磁无刷直流电机驱动系统
WO2013151446A1 (en) Electromagnetic field energy recycling
JP7473121B2 (ja) 単相誘導電動機
Vijayaragavan et al. Universal R-dump converter for switched reluctance motor-realisation using bidirectional switches
Wang et al. Commutation Torque Ripple Suppression of BLDCM Based on Quasi-Y-Source Net

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815065

Country of ref document: EP

Effective date: 20190121