JP6908236B2 - 単相誘導電動機 - Google Patents

単相誘導電動機 Download PDF

Info

Publication number
JP6908236B2
JP6908236B2 JP2017028276A JP2017028276A JP6908236B2 JP 6908236 B2 JP6908236 B2 JP 6908236B2 JP 2017028276 A JP2017028276 A JP 2017028276A JP 2017028276 A JP2017028276 A JP 2017028276A JP 6908236 B2 JP6908236 B2 JP 6908236B2
Authority
JP
Japan
Prior art keywords
auxiliary coil
induction motor
phase induction
capacitor
governor circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017028276A
Other languages
English (en)
Other versions
JP2017229225A (ja
Inventor
大山 敦
敦 大山
吉田 俊哉
俊哉 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tokyo Denki University
Original Assignee
Ebara Corp
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Tokyo Denki University filed Critical Ebara Corp
Priority to EP17815065.2A priority Critical patent/EP3474435A4/en
Priority to PCT/JP2017/018617 priority patent/WO2017221595A1/ja
Publication of JP2017229225A publication Critical patent/JP2017229225A/ja
Application granted granted Critical
Publication of JP6908236B2 publication Critical patent/JP6908236B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • H02P1/445Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor by using additional capacitors switched at start up

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本技術は、単相誘導電動機に関する。
単相誘導電動機は、多くの分野、例えば、ポンプや、コンプレッサ、空調装置に利用されている。単相誘導電動機の一つに、始動コンデンサを用いたコンデンサ始動型単相誘導電動機がある。このコンデンサは、単相誘導電動機の始動工程で、主コイル及び補助コイルに適当な電圧を供給するために用いられる。従来、コンデンサ始動型単相誘導電動機の始動トルクを得るために様々な手法が用いられてきた。例えば、始動トルクを得るために容量の大きな始動コンデンサを用いることがあった。また、例えば、特許文献1に記載の技術では、2つの並列接続されたコンデンサを用いて、始動時には高い静電容量を確保して始動トルクを得ることがあった。
特開2012−115034号公報
しかしながら、モータが定格回転数に到達すると、コンデンサとそれに接続されたコイルは損失部材として働き、モータの駆動効率を低下させる。従って、始動トルクを大きくするためにコンデンサの容量を増やすと、定格回転数運転時の誘導電動機の駆動効率は低下する。本技術は、上記課題に鑑みてなされたものであり、その目的の一つは、コンデンサ始動型単相誘導電動機において、定格回転数運転時の損失を低減し、駆動効率を改善することにある。
また、特許文献1における構成では、コンデンサが複数必要となる。本技術の他の目的の一つは、単相誘導電動機において、経済的に始動トルクを得ることにある。
本技術は、上述の課題の少なくとも一部を少なくとも部分的に解決することを意図している。
第1の形態によれば、主コイルと、前記主コイルと並列接続された補助コイルと、前記補助コイルに直列接続されたコンデンサと、前記コンデンサから前記補助コイルに供給される電流の制御を行うガバナ回路とを備え、前記ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記コンデンサから前記補助コイルに電流が流れる、単相誘導電動機を特徴とする。
この一形態によれば、ガバナ回路の非導通状態、導通状態の遷移を周期的に制御することにより、始動コンデンサの容量と、補助コイルのインピーダンスで確定する共振状態を作り出し、始動時の励磁電流を増加させることができる。これにより単相誘導電動機において大きな始動トルクを得ることができる。
第2の形態によれば、前記ガバナ回路は、前記補助コイルに直列接続されたトライアックと、前記トライアックに接続され、前記トライアックのゲート信号を生成する制御回路
とを備え、前記ゲート信号に基づいて前記トライアックを切替え制御することによって前記始動制御を行う第1の形態に記載の単相誘導電動機を特徴とする。
第3の形態によれば、前記非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を前記入力電源電圧の半周期の間に1回、前記入力電源電圧の1周期の間に、前記入力電源電圧が正及び負のときに各1回であわせて2回、前記入力電源電圧の1周期の間に、前記入力電源電圧が正又は負のときに1回、または前記入力電源電圧の所定数周期の間に1回、繰り返すよう、前記ガバナ回路は設定されている、第1の形態に記載の単相誘導電動機を特徴とする。
この一形態によれば、補助コイルの遷移動作が生ずる周期を適宜設定することで、始動コンデンサに蓄えられる電荷量を変化させることができる。
第4の形態によれば前記ガバナ回路は、前記単相誘導電動機に電源が投入されてから前記単相誘導電動機が所定の回転速度に到達するまでの期間に前記始動制御を行い、単相誘導電動機が前記所定の回転速度に到達したのちは、定常制御を行うよう構成された第1の形態に記載の単相誘導電動機を特徴とする。
この一形態によれば、始動制御においては始動コンデンサの容量を増やすことなく、始動トルクを得ている。従って、容量性負荷として働く始動コンデンサの影響を抑えて、定常制御時のモータの駆動効率を改善することができる。
第5の形態によれば前記定常制御において、前記補助コイルは常時導通状態にされる、第4の形態に記載の単相誘導電動機を特徴とする。
第6の形態によれば前記定常制御において、前記補助コイルは常時非導通状態にされる、第4の形態に記載の単相誘導電動機を特徴とする。
この一形態によれば、定常制御時において、始動コンデンサは単相誘導電動機の回路から切り離されている。従って容量性負荷として働く始動コンデンサによる影響はなく、定常制御時のモータの駆動効率を改善することができる。
第7の形態によれば前記ガバナ回路は、前記始動制御において、前記入力電源電圧の絶対値が所定の電圧以上になると前記補助コイルを非導通状態から導通状態に遷移させ、前記コンデンサと前記補助コイルによる共振電流が略ゼロとなったときに再び非導通状態に遷移させる、第1の形態に記載の単相誘導電動機を特徴とする。
第8の形態によれば、前記ガバナ回路は、入力電源電圧が供給されてから所定期間、前記始動制御を行い、前記所定時間経過後は前記定常制御に移行する、第1の形態に記載の単相誘導電動機を特徴とする。
第9の形態によれば前記単相誘導電動機のロータが停止時の前記補助コイルと前記コンデンサで構成される共振回路の共振周波数が、前記入力電源電圧の周波数の2倍以上になるように、前記コンデンサの静電容量が設定されている第1から8の形態に記載の単相誘導電動機を特徴とする。
