WO2017217929A1 - Station d'accueil pour véhicules motorisés - Google Patents
Station d'accueil pour véhicules motorisés Download PDFInfo
- Publication number
- WO2017217929A1 WO2017217929A1 PCT/SG2017/050268 SG2017050268W WO2017217929A1 WO 2017217929 A1 WO2017217929 A1 WO 2017217929A1 SG 2017050268 W SG2017050268 W SG 2017050268W WO 2017217929 A1 WO2017217929 A1 WO 2017217929A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- docking station
- docking
- motorised vehicle
- electric scooter
- motorised
- Prior art date
Links
- 238000003032 molecular docking Methods 0.000 title claims abstract description 383
- 238000003860 storage Methods 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 33
- 238000004891 communication Methods 0.000 claims description 20
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 230000007246 mechanism Effects 0.000 claims description 15
- 238000004873 anchoring Methods 0.000 claims description 5
- 239000000428 dust Substances 0.000 claims description 4
- 238000005304 joining Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 230000003993 interaction Effects 0.000 claims 1
- 229910001416 lithium ion Inorganic materials 0.000 description 20
- 230000008569 process Effects 0.000 description 11
- 230000005611 electricity Effects 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000003570 air Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241001674044 Blattodea Species 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241000272496 Galliformes Species 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241001124569 Lycaenidae Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- VGYDTVNNDKLMHX-UHFFFAOYSA-N lithium;manganese;nickel;oxocobalt Chemical compound [Li].[Mn].[Ni].[Co]=O VGYDTVNNDKLMHX-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001317 nickel manganese cobalt oxide (NMC) Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/31—Charging columns specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/16—Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/18—Cables specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/68—Off-site monitoring or control, e.g. remote control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/24—Personal mobility vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/10—Driver interactions by alarm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/30—Preventing theft during charging
- B60L2270/36—Preventing theft during charging of vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62H—CYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
- B62H3/00—Separate supports or holders for parking or storing cycles
- B62H2003/005—Supports or holders associated with means for bike rental
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the present application relates to a docking station for motorised vehicles.
- the application also relates method for manufacturing, assembling, using, installing, repairing, configuring, upgrading, monitoring, dismantling, recycling or integrating the docking station.
- the present inventions aim to provide one or more new and useful docking stations for motorised vehicles, automobiles or electric vehicles.
- the motorised vehicle has many types that includes electric scooters (i.e. e-scooters), motor electric scooters, motorized wheelchairs, mobility electric scooters, electric kick scooters, self-balancing electric scooters (i.e. self-balancing two-wheeled boards or hover-boards), self- balancing unicycles, automated guided vehicle or automatic guided vehicle (AGV) and unmanned aerial vehicle (UAV).
- the motorised vehicles or electric scooters may be deployed by a transport system or a short distance mobility sharing system.
- the inventions also aim to present one or more new and useful methods of making, constructing, assembling, disassembling, installing, configuring, maintaining, managing and using the docking station.
- Essential features of relevant inventions are provided by one or more independent claims, whilst important or advantageous features of the inventions are presented by relevant dependent claims.
- the present application provides a docking station, an automatic docking station or a docking booth for receiving one or more motorised vehicles (e.g. electric scooter).
- the docking station comprises a detachable connector (also known as connector) for releasably connecting or fastening a motorised vehicle to the docking station automatically; and a resource storage unit (i.e. charging unit or resource unit) that is joined to the detachable connector for replenishing (e.g. water refill) or supplying energy (e.g. electricity, gasoline, Liquefied Natural Gas) to the motorised vehicle through the detachable connector.
- a detachable connector also known as connector
- a resource storage unit i.e. charging unit or resource unit
- energy e.g. electricity, gasoline, Liquefied Natural Gas
- the resource storage unit or charging unit is operable to join a motorised vehicle detachably or releasably for replenishing the motorised vehicle.
- the connector is alternatively known as a releasable connector, a detachable connector or a dock for temporarily holding, supporting, locking, joining or fastening the motorised vehicle, such as an electric scooter.
- the charging unit or resource unit comprises a charger connected to mains electricity or electrical/power grid, or a hose connected to a fuel storage tank.
- the resource unit is optionally able to replenish a docked, parked or connected motorised vehicle through its own coupling to the docked motorised vehicle, although the charging coupling and the connector may be simply or optionally integrated as a single device.
- the connector and the charging unit may be coupled to a motorised vehicle or electric scooter simultaneously, sequentially or separately.
- the docking station is capable of connecting or holding one or more motorised vehicles simultaneously, many motorised vehicles are able to share the same docking station when necessary. Operation cost of the docking station is drastically reduced by sharing the same resource.
- the motorised vehicle is able to receive resource (e.g. water, fuel or electricity) from the docking station without users' attention or effort so that an energy tank (e.g. rechargeable battery or fuel tank) of the motorised vehicle is replenished when secured to the connector. Users of the motorised vehicles are liberated from meticulous and sometimes dangerous tasks of replenishing the energy tank.
- AGVs that provide logistic delivery services are able to recharge or replace its battery along a journey with many docking stations, thus able to deliver goods over a long distance.
- the connector or any other parts of the docking station comprises one or more seals (e.g. gasket, O ring, labyrinth structure) for preventing leakage of fluid or electricity when connecting the detachable connector to the motorised vehicle. Intrusion of or dust, water or air is further possible to be prevented or reduced by the seal.
- the seal optionally includes one or more cushions or bumpers for providing a smooth and seamless coupling.
- the connector or the coupling can be configured to be extendable, retractable, rotatable, twistable or pliable for connecting to the motorised vehicle or retractable for stowage, whether the connector or coupling is rigid, flexible, resilient foldable or in combination of these.
- the versatile connector facilitates easy connection to diverse sizes or models of motorised vehicles.
- the connector comprises an alignment mechanism for guiding connection with the motorised vehicle.
- the alignment mechanism includes a guiding cylinder for coupling with a shaft.
- the connector is rotatable, movable or slidable, tiltable or twistable manually or automatically so that minor misalignment between the connector and the motorised vehicle is easily corrected without much effort.
- the charging unit may comprise one or more compartments for storing one or more resource storage cartridges, such as battery cells, power banks, battery cartridges, supercapacitors, regardless whether the batteries, battery cartridges or supercapacitors are connected to each other or the docking station.
- resource storage cartridges such as battery cells, power banks, battery cartridges, supercapacitors, regardless whether the batteries, battery cartridges or supercapacitors are connected to each other or the docking station.
- An operator of the docking station is able to replace depleted, malfunctioning or energy deficient battery cells swiftly by replacement with sufficiently charged or fully charged battery cells, making energy cartridge exchange simple, reliable and easy.
- the one or more resource storage cartridges may be detachable, or connectable to each other.
- the charging unit comprises an electronic circuit for powering, controlling or charging the motorised scooter.
- the docking station can further comprise a base connected to the connector, the charging unit or both for supporting the charging unit, the connector or both.
- the base includes a large plate for landing on a flat ground.
- the base optionally provides a smooth surface for receiving an electric scooter with small wheels effortlessly.
- a broad or large dimension of the base makes unauthorised shifting of the docking station cumbersome or clumsy, thus deterring theft.
- the base having an extensive coverage provides a counterweight to docked motorised vehicles, making them stable and upright.
- the base may be operable to be fastened to a secure or immobile foundation (e.g. building wall or the ground) for secure anchoring.
- a secure or immobile foundation e.g. building wall or the ground
- the base is affixed to a building, a lamp pole, a floor or simply a large and heavy stone so that the base or the docking station is able to resist strong wind, rain or storm.
- the base can further have a broad platform or being detachable for supporting the motorised vehicle or any other parts of the docking station.
- Some embodiments of the application additionally provide the docking station that moreover comprise a holder optionally connected to or integrated with the connector for supporting the motorised vehicle.
- the holder includes one or more prongs or boards (e.g.
- the holder comprises electromagnets or vacuum suction cups that are able to releasably secure the motorised vehicle.
- the holder is possible or operable to enclose, attach or fasten to any parts (e.g. a handle bar assembly) of the motorised vehicle for holding the motorised vehicle upright.
- the motorised vehicle is kept in a position or orientation that is easy to handle or safe to operate when attached to the docking station.
- the holder, the connector, the charging unit, the base or any part of the docking station can comprise a lock for detachably fastening the motorised vehicle to the docking station, especially when supplying the resource storage or during storage.
- the lock comprises an electronic lock, a mechanical lock or both.
- a user or an operator (e.g. technician) of the docking station is able to open one or more of the locks if having proper authorisation, such as by password entry manually, electronic signal transmission.
- One or more passwords or electronic signals for operating the lock may be encrypted.
- the charging unit may comprise an electric coupling or adapter for connecting to a regenerative power supply, such as mains electricity, an electrical grid, a renewable resource storage source (e.g. solar panels) or resource storage harvester.
