CN108880352B - 永磁同步电机反电动势调平衡装置及方法 - Google Patents

永磁同步电机反电动势调平衡装置及方法 Download PDF

Info

Publication number
CN108880352B
CN108880352B CN201810863893.0A CN201810863893A CN108880352B CN 108880352 B CN108880352 B CN 108880352B CN 201810863893 A CN201810863893 A CN 201810863893A CN 108880352 B CN108880352 B CN 108880352B
Authority
CN
China
Prior art keywords
switch
resistor
electromotive force
back electromotive
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810863893.0A
Other languages
English (en)
Other versions
CN108880352A (zh
Inventor
郑秋
吴金富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Dongfang Electromechanical Co ltd
Original Assignee
Zhejiang Dongfang Electromechanical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Dongfang Electromechanical Co ltd filed Critical Zhejiang Dongfang Electromechanical Co ltd
Priority to CN201810863893.0A priority Critical patent/CN108880352B/zh
Publication of CN108880352A publication Critical patent/CN108880352A/zh
Application granted granted Critical
Publication of CN108880352B publication Critical patent/CN108880352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种永磁同步电机反电动势调平衡装置及方法,包括:计算各相上的反电动势大小;判断三相反电动势偏差量和偏差方向;根据偏差方向判断出反电动势偏大的所在相,根据反电动势偏差量计算该相上反电动势的偏大量;从该相定子绕组在下一换向周期开始,根据该相定子绕组上反电动势的偏大量降低第七开关Tq的开关频率;对出现反电动势偏大所在相的换向过程做以下操作:该相定子绕组在下一换向周期时,如果对应的上桥臂导通和下桥臂关断,则对下桥臂关断时序延时0.01T;如果对应的上桥臂关断和下桥臂导通,则对上桥臂关断时序延时0.01T。本发明有效解决了对永磁同步电机三相反电动势偏差造成的定子绕组中性点不平衡问题。

Description

永磁同步电机反电动势调平衡装置及方法
技术领域
本发明涉及永磁同步电机的控制技术领域,更具体地说,本发明涉及一种永磁同步电机反电动势调平衡装置及方法。
背景技术
近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。与传统的电励磁同步电机相比,永磁同步电机,特别是稀土永磁同步电机具有损耗少、效率高、节电效果明显的优点。永磁同步电动机以永磁体提供励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,没有励磁损耗,提高了电动机的效率和功率密度,因而它是近几年研究较多并在各个领域中应用越来越广泛的一种电动机。
而通过逆变器对永磁同步电机的定子绕组进行控制时,在定子绕组换向过程中,会产生发电动势能,对永磁同步电机的控制造成影响,为了消除这一影响,需要测量出该反电动势,并根据反电动势大小对定子绕组的控制做进一步调整,以保证对永磁同步电机的控制精度,同时需要消除反电动势的偏差,避免造成定子绕组中性点电压偏差。
发明内容
本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