この一形態によれば、始動コンデンサの静電容量と補助コイルのインダクタンスにより確定される共振周波数を適宜設定することができる。これにより、始動コンデンサの容量で確定される共振周波数に基づいて界磁コイルに尖頭電流を発生させ、瞬時始動トルクを大きくすることができる。
第10の形態によれば、前記補助コイルに直列接続されたトライアックのゲート信号は
、前記所定の電圧が、前記入力電源電圧のピーク電圧の5分の1以上のときにオンされる、第7の形態に記載の単相誘導電動機を特徴とする。
第11の形態によれば、前記トライアックは、前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧にほぼ等しいときにオフにされる、第2の形態に記載の単相誘導電動機を特徴とする。
第12の形態によれば、前記トライアックのゲート信号をオンにしてからオフにするまでの期間は、前記補助コイルと前記コンデンサで構成される共振回路の共振周期の半周期よりも短い、第2の形態に記載の単相誘導電動機を特徴とする。
第13の形態によれば、単相誘導電動機であって,主コイルと、前記主コイルに並列接続された補助コイルと、前記補助コイルに直列接続された第1コンデンサと、前記第1コンデンサに並列接続され、かつ前記補助コイルに直列接続された第2コンデンサと、前記第1コンデンサと前記補助コイルとの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第1ガバナ回路と、を備え、前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成される、単相誘導電動機を特徴とする。
この一形態によれば、始動制御時に、第2コンデンサにより、単相誘導電動機の始動トルクを大きくすることが可能になる。
第14の形態によれば、第13の形態に記載の単相誘導電動機であって、前記第1ガバナ回路は、定常制御において、前記第1コンデンサと前記補助コイルとの間を常時導通状態とする、あるいは常時非導通状態とする、単相誘導電動機を特徴とする。
この一形態によれば、定常制御時に、第1ガバナ回路を用いて、補助コイル2に接続される始動コンデンサの数を適宜選択することができる。
第15の形態によれば、第13の形態に記載の単相誘導電動機であって、前記第2コンデンサと、前記補助コイルとの間に接続され、前記第2コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第2ガバナ回路とをさらに備え、前記第2ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第2コンデンサから前記補助コイルに電流が流れる、単相誘導電動機を特徴とする。
この一形態によれば、始動制御時に、第1コンデンサから補助コイルへ流れる尖頭電流に加えて、第2コンデンサから補助コイルへ流れる尖頭電流により、始動トルクを得ることができる。
第16の形態によれば、第15の形態に記載の単相誘導電動機であって、前記単相誘導電動機の前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧の5分の1以上の間に、前記第1ガバナ回路は、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させ、前記第2ガバナ回路は、前記第2コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させる、単相誘導電動機を特徴とする。
この一形態によれば、入力電源エネルギーから十分な始動トルクを得ることができる。
第17の形態によれば、第15または第16に記載の単相誘導電動機であって、前記第1ガバナ回路が、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させるタイミングと、前記第2ガバナ回路が、前記第2コンデンサと補助コイルとの間を非導通状態から導通状態に遷移させるタイミングとは異なる、単相誘導電動機を特徴とする。
この一形態によれば、入力電源電圧の半周期未満の間に、補助コイル2に流れる尖頭電流が2回以上流れることになる。その結果、単相誘導電動機の最大出力トルクが維持される期間を長くすることができる。
第18の形態によれば、第15から第17のいずれか1形態に記載の単相誘導電動機であって、前記第1コンデンサの容量と、前記第2コンデンサの容量とは任意に選択可能である、単相誘導電動機を特徴とする。
この一形態によれば、入力電源電圧の半周期未満の間に発生する補助コイルに流れる尖頭電流の大きさを変え、それによりロータの回転運動の仕方を適宜調整することができる。
第19の形態によれば、単相誘導電動機であって,主コイルと、前記主コイルに並列接続された補助コイルと、前記補助コイルに直列接続された第1コンデンサと、前記第1コンデンサと、前記補助コイルの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うように構成された第1ガバナ回路と、を備え、前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成される、単相誘導電動機、単相誘導電動機を特徴とする。
第20の形態によれば、第19の形態に記載の単相誘導電動機であって、前記第1ガバナ回路と前記主コイルとの間を接続可能なパスをさらに備え、前記第1ガバナ回路は、定常制御において、前記パスに常時接続され、それにより前記主コイルと、前記主コイルと異なるインピーダンスを有する前記補助コイルとの間を直接導通させる、単相誘導電動機を特徴とする。
本技術の一実施形態に係る、ガバナ回路を備えるコンデンサ始動型単相誘導電動機のブロック図を示す。 本技術の一実施形態に係る、始動制御時の入力電圧の波形、主コイル、補助コイルを流れる電流の波形、及びトライアックのゲート信号を示す。 本技術の一実施形態に係る、定常制御時の主コイル、補助コイルを流れる電流の波形、及びトライアックのゲート信号の一例を示す。 本技術の一実施形態に係る、定常制御時の主コイル、補助コイルを流れる電流の波形、及びトライアックのゲート信号の一例を示す。 本技術の第一実施形態に係る制御回路の回路図を示す。 図3に示す制御回路を用いた場合の、主コイル電圧の波形と、トライアックのゲート信号と、補助コイルに流れる電流の波形の一例を示す。 本技術の第二実施形態に係る制御回路の回路図を示す。 図5に示す制御回路を用いた場合の、主コイル電圧の波形と、トライアックのゲート信号と、補助コイルに流れる電流の波形の一例を示す。 本技術の一実施形態に係る、ガバナ回路等の動作フローチャートを示す。 図7に示す動作を行った場合に得られる各種信号の波形を示す。 本技術の第三実施形態に係る、始動制御時における単相誘導電動機のブロック図である。 本技術の第三実施形態に係る、始動制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第三実施形態に係る、定常制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第四実施形態に係る、始動制御時における単相誘導電動機のブロック図である。 本技術の第四実施形態に係る、始動制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第四実施形態に係る、定常制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第五実施形態に係る、始動制御時における単相誘導電動機のブロック図である。 本技術の第五実施形態に係る、定常制御時における単相誘導電動機のブロック図である。 本技術の第五実施形態に係る、定常制御時における単相誘導電動機の各種信号波形を示す図である。 本技術の第五実施形態に係る、始動制御時における単相誘導電動機のブロック図である。
以下、本技術の一実施形態に係るコンデンサ始動型の単相誘導電動機、及びその動作を図面に基づいて説明する。添付図面において、同一または類似の要素には同一または類似の参照符号が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