- a renewable resource storage source e.g. solar panels
- the renewable resource storage source or resource storage harvester includes a wind turbine, hydro turbine, or a geothermal resource storage reservoir.
- the docking station can further comprise an electronic communication signal transmission terminal (i.e. electronic communication terminal) whether wired or wireless, an electric power supply terminal whether wireless or wired, a fluid communication terminal (e.g. for water or fuel filling), a gas communication terminal (e.g. for LNG or compressed air charging) or a combination of any of these.
- the electronic communication terminal comprises an internet connection via a network card or antenna, a RFID reader, a QR code reader, a barcode reader, a telecommunication communication terminal (e.g. 2G, 3G, 4G or other types of telecommunication protocols), a Near-Field Communication (NFC) terminal, Bluetooth communication terminal. Since most users have personal or portable communication devices (e.g.
- the docking station is able to communicate wirelessly or seamlessly with users at their smartphones, providing pleasant, secure and easy communication with the users.
- the electronic communication signal transmission terminal or electronic terminal additionally include a transmitter that broadcast and/or relay information of the docking station so that multiple docking stations are mutually connected in forming an interactive network.
- the transmitter disseminates geographical location information via radio waves so that mobile phones or automated guided vehicles can be guided to the docking stations for charging or locking.
- the electronic communication signal transmission terminal or electronic terminal is optionally configured to read an electronic identification (e.g. Radio-Frequency Identification chip) of a motorised vehicle that is parked at or connected to the docking station automatically.
- an electronic identification e.g. Radio-Frequency Identification chip
- the docking station may additionally comprise an automatic or electronic transaction terminal (e.g. Point Of Sale (POS) or Point Of Purchase (POP)) that is connected to the connector or any other parts of the docking station for handling stowing of the motorised vehicle automatically.
- the transactional terminal is either standalone or connected to external devices (e.g. remote server or local smartphone) so that many users are able to pay or transact their usage of the docking station or shared motorised vehicles.
- the docking station thus facilitate shared resources or economy for lowering operation cost and benefiting society at large.
- the connector can be configured or operable to facilitate power charging, mechanical locking and electronic transaction upon coupling to the motorised vehicle. For example, a user of the docking station is able to perform a single action (e.g.
- Data transmission can further include information exchange between the electric scooter and the docking station so that an operator of the docking station or the electric scooter is able to examine usage pattern, checking battery level, diagnosing malfunctioning, upgrading software or hardware, or awarding loyalty points to the electric scooter.
- the docking station may further comprise an identification code (e.g. electronic address, electronic identification) for uniquely recognising, identifying or labelling the docking station.
- the identification code is either human readable, machine readable or both.
- the identification code is a serial number in alphanumeric form, digital form, electronic form or optical form.
- the identification code includes one or more electronic addresses as identification, such as a Wi-Fi address, a Bluetooth address, an IMEI (International Mobile Equipment Identity) number, an ICCID (Integrated Circuit Card Identifier) number, a telephone number, a mailing address, a device name electronically readable, a MAC (media access control) address, a website address, an IPv4 (Internet Protocol Version 4) address, an IPv6 (Internet Protocol Version 6) address, a Subscriber Identity Module or Subscriber Identification Module (SIM) (i.e. an integrated circuit for storing the International Mobile Subscriber Identity number and its related key), or any other electronic addresses.
- the identification code includes geographical location information, such as latitude and longitude, which provides unique location of the docking station.
- the docking station can optionally comprise an user interface for interacting with users, which include a light indicator, a display screen, a touchscreen, a loud speaker, a keyboard, a computer port (e.g. VGA port), a computer mouse (a pointing device) a gesture recognition device (e.g. wired glove, depth-aware camera, stereo camera, gesture-based controller and radar) or any other tools that is able to communicate via a cable or wirelessly.
- the light indicator includes a red LED light for indicating charging or being locked status and a green LED light for indicating battery- full status or ready to release status.
- the docking station may moreover comprise one or more microcontrollers or microprocessors, and/or computer-readable memory for docking the motorised vehicle automatically.
- the computer-readable memory installed with a computer software or firmware for controlling indicators, locking the motorised vehicle, charging the motorised vehicle or signal processing.
- the computer-readable memory optionally includes volatile (e.g. cache) or non-volatile memory for data storage, processing or both.
- the docking station can additionally comprise a guide or motorised guide for assisting, folding, unfolding, expanding or stowing the motorised vehicle automatically or semi-automatically, especially if or when engaging one or more parts of the motorised vehicle.
- the guide engages and lifts a latch on the handlebar assembly, a foot platform or a frame of the motorised vehicle for folding the motorised vehicle easily or effortlessly, or automatically.
- the motorised guide relieve effort from users so that docking or usage experience of the docking station become enjoyable or elegant.
- the guide can include an electric guide (e.g. flashing LED light for directing a user to dock his electric scooter) or an electronic guide (e.g. electromagnets for coupling an electric scooter to an activated or designated connector).
- the guide can also provide assistive force to lift, push or fold an incoming motorised vehicle.
- the guide includes a holder that is spring- powered or foot pedal powered so that a deck plate or a rear wheel of a docked electric scooter is able to be confined and supported by the guide, and folded onto a handlebar of the electric scooter easily.
- the motorised guide further may comprise a drive mechanism for withdrawing or extending the motorised vehicle.
- a drive mechanism for withdrawing or extending the motorised vehicle.
- the motorised vehicle is withdrawn into a compartment, being not obstructing.
- the drive mechanism extends a stowed motorised vehicle to a user, possible to save users' labour of unfolding.
- the docking station can further comprise a shelter for preventing intrusion of sunlight, rainwater or dust to the docking station, the motorised vehicle or both.
- the shelter includes a board, a tent, a roof, a sunshade or a barrier that protects the docking station, a stowed motorised vehicle or a user.
- the docking station may further comprise a monitor for observing operation of the docking station, such as electric power charging, theft, transaction, security, image or sound recording.
- the monitor may be able to record or observe images, sound, vibration or any other parameters (e.g. temperature, voltage).
- the monitor is possible to include different types of sensor, which observes light, motion, temperature, magnetic fields, gravity, humidity, moisture, vibration, pressure, electrical field, sound, and other physical aspects of environment.
- the monitor includes a security camera that automatically record images of the docking station if detecting motion.
- the docking station can further comprise an alarm for providing warning, either electrically to other equipment, human or animals, if experiencing malfunctioning or theft.
- the alarm can incorporate or separate audio signal, video signal (e.g. flash light) or electronic signal.
- the docking station sometimes further comprises one or more repellers (e.g. mechanical type, electrical type or chemical types) or protector for driving or keeping pest (e.g. birds, cockroaches, rodents, ants) away from the docking station or the motorised vehicle so that the docking station or the motorised vehicle is well-preserved.
- repellers e.g. mechanical type, electrical type or chemical types
- protector for driving or keeping pest e.g. birds, cockroaches, rodents, ants
- the docking station at times further comprises a light source, a light reflector, or an electric lamp, which is possibly connected to the charging unit for illuminating a part of the docking station for easy docking.
- a light source possibly connected to the charging unit for illuminating a part of the docking station for easy docking.
- the docking station is clearly visible from a distance in the nights, and facilitates smooth usage at dark places.
- the docking station can further comprise a cleaning tool (e.g. air gun or brush) for cleaning the docking station, the motorised vehicle, users or any of these.
- a cleaning tool e.g. air gun or brush
- the cleaning tool makes cleaning of the docking station or motorised vehicles neat and unsoiled over prolonged period of usage.
- the present application also provides a docking harbour or bay for keeping multiple motorised vehicles.
- the docking harbour comprises a first docking station and a second docking station; and a common platform or stand for detachably or releasably joining the first docking station and the second docking station together.
- the docking harbour include multiple docking stations that possibly share resource or facilities together.
- the first docking station and the second docking station have a common roof, a common base or both. Since many docking stations are able to share resources together, such as by sharing solar panels, the docking harbour become more efficient or incur less cost.
- the docking harbour may further comprise an identification code (e.g. electronic address, electronic identification) for uniquely recognising, identifying or labelling the docking harbour.
- the charging unit may be configured or operable to replenish an electric scooter as a motorised vehicle according to a charging protocol.
- the electric scooter is electrically or battery powered so that one or more rechargeable batteries of the electric scooter need to be recharged to achieve the longest driving distance or longest battery life.
- the charging unit does not charge a rechargeable battery (Li-ion battery) on an electric scooter if the electric scooter is returned to the docking station with 50% battery power balance. Nevertheless, during night time (i.e. 24:00-06:00), the charging unit will charge the rechargeable battery to the full if the electric scooter is returned to the docking station, regardless remaining battery level of the electric scooter.
- the charging protocol will not charge or automatically stop charging if battery level of an electric scooter is detected to be more than 90%.