本发明还有一个目的是提供一种永磁同步电机反电动势调平衡装置及方法,本发明有效解决了对永磁同步电机三相反电动势偏差造成的定子绕组中性点不平衡问题。
为了实现根据本发明的这些目的和其它优点,提供了一种永磁同步电机反电动势调平衡装置及方法,包括:
逆变电路,其由三对上下桥臂组成,每个所述桥臂上设置有一反接二极管,所述逆变电路的输出端连接至永磁同步电机的三相定子绕组;
吸收电路,其第一端连接对应相定子绕组,所述吸收电路的第二端连接在对应上下桥臂之间,所述吸收电路两端设置有一反接开关,所述吸收电路包括第一开关Td、第二开关Tk、第一电容C1、第三开关Tc、第一电阻R1、第二电阻R2、第三电阻R3、第二电容C2、第五电阻R5和第七开关Tq;所述第二开关Tk和第一电容C1构成第一串联支路,所述第三电阻R3和第二电容C2并联构成第一并联支路,所述第三开关Tc、第一并联支路和第二电阻R2依次串联构成第二串联支路,所述第一串联支路和第二串联支路并联构成第二并联支路,所述第一开关Td、第一电阻R1和第二并联支路依次串联;所述第二电阻R2和第三电阻R3两端并联一辅助串联支路,所述辅助串联支路包括依次串联的第五电阻R5和第七开关Tq;
其中,所述第二电阻R2的阻值是第三电阻R3阻值的5-10倍,所述的第五电阻R5的阻值是第三电阻R3阻值的1-3倍。
优选的,还包括一电压比较器,其同相输入端连接所述第三电阻R3两端电压,所述电压比较器的反相输入端连接所述第二电容C2两端电压,所述电压比较器的输出端与所述第二开关Tk的控制端连接。
优选的,所述吸收电路还包括第一二极管D1,其阳极连接在所述第二并联支路的输出端。
优选的,所述第一开关Td的输入端通过一第五开关连接对应相定子绕组,所述第一开关Td的输出端经过所述第一电阻R1连接所述第二并联支路的输入端,所述第一二极管D1的阴极通过第六开关连接在对应上下桥臂之间,所述第五开关和第六开关同步动作。
优选的,所述吸收电路还包括第二二极管D2,其与所述第二电容C2串联,所述第三开关Tc的输入端与所述第一电阻R1连接,所述第三开关Tc的输出端分别连接所述第三电阻R3第一端和所述第二二极管D2的阳极端,所述第三电阻R3第二端与所述第二电阻R2第一端连接,所述第二二极管D2的阴极端经过所述第二电容C2与所述第二电阻R2第一端连接。
优选的,所述第一电容C1两端并联一第三串联支路,所述第三串联支路包括相互串联的第四电阻R4和第四开关Tp,所述第二开关Tk的输入端与所述第一电阻R1连接,所述第二开关Tk的输出端与经过所述第一电容C1与所述第一二极管D1的阳极端连接;所述第四电阻R4的第一端与所述第二开关Tk的输出端连接,所述第四电阻R4的第二端与所述第四开关Tp的输入端连接,所述第四开关Tp的输出端与所述第一二极管D1的阳极端连接。
优选的,所述吸收电路还包括第三二极管D3,其串联在所述第二二极管D2和第四电阻R4之间,所述第三二极管D3的阳极与所述第二二极管D2的阴极连接,所述第三二极管D3的阴极与所述第四电阻R4的第一端连接。
优选的,所述第五电阻R5第一端与所述第三电阻R3第一端连接,所述第五电阻R5第二端与所述第七开关Tq的输入端连接,所述第七开关Tq的输出端与所述第二电阻R2第二端连接。
一种永磁同步电机反电动势调平衡方法,包括以下步骤:
步骤一、断开永磁同步电机定子绕组上的电源,通过拖动电机将永磁同步电机拖动至稳定转速后,通过电压采集器至少采集一个完整旋转周期内各相定子绕组上的电压V1;
步骤二、闭合第五开关和第六开关,闭合反接开关,对永磁同步电机定子绕组施加电源驱动,控制永磁同步电机运行到步骤一中的稳定转速,通过电压采集器至少采集一个完整旋转周期内各相定子绕组上的电压V2;
步骤三、计算永磁同步电机在上桥臂导通和下桥臂关断换向过程中各相上的反电动势;
步骤四、计算永磁同步电机在上桥臂关断和下桥臂导通换向过程中各相上的反电动势;
其中,根据三相反电动势偏差量和偏差方向来调整电动势偏差所在相上的反电动势,直到三相反电动势平衡。
优选的,采集各个定子绕组在各换向过程中的反电动势,根据所处时刻、对应定子绕组上的电流方向为该定子绕组上的反电动势赋正负值,随后对各个定子绕组上的反电动势求和,根据求和结果判断永磁同步电机反电动势是否平衡;如果不平衡则进行如下调整:
步骤五、根据反电动势求和结果判断反电动势偏差量和偏差方向,根据所述偏差方向判断出反电动势偏大的所在相,并根据反电动势偏差量计算该相定子绕组上反电动势的偏大量;
步骤六、从该相定子绕组在下一换向周期开始,根据该相定子绕组上反电动势的偏大量降低第七开关Tq的开关频率,反电动势的偏差量越大,第七开关Tq的开关频率的降低量越大;