図1は、本技術の一実施形態に係るコンデンサ始動型単相誘導電動機10のブロック図を示す。図1に示すように、コンデンサ始動型単相誘導電動機10は、主コイル1と、補助コイル2と、該補助コイル2と直列に挿入された始動コンデンサ3及びトライアック4を備える。コンデンサ始動型単相誘導電動機10は、さらに制御回路5を備えている。該制御回路5は、交流の入力電源Fと、トライアック4の双方に接続されている。なお、本明細書において、トライアック4および制御回路5で構成される回路をガバナ回路6と称する。制御回路5(あるいはガバナ回路6)は、単相誘導電動機10の電源投入後、始動コンデンサ3から補助コイル2に供給される電流の制御を行い、これにより単相誘導電動機10の出力トルクを調節する。制御回路5(あるいはガバナ回路6)は、単相誘導電動機10のロータ(回転子)の回転数を監視している。単相誘導電動機10に電源が投入されてからロータの回転が所定の回転速度に達するまでの期間、ガバナ回路は補助コイル2の非導通状態/導通状態を遷移させる動作を繰り返す始動制御を行う。
<始動制御>
図2Aは、本技術の一実施形態による始動制御時の各種信号波形を示す。横軸を時間(t)として、最上段に、入力電源Fの電圧Vの波形を示し、上から第2段目に、当該入力電源電圧波形に対応する、始動制御時の主コイル1を流れる電流Imの波形を示す。また、図2Aは、第3段目に、始動制御時の補助コイル2を流れる電流Iaの波形を示し、最下段に始動制御時のトライアック4のゲート信号Ir波形を示す。横軸の時間(t)のスケールは各段同じである。補助コイル2に流れる電流Iaの位相は、主コイル1に流れる電流Imの位相に対し約4分の1周期(90°)進んでいる。
図2Aに示すように、補助コイル2に流れる電流Iaは、周期的なピークがシャープな形状の波形を有する。図2Aにおいて補助コイル2に流れる電流Iaの絶対値のピークは、入力電源電圧Vの半周期の間に1回現れている。補助コイル電流Iaは電源周波数と同じ基本波周波数を持つ。補助コイル2の電流Iaが流れる期間は、入力電源電圧Vの半周期未満である。補助コイル2の電流Iaが流れる期間は、例えば、図2Aにおいては電源電圧Vの半周期の約4分の3の期間である。さらに、補助コイル2に流れるピーク電流の絶対値は、主コイル1のピーク電流の絶対値よりもはるかに大きい(例えば、図2Aでは約3倍)。図2Aでは、補助コイル2に流れる電流Iaの絶対値は、流れ始めると急増して、主コイル1の電流Imの大きさが大凡ゼロの時点でピークに至り、その後急減して収束する。
制御回路5(あるいはガバナ回路6)は、始動制御時に補助コイル2へ尖頭電流を供給するため、始動制御時ではトライアック4のオン(ON)/オフ(OFF)を行うタイミングを適宜制御する。制御回路5は、入力電源Fの入力電源電圧Vを監視しており、入力電源電圧V(あるいは主コイル1の電圧Vm)の絶対値が所定の第1電圧vf1以上になると、トライアック4のゲート信号をオンにする。前記所定の第1電圧vf1は、電源電圧Vに対してある程度の大きさ、例えば、電源電圧Vの絶対値のピークの約5分の1以上が好ましい。入力電源エネルギーを始動トルクとして使うことができるためである。例えば、図2Aでは、トライアック4のゲート信号Irは、入力電源電圧Vの絶対値が、ほぼ最大の1/2のときにオンにされている。
ゲートオン信号によってトライアック4がオンにされると入力電源Fと補助コイル2との間が非導通から導通に遷移する。トライアック4がオンになった直後に、始動コンデンサ3と、補助コイル2により生じる共振状態により、始動コンデンサ3から補助コイル2へ電流が流れる。該電流の基本波成分は主コイル電流lmに対して、適切な位相差を持ち、且つ大きな振幅で供給されるため,単相誘導電動機10は大きな始動トルクを得る。
その後、次のタイミングでの尖頭電流の供給に備えるためトライアック4のゲート信号をオフにする。トライアック4のゲート信号をオンにしてからオフにするまでの期間は、共振電流を半周期で停止させるため、補助コイル2と始動コンデンサ3で構成される共振回路の共振周期の半周期より短く設定してもよい。
そして、トライアック4を流れる電流が略ゼロとなった時点で,トライアック4のゲートは完全にオフされ、次にトライアック4がオンにされるまでの期間、始動コンデンサ3は充電された状態を保っている。なお、トライアック4は、入力電源電圧Vの絶対値が大きい(例えば、電源電圧Vのピーク電圧にほぼ等しい)ときにオフにするのが好ましい。始動コンデンサ3に充電するエネルギーを大きくすることができるからである。
このように本実施形態では、トライアック4のオン、オフの切替えタイミングを周期的に制御することにより、始動コンデンサ3の容量と、補助コイル2のインピーダンスで共振状態を作り出し、始動時の励磁電流を増加させて単相誘導電動機の始動トルクを得る。トライアック4がオンにされてからオフに移行されるまでの期間を短くすることで、すなわちトライアック4がオフにされてから次にトライアック4がオンにされるまでの期間を長くすることで、始動コンデンサ3を十分に充電して、大きな始動トルクを得ることができる。
本実施形態では、さらに、始動コンデンサ3の静電容量と補助コイル2のインダクタンスにより定められる共振周波数を適宜設定することにより、界磁コイルに尖頭電流を発生させ、瞬時始動トルクを大きくすることができる。例えば、単相誘導電動機10のロータが停止しているときの補助コイル2と、始動コンデンサ3とで構成される共振回路の共振
周波数が入力電源Fの周波数の2倍以上になるように始動コンデンサ3の静電容量を設定する。
本実施形態では、さらにガバナ回路6に補助コイル2を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を行う周期を適宜選択することができる。例えば、ガバナ回路6は、当該遷移動作を、単相誘導電動機10の入力電源電圧Vの半周期の間に1回繰り返すよう選択してもよいし、入力電源電圧Vの1周期の間に、入力電源電圧Vが正及び負のときに各1回であわせて2回繰り返すよう選択してもよい。あるいはまた、当該遷移動作を、入力電源電圧Vの1周期の間に、該電圧が正又は負のときに1回、すなわち1周期の間に1回、あるいはまた所定数周期(例えば2周期)の間に1回繰り返すよう選択してもよい。遷移動作が生ずる周期を長くすることで、始動コンデンサ3はより多くの電荷を蓄えることができる。
本技術によると、始動コンデンサ3の容量を大きくすることなく、あるいは始動コンデンサ3を複数用いることなく、経済的にモータ始動時のトルクを増大することができる。
始動トルクにより単相誘導電動機10のロータが回転を始め、その回転数がある程度に達すると、単相誘導電動機10の回転数は定格回転数に到達する。制御回路5(あるいはガバナ回路6)は、定格回転数に到達後にトライアックのゲート信号Irを常時オン又は常時オフに制御する定常制御を行う。
<定常制御>
図2B及び図2Cはともに、定常制御時の単相誘導電動機10の主コイル1を流れる電流Imの波形(図上段)と、補助コイル2を流れる電流Iaの波形(図中段)と、トライアック4のゲート信号Ir波形(図下段)を示す。
図2Bでは、定常制御時でトライアック4のゲート信号Irは常時オンである。従って、定常制御時に補助コイル2は単相誘導電動機10の回路から切り離されることはない。単相誘導電動機10は補助コイル2の電流Iaと主コイル1の電流Imにより駆動される。本技術では、始動コンデンサ3の容量を増やすことなく始動トルクを得ているので、コンデンサ始動型単相誘導電動機10であっても、定常制御時のモータの駆動効率は大きく低下しない。
図2Cでは、定常制御時でトライアック4のゲート信号Irは常時オフである。従って、定常制御時に補助コイル2は誘導電動機10の回路から切り離されて、誘導電動機10は主コイル1に流れる電流Imによる単相駆動となる。本実施形態においては、モータが定格回転数に到達しても、始動コンデンサ3は非導通状態にあるため、始動コンデンサ3が容量性の損失部材として働くことはなく、始動コンデンサ3によるモータの駆動効率の低下は生じない。
<制御回路>
次に、図1に示した制御回路5について図3から図6を用いて詳細に説明する。