- the charging protocol additionally monitors charging time of every electric scooter so that deterioration or aging of the rechargeable battery is closely observed.
- the charging protocol is optimised toward prolonging battery's life, achieving shortest charging time or balancing docking station's power balance between input and output.
- the docking station is mobile.
- the docking station is automated guided vehicle or automatic guided vehicle (AGV) that is able to move around for replenishing motorised vehicles at desired locations.
- AGV automatic guided vehicle
- the mobile docking station moves to residential areas after peak hours or during public holidays, and moves to Central Business District areas during peak business hours.
- the mobile docking station includes a mobile battery pack that is able to be connected to an electric scooter.
- the electric scooter may continue to be used even if its on-board battery is depleted, after coupling with the mobile battery pack.
- a first electric scooter may serve as a mobile docking station for a second scooter if the first electric scooter is coupled to the second electric scooter, and charge a battery of the second scooter, whether both electric scooters are moving or not.
- the present application provides a method of using a docking station for a motorised vehicle.
- the method comprises a first step of connecting a motorised vehicle; a second step of checking or detecting resource level of the motorised vehicle; and a third step of releasing the motorised vehicle upon user or operator activation. Some of these steps may be changed in sequence or combined. These method steps require simple and almost effortless handling from users so that the docking station can be reliably, durably, simply and intuitively operated.
- the method optionally comprises a step of fastening or locking the motorised vehicle to the docking station.
- the motorised vehicle is able to be secured, replenished (e.g. refuelled or recharged), electronically registered or transacted within few steps.
- the method can additionally comprise a step of communicating (e.g. diagnosing, electronically transacting, monitoring, repairing, upgrading, configuring, updating) with the motorised vehicle. Therefore, regular or continuous maintenance of the motorised vehicle or the docking station is automatically performed, making both the docking station and the motorised vehicle reliable and in excellent condition.
- the method may further comprise a step of contacting automatically a remote computer or computing server for transaction or system backup. Particularly, the docking station is able to contact a remote control centre via a telecommunication network, a Wi-Fi connection or an intranet.
- the docking station is able to communicate to a computing server via TCP/IP (Transmission Control Protocol or Internet Protocol) data network, which includes wide area networks (WAN), metropolitan area networks (MAN), local area networks (LAN), Internet area networks (IAN), campus area networks (CAN) and virtual private networks (VPN).
- TCP/IP Transmission Control Protocol or Internet Protocol
- the telecommunication network includes 0G, 1 G, 2G, 3G, 3.5G, 4G, 4.5G and 5G wireless telephone technology (mobile telecommunications).
- the method can further comprise a step of energising (e.g. electrically charging) the motorised vehicle or the docking station, if required or demanded.
- energising e.g. electrically charging
- a depleted battery removed from the motorised vehicle or the docking station, whilst a fully charged battery is inserted into the motorised vehicle or the docking station.
- Exchange of the batteries is fast to perform, and the depleted battery is either charged by a charging unit of the docking station (e.g. solar panels) or replaced by an operator of the docking station.
- Embodiments of the docking station provides one or more RFID readers, charging control protocols, indicator control modules, lock control schemes.
- the docking station is able to be integrated these parts or functions that make the docking station more user friendly and simple to operate.
- the docking stations are meant for storing and charging e-scooters in a mobility sharing system where specially designed e-scooters are provided for rental.
- the docking stations are capable of locking e-scooters, automatically identifying e-scooters' ID, and communicating with a remote server.
- the docking stations are capable of charging e-scooters according to the charging protocol predefined in the docking station or received from the remote server and releasing e-scooters upon receiving the release command from the remote server.
- a docking station consists multiple docking points, where each docking point can store one e-scooter.
- a docking station may also comprise a terminal.
- the present application provides a docking station that has following advantages.
- Battery-powered In certain situations, where tapping into the power grid or using solar panel is challenging, we use swappable batteries to supply power to the docking stations. The batteries are to be swapped at the end of the daily operation and recharged.
- the station is equipped with vibration sensors that are able to detect unauthorized movement of the docking stations.
- Charging protocol When an e-scooter is returned to the docking station, the docking station is able to read its remaining battery. Based on this reading and the prediction of future uses, a decision of whether to charge the e-scooter and how to charge it will be made by the docking station locally or by the remote server and then pass the command to the station.
- the present application provides a docking station for a transport system.
- the docking station comprises a holder for receiving an electric scooter; and a hub connector for connecting the electric scooter.
- the holder optionally comprises a lock for fastening the electric scooter.
- the lock possibly comprises a chain or electromagnets for receiving a handle of the electric scooter.
- the holder sometimes comprises one or more walls for supporting the electric scooter.
- the one or more walls comprises a slot for surrounding at least a part of the electric scooter.
- the hub connector can comprise electric terminals for coupling with the electric scooter.
- the electric terminal may comprise wireless terminals. Embodiments of the hub connector is ingress protected.
- the docking station provide further comprise one or more indicators for signifying status of the electric scooter, the docking station or both.
- the hub connector further comprises a power supply.
- the hub connector comprises an energy harvester for powering the docking station locally.
- the docking station further comprise a panel for protecting the electric scooter from ambient air, water, heat, sunlight and noise.
- the holder possibly further comprises a fixture for anchoring to a stationary base.
- the docking station can further comprise an electronic identification for reading by an electronic device.
- the docking station may further comprise a grapple for folding the electric scooter onto the docking station.
- the docking station can additionally comprise a mechanical arm for fetching the electric scooter.
- the docking station may further comprise a chain.
- the present application additionally provides an electric scooter harbour for keeping electric scooters.
- the docking bay comprises a first docking station (e.g. the docking station mentioned earlier) and a second docking station (e.g. the docking station mentioned earlier).
- the first docking station and the second docking station are attached together.
- the electric scooter harbour can further comprise a carrier that is connected to the first docking station and the second docking station for transporting the two stations.
- the electric scooter harbour may further comprise a power supply unit for supplying electricity to the first docking station, the second docking station or both.
- the electric scooter harbour optionally further comprises a frame that holds the first docking station and the second docking station together.
- the docking station of the present application may be able to receive and release an electric scooter automatically or by a rider of the electric scooter.
- the docking station is further able to hold the electric scooter upright, folded or vertically stacked up so that a footprint of the docking station and the electric scooter is small.
- the docking station is possible to made modular such that multiple pieces of the docking station are able to joined together (e.g. stacked vertically or laid out laterally), occupying little space.
- the docking station is able to monitor, secure or charge one or more electric scooters so that the one or more electric scooters are ready for use if detached from the docking station.
- the docking station is able to communicate with one or more electronic devices via cables or wirelessly.
- the docking station is able to exchange data with a remote computing server via 4G telecommunication network.
- the docking station is further able to exchange information with a rider via a mobile phone (e.g. via Bluetooth communication with the mobile phone).
- the docking station can be horizontally connected, vertically stacked or grouped as modules. Hence, the docking station is easily transported, dismantled and reassembled onsite to store electric scooters at any place when required.
- the docking station is also robust, versatile and simple, making them reliable, attractive and easy to implement for electric scooter riders around a city.
- the present application provides a docking station for a transport system.
- the docking station comprises a stationary holder for receiving a steering tube/pole/post/bar/shaft or a footrest/pedal of an electric scooter; and a hub connector on or connected/attached to the holder for electrically connecting the electric scooter at rest.
- the holder optionally comprises a lock for fastening the electric scooter, whilst the lock is preferably configured to detachably receive or release the electric scooter.
- the holder has at least one hanger for keeping the electric scooter vertically.
- the holder comprises a lock for fastening (at least a part of) the electric scooter.
- the lock comprises a chain or electromagnets for receiving a handle (or any other parts) of the electric scooter.
- the holder comprises at least one wall for supporting the electric scooter (vertically, horizontally, in a predetermined orientation or a combination of any of these).
- the at least one wall comprises a slot for surrounding at least a part of the electric scooter.
- the hub connector comprises electric terminals for coupling with the electric scooter (in order to charge, communication, or both).
- the electric terminal comprises wireless terminals.
- the hub connector is ingress protected (IP code, IEC & EN 60529).
- the docking station further comprises one or more (visual, audio, wireless, mobile phone connectable) indicators for signifying status of the electric scooter, the docking station or both.
- the hub connector further comprises an electric power supply for charging the electric scooter, powering the docking station or communicating with a remote control centre.
- the hub connector comprises an energy harvester for powering the docking station locally (e.g. solar panel, wind turbine or other types of renewable energy harvesters).
- the docking station further comprises a panel, which may be a part of a building envelope for protecting the electric scooter from ambient (or environmental) air, water, heat, sunlight and noise.
- the docking station comprises multiple panels for enveloping the electric scooter fully or partially.
- the holder further comprises a fixture for anchoring to a stationary base.