步骤七、对出现反电动势偏大所在相的换向过程做以下操作:该相定子绕组在下一换向周期时,如果对应的上桥臂导通和下桥臂关断,则对下桥臂关断时序延时0.01T;如果对应的上桥臂关断和下桥臂导通,则对上桥臂关断时序延时0.01T,T为定子绕组的换向周期。
本发明至少包括以下有益效果:
1、本发明中,实现了对定子绕组反电动势的测量,并计算出三相定子绕组的反电动势偏差,避免对永磁同步电机的控制造成干扰;
2、根据反电动势的偏差量反馈调整对应定子绕组上吸收电路上的吸收阻值,同时延时该定子绕组导通或断开时间,以减小该相上的反电动势,从而使得三相反电动势平衡,消除反电动势偏差,避免定子绕组中性点不平衡。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明装置的整体结构示意图;
图2为吸收电路的结构示意图;
图3为本发明方法的流程图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
如图1-3所示,本发明提供了一种永磁同步电机反电动势调平衡装置,包括:逆变电路、吸收电路和控制器。
逆变电路由三对上下桥臂组成,逆变电路是三相全桥逆变器,每个所述桥臂上设置有一反接二极管D,所述逆变电路的输出端连接至永磁同步电机的三相定子绕组;
吸收电路第一端连接对应相定子绕组,所述吸收电路的第二端连接在对应上下桥臂之间,每个桥臂上设置有一个IGBT,每个所述吸收电路两端设置有一反接开关。
本实施例中,如图1所示,吸收电路1的输入端通过第五开关T14与所述A相定子绕组连接,第一对桥臂之间通过第六开关T13与吸收电路1的输出端连接,吸收电路1两端连接一反接开关T15,反接开关T15的第一路连接A相定子绕组和吸收电路1的输出端,反接开关T15的第二路连接第一对桥臂之间和吸收电路1的输入端。
同样的方式,吸收电路2通过第五开关T24、第六开关T23连接在B相定子绕组和第二对桥臂之间,吸收电路2两端连接一反接开关T25;吸收电路3通过第五开关T34、第六开关T33连接在C相定子绕组和第三对桥臂之间,吸收电路3两端连接一反接开关T35。
各个吸收电路的结构相同,如图2所示,所述吸收电路包括第一开关Td、第二开关Tk、第一电容C1、第三开关Tc、第一电阻R1、第二电阻R2、第三电阻R3、第二电容C2、第五电阻R5和第七开关Tq;所述第二开关Tk和第一电容C1构成第一串联支路,所述第三电阻R3和第二电容C2并联构成第一并联支路,所述第三开关Tc、第一并联支路和第二电阻R2依次串联构成第二串联支路,所述第一串联支路和第二串联支路并联构成第二并联支路,所述第一开关Td、第一电阻R1和第二并联支路依次串联;所述第二电阻R2和第三电阻R3两端并联一辅助串联支路,所述辅助串联支路包括依次串联的第五电阻R5和第七开关Tq。
所述吸收电路还包括第一二极管D1,其阳极连接在所述第二并联支路的输出端,第一二极管D1用于避免电流从吸收电路的输出端流入。
上述技术方案中,以第一对桥臂和A相定子为例进行说明,所述第一开关Td的输入端通过一第五开关T14连接对应A相定子绕组,所述第一开关Td的输出端经过所述第一电阻R1连接所述第二并联支路的输入端,所述第一二极管D1的阴极通过第六开关T13连接在对应第一对上下桥臂之间,所述第五开关T14和第六开关T13同步动作。
所述吸收电路还包括第二二极管D2,其与所述第二电容C2串联,所述第三开关Tc的输入端与所述第一电阻R1连接,所述第三开关Tc的输出端分别连接所述第三电阻R3第一端和所述第二二极管D2的阳极端,所述第三电阻R3第二端与所述第二电阻R2第一端连接,所述第二二极管D2的阴极端经过所述第二电容C2与所述第二电阻R2第一端连接。第二二极管D2用于防止第二电容C2中的电量逆流到第三电阻R3,使得第二电容C2两端电压能够保持最高位,当反电动势在第三电阻R3上的分压小于第二电容C2两端内部电压时,即可检测出第二电容C2两端电压与第三电阻R3两端电压之间差异。
上述技术方案中,所述第一电容C1两端并联一第三串联支路,所述第三串联支路包括相互串联的第四电阻R4和第四开关Tp,所述第二开关Tk的输入端与所述第一电阻R1连接,所述第二开关Tk的输出端与经过所述第一电容C1与所述第一二极管D1的阳极端连接;所述第四电阻R4的第一端与所述第二开关Tk的输出端连接,所述第四电阻R4的第二端与所述第四开关Tp的输入端连接,所述第四开关Tp的输出端与所述第一二极管D1的阳极端连接。
上述技术方案中,所述吸收电路还包括第三二极管D3,其串联在所述第二二极管D2和第四电阻R4之间,所述第三二极管D3的阳极与所述第二二极管D2的阴极连接,所述第三二极管D3的阴极与所述第四电阻R4的第一端连接,第三二极管D3用于防止第一电容C1和第二电容C2之间发生电量流动。