図3は、本技術の第一実施形態に係る制御回路5の回路図を示す。制御回路5は、制御電源31と、入力電源電圧Vを監視する電圧監視回路32と、補助コイル2の電流Iaを監視する電流監視回路33と、CPU(central processing unit)34と、ダイオード35を含む。制御回路5は入力側が電源Fに接続され、出力側が補助コイル2、及びトライアック4に接続されている。
制御電源31は、入力電源Fに接続されており、制御回路5を駆動する電力を提供する。CPU34は、電圧監視回路32及び電流監視回路33からの信号に基づいて、トライアック4のゲート信号Irを生成する。
電圧監視回路32は、始動制御時に、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたか否かを判定する。所定の第1電圧vf1を超えた場合に、CPU34は、電圧監視回路32からの信号に基づいてトライアック4のゲートオン信号を生成する。トライアック4がオンにされると、始動コンデンサ3は放電し、補助コイル2に励磁電流が流れる。これにより、電動機10は始動トルクを得ることができる。
また、電圧監視回路32は、始動制御時に、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えたか否かを判定する。所定の第2電圧vf2を超えた場合に、CPU34は、電圧監視回路32からの信号に基づいてトライアック4のゲートオフ信号を生成する。
電流監視回路33は、始動制御時に、補助コイル2への電流Iaが略ゼロであるか否かを判定する。補助コイル2への電流Iaが略ゼロである場合に、CPU34はトライアック4のゲートをオフする。トライアック4がオフされると、補助コイル2は非導通状態に遷移し、始動コンデンサ3は充電される。
図4は、図3に示す制御回路5を用いた場合の各種の信号波形を示す。図4は、主コイル1の電圧Vm波形(図4上段)と、トライアック4のゲート信号Ir波形(図4中段)と、補助コイル2の電流Iaの波形(図4下段)をそれぞれ示す。図3に関して述べたように、トライアック4は、主コイル1電圧Vmの絶対値が所定の第1電圧vf1を超えた場合にオンに制御される。その後、主コイル1電圧Vmの絶対値が所定の第2電圧vf2を超えた場合に、トライアック4のゲート信号Irがオフにされる。第2電圧vf2は、好ましくは、主コイル1電圧Vmの絶対値の大きい値(例えば、図4に示すように電源電圧Vmのピーク電圧にほぼ等しい値)に設定される。始動コンデンサ3に充電するエネルギーを大きくすることができるからである。トライアック4へのゲート信号Irがオフにされた後、補助コイル2への電流Iaが略ゼロの時点で、トライアック4はオフに制御される
図5は、本技術の第二実施形態に係る制御回路5の回路図を示す。制御回路5は、制御電源31と、入力電源Fの電圧を監視する電圧監視回路32と、CPU34と、ダイオード35を含む。CPU34はタイマー回路36を含む。制御回路5は入力側が電源Fに接続され、出力側がトライアック4に接続されている。CPU34は、電圧監視回路32からの信号、及びタイマー回路36からの信号に基づいて、トライアック4のゲート信号Irを生成する。
電圧監視回路32は、始動制御時に、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたか否かを判定する。所定の第1電圧vf1を超えた場合に、CPU34はトライアックのゲートオン信号を生成する。
タイマー回路36は、トライアック4のゲート信号Irがオンにされてからオフにするまでの時間を設定する。CPU34は、トライアック4のゲート信号がオンにされてから第1所定期間経過後に、トライアック4のゲートオフ信号を生成する。そして、補助コイル2への電流Iaが略ゼロの時点で、トライアック4はオフに制御される。
図6は、図5に示す制御回路5を用いた場合の一実施形態による各種信号波形を示す。図6は、主コイル1の電圧Vm波形(図6上段)と、トライアック4のゲート信号Ir(図6中段)と、補助コイル2の電流Ia波形(図6下段)をそれぞれ示す。図5に関して述べたように、トライアック4は、電圧Vmが所定の第1電圧vf1を超えた場合にオンに制御され、オンにされてから第1所定期間経過後に、トライアックへのゲート信号Irがオフに制御される。補助コイル電流Iaが略ゼロになるとトライアック4はオフに制御
される。
図7は、図3に示す制御回路5を用いた場合の、本技術の一実施形態に係るガバナ回路6等の動作フローチャートを示す。
まず、制御電源31が投入され、制御回路5を起動する。そして、主コイル1が通電する。(ステップ701)。
制御回路5が起動されると、タイマー回路36は、カウントを開始する(ステップ702)。本実施形態においては、タイマー回路36は、始動制御時に補助コイル2に電流を流すガバナ回路6をオンにしてからオフにするまでの第2所定期間を設定する。第2所定期間は、モータの回転数が定格に達するまでの期間に基づいて、例えば、定格回転数に達するまでの期間よりも長く設定される。
次に、タイマー回路36は、第2所定期間が経過したかを判定する(ステップ703)。ステップ703にて、第2所定期間経過していないと判定された場合には、ステップ704から710による始動制御を行う。
電圧監視回路32は、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたかを判定する(ステップ704)。ステップ704において、主コイル1の電圧Vmの絶対値が所定の第1電圧vf1を超えたと判定された場合に、CPU34は、トライアック4のゲート信号をオンにする(ステップ705)。トライアック4がオンにされると、補助コイル2が通電される(ステップ706)。補助コイル2が通電されると、始動コンデンサ3と、補助コイル2により共振状態が生じ、始動コンデンサ3から補助コイル2へ電流が流れる。
次に、電圧監視回路32は、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えたか否かを判定する。また、電流監視回路33は、補助コイル2の通電電流Iaがゼロを通過したか否か(あるいは略ゼロであるか否か)を判定する(ステップ707)。
補助コイル電流Iaがゼロを通過した場合、CPU34はトライアック4のゲートをオフにする(ステップ708)。一方、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えた場合に、CPU34はトライアック4のゲート信号Irをオフにする(ステップ709)。また、補助コイル電流Iaがゼロを通過していない場合や、主コイル1の電圧Vmの絶対値が所定の第2電圧vf2を超えていない場合には、ステップ707へ戻る。
そして、トライアック4のゲート信号がオフにされ、かつトライアック4のゲートがオフされた場合に、ガバナ回路6は補助コイル2への通電をオフにする(ステップ710)。
ステップ703にて、タイマー回路36により第2所定期間経過したと判定された場合には、ステップ710へ進む。第2所定期間内に、モータは定格回転数に到達する。第2所定期間経過後、ステップ711から712ではモータの定常制御を行う。
CPU34はトライアック4のゲート信号を常時オンにする(ステップ711)。トライアック4がオンにされると、補助コイル2は常時通電され、主コイル1及び補助コイル2を流れる電流によりモータを駆動する(ステップ712)。そして、モータは定格回転数を維持する。
なお、他の実施形態においては、定常制御時にトライアック4のゲート信号を常時オフ
にしてもよい。この場合、補助コイル2は常時通電オフとなり、モータは主コイル1に流れる電流Imによる単独駆動となる。
図8は、図7に示す動作を行った場合の、一実施形態による各種信号の波形を示す。図8は、主コイル1の電圧Vm波形(図8最上段)と、トライアック4のゲート信号Ir(図8第2段)と、補助コイル2の電流Ia波形(図8第3段)をそれぞれ示す。さらに図8は、制御電源31の電圧波形(図8第4段)、ガバナ回路6のオン、オフ(図8第5段)、モータの回転数(図8最下段)をそれぞれ示す。ガバナ回路6がオンしている第2所定期間内に、始動制御を行う。始動制御においては、トライアック4のゲート信号Irは、主コイル1の電圧Vmの大きさに応じてオン、オフを繰り返す。モータの回転数が定格に達し、第2所定期間経過後に、定常制御に移行する。定常制御においては、ガバナ回路6は常時オフにされ、トライアックのゲート信号は常時オンとなる。