- the docking station further comprises an electronic identification for reading by an electronic device (e.g. mobile phones, computing server, barcode reader, RFID, etc.).
- the fixture includes holes for chains or screws or base plate for ground attachment.
- the panel comprises a roof, a wall, a floor, a window and a ventilation orifice.
- the docking station further comprises a grapple for folding the electric scooter onto the docking station.
- the docking station further comprises a mechanical arm for fetching the electric scooter.
- the docking station further comprises a chain, a user interface (e.g. LCD screen).
- Embodiments of the application further provides an electric scooter harbour for keeping electric scooters.
- the docking harbour comprises a first docking station and a second docking station.
- the first docking station and the second docking station are attached together contiguously. For example, openings or receptacles of the docking stations face the same direction, or opposite to each other.
- the carrier comprises a power supply unit, a roof, supporting pillars or a frame so that the carrier becomes unitary for easy transport.
- FIG. 1 illustrates a fourth docking station at a transport hub
- FIG. 1 illustrates the fourth docking station with foldable electric scooters
- FIG. 1 illustrates a second cluster of the eleventh docking stations; illustrates a twelfth docking station;
- FIG. 13 illustrates internal mechanism of the thirteen docking station; llustrates locking and charging mechanism of the thirteen docking station; illustrates a hub connector of the thirteen docking station; illustrates a process flow chart of the docking station;
- FIG. 1 illustrates a process flow chart of a vibration alarm of the docking station; illustrates some electronic components of the docking station and its corresponding electric scooter controlled by 3G module; and illustrates a process flow chart of a charging protocol of the docking station.
- Figs. 1 relates to a first embodiment of the present application.
- Fig. 1 illustrates a first docking station 100.
- the first docking station 100 comprises a shelter 102, a first row of holders 104 and a second row of holders 106, together with arrays of foldable electric scooters 108 in the holders.
- the shelter 102 includes a floor 1 10 and a ceiling 1 12 that are supported and connected together by four pillars 1 14 at four corners of the shelter 102.
- the ceiling additionally has six solar panels 1 16 that are laid on top of the ceiling 1 12, being exposed to sunlight.
- the two rows of holders 104,106 are attached to each other back-to-back such that their openings are on opposite sides.
- the first docking station 100 is modular such that the first docking station 100 is able to be lifted and transported to any places when required.
- Fig. 2 relates to a second docking station 120, which is a second embodiment.
- the second embodiment comprises parts or method steps that are similar or identical to those of the first embodiment. Description of the similar or identical part or method steps is hereby incorporated by reference, wherever relevant and appropriate.
- the second docking station 120 includes a first row of holders that are cemented to ground.
- the first row is placed between pillars 1 14 of a bus shelter 102 in a middle position of the bus shelter 102.
- Several electric scooters 108 are folded into openings of the first row 104, and footrests 1 18 of the electric scooters 108 are similarly folded onto steering tubes of the electric scooters 108.
- a width of the folded electric scooters 108 is comparable to a width of the pillars 1 14 of the bus shelter 102.
- a walk path of the bus shelter 102 remains sufficiently wide for pedestrians, presenting no hindrance or restriction to the pedestrians or bus passengers.
- Fig. 3 illustrates a third docking station 122, which is a third embodiment.
- the third embodiment comprises parts or method steps that are similar or identical to other embodiments. Description of the similar or identical part or method steps is hereby incorporated by reference, wherever relevant and appropriate.
- the third docking station 122 has a first row 104 and a second row 106 that are detached from each other. According to Fig. 3, the two rows 104,106 are placed on opposite sides of Parking Lot Number 82, which is inside a residential area. Bases of the two rows 104,106 are firmly planted on the ground, and closely attached to opposite kerbs 124 respectively. The electric scooters 108 are folded too, being closely attached to the two rows 104,106 of docking station(s). A distance between the two rows is about two metres such that a rider can easily access any of the docked electric scooters 108 via a lane between the two rows 104,106, and remove an electric scooter 108 for riding off.
- Figs. 4 to 8 relates to a fourth embodiment of the application.
- Fig. 4 illustrates a fourth docking station 126 at a transport hub.
- the transport hub is a MRT (Mass Rapid Transit) station which has many underground lines of a city.
- the fourth docking station 126 has two receptacles 130 or openings for receiving folded electric scooters 108.
- a user folds an electric scooter 108 such that a footrest 1 18 of the electric scooter 108 is attached to a steering tube of the electric scooter 108 such that the electric scooter 108 becomes a compact block, being locked into a receptacle of the fourth docking station 126.
- Each of the receptacles 130 has two coloured light indicators 128, being a red for sounding alarm and a green for showing secure locking.
- FIG. 5 illustrates the fourth docking station 126 with foldable electric scooters 108 in a conceptual form.
- Four receptacles 130 are provided by Fig. 5 such that the docking station 126 is able to hold four folded electric scooters 108.
- Electric scooters 108 are shown to be folded for storing and expanded for riding, offering options to riders of the electric scooters 108.
- Fig. 6 illustrates the fourth docking station 126 with a foldable electric scooter 108
- Fig. 7 illustrates the fourth docking station 126 exposed
- Fig. 8 illustrates an isometric view of the fourth docking station 126.
- Fig. 7 provides a QR (Quick Response) code 132 label on top of the docking station 126.
- Fig. 8 additionally multiple functions of the fourth docking station 126, which include indicating station weather data, showing station availability, displaying locking status, exhibiting charging voltage and current values (V & I), communicating with a remote computing server and revealing usage data of the electric scooter 108.
- the fourth docking station 126 is an intelligent post that also provides a communication hub between registered electric scooters 108 and the remote computing server.
- Fig. 9 illustrates a fifth docking station 134, which comprises two ranks of holders 104,106.
- a first rank 104 has pillars that are held between respective floors 1 10 and ceilings 1 12.
- Each of the ceilings 1 12 and floors 1 10 are supported by two pillars 1 14 at opposite ends such that an open area between the two pillars 1 14 is made available for parking electric scooters 108.
- Each of the floors 1 10 has a guiding chute 136 for anchoring electric scooters 108. Wheels of an electric scooter 108 are supported by walls of the guiding chute 136 so that a docked electric scooter 108 remains standing in the guiding chute 136. The docked electric scooter 108 is further locked to the guiding chute 136 during storage.
- the ceilings 1 12 prevent rain, dust, leaves or other foreign objects from falling onto docked electric scooters 108.
- Ceilings 1 12 of a second rank 106 are removed such that guiding chutes 136 of the second ranks 106 are exposed for better illustration.
- Each of the electric scooters 108 can be easily accessed, removed or docked at the guiding chutes 136 at any time.
- FIG. 10 illustrates a sixth docking station 138.
- the sixth docking station 138 is a sealed cabinet 140, although a lateral side of the sealed cabinet 140 is removed for better illustration.
- the sixth docking station 138 having horizontal internal bars 142 relative to the floor 1 10 that hold and stack electric scooters 108 inside a casing of the sixth docking station 138.
- the sixth docking station 138 further has a soft curtain 144 for covering a front side of the sixth docking station 138.
- An electric scooter 108 is able to be pushed through the soft curtain 144 for storage inside the sixth docking station 138, being automatically stacked up inside the sixth docking station 138.
- Fig. 1 1 illustrates a seventh docking station 146, which is another sealed cabinet 140. Similar to the sixth docking station 138, the seventh docking station 146 has two arrays of internal bars 142 for holding two stacks of electric scooters 108 internally.
- the seventh docking station 146 additionally has a robotic arm 148 that is movable on a rail 150 on a floor 1 10 of the seventh docking station 146.
- the robotic arm 148 has an end- effector 154 for capturing a front wheel 152 and a footrest 1 18 of an electric scooter 108 such that the robotic arm 148 is able to receive, lock, lift and release an electric scooter 108 for storage inside the seventh docking station 146.
- FIG. 12 illustrates an eighth docking station 156.
- the eighth docking station 156 comprises a pillar 1 14 with several vertically aligned holders 158 at a side.
- the holders are able to support handles, wheels and a footrest of an electric scooter 108 vertically so that a folded electric scooter 108 is able to be held closely to the pillar 1 14 for storage.
- the holders 158 are movable along the pillar 1 14 so that multiple electric scooters 108 are able to be stored on the same pillar 1 14 or docking station 156.
- Fig. 13 illustrates a ninth docking station 160, which primarily has a vertically standing chute 162.
- the chute 162 has a front opening for receiving an electric scooter 108, whilst two lateral sides of the chute 162 face each other.
- a ridge of the chute 162, which joins the two lateral sides, has holders (not shown) to engage wheels, footrests 1 18 and handles of electric scooters 108 such that an electric scooter 108 is able to be held vertically and stored inside the chute 162.
- Fig. 14 illustrates a tenth docking station 168.
- the tenth docking station 168 has two rows of storage cabinets 170, whilst each of the two rows have five storage cabinets 170.