上述技术方案中,所述第五电阻R5第一端与所述第三电阻R3第一端连接,所述第五电阻R5第二端与所述第七开关Tq的输入端连接,所述第七开关Tq的输出端与所述第二电阻R2第二端连接。
各个开关为可控开关,各个可控开关以及IGBT的控制端与控制器连接,其中,所述第二开关Tk为一常闭可控开关。对各个电容的容量的击穿电压不小于电机额定电压的5倍,对各个电阻的阻值根据电机容量来选定,电机容量越大,则电阻的阻值选取越大,以保证电阻在逆变电路中上、下桥臂切换动作周期内,能够吸收完全吸收定子绕组上产生的反电动势能量。其中,所述第二电阻R2的阻值是第三电阻R3阻值的7倍,所述的第五电阻R5的阻值是第三电阻R3阻值的2倍。
电压采集器分别采集三相定子绕组上的电压;电压比较器选用市场上通用电压比较器即可,电压比较器同相输入端连接所述第三电阻R3两端电压,所述电压比较器的反相输入端连接所述第二电容C2两端电压,所述电压比较器的输出端与所述第二开关Tk的控制端连接。电压比较器用于比较第三电阻R3和第二电容C2两端上的电压值,输出比较结果传送至控制器中,控制器根据该比较结果来控制第二开关Tk的通断。
逆变电路中各对上下桥臂的切换过程分为两种,第一种是上桥臂导通和下桥臂关断过程,第二种是上桥臂关断和下桥臂导通过程。具体控制方法如下:
一种永磁同步电机反电动势调平衡方法,包括以下步骤:
步骤一、断开永磁同步电机定子绕组上的电源,通过拖动电机将永磁同步电机拖动至稳定转速后,比如电机额定转速的一半,通过电压采集器至少采集一个完整旋转周期内各相定子绕组上的电压V1;
步骤二、闭合第五开关T14和第六开关T13,闭合反接开关,将吸收电路短路,对永磁同步电机定子绕组施加电源驱动,启动电机,控制永磁同步电机运行到步骤一中的稳定转速,通过电压采集器至少采集一个完整旋转周期内各相定子绕组上的电压V2;
步骤三、控制对应的上桥臂导通和下桥臂关断过程中,以A相定子绕组和对应的第一对桥臂进行说明,断开第五开关T14和第六开关T13,闭合反接开关,使得第一对桥臂之间连接吸收电路1的输入端,吸收电路1的输出端连接A相定子绕组,计算下桥臂从触发断开时刻到对应定子绕组电流过零时刻之间的间隔时间T1,触发下桥臂断开时刻的同时,对该下桥臂对应的吸收电路1进行以下操作:以一定的开关频率控制第七开关Tq动作,以改变第二串联支路上的合成电阻,第七开关Tq闭合时,则合成电阻的阻值为R2+R3与R5之间的并联值,第七开关Tq断开时,则合成电阻的阻值即为R2+R3,第七开关Tq闭合时间越长,第二串联支路上的合成电阻越小,反之则越大。根据吸收电路的应用环境来调整第七开关Tq的开关频率,通过改变第二串联支路上的合成电阻大小,来调整吸收电路对反电动势的吸收消耗能力。
反电动势产生初期,应该减少第七开关Tq闭合时间,增加第二串联支路上的合成电阻阻值,提高对反电动势的吸收能力;当反电动势产生末期,则可以增加第七开关Tq闭合时间,适当减小第二串联支路上的合成电阻阻值。
分别闭合第一开关Td、第二开关Tk和第三开关Tc,实时监测第三电阻R3和第二电容C2两端电压,从下桥臂触发断开时刻开始,对应定子绕组上开始产生反电动势,反电动势从第一开关Td输入端进入到吸收电路1中,通过第一电容C1、第三电阻R3、第二电阻R2、第五电阻R5、第二电容C2和第一电阻R1同时吸收,提高瞬间吸收能力,避免反电动势反馈至逆变器中,对逆变器的控制造成干扰,影响对电机的控制精确控制。
在反电动势产生直到最大值之前,第二电容C2两端电压与第三电阻R3两端电压是一致的,且都处于上升阶段,当反电动势到达最大值后开始下降,第三电阻R3及第二电容C2两端电压也开始下降,但第二电容C2依旧处于充电过程中,随着充电的继续,第二电容C2内部两端电压持续上升,直到第三电阻R3两端电压小于第二电容C2内部两端电压为止,第二电容C2充电过程结束,由于第二二极管D2的作用,防止第二电容C2中的电量逆流到第三电阻R3,使得第二电容C2两端电压能够保持最高位。第二二极管D2同时防止第二电容C2将第三电阻R3第一端的电压抬升,影响反电动势流向第三电阻R3,使得反电动势无法在吸收电路中完全耗尽。
当电压比较器采集到第二电容C2两端电压大于第三电阻R3两端电压时,则说明反电动势的主峰已经过去,无需再使用第一电容C1来增加吸收容量,此时,控制第二开关Tk断开;由电阻R1-R3、R5来单独吸收剩余的反电动势能量。另一方面,如果不将第二开关Tk断开,使得第一电容C1从吸收电路中切除,则随着反电动势的下降,第一电容C1两端电压大于反电动势,第一电容C1也无法继续吸收反电动势能量,反而会损坏第二开关Tk,甚至第一电容C1中电压会反向抬升第一电阻R1第二端的电压,从而影响反电动势流向,使得反电动势无法在吸收电路中完全耗尽。