図9Aから図9Cは本技術の第三実施形態に係る、単相誘導電動機10のブロック図(図9A)、および図9Aに示す単相誘導電動機10における各種信号波形を示す図(図9Bおよび図9C)である。本実施形態に係る単相誘導電動機10は、第1の始動コンデンサ3に加えて、該第1の始動コンデンサ3に並列接続され、かつ補助コイル2に直列接続された1以上の始動コンデンサ(例えば、第2の始動コンデンサ7)を備える点で、図1に示す単相誘導電動機10と異なる。
図9Aに示す単相誘導電動機10は、入力電源Fと、主コイル1と、補助コイル2と、第1の始動コンデンサ3と、第2の始動コンデンサ7と、第1ガバナ回路6と、ロータ8とを備える。主コイル1は入力電源Fに接続され、補助コイル2は主コイル1に並列に接続されている。第1の始動コンデンサ3は、補助コイル2に直列接続されている。第2の始動コンデンサ7は、第1の始動コンデンサ3と並列接続され、かつ補助コイル2に直列接続されている。第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間に接続されている。第1ガバナ回路6は、トライアック4(図1参照)のオン/オフを行うタイミングを適宜制御し、あたかも第1の始動コンデンサ3と補助コイル2の間の導通/非導通を切り替えるスイッチのように動作する。従って、第1ガバナ回路6は、図1に示すガバナ回路6と同一の構成を有するが、図9Aでは、スイッチとして示される。
<始動制御>
第1ガバナ回路6は、始動制御時において、単相誘導電動機10の入力電源電圧Vの半周期未満の間に1回、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を周期的に繰り返す。そして、第1ガバナ回路6が、第1の始動コンデンサ3と補助コイル2との間を導通状態に遷移させたときに第1の始動コンデンサ3から補助コイル2に尖頭電流が流れるよう構成される。なお、第1ガバナ回路6は、図1に示すガバナ回路6と同様の動作をするため、ここでは詳細な動作説明は省略する。
図9Bは、横軸を時間(t)として、上段に始動制御時における単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示し、下段に入力電源F(あるいは主コイル1の電圧Vm)の電圧Vの波形を示す。補助コイル2を流れる電流Iaは、ピークがシャープな形状の、周期的な波形を有する。図9Bに示す補助コイル2の電流Iaは、第1の始動コンデンサ3から補助コイル2へ流れる電流に、第2の始動コンデンサ7を流れる電流が加わっている。従って、本実施形態によると、図9Bに示すように、第2の始動コンデンサ7を流れる電流分だけ、図1に示す補助コイル2に流れる電流Iaよりも、電流Iaが大きくなる。従って、図1に示す単相誘導電動機10を用いたときに得られる始動トルクよりも、より大きな始動トルクを得ることができる。なお、入力電源Fのエネルギー(電源電力)に基づいて十分な始動トルクを得るた
めに、入力電源Fの電圧V(主コイル1の電圧Vm)の絶対値が、所定の第1電圧vf1以上(例えば、電源電圧Vの絶対値のピーク電圧の約5分の1以上)のときに、補助コイル2を非導通状態から導通状態へ遷移させることが好ましい。
<定常制御>
図9Cは、横軸を時間(t)として、定常制御時における図9Aに示す単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示す。第1の始動コンデンサ3と補助コイル2との間が常時導通状態である場合(すなわち、第1ガバナ回路6のトライアック4のゲート信号Ir(図1参照)が常時オンの場合)、図9Cに示すように、主コイル1には電流Imが、補助コイルIaには電流Iaが流れる。電流Iaは、第1の始動コンデンサ3により、電流Imに対し約4分の1周期位相が進んでいる。単相誘導電動機10は、主コイル1の電流Imと、補助コイル2の電流Iaとにより駆動される。このとき、補助コイル2の電流Iaは、第1の始動コンデンサ3と、第2の始動コンデンサ7とを流れる電流の合計となる。一方、第1の始動コンデンサ3と補助コイル2との間が常時非導通状態である場合、単相誘導電動機10は、第2の始動コンデンサ7を流れる電流のみからなる補助コイル2の電流Iaと、主コイル1の電流Imとにより駆動される。
本実施形態においては、定常制御時に、第1ガバナ回路6を用いて、第1の始動コンデンサ3と補助コイル2との間の導通状態(常時導通状態、常時非導通状態)を、適宜選択することができる。すなわち、定常制御時において、補助コイル2に接続される始動コンデンサの数(コンデンサ容量)を適宜選択することができる。
図10Aから図10Cは本技術の第四実施形態に係る、単相誘導電動機10のブロック図(図10A)および、図10Aに示す単相誘導電動機10における各種信号波形を示す図(図10Bおよび図10C)である。本実施形態に係る単相誘導電動機10は、第1ガバナ回路6に加え、さらに1以上のガバナ回路(例えば、図10Aの第2ガバナ回路9)を備える点で、図9Aに示す単相誘導電動機10と異なる。該1以上のガバナ回路のそれぞれは、第1の始動コンデンサ3に並列接続された1つの始動コンデンサと、補助コイル2との間に接続される。図10Aに示す単相誘導電動機10と同等の構成については説明を省略する。
<始動制御>
図10Aは始動制御時における単相誘導電動機10のブロック図の一例である。図10Aに示す単相誘導電動機10は、第2ガバナ回路9を備える。第2ガバナ回路9は、第1の始動コンデンサ3に並列接続された第2の始動コンデンサ7と、補助コイル2との間に接続されている。第2ガバナ回路9は、第2の始動コンデンサ7から補助コイル2に供給される電流の制御を行うよう構成される。第2ガバナ回路9は、図9Aに示す第1ガバナ回路6と同様に、始動制御時において、単相誘導電動機10の入力電源電圧Vの半周期未満の間に1回、第2の始動コンデンサ7と補助コイル2との間を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を周期的に繰り返す。本実施形態では、一例として、第1ガバナ回路6と第2ガバナ回路9のオン/オフのタイミングが異なるように制御する。
図10Bは、横軸を時間(t)として、上段に始動制御時における単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示し、下段に入力電源Fの電圧Vの波形を示す。横軸の時間(t)のスケールは各段同じである。図10Bでは、入力電源電圧Vの半周期未満の間に、補助コイル2の電流Iaに2回のピークが断続的に生じている。電流Iaの1つのピークは、第1ガバナ回路6が、第1の始動コンデンサ3と補助コイル2の間を非導通状態から導通状態へ遷移させるタイミン
グで生じ、他の1つのピークは、第2ガバナ回路9が第2の始動コンデンサ7と補助コイル2の間を非導通状態から導通状態へ遷移させるタイミングで生じる。
本実施形態においては、第1ガバナ回路6と、第2ガバナ回路9とを用いて、入力電源電圧Vの半周期未満の間に、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングを、第2の始動コンデンサ7と補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングと異ならせる。これにより、入力電源電圧Vの半周期未満の間に2つの電流Iaのピークを生じさせることができ、単相誘導電動機10の単位時間当たりの最大トルク維持時間を長くすることができる。その結果、単位時間当たりの単相誘導電動機10の始動トルク量を増大することができる。なお、各始動コンデンサと補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングを同じにしてもよい。この場合、入力電源電圧Vの半周期未満の間に、電流Iaに1回のピークが生じる。そして、電流Iaのピークの大きさは、2つの始動コンデンサの各々から補助コイル2へ流れる電流を合計した値となる。
このように、本実施形態においては、入力電源電圧Vの半周期未満の間に、各始動コンデンサと補助コイル2との間を非導通状態から導通状態へ遷移させるタイミングを適宜選択することができる。複数のガバナ回路をそれぞれ非導通状態から導通状態へ遷移させるタイミングを適宜選択することで、入力電源電圧Vの半周期未満の間に生じるピークの間隔、ピークの数、ピークの大きさを調整することができ、その結果、ロータ8の回転運動の仕方を適宜調整することができる。
なお、入力電源Fの電圧Vの絶対値が、所定の第1電圧vf1以上、例えば、電源電圧Vの絶対値のピーク電圧の約5分の1以上の間に、第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態に遷移させ、第2ガバナ回路9は、第2の始動コンデンサ7と補助コイル2との間を非導通状態から導通状態に遷移させることが好ましい。
また、第1の始動コンデンサ3の容量と、第2の始動コンデンサ7の容量とは任意に選択可能である。第1の始動コンデンサ3の容量と、第2の始動コンデンサ7の容量とを適宜選択することで、入力電源電圧Vの半周期未満の間に生じる補助コイル2の電流Iaのピークの大きさを調整することができ、その結果、ロータ8の回転運動の仕方を調整することができる。
<定常制御>
図10Cは、横軸を時間(t)として、定常制御時における図10Aに示す単相誘導電動機10の主コイル1に流れる電流Imの波形と、補助コイル2に流れる電流Iaの波形とを示す図である。例えば、第1の始動コンデンサ3と補助コイル2との間が常時導通状態(すなわち、第1ガバナ回路6のトライアック4のゲート信号Ir(図1参照)が常時オン)であり、第2の始動コンデンサ7と補助コイル2との間が常時非導通状態(すなわち、第2ガバナ回路9のトライアックのゲート信号が常時オフ)あるいは常時導通状態(すなわち、第2ガバナ回路9のトライアックのゲート信号が常時オン)である場合には、図10Cに示すように、主コイル1には電流Imが流れ、補助コイルIaには、電流Imに対し約4分の1周期位相の進んだ電流Iaが流れる。なお、第2の始動コンデンサ7と補助コイル2との間が常時非導通状態のとき、補助コイル2の電流Iaは、第1の始動コンデンサ3のみを流れる電流となる。そして、単相誘導電動機10は、定常制御時に補助コイル2の電流Iaと主コイル1の電流Imとにより駆動される。
一方、例えば、第1の始動コンデンサ3と補助コイル2との間が常時非導通状態であり、第2の始動コンデンサ9と補助コイル2との間が常時非導通状態である場合、第1の始
動コンデンサ3と、第2の始動コンデンサ7とは共に単相誘導電動機10の回路から切り離される。従って、単相誘導電動機10は、主コイル1の電流Imによる単相駆動となる。
本実施形態においては、定常制御時において、第1ガバナ回路6を用いて第1の始動コンデンサ3と補助コイル2との間の導通状態(常時導通状態、常時非導通状態)を適宜選択し、また、第2ガバナ回路9を用いて第2の始動コンデンサ7と補助コイル2との間の導通状態(常時導通状態、常時非導通状態)を適宜選択することができる。これにより、定常制御時において、補助コイル2に接続される始動コンデンサの数(コンデンサ容量)を適宜選択することができる。
図11A〜図11Cは本技術の第五実施形態に係る、単相誘導電動機10のブロック図(図11Aおよび図11B)および、該単相誘導電動機10における各種信号波形を示す図(図11C)である。図11A及び図11Bに示すように、本実施形態に係る単相誘導電動機10は、主コイル1と補助コイル2との間を、第1の始動コンデンサ3を介さずに直接接続可能なパス11を備える点で、図1に示す単相誘導電動機10と異なる。パス11は、第1ガバナ回路6と、主コイル1との間を直接接続可能に構成される。また、第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間、あるいはパス11と補助コイル2との間を切り替え可能に構成される。すなわち第1ガバナ回路6は、一端を補助コイル2に接続され、他端は、パス11、あるいは第1の始動コンデンサ3に接続可能である。従って、第1ガバナ回路6は、第1の始動コンデンサ3と補助コイル2との間の導通/非導通の切り替えに加えて、第1の始動コンデンサ3を介さずに主コイル1と補助コイル2とを直接導通させるかを切り替えるように構成される。
<始動制御>
図11Aは始動制御時における単相誘導電動機10のブロック図である。始動制御時においては、第1ガバナ回路6は、パス11に接続されない。第1ガバナ回路6は、単相誘導電動機10の入力電源電圧Vの半周期未満の間に1回、第1の始動コンデンサ3と補助コイル2との間を非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を周期的に繰り返す。そして、第1ガバナ回路6が、第1の始動コンデンサ3と補助コイル2との間を導通状態に遷移させたときに第1の始動コンデンサ3から補助コイル2に尖頭電流が流れるよう構成される。すなわち、始動制御時において、本実施形態にかかる第1ガバナ回路6は、図1に示すガバナ回路6と同様の動作をする。従って、始動制御時における、補助コイル2を流れる電流Iaの波形は、図2Aに示す補助コイル2電流Iaの波形と同じである。
<定常制御>
図11Bは本実施形態に係る定常制御時における単相誘導電動機10のブロック図であり、図11Cは、定常制御時における単相誘導電動機10における各種信号波形を示す図である。定常制御時において、第1ガバナ回路6は、パス11に常時接続され、第1の始動コンデンサ3を単相誘導電動機10の回路から切り離し、補助コイル2のみを主コイル1と並列接続する。この場合、第1の始動コンデンサ3は補助コイル2に接続されていないので、主コイル1のインピーダンスと、補助コイル2のインピーダンスが同じであれば、補助コイル2の電流Iaと、主コイル1の電流Imとは同相となる。本実施形態においては、主コイルに流れる電流Imと補助コイル2に流れる電流Iaとの間に位相差を設けるために、主コイル1のインピーダンスと、補助コイル2のインピーダンスに差を設ける。電流の位相は、コイルのインピーダンスに応じて決定されるため、主コイル1のインピーダンスと、補助コイル2のインピーダンスに差を設ける(例えば、主コイル1の巻き数を補助コイル2の巻き数よりも大きくし、主コイル1のインピーダンスを補助コイル2のインピーダンスよりも大きくする)ことで、主コイルに流れる電流Imと補助コイル2に
流れる電流Iaとの間に位相差を生じさせることができる。そして、単相誘導電動機10は、図11Cに示される位相差のある補助コイル2の電流Iaと主コイル1の電流Imにより駆動される。本実施形態においては、始動コンデンサを利用せずに、コイルのもつインピーダンスの差を利用して、補助コイル2の電流Iaと主コイル1の電流Imに位相差を設けて、回転磁界をつくり、単相誘導電動機10を駆動することができる。
なお、図11A、Bは第1ガバナ回路6を略式的に描いたものである。第1ガバナ回路6はより詳細には図11Dに示されるように構成される。2つのトライアック4(第1トライアック4a及び第2トライアック4b)は、主コイル1と並列に、補助コイル2に直列にそれぞれ接続される。第1トライアック4aは、第1の始動コンデンサ3と補助コイル2の間に接続され、第2トライアック4bは、パス11と補助コイル2の間に接続される。制御回路5は、第1トライアック4a、および第2トライアック4bのオン/オフを行うタイミングをそれぞれ適宜制御する。始動制御時において制御回路5は、第1の始動コンデンサ3から補助コイル2に尖頭電流が流れるように第1トライアック4aのオン/オフを制御すると共に、第2トライアック4bを常時オフに制御する。また、定常性制御時において、制御回路5は、第1トライアック4aを常時オフに制御すると共に、第2トライアック4bを常時オンに制御する。
1…主コイル、2…補助コイル、3…(第1の)始動コンデンサ、4…トライアック、5…制御回路、6…(第1)ガバナ回路、7…第2の始動コンデンサ、8…ロータ、9…第2ガバナ回路、10…コンデンサ始動型単相誘導電動機、31…制御電源、32…電圧監視回路、33…電流監視回路、35…ダイオード、36…タイマー回路