- each of the storage cabinets 170 has a base 172 at bottom and five clutches 174 above the base 172.
- the base 172 is operable to support footrests 1 18 of one to five electric scooters 108.
- Each of the clutches 174 has a clutch bar 178 that is hinged to an end of the clutch 174.
- the clutch bar 178 is rotatable between an opening and closed positions of the clutch 174 such that a steering pole 176 of an electric scooter 108 is able to be held inside a clutch 174, or released from the clutch 174 by opening the bar 178. Accordingly, an electric scooter 108 can be securely locked by a storage cabinet 170 of the tenth docking station 168 because the steering pole 176 is locked inside a clutch 174.
- Fig. 14 shows that many electric scooters 108 are locked by the tenth docking station 168, whilst each of these electric scooters 108 is accessible for retrieving. Particularly, the two rows of cabinets 170 have a lane in-between, which is about 1 .5 metres as passageway.
- FIG. 15 illustrates an eleventh docking station 180, which includes four stacked storage drawers 184.
- the four storage drawers 182 are laid on top of a closet, which encloses communication terminals, a power supply unit and a control unit.
- Each of the storage drawers 182 contains two guiding rails 184 and a hub connector (not shown). Wheels of a moored electric scooter 108 are held between the two rails 184, and the hub connector is connected to the stored electric scooter 108.
- a front side of the eleventh docking station 180 is open for access, which is also the open sides of the storage drawers 182.
- Fig. 16 illustrates a first cluster 186 of the eleventh docking stations 180.
- the first cluster has four eleventh docking stations 180. Two of the eleventh docking stations 180 have their opening sides facing the same direction, whilst remaining two eleventh docking stations 180 have their opening sides facing the opposite direction.
- the four eleventh docking stations 180 are closely attached to each other such that they form a unitary block, similar to a four-sided prism.
- Fig. 17 illustrates a second cluster 188 of the eleventh docking stations 180. Similar to the first cluster 186 of docking stations, the second cluster 188 comprises several eleventh docking stations 180. Instead of forming the four-sided prism, the second cluster has a cylindrical profile. A cylindrical surface of the second cluster 188 are formed by opening sides of the eleventh docking stations 180. Hence, the second cluster 188 provides an alternative formation of the eleventh cabinets, making the eleventh docking stations 180 versatile.
- Fig. 18 illustrates a twelfth docking station 190 that is an elongated and thin panel.
- the twelfth docking station 190 has a front end and a back end that are at opposite sides of the panel.
- a top ridge 192 of the twelfth docking station 190 has a chain 194 throughout a length of the panel, and the chain contains sockets for receiving handles of electric scooters 108 respectively.
- the bottom ridge 196 of the twelfth docking station 190 is smooth, providing negligible friction to wheels of electric scooters 108.
- an electric scooter 108 For storage at the twelfth docking station 190, an electric scooter 108 is pushed near the front end 198, and its handle 202 is engaged by a socket of the chain 194. The electric scooter 108 continues to be pushed forward till being pushed again a previously stored electric scooter 108. Hence, stored electric scooters 108 are packed against each other, being held continuously at the panel. At the back end 200, a rider pulls a handle 202 of the last electric scooter 108 such that the chain rolls till releasing the handle 202. The last electric scooter 108 is thus being taken away from the twelfth docking station 190 for riding.
- Figs. 19 to 23 refers to a thirteenth docking station 204.
- Fig. 19 illustrates the thirteen docking station 204 that has a control unit and a storage unit (i.e. control box) juxtaposed together.
- the storage unit 208 is an elongated cabinet with a front aperture 210.
- the control unit 206 is completely sealed, having a touchscreen 212 at its front side, being next to the front aperture 210.
- a red light indicator and a green light indicator are position at opposite sides of the front aperture 210. The red light indicator is powered when detecting malfunction, whilst the green light indicator is turned on for indicating secured storage of an electric scooter 108. These light indicators are also known as signal lights 128.
- Fig. 20 illustrates another view of the thirteenth docking station 204.
- a base plate 214 is shown to support and join the control unit 206 and storage unit 208 together. External dimensions of the thirteen docking station 204 are clearly labelled.
- the width of the base plate 214 is 0.85 metres.
- the length of the base plate 214 is 1 .1 metres.
- the width of the storage unit 208 is 0.35 metres.
- Fig. 21 illustrates the thirteenth docking station 204 being partially exposed. A top side of the storage unit 208 is exposed such that a docked electric scooter 108, and a charging dock & lock mechanism become visible.
- Fig. 22 illustrates internal guiding mechanism of the thirteenth docking station 204, which shows the charging dock and guiding mechanism on the base plate 214.
- the guiding mechanism has two upper guides 216 and two lower guides 218 four corners of a rectangular prism, being at opposite sides.
- Each of the guides has cylindrical steel rollers 220 juxtaposed to each other, covering an entire length of the guide 216,218.
- the cylindrical steel rollers 220 are configured to push against lateral edges of a footrest 1 18 of the electric scooter 108 such that the docked electric scooter 108 is held firmly between the guides 216,218.
- Fig. 23 illustrates the locking & charging mechanism of the thirteenth docking station 204 with the base plate 214 removed revealing the electric scooter 108 as viewed from the bottom.
- a hub connector of the thirteen docking station 204 is depicted by showing a spring locating mechanism 222.
- the spring locating mechanism 222 has a stationary connector 224 and a mobile connector 226 for coupling together.
- the stationary connector 224 is locked to the base plate 214 having cables linked to a charger.
- the mobile connector 226 is detachable from an electric scooter 108, and connectable to the stationary connector 224.
- Both the stationary connector 224 and the mobile connector 226 have six electrical contacts 228.
- the stationary connector 224 and the mobile connector 226 are not connected 230. When the mobile connector 226 is pushed towards 234 the stationary connector 224, the electrical contacts 228 are in contact 232.
- the electrical contacts 228 of the two connectors meet each other respectively 232 at a storage position of the electric scooter 108.
- the electrical contacts 228 provide electrical power and signal communication between the thirteen docking station 204 and the stored electric scooter 108.
- Fig. 24 illustrates a hub connector 236 of the thirteenth docking station 204. The electrical contacts 228 are more visible in Fig. 24.
- Fig. 24 additionally shows two electric magnets 238 at opposite sides, which are configured to lock a stored electric scooter 108.
- Fig. 25 illustrates a flow chart of the docking station 126.
- the docking station 300 provides a method of operation having a charging mode, a stop charging mode, a release mode and a locking mode.
- the method of operation involves defined methods and control using application programming interface (API) in the communication between software components providing a development of a computer programme.
- API application programming interface
- the charging API initiates a "charge” signal 302 activating the charging of the electric scooter 304.
- the charging API initiates "stop charge” signal 306 deactivating the charging of the electric scooter 308.
- the release mode the lock/release API initiates a "release electric scooter” signal 310 which opens a lock 312 and then sends an acknowledgement to the lock/release API 314.
- the lock/release API 314 checks whether the lock is engaged 316. If the electric scooter 108 were not locked, a feedback is sent to the lock/release API to activate the lock 310. However, if after three failed attempts to engage the lock, a red indicator light will be on.
- the lock/release API checks that the locking is successful 318. If it were not locked, the lock/release API checks whether the RFID (Radio frequency identification) code of the electric scooter 108 is registered 320. If it were registered, the electric scooter identity code will be sent to the lock/release API and a red indicator light will be on 322. This implies that there is a fault with the registered electric scooter 108 that requires attention and hence the electric scooter identity code is sent to lock/release API. Conversely, if the RFID code were not found 324, it implies that the electric scooter 108 or the vehicle is disallowed from parking and locking at the docking station 126. Hence, there is no action required.
- the RFID Radio frequency identification
- the RFID code of the electric scooter 108 will be checked 326. If the RFID code is found, a docking success message and the electric scooter identity code are then sent to the lock/release API 328. A green indicator light will be on to indicate a successful lock. Conversely, if the RFID code is not found, a docking success message is sent to the lock/release API without the electric scooter identity code and a red light is on 330.
- Fig. 26 illustrates a basic operation of the docking station 126.
- a user opens an application 350 on the smart phone.
- the user locates a nearby docking station 126 with the available electric scooter 352.
- an indicator light reveals the status of the docking station 354.
- a red indicator light 356 indicates to the user there is no electric scooter available 358 at the docking station 126 and leads to the end of the process 360.
- a no light indicates that the electric scooter 108 is available and fully charged 362.
- the user approaches the available docking station 126 with the electric scooter 108 and uses his smart phone to capture an image of the Quick Response (QR) code which is labelled on the docking station 364.
- QR Quick Response
- the successful QR scanning 366 provides a disengaging of the lock 368 at the docking station 126 and a "unlock status" is sent to the lock/release API 370.
- the user then retrieves the electric scooter 372.