断开第二开关Tk经过T1时间后,定子绕组过零,反电动势也被完全吸收,此时分别断开第一开关Td和第三开关Tc,同时闭合第五开关T14和第六开关T13,闭合反接开关,将所述吸收电路1从下桥臂连接线路上切除,同时闭合所述第四开关Tp,从而形成两个内耗电路,第一条内耗电路是由第一电容C1、第四开关Tp和第四电阻R4串联组成,第一电容C1内储存的电能完全耗尽在第四电阻R4上。第二条内耗电路是由第二电容C2、第三二极管D3、第四开关Tp、第四电阻R4和第二电阻R2串联组成,第二电容C2内储存的电能完全耗尽在第四电阻R4和第二电阻R2上。从而将第一电容C1和第二电容C2中的电能释放,吸收电路等待下一次的工作过程。
在下桥臂从触发断开时刻到对应定子绕组电流过零时刻过程中,通过电压采集器采集对应相定子绕组上的电压V3;永磁同步电机在上桥臂导通和下桥臂关断换向过程中单相反电动势为:Va=V3-V2+V1;
步骤四、控制对应的上桥臂关断和下桥臂导通过程中,其控制过程与步骤三一致,区别点在于控制对象为上桥臂。具体的,闭合第五开关T14和第六开关T13,断开反接开关,使得第一对桥臂之间连接吸收电路1的输出端,吸收电路1的输入端连接A相定子绕组,计算上桥臂从触发断开时刻到对应定子绕组电流过零时刻之间的间隔时间T2,同时对该上桥臂对应的吸收电路进行以下操作:以一定的开关频率控制第七开关Tq动作,分别闭合第一开关Td、第二开关Tk和第三开关Tc,实时监测第三电阻R3和第二电容C2两端电压,当第二电容C2两端电压大于第三电阻R3两端电压时,则控制第二开关Tk断开;经过T2时间后,分别断开第一开关Td和第三开关Tc,同时闭合第五开关T14和第六开关T13,闭合反接开关,将所述吸收电路从上桥臂连接线路上切除,同时闭合所述第四开关Tp,将第一电容C1和第二电容C2中的电能释放。
在上桥臂从触发断开时刻到对应定子绕组电流过零时刻过程中,通过电压采集器采集对应相定子绕组上的电压V4;永磁同步电机在上桥臂关断和下桥臂导通换向过程中单相反电动势为:Vb=V4-V2+V1。
以这样的方法计算出各相定子绕组在不同状态下的反电动势大小及方向。根据三相反电动势偏差量和偏差方向来调整电动势偏差所在相上的反电动势,直到三相反电动势平衡。
上述技术方案中,采集各个定子绕组在各换向过程中的反电动势,根据所处时刻、对应定子绕组上的电流方向为该定子绕组上的反电动势赋正负值,随后对各个定子绕组上的反电动势求和,根据求和结果判断永磁同步电机反电动势是否平衡;如果各相上的反电动势求和结果不为零,则说明反电动势不平衡,如果不平衡则进行如下调整:
步骤五、根据反电动势求和结果判断反电动势偏差量和偏差方向,根据所述偏差方向判断出反电动势偏大的所在相,并根据反电动势偏差量计算该相定子绕组上反电动势的偏大量;
步骤六、从该相定子绕组在下一换向周期开始,根据该相定子绕组上反电动势的偏大量降低第七开关Tq的开关频率,反电动势的偏差量越大,第七开关Tq的开关频率的降低量越大,以增加该相对应吸收电路上的合成吸收电阻的阻值,提高对反电动势的吸收能力;
步骤七、对出现反电动势偏大所在相的换向过程做以下操作:该相定子绕组在下一换向周期时,如果对应的上桥臂导通和下桥臂关断,则对下桥臂关断时序延时0.01T,以减小关断时所在相上的开断电流,即可相应减小定子绕组上产生的反电动势;同理,如果对应的上桥臂关断和下桥臂导通,则对上桥臂关断时序延时0.01T,T为定子绕组的换向周期。如果下一换向周期检测出该相上的反电动势依然偏大,则继续进行步骤七操作,直到反电动平衡为止。
由上所述,本发明中,实现了对定子绕组反电动势的测量,并计算出三相定子绕组的反电动势偏差,避免对永磁同步电机的控制造成干扰;同时,根据反电动势的偏差量反馈调整对应定子绕组上吸收电路上的吸收阻值,同时延时该定子绕组导通或断开时间,以减小该相上的反电动势,从而使得三相反电动势平衡,消除反电动势偏差,避免定子绕组中性点不平衡。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

1.一种永磁同步电机反电动势调平衡装置,其特征在于,包括:
逆变电路,其由三对上下桥臂组成,每个所述桥臂上设置有一反接二极管,所述逆变电路的输出端连接至永磁同步电机的三相定子绕组;
吸收电路,其第一端连接对应相定子绕组,所述吸收电路的第二端连接在对应上下桥臂之间,所述吸收电路两端设置有一反接开关,所述吸收电路包括第一开关Td、第二开关Tk、第一电容C1、第三开关Tc、第一电阻R1、第二电阻R2、第三电阻R3、第二电容C2、第五电阻R5和第七开关Tq;所述第二开关Tk和第一电容C1构成第一串联支路,所述第三电阻R3和第二电容C2并联构成第一并联支路,所述第三开关Tc、第一并联支路和第二电阻R2依次串联构成第二串联支路,所述第一串联支路和第二串联支路并联构成第二并联支路,所述第一开关Td、第一电阻R1和第二并联支路依次串联;所述第二电阻R2和第三电阻R3两端并联一辅助串联支路,所述辅助串联支路包括依次串联的第五电阻R5和第七开关Tq;