Claims (19)

  1. 単相誘導電動機であって,
    主コイルと、
    前記主コイルに並列接続された補助コイルと、
    前記補助コイルに直列接続されたコンデンサと、
    前記コンデンサから前記補助コイルに供給される電流の制御を行うガバナ回路と
    を備え、
    前記ガバナ回路は、前記補助コイルに直列接続されたトライアックを備え、
    前記ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記コンデンサから前記補助コイルに電流が流れ、
    前記トライアックのゲート信号をオンにしてからオフにするまでの期間は、前記補助コイルと前記コンデンサで構成される共振回路の共振周期の半周期よりも短い、単相誘導電動機。
  2. 前記ガバナ回路は
    前記トライアックに接続され、前記トライアックのゲート信号を生成する制御回路をさらに備え、前記ゲート信号に基づいて前記トライアックを切替え制御することによって前記始動制御を行う請求項1に記載の単相誘導電動機。
  3. 前記非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を、
    前記入力電源電圧の半周期の間に1回、
    前記入力電源電圧の1周期の間に、前記入力電源電圧が正及び負のときに各1回であわ
    せて2回、
    前記入力電源電圧の1周期の間に、前記入力電源電圧が正又は負のときに1回、または
    前記入力電源電圧の所定数周期の間に1回、
    繰り返すよう、前記ガバナ回路は設定されている、請求項1に記載の単相誘導電動機。
  4. 前記ガバナ回路は、前記単相誘導電動機に電源が投入されてから前記単相誘導電動機が所定の回転速度に到達するまでの期間に前記始動制御を行い、前記単相誘導電動機が前記所定の回転速度に到達したのちは、定常制御を行うよう構成された請求項1に記載の単相誘導電動機。
  5. 前記定常制御において、前記補助コイルは常時導通状態にされる、請求項4に記載の単相誘導電動機。
  6. 前記定常制御において、前記補助コイルは常時非導通状態にされる、請求項4に記載の単相誘導電動機。
  7. 前記ガバナ回路は、前記始動制御において、前記入力電源電圧の絶対値が所定の電圧以上になると前記補助コイルを非導通状態から導通状態に遷移させ,前記コンデンサと前記補助コイルによる共振電流が略ゼロとなったときに再び非導通状態に遷移させる、請求項1に記載の単相誘導電動機。
  8. 前記ガバナ回路は、前記入力電源電圧が供給されてから,所定期間、前記始動制御を行い、前記所定期間経過後は定常制御に移行する、請求項1に記載の単相誘導電動機
  9. 前記単相誘導電動機のロータが停止時の前記補助コイルと前記コンデンサで構成される共振回路の共振周波数が、前記入力電源電圧の周波数の2倍以上になるように、前記コンデンサの静電容量が設定されている請求項1から請求項8のいずれか1項に記載の単相誘導電動機。
  10. 前記補助コイルに直列接続された前記トライアックのゲート信号は、前記所定の電圧が前記入力電源電圧のピーク電圧の5分の1以上のときにオンされる、請求項7に記載の単相誘導電動機。
  11. 前記トライアックは、前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧にほぼ等しいときにオフにされる、請求項2に記載の単相誘導電動機。
  12. 単相誘導電動機であって、
    主コイルと、
    前記主コイルに並列接続された補助コイルと、
    前記補助コイルに直列接続された第1コンデンサと、
    前記第1コンデンサに並列接続され、かつ前記補助コイルに直列接続された第2コンデンサと、
    前記第1コンデンサと前記補助コイルとの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第1ガバナ回路と、
    を備え、
    前記第1ガバナ回路は、前記補助コイルに直列接続されたトライアックを備え、
    前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成され
    前記トライアックのゲート信号をオンにしてからオフにするまでの期間は、前記補助コイルと前記第1コンデンサで構成される共振回路の共振周期の半周期よりも短い、単相誘導電動機。
  13. 請求項1に記載の単相誘導電動機であって、前記第1ガバナ回路は、定常制御において、前記第1コンデンサと前記補助コイルとの間を常時導通状態とする、あるいは常時非導通状態とする、単相誘導電動機。
  14. 請求項1に記載の単相誘導電動機であって、
    前記第2コンデンサと、前記補助コイルとの間に接続され、前記第2コンデンサから前記補助コイルに供給される電流の制御を行うよう構成された第2ガバナ回路と
    をさらに備え、
    前記第2ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第2コンデンサから前記補助コイルに電流が流れる、単相誘導電動機。
  15. 請求項1に記載の単相誘導電動機であって、
    前記単相誘導電動機の前記入力電源電圧の絶対値が、前記入力電源電圧のピーク電圧の5分の1以上の間に、前記第1ガバナ回路は、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させ、前記第2ガバナ回路は、前記第2コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させる、単相誘導電動機。
  16. 請求項1または請求項1に記載の単相誘導電動機であって、
    前記第1ガバナ回路が、前記第1コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させるタイミングと、前記第2ガバナ回路が、前記第2コンデンサと前記補助コイルとの間を非導通状態から導通状態に遷移させるタイミングとは異なる、単相誘導電動機。
  17. 請求項1から請求項1のいずれか1項に記載の単相誘導電動機であって、前記第1コンデンサの容量と、前記第2コンデンサの容量とは任意に選択可能である、単相誘導電動機。
  18. 単相誘導電動機であって,
    主コイルと、
    前記主コイルに並列接続された補助コイルと、
    前記補助コイルに直列接続された第1コンデンサと、
    前記第1コンデンサと、前記補助コイルの間に接続され、前記第1コンデンサから前記補助コイルに供給される電流の制御を行うように構成された第1ガバナ回路と、
    を備え、
    前記第1ガバナ回路は、前記補助コイルに直列接続されたトライアックを備え、
    前記第1ガバナ回路は、前記単相誘導電動機の入力電源電圧の半周期未満の間に1回、前記補助コイルを非導通状態から導通状態に遷移させ再び非導通状態に遷移させる動作を繰り返す始動制御を行い、前記補助コイルが導通状態のときに前記第1コンデンサ、から前記補助コイルに電流が流れるよう構成され、前記トライアックのゲート信号をオンにしてからオフにするまでの期間は、前記補助コイルと前記第1コンデンサで構成される共振回路の共振周期の半周期よりも短い、
    単相誘導電動機。
  19. 請求項1に記載の単相誘導電動機であって、
    前記第1ガバナ回路と前記主コイルとの間を接続可能なパスをさらに備え、
    前記第1ガバナ回路は、定常制御において、前記パスに常時接続され、それにより前記主コイルと、前記主コイルと異なるインピーダンスを有する前記補助コイルとの間を直接導通させる、単相誘導電動機。
JP2017028276A 2016-06-20 2017-02-17 単相誘導電動機 Active JP6908236B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17815065.2A EP3474435A4 (en) 2016-06-20 2017-05-18 SINGLE-PHASE INDUCTION MOTOR
PCT/JP2017/018617 WO2017221595A1 (ja) 2016-06-20 2017-05-18 単相誘導電動機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016121622 2016-06-20
JP2016121622 2016-06-20

Publications (2)

Publication Number Publication Date
JP2017229225A JP2017229225A (ja) 2017-12-28
JP6908236B2 true JP6908236B2 (ja) 2021-07-21

Family

ID=60892106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028276A Active JP6908236B2 (ja) 2016-06-20 2017-02-17 単相誘導電動機

Country Status (2)

Country Link
EP (1) EP3474435A4 (ja)
JP (1) JP6908236B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1538178B2 (de) * 1963-03-25 1971-10-14 Tecumseh Products Co , Tecumseh, Mich (V St A ) Schalt anordnung zum zu und abschalten eines anlasstrom kreises fuer einen einphasenwechselstrom induktionsmotor
JPS5120403Y2 (ja) * 1971-04-02 1976-05-28
US3761792A (en) * 1972-02-07 1973-09-25 Franklin Electric Co Inc Switching circuit for motor start winding
US4063135A (en) * 1975-07-21 1977-12-13 Cravens Research Company Electric motor having controlled magnetic flux density
JPS5752389A (en) * 1980-09-16 1982-03-27 Hitachi Ltd Starting circuit for split-phase capacitor run motor
JPS5910179A (ja) * 1982-07-08 1984-01-19 Taitetsuku:Kk 単相インダクシヨンモ−タの起動回路
JPH0614792B2 (ja) * 1984-08-27 1994-02-23 三菱電機株式会社 可逆回転コンデンサモ−タ
CA2609879A1 (en) * 2004-10-22 2006-05-04 Hoffman Controls Corp. Variable speed motor control circuit

Also Published As

Publication number Publication date
EP3474435A4 (en) 2020-01-01
JP2017229225A (ja) 2017-12-28
EP3474435A1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US20090201620A1 (en) Electromagnetic field energy recycling
US6137256A (en) Soft turn-off controller for switched reluctance machines
CN101917145B (zh) 一种电子风扇软启动控制方法及控制器
CN105474531A (zh) 无刷永磁电机的控制方法
CN105474530B (zh) 无刷永磁电机的控制方法
WO2014115498A1 (ja) 電力変換装置、電力変換方法、モータシステム
Mondal et al. Performance evaluation of brushless DC motor drive for three different types of MOSFET based DC-DC converters
Riyadi Analysis of C-dump converter for SRM drives
JP6908236B2 (ja) 単相誘導電動機
CN109578310B (zh) 风扇转速控制电路
WO2017221595A1 (ja) 単相誘導電動機
US12095403B2 (en) Direct drive system for brushless DC (BLDC) motor
Thanyaphirak et al. Soft starting control of single-phase induction motor using PWM AC Chopper control technique
RU2375811C1 (ru) Устройство управления двигателем постоянного тока
JP6912546B2 (ja) Dc電気モータのモータ駆動ユニット
CN104836491B (zh) 一种无电容直流变换器无刷直流电机驱动系统
JP2019041546A (ja) 単相誘導電動機
Wang et al. Modeling and analysis on flux switching motor based on time stepping finite element
US20130181641A1 (en) Unipolar switching apparatus of switched reluctance motor
WO2013151446A1 (en) Electromagnetic field energy recycling
Wang et al. Commutation Torque Ripple Suppression of BLDCM Based on Quasi-Y-Source Net
CN108809168B (zh) 三相同步电机直流转换器
Saleem et al. Performance analysis of various phases of SRM with classical and new compact converter
JP2005057980A (ja) 磁気エネルギー回生電流スイッチを用いた電動機および発電機の電力制御
Sampathkumar Speed control of single phase induction motor using V/f technique

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6908236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250