- the docking station 126 At the docking station, the docking station 126 continually queries if the electric scooter 108 is retrieved 374. If after some time, the electric scooter 108 is not retrieved 376, the lock/release API submits a status update and request the lock to be engaged and locked 376 and leads to the end of the process 360.
- the user after retrieving the electric scooter 108 switches on the power 378 and begins to ride.
- regular status update of the electric scooter 108 is submitted to the API 382.
- the API is capable of storing, transmitting, receiving, tracking and locating the location of the electric scooter 108 as well as the battery level status of the electric scooter.
- the electric scooter Upon returning the electric scooter 108 to the docking station 384, the electric scooter will be locked 386.
- the RFID code is read by the docking station 388 to indicate a successful return 390.
- the green indicator light will be lit for ten seconds 392.
- An end status is submitted to the API 394 and then leads to the end of the process 360.
- the return of the electric scooter 108 is rendered unsuccessful 396.
- the red indicator light is lit 398.
- a status update is submitted to API 400 and then leads to the end of the process 360.
- the electric scooter identity code is sent to the API which will perform a location matching 402 and then leads to the end of the process 360.
- Fig. 27 illustrates a flow chart of a vibration alarm of the electric scooter 420.
- the electric scooter will vibrate 422 prohibiting the user from using the electric scooter 108.
- the docking station 126 checks whether the electric scooter is locked 424. If the electric scooter 108 is not locked, the vibration is ignored 426. Conversely, if the electric scooter 108 is locked, a message is sent to the API regarding the vibration alarm 428.
- the API 430 informs the administrator 432 about the vibration and ends the process 434.
- Fig. 28 illustrates the external circuits controlled by a 3G module which is WCDMA (Wideband Code Division Multiple Access).
- WCDMA Wideband Code Division Multiple Access
- the docking station 440 uses the WCDMA unit 442 for mobile communication between the RFID (Radio-Frequency Identification) unit 444, the charging control unit 446, the indicator control unit 448 and the lock control unit 450.
- RFID Radio-Frequency Identification
- the electric scooter 108 uses the WCDMA unit 442 for controlling the motor and retrieving the data 452 as well as retrieving battery data 454.
- a plurality of lithium-ion (Li-ion) battery is used at the docking stations whilst some of the embodiments use electrical sources from the public utility.
- the latter implementation would require extensive construction works rendering it expensive and the docking station immovable.
- the docking station 126 mentioned herein is connected to the public utility providing electrical power to the electric scooter.
- Li-ion batteries Three of the commonly used Li-ion batteries are lithium manganese oxide (LMO), lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC). They are considered safer, lower capacity than lithium cobalt oxide (LCO) which is used in mobile devices like phones and laptops. Even though of the lower capacity, they have high specific power and long operational life. Manganese and phosphate-based lithium- ion, as well as nickel-based chemistries are the best performers for delivering bursts of power on demand.
- LMO lithium manganese oxide
- LFP lithium iron phosphate
- NMC lithium nickel manganese cobalt oxide
- the performance and operating life of the Li-ion batteries are closely related to the quality of the charging pattern. Therefore, an optimal charging pattern is essential for Li-ion batteries to achieve shorter charging time and longer cycle life.
- the constant current-constant voltage technique is commonly used for charging Li-ion batteries, but it dramatically extends the charging time and also reduces the operational life of the battery.
- Li-ion batteries live longer if treated in a gentle manner. High charge voltages, excessive charge rate and extreme load conditions have a negative effect on battery life. The longevity is often a direct result of the environmental stresses applied. To prolong the battery life, the time at which the battery stays at a maximum voltage should be as short as possible. Prolonged high voltage promotes corrosion, especially at elevated temperatures. The charge current of Li-ion should be moderate. The lower charge current reduces the time in which the cell resides at the maximum voltage. A high current charge tends to push the voltage into voltage limit prematurely. The lithium- ion should not be too deeply discharged. Instead, charge it frequently. Lithium-ion does not have memory problems like nickel-cadmium batteries. No deep discharges are needed for conditioning. The lithium-ion is not charged at or below freezing temperature. Although accepting charge, an irreversible plating of metallic lithium will occur that compromises the safety of the pack. The lithium-ion battery lives longer with a slower charge rate; moderate discharge rates also help.
- Li-ion does not need to be fully charged as is the case with lead acid, nor is it desirable to do so. In fact, Li-ion is preferred not to be fully charged because a high voltage stresses the battery. Choosing a lower voltage threshold or eliminating the saturation charge altogether, prolongs battery life but this reduces the runtime (i.e. frequently charged).
- the electric scooters 108 are used by commuters regularly during peak working hours. During peak hours, the scooters are released and locked from the docking stations 126 at a higher frequency. For example, some of the returned electric scooters 108 may have a battery level of 50%, the likelihood of these electric scooters 108 being used again is high during peak hours and hence to commence charging for these electric scooters 108 is not necessary.
- Fig. 29 illustrates a process flow chart of a charging protocol 468 of the docking station 126.
- a charging protocol 468 which extends the Li-ion battery operating life and minimizing service disruption is provided.
- the electric scooter 108 at the docking station is locked and the charging protocol 468 begins 470.
- the API checks the time the electric scooter 108 was docked during a peak hour period.
- the peak hour period herein refers to the time period where users of the electric scooters 108 are travelling to work or off work, usually the time is from 730am to 930am and from 5pm to 730pm.
- the API will proceed to check the battery level of the electric scooter 108. If the battery level were less than 50% 474, the charging begins 476 and will charge until the Li-ion battery level reaches 50%. However, if the battery level is more than 50%, there will be no charging 478 and the docking station will then constantly check the time 472.
- the API checks whether the battery level is less than 95% 480. If the battery level is less than 95%, charging begins 476. The Li-ion battery of the electric scooter 108 will be charged until the battery level reaches 95%. Once the battery level reaches 95%, the charging stops 478 and the docking station 126 will then constantly check the time 472. [0102]
- a charging protocol 468 which extends the Li-ion battery operating life and minimizing service disruption is provided that takes in a list of factors like the usage frequency of scooters and the times of the day which the electric scooters 108 were mobilized.
- Such information stored over a period of time provides a statistical data for determining the charging time or not to charge of electric scooters 108 and provides a basis for prediction of future demand.
- a machine learning algorithm is used to learn and improve the charging protocol as more data is available.
- the input data to the charging protocol 468 is the current battery level and the demand prediction (spatio-temporal demand of the sharing system).
- the charging protocol 468 learns by using operational and laboratory data.
- the operational data is obtained from trip history and system logs of the electric scooter 108.
- the operation data is supplied as input to a machine learning algorithm.
- the laboratory data is obtained from simulation from software simulation and lab experiments of the electric scooter 108.
- the output from the charging protocol 468 comprising a start/stop charging initialisation, a charging voltage and a charging current.
- the term "about”, in the context of concentrations of components of the formulations, typically means +/- 5% of the stated value, more typically +/- 4% of the stated value, more typically +/- 3% of the stated value, more typically, +/- 2% of the stated value, even more typically +/- 1 % of the stated value, and even more typically +/- 0.5% of the stated value.
- range format may be disclosed in a range format.