其中,所述第二电阻R2的阻值是第三电阻R3阻值的5-10倍,所述的第五电阻R5的阻值是第三电阻R3阻值的1-3倍。
2.如权利要求1所述的永磁同步电机反电动势调平衡装置,其特征在于,还包括一电压比较器,其同相输入端连接所述第三电阻R3两端电压,所述电压比较器的反相输入端连接所述第二电容C2两端电压,所述电压比较器的输出端与所述第二开关Tk的控制端连接。
3.如权利要求2所述的永磁同步电机反电动势调平衡装置,其特征在于,所述吸收电路还包括第一二极管D1,其阳极连接在所述第二并联支路的输出端。
4.如权利要求3所述的永磁同步电机反电动势调平衡装置,其特征在于,所述第一开关Td的输入端通过一第五开关连接对应相定子绕组,所述第一开关Td的输出端经过所述第一电阻R1连接所述第二并联支路的输入端,所述第一二极管D1的阴极通过第六开关连接在对应上下桥臂之间,所述第五开关和第六开关同步动作。
5.如权利要求4所述的永磁同步电机反电动势调平衡装置,其特征在于,所述吸收电路还包括第二二极管D2,其与所述第二电容C2串联,所述第三开关Tc的输入端与所述第一电阻R1连接,所述第三开关Tc的输出端分别连接所述第三电阻R3第一端和所述第二二极管D2的阳极端,所述第三电阻R3第二端与所述第二电阻R2第一端连接,所述第二二极管D2的阴极端经过所述第二电容C2与所述第二电阻R2第一端连接。
6.如权利要求5所述的永磁同步电机反电动势调平衡装置,其特征在于,所述第一电容C1两端并联一第三串联支路,所述第三串联支路包括相互串联的第四电阻R4和第四开关Tp,所述第二开关Tk的输入端与所述第一电阻R1连接,所述第二开关Tk的输出端与经过所述第一电容C1与所述第一二极管D1的阳极端连接;所述第四电阻R4的第一端与所述第二开关Tk的输出端连接,所述第四电阻R4的第二端与所述第四开关Tp的输入端连接,所述第四开关Tp的输出端与所述第一二极管D1的阳极端连接。
7.如权利要求6所述的永磁同步电机反电动势调平衡装置,其特征在于,所述吸收电路还包括第三二极管D3,其串联在所述第二二极管D2和第四电阻R4之间,所述第三二极管D3的阳极与所述第二二极管D2的阴极连接,所述第三二极管D3的阴极与所述第四电阻R4的第一端连接。
8.如权利要求7所述的永磁同步电机反电动势调平衡装置,其特征在于,所述第五电阻R5第一端与所述第三电阻R3第一端连接,所述第五电阻R5第二端与所述第七开关Tq的输入端连接,所述第七开关Tq的输出端与所述第二电阻R2第二端连接。
9.如权利要求8所述永磁同步电机反电动势调平衡装置的调平衡方法,其特征在于,包括以下步骤:
步骤一、断开永磁同步电机定子绕组上的电源,通过拖动电机将永磁同步电机拖动至稳定转速后,通过电压采集器至少采集一个完整旋转周期内各相定子绕组上的电压V1;
步骤二、闭合第五开关和第六开关,闭合反接开关,对永磁同步电机定子绕组施加电源驱动,控制永磁同步电机运行到步骤一中的稳定转速,通过电压采集器至少采集一个完整旋转周期内各相定子绕组上的电压V2;
步骤三、计算永磁同步电机在上桥臂导通和下桥臂关断换向过程中各相上的反电动势;
步骤四、计算永磁同步电机在上桥臂关断和下桥臂导通换向过程中各相上的反电动势;
其中,根据三相反电动势偏差量和偏差方向来调整电动势偏差所在相上的反电动势,直到三相反电动势平衡。
10.如权利要求9所述永磁同步电机反电动势调平衡装置的调平衡方法,其特征在于,采集各个定子绕组在各换向过程中的反电动势,根据所处时刻、对应定子绕组上的电流方向为该定子绕组上的反电动势赋正负值,随后对各个定子绕组上的反电动势求和,根据求和结果判断永磁同步电机反电动势是否平衡;如果不平衡则进行如下调整:
步骤五、根据反电动势求和结果判断反电动势偏差量和偏差方向,根据所述偏差方向判断出反电动势偏大的所在相,并根据反电动势偏差量计算该相定子绕组上反电动势的偏大量;
步骤六、从该相定子绕组在下一换向周期开始,根据该相定子绕组上反电动势的偏大量降低第七开关Tq的开关频率,反电动势的偏差量越大,第七开关Tq的开关频率的降低量越大;
步骤七、对出现反电动势偏大所在相的换向过程做以下操作:该相定子绕组在下一换向周期时,如果对应的上桥臂导通和下桥臂关断,则对下桥臂关断时序延时0.01T;如果对应的上桥臂关断和下桥臂导通,则对上桥臂关断时序延时0.01T,T为定子绕组的换向周期。
CN201810863893.0A 2018-08-01 2018-08-01 永磁同步电机反电动势调平衡装置及方法 Active CN108880352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810863893.0A CN108880352B (zh) 2018-08-01 2018-08-01 永磁同步电机反电动势调平衡装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810863893.0A CN108880352B (zh) 2018-08-01 2018-08-01 永磁同步电机反电动势调平衡装置及方法

Publications (2)

Publication Number Publication Date
CN108880352A CN108880352A (zh) 2018-11-23
CN108880352B true CN108880352B (zh) 2020-10-30

Family

ID=64307098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810863893.0A Active CN108880352B (zh) 2018-08-01 2018-08-01 永磁同步电机反电动势调平衡装置及方法

Country Status (1)

Country Link
CN (1) CN108880352B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143064B (zh) * 2018-08-01 2020-11-24 浙江东方机电有限公司 永磁同步电机换向过程中反电动势测试装置及方法
CN111835239B (zh) * 2020-07-23 2021-11-19 江苏芯亿达电子科技有限公司 永磁同步电机反电动势调平衡装置及方法
CN112815006B (zh) * 2021-01-20 2021-12-03 华中科技大学 优化桥臂电流应力的磁悬浮轴承串联绕组控制装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630582A (ja) * 1992-02-21 1994-02-04 Mitsubishi Electric Corp モータ駆動回路
JPH06335255A (ja) * 1993-05-18 1994-12-02 Tokyo Electric Co Ltd 2次直流電源生成装置
CN102916637A (zh) * 2012-11-08 2013-02-06 沈阳创达技术交易市场有限公司 无刷直流电机的桥式驱动和rcd缓冲电路
CN104205592A (zh) * 2012-03-19 2014-12-10 西门子公司 直流电压变换器
CN104734578A (zh) * 2013-12-18 2015-06-24 南京沃特电机有限公司 一种无刷直流电机水泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630582A (ja) * 1992-02-21 1994-02-04 Mitsubishi Electric Corp モータ駆動回路
JPH06335255A (ja) * 1993-05-18 1994-12-02 Tokyo Electric Co Ltd 2次直流電源生成装置
CN104205592A (zh) * 2012-03-19 2014-12-10 西门子公司 直流电压变换器
CN102916637A (zh) * 2012-11-08 2013-02-06 沈阳创达技术交易市场有限公司 无刷直流电机的桥式驱动和rcd缓冲电路
CN104734578A (zh) * 2013-12-18 2015-06-24 南京沃特电机有限公司 一种无刷直流电机水泵

Also Published As

Publication number Publication date
CN108880352A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108880352B (zh) 永磁同步电机反电动势调平衡装置及方法
CN105191113A (zh) 用于无刷电机的ac/ac变换器
CN106411195B (zh) 无刷直流电机电流变化率积分等值控制方法