- the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the disclosed ranges. Accordingly, the description of a range should be considered to have specifically disclosed all the possible sub-ranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed sub-ranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1 , 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/309,873 US20190263281A1 (en) | 2016-06-16 | 2017-05-24 | Docking station for motorised vehicles |
KR1020197001552A KR20190010718A (ko) | 2016-06-16 | 2017-05-24 | 전동 차량용 도킹 스테이션(docking station) |
JP2019518367A JP2019525719A (ja) | 2016-06-16 | 2017-05-24 | 電動車両用ドッキングステーション |
EP17813702.2A EP3471995A4 (fr) | 2016-06-16 | 2017-05-24 | Station d'accueil pour véhicules motorisés |
AU2017285901A AU2017285901A1 (en) | 2016-06-16 | 2017-05-24 | Docking station for motorised vehicles |
SG11201810587VA SG11201810587VA (en) | 2016-06-16 | 2017-05-24 | Docking station for motorised vehicles |
CN201780044966.7A CN109476238A (zh) | 2016-06-16 | 2017-05-24 | 用于机动车辆的对接站 |
JP2018565050A JP2019527160A (ja) | 2016-06-16 | 2017-06-15 | 動力付きスクータ |
KR1020187037582A KR20190018445A (ko) | 2016-06-16 | 2017-06-15 | 모터 구동식 스쿠터 |
SG11201810588TA SG11201810588TA (en) | 2016-06-16 | 2017-06-15 | Motorised scooter |
AU2017285996A AU2017285996A1 (en) | 2016-06-16 | 2017-06-15 | Motorised scooter |
CN201780044965.2A CN109476356A (zh) | 2016-06-16 | 2017-06-15 | 机动小车 |
US16/310,272 US20190248439A1 (en) | 2016-06-16 | 2017-06-15 | Motorised scooter |
PCT/SG2017/050303 WO2017217936A1 (fr) | 2016-06-16 | 2017-06-15 | Trottinette à moteur |
EP17813709.7A EP3472033A4 (fr) | 2016-06-16 | 2017-06-15 | Trottinette à moteur |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG10201604920Y | 2016-06-16 | ||
SG10201604920YA SG10201604920YA (en) | 2016-06-16 | 2016-06-16 | Short Distance Mobility Sharing System |
SG10201700513U | 2017-01-20 | ||
SG10201700513UA SG10201700513UA (en) | 2016-06-16 | 2017-01-20 | Docking Station for A Transport System |
SG10201701350YA SG10201701350YA (en) | 2016-06-16 | 2017-02-21 | Motorised Scooter |
SG10201701350Y | 2017-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017217929A1 true WO2017217929A1 (fr) | 2017-12-21 |
Family
ID=60663644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG2017/050268 WO2017217929A1 (fr) | 2016-06-16 | 2017-05-24 | Station d'accueil pour véhicules motorisés |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017217929A1 (fr) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109087456A (zh) * | 2018-07-26 | 2018-12-25 | 陈学文 | 一种基于存车箱的电动滑板车存放方法 |
US20200031247A1 (en) * | 2018-07-26 | 2020-01-30 | Swiftmile, Inc. | Light electric vehicle parking and charging stations and smart charging systems for the vehicle batteries |
WO2020070353A1 (fr) * | 2018-10-02 | 2020-04-09 | HERNANDEZ BETHENCOURT, Antonio Manuel | Banc urbain pour stationnement et charge de véhicules |
WO2020209789A1 (fr) * | 2019-04-10 | 2020-10-15 | Grabtaxi Holdings Pte. Ltd. | Architecture d'internet des objets pour partage de dispositifs |
WO2020209062A1 (fr) * | 2019-04-10 | 2020-10-15 | Kyb株式会社 | Connecteur et dispositif d'alimentation électrique |
FR3096937A1 (fr) * | 2019-06-07 | 2020-12-11 | Pat Com | Système de fixation et de recharge d’un véhicule électrique léger |
EP3770003A1 (fr) * | 2019-07-25 | 2021-01-27 | Volkswagen Ag | Infrastructure de charge lmv décentralisée |
WO2021034702A1 (fr) * | 2019-08-16 | 2021-02-25 | Neptune Scooters | Stations d'accueil de trottinettes électriques |
EP3786037A1 (fr) | 2019-08-30 | 2021-03-03 | Nathanael Grübl | Dispositif de stationnement pour trottinettes |
NO20191186A1 (en) * | 2019-10-03 | 2021-04-05 | Byspark As | Contact device for charging el-scooters |
WO2021092542A1 (fr) * | 2019-11-08 | 2021-05-14 | Get Charged, Inc Dba Charge | Station de charge modulaire pour véhicules de micro-mobilité urbaine |
NO20191429A1 (en) * | 2019-12-03 | 2021-06-04 | Scandinavian Micromobility As | Small electric vehicle platform |
CN113022348A (zh) * | 2021-03-10 | 2021-06-25 | 嘉兴智行物联网技术有限公司 | 一种电动自行车充电桩安装板及其安装装置 |
EP3863142A1 (fr) * | 2020-02-05 | 2021-08-11 | Uvify Co., Ltd. | Système et procédé de gestion de charge pour batteries |
WO2021160972A1 (fr) * | 2020-02-13 | 2021-08-19 | Labadis Sas | Poste de stockage pour trottinette, unités le comportant et ensemble les comportant |
CN113276716A (zh) * | 2021-07-12 | 2021-08-20 | 吕波 | 一种基于新能源汽车野外应急充电棚及其安装方法 |
IT202000007990A1 (it) * | 2020-04-17 | 2021-10-17 | Chesini Francesco | Stazione di posteggio con funzione di ricarica, per monopattini e biciclette elettrici e non elettrici |
DE102020210910A1 (de) | 2020-08-28 | 2022-03-03 | Volkswagen Aktiengesellschaft | Ladevorrichtung, Elektrofahrzeug und Mikromobilitätssystem |
EP3974299A1 (fr) | 2020-09-24 | 2022-03-30 | BrainNova Osakeyhtiö | Procédé et appareil de stockage de scooters |
WO2022123286A1 (fr) * | 2020-12-07 | 2022-06-16 | Tauro Vivian | Le cube – centre multifonctionnel robotisé avancé 24 h/24 et 7 j/7 |
EP3925826A4 (fr) * | 2019-06-27 | 2022-11-23 | EV Pass Co., Ltd. | Station mobile pour trottinette électrique |
WO2023001376A1 (fr) * | 2021-07-22 | 2023-01-26 | Bolt Technology OÜ | Borne de recharge pour une trottinette électrique et trottinette électrique |
IT202100024131A1 (it) * | 2021-09-21 | 2023-03-21 | Cover Tech S R L | Una stazione di ricarica per veicoli elettrici |
EP4215409A1 (fr) * | 2022-01-20 | 2023-07-26 | Aventech | Station de recharge pour véhicules électriques transportable |
WO2023152460A1 (fr) * | 2022-02-11 | 2023-08-17 | Okafor Chukwudi | Système modulaire d'accueil et de gestion d'énergie pour une trottinette ou une bicyclette |
US20230271519A1 (en) * | 2018-06-05 | 2023-08-31 | Mark A. Anton | Charging stations for bikes and e-scooters |
US20230373331A1 (en) * | 2019-06-28 | 2023-11-23 | Lyft, Inc. | Apparatus, systems, and methods for charging personal mobility vehicles via docks |
CN117863932A (zh) * | 2024-02-01 | 2024-04-12 | 福州无忧车汽车服务有限公司 | 一种防触电的新能源汽车充电桩 |
US12012008B2 (en) | 2020-02-03 | 2024-06-18 | David Bowman | Systems and methods for smart chain charging of rechargeable batteries in electric vehicles |
US12032059B2 (en) | 2019-05-24 | 2024-07-09 | 3M Innovative Properties Company | Radar-optical fusion article and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110148346A1 (en) * | 2009-12-22 | 2011-06-23 | Jcdecaux Sa | Automatic Cycle Storage System, Cycle For Such a System and Docking Structure For Such a Cycle |
US20130265007A1 (en) * | 2009-09-28 | 2013-10-10 | Powerhydrant Llc | Method and system for charging electric vehicles |
US20150117935A1 (en) * | 2013-10-24 | 2015-04-30 | Giant Manufacturing Co., Ltd. | Bicycle locking and parking device |
US20150321722A1 (en) * | 2012-11-26 | 2015-11-12 | Green Ride Ltd. | Foldable motorized scooter |
KR20160046791A (ko) * | 2013-06-20 | 2016-04-29 | 프로덕트 디벨롭먼트 테크놀로지스 엘엘씨 | 자전거 시스템 |
-
2017
- 2017-05-24 WO PCT/SG2017/050268 patent/WO2017217929A1/fr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130265007A1 (en) * | 2009-09-28 | 2013-10-10 | Powerhydrant Llc | Method and system for charging electric vehicles |
US20110148346A1 (en) * | 2009-12-22 | 2011-06-23 | Jcdecaux Sa | Automatic Cycle Storage System, Cycle For Such a System and Docking Structure For Such a Cycle |
US20150321722A1 (en) * | 2012-11-26 | 2015-11-12 | Green Ride Ltd. | Foldable motorized scooter |
KR20160046791A (ko) * | 2013-06-20 | 2016-04-29 | 프로덕트 디벨롭먼트 테크놀로지스 엘엘씨 | 자전거 시스템 |
US20150117935A1 (en) * | 2013-10-24 | 2015-04-30 | Giant Manufacturing Co., Ltd. | Bicycle locking and parking device |
Non-Patent Citations (1)
Title |
---|
See also references of EP3471995A4 * |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230271519A1 (en) * | 2018-06-05 | 2023-08-31 | Mark A. Anton | Charging stations for bikes and e-scooters |
US10919405B2 (en) * | 2018-07-26 | 2021-02-16 | Swiftmile, Inc. | Light electric vehicle parking and charging stations and smart charging systems for the vehicle batteries |
US20200031247A1 (en) * | 2018-07-26 | 2020-01-30 | Swiftmile, Inc. | Light electric vehicle parking and charging stations and smart charging systems for the vehicle batteries |
CN109087456A (zh) * | 2018-07-26 | 2018-12-25 | 陈学文 | 一种基于存车箱的电动滑板车存放方法 |
US10946758B2 (en) * | 2018-07-26 | 2021-03-16 | Swiftmile, Inc. | Light electric vehicle parking and charging stations and smart charging systems for the vehicle batteries |
WO2020070353A1 (fr) * | 2018-10-02 | 2020-04-09 | HERNANDEZ BETHENCOURT, Antonio Manuel | Banc urbain pour stationnement et charge de véhicules |
EP3862216A4 (fr) * | 2018-10-02 | 2022-08-10 | Hernández Bethencourt, Santiago José | Banc urbain pour stationnement et charge de véhicules |
WO2020209789A1 (fr) * | 2019-04-10 | 2020-10-15 | Grabtaxi Holdings Pte. Ltd. | Architecture d'internet des objets pour partage de dispositifs |
JP7200033B2 (ja) | 2019-04-10 | 2023-01-06 | Kyb株式会社 | コネクタおよび給電装置 |
JP2020174450A (ja) * | 2019-04-10 | 2020-10-22 | Kyb株式会社 | コネクタおよび給電装置 |
WO2020209062A1 (fr) * | 2019-04-10 | 2020-10-15 | Kyb株式会社 | Connecteur et dispositif d'alimentation électrique |
US12032059B2 (en) | 2019-05-24 | 2024-07-09 | 3M Innovative Properties Company | Radar-optical fusion article and system |
FR3096937A1 (fr) * | 2019-06-07 | 2020-12-11 | Pat Com | Système de fixation et de recharge d’un véhicule électrique léger |
EP3925826A4 (fr) * | 2019-06-27 | 2022-11-23 | EV Pass Co., Ltd. | Station mobile pour trottinette électrique |
US20230373331A1 (en) * | 2019-06-28 | 2023-11-23 | Lyft, Inc. | Apparatus, systems, and methods for charging personal mobility vehicles via docks |
CN112277666A (zh) * | 2019-07-25 | 2021-01-29 | 大众汽车股份公司 | 分散式lmv充电基础设施 |
EP3770003A1 (fr) * | 2019-07-25 | 2021-01-27 | Volkswagen Ag | Infrastructure de charge lmv décentralisée |
US11733056B2 (en) | 2019-07-25 | 2023-08-22 | Volkswagen Aktiengesellschaft | Decentralized LMV charging infrastructure |
CN112277666B (zh) * | 2019-07-25 | 2023-09-26 | 大众汽车股份公司 | 分散式lmv充电基础设施 |
WO2021034702A1 (fr) * | 2019-08-16 | 2021-02-25 | Neptune Scooters | Stations d'accueil de trottinettes électriques |
US11279250B2 (en) | 2019-08-16 | 2022-03-22 | Neptune Scooters | Electric scooter docking stations |
EP4013639A4 (fr) * | 2019-08-16 | 2023-12-27 | Neptune Scooters | Stations d'accueil de trottinettes électriques |
AT523259A1 (de) * | 2019-08-30 | 2021-06-15 | Nathanael Gruebl | Parkvorrichtung für Roller |
EP3786037A1 (fr) | 2019-08-30 | 2021-03-03 | Nathanael Grübl | Dispositif de stationnement pour trottinettes |
NO20191186A1 (en) * | 2019-10-03 | 2021-04-05 | Byspark As | Contact device for charging el-scooters |
WO2021092542A1 (fr) * | 2019-11-08 | 2021-05-14 | Get Charged, Inc Dba Charge | Station de charge modulaire pour véhicules de micro-mobilité urbaine |
NO20191429A1 (en) * | 2019-12-03 | 2021-06-04 | Scandinavian Micromobility As | Small electric vehicle platform |
US12012008B2 (en) | 2020-02-03 | 2024-06-18 | David Bowman | Systems and methods for smart chain charging of rechargeable batteries in electric vehicles |
EP3863142A1 (fr) * | 2020-02-05 | 2021-08-11 | Uvify Co., Ltd. | Système et procédé de gestion de charge pour batteries |
US11552491B2 (en) | 2020-02-05 | 2023-01-10 | Uvify Co., Ltd. | Charging management system and method for batteries |
FR3107249A1 (fr) * | 2020-02-13 | 2021-08-20 | Labadis Sas | Poste de stockage pour trottinette, unités le comportant et ensemble les comportant |
WO2021160972A1 (fr) * | 2020-02-13 | 2021-08-19 | Labadis Sas | Poste de stockage pour trottinette, unités le comportant et ensemble les comportant |
IT202000007990A1 (it) * | 2020-04-17 | 2021-10-17 | Chesini Francesco | Stazione di posteggio con funzione di ricarica, per monopattini e biciclette elettrici e non elettrici |
WO2021209943A1 (fr) * | 2020-04-17 | 2021-10-21 | Chesini, Francesco | Place de stationnement dotée d'une fonction de charge, pour des scooters et des bicyclettes électriques et non électriques |
DE102020210910A1 (de) | 2020-08-28 | 2022-03-03 | Volkswagen Aktiengesellschaft | Ladevorrichtung, Elektrofahrzeug und Mikromobilitätssystem |
EP3974299A1 (fr) | 2020-09-24 | 2022-03-30 | BrainNova Osakeyhtiö | Procédé et appareil de stockage de scooters |
WO2022123286A1 (fr) * | 2020-12-07 | 2022-06-16 | Tauro Vivian | Le cube – centre multifonctionnel robotisé avancé 24 h/24 et 7 j/7 |
CN113022348A (zh) * | 2021-03-10 | 2021-06-25 | 嘉兴智行物联网技术有限公司 | 一种电动自行车充电桩安装板及其安装装置 |
CN113276716A (zh) * | 2021-07-12 | 2021-08-20 | 吕波 | 一种基于新能源汽车野外应急充电棚及其安装方法 |
WO2023001376A1 (fr) * | 2021-07-22 | 2023-01-26 | Bolt Technology OÜ | Borne de recharge pour une trottinette électrique et trottinette électrique |
IT202100024131A1 (it) * | 2021-09-21 | 2023-03-21 | Cover Tech S R L | Una stazione di ricarica per veicoli elettrici |
WO2023047217A1 (fr) * | 2021-09-21 | 2023-03-30 | Cover Technology S.R.L. | Station de charge de véhicule électrique |
EP4215409A1 (fr) * | 2022-01-20 | 2023-07-26 | Aventech | Station de recharge pour véhicules électriques transportable |
WO2023152460A1 (fr) * | 2022-02-11 | 2023-08-17 | Okafor Chukwudi | Système modulaire d'accueil et de gestion d'énergie pour une trottinette ou une bicyclette |
CN117863932A (zh) * | 2024-02-01 | 2024-04-12 | 福州无忧车汽车服务有限公司 | 一种防触电的新能源汽车充电桩 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190263281A1 (en) | Docking station for motorised vehicles | |
WO2017217929A1 (fr) | Station d'accueil pour véhicules motorisés | |
US11912248B2 (en) | Robotics for rotating energy cells in vehicles | |
EP3838654A1 (fr) | Procédé et système d'alimentation électrique de véhicules à propulsion électrique | |
US20210138921A1 (en) | Modular charging station for urban micro-mobility vehicles | |
US20230271519A1 (en) | Charging stations for bikes and e-scooters | |
US20190265702A1 (en) | Autonomous mobile object, delivery system, and server apparatus | |
ES2281411T3 (es) | Unidad de almacenamiento de ordenador. | |
US20200324662A1 (en) | Device, system and method for storing, safeguarding and maintaining a mobile robot | |
KR102521348B1 (ko) | 드론의 배터리 충전 방법 | |
US10543984B1 (en) | Multipurpose robotic system | |
US20180043782A1 (en) | Mobile vehicle charging system | |
CN109466518B (zh) | 用于为能量储存器充电的充电装置、运输工具和设备 | |
KR100939363B1 (ko) | 전기 자전거 자동 충전을 겸한 자전거 주차 타워장치 | |
WO2018196803A1 (fr) | Système et procédé d'exploitation de location d'unité mobile de puissance, dispositif électrique et système et procédé associés de prise en charge d'exploitation | |
JP5878401B2 (ja) | 組立式移動基地局 | |
JP7478977B2 (ja) | バッテリ充電モジュール、バッテリ交換装置、およびバッテリ装置 | |
US20170104441A1 (en) | Portable power supply unit | |
KR20110005112A (ko) | 이동수단과 무접점 충전 장치가 구비된 주차 스테이션 | |
JP7561384B2 (ja) | バッテリ充電モジュール、バッテリ交換装置、およびバッテリ装置 | |
US20190262333A1 (en) | Sustained release buprenorphine microspheres (srbm) and methods of use thereof | |
US9667093B2 (en) | Transportable power plant apparatus and method | |
JP2013066315A (ja) | 充電用ロッカー | |
US10556349B1 (en) | Multipurpose robotic system | |
WO2020203929A1 (fr) | Système de transport, corps mobile, procédé de transport, programme de transport et support d'enregistrement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17813702 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019518367 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017285901 Country of ref document: AU Date of ref document: 20170524 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197001552 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017813702 Country of ref document: EP Effective date: 20190116 |