Varshney et al. An intelligent grid integrated solar PV array fed RSM drive-based water pumping system
CN109143064B (zh) 永磁同步电机换向过程中反电动势测试装置及方法
Bian et al. The peak current control of permanent magnet brushless DC machine with asymmetric dual-three phases
CN108900133B (zh) 高驱动转换速度的永磁同步电机控制装置及方法
CN111245310B (zh) 一种基于转矩特性的异步起动永磁同步电机快速起动方法
Crisbin et al. Analysis of PFC cuk and PFC sepic converter based intelligent controller fed BLDC motor drive
Feyzi et al. Supplying a Brushless DC Motor by z-source PV power inverter with FLC-IC MPPT by DTC drive
Rim et al. Variable speed constant frequency power conversion with a switched reluctance machine
Mokhtari et al. Experimental DTC of an induction motor Applied to optimize a tracking system
Varshney et al. An intelligent grid integrated solar pv array fed rsm drive based water pumping system
CN108900134B (zh) 高精度控制的永磁同步电机控制系统及方法
Singh et al. Modelling of STATCOM based voltage regulator for self-excited induction generator with dynamic loads
Xuan et al. An electrolytic capacitor-less IPMSM drive with input current shaping based on the predictive control
CN111835239B (zh) 永磁同步电机反电动势调平衡装置及方法
WO2018141394A1 (en) Household appliance with brushless dc motor sensorless control scheme
Ramya et al. Model predictive direct torque control of PMSM with optimized duty cycle
Park et al. Current Compensation Scheme to Reduce Torque Ripples of Delta-connected Low-inductance BLDC Motor Drives
Joy et al. Performance comparison of a canonical switching cell converter fed sensorless PMBLDC motor drive with conventional and fuzzy logic controllers
Sun et al. Modular Converter-Based Predictive Current Control of SRM for Torque Ripple Suppression
Singh et al. Luo converter based solar photovoltaic array fed water pumping system using SRM drive
Guo et al. A New Method of BLDCM Commutation Error Compensation Based on Line Voltage Difference
Wang et al. Research on High-speed Permanent Magnet Synchronous Motor Drive Based on PAM Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant