WO2017217757A1 - 변성 타우린 및 이의 제조방법 - Google Patents

변성 타우린 및 이의 제조방법 Download PDF

Info

Publication number
WO2017217757A1
WO2017217757A1 PCT/KR2017/006187 KR2017006187W WO2017217757A1 WO 2017217757 A1 WO2017217757 A1 WO 2017217757A1 KR 2017006187 W KR2017006187 W KR 2017006187W WO 2017217757 A1 WO2017217757 A1 WO 2017217757A1
Authority
WO
WIPO (PCT)
Prior art keywords
taurine
weeks
denatured
modified
taualc
Prior art date
Application number
PCT/KR2017/006187
Other languages
English (en)
French (fr)
Inventor
변종현
Original Assignee
변종현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170074035A external-priority patent/KR101851728B1/ko
Application filed by 변종현 filed Critical 변종현
Priority to EP17813580.2A priority Critical patent/EP3473612A4/en
Priority to CN201780037190.6A priority patent/CN109476590A/zh
Priority to US16/301,817 priority patent/US20190152905A1/en
Priority to JP2018564948A priority patent/JP6730463B2/ja
Publication of WO2017217757A1 publication Critical patent/WO2017217757A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/18Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/13Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/14Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton

Definitions

  • the present invention relates to a modified taurine and a method for preparing the same, and more particularly, to a modified taurine having a different atomic distance between an existing taurine and sulfur (S) in contact with an intramolecular carbon (C) and a method for producing the same.
  • Obesity is a disease caused by excessive body fat accumulation due to an imbalance between energy consumption and consumption of the body. It is urgent to prepare measures for mental health as well as physical diseases such as cardiovascular disease, diabetes, hypertension, hyperlipidemia and gallstones. (Kopelman PG. Obesity as medical problem.Nature 404: 635-643, 2000). Especially in Asians, obesity management is more important than other Westerners because the body mass index is at least abdominal obesity and the sensitivity of arterial diseases such as hypertension, diabetes and hyperlipidemia is high.
  • Obesity which is present in about 30 to 40% of modern people, is known to be a strong risk factor for high blood pressure, coronary artery disease, type 2 diabetes and various forms of cancer.
  • the risk of disease in obese people is 4 times higher in hypertension and 10 times higher in diabetes than normal people, especially obesity and diabetes are closely related to the mechanism of disease.
  • taurine is a kind of amino acid, which is a food, rarely contained in plants but widely distributed in animals, and has an inhibitory effect on sympathetic nerves of the brain, which helps stabilize blood pressure and prevent stroke, and atherosclerosis. It is known to inhibit the production of low-density lipoprotein (LDL) cholesterol, which causes angina, myocardial infarction and the like, and is effective in vascular platelet aggregation and adult diseases such as various vascular diseases and dementia.
  • LDL low-density lipoprotein
  • taurine is difficult to produce useful variants or compositions having therapeutic ability against various diseases, and thus, taurine is generally used as raw materials in amino acid food state.
  • modified taurine having different atomic distances between taurine and sulfur (S) in contact with intramolecular carbon (C).
  • Denatured taurine of the present invention is excellent in the prevention and treatment of metabolic diseases, it is expected to be widely used in the medical field.
  • the present invention has been made to solve the above-mentioned problems in the prior art, and an object of the present invention is to provide a modified taurine and a method for producing the same.
  • taurine is a kind of amino acid which is a food, which is hardly contained in plants, but is widely distributed in animals, and has an inhibitory effect on the sympathetic nerves of the brain to stabilize blood pressure and prevent stroke. It is known to be effective in preventing and producing low-density lipoprotein (LDL) cholesterol, which causes arteriosclerosis, angina pectoris, myocardial infarction, and is effective in adult diseases such as vascular platelet aggregation and various vascular diseases and dementia.
  • LDL low-density lipoprotein
  • taurine is difficult to produce useful variants or compositions having therapeutic ability against various diseases, and thus, taurine is generally used as raw materials in amino acid food state.
  • modified taurine refers to an atypical structure of irregular particles different from the conventional taurine, thereby having different physical properties.
  • due to such a difference in physical properties has a significant therapeutic effect on metabolic diseases.
  • the modified taurine of the present invention has a different atomic distance between the conventional taurine and sulfur (S) in contact with the intramolecular carbon (C), and the physical property values of the Raman spectrum, FT-IR, TGA, melting point or water solubility are taurine. There is a difference.
  • the denatured taurine is used as an active ingredient of food or pharmaceutical preparations or used in the synthesis of pharmaceutical preparations, “Taurin, water (H 2 O) and a polar substance having a methyl group (-CH 3 ) in its molecular structure.
  • polarity refers to the degree of polarity of a solvent or a polar substance, and usually water has a value of 9, ethanol 5.2, methanol 5.1, acetone 5.1, propanol 4, butanol 4.
  • the difference in polarity between the polar materials mixed with such a solvent may affect the physical tendency of the particles dissolved in the solvent.
  • "obesity" is a term that leads to a state having excessive body fat, and when a body fat is 25% or more of body weight, a woman is defined as obesity when 30% or more of body weight.
  • Obesity occurs when the amount of calories consumed by food is higher than the amount of calories consumed by the body, and lifestyles such as overeating and lack of exercise are the causes of obesity. This is called simple obesity.
  • obesity can occur due to endocrine disorders, hypothalamic dysfunction, and energy metabolism, which is classified as symptomatic obesity. There is also a genetic cause of obesity. Obesity can be measured by height and weight, and calipers can also be used to measure the thickness of skin wrinkles.
  • the obesity index which quantifies the degree of obesity, includes the modified broca's method and the body mass index (BMI).
  • the ideal weight method is to calculate [height (cm) -100] X0.9 as the ideal weight and display the current weight as a percentage. That is, the obesity degree in the ideal weight method is equal to (measured weight-standard weight) / standard weight x 100%.
  • Body mass index is weight divided by height squared. When the current body weight exceeds the ideal body weight by 20%, the case where the BMI is 30 or more is called obesity.
  • Obese people may appear fat and may experience shortness of breath and joint pain. It is also accompanied by symptoms such as diabetes and high blood pressure.
  • diabetes is a disease caused by abnormalities in the relationship between glucose metabolism and blood glucose control hormone in vivo. Diabetes is classified into insulin dependent diabetes mellitus (type 1 diabetes), insulin independent diabetes mellitus (type 2 diabetes), and malnutrition diabetes mellitus (MRDM). Type 2 diabetes, which accounts for more than 90% of diabetic patients in Korea, is associated with hyperglycemia.
  • a metabolic disease characterized by genetic, metabolic and environmental factors has been reported to be caused by decreased insulin secretion of pancreatic beta cells or increased insulin resistance in peripheral tissues. In this regard, the increase in body fat according to obesity shows a decrease in insulin sensitivity, especially the accumulation of abdominal fat is known to be associated with glucose intolerance.
  • an insulin sensitivity improving agent for example, thiazolidinedione-based drug and biguanide, which can reduce insulin resistance, as an anti-obesity agent.
  • Typical obesity treatments known to date include Xenical TM (Roche Pharmaceuticals, Switzerland), Reductil TM (Abbott, USA), Exolise TM (Atopama, France).
  • these drugs have anti-obesity effects by the mechanism of appetite suppression and fat absorption inhibition rather than promoting the burning and decomposition of fats, they cannot fundamentally solve the insulin resistance problem and cannot completely treat diabetes with obesity.
  • side effects such as heart disease, respiratory disease, nervous system diseases are reported.
  • metabolic syndrome refers to a disease in which various diseases such as diabetes, hypertension, hyperlipidemia, obesity, coronary or atherosclerosis, which occur due to chronic metabolic disorders, occur simultaneously. Reaven GM, Diabetes, 1988, 37: 1595-1607). Metabolic syndrome is characterized by insulin resistance, hypertension, dyslipidemia, and mostly accompanied by overweight or obesity. Metabolic syndrome is also a risk factor for cardiovascular disease and has been reported to be associated with death from all causes. The prevalence of metabolic syndrome is reported to be higher in type 2 diabetic patients than type 1 diabetes, and it is known that mortality increases when the type 2 diabetic patients are accompanied by metabolic syndrome (Bonora E, et al. Diabet Med).
  • Korean Laid-Open Patent Publication No. 2008-0059575 discloses a method for treating salts and metabolic diseases of the regulators of PPA, but has been chemically synthesized, which may cause side effects.
  • Korean Patent Publication No. 2009-0114093 discloses obesity and metabolic syndrome containing a complex extract of Evodiae Fructus, Imperatae Rhizoma and Cichrus Unshiu Markovich as active ingredients. Metabolic Syndrome or Syndrome X) has disclosed a composition for preventing or treating, Korean Patent Laid-Open No.
  • 2010-0956278 includes Yeoju, Cordyceps sinensis, phalanges, baekbaekpi, ear woowoo, brown root, Hwangjeong, Baekchul, Macmundong, cornus, ginseng Disclosed is a composition for the treatment or prevention of diabetes mellitus or diabetic complications using the combined herbal extract as an active ingredient.
  • blood coagulation refers to a phenomenon of solidification when blood leaks out of blood vessels.
  • blood has various important functions such as transporting and buffering oxygen, nutrients, and waste products, maintaining body temperature, controlling osmotic pressure and ion balance, maintaining moisture, controlling liquid, maintaining and controlling blood pressure, and protecting body. have.
  • Normal blood circulation facilitates blood circulation as the blood coagulation reaction system and the thrombolytic reaction system in the body are complementarily regulated.
  • the mechanism of the blood coagulation reaction system forms platelet thrombus due to the adhesion of platelets to the blood vessel walls and aggregation.
  • the blood coagulation system is activated to form fibrin clots around platelet aggregates.
  • the production of fibrin clots causes several thrombin reactions of numerous coagulation factors to activate thrombin, which is involved in fibrin coagulation, to produce fibrin monomers from fibrinogen, which are polymerized by calcium to bind platelets and endothelial cells.
  • thrombin activity inhibitors can be used as a prophylactic and therapeutic agent that is very useful for various thrombotic diseases caused by excessive blood clotting.
  • thrombotic diseases caused by excessive blood clotting.
  • thrombogenic pathway sequential activation of factor XII, XI, IX, and X followed by prothrombin finally activates thrombin.
  • Various anticoagulants such as heparin, coumarin, aspirin, urokinase, antiplatelets, and thrombolytic agents have been used for the prevention and treatment of thrombotic diseases.However, they are very expensive and have hemorrhagic side effects, gastrointestinal disorders and hypersensitivity reactions. As a result, its use is limited.
  • pharmaceutical composition means a composition to be administered for a specific purpose.
  • the pharmaceutical composition of the present invention comprises a denatured taurine and is administered for the prevention or treatment of metabolic diseases, and includes sugars, proteins and pharmaceutically acceptable carriers, excipients or diluents involved therein.
  • pharmaceutically acceptable carrier or excipient is meant that it has been approved by the government's regulatory department, or listed in government or other generally approved pharmacopoeia for use in vertebrates, and more particularly in humans. .
  • compositions comprising modified taurine suitable for parenteral administration may be in the form of suspensions, solutions or emulsions in oily or aqueous carriers, and include formulations such as suspending agents, stabilizers, solubilizers and / or dispersants. can do.
  • This form may be sterile and may be liquid. It can be stable under the conditions of manufacture and storage and can be preserved against the contaminating action of microorganisms such as bacteria or fungi.
  • the pharmaceutical composition comprising denatured taurine may be in sterile powder form for reconstitution with a suitable carrier prior to use.
  • the pharmaceutical composition may be in unit-dose form, in ampoules, or in other unit-dose containers, or in multi-dose containers.
  • the pharmaceutical composition may be stored in a freeze-dried (freeze-dried) state requiring only the addition of a sterile liquid carrier, for example water for injection just before use.
  • a sterile liquid carrier for example water for injection just before use.
  • Suitable excipients for pharmaceutical compositions comprising denatured taurine include preservatives, suspending agents, stabilizers, dyes, buffers, antibacterial agents, antifungal agents, and isotonic agents, for example, sugars or sodium chloride.
  • the term "stabilizer” refers to a compound optionally used in the pharmaceutical compositions of the present invention to avoid the need for sulfite salts and to increase shelf life.
  • stabilizers include antioxidants.
  • the pharmaceutical composition may comprise one or more pharmaceutically acceptable carriers.
  • the carrier may be a solvent or a dispersion medium.
  • pharmaceutically acceptable carriers include water, saline, ethanol, polyols (eg glycerol, propylene glycol and liquid polyethylene glycols), oils, and suitable mixtures thereof.
  • Parenteral formulations may be sterile.
  • sterilization techniques include filtration through bacterial-suppressive filters, terminal sterilization, incorporation of sterile preparations, irradiation, heating, vacuum drying and freeze drying.
  • the pharmaceutical composition according to the present invention is a group consisting of sugars, polyphenols, and amino acids in the "taurine, water, and a composition containing a polar substance having a methyl group (-CH 3 ) in molecular structure" for producing the modified taurine or modified taurine.
  • It can be prepared by adding one or more selected from, characterized in that the sugar is selected from the group consisting of monosaccharides, disaccharides and polysaccharides.
  • the sugar is preferably contained in 0.1 to 2 parts by weight based on the modified taurine, and the amino acid is preferably included in 0.1 to 0.5 parts by weight based on the modified taurine, but is not limited thereto.
  • Food composition in one embodiment of the present invention is used as a food composition for the improvement of metabolic diseases
  • the food composition comprising the composition of the present invention as an active ingredient is a variety of foods, for example, beverages, It may be prepared in the form of gum, tea, vitamin complex, powder, granule, tablet, capsule, confectionary, rice cake, bread and the like. Since the food composition of the present invention is configured and improved from the existing food intake which has little toxicity and side effects, it can be used with confidence even when taken for long periods of time.
  • the amount may be added at a ratio of 0.1 to 100% of the total weight.
  • natural carbohydrates include monosaccharides such as glucose, disaccharides such as fructose, sucrose and the like, and common sugars such as polysaccharides, dextrins and cyclodextrins, and sugar alcohols such as xylitol, sorbitol, and erythritol. can do.
  • flavourant examples include natural flavourant (tautin, stevia extract (for example, rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.).
  • the food composition is a variety of nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, colorants, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloid thickeners, pH regulators Stabilizing agents, preservatives, glycerin, alcohols, carbonation agents used in carbonated beverages, etc. These components may be used independently or in combination
  • the ratio of such additives is not so critical, but 100 weight of the composition of the present invention. It is generally selected in the range of 0.1 to 100 parts by weight per part.
  • administration means introducing the composition of the invention to the patient in any suitable way, the route of administration of the composition of the invention can be administered via any general route as long as it can reach the desired tissue.
  • Oral administration, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, intranasal administration, intrapulmonary administration, rectal administration, intranasal administration, intraperitoneal administration, intradural administration can be made, but degeneration of the present invention
  • administration is preferably through oral administration or intravenous injection, but is not limited thereto.
  • Metabolic disease treatment method of the present invention may include administering the pharmaceutical composition in a pharmaceutically effective amount.
  • the effective amount is defined as the type of disease, the severity of the disease, the type and amount of the active ingredient and other ingredients contained in the composition, the type and formulation of the patient and the age, body weight, general health condition, sex and diet, time of administration, route of administration And various factors, including the rate of secretion of the composition, the duration of treatment, and the drugs used concurrently.
  • a modified taurine produced by dissolving taurine on a first polar solvent while warming and adding a second polar material, wherein the difference in polarity between the first solvent and the second polar material is 5 or less.
  • a modified taurine with an absorption band strength ratio, a 1182/1256 absorption band strength ratio, and a 1427/1458 absorption band strength ratio all at positions 847, 891, 1182, 1256, 1427, 1458 cm -1 to 891/847 on the Raman spectrum. do.
  • the point at which the modified taurine begins to melt provides a modified taurine of 330 ° C.
  • FT-IR provides a modified taurine with an absorption wavelength at positions 1650 to 2800 cm -1 different from taurine, the first polar solvent being water, and the second polar material being methanol, ethanol, propanol, butanol, acetone, acetic acid
  • a modified taurine which is any one selected from the group consisting of ethyl acetate, and chloroform.
  • heating or heating can be directly heated, or any method capable of heating water, such as a microwave, can be used.
  • a taurine solution in boiling water to heat the water in order to increase the solubility of taurine "modified by the addition of” molecular structure within a methyl group (-CH 3) is a polar material which "the alcohol or acetone
  • a composition containing a taurine, water and a polar substance having a methyl group (-CH 3 ) in the molecular structure formed a white semi-solid to produce a taurine (see Fig. 1).
  • the white semi-solid is a combination of taurine, water, and alcohol (or acetone), which is combined, and thus does not precipitate taurine even when the temperature decreases.
  • modified taurine When water and alcohol (or acetone) are removed, “modified taurine” is produced. do. That is, in the "a composition containing taurine, water, and a polar substance having methyl group (-CH 3 ) in molecular structure" on which the white semisolid is formed, the water and "polar substance having methyl group (-CH 3 ) in molecular structure” are formed. Removal of the taurine produces “modified taurine” with different physical properties.
  • polar material or polar solvent having or containing methyl group (—CH 3 ) is “alkyl group (C n H 2n +1 ) containing methyl group (—CH 3 ) such as alcohols” ”
  • alkyl group (C n H 2n +1 ) containing methyl group (—CH 3 ) such as alcohols” When mixed with an aqueous taurine solution, it should have an appropriate polarity to form the white semi-solid that produces a "modified taurine”.
  • the white semisolid is a substance formed from taurine, water and a "polar substance with methyl group (-CH 3 ) in molecular structure”.
  • Examples of the "polar material having a methyl group (-CH 3 ) in the molecular structure" that can be used may include methanol, ethanol, propanol, butanol, acetone, etc., but the alcohol is rapidly reduced in polarity as the carbon number increases. This should be considered as the amount of solids formed is less.
  • the amount of the "polar substance having a methyl group (-CH 3 ) in the molecular structure” is less than the above range, there is a concern that the "modified taurine” may not be formed properly.
  • the amount of the "polar substance with methyl group (-CH 3 ) in the molecular structure” to be added is not limited as long as the “modified taurine” can be sufficiently produced, but 10 to 3,000 parts by weight based on 100 parts by weight of taurine aqueous solution It is preferable.
  • the atomic distance between carbon (C) and sulfur (S) is 1.7730 to 1.7779 ( ⁇ ), and the average distance between atoms of sulfur (S) and three oxygens (O) is 1.452 to 1.462.
  • the maximum distance between atoms of sulfur (S) and three oxygen (O) is 1.458-1.468 (iii)
  • the modified taurine is at positions 847, 891, 1182, 1256 on the Raman spectrum , 1427, and 1458 cm ⁇ 1 to 891/847 absorption band strength ratio, 1182/1256 absorption band strength ratio, and 1427/1458 absorption band strength ratio all less than 1, wherein the modified taurine begins to melt
  • the modified taurine provides a modified taurine, characterized in that the water solubility is 75 to 79g / L, the modified taurine modified, characterized in that the maximum density of 1.
  • step (a) dissolving taurine in water; (b) adding alcohol to (a) to bind taurine, water, and alcohol; And (c) recrystallizing the taurine by removing water and alcohol in (b), wherein the water in step (a) is water of a taurine saturated aqueous solution. It provides a method for producing a denatured taurine, characterized in that it is used 1 to 20 times the amount.
  • the modified taurine of the present invention has a different atomic distance between the conventional taurine and sulfur (S) in contact with the intramolecular carbon (C), and the physical property values of the Raman spectrum, FT-IR, TGA, melting point or water solubility are taurine. There is a difference.
  • the denatured taurine is used as an active ingredient of food or pharmaceutical preparations or used in the synthesis of pharmaceutical preparations, “Taurin, water (H 2 O) and a polar substance having a methyl group (-CH 3 ) in its molecular structure.
  • a is produced by mixing," taurine, water and molecular structures within a methyl group (-CH 3) the composition "in” water and molecular structure within the polar group-containing material which has been removed a (-CH 3) a polar substance with a " Can be prepared. Since the modified taurine of the present invention is excellent in preventing and treating metabolic diseases, it is expected to be widely used in the medical field.
  • a composition containing water and a polar substance having a methyl group (-CH 3 ) in its molecular structure ” (A: ethanol (alcohol), B: methanol, C: propanol. D: butanol, E: acetone).
  • 2 is a Raman spectrum of taurine and denatured taurine, according to one embodiment of the invention.
  • FT-IR infrared
  • Figure 4 is a SEM analysis of the taurine and denatured taurine according to an embodiment of the present invention.
  • TGA graph of taurine and denatured taurine is a TGA graph of taurine and denatured taurine, according to an embodiment of the present invention (A: TGA graph, B: first differential TGA graph).
  • A melting point graph
  • B analysis report photograph
  • 10 to 15 is a graph showing the weight gain of the mouse treated with the pharmaceutical composition of the present invention, in accordance with an embodiment of the present invention.
  • 16 to 19 are graphs showing the results of GTT measurement of the mouse treated with the pharmaceutical composition of the present invention according to an embodiment of the present invention.
  • 20 to 23 are photographs taken of liver, white adipose tissue (WAT), brown adipose tissue (BAT) and kidney tissue of a mouse treated with the pharmaceutical composition of the present invention according to an embodiment of the present invention.
  • WAT white adipose tissue
  • BAT brown adipose tissue
  • the atomic distance between carbon (C) and sulfur (S) is 1.7730 to 1.7779 ( ⁇ ), and the average distance between atoms of sulfur (S) and three oxygens (O) is 1.452 to 1.462.
  • Example 1-2 Taualc DT15
  • Example 2-1 TauAlc 8.6 * + Ara 2.5 DT16 TauAlc 8.6 + Xyl 3.5 DT20
  • Example 2-2-1 TauAlc 8.6 + Ara 1.04 TauAlc 8.6 + Ara 5.2 TauAlc 8.6 + Ara 7.8 TauAlc 8.6 + Xyl 1.04 TauAlc 8.6 + Xyl 5.2 TauAlc 8.6 + Xyl 7.8 TauAlc 4.3 + Rib 2.6 TauAlc 4.3 + Rib 6.5
  • Example 2-2-2 TauAlc 8.6 + Ara 1.04 TauAlc 8.6 + Ara 5.2 TauAlc 8.6 + Ara 7.8 TauAlc 8.6 + Xyl 1.04 TauAlc 8.6 + Xyl 5.2 TauAlc 8.6 + Xyl 7.8
  • Example 2-3 TauAlc 4.3 + Glu 3.1 TauAlc 4.3 + Glu 7.75 TauAlc 4.3 + Mann
  • TauAlc 8.6 means 8.6 g of denatured taurine.
  • Tau taurine
  • TauAlc modified taurine
  • Ara arabinose
  • Xyl xylose
  • Rib ribose
  • Glu glucose
  • Mann mannose
  • Fruc fructose
  • Cat catechin
  • Bet betaine
  • EGCG Epigallocatechin gallate.
  • Taurine (8.6 g) was added to 30 ml of purified water and heated in a microwave for 60 seconds to dissolve. Immediately add 60 ml of alcohol (ethanol (alcohol, alcohol) or methanol, propanol, butanol) or acetone, respectively. Stirring to prepare a composition (FIG. 1) which was a mixture in which a white semisolid was formed.
  • alcohol ethanol (alcohol, alcohol) or methanol, propanol, butanol
  • acetone acetone
  • Taurine (1.72 g) was added to 6 ml of purified water, (2) Taurine (4.3 g) was added to 15 ml of purified water, and (3) Taurine (8.6 g) was added to 28 ml of purified water, and heated in a microwave for 20 to 60 seconds. After dissolution, immediately stir with a rod while adding 12 ml of room temperature ethanol (for stomach (1)), 30 ml of ethanol (for stomach (2)), and 60 ml of ethanol (for stomach (3)). A mixture in which a semisolid of was formed was prepared.
  • Solid denatured taurine crystals were prepared in the case of (3) and then dried by a hot air dryer. (Refer to Table 1 for the specific composition ratio of each composition)
  • Taurine (4.3 g) was added to 15 ml of purified water or (2) Taurine (8.6 g) was added to 30 ml of purified water, heated in a microwave for 40 to 60 seconds to dissolve, and immediately 30 ml of ethanol (above (1 ) Or 60 ml (in case of (2) above), stir with a rod to prepare a mixture in which a white semi-solid is formed, and then add the previously prepared pentose sugar solution to the mixture, Heated in the microwave for about 3-5 minutes until removed. Purified water was added to this mixed solution, and the total amount was adjusted to 100 ml and used for the experiment. (Refer to Table 1 for the specific composition ratio of each composition)
  • Hexose mannose, glucose and fructose
  • a fixed amount 3.1 g or 7.75 g
  • Taurine 4.3g
  • Taurine was newly added to 15 ml of purified water, heated in a microwave oven for about 40 seconds to dissolve, and immediately stirred with a rod while adding 30 ml of ethanol to prepare a mixture having a white semi-solid.
  • After adding an aqueous solution of saccharide sugar it was heated in a microwave oven for about 3 minutes and 30 seconds until the alcohol was completely removed, and then purified water was added to adjust the total amount to 100 ml and used in the experiment.
  • Taurine (8.6 g) was added to 30 ml of purified water, heated in a microwave oven for about 1 minute 20 seconds, and completely dissolved. Then, 60 ml of ethanol was immediately added and stirred with a rod to prepare a mixture having a white semisolid. Next, 40 ml of purified water was heated at about 100 ° C. for 1 minute using a microwave oven, dissolved by addition of catechin (3 g) and betaine (4 g), and then added to the mixture, followed by 5 minutes in a microwave oven. The ethanol was removed by heating. (Refer to Table 1 for the specific composition ratio of each composition)
  • Taurine (8.6 g) was added to 30 ml of purified water, heated in a microwave oven for about 1 minute 20 seconds, and completely dissolved. Then, 60 ml of ethanol was immediately added and stirred with a rod to prepare a mixture having a white semisolid. Next, 40 ml of purified water was heated at about 100 ° C. for 1 minute using a microwave oven, dissolved by adding EGCG (1.5 g) and betaine (4 g), and then added to the mixture, followed by 5 minutes in a microwave oven. Heated to remove ethanol. (Refer to Table 1 for the specific composition ratio of each composition)
  • Taurine (8.6 g) was added to 30 ml of purified water, heated in a microwave oven for about 1 minute 20 seconds, and completely dissolved. Then, 60 ml of ethanol was immediately added and stirred with a rod to prepare a mixture having a white semisolid. Next, 40 ml of purified water was heated at about 100 ° C. for 1 minute using a microwave oven, dissolved by adding EGCG (1.5 g), betaine (4 g) and xylose (3.5 g), and then adding to the mixture. Then, ethanol was removed by heating in a microwave for 5 minutes. (Refer to Table 1 for the specific composition ratio of each composition)
  • Hexose mannose, glucose and fructose
  • a fixed amount 3.1 g or 7.75 g
  • Taurine 4.3g
  • Taurine was newly added to 15 ml of purified water, and dissolved in a microwave oven for about 40 seconds, and the hexasaccharide solution prepared above was mixed. The mixture was heated for about 2 minutes until it boiled in a microwave oven, and purified water was added to adjust the total amount to 100 ml and used for the experiment.
  • Taurine (8.6 g) was added to 30 ml of purified water, and heated in a microwave oven for about 1 minute and 20 seconds to completely dissolve to prepare an aqueous solution of taurine.
  • 40 ml of purified water was heated at about 100 ° C. for 1 minute using a microwave oven, dissolved by adding catechin (3 g) and betaine (4 g), and then added to an aqueous solution of taurine, followed by about 4 minutes in a microwave oven. Heated inside and outside.
  • Taurine (8.6 g) was added to 30 ml of purified water, and heated in a microwave oven for about 1 minute and 20 seconds to completely dissolve to prepare an aqueous solution of taurine.
  • 40 ml of purified water was heated at about 100 ° C. for 1 minute using a microwave oven, dissolved by adding EGCG (1.5 g) and betaine (4 g), and then added to an aqueous solution of taurine, followed by about 4 minutes in a microwave oven. Heated around minutes.
  • Taurine (8.6 g) was added to 30 ml of purified water, and heated in a microwave oven for about 1 minute and 20 seconds to completely dissolve to prepare an aqueous solution of taurine.
  • 40 ml of purified water was heated at about 100 ° C. for 1 minute using a microwave oven, dissolved by adding EGCG (1.5 g), betaine (4 g) and xylose (3.5 g), and then added to an aqueous taurine solution. Then, it was heated in the microwave for about 4 minutes.
  • EGCG epigallocatechin gallate
  • betaine betaine
  • xylose xylose
  • Single-crystal X-ray analysis is carried out at 50KV, 40mA and 100K conditions using an XRD instrument (Bruker SMART APEX II X-ray Diffractometer) with a Mo tube, graphite-monochromator and CCD area-detector. Data were acquired and structural analysis was performed with Bruker SHELXTL software. Specific performance conditions of the above are described in Table 2 below.
  • the X-atomic coordinate ( ⁇ 10 4 ) and the equivalent isotropic displacement parameter ( ⁇ 2 x 10 3 ) for the modified taurine are described in Table 3, and the bond length in the modified taurine atom (Iii) and angle (°) are listed in Table 4, and the anisotropic displacement parameters ( ⁇ x 10 3 ) for the modified taurine are listed in Table 5, and the hydrogen coordinates ( ⁇ 10 4 ) and isotropic displacement parameters of the modified taurine.
  • ( ⁇ 2 x 10 3 ) is shown in Table 6
  • the torsion angle (°) of the modified taurine is described in Table 7
  • the hydrogen bonds ( ⁇ and °) of the modified taurine are described in Table 8.
  • Single-crystal X-ray analysis was performed with an XRD instrument (BRUKER AXS) equipped with an Mo tube, an adjustable graphite monochromator, an SMART 3-Axis Goniometer, and an APEX II 4K CCD detector. Data were acquired at 50KV, 40mA and 296K (room temperature) with SMART APEX II) and structural analysis was performed with Bruker SHELXTL software. Specific performance conditions of the above are described in Table 9 below.
  • the X-atomic coordinate ( ⁇ 10 4 ) and the equivalent isotropic displacement parameter ( ⁇ 2 x 10 3 ) for the modified taurine are described in Table 10, and the bond length in the modified taurine atom (Iii) and angle (°) are listed in Table 11, and the anisotropic displacement parameters ( ⁇ x 10 3 ) for the modified taurine are listed in Table 12, and the hydrogen coordinates ( ⁇ 10 4 ) and isotropic displacement parameters of the modified taurine.
  • ( ⁇ 2 x 10 3 ) is shown in Table 13
  • the torsion angle (°) of the modified taurine is described in Table 14
  • the hydrogen bonds ( ⁇ and °) of the modified taurine are described in Table 15.
  • Table 17 summarizes the results of the atomic distances in Table 16.
  • this difference in bond length means that the electron density distribution of the denatured taurine molecule is different from that of ordinary taurine, which means that the -SO 3 - group in the taurine molecule is affected by the -CH 2 CH 2 -group. .
  • denatured taurine was found to have less hydrogen bonding characteristics than taurine.
  • the maximum distance of the S-O bond indicates the degree of hydrogen bonding with N-H of an adjacent molecule, and the longer the length, the stronger the hydrogen bonding.
  • the maximum tau S-O distance was measured to be 0.003 ⁇ 0.006 ⁇ longer than the denatured taurine. Therefore, the hydrogen bond of the taurine was stronger. This suggests that the distribution of electron density in the molecule is more concentrated on specific bonds in the case of denatured taurine and does not show any significant changes in external influences (hydrogen bonds).
  • 1650-2800cm taurine in the absorption wavelength in the infrared spectral "taurine-modified" indicates the difference in the infrared spectral absorption wavelength of the first region.
  • taurine and "modified taurine” are all ionized (H 3 N + CH 2 CH 2 SO 3 -) the coupling strength between adjacent NH 3 with the same structure or, SO 3 in the decision shows that there is little difference. In other words, there is a difference in the binding strength between molecules in the crystals of ionized taurine and "modified taurine".
  • the taurine observed by electron microscope (SEM) has a flaky structure like a crystal column, and the enlarged surface is smooth, but “modified taurine” has a smaller and rounder crystal grain size than the taurine, and the particle size thereof. It was found that the distribution for was very wide and some of the crystals of taurine were mixed. From the enlarged picture of the "modified taurine”, it was confirmed that the "modified taurine” was attached to the surface of the taurine.
  • Such shape is formed of small spherical particles of a broad distribution with water and "polar substance with a molecular structure within a methyl group (-CH 3)" in the manufacturing process.
  • the "modified taurine” Due to this particle shape, the "modified taurine" has a larger surface area than the taurine of the same mass, so that hydration by adsorption of water in the air is assumed to be easier.
  • the average particle size of the taurine was 222.06 ⁇ m
  • the median particle size was 192.92 ⁇ m
  • the modified taurine had an average particle size of 190.84 ⁇ m
  • the median particle size was 122.47 ⁇ m. Therefore, it can be seen that the particle sizes of the taurine and the modified taurine are remarkably different.
  • TGA represents the weight loss of the sample with increasing temperature.
  • modified taurine there is a slight weight loss from 150 ° C., which is due to the desorption of water molecules from the hydrated SO 3 on the crystal surface, or the thermal decomposition reaction on the surface of very small “modified taurine” particles as shown in the SEM image. It seems to happen a bit faster. Thermal reactivity is appearing faster than taurine because small particles of "modified taurine” increase the area exposed to heat.
  • the first decomposition temperature of modified taurine is 359 ° C
  • the final decomposition temperature is 396 ° C
  • the taurine is decomposed at temperatures of 362 ° C and 394 ° C. This is because the initial pyrolysis occurs first because the modified taurine has a small particle size, but the final decomposition temperature shows higher characteristics.
  • the melting point of "denatured taurine” (melting point, onset point basis) was found to be approximately 10 °C higher than the melting point of taurine (335.7 °C each; 336.6 °C respectively) ; and represented by a 337 °C), which Raman or as FT-IR presented on the absorption strength and absorbed wavelengths of the spectrum, determined in the ionized molecules (H 3 N + CH 2 CH 2 SO 3 - a coupling strength between) taurine and There is a difference.
  • the water solubility of taurine was 74 g / L, but the water solubility of “denatured taurine” was 77 g / L.
  • the concentration phenomenon of electron distribution in a specific bond affects the polarization of the electron density around the specific bond, which shows a difference in the Raman spectrum.
  • General taurine of -NH 3 + of the absorption peak of 1172.05 cm -1, 3043.6 cm -1 absorption band in the IR spectrum and -SO 3 - in the absorption band of 1204.45 cm -1 absorption band of the taurine-modified -NH 3 + is 1173.77 cm - 1 , 3044.57 cm -1 , -SO 3 - is shifted 1 ⁇ 2cm -1 blue to 1205.5 cm - 1 , which indicates that the bond length is shortened and the bond strength is strengthened. Indicates that it has increased.
  • denatured taurine has stronger electron delocalization in -SO 3 - bond than general taurine, and ionic property of -NH 3 + is also stronger, so that ionic bonding force is stronger as an amphoteric molecule and an adjacent molecule than hydrogen bond. It was found that the melting point was high and the solubility in water was also great for the reason. Therefore, it was found that the modified taurine had a higher ionic bond property than the normal taurine by changing the electron density distribution in the taurine molecule through the modification process.
  • Antithrombotic (anticoagulant) activity was evaluated according to previously reported methods.
  • Sysmex CA-1500 Siemens Healthcare, Germany
  • a blood coagulation test automated device was used as a reagent exclusively for Sysmex CA-1500 for PT, aPTT and TT assays.
  • PT prothrombin time
  • aPTT thromboplastin time
  • Activated partial thromboplastin according to the automatic procedure coagulation time (sec) for time)
  • TT Thrombin time
  • a total of 23-25 ml of blood was collected from a healthy Korean adult man using a blood coagulation test vacutainer (3.2% sodium citrate) and immediately separated by plasma centrifugation at 4 ° C and 2500 rpm for 10 minutes, and then 5 to 6 hours. It was used for the experiment within a fresh state.
  • denatured taurine As shown in Table 18, compared with taurine, denatured taurine (TauAlc) increased the PT delay rate when treated alone or in combination with sugar, and when treated with denatured taurine (TauAlc) and sugars together, pentose (xyl) In the case of the composite form of the oscillation (Xyl) or arabinose (Ara) content of 5.2-7.8g, it was confirmed that the aspirin (Asp) had a PT delay rate and TT delay rate equal to or higher than 7.5 mg / dL. .
  • denatured taurine As shown in Table 19, compared to taurine, denatured taurine (TauAlc) increased the TT delay rate when treated alone or in combination with sugar, and when treated with denatured taurine (TauAlc) and sugar together, ) Or glucose (Gluc) content of 2.6 ⁇ 7.75 g of the composite form was confirmed that the aspirin (Asp) 7.5 mg / dL comparable or higher than the TT delay rate.
  • denatured taurine As shown in Table 20, compared with taurine, denatured taurine (TauAlc) increased the TT delay rate when treated alone or in combination with sugar, and when treated with denatured taurine (TauAlc) and sugar together, sugar (Mannose (Mann) ) Or fructose) was found to have a TT retardation rate of 7.5 mg / dL or more of aspirin (Asp) in the case of a composite form of 7.75 g.
  • mice Eight-week-old male mice (C57BL / 6) (obtained from KOATEC) were evaluated for anti-diabetic efficacy candidates using the GTT (Glucose Tolerance Test) method, which is a representative diabetes diagnostic test method.
  • GTT Glucose Tolerance Test
  • mice The breeding environmental conditions of the mice were set to 22 ⁇ 2 °C, relative humidity 55-60%, lit 12 hours a day, turned off 12 hours. Five rats were assigned to each group, and male mice were vigorously contested and randomly divided into groups from one mother.
  • Feed was fed for 10 weeks without restriction (60% of calories from fat; research diet inc., New Brunswick, NJ) and water.
  • the samples prepared in Examples 1-2 (3), 2-1, 2-4-1, 2-4-2 and 2-5 were mixed and supplied without restriction.
  • metformin (M-072, Sigma) 250 mg / kg was used as a positive control, and Comparative Examples 1-1, 2-3-2, 2-5-1, 2-5-2 and 2 as control. Samples prepared at -6 were used.
  • the samples prepared in Examples 2-4-1, 2-4-2, and 2-5 were set to the amount that the adult male (60 kg) takes 3 days and the dose of mice (12 times / kg, US) Animal samples were prepared. That is, the amount that adult male (60 kg) takes 3 days is 180 days / kg, which is 15 days / kg of mouse. Therefore, the average weight of the mouse is about 20g, corresponding to 750 matched mice (20g). Therefore, one mouse was allowed to take 1/750 of the prepared sample per day.
  • the samples prepared in Examples 1-2 (3) and 2-1 were set to the amount taken by an adult male (60kg) for 2 days, and the dose of mice (12 times / kg, refer to US NIH guidance data).
  • the amount that an adult male (60 kg) takes 2 days is 120 days / kg and this is 10 days / kg of mouse. Therefore, the average weight of the mouse is about 20g corresponds to 500 days / mouse (20g). Therefore, one mouse was allowed to take 1/500 of the prepared sample per day.
  • GTT glucose tolerance test
  • the mice were fasted for 8 hours before the experiment. After that, blood was collected from the tail vein, and the initial blood glucose was measured by a blood glucose meter (AUTO-CHEK, Diatec Korea), and then the concentration of glucose in the abdominal cavity of the mouse was 1 g / kg. After administration, blood glucose was measured at 30, 60, 90 and 120 minutes (mean of 5 animals in each group).
  • Blood biochemical tests included insulin (AKRIN-011T, Shibayagi, Japan), glucose (AM202, Asan, Korea), triglycerides (AM157, Asan), total cholesterol (AM202, Asan), AST and ALT ( AM101, Asan Pharmaceuticals) were analyzed using enzymatic assay kits.
  • mice were sacrificed by cervical distal bone to obtain serum at 10 weeks of high fat diet.
  • liver, white adipose tissue (WAT), brown adipose tissue (BAT) and kidney were fixed with formalin (50-00-0, Junsei, Japan), and the remaining organs were stored at -70 ° C.
  • Blood collected from the heart was coagulated to obtain serum, and then stored at -70 ° C.
  • Tissue samples were prepared and mounted with glycerin gel mounting media (SP15-100, Fisher Scientific, USA), covered with a cover glass and observed under a microscope (IX71, OLYMPUS, Japan), and tissue was photographed with a digital camera built into the microscope.
  • glycerin gel mounting media SP15-100, Fisher Scientific, USA
  • Body weight, weight gain and weight gain T-TEST results are shown in FIGS. 10 to 15 and Tables 21 to 38 below.
  • DT20 administered denatured taurine (TauAlc) and xylose (Ara) and DT21 administered taurine (Tau) and xylose (Ara) were 8 weeks after high-fat diet (HFD) administration. It was confirmed that the high fat diet (HFD) alone showed a significant weight increase inhibitory effect.
  • DT7 to which denatured taurine (TauAlc), catechin (Cat) and betaine (Bet) were administered was significantly compared to high fat diet (HFD) 8 weeks after high fat diet (HFD) administration.
  • HFD high fat diet
  • DT11 administered with taurine (Tau), catechin (Cat) and betaine (Bet) did not show a significant weight increase inhibitory effect.
  • the DT7 administration group was determined to have a significantly greater weight control effect than the DT11 administration group.
  • DT10 to which denatured taurine (TauAlc), epigallocatechin gallate (EGCG) and betaine (Bet) was administered was 8 weeks after high-fat diet (HFD) alone, high-fat diet (HFD) alone It showed significant weight-inhibitory effects compared to, but DT14 administered with taurine (Tau), epigallocatechin gallate (EGCG) and betaine (Bet) did not show significant weight-inhibitory effects. I could confirm it.
  • the DT10 administration group was determined to have a significantly greater weight control effect than the DT14 administration group.
  • DT4 to which denatured taurine (TauAlc), epigallocatechin gallate (EGCG), betaine (Bet) and xylose (Xyl) was administered was 8 weeks after high-fat diet (HFD) administration. Compared with high fat diet (HFD) alone, it showed a significant weight gain inhibitory effect, but taurine (Tau), epigallocatechin gallate (EGCG), betaine (Bet) and xylose (Xyl) were administered. One DT6 did not show a significant weight increase inhibitory effect. In addition, the DT4 administration group was determined to have a significantly greater weight control effect than the DT6 administration group.
  • mice in the DT15 and DT19 groups were significantly better in blood glucose control than the HFD-only group, and similarly, the blood glucose control ability was similar between DT15 and DT19.
  • mice in the DT16 group were significantly better in blood glucose control than the HFD-only group, maintaining the blood glucose level of normal mice.
  • the DT16 group was more effective than the DT18 group. Excellent and fasting blood glucose levels were found to be significantly lower.
  • mice in the DT20 and DT21 groups were significantly better in blood glucose control than the HFD alone group, and there was no significant difference between the DT20 and DT21 groups, but the DT20 group showed better effects than the DT21 group. I could see that.
  • mice in the DT4 group were significantly better in blood glucose control than the HFD alone group, but the mice in the DT6 group were inferior in blood glucose control.
  • Triglyceride, AST and ALT test results and the T-test results are shown in Tables 47 to 56 below.
  • DT15 denatured taurine shows similar or better levels of triglyceride, AST and ALT levels than normal mice, and significantly lower triglyceride levels than DT19 (taurine), AST and ALT levels were also low.
  • DT16 denatured taurine + arabinose
  • DT18 taurine + arabinose
  • HFD high-fat diet
  • DT16 also showed lower triglyceride levels than normal diet (RD).
  • DT20 denatured taurine + xylose
  • DT18 taurine + xylose
  • HFD high-fat diet
  • DT20 and DT21 showed lower triglyceride levels than normal diet (RD).
  • DT7 denatured taurine + catechin + betaine shows similar levels of AST and ALT as normal diet (RD), and is lower than AST and ALT of high fat diet (HFD). The value is shown. DT7 also showed lower triglyceride levels than normal diet (RD).
  • DT4 denatured taurine + ECCG + betaine + xylose shows similar levels of AST and ALT as normal diet (RD), and AST and high fat diet (HFD) The value was significantly smaller than ALT. DT4 also showed lower triglyceride levels than normal diet (RD).
  • FIGS. 20 to 23 The test results of liver, white adipose tissue (WAT), brown adipose tissue (BAT) and kidney tissue of experimental mice are shown in FIGS. 20 to 23.
  • Denatured taurine of the present invention is excellent in the prevention and treatment of metabolic diseases, it is expected to be widely used in the medical field.

Abstract

본 발명은 변성 타우린 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 기존의 타우린과 분자 내 탄소(C)와 연접한 황(S)의 원자간 거리가 상이한 변성 타우린 및 이의 제조방법에 관한 것이다. 본 발명의 변성 타우린은 대사질환 예방 및 치료 효과가 우수하므로, 의학 분야에 널리 이용될 것으로 기대된다.

Description

변성 타우린 및 이의 제조방법
본 발명은 변성 타우린 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 기존의 타우린과 분자 내 탄소(C)와 연접한 황(S)의 원자간 거리가 상이한 변성 타우린 및 이의 제조방법에 관한 것이다.
비만은 신체 에너지 섭취와 소비의 불균형으로 과잉의 체지방 축적으로 생기는 질환으로, 심혈관계 질환, 당뇨, 고혈압, 고지혈증, 담석증 등의 신체질환뿐만 아니라 정신 건강까지 영향을 미치므로 이에 대한 대책 마련이 시급한 실정이다(Kopelman PG. Obesity as medical problem. Nature 404: 635-643, 2000). 특히 동양인의 경우, 서양인에 비해 체질량 지수가 적어도 복부 비만이 심하여 고혈압, 당뇨병, 고지혈증과 같은 동맥관련 질환으로 인한 합병증의 감수성이 높기 때문에, 비만관리가 더욱 중요시 된다.
현대인의 약 30~40% 정도가 가지고 있는 비만은 고혈압, 관상동맥질환, 제2형 당뇨병 및 여러 형태의 암을 유발할 수 있는 강한 위험 요소로서 알려져 있다. 비만인에 있어 질병발생의 위험도는 정상인에 비해 고혈압의 경우에는 4배, 당뇨병의 경우 무려 10배나 높아지므로, 특히 비만과 당뇨병은 유병 기작에 있어서 매우 밀접한 관련을 가지고 있다.
또한, 비만, 당뇨병과 함께 혈전성 질환이 대사질환의 심각한 문제로 대두되고 있다. 따라서, 비만, 당뇨병, 혈전성 질환과 같은 대사질환을 더욱 효과적으로 예방 또는 치료할 수 있는 물질의 개발이 요구되고 있다.
한편, 타우린(taurine)은 식품인 아미노산의 일종으로 식물에는 거의 들어있지 않으나 동물에는 널리 분포되어 있으며, 뇌의 교감신경에 대해 억제작용을 나타내어 혈압의 안정화 및 뇌졸중의 예방에 도움이 되고, 동맥경화, 협심증, 심근경색 등을 유발하는 저밀도 지단백질(LDL) 콜레스테롤의 생성을 억제하고, 혈관내 혈소판 응집작용뿐만 아니라 각종 혈관계 질환 및 치매 등 성인병에 효과가 있다고 알려져 있다.
그러나, 타우린은 각종 질환에 치료능을 갖는 유용한 변형체나 조성물을 만들기 어려워 일반적으로 타우린을 아미노산 식품 상태인 원재료 그대로 이용하는데 그치고 있다.
이에, 본 발명자는 예의 노력한 결과, 타우린과 분자 내 탄소(C)와 연접한 황(S)의 원자간 거리가 상이한 변성 타우린에 대한 개발을 완성하였다. 본 발명의 변성 타우린은 대사질환 예방 및 치료 효과가 우수하므로, 의학 분야에 널리 이용될 것으로 기대된다.
본 발명은 상기와 같은 종래의 기술상의 문제점을 해결하기 위해 안출된 것으로, 변성 타우린 및 이의 제조방법을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.
명세서에서 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.
본 발명의 일 구체예에서 “타우린(taurine)”이란, 식품인 아미노산의 일종으로 식물에는 거의 들어있지 않으나 동물에는 널리 분포되어 있으며, 뇌의 교감신경에 대해 억제작용을 나타내어 혈압의 안정화 및 뇌졸중의 예방에 도움이 되고, 동맥경화, 협심증, 심근경색 등을 유발하는 저밀도 지단백질(LDL) 콜레스테롤의 생성을 억제하고, 혈관내 혈소판 응집작용뿐만 아니라 각종 혈관계 질환 및 치매 등 성인병에 효과가 있다고 알려져 있다. 그러나, 타우린은 각종 질환에 치료능을 갖는 유용한 변형체나 조성물을 만들기 어려워 일반적으로 타우린을 아미노산 식품 상태인 원재료 그대로 이용하는데 그치고 있다.
본 발명의 일 구체예에서 “변성 타우린”이란, 기존의 타우린과 상이한 불규칙한 입자의 비정형(atypical) 구조를 나타내고, 이로 인한 상이한 물리적 성격을 갖는 것이다. 또한 이러한 물리적인 성질의 차이로 인하여 대사성 질환에 현저한 치료효과를 가진다.
본 발명의 변성 타우린은 기존의 타우린과 분자 내 탄소(C)와 연접한 황(S)의 원자간 거리가 상이하고, 라만스펙트럼, FT-IR, TGA, 녹는점 또는 수용해도의 물성 값이 타우린과 차이가 있다. 또한, 상기 변성 타우린은 식품 또는 약학적 제제의 유효성분으로 이용되거나 약학적 제제의 합성에 이용되는 것으로서, “타우린, 물(H2O) 및 분자구조 내 메틸기(-CH3)가 있는 극성물질”을 혼합함으로써 생성되며, “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”에서 “물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질”을 제거하여 제조될 수 있다.
본 발명의 일 구체예에서 “극성도”란, 용매나 극성물질의 극성 정도를 나타내는 것으로, 통상 물은 9, 에탄올 5.2, 메탄올 5.1, 아세톤 5.1, 프로판올 4, 부탄올 4의 값을 갖는다. 이러한 용매와 혼합되는 극성물질간 극성도의 차이는 용매상에 용해된 입자의 물리적 성향에 영향을 미칠 수 있다.
본 발명의 일 구체예에서 “비만”이란, 과다한 체지방을 가지 상태를 이르는 말로써, 남자는 체지방이 체중의 25% 이상일 때, 여자는 체중의 30% 이상일 때 비만이라고 정의한다. 음식으로 섭취하는 열량이 몸을 움직이며 소비하는 열량 보다 많을 때 비만이 생기므로, 과식과 운동 부족 같은 생활습관이 비만을 일으키는 원인이다. 이를 단순 비만이라고 한다. 반면 내분비계통의 질환과 시상하부의 기능 이상, 에너지 대사 이상으로도 비만이 생길 수 있는데 이를 증후성 비만으로 분류한다. 또 비만의 원인으로는 유전적인 요인도 있다. 키와 체중을 통해 비만을 측정할 수 있으며 캘리퍼를 사용해 피부주름의 두께 측정해서도 진단할 수 있다. 비만의 정도를 수치화한 비만도 지수를 계산하는 방법으로는 이상체중법(Modified Broca's method)과 체질량지수(BMI)가 있다. 이상체중법은 [신장(cm)-100]X0.9를 이상체중으로 계산해 현재체중을 백분율로 표시하는 방법이다. 즉, 이상체중법에서 비만도는 (실측체중-표준체중)/표준체중×100%과 같다. 체질량지수는 체중을 신장의 제곱으로 나눈 것이다. 현재체중이 이상체중을 20% 초과하는 경우, BMI가 30 이상인 경우를 비만이라고 한다.
비만인 사람들은 외형적으로 뚱뚱해 보이며 숨참과 관절 통증이 나타날 수 있다. 또 당뇨병, 고혈압 등의 증상이 동반되기도 한다.
본 발명의 일 구체예에서 “당뇨병”이란, 생체 내에서 포도당 대사와 혈당 조절 호르몬과의 관계에 이상이 생겨 나타나는 질병이다. 당뇨병은 인슐린 의존형 당뇨병(제1형 당뇨병), 인슐린 비의존형 당뇨병(제2형 당뇨병) 및 영양실조성 당뇨병(MRDM)으로 분류되는데, 우리나라 당뇨환자의 90% 이상을 차지하는 제2형 당뇨병은 고혈당을 특징으로 하는 대사질환으로 유전적, 대사적, 환경적인 요인에 의한 췌장 베타 세포의 인슐린 분비 저하 또는 말초 조직에서의 인슐린 저항성 증가로 인해 발생되는 것으로 보고되고 있다. 이와 관련하여 비만에 따라 체지방이 증가하면 인슐린 감수성이 저하되는 증상을 보이며, 특히 복부지방의 축적은 글루코스 내성(glucose intolerance)과 관련이 있는 것으로 알려져 있다. 그리고 제2형 당뇨병이 발생된 환자에 있어서 비만과 인슐린 저항성은 밀접한 상관관계가 있어 비만이 심할수록 인슐린 저항성도 심해지는 것으로 알려져 있다. 따라서, 인슐린 저항성을 감소시킬 수 있는 인슐린 감수성 개선제, 예를 들어 치아졸리딘디온(Thiazolidinedione)계 약물과 비구아니드(Biguanide)를 비만치료제로 개발한 사례가 있다. 현재까지 알려진 대표적인 비만치료제로는 제니칼(XenicalTM, 로슈제약회사, 스위스), 리덕틸(ReductilTM, 애보트사, 미국), 엑소리제(ExoliseTM, 아토파마, 프랑스) 등이 있다. 그러나, 이러한 약제들은 지방의 연소 및 분해를 촉진시키기보다는 식욕억제와 지방흡수 억제의 기작에 의한 항비만 효능을 가지고 있기 때문에 인슐린 저항성 문제를 근원적으로 해결하지 못하고 비만과 함께 당뇨병을 완전하게 치료할 수 없을 뿐만 아니라 심장질환, 호흡기 질환, 신경계질환 등의 부작용이 보고되고 있는 실정이다.
본 발명의 일 구체예에서 “대사증후군”이란, 만성적인 대사 장애로 인하여 발생하는 당뇨병, 고혈압, 고지혈증, 비만, 관상 또는 동맥경화증과 같은 여러 가지 질환이 동시에 발생하는 질환을 일컫는 것으로서 1988년 Reaven(Reaven GM, Diabetes, 1988, 37:1595-1607)에 의해 처음으로 규명되었다. 대사증후군은 인슐린저항성과 고혈압, 이상지질혈증을 특징으로 하고 있으며, 대부분 과체중이나 비만을 동반하고 있다. 대사증후군은 또한 심혈관질환의 위험 인자이며, 모든 원인으로 인한 사망과 연관되어 있다고 보고되었다. 제2형 당뇨병 환자의 경우 제1형 당뇨병과 달리 대사증후군의 유병률이 높다고 보고되고 있으며, 제2형 당뇨병 환자가 대사증후군을 동반할 때 사망률이 증가한다고 알려져 있다(Bonora E, et al. Diabet Med., 2004, 21:52-8; Ford ES, Diabetes Care., 2005, 28:1769-78; Alexander CM, et al. Diabetes, 2003, 52:1210-1214). 또한, 제2형 당뇨병의 대혈관 및 미세혈관 합병증과 고혈압, 이상지질혈증 등의 대사증후군의 구성요소들과의 연관성에 대한 연구들이 발표되어 있다(Mykkanen L, et al. Diabetologia., 1993, 36:553-559; Haffner SM, et al. Diabetes, 1992, 41:715-722). 대사증후군의 가장 심각한 문제점은 당뇨병성 망막증, 신증, 신경병증, 고지혈증, 심혈관질환(뇌졸중, 협심증, 심근경색증, 말초혈관질환)과 같은 만성 합병증의 발생이다(Wolf SP, Br Med Bull., 1993, 49:642-652). 이러한 만성 합병증은 대부분 일단 발생 된 이후에는 비가역적인 진행과정을 밟게 되며 아직까지는 이러한 과정을 완전히 차단할 수 있는 방법이 없어서 적절한 치료가 병행되지 않을 경우, 심각한 증상을 초래하여 환자를 죽음에까지 이르게 한다. 그러므로 복합적 증상을 갖는 대사증후군의 효과적인 관리 또는 치료를 위해서는 정상 혈당의 유지를 위한 혈당강하 효과와 동시에 신병증, 간병증, 고지혈증 등을 치료하는 효과를 갖는 것이 이상적이나, 아직까지 이러한 치료제는 개발되지 않았으며, 혈당강하제, 혈압강하제, 콜레스테롤 치료제 등을 각각 개별적으로 별도로 복용하고 있다.
한국공개특허 제2008-0059575호에서는 PPAR의 조절자의 염 및 대사질환을 치료하는 방법을 개시하였으나, 화학적으로 합성되었기에 부작용의 우려가 있다. 이러한 부작용을 최소화하기 위하여 한국공개특허 제2009-0114093호에서는 오수유(Evodiae Fructus), 백모근(Imperatae Rhizoma) 및 청피(Citrus Unshiu Markovich)의 복합 추출물을 유효성분으로 함유하는 비만(Obesity) 및 대사증후군(Metabolic Syndrome or Syndrome X)의 예방 또는 치료용 조성물을 개시하였고, 한국공개특허 제2010-0956278호에는 여주, 동충하초, 지골피, 상백피, 귀전우, 갈근, 황정, 백출, 맥문동, 산수유, 인삼을 포함하는 복합생약 추출물을 유효성분으로 하는 당뇨병 또는 당뇨 합병증의 치료 또는 예방용 조성물을 개시하였다.
본 발명의 일 구체예에서 “혈액응고” 란, 혈액이 혈관 밖으로 누출되었을 때 굳어지는 현상을 의미한다. 인체 구성성분으로 혈액은 산소, 영양분, 노폐물의 운반 기능과 완충작용, 체온유지, 삼투압 조절 및 이온 평형유지, 수분 일정유지, 액성 조절작용, 혈압의 유지 및 조절, 생체방어 등 다양한 중요 기능들을 가지고 있다.
정상적인 혈액 순환은 체내에서의 혈액 응고 반응계와 혈전 용해 반응계가 상호 보완적으로 조절되면서 혈액 순환을 용이하게 하며, 이들 중 혈액 응고 반응계의 기작은 혈관벽에 혈소판이 점착, 응집하여 혈소판 혈전을 형성한 후, 혈액 응고계가 활성화되어 혈소판 응집괴를 중심으로 피브린 혈전이 형성되는 것으로 보고되어 있다. 피브린 혈전의 생성은 수많은 혈액응고인자들의 여러 단계 반응을 거쳐 피브린 응고에 관여하는 트롬빈이 활성화되어, 피브리노겐으로부터 피브린 단량체를 생성하게 하며, 피브린 단량체들은 칼슘에 의해 중합되어, 혈소판과 내피세포에 결합하게 되며 XIII 인자에 의해 교차 결합된 피브린 폴리머를 형성하면서 영구적인 혈전을 생성하게 된다. 따라서, 트롬빈의 활성 저해물질은 과다한 혈액응고 이상으로 발생하는 다양한 혈전성 질환에 매우 유용한 예방 및 치료제로 사용될 수 있다. 내인성 혈전생성경로에는 XII 인자, XI 인자, IX 인자, X 인자의 순차적 활성화에 이은 프로트롬빈의 활성화가 최종적으로 트롬빈을 활성화하는 것으로 알려져 혈액응고인자의 특이적 저해 역시 중요한 혈전성 질환 치료제의 개발 타겟이 되고 있다. 현재까지 혈전성 질환의 예방과 치료에 헤파린, 쿠마린, 아스피린, 유로키네이즈 등의 다양한 항응고제, 항혈소판제, 혈전용해제 등이 사용되고 있으나, 이들은 가격이 매우 높을 뿐 아니라 출혈성 부작용과 위장장해 및 과민반응 등으로 그 사용이 한정되고 있는 실정이다.
본 발명의 일 구체예에서 “약학조성물”이란, 특정한 목적을 위해 투여되는 조성물을 의미한다. 본 발명의 목적상, 본 발명의 약학조성물은 변성 타우린을 포함하고 대사질환의 예방 또는 치료를 위해 위해 투여되는 것이며, 이에 관여하는 당, 단백질 및 약학적으로 허용 가능한 담체, 부형제 또는 희석제를 포함할 수 있다. 상기의 "약학적 허용 가능한" 담체 또는 부형제는 정부의 규제부에 의해 승인된 것이나, 또는 척추 동물, 그리고 보다 특별하게는 인간에게 사용을 위한 정부 또는 기타 일반적으로 승인된 약전에서 리스트된 것을 의미한다. 비경구적인 투여에 적절한 변성 타우린을 포함하는 약학조성물은 유성 또는 수성 담체에 있는 현탁액, 용액 또는 에멀젼의 형태로 될 수 있고, 그리고 현탁제, 안정화제, 용해제 및/또는 분산제와 같은 제형화제를 포함할 수 있다. 본 형태는 멸균될 수 있고, 그리고 액체일 수 있다. 이것은 제조 및 저장의 조건 하에서 안정할 수 있고 그리고 세균이나 곰팡이와 같은 미생물의 오염 작용에 대해 보존될 수 있다. 대안적으로, 변성 타우린을 포함하는 약학조성물은 사용 전에 적절한 담체와 재구성을 위해 멸균 분말 형태일 수 있다. 약학조성물은 단위-복용량 형태로, 앰플에, 또는 기타 단위-복용량 용기에, 또는 다-복용량 용기에 존재할 수 있다. 대안적으로, 약학조성물은 단지 멸균 액체 담체, 예를 들어 사용 바로 전에 주사용 물의 부가함을 요하는 동결-건조된(냉동건조) 상태로 보관될 수 있다. 즉시 주사용액 및 현탁액은 멸균 분말, 그래뉼 또는 타블렛으로 제조될 수 있다. 변성 타우린을 포함하는 약학조성물에 적절한 부형제는 보존제, 현탁제, 안정화제, 염료, 완충제, 항균제, 항진균제, 및 등장화제, 예를 들어, 당 또는 염화나트륨을 포함한다. 여기서 사용된 것으로, 용어 "안정화제"는 설파이트 염의 필요성을 회피하고 그리고 보존 수명을 증가하기 위해 본 발명의 약학조성물에 선택적으로 사용된 화합물을 언급한다. 안정화제의 비-제한적인 예는 항산화제를 포함한다.
약학조성물은 하나 또는 그 이상의 약학적으로 허용될 수 있는 담체를 포함할 수 있다. 담체는 용매 또는 분산 배지일 수 있다. 약학적으로 허용될 수 있는 담체의 비-제한적인 예는 물, 식염수, 에탄올, 폴리올 (예, 글리세롤, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜), 오일, 및 이들의 적절한 혼합물을 포함한다.
비경구용 제형은 멸균될 수 있다. 멸균 기술의 비-제한적인 예는 세균-억제 필터를 통한 여과, 터미날 멸균화, 멸균 제제의 합체, 방사선 조사, 가열, 진공 건조 및 동결 건조를 포함한다.
또한 본 발명에 의한 약학조성물은 상기 변성 타우린 또는 변성 타우린을 생성시키는 “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”에 당, 폴리페놀 및 아미노산으로 구성된 군으로부터 선택되는 하나 이상을 첨가하여 제조 가능하며, 상기 당은 단당, 이당 및 다당으로 구성된 군으로부터 선택되는 것을 특징으로 한다. 상기의 경우, 당은 변성 타우린에 대하여 0.1 내지 2 중량부로 포함되고, 아미노산은 변성 타우린에 대하여 0.1 내지 0.5 중량부로 포함되는 것이 바람직하나, 이에 한정하는 것은 아니다.
본 발명의 일 구체예에서 “식품 조성물”이란, 대사질환의 개선을 위한 식품조성물로 다양하게 이용되는 것으로서, 본 발명의 조성물을 유효성분으로 포함하는 식품조성물은 각종 식품류, 예를 들어, 음료, 껌, 차, 비타민 복합제, 분말, 과립, 정제, 캡슐, 과자, 떡, 빵 등의 형태로 제조될 수 있다. 본 발명의 식품조성물은 독성 및 부작용이 거의 없는 기존의 식품용 섭취물로부터 개량되어 구성된 것이므로 예방 목적으로 장기간 복용 시에도 안심하고 사용할 수 있다. 본 발명의 조성물이 식품 조성물에 포함될 때 그 양은 전체 중량의 0.1 내지 100%의 비율로 첨가할 수 있다. 여기서, 상기 식품조성물이 음료 형태로 제조되는 경우 지시된 비율로 상기 식품조성물을 함유하는 것 외에 특별한 제한점은 없으며 통상의 음료와 같이 여러가지 향미제 또는 천연탄수화물 등을 추가 성분으로서 함유할 수 있다. 즉, 천연탄수화물로서 포도당 등의 모노사카라이드, 과당 등의 디사카라이드, 슈크로스 등의 및 폴리사카라이드, 덱스트린, 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜 등을 포함할 수 있다. 상기 향미제로서는 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등) 등을 들 수 있다. 그 외 본 발명의 식품조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성풍미제 및 천연풍미제 등의 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0.1 내지 100 중량부의 범위에서 선택되는 것이 일반적이다.
발명의 일 구체예에서 투여란, 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 본 발명의 조성물의 투여경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 경구 투여, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 비내 투여, 폐내 투여, 직장내 투여, 강내 투여, 복강 내 투여, 경막 내 투여가 이루어질 수 있으나, 본 발명의 변성 타우린을 포함하는 대사질환 예방 또는 치료용 약학조성물의 경우, 경구 투여 또는 정맥 주사를 통해 투여되는 것이 바람직하나, 이에 한정하는 것은 아니다.
본 발명의 대사질환 치료 방법은 상기 약학조성물을 약제학적 유효량으로 투여하는 것을 포함할 수 있다. 본 발명에서 유효량은 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다.
본 발명의 일 구체예에서, 제 1 극성 용매상에서 타우린을 가온하면서 용해시키고, 제 2 극성 물질을 첨가하여 생성된 변성 타우린으로써, 제 1 용매와 제 2 극성물질간 극성도의 차이가 5 이하이고, 라만 스펙트럼상의 위치 847, 891, 1182, 1256, 1427, 1458㎝-1 에서 891/847의 흡수대 세기 비율, 1182/1256 흡수대 세기 비율, 및 1427/1458 흡수대 세기 비율이 모두 1 미만인 변성 타우린을 제공한다. 상기 구체예에서, 변성 타우린이 녹기 시작하는 점(onset point)은 330℃ 내지 340℃인 변성 타우린을 제공하고, 수용해도는 75 내지 79g/L인 변성 타우린을 제공하며, 상기 변성 타우린은 적외선분광(FT-IR)에서 1650 내지 2800㎝-1 위치의 흡수 파장이 타우린과 상이한 변성 타우린을 제공하며, 제 1 극성 용매는 물이고, 제 2 극성 물질은 메탄올, 에탄올, 프로판올, 부탄올, 아세톤, 아세트산, 에틸아세테이트, 및 클로로포름으로 구성된 군으로부터 선택된 어느 하나인 변성 타우린을 제공한다.
본 발명의 일 구체예에서, 가열 또는 가온은 직접 가열하거나 전자레인지 등 물을 가열할 수 있는 방법은 모두 사용할 수 있다. 일반 솔벤트 종류이지만 타우린 용해를 위한 용매가 아닌 제 2 극성물질인 “분자구조 내 메틸기(-CH3)가 있는 극성물질”의 제거도 가열방법, 분리방법 등 가능한 방법은 모두 사용할 수 있으며 가열방법은 알코올의 경우 알코올의 끓는점(에탄올 약 78.4℃, 메탄올 약 64.7℃) 이상으로 가열하여야 제거된다. 에탄올의 경우, 1기압 약 100℃에서 혼합물 100㎖을 기준으로 1분 내지 15분간 가열한다.
본 발명의 일 구체예에서, 정제수에 타우린(NH2CH2CH2SO3H)을 용해시킨 다음 “분자구조 내 메틸기(-CH3)가 있는 극성물질”을 첨가할 경우, 기존의 타우린과는 다른 물성을 지녀 약학적 제제의 유효성분으로 이용되거나 약학적 제제의 합성에 이용될 수 있는 “변성 타우린”을 제조하는데 필요한 “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”을 제조할 수 있다는 것을 확인하고자 하였다.
본 발명의 일 구체예에서, 타우린의 용해도를 높이기 위하여 물을 가열하여 끓는점에서 타우린 수용액을 만들고, “분자구조 내 메틸기(-CH3)가 있는 극성물질”인 알코올 또는 아세톤을 첨가함으로써, “변성 타우린”을 생성시키는 백색의 반고형물이 형성된 “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”을 제조하였다(도 1 참조). 상기 백색의 반고형물은 타우린, 물 및 알코올(또는 아세톤)이 응집(aggregation)되어 결합된 것으로서 온도가 내려가도 타우린이 석출되지 않으며, 물과 알코올(또는 아세톤)이 제거되면 “변성 타우린”이 생성된다. 즉, 상기 백색의 반고형물이 형성된 “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”에서 물 및 “분자구조 내 메틸기(-CH3)가 있는 극성물질”을 제거하면 기존의 타우린과 다른 물성을 갖는 “변성 타우린”이 생성된다.
본 발명의 일 구체예에서,“메틸기(-CH3)가 있거나 포함하는 극성물질 또는 극성 용매”는 알코올류와 같은 “메틸기(-CH3)가 포함된 알킬기(CnH2n +1)”의 극성물질 등을 포함하며, 타우린 수용액과 혼합되면, “변성 타우린”을 생성시키는 상기 백색의 반고형물을 형성할 수 있는 적정한 극성을 가지고 있어야 한다. 상기 백색의 반고형물은 타우린, 물 및 “분자구조 내 메틸기(-CH3)가 있는 극성물질”로 형성된 물질이다. 이용할 수 있는 “분자구조 내 메틸기(-CH3)가 있는 극성물질”로는 메탄올, 에탄올, 프로판올, 부탄올, 아세톤 등을 예시할 수 있으나 알코올은 탄소수가 증가할수록 극성이 급격히 작아져, 상기 백색의 반고형물이 형성되는 양이 적어지므로 이를 고려하여야 한다. 상기 “변성 타우린”을 생성시키는 “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”은 일반적으로 1기압 하에서 정제수 30㎖당 0.1~17.1g의 타우린을 첨가하고, 100℃로 가열하여 용해시킨 후, 1~1,000㎖의 “분자구조 내 메틸기(-CH3)가 있는 극성물질”을 첨가하고 혼합함으로써 제조할 수 있다. 상기 타우린의 첨가량이 상기 범위보다 적을 경우 약학적 제제 합성용 중간체로서의 기능, 즉 목적하는 최종 약학 조성물의 치료 효과가 떨어질 우려가 있고, 상기 범위보다 많을 경우 타우린의 용해가 제대로 이루어지지 않는 문제가 있다. 또한 상기 “분자구조 내 메틸기(-CH3)가 있는 극성물질”의 첨가량이 상기 범위 미만인 경우 “변성 타우린”이 제대로 형성되지 않을 우려가 있다. 상기 첨가되는 “분자구조 내 메틸기(-CH3)가 있는 극성물질”의 양은 “변성 타우린”이 충분히 제조될 수 있는 한 크게 제한되지 않으나, 타우린 수용액 100중량부에 대하여 10~3,000중량부를 첨가하는 것이 바람직하다.
본 발명의 일 구체예에서, 탄소(C)와 황(S)의 원자간 거리가 1.7730 내지 1.7779(Å)이고, 황(S)과 3개 산소(O)의 원자간 평균거리가 1.452 내지 1.462(Å)이며, 황(S)과 3개 산소(O)의 원자간 최대거리가 1.458 내지 1.468(Å)인 변성 타우린을 제공하고, 상기 변성 타우린은 라만 스펙트럼상의 위치 847, 891, 1182, 1256, 1427, 및 1458㎝-1에서 891/847 흡수대 세기 비율, 1182/1256 흡수대 세기 비율, 및 1427/1458 흡수대 세기 비율이 모두 1 미만인 것을 특징으로 하는 변성 타우린을 제공하며, 상기 변성 타우린은 녹기 시작하는 점(onset point)이 330℃ 내지 340℃인 것을 특징으로 하는 변성 타우린을 제공하며, 상기 변성 타우린은 수용해도가 75 내지 79g/L인 것을 특징으로 하는 변성 타우린을 제공하며, 상기 변성 타우린은 최대 밀도가 1.74 내지 1.76g/cm3인 것을 특징으로 하는 변성 타우린을 제공하며, 상기 변성 타우린은 적외선분광(FT-IR)에서 1650 내지 2800 cm-1 위치의 흡수파장이 타우린과 상이한 것을 특징으로 하는 변성 타우린을 제공한다.
본 발명의 다른 구체예에서, (a) 물에 타우린을 용해시키는 단계; (b) 상기 (a)에 알코올을 첨가하여 타우린, 물, 및 알코올을 결합시키는 단계; 및 (c) 상기 (b)에서 물 및 알코올을 제거하여 타우린을 재결정화 하는 단계;를 포함하는 변성 타우린의 제조방법을 제공하고, 상기 (a) 단계에서의 물은 타우린 포화 수용액에 해당하는 물의 양의 1 내지 20배로 사용하는 것을 특징으로 하는 변성 타우린의 제조방법을 제공한다.
이하 상기 본 발명을 단계별로 상세히 설명한다.
본 발명의 변성 타우린은 기존의 타우린과 분자 내 탄소(C)와 연접한 황(S)의 원자간 거리가 상이하고, 라만스펙트럼, FT-IR, TGA, 녹는점 또는 수용해도의 물성 값이 타우린과 차이가 있다. 또한, 상기 변성 타우린은 식품 또는 약학적 제제의 유효성분으로 이용되거나 약학적 제제의 합성에 이용되는 것으로서, “타우린, 물(H2O) 및 분자구조 내 메틸기(-CH3)가 있는 극성물질”을 혼합함으로써 생성되며, “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”에서 “물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질”을 제거하여 제조될 수 있다. 상기 본 발명의 변성 타우린은 대사질환 예방 및 치료 효과가 우수하므로, 의학 분야에 널리 이용될 것으로 기대된다.
도 1은 본 발명이 일 실시예에 따른, 타우린, 물 및 “분자구조 내 메틸기(-CH3)가 있는 극성물질”을 혼합함으로써, 백색의 반고형물이 형성된 “변성 타우린”을 생성시키는 “타우린, 물 및 분자구조 내 메틸기(-CH3)가 있는 극성물질을 함유하는 조성물”의 사진이다(A: 에탄올(주정), B: 메탄올, C: 프로판올. D: 부탄올, E: 아세톤).
도 2는 본 발명의 일 실시예에 따른, 타우린 및 변성 타우린의 라만 스펙트럼이다.
도 3은 본 발명의 일 실시예에 따른, 타우린 및 변성 타우린의 적외선(FT-IR)분광분석 결과이다(A: 타우린, B: 변성 타우린).
도 4는 본 발명의 일 실시예에 따른, 타우린 및 변성 타우린의 SEM 분석 결과이다.
도 5는 본 발명의 일 실시예에 따른, 타우린 및 변성 타우린의 TGA 그래프이다(A: TGA 그래프, B: 1차 미분 TGA 그래프).
도 6은 본 발명의 일 실시예에 따른, 타우린 및 변성 타우린의 녹는점 측정 결과이다(A: 녹는점 그래프, B: 분석 리포트 사진).
도 7은 본 발명의 일 실시예에 따른, 타우린 및 변성 타우린의 수용해도 측정 결과이다.
도 8 및 도 9는 본 발명의 일 실시예에 따른, 본 발명의 약학조성물을 처리한 마우스의 프로트롬빈 타임(prothrombin time), 활성부분 트롬보프라스틴 타임(activated Partial Thromboplastin Time) 및 트롬빈 타임(Thrombin Time) 측정결과를 나타낸 그래프이다.
도 10 내지 도 15는 본 발명의 일 실시예에 따른, 본 발명의 약학조성물을 처리한 마우스의 체중 증가량을 나타낸 그래프이다.
도 16 내지 도 19는 본 발명의 일 실시예에 따른, 본 발명의 약학조성물을 처리한 마우스의 GTT 측정결과를 나타낸 그래프이다.
도 20 내지 도 23은 본 발명의 일 실시예에 따른, 본 발명의 약학조성물을 처리한 마우스의 간, 백색지방조직(WAT), 갈색지방조직(BAT) 및 신장 조직을 촬영한 사진이다.
본 발명의 일 구체예에서, 탄소(C)와 황(S)의 원자간 거리가 1.7730 내지 1.7779(Å)이고, 황(S)과 3개 산소(O)의 원자간 평균거리가 1.452 내지 1.462(Å)이며, 황(S)과 3개 산소(O)의 원자간 최대거리가 1.458 내지 1.468(Å)인 변성 타우린을 제공하고, (a) 물에 타우린을 용해시키는 단계; (b) 상기 (a)에 알코올을 첨가하여 타우린, 물, 및 알코올을 결합시키는 단계; 및 (c) 상기 (b)에서 물 및 알코올을 제거하여 타우린을 재결정화 하는 단계;를 포함하는 변성 타우린의 제조방법을 제공한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
조성물의 구성 설계
실험에 앞서, 각 실험에서 사용할 실시예 및 비교예의 성분 및 구성비를 설계하였다. 이를 표 1에 나타내었다. 각 구성에서의 구체적인 제조 방법은 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 기재하였다.
실시예 1-2 TauAlc DT15
실시예 2-1 TauAlc 8.6*+Ara 2.5 DT16
TauAlc 8.6+Xyl 3.5 DT20
실시예 2-2-1 TauAlc 8.6+Ara 1.04
TauAlc 8.6+Ara 5.2
TauAlc 8.6+Ara 7.8
TauAlc 8.6+Xyl 1.04
TauAlc 8.6+Xyl 5.2
TauAlc 8.6+Xyl 7.8
TauAlc 4.3+Rib 2.6
TauAlc 4.3+Rib 6.5
실시예 2-2-2 TauAlc 8.6+Ara 1.04
TauAlc 8.6+Ara 5.2
TauAlc 8.6+Ara 7.8
TauAlc 8.6+Xyl 1.04
TauAlc 8.6+Xyl 5.2
TauAlc 8.6+Xyl 7.8
실시예 2-3 TauAlc 4.3+Glu 3.1
TauAlc 4.3+Glu 7.75
TauAlc 4.3+Mann 3.1
TauAlc 4.3+Mann 7.75
TauAlc 4.3+Fruc 7.75
실시예 2-4-1 TauAlc 8.6+Cat 3+Bet 4 DT7
실시예 2-4-2 TauAlc 8.6+EGCG 1.5+Bet 4 DT10
실시예 2-5 TauAlc 8.6+EGCG 1.5+Bet 4+Xyl 3.5 DT4
비교예 1 Tau** DT19
비교예 2-1 Ara 1.04
Ara 5.2
Ara 7.8
Xyl 1.04
Xyl 5.2
Xyl 7.8
Rib 5.2
Rib 10.4
비교예 2-2 Glu 6.2
Glu 12.4
Mann 3.1
Mann 6.2
Mann 12.4
Fruc 6.2
Fruc 12.4
비교예 2-3-1 Tau 8.6+Ara 1.04
Tau 8.6+Ara 5.2
Tau 8.6+Ara 7.8
Tau 8.6+Xyl 1.04
Tau 8.6+Xyl 5.2
Tau 8.6+Xyl 7.8
Tau 4.3+Rib 2.6
Tau 4.3+Rib 6.5
비교예 2-3-2 Tau 8.6+Ara 2.5 DT18
Tau 8.6+Xyl 3.5 DT21
비교예 2-4 Tau 4.3+Glu 3.1
Tau 4.3+Glu 7.75
Tau 4.3+Mann 3.1
Tau 4.3+Mann 7.75
Tau 4.3+Fruc 7.75
비교예 2-5-1 Tau 8.6+Cat 3+Bet 4 DT11
비교예 2-5-2 Tau 8.6+EGCG 1.5+Bet 4 DT14
비교예 2-6 Tau 8.6+EGCG 1.5+Bet 4+Xyl 3.5 DT6
*TauAlc 8.6은 변성타우린 8.6g을 의미함.
**Tau은 종래 타우린임.
상기에서, Tau:타우린, TauAlc:변성타우린, Ara:아라비노오스, Xyl:자일로오스, Rib:리보오스, Glu: 글루코오스, Mann: 만노오스, Fruc:프락토오스, Cat:카테킨, Bet:베타인, EGCG:에피갈로카테킨 갈레이트(Epigallocatechin gallate).
실시예 1: “변성 타우린”의 제조
1-1: 변성 타우린을 함유하는 조성물 제조
정제수 30㎖에 타우린(8.6g)을 넣고 전자레인지로 약 60초간 가열하여 용해시킨 후, 즉시 알코올(에탄올(주정, 이하 주정 사용), 메탄올, 프로판올, 부탄올) 또는 아세톤 60㎖를 각각 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물인 조성물(도 1)을 제조하였다.
1-2: 변성 타우린 결정의 제조
(1) 정제수 6㎖에 타우린(1.72g), (2) 정제수 15㎖에 타우린(4.3g), (3) 정제수 28㎖에 타우린(8.6g)을 넣고, 전자레인지로 20~60초간 가열하여 용해시킨 후, 즉시 상온의 에탄올 12㎖(위 (1)의 경우), 에탄올 30㎖(위 (2)의 경우), 에탄올 60㎖(위 (3)의 경우)를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조하였다.
다음으로 제조된 상기 혼합물에 약 100℃로 가열된 정제수 40㎖, 정제수 32㎖(위 (3)의 경우)를 첨가한 후, 전자레인지에서 약 3~5분간 알코올이 제거될 때까지 가열하여 조성물을 제조하였다.
고체상태의 변성 타우린 결정을 위 (3)의 경우로 제조한 후 온풍건조기로 건조하여 제조하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
실시예 2: 대사질환의 예방 또는 치료용 약학조성물 제조
2-1: 변성 타우린 + 5탄당 조성물 제조 1
정제수 32㎖에 5탄당(자일로오스, 아라비노오스) 일정용량(2.5g, 3.5g)을 넣고, 전자레인지로 30초간 가열하여 완전히 용해시켰다. 새로이 28㎖에 타우린(8.6g)을 넣고, 전자레인지로 60초간 가열하여 용해시킨 후, 즉시 에탄올 60㎖를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조한 다음, 앞서 준비한 5탄당 수용액을 첨가한 후, 알코올이 완전히 제거될 때까지 전자레인지에서 약 5분간 가열하여 조성물을 제조하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-2-1: 변성 타우린 + 5탄당 조성물 제조 2
정제수 40㎖에 5탄당(자일로오스, 아라비노오스, 리보오스) 일정용량(1.04g, 2.6g, 5.2g, 6.5g 또는 7.8g)을 넣고, 전자레인지로 약 30~50초간 가열하여 완전히 용해시켰다. 새로이 (1) 정제수 15㎖에 타우린(4.3g) 또는 (2) 정제수 30㎖에 타우린(8.6g)을 넣고, 전자레인지로 40~60초간 가열하여 용해시킨 후, 즉시 에탄올 30㎖(위 (1)의 경우) 또는 60㎖(위 (2)의 경우)를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조한 다음, 앞서 준비한 5탄당 수용액을 상기 혼합물에 첨가한 후, 알코올이 완전히 제거될 때까지 전자레인지에서 약 3~5분간 가열하였다. 이 혼합액에 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-2-2: 변성 타우린 + 5탄당 조성물 제조 3
정제수 40㎖을 전자레인지로 약 30초간 가열하여 끓여 놓은 후, 정제수 30㎖에 타우린(8.6g)을 넣고, 전자레인지로 약 60초간 가열하여 용해시킨 후, 즉시 에탄올 60㎖를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조한 다음, 이 혼합물에 앞서 준비한 끓인 정제수 40㎖을 첨가한 후, 전자레인지에서 알코올이 완전히 제거될 때까지 약 5분간 가열(100℃)하여 조성물을 제조하였다.
또한, 정제수 40㎖에 5탄당(자일로오스, 아라비노오스) 일정용량(1.04g, 5.2g 또는 7.8g)을 넣고, 전자레인지로 약 30초간 가열하여 완전히 용해시킨 후, 이것에 앞서 제조한 상기 조성물을 혼합하고, 이 혼합액이 잘 섞이도록 전자레인지에서 약 30초간 가열한 후, 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-3: 변성 타우린 + 6탄당 조성물 제조
정제수 40㎖에 6탄당(만노오스, 글루코오스 및 프락토오스) 일정 용량(3.1g 또는 7.75g)을 넣고, 전자레인지로 약 50초간 가열하여 완전히 용해시켰다. 새로이 정제수 15㎖에 타우린(4.3g)을 넣고 전자레인지로 40초 내외 가열하여 용해시킨 후, 즉시 에탄올 30㎖를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조한 다음, 앞서 준비한 6탄당 수용액을 첨가한 후, 알코올이 완전히 제거될 때까지 전자레인지에서 약 3분 30초간 가열한 후, 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-4-1: 변성 타우린 + 폴리페놀 + 아미노산 조성물 제조 1
정제수 30㎖에 타우린(8.6g)을 넣고 전자레인지로 1분 20초 내외 가열하여 완전히 용해시킨 후, 즉시 에탄올 60㎖를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조하였다. 다음으로 정제수 40㎖을 약 100℃로 전자레인지를 이용하여 1분 동안 가열하고 카테킨(3g) 및 베타인(4g)을 첨가하여 용해시킨 후, 상기 혼합물에 첨가한 다음, 전자레인지로 5분 동안 가열하여 에탄올을 제거하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-4-2: 변성 타우린 + 폴리페놀 + 아미노산 조성물 제조 2
정제수 30㎖에 타우린(8.6g)을 넣고 전자레인지로 1분 20초 내외 가열하여 완전히 용해시킨 후, 즉시 에탄올 60㎖를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조하였다. 다음으로 정제수 40㎖을 약 100℃로 전자레인지를 이용하여 1분 동안 가열하고 EGCG(1.5g) 및 베타인(4g)을 첨가하여 용해시킨 후, 상기 혼합물에 첨가한 다음, 전자레인지로 5분 동안 가열하여 에탄올을 제거하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-5: 변성 타우린 + 폴리페놀 + 아미노산 + 5탄당 조성물 제조
정제수 30㎖에 타우린(8.6g)을 넣고 전자레인지로 1분 20초 내외 가열하여 완전히 용해시킨 후, 즉시 에탄올 60㎖를 첨가하면서 막대로 저어주어 백색의 반고형물이 형성된 혼합물을 제조하였다. 다음으로 정제수 40㎖을 약 100℃로 전자레인지를 이용하여 1분 동안 가열하고 EGCG(1.5g), 베타인(4g) 및 자일로오스(3.5g)을 첨가하여 용해시킨 후, 상기 혼합물에 첨가한 다음, 전자레인지로 5분 동안 가열하여 에탄올을 제거하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
비교예 1: 타우린 수용액 제조
1-1: 타우린 수용액 제조 1
정제수 60㎖을 전자레인지로 약 1분간 가열한 후, 타우린(8.6g)을 첨가하여 용해시킨 후, 전자레인지로 3분동안 가열하였다.
1-2: 타우린 수용액 제조 2
정제수 40㎖을 전자레인지로 약 30초간 가열하여 끓여놓고, 새로이 정제수 30㎖에 타우린(1.72g, 4.3g 또는 8.6g)을 넣고 전자레인지로 약 1분간 가열용해(100℃)한 후 앞서 준비한 끓인 정제수 40㎖첨가하여 전자레인지에서 끓을 때까지 약 2분간 가열한 후 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
비교예 2: 대사질환의 예방 또는 치료용 약학조성물 제조
2-1: 5탄당 조성물 제조
정제수 40㎖에 5탄당(자일로오스, 아라비노오스, 리보오스) 일정용량(1.04g, 5.2g, 7.8g 또는 10.4g)을 넣고, 전자레인지로 약 30초간 가열하여 완전히 용해시킨 후, 새로이 전자레인지에서 약 30초간 끓인 정제수 30㎖를 첨가하였다. 5탄당 용액이 끓을 때까지 전자레인지에서 약 3~4분간 가열한 후 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-2: 6탄당 조성물 제조
정제수 40㎖에 6탄당(만노오스, 글루코오스 및 프락토오스) 일정 용량(3.1g, 6.2g 또는 12.4g)을 넣고, 전자레인지로 약 50초간 가열하여 완전히 용해시킨 후, 새로이 전자레인지에서 약 30초간 끓인 정제수 30㎖를 첨가하였다. 6탄당 용액이 끓을 때까지 전자레인지에서 약 2~3분간 가열한 후 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-3-1: 타우린 + 5탄당 조성물 제조 1
정제수 40㎖에 5탄당(자일로오스, 아라비노오스, 리보오스) 일정용량(1.04g, 2.6g, 5.2g, 6.5g 또는 7.8g)을 넣고, 전자레인지로 약 30~50초간 가열하여 완전히 용해시켰다. 새로이 (1) 정제수 15㎖에 타우린(4.3g) 또는 (2) 정제수 30㎖에 타우린(8.6g)을 넣고, 전자레인지로 40~60초간 가열하여 용해시킨 후, 앞서 준비한 5탄당 용액을 혼합하였다. 이 혼합액을 전자레인지에서 끓을 때까지 약 2~4분간 가열한 후 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-3-2: 타우린 + 5탄당 조성물 제조 2
정제수 60㎖를 전자레인지로 1분 동안 약 100℃까지 가열한 후, 타우린(8.6g)에 각각 아라비노오스(2.5g), 자일로오스(3.5g)을 첨가하고 완전히 용해한 후 전자레인지로 3분 동안 가열하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-4: 타우린 + 6탄당 조성물 제조
정제수 40㎖에 6탄당(만노오스, 글루코오스 및 프락토오스) 일정 용량(3.1g 또는 7.75g)을 넣고, 전자레인지로 약 50초간 가열하여 완전히 용해시켰다. 새로이 정제수 15㎖에 타우린(4.3g)을 넣고 전자레인지로 40초 내외 가열용해한 후 앞서 준비한 6탄당 용액을 혼합하였다. 이 혼합액을 전자레인지에서 끓을 때까지 약 2분간 가열한 후 정제수를 추가하여 총량을 100㎖로 맞추어 실험에 사용하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-5-1: 타우린 + 폴리페놀 + 아미노산 조성물 제조 1
정제수 30㎖에 타우린(8.6g)을 넣고 전자레인지로 1분 20초 내외 가열하여 완전히 용해시켜 타우린 수용액을 제조하였다. 다음으로 정제수 40㎖을 약 100℃로 전자레인지를 이용하여 1분 동안 가열하고 카테킨(3g) 및 베타인(4g)을 첨가하여 용해시킨 후, 타우린 수용액에 첨가한 다음, 전자레인지로 약 4분 내외 가열하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-5-2: 타우린 + 폴리페놀 + 아미노산 조성물 제조 2
정제수 30㎖에 타우린(8.6g)을 넣고 전자레인지로 1분 20초 내외 가열하여 완전히 용해시켜 타우린 수용액을 제조하였다. 다음으로 정제수 40㎖을 약 100℃로 전자레인지를 이용하여 1분 동안 가열하고 EGCG(1.5g) 및 베타인(4g)을 첨가하여 용해시킨 후, 타우린 수용액에 첨가한 다음, 전자레인지로 약 4분 내외 가열하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
2-6: 타우린 + 폴리페놀 + 아미노산 + 5탄당 조성물 제조
정제수 30㎖에 타우린(8.6g)을 넣고 전자레인지로 1분 20초 내외 가열하여 완전히 용해시켜 타우린 수용액을 제조하였다. 다음으로 정제수 40㎖을 약 100℃로 전자레인지를 이용하여 1분 동안 가열하고 EGCG(1.5g), 베타인(4g) 및 자일로오스(3.5g)을 첨가하여 용해시킨 후, 타우린 수용액에 첨가한 다음, 전자레인지로 약 4분 내외 가열하였다. (각 조성물의 구체적인 구성비는 표 1 참조)
실시예 3. 변성 타우린의 성질확인
실험예 1: X-선 단결정(single crystal XRD)분석
실험예 1-1: 100K에서의 단결정 측정
단결정 X-선 분석은 Mo 튜브, 흑연 단색화장치(graphite-monochromator) 및 CCD영역-디텍터(CCD area-detector)가 부착된 XRD 장비(Bruker SMART APEX II X-ray Diffractometer)로 50KV, 40mA 그리고 100K 조건에서 데이터를 획득하였고, Bruker SHELXTL 소프트웨어로 구조 분석을 수행하였다. 상기의 구체적인 수행 조건을 하기 표 2에 기재하였다.
Identification code 201412241t_0m  
Empirical formula C2 H7 N O3 S  
Formula weight 125.15  
Temperature 100(1) K  
Wavelength 0.71073 Å  
Crystal system Monoclinic  
Space group P2(1)/c  
Unit cell dimensions a = 5.2607(2) Å α= 90°
b = 11.6303(4) Å β= 94.015(2)°
c = 7.7903(3) Å η = 90°
Volume 475.47(3) Å3  
Z 4  
Density (calculated) 1.748 Mg/m3  
Absorption coefficient 0.569 mm-1  
F(000) 264  
Crystal size 0.30 x 0.06 x 0.04 mm3  
Theta range for data collection 3.15 to 28.36°.  
Index ranges -6<=h<=6, 0<=k<=15, 0<=l<=10  
Reflections collected 1164  
Independent reflections 1164 [R(int) = 0.0000]  
Completeness to theta = 28.36° 98.2%  
Absorption correction Multi-scan  
Max. and min. transmission 0.9776 and 0.8478  
Refinement method Full-matrix least-squares on F2  
Data / restraints / parameters 1164 / 0 / 73  
Goodness-of-fit on F2 1.102  
Final R indices [I>2sigma(I)] R1 = 0.0324, wR2 = 0.0779  
R indices (all data) R1 = 0.0387, wR2 = 0.0797  
Largest diff. peak and hole 0.433 and -0.509 e.Å-3  
상기 변성 타우린의 단결정 X-선 분석으로부터, X-원자 좌표(× 104)와 변성 타우린에 대한 등가 등방성 변위 매개 변수(Å2x 103)을 표 3에 기재하였고, 변성 타우린 원자 내 결합길이(Å) 및 각도(°)를 표 4에 기재하였으며, 변성 타우린에 대한 이방성 변위 매개 변수(Åx 103)을 표 5에 기재하였으며, 변성 타우린의 수소 좌표(× 104) 및 등방성 변위 매개 변수(Å2x 103)를 표 6에 기재하였으며, 변성 타우린의 비틀림각(°)을 표 7에 기재하였으며, 변성 타우린의 수소결합(Å 및 °)을 표 8에 기재하였다.
  x y z U(eq)
S(1) 2983(1) 8499(1) 1500(1) 9(1)
O(1) 5677(2) 8384(1) 2094(2) 14(1)
O(2) 2700(2) 9122(1) -137(2) 12(1)
O(3) 1588(2) 7424(1) 1465(2) 14(1)
N(1) 2330(3) 11304(1) 1673(2) 11(1)
C(1) 1616(4) 9399(1) 3033(2) 11(1)
C(2) 2909(4) 10567(1) 3210(2) 12(1)
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
S(1)-O(3) 1.4495(12)
S(1)-O(2) 1.4653(12)
S(1)-O(1) 1.4659(13)
S(1)-C(1) 1.7775(18)
N(1)-C(2) 1.487(2)
N(1)-H(1A) 0.85(2)
N(1)-H(1B) 0.84(3)
N(1)-H(1C) 0.84(2)
C(1)-C(2) 1.520(2)
C(1)-H(1D) 0.9900
C(1)-H(1E) 0.9900
C(2)-H(2B) 0.9900
C(2)-H(2C) 0.9900
O(3)-S(1)-O(2) 112.98(8)
O(3)-S(1)-O(1) 113.83(7)
O(2)-S(1)-O(1) 110.89(8)
O(3)-S(1)-C(1) 107.02(8)
O(2)-S(1)-C(1) 105.80(8)
O(1)-S(1)-C(1) 105.62(8)
C(2)-N(1)-H(1A) 106.3(15)
C(2)-N(1)-H(1B) 112.0(16)
H(1A)-N(1)-H(1B) 111(2)
C(2)-N(1)-H(1C) 112.4(15)
H(1A)-N(1)-H(1C) 108(2)
H(1B)-N(1)-H(1C) 108(2)
C(2)-C(1)-S(1) 112.80(13)
C(2)-C(1)-H(1D) 109.0
S(1)-C(1)-H(1D) 109.0
C(2)-C(1)-H(1E) 109.0
S(1)-C(1)-H(1E) 109.0
H(1D)-C(1)-H(1E) 107.8
N(1)-C(2)-C(1) 112.14(14)
N(1)-C(2)-H(2B) 109.2
C(1)-C(2)-H(2B) 109.2
N(1)-C(2)-H(2C) 109.2
C(1)-C(2)-H(2C) 109.2
H(2B)-C(2)-H(2C) 107.9
Symmetry transformations used to generate equivalent atoms:
  U11 U22 U33 U23 U13 U12
S(1) 8(1) 7(1) 13(1) 0(1) 2(1) 0(1)
O(1) 10(1) 11(1) 22(1) 2(1) 0(1) 1(1)
O(2) 12(1) 11(1) 13(1) 1(1) 2(1) 0(1)
O(3) 15(1) 9(1) 20(1) -2(1) 5(1) -5(1)
N(1) 10(1) 8(1) 13(1) -1(1) 2(1) -1(1)
C(1) 11(1) 10(1) 12(1) 0(1) 2(1) -1(1)
C(2) 11(1) 11(1) 12(1) 0(1) -1(1) 1(1)
The anisotropic displacement factor exponent takes the form: -2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]
  x y z U(eq)
H(1A) 2930(40) 11960(20) 1930(30) 16
H(1B) 760(50) 11347(18) 1410(30) 16
H(1C) 3040(40) 11067(19) 800(30) 16
H(1D) -213 9512 2686 13
H(1E) 1739 9010 4166 13
H(2B) 2336 10962 4241 14
H(2C) 4775 10455 3381 14
O(3)-S(1)-C(1)-C(2) 179.82(12)
O(2)-S(1)-C(1)-C(2) -59.46(14)
O(1)-S(1)-C(1)-C(2) 58.19(14)
S(1)-C(1)-C(2)-N(1) 71.01(18)
Symmetry transformations used to generate equivalent atoms:
D-H...A d(D-H) d(H...A) d(D...A) <(DHA)
N(1)-H(1A)...O(1)#1 0.85(2) 1.94(2) 2.7808(19) 170(2)
N(1)-H(1A)...S(1)#1 0.85(2) 2.99(2) 3.7591(16) 152.0(19)
N(1)-H(1B)...O(2)#2 0.84(3) 2.08(2) 2.870(2) 156(2)
N(1)-H(1B)...O(3)#3 0.84(3) 2.47(2) 2.910(2) 113.3(18)
N(1)-H(1B)...S(1)#2 0.84(3) 2.90(2) 3.6064(17) 143(2)
N(1)-H(1C)...O(2)#4 0.84(2) 2.34(2) 2.992(2) 134.0(18)
N(1)-H(1C)...O(1)#4 0.84(2) 2.48(2) 3.205(2) 144.1(19)
N(1)-H(1C)...S(1)#4 0.84(2) 2.89(2) 3.6186(18) 145.4(18)
Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z+1/2 #2 -x,-y+2,-z #3 -x,y+1/2,-z+1/2 #4 -x+1,-y+2,-z
실험예 1-2: 296K에서의 단결정 측정
단결정 X-선 분석은 Mo 튜브, 흑연 단색화장치(Adjustable graphite monochromator), X-선 측각기(SMART 3-Axis Goniometer), 및 CCD영역-디텍터(APEX II 4K CCD Detector)가 부착된 XRD 장비(BRUKER AXS SMART APEX II)로 50KV, 40mA 그리고 296K(상온) 조건에서 데이터를 획득하였고, Bruker SHELXTL 소프트웨어로 구조 분석을 수행하였다. 상기의 구체적인 수행 조건을 하기 표 9에 기재하였다.
Identification code och08-1  
Empirical formula C2 H7 N O3 S  
Formula weight 125.15  
Temperature 296(2) K  
Wavelength 0.71073 Å  
Crystal system Monoclinic  
Space group P21/c  
Unit cell dimensions a = 5.2771(2) Å α= 90°.
b = 11.6376(4) Å β= 94.113(2)°.
c = 7.9190(3) Å γ= 90°.
Volume 485.08(3) Å3  
Z 4  
Density (calculated) 1.714 Mg/m3  
Absorption coefficient 0.558 mm-1  
F(000) 264  
Crystal size 0.30 x 0.20 x 0.10 mm3  
Theta range for data collection 3.117 to 26.406°.  
Index ranges -6<=h<=6,-14<=k<=14,-9<=l<=9  
Reflections collected 6712  
Independent reflections 995 [R(int) = 0.0305]  
Completeness to theta = 25.242° 99.9%  
Refinement method Full-matrix least-squares on F2  
Data / restraints / parameters 995 / 0 / 66  
Goodness-of-fit on F2 1.106  
Final R indices [I>2sigma(I)] R1 = 0.0271, wR2 = 0.0690  
R indices (all data) R1 = 0.0279, wR2 = 0.0702  
Extinction coefficient 0.74(3)
Largest diff. peak and hole 0.340 and -0.410 e.Å-3  
상기 변성 타우린의 단결정 X-선 분석으로부터, X-원자 좌표(× 104)와 변성 타우린에 대한 등가 등방성 변위 매개 변수(Å2x 103)을 표 10에 기재하였고, 변성 타우린 원자 내 결합길이(Å) 및 각도(°)를 표 11에 기재하였으며, 변성 타우린에 대한 이방성 변위 매개 변수(Åx 103)을 표 12에 기재하였으며, 변성 타우린의 수소 좌표(× 104) 및 등방성 변위 매개 변수(Å2x 103)를 표 13에 기재하였으며, 변성 타우린의 비틀림각(°)을 표 14에 기재하였으며, 변성 타우린의 수소결합(Å 및 °)을 표 15에 기재하였다.
  x Y z U(eq)
S(1) 2967(1) 8487(1) 1492(1) 22(1)
O(1) 2682(2) 9108(1) -114(1) 29(1)
O(3) 5640(2) 8371(1) 2072(2) 36(1)
O(2) 1581(3) 7415(1) 1460(2) 36(1)
C(2) 2894(3) 10548(1) 3186(2) 27(1)
C(1) 1606(3) 9384(1) 2997(2) 25(1)
N(1) 2361(3) 11292(1) 1684(2) 25(1)
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
S(1)-O(2) 1.4452(12)
S(1)-O(3) 1.4582(12)
S(1)-O(1) 1.4609(12)
S(1)-C(1) 1.7750(16)
C(2)-N(1) 1.482(2)
C(2)-C(1) 1.518(2)
C(2)-H(2A) 0.9700
C(2)-H(2B) 0.9700
C(1)-H(1A) 0.9700
C(1)-H(1B) 0.9700
N(1)-H(1C) 0.8900
N(1)-H(1D) 0.8900
N(1)-H(1E) 0.8900
O(2)-S(1)-O(3) 113.75(8)
O(2)-S(1)-O(1) 113.06(8)
O(3)-S(1)-O(1) 110.89(7)
O(2)-S(1)-C(1) 106.89(8)
O(3)-S(1)-C(1) 105.75(8)
O(1)-S(1)-C(1) 105.80(7)
N(1)-C(2)-C(1) 112.59(12)
N(1)-C(2)-H(2A) 109.1
C(1)-C(2)-H(2A) 109.1
N(1)-C(2)-H(2B) 109.1
C(1)-C(2)-H(2B) 109.1
H(2A)-C(2)-H(2B) 107.8
C(2)-C(1)-S(1) 113.03(11)
C(2)-C(1)-H(1A) 109.0
S(1)-C(1)-H(1A) 109.0
C(2)-C(1)-H(1B) 109.0
S(1)-C(1)-H(1B) 109.0
H(1A)-C(1)-H(1B) 107.8
C(2)-N(1)-H(1C) 109.5
C(2)-N(1)-H(1D) 109.5
H(1C)-N(1)-H(1D) 109.5
C(2)-N(1)-H(1E) 109.5
H(1C)-N(1)-H(1E) 109.5
H(1D)-N(1)-H(1E) 109.5
Symmetry transformations used to generate equivalent atoms:
  U11 U22 U33 U23 U13 U12
S(1) 20(1) 17(1) 29(1) 1(1) 3(1) -1(1)
O(1) 32(1) 29(1) 26(1) 2(1) 5(1) 0(1)
O(3) 22(1) 28(1) 55(1) 4(1) -2(1) 6(1)
O(2) 41(1) 24(1) 45(1) -4(1) 11(1) -13(1)
C(2) 30(1) 25(1) 26(1) -4(1) -3(1) 2(1)
C(1) 26(1) 26(1) 25(1) 2(1) 5(1) 1(1)
N(1) 24(1) 21(1) 29(1) -2(1) 4(1) -2(1)
The anisotropic displacement factor exponent takes the form: -2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]
  x y z U(eq)
H(2A) 2317 10932 4176 32
H(2B) 4715 10437 3369 32
H(1A) -179 9498 2657 30
H(1B) 1717 9000 4087 30
H(1C) 3162 11016 820 37
H(1D) 2904 12002 1921 37
H(1E) 696 11305 1410 37
N(1)-C(2)-C(1)-S(1) 70.52(16)
O(2)-S(1)-C(1)-C(2) 179.40(11)
O(3)-S(1)-C(1)-C(2) 57.86(13)
O(1)-S(1)-C(1)-C(2) -59.84(13)
Symmetry transformations used to generate equivalent atoms:
D-H...A d(D-H) d(H...A) d(D...A) <(DHA)
N(1)-H(1C)...O(1) 0.89 2.35 2.9239(18) 122.5
N(1)-H(1C)...O(1)#1 0.89 2.31 3.0121(18) 136.2
N(1)-H(1C)...O(3)#1 0.89 2.52 3.250(2) 139.5
N(1)-H(1D)...O(3)#2 0.89 1.92 2.7913(18) 166.5
N(1)-H(1E)...O(1)#3 0.89 2.05 2.8931(18) 157.9
N(1)-H(1E)...O(2)#4 0.89 2.50 2.9382(19) 111.0
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z #2 -x+1,y+1/2,-z+1/2 #3 -x,-y+2,-z #4 -x,y+1/2,-z+1/2
실험예 1-3: 타우린과 변성 타우린의 단결정 비교
상기 표 2 내지 15의 결과로부터 도출된 변성 타우린의 단결정 X-선 분석 결과로부터 변성 타우린의 원자적 특징을 타우린과 비교하여 표 16에 기재하였다. 타우린의 비교데이터는 공지된 논문들(Y. Okaya, Acta Cryst. 1966. (21) 726-35; David E. Hibbs et al., Chem. Eur. J. 2003, 9, No. 5. 1075-84; 및 J. A. Beukes et al., Phys. Chem. Chem. Phys., 2007, 9, 4709-20 등)으로부터 추출하였다.
S-C원자간 거리(Å) C-N원자간 거리(Å) 밀도(Mg/m3) C-H(4H)원자간 평균거리(Å) S-O(3O) 원자간 평균거리(최대거리)(Å) N-H(3H)이온분자 원자간 평균거리(Å) 온도
1 변성타우린 1.7775 1.487 1.748 0.99 1.4602(1.4659) 0.843 100K
2 변성타우린 1.7750 1.482 1.714 0.97 1.4548(1.4609) 0.89 296K
3 타우린 1.7858 1.4910 1.734 1.10 1.4659(1.4720) 1.045 100k
4 타우린 1.780 1.484 1.70 0.9525 1.458(1.465) 0.847 293k
5 타우린 1.7815 1.4862 1.738 1.10 1.4648(1.4696) 1.045 120k
6 타우린 1.7818 1.4809 1.709 1.10 1.4581(1.4639) 1.045 296k
상기 표 16의 원자 거리를 정리한 결과를 표 17에 기재하였다.
S-C 거리(온도변화에 따른 차이) S-O 평균거리(온도변화에 따른 차이) S-O 최대거리(온도변화에 따른 차이)
① 타우린 1.780 ~ 1.7858Å(0.0058) 1.458 ~ 1.4659Å(0.0079) 1.4639~1.4720Å(0.0081)
② 변성타우린 1.7750 ~ 1.7775Å(0.0025) 1.4548 ~ 1.4602Å(0.0054) 1.4609~1.4659Å(0.005)
온도변화에 따른 거리차이 비율 (②/①)x100% (0.0025/0.0058)x100=43.1%(56.9%축소) (0.0054)/(0.0079)x100=68.4%(31.6%축소) (0.005)/(0.0081)x100=61.7%(38.3%축소)
실험 결과, 측정 온도 100K와 296K(상온)의 온도 변화에 따른 XRD 결과에서 원자의 결합길이 변화를 보면 하기와 같은 특징이 있었다.
① S-C, 및 S-O의 결합 길이는 296K에서 100K로 온도가 내려갈 때 전체적으로 길어지는 경향을 보였다. 이것은 온도가 내려가면서 분자의 운동성이 줄어들고, 결합의 방향성을 가지는 수소 결합이 인접한 다른 분자와 강해지면서 생긴 현상으로 해석할 수 있다.
② 296K에서 100K로 온도가 내려갈 때 결합세기를 나타내는 S-C 거리, S-O 평균거리 및 S-O 최대길이의 변화가, 변성타우린이 일반타우린에 비하여 각각 56.9%, 31.6% 및 38.3% 짧은 것으로 나타났다. 또한 동일온도에서 변성타우린의 S-O 원자간 최대거리는 일반타우린의 S-O 원자간 평균거리와 거의 같고, 동일온도에서 변성타우린의 S-C 원자간 결합거리는 일반타우린에 비해 0.007~0.008Å 짧은 것으로 나타났다. 전반적으로 S-C 원자간 결합거리는 온도와 관계없이 변성타우린은 1.78Å 이하이며 일반타우린은 1.78Å 이상임을 알 수 있었다. 따라서 이 같은 결합 길이의 차이는 변성타우린 분자의 원자간 전자밀도 분포가 일반타우린과 상이하며, 이는 타우린 분자 내 -SO3 - 기가 결합된 -CH2CH2-기의 영향을 받고 있다는 것을 의미한다.
③ 또한 변성타우린은 타우린에 비해 수소결합 특성이 강하지 않은 것으로 나타났다. 상기 표 17에서 S-O 결합의 최대거리는 인접한 분자의 N-H와 수소결합 정도를 나타내는 것으로, 길이가 길수록 수소결합이 강하다는 것을 의미한다. 동일온도에서 비교하면 일반타우린의 S-O 최대거리가 변성타우린에 비해 0.003~0.006Å 더 긴 것으로 측정되었으므로, 일반타우린의 수소결합이 더 강함을 알 수 있었다. 이는 분자 내 전자밀도 분포가 변성타우린의 경우 특정결합에 더 집중되어 있고 외부의 영향(수소결합)에도 큰 변화를 보이지 않음을 나타낸다.
실험예 2: 라만 스펙트럼(Raman Spectrum) 분석
타우린과 “변성 타우린”의 구조적 차이를 확인하기 위하여 라만(Raman)분석을 한국고분자시험연구소에 의뢰하고, 그 결과를 도 2에 나타내었다.
분석을 위한 “변성 타우린” 결정은 모두 실시예 1-2(3)의 경우로 제조된 고체상태의 결정을 사용하였다.
참고로 분석 장비 및 조건은 다음과 같다.
(1) 분석기기: Nanofinder FLEX G(Lambda Ray 사)
(2) Source: 532nm
(3) Range: 200~3600㎝-1
(4) Exposure time, accumulation: 3 sec / 20 time
(5) Spatial resolution: 약 0.5㎛
(6) Peak resolution: 1㎝-1
도 2에 나타난 바와 같이, “변성 타우린”은 붉은 점으로 표시된 영역의 흡수세기가 기존의 타우린과 다소 다르다는 것을 확인하였다. Journal of Raman Spectroscopy, Vol. 27, 507-512(1996)에 제시된 Raman data를 참고로 측정된 결과와 비교해 보면 표시된 위치가 847, 891, 1182, 1256, 1427, 1458㎝- 1 로서, 모두 타우린 분자의 -CH2-, -C2H4-의 진동 모드와 관련된 흡수대인 것을 확인할 수 있었다. 따라서 “변성 타우린”은 결정 형성시 분자 내 -CH2 -와 -C2H4 -의 진동에 영향을 미쳐 라만 흡수대의 세기에 차이를 나타낸다. 즉, 라만 흡수대의 차이는 타우린과 “변성 타우린”이 분자 물성에서 차이가 있음을 보여준다.
실험예 3: FT-IR(적외선분광, Fourier Transform Infrared Spectroscopy)분
타우린과 “변성 타우린”의 구조적 차이를 확인하기 위하여 적외선(FT-IR)분광분석을 한국고분자시험연구소에 의뢰하고, 그 결과를 도 3에 나타내었다.
참고로 분석 장비 및 조건은 다음과 같다.
(1) 분석기기: JASCO FT-IR 4100
(2) 측정모드 : ATR mode
(3) Range: 600~4000㎝-1
(4) Scan 수 : 32
(5) Peak resolution: 4㎝-1
도 3에 나타난 바와 같이, 타우린과 “변성 타우린”의 적외선 분광에서의 흡수 파장에서 1650-2800㎝- 1영역의 적외선 분광 흡수파장에서는 차이를 나타내고 있다.
이는, Journal of Raman Spectroscopy, Vol. 27, 507-512(1996) 및 G. Socrates,“Infrared and Raman Characteristic Group Frequencies”, John Wiley & Sons, 2001, p220에 제시된 자료를 참고하면, 타우린의 SO3H가 외부 물분자(H2O)와 SO3 -H3O+로 수화과정에서 나타나는 특성으로 보인다. 또한 NH3의 진동모드는 1173, 1508, 1614, 3044, 3211㎝-1의 파장에서 적외선 흡수를 나타내고, SO3의 진동모드는 1037, 1204, 1303㎝-1의 파장에서 적외선 흡수를 나타내며, 수소결합에 의한 1527, 3523㎝-1의 파장에서의 적외선 흡수는 보이지 않는다. 그러므로 타우린과 “변성타우린”은 모두 이온화(H3N+CH2CH2SO3 -)된 동일한 구조이나, 결정내의 SO3와 인접한 NH3와의 결합세기에서는 다소 차이가 있다는 것을 나타낸다. 즉 이온화된, 타우린과 “변성 타우린”의 결정 내 분자 간 결합세기에서는 차이가 있다는 것을 나타낸다.
실험예 4: 전자현미경(Scanning Electron Microscope, SEM) 분석
타우린과 “변성 타우린”의 표면과 형상을 관찰하기 위해 SEM 분석을 실시하고, 그 결과를 도 4에 나타내었다.
참고로 분석장비 및 조건은 다음과 같다.
(1) 분석기기 : HITACHI(S-2700), JAPAN
(2) Electron Gun : Tungsten Filament type
(3) Resolution : 4.0 nm
(4) Accelerating Voltage : 15.0kV
도 4로부터, 전자현미경(SEM)으로 관찰한 타우린은 수정기둥과 같은 편상의 구조이고, 확대한 표면도 매끈한 모양이지만, “변성 타우린”은 타우린과 비교해 결정의 입자 크기가 작고 둥글며, 입자의 크기에 대한 분포가 매우 넓고, 타우린의 결정도 일부 섞여 있는 것을 확인할 수 있었다. 그리고 “변성 타우린”의 확대 사진으로부터 타우린의 표면에 “변성 타우린”이 붙어 있는 것을 확인할 수 있었다. 이같은 형상은 제조과정에서 물 및 “분자구조 내 메틸기(-CH3)가 있는 극성물질”에 의해 넓은 분포의 작은 구상 입자들이 형성된 것이다. 이와 같은 입자 형상에 의해 “변성 타우린”은 동일한 질량의 타우린 보다 표면적이 더 크므로, 공기 중 수분의 흡착에 의한 수화가 더 용이할 것으로 추측된다. 이때, 타우린의 경우 평균 입자크기는 222.06μm이고, 중간값 입자크기는 192.92μm 인 반면에, 변성 타우린의 경우 평균 입자크기는 190.84μm이고, 중간값 입자크기는 122.47μm이었다. 따라서, 타우린과 변성 타우린의 입자크기가 현저히 상이함을 알 수 있다.
실험예 5: 열무게(TGA, Thermogravimeteric analysis) 분석
타우린과 “변성 타우린”의 차이점을 확인하기 위하여 열분게 분석을 실시하고, 그 결과를 도 5에 나타내었다.
참고로 분석 장비 및 조건은 다음과 같다.
(1) 분석기기: TGA 7 (Perkin-Elmer 사)
(2) 분위기: N2 gas
(3) 승온 속도: 20℃/min
(4) 범위: 50~600℃
도 5에 나타난 바와 같이, TGA는 온도 증가에 따른 시료의 무게 감소를 나타낸다. “변성 타우린”의 경우 150℃에서부터 미세한 무게 감소가 있는데, 이것은 결정 표면의 수화된 SO3에서 물분자가 탈착되거나, SEM사진에서 나타난 것처럼 매우 작은 “변성 타우린” 입자의 표면에서 열에 의한 분해 반응이 약간 빠르게 진행되면서 나타나는 현상으로 보인다. “변성 타우린”의 작은 입자는 열에 대한 노출 면적을 증가시키므로 열반응성은 타우린보다 더 빠르게 나타나고 있다. TGA의 1차 미분에서 보듯이 변성 타우린의 첫번째 분해 온도는 359℃이고, 최종 분해온도는 396℃이며, 타우린은 362℃와 394℃의 온도에서 분해가 된다. 이는 변성 타우린이 입자크기가 작기 때문에 초기 열분해는 먼저 일어나지만 최종 분해온도는 더 높은 특성을 보여주기 때문이다.
실험예 6: 녹는점(melting point) 분석
타우린과 “변성 타우린 의 차이점을 확인하기 위하여 녹는점 분석을 실시하고, 그 결과를 도 6에 나타내었다.
참고로 분석 장비 및 조건은 다음과 같다.
(1) 분석기기: MPA100(SRS; Stanford Research System 사)
(2) 시작 온도: 200℃
(3) 승온속도: 10℃/min
도 6에 나타난 바와 같이, “변성 타우린”의 녹는점(melting point, onset point 기준)이 타우린의 녹는점에 비하여 대략 10℃ 정도 더 높은 것을 알 수 있었는데(3회 실험결과 각각 335.7℃; 336.6℃; 및 337℃로 나타남), 이는 Raman이나 FT-IR 스펙트럼의 흡수세기나 흡수파장에서 나타난 것과 같이, 결정 내 이온화 된 분자(H3N+CH2CH2SO3 -) 간 결합세기가 타우린과 차이가 있어 나타나는 현상이다.
실험예 7: 수용해도 분석
타우린과 “변성 타우린”의 차이점을 확인하기 위하여 수용해도 분석(OECD Test Guideline 105)을 한국고분자시험연구소에 의뢰하고, 그 결과를 도 7에 나타내었다.
도 7에 나타난 바와 같이, 타우린의 수용해도는 74g/L이지만, “변성 타우린”의 수용해도는 77g/L으로 서로 차이가 있음을 확인할 수 있었다.
이상 살펴본 바와 같이, 변성 타우린의 단결정 측정에서 증명된 특정결합 내 전자분포의 집중 현상은 특정결합 주위 전자밀도의 분극에 영향을 미치고, 이것이 Raman 스펙트럼에서 차이점을 나타내는 것을 알 수 있었다. IR스펙트럼에서 일반타우린의 -NH3 + 의 흡수 피크인 1172.05 cm-1, 3043.6 cm-1 흡수대와 -SO3 - 의 흡수 피크인 1204.45 cm-1 흡수대가 변성타우린에서는 -NH3 + 가 1173.77 cm-1, 3044.57 cm-1, -SO3 - 가 1205.5 cm- 1 로 1~2cm-1 blue shift 되며, 이것은 결합길이가 짧아져 결합세기가 강해졌다는 것을 나타내고, 변성타우린 분자 내 전자 밀도가 변성 과정을 통해 증가했음을 나타낸다.
즉, 변성타우린은 일반 타우린보다 -SO3 - 의 결합 내 전자 비편재화가 더 강하고, -NH3 + 의 이온특성도 강해져 수소결합보다는 인접한 분자와 양쪽성 분자로서 이온성 결합력이 더 강하며, 이러한 이유로 녹는점도 높고, 물에 대한 용해성도 큰 것을 알 수 있었다. 따라서 변성타우린은 변성 과정을 통해 타우린 분자 내 전자밀도 분포를 변화시킴으로써, 이온 결합성이 일반타우린보다 더 강한 특성을 갖는 것을 알 수 있었다.
실시예 4. 대사성 질환 치료효과 확인
항응고 활성 평가
항혈전(항혈액 응고) 활성은 기존에 보고된 방법에 준해 평가하였으며, 혈액응고 검사 자동화기기인 Sysmex CA-1500 (Siemens Healthcare, Germany)에 PT, aPTT 및 TT 분석용 Sysmex CA-1500 전용 시약인 트롬보럴 S(Thromborel S) 및 엑틴(Actin), 트롬빈(Trombin)을 각각 장착하여, 검사기기의 자동 프로시저에 따라 PT(프로트롬빈 타임, prothrombin time), aPTT(트롬보프라스틴 타임, Activated partial thromboplastin time) 및 TT(트롬빈 타임, Thrombin time)에 대한 혈액응고 시간(sec)을 각각 측정하였다. 이 세 가지 분석을 위한 충분한 검체량은 혈장과 시험물질의 80 : 20 비율의 혼합물로서 약 400uL 정도 소요되었다.
건강한 한국인 성인남자에게서 총 23~25㎖의 혈액을 혈액응고시험 전용 vacutainer (3.2% sodium citrate)를 이용하여 채혈하고 즉시 4℃, 2500rpm으로 10분간 원심분리하여 혈장을 분리한 후, 5~6시간 이내의 신선한 상태에서 실험에 사용하였다.
본 실험에서는 검측된 PT, aPTT 및 TT의 혈액응고시간(sec)을 각각의 시험군별로 상대적인 비교를 위해 정상대조군 시험물질인 3차 증류수(정제수) 대비 혈액응고시간 지연율(%)을 통계적으로 비교분석하였다. 통계분석은 SPSS IBM version 21.0을 이용하여 시험물질 간의 항혈액응고 in vitro 활성을 Oneway ANOVA로 p<0.05 수준에서 비교 분석하였으며, 군 간의 유의성 비교는 Duncan's test로 분석하였다.
대조물질로 아스피린 37.5mg을 에탄올 1㎖에 완전히 용해시킨 후 정제수 4㎖을 추가하여 아스피린 7.5mg/㎖ 농도로 맞추어 빛을 차단한 상태에서 상온에서 즉시 사용하거나 냉장 보관하였다.
혈장 80㎕에 실시예 1 및 2에서 제조한 시료 20㎕를 혼합하여 프로트롬빈 타임(prothrombin time), 트롬보프라스틴 타임 (activated Partial Thromboplastin Time) 및 트롬빈 타임(Thrombin Time)을 측정하고, 그 결과를 도 9, 및 표 18 내지 20에 나타내었다. 대조로는 아스피린을 사용하였으며, 용매 대조구로는 시료 대신 3차 증류수(정제수)를 사용하였다.
시험물질 (g/dL) N PT aPTT TT
평균 표준 편차 평균 표준 편차 평균 표준 편차
대조구 정제수 3 0.00 0.00 0.00 0.00 0.00 0.00
대조구 Asp 7.5mg/㎖ 3 9.90 0.24 7.31 0.79 13.59 1.79
비교예 2-1 Ara 1.04 3 0.56 0.98 2.51 0.92 2.09 0.53
Ara 5.2 3 5.93 1.47 3.72 1.76 13.40 1.01
Ara 7.8 3 9.60 1.29 6.39 1.90 22.92 1.22
Xyl 1.04 3 0.85 0.85 1.23 1.35 2.68 0.02
Xyl 5.2 3 4.52 1.29 5.70 0.91 14.59 1.49
Xyl 7.8 3 7.63 1.47 6.47 2.12 24.41 1.22
비교예1-2 Tau 1.72 3 0.00 0.85 -2.41 0.81 3.58 0.92
Tau 4.3 3 0.56 0.98 -4.35 1.17 9.83 1.63
Tau 8.6 3 4.80 1.29 -4.01 0.33 21.13 0.55
비교예2-3-1 Tau 8.6+Ara 1.04 3 4.80 0.49 -4.01 0.41 22.03 0.69
Tau 8.6+Ara 5.2 3 9.04 1.29 -1.06 0.67 33.64 2.10
Tau 8.6+Ara 7.8 3 12.71 1.47 0.83 1.35 42.57 1.38
Tau 8.6+Xyl 1.04 3 4.80 0.98 -3.73 0.85 24.11 0.22
Tau 8.6+Xyl 5.2 3 8.76 0.49 0.47 1.97 36.32 1.33
Tau 8.6+Xyl 7.8 3 12.99 1.29 1.73 1.95 45.54 0.77
실시예 1-2 TauAlc 1.72 3 2.27 1.78 -1.19 1.26 4.06 0.46
TauAlc 4.3 3 2.26 1.76 -2.57 0.42 9.39 1.11
TauAlc 8.6 3 4.82 1.32 -2.73 1.69 20.64 1.25
실시예2-2-1 TauAlc 8.6+Ara 1.04 3 7.66 2.99 0.18 1.56 21.25 0.59
TauAlc 8.6+Ara 5.2 3 12.46 0.43 2.40 0.54 32.21 1.68
TauAlc 8.6+Ara 7.8 3 16.71 0.54 4.03 1.08 40.35 3.18
TauAlc 8.6+Xyl 1.04 3 6.80 0.03 -0.67 1.93 25.64 1.75
TauAlc 8.6+Xyl 5.2 3 11.05 0.05 1.11 0.30 35.33 1.43
TauAlc 8.6+Xyl 7.8 3 14.73 0.56 4.89 0.50 43.77 2.47
실시예2-2-2 TauAlc 8.6+Ara 1.04 3 4.25 0.87 -1.52 3.58 21.58 1.26
TauAlc 8.6+Ara 5.2 3 11.62 0.52 1.04 1.70 37.19 0.52
TauAlc 8.6+Ara 7.8 3 13.60 0.07 1.46 1.06 41.92 3.15
TauAlc 8.6+Xyl 1.04 3 5.95 0.88 -0.85 0.64 27.86 3.52
TauAlc 8.6+Xyl 5.2 3 10.20 0.85 1.46 1.00 36.27 1.23
TauAlc 8.6+Xyl 7.8 3 13.88 0.56 3.18 1.80 45.01 1.88
표 18에 나타난 바와 같이, 타우린(Tau)에 비하여 변성 타우린(TauAlc)은 단독 또는 당과 함께 처리시 PT 지연율이 증가하였으며, 변성 타우린(TauAlc)과 당을 함께 처리할 경우, 5탄당(자일로오스(Xyl) 또는 아라비노오스(Ara)) 함량이 5.2~7.8g으로 조성된 복합물 형태의 경우에 아스피린(Asp) 7.5mg/dL와 대등하거나 그 이상의 PT 지연율 및 TT 지연율을 갖는 것을 확인할 수 있었다.
시험물질 (g/dL) N PT aPTT *TT
평균 표준 편차 평균 표준 편차 평균 표준 편차
대조구 정제수 3 0.00 0.00 0.00 0.00 0.00 0.00
대조구 Asp 7.5mg/㎖ 3 17.51 2.72 16.28 2.04 20.96 5.10
비교예 2-1 Rib 5.2 3 8.47 2.24 9.17 1.42 23.15 8.20
Rib 10.4 3 14.97 2.59 12.46 3.16 52.50 7.63
비교예 2-2 Gluc 6.2 3 1.69 0.85 2.22 0.73 16.24 3.09
Gluc 12.4 3 2.26 1.29 2.89 0.78 27.82 7.79
비교예 1-2 Tau 4.3 3 1.69 0.85 -0.29 1.17 11.18 5.29
비교예2-3-1 Tau 4.3+Rib 2.6 3 4.80 0.49 1.65 1.03 20.57 6.88
Tau 4.3+Rib 6.5 3 10.73 0.49 4.25 0.98 34.61 6.87
비교예 2-4 Tau 4.3+Gluc 3.1 3 0.00 0.85 -1.25 1.61 19.23 3.82
Tau 4.3+Gluc 7.75 3 1.98 1.29 -1.54 1.09 30.30 4.29
실시예 1-2 TauAlc 4.3 3 0.85 0.85 -2.03 2.03 12.49 7.15
실시예2-2-1 TauAlc 4.3+ Rib 2.6 3 5.37 0.49 2.61 2.79 21.84 6.34
TauAlc 4.3+ Rib 6.5 3 11.02 0.85 3.96 0.78 35.88 6.33
실시예2-3 TauAlc 4.3+ Gluc 3.1 3 0.85 0.85 -1.06 1.18 24.16 4.40
TauAlc 4.3+ Gluc 7.75 3 3.11 2.13 -0.56 2.30 41.80 15.69
* 극단값을 나타내는 샘플 1개를 제외한 값
표 19에 나타난 바와 같이, 타우린(Tau)에 비하여 변성 타우린(TauAlc)은 단독 또는 당과 함께 처리시 TT 지연율이 증가하였으며, 변성 타우린(TauAlc)과 당을 함께 처리할 경우, 당(리보오스(Rib) 또는 글루코오스(Gluc)) 함량이 2.6~7.75g으로 조성된 복합물 형태의 경우에 아스피린(Asp) 7.5mg/dL와 대등하거나 그 이상의 TT 지연율을 갖는 것을 확인할 수 있었다.
시험물질 (g/dL) N PT aPTT TT
평균 표준 편차 평균 표준 편차 평균 표준 편차
대조구 정제수 3 0.00 0.00 0.00 0.00 0.00 0.00
대조구 Asp 7.5mg/㎖ 3 26.02 1.41 29.82 1.78 23.95 2.18
비교예 2-2 Mann 3.1 3 2.71 0.94 0.65 3.67 11.67 1.56
Mann 6.2 3 5.96 3.29 1.24 4.22 22.74 4.59
Mann 12.4 3 13.55 2.05 7.98 3.07 47.87 4.27
Fruc 6.2 3 0.54 0.94 -0.20 3.04 13.19 1.43
Fruc 12.4 3 0.54 0.94 0.58 4.29 30.07 1.65
비교예 1-2 Tau 4.3 3 -3.79 2.35 -5.50 3.82 9.51 2.10
비교예 2-4 Tau 4.3+ Mann 3.1 3 -1.08 2.35 -3.14 3.83 17.48 0.78
Tau 4.3+ Mann 7.75 3 6.23 1.69 -0.02 3.64 31.60 2.08
Tau 4.3+ Fruc 7.75 3 0.00 0.81 -3.49 2.86 30.39 2.81
실시예 1-2 TauAlc 4.3 3 -3.79 2.35 -5.45 2.18 10.12 0.78
실시예2-3 TauAlc 4.3+ Mann 3.1 3 0.54 1.88 -2.65 3.33 18.74 3.05
TauAlc 4.3+ Mann 7.75 2* 5.69 0.00 1.03 0.37 34.59 2.63
TauAlc 4.3+ Fruc 7.75 3 -1.36 0.47 -3.50 2.58 29.78 2.97
* 극단값을 나타내는 샘플 1개를 제외한 샘플
표 20에 나타난 바와 같이, 타우린(Tau)에 비하여 변성 타우린(TauAlc)은 단독 또는 당과 함께 처리시 TT 지연율이 증가하였으며, 변성 타우린(TauAlc)과 당을 함께 처리할 경우, 당(만노오스(Mann) 또는 프락토오스(Fruc)) 함량이 7.75g으로 조성된 복합물 형태의 경우에 아스피린(Asp) 7.5mg/dL 이상의 TT 지연율을 갖는 것을 확인할 수 있었다.
항당뇨 및 항비만 효능 실험
실험방법
8주령의 수컷 마우스(C57BL/6)(입수처: 코아텍)를 대상으로 대표적인 당뇨병 진단 검사방법인 GTT(Glucose Tolerance Test) 방법을 사용하여 항당뇨 효능 후보물질에 대해 평가하였다.
마우스의 사육 환경 조건은 22±2℃, 상대 습도 55~60%로 설정하였고, 하루에 12시간 점등, 12시간 소등하였다. 각 그룹 당 5마리씩 배정되었고, 수컷 마우스의 경우 영역다툼이 강하여 한 어미에게서 나온 것을 한 그룹으로 묶어 무작위로 나누어 진행하였다.
사료는 10주간 고지방식이(60% of calories from fat; research diet inc., New Brunswick, NJ)와 물을 제한 없이 공급하였다. 이때 물에는 실시예 1-2(3), 2-1, 2-4-1, 2-4-2 및 2-5에서 제조된 시료를 섞어서 제한 없이 공급하였다. 이때 양성 대조구로는 메트포르민(M-072, Sigma) (250mg/kg)을 사용하였고, 대조구로는 비교예 1-1, 2-3-2, 2-5-1, 2-5-2 및 2-6에서 제조된 시료를 사용하였다.
참고로 실시예 2-4-1, 2-4-2 및 2-5에서 제조된 시료는 성인 남자 (60kg)가 3일 복용하는 양으로 설정하고 이를 마우스의 복용 용량 (12배/kg, 미국 NIH guidance 자료 참고함)으로 변환하여 동물용 시료를 제조하였다. 즉, 성인 남자 (60kg)가 3일 복용하는 양은 180일치/kg이고, 이는 마우스 15일치/kg이다. 따라서, 마우스의 평균무게는 약 20g이므로 750일치/마우스(20g)에 해당한다. 따라서, 마우스 1마리는 제조된 시료의 1/750을 하루에 복용하도록 하였다.
또한, 실시예 1-2(3) 및 2-1에서 제조된 시료는 성인 남자 (60kg)가 2일 복용하는 양으로 설정하고 이를 마우스의 복용 용량 (12배/kg, 미국 NIH guidance 자료 참고함)으로 변환하여 동물용 시료를 제조하였다. 즉, 성인 남자 (60kg)가 2일 복용하는 양은 120일치/kg이고 이는 마우스 10일치/kg이다. 따라서, 마우스의 평균무게는 약 20g이므로 500일치/마우스(20g)에 해당한다. 따라서, 마우스 1마리는 제조된 시료의 1/500을 하루에 복용하도록 하였다.
8주간 매주 식이 섭취량과 체중증가를 확인하였다. 체중과 식이량은 처음 약물 투여 직전에 측정하였고, 이후에 일주일 간격으로 체중과 식이량을 측정하였다.
고지방식이를 실시한 8주째에 glucose tolerance test(GTT)를 수행하였다. 실험 전 8시간 동안 마우스를 절식시켰으며, 그 후 꼬리정맥에서 혈액을 채취하여 초기혈당을 혈당측정기(AUTO-CHEK, 다이아텍코리아)로 측정한 다음, 마우스의 복강에 글루코오스를 1g/kg의 농도로 투여 후, 30분, 60분, 90분, 120분에 채혈하여 혈당을 측정하였다 (각 그룹에 평균 5마리씩 구성됨).
혈중 생화학 검사에서는 인슐린(AKRIN-011T, Shibayagi, 일본), 글루코오스(AM202, 아산제약, 한국), 트리글리세라이드(AM157, 아산제약), 전체 콜레스테롤(total cholesterol, AM202, 아산제약), AST 및 ALT(AM101, 아산제약)를 효소 분석 키트(enzymatic assay kits)를 이용하여 분석 하였다.
고지방식이 10주째에 혈청을 얻기 위해 마우스를 경추탈골로 희생시켰다. 조직 검사를 위하여 간, 백색지방조직(WAT), 갈색지방조직(BAT), 신장을 포르말린(50-00-0, Junsei, 일본)으로 고정하고, 그 외 남은 장기는 -70℃에 보관하였다. 심장에서 채취한 혈액은 응고시켜 혈청을 얻은 후, -70℃에 보관하였다.
조직학적 검사를 위하여 주요 장기와 지방을 4% 중성 완충 포르말린에 고정한 후 파라핀 블록에 심어서 5㎛로 박절하여 헤마톡실린(MHS-16, Sigma-Aldrich, 미국)과 에오신(HT110116, Sigma-Aldrich) 염색을 하였다. 조직 샘플 제작 후 글리세린 젤 마운팅 미디어(SP15-100, Fisher Scientific, 미국)로 마운팅 하였고, 커버 글라스를 덮어 현미경(IX71, OLYMPUS, 일본)으로 관찰하였으며 현미경에 내장되어 있는 디지털 카메라로 조직을 촬영하였다.
한편, 실험의 분석 결과는 mean ± S.E.M.으로 표시하였으며, 각 실험군 간의 유의성은 Student T-TEST를 이용하여 통계처리 후 *P<0.05, 수준에서 유의성을 검정하였다.
측정결과
(1) 체중 증가량 측정 결과
체중, 체중증가량 및 체중 증가량 T-TEST 결과를 도 10 내지 도 15 및 하기 표 21 내지 38에 나타내었다.
체중(g)
구분 투여전 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 17.80 19.36 21.48 22.44 23.56 24.32 24.78 25.74 26.18
편차 0.17 0.35 0.54 0.56 0.54 0.57 0.66 0.78 0.81
대조구 고지방식이(HFD) 평균 20.68 23.58 24.87 26.50 28.16 30.12 31.85 33.04 35.96
편차 0.29 0.54 0.53 0.57 0.62 0.68 0.52 0.47 0.42
실시예 1-2(3) DT15  (TauAlc) 평균 17.65 20.30 22.05 23.93 25.18 26.03 27.90 28.75 29.23
편차 0.16 0.17 0.27 0.26 0.27 0.22 0.41 0.38 0.37
비교예 1-1 DT19  (Tau) 평균 19.26 21.46 23.62 24.60 25.78 27.38 27.20 28.06 28.78
편차 0.28 0.35 0.59 0.66 0.63 0.77 0.84 0.97 1.10
대조구 Metformin(MET)  평균 19.30 21.00 22.78 23.84 25.18 25.72 26.34 27.52 28.20
편차 0.62 0.72 0.99 0.97 1.16 1.04 1.07 1.24 1.37
체중 증가량(g)
구분 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 1.56 3.68 4.64 5.76 6.52 6.98 7.94 8.38
편차 0.24 0.45 0.48 0.44 0.51 0.59 0.68 0.73
대조구 고지방식이(HFD) 평균 2.90 4.19 5.82 7.48 9.44 11.17 12.36 15.28
편차 0.52 0.50 0.51 0.49 0.52 0.36 0.35 0.29
실시예 1-2(3) DT15  (TauAlc) 평균 2.65 4.40 6.28 7.53 8.38 10.25 11.10 11.58
편차 0.25 0.28 0.34 0.40 0.36 0.52 0.46 0.40
비교예 1-1 DT19  (Tau) 평균 2.20 4.36 5.34 6.52 8.12 7.94 8.80 9.52
편차 0.10 0.73 0.81 0.74 0.91 0.91 1.06 1.12
대조구 Metformin(MET)  평균 1.70 3.48 4.54 5.88 6.42 7.04 8.22 8.90
편차 0.30 1.10 0.99 1.19 1.11 1.14 1.29 1.44
그룹 1 주 2 주 3 주 4 주 5 주 6 주 7 주 8 주
HFD vs DT15 0.7736 0.8052 0.6050 0.9579 0.2443 0.1925 0.0656 0.0000
HFD vs DT19 0.3663 0.8499 0.6119 0.2908 0.1971 0.0016 0.0013 0.0000
DT15 vs DT19 0.1145 0.9645 0.3648 0.3044 0.8198 0.0801 0.1116 0.1623
상기 표 21 내지 23으로부터, 변성 타우린(TauAlc)을 투여한 DT15와 타우린(Tau)을 투여한 DT19는 모두 고지방식이(HFD) 투여 후 8주째 고지방식이(HFD) 단독과 비교하여 유의적인 체중 증가 억제 효과를 나타내는 것을 확인할 수 있었다.
체중(g)
구분 투여전 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 17.80 19.36 21.48 22.44 23.56 24.32 24.78 25.74 26.18
편차 0.17 0.35 0.54 0.56 0.54 0.57 0.66 0.78 0.81
대조구 고지방식이(HFD) 평균 20.68 23.58 24.87 26.50 28.16 30.12 31.85 33.04 35.96
편차 0.29 0.54 0.53 0.57 0.62 0.68 0.52 0.47 0.42
실시예 2-1 DT16  (TauAlc 8.6+Ara 2.5)  평균 19.88 22.16 23.94 25.02 26.44 27.34 27.92 28.50 30.62
편차 0.32 0.32 0.43 0.53 0.75 0.71 0.79 0.74 0.84
비교예2-3-2 DT 18(Tau 8.6+Ara 2.5)  평균 20.20 22.29 23.47 25.17 26.70 27.67 29.03 30.77 32.03
편차 0.50 0.55 0.58 0.97 1.30 1.58 1.96 2.11 2.72
대조구 Metformin(MET)  평균 19.30 21.00 22.78 23.84 25.18 25.72 26.34 27.52 28.20
편차 0.62 0.72 0.99 0.97 1.16 1.04 1.07 1.24 1.37
체중 증가량(g)
구분 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 1.56 3.68 4.64 5.76 6.52 6.98 7.94 8.38
편차 0.24 0.45 0.48 0.44 0.51 0.59 0.68 0.73
대조구 고지방식이(HFD) 평균 2.90 4.19 5.82 7.48 9.44 11.17 12.36 15.28
편차 0.52 0.50 0.51 0.49 0.52 0.36 0.35 0.29
실시예 2-1 DT16  (TauAlc 8.6+Ara 2.5)  평균 2.28 4.06 5.14 6.56 7.46 8.04 8.62 10.74
편차 0.29 0.71 0.75 1.00 1.00 1.05 1.02 1.15
비교예2-3-2 DT 18(Tau 8.6+Ara 2.5)  평균 2.09 3.27 4.97 6.50 7.47 8.83 10.57 11.83
편차 0.16 0.91 1.42 1.77 2.02 2.40 2.54 3.15
대조구  Metformin(MET)  평균 1.70 3.48 4.54 5.88 6.42 7.04 8.22 8.90
편차 0.30 1.10 0.99 1.19 1.11 1.14 1.29 1.44
그룹 1 주 2 주 3 주 4 주 5 주 6 주 7 주 8 주
HFD vs DT16 0.4351 0.8839 0.4636 0.3673 0.0722 0.0036 0.0008 0.0002
HFD vs DT18 0.4222 0.3970 0.4895 0.4556 0.1827 0.1121 0.2258 0.0582
DT16 vs DT18 0.6482 0.5201 0.9100 0.9753 0.9974 0.7355 0.4307 0.7065
상기 표 24 내지 26으로부터, 변성 타우린(TauAlc) 및 아라비노오스(Ara)를 투여한 DT16은 고지방식이(HFD) 투여 후 8주째 고지방식이(HFD) 단독과 비교하여 유의적인 체중 증가 억제 효과를 나타냈으나, 타우린(Tau) 및 아라비노오스(Ara)를 투여한 DT18은 유의적인 체중 증가 억제 효과를 나타내지 못한다는 것을 확인할 수 있었다.
DT16 투여군과 DT18 투여군 사이에는 체중 증가 억제에 있어서 통계적으로 유의적인 차이는 없으나, HFD와의 차이로 볼 때 DT16이 DT18보다 체중 조절효과가 크다고 판단되었다.
체중(g)
구분 투여전 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 17.80 19.36 21.48 22.44 23.56 24.32 24.78 25.74 26.18
편차 0.17 0.35 0.54 0.56 0.54 0.57 0.66 0.78 0.81
대조구 고지방식이(HFD) 평균 20.68 23.58 24.87 26.50 28.16 30.12 31.85 33.04 35.96
편차 0.29 0.54 0.53 0.57 0.62 0.68 0.52 0.47 0.42
실시예 2-1 DT20  (TauAlc 8.6+Xyl 3.5) 평균 19.56 22.76 24.02 25.38 27.38 28.40 28.86 30.28 32.28
편차 0.49 0.67 0.48 0.76 0.77 0.88 1.05 0.94 0.96
비교예2-3-2 DT 21(Tau 8.6+Xyl 3.5)  평균 19.64 21.64 24.22 26.16 27.28 27.22 29.04 30.02 31.74
편차 0.15 0.15 0.10 0.32 0.27 0.27 0.16 0.34 0.81
대조구 Metformin(MET)   평균 19.30 21.00 22.78 23.84 25.18 25.72 26.34 27.52 28.20
편차 0.62 0.72 0.99 0.97 1.16 1.04 1.07 1.24 1.37
체중 증가량(g)
구분 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 1.56 3.68 4.64 5.76 6.52 6.98 7.94 8.38
편차 0.24 0.45 0.48 0.44 0.51 0.59 0.68 0.73
대조구 고지방식이(HFD) 평균 2.90 4.19 5.82 7.48 9.44 11.17 12.36 15.28
편차 0.52 0.50 0.51 0.49 0.52 0.36 0.35 0.29
실시예 2-1 DT20  (TauAlc 8.6+Xyl 3.5) 평균 3.20 4.46 5.82 7.82 8.84 9.30 10.72 12.72
편차 0.36 0.72 0.56 1.11 0.85 1.01 1.02 1.13
비교예2-3-2 DT 21(Tau 8.6+Xyl 3.5)  평균 2.00 4.58 6.52 7.64 7.58 9.40 10.38 12.10
편차 0.14 0.14 0.41 0.41 0.32 0.27 0.41 0.95
대조구   Metformin(MET)   평균 1.70 3.48 4.54 5.88 6.42 7.04 8.22 8.90
편차 0.30 1.10 0.99 1.19 1.11 1.14 1.29 1.44
그룹 1 주 2 주 3 주 4 주 5 주 6 주 7 주 8 주
HFD vs DT20 0.7082 0.7623 1.0000 0.7485 0.5373 0.0498 0.0774 0.0118
HFD vs DT21 0.2521 0.6032 0.3923 0.8377 0.0330 0.0072 0.0042 0.0012
DT20 vs DT21 0.0154 0.8733 0.3409 0.8829 0.2028 0.9263 0.7659 0.6847
상기 표 27 내지 29로부터, 변성 타우린(TauAlc) 및 자일로오스(Ara)를 투여한 DT20과 타우린(Tau) 및 자일로오스(Ara)를 투여한 DT21은 고지방식이(HFD) 투여 후 8주째 고지방식이(HFD) 단독과 비교하여 유의적인 체중 증가 억제 효과를 나타내는 것을 확인할 수 있었다.
체중(g)
구분 투여전 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 22.894 23.692 24.138 24.285 24.507 24.416 24.720 24.782 25.684
편차 0.599 0.363 0.442 0.283 0.183 0.221 0.321 0.362 0.170
대조구 고지방식이(HFD) 평균 22.322 24.642 26.136 27.642 29.472 31.176 32.494 34.478 38.764
편차 0.666 0.741 0.754 0.775 0.945 0.938 0.803 1.344 1.468
실시예2-4-1 DT7   (TauAlc 8.6+Cat 3+Bet 4) 평균 20.834 22.456 22.744 24.094 25.884 27.388 29.236 29.638 31.662
편차 0.660 0.542 0.519 0.545 0.701 0.934 1.114 1.383 1.727
비교예2-5-1 DT11  (Tau 8.6+Cat 3+Bet 4) 평균 20.420 24.418 25.360 27.388 29.178 32.794 35.460 36.012 38.370
편차 0.353 0.498 0.608 0.630 0.853 0.843 1.101 0.950 0.771
대조구  Metformin(MET)   평균 21.105 23.550 23.608 25.125 25.705 27.198 28.355 27.368 29.343
편차 0.568 0.727 0.794 0.829 1.034 1.022 1.101 1.319 1.516
체중 증가량(g)
구분 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 0.798 1.244 1.391 1.613 1.522 1.826 1.888 2.790
편차 0.444 0.473 0.475 0.448 0.507 0.504 0.499 0.517
대조구 고지방식이(HFD) 평균 2.320 3.814 5.320 7.150 8.854 10.172 12.156 16.442
편차 0.351 0.518 0.458 0.601 0.899 0.737 1.438 1.296
실시예2-4-1 DT7   (TauAlc 8.6+Cat 3+Bet 4) 평균 1.622 1.910 3.260 5.050 6.554 8.402 8.804 10.828
편차 0.251 0.200 0.259 0.269 0.334 0.486 0.733 1.120
비교예2-5-1 DT11  (Tau 8.6+Cat 3+Bet 4) 평균 3.998 4.940 6.968 8.758 12.374 15.040 15.592 17.950
편차 0.605 0.789 0.869 1.066 1.017 1.162 1.013 0.583
대조구  Metformin(MET)   평균 2.445 2.503 4.020 4.600 6.093 7.250 6.263 8.238
편차 0.442 0.383 0.637 0.910 0.795 1.090 0.944 1.090
그룹 1 주 2 주 3 주 4 주 5 주 6 주 7 주 8 주
HFD vs DT7 0.1444 0.0090 0.0045 0.0128 0.0434 0.0799 0.0715 0.0112
HFD vs DT11 0.0433 0.2672 0.1320 0.2253 0.0320 0.0077 0.0865 0.3197
DT7 vs DT11 0.0067 0.0059 0.0035 0.0097 0.0006 0.0008 0.0006 0.0005
상기 표 30 내지 32로부터, 변성 타우린(TauAlc), 카테킨(Cat) 및 베타인(Bet)을 투여한 DT7은 고지방식이(HFD) 투여 후 8주째 고지방식이(HFD) 단독과 비교하여 유의적인 체중 증가 억제 효과를 나타냈으나, 타우린(Tau), 카테킨(Cat) 및 베타인(Bet)를 투여한 DT11은 유의적인 체중 증가 억제 효과를 나타내지 못한다는 것을 확인할 수 있었다. 또한, DT7 투여군은 DT11 투여군보다 체중 조절효과가 유의적으로 크다고 판단되었다.
체중(g)
구분 투여전 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 22.894 23.692 24.138 24.285 24.507 24.416 24.720 24.782 25.684
편차 0.599 0.363 0.442 0.283 0.183 0.221 0.321 0.362 0.170
대조구 고지방식이(HFD) 평균 22.322 24.642 26.136 27.642 29.472 31.176 32.494 34.478 38.764
편차 0.666 0.741 0.754 0.775 0.945 0.938 0.803 1.344 1.468
실시예2-4-2 DT10 (TauAlc 8.6+EGCG 1.5+Bet 4) 평균 21.956 25.356 25.458 25.998 27.062 29.836 31.732 30.562 32.740
편차 0.483 0.640 0.524 0.740 0.666 0.811 0.946 0.975 1.135
비교예2-5-2 DT14  (Tau 8.6+EGCG 1.5+Bet 4) 평균 21.440 24.750 26.114 27.556 29.456 31.968 34.020 32.874 37.470
편차 0.638 0.998 1.142 1.400 1.654 2.005 2.181 2.012 2.186
대조구 Metformin(MET)  평균 21.105 23.550 23.608 25.125 25.705 27.198 28.355 27.368 29.343
편차 0.568 0.727 0.794 0.829 1.034 1.022 1.101 1.319 1.516
체중 증가량(g)
구분 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD)  평균 0.798 1.244 1.391 1.613 1.522 1.826 1.888 2.790
편차 0.444 0.473 0.475 0.448 0.507 0.504 0.499 0.517
대조구 고지방식이(HFD) 평균 2.320 3.814 5.320 7.150 8.854 10.172 12.156 16.442
편차 0.351 0.518 0.458 0.601 0.899 0.737 1.438 1.296
실시예2-4-2 DT10 (TauAlc 8.6+EGCG 1.5+Bet 4) 평균 3.400 3.502 4.042 5.106 7.880 9.776 8.606 10.784
편차 0.274 0.253 0.330 0.441 0.683 0.929 1.126 1.204
비교예2-5-2 DT14  (Tau 8.6+EGCG 1.5+Bet 4) 평균 3.310 4.674 6.116 8.016 10.528 12.580 11.434 16.030
편차 0.407 0.580 0.850 1.077 1.412 1.596 1.414 1.577
대조구 Metformin(MET)  평균 2.445 2.503 4.020 4.600 6.093 7.250 6.263 8.238
편차 0.442 0.383 0.637 0.910 0.795 1.090 0.944 1.090
그룹 1 주 2 주 3 주 4 주 5 주 6 주 7 주 8 주
HFD vs DT10 0.0416 0.6033 0.0536 0.0254 0.4134 0.7471 0.0879 0.0126
HFD vs DT14 0.1029 0.3012 0.4338 0.5024 0.3467 0.2079 0.7296 0.8451
DT10 vs DT14 0.8592 0.1013 0.0526 0.0369 0.1299 0.1673 0.1564 0.0295
상기 표 33 내지 35로부터, 변성 타우린(TauAlc), 에피갈로카테킨 갈레이트(EGCG) 및 베타인(Bet)을 투여한 DT10은 고지방식이(HFD) 투여 후 8주째 고지방식이(HFD) 단독과 비교하여 유의적인 체중 증가 억제 효과를 나타냈으나, 타우린(Tau), 에피갈로카테킨 갈레이트(EGCG) 및 베타인(Bet)를 투여한 DT14는 유의적인 체중 증가 억제 효과를 나타내지 못한다는 것을 확인할 수 있었다. 또한, DT10 투여군은 DT14 투여군보다 체중 조절효과가 유의적으로 크다고 판단되었다.
체중(g)
구분 투여전 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD) 평균 25.706 25.614 27.006 26.814 28.744 29.442 29.258 29.476 27.442
편차 0.940 0.698 0.939 0.789 0.843 0.828 1.037 0.813 0.838
대조구 고지방식이(HFD) 평균 24.920 27.448 29.878 34.452 36.850 38.748 40.524 43.686 42.344
편차 0.547 0.453 0.635 0.725 0.523 0.548 0.941 1.164 0.591
실시예2-5 DT4 (TauAlc 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 25.422 27.170 30.180 32.488 33.968 35.218 36.214 38.048 36.188
편차 0.237 0.565 0.800 0.744 0.642 0.781 1.038 1.053 1.044
비교예2-6 DT6  (Tau 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 23.088 26.216 29.082 32.910 32.922 38.018 39.414 40.820 40.618
편차 0.690 1.032 1.372 2.118 1.931 2.000 1.890 2.036 1.784
대조구 Metformin(MET)  평균 23.938 25.094 26.344 27.430 27.708 28.572 28.772 28.468 27.608
편차 0.612 0.551 0.792 0.710 0.915 0.853 0.784 0.836 0.979
체중 증가량(g)
구분 1주 2주 3주 4주 5주 6주 7주 8주
대조구 정상식이(RD) 평균 -0.092 1.300 1.108 3.038 3.736 3.552 3.770 1.736
편차 0.325 0.259 0.270 0.414 0.339 0.389 0.333 0.369
대조구 고지방식이(HFD) 평균 2.528 4.958 9.532 11.930 13.828 15.604 18.766 17.424
편차 0.326 0.461 0.473 0.440 0.960 1.156 1.228 0.689
실시예2-5 DT4 (TauAlc 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 1.748 4.758 7.066 8.546 9.796 10.792 12.626 10.766
편차 0.372 0.625 0.580 0.465 0.589 0.835 0.846 0.849
비교예2-6 DT6  (Tau 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 3.128 5.994 9.822 9.834 14.930 16.326 17.732 17.530
편차 0.619 0.933 1.724 1.487 1.526 1.382 1.553 1.357
대조구 Metformin(MET)  평균 1.156 2.406 3.492 3.770 4.634 4.834 4.530 3.670
편차 0.180 0.185 0.223 0.350 0.398 0.398 0.936 0.463
그룹 1 주 2 주 3 주 4 주 5 주 6 주 7 주 8 주
HFD vs DT4 0.1538 0.8033 0.0109 0.0007 0.0072 0.0097 0.0034 0.0003
HFD vs DT6 0.4161 0.3485 0.8751 0.2135 0.5580 0.6992 0.6156 0.9462
DT4 vs DT6 0.0924 0.3030 0.1682 0.4324 0.0138 0.0090 0.0203 0.0029
상기 표 36 내지 38로부터, 변성 타우린(TauAlc), 에피갈로카테킨 갈레이트(EGCG), 베타인(Bet) 및 자일로오스(Xyl)을 투여한 DT4는 고지방식이(HFD) 투여 후 8주째 고지방식이(HFD) 단독과 비교하여 유의적인 체중 증가 억제 효과를 나타냈으나, 타우린(Tau), 에피갈로카테킨 갈레이트(EGCG), 베타인(Bet) 및 자일로오스(Xyl)를 투여한 DT6은 유의적인 체중 증가 억제 효과를 나타내지 못한다는 것을 확인할 수 있었다. 또한, DT4 투여군은 DT6 투여군보다 체중 조절효과가 유의적으로 크다고 판단되었다.
(2) 혈당검사(GTT: Glucose Tolerance Test)
GTT 측정결과 및 이에 대한 T-TEST 결과를 도 16 내지 19 및 하기 표 39 내지 46에 나타내었다.
구분  혈당 (mg/dl) 0분 30분 60분 90분 120분
대조구 정상식이(RD)  평균 123.60 328.60 324.00 235.60 151.20
편차 6.44 12.80 30.00 16.84 6.57
대조구 고지방식이(HFD) 평균 188.70 479.70 461.60 458.40 250.10
편차 10.67 26.87 39.06 33.42 27.98
실시예 1-2(3) DT15  (TauAlc) 평균 121.25 335.25 295.25 193.75 126.25
편차 3.73 3.77 7.73 11.43 0.56
비교예 1-1 DT19  (Tau) 평균 111.80 298.00 295.60 189.40 119.00
편차 11.08 26.76 11.52 9.75 6.47
대조구 Metformin(MET)  평균 144.20 386.40 301.40 194.40 135.20
편차 15.92 17.73 24.43 21.21 17.23
그룹 투여전 30분후 60분후 90분후 120분후
HFD vs DT15 0.0023 0.0062 0.0224 0.0004 0.0182
HFD vs DT19 0.0006 0.0010 0.0119 0.0001 0.0065
DT15 vs DT19 0.4936 0.2625 0.9822 0.7904 0.3569
상기 표 39 및 40으로부터, 변성 타우린(TauAlc)를 투여한 DT15와 타우린(Tau)을 투여한 DT19의 공복 시 혈당은 고지방식이(HFD)만 투여한 마우스와 비교하여 모두 낮은 수준을 유지하고 있으며, 이는 정상 마우스의 혈당 수준과 유사한 수준임을 확인할 수 있었다.
GTT 결과, DT15와 DT19를 투여한 그룹의 마우스 모두 HFD 단독 투여군과 비교하여 유의적으로 혈당 조절능력이 우수하였고, DT15와 DT19 사이에는 유사한 정도로 혈당 조절 능력이 있음을 알 수 있었다.
구분  혈당 (mg/dl) 0분 30분 60분 90분 120분
대조구 정상식이(RD)  평균 123.60 328.60 324.00 235.60 151.20
편차 6.44 12.80 30.00 16.84 6.57
대조구 고지방식이(HFD) 평균 188.70 479.70 461.60 458.40 250.10
편차 10.67 26.87 39.06 33.42 27.98
실시예 2-1 DT16  (TauAlc 8.6+Ara 2.5)  평균 117.00 289.20 302.20 196.20 121.40
편차 4.86 20.15 35.60 31.33 14.44
비교예2-3-2 DT 18(Tau 8.6+Ara 2.5)  평균 169.33 367.00 343.00 236.33 172.67
편차 9.21 22.27 32.94 28.55 23.62
대조구  Metformin(MET)  평균 144.20 386.40 301.40 194.40 135.20
편차 15.92 17.73 24.43 21.21 17.23
그룹 투여전 30분후 60분후 90분후 120분후
HFD vs DT16 0.0005 0.0005 0.0219 0.0003 0.0084
HFD vs DT18 0.3740 0.0549 0.1488 0.0060 0.1848
DT16 vs DT18 0.0029 0.0626 0.4990 0.4502 0.1322
상기 표 41 및 42로부터, 변성 타우린(TauAlc) 및 아라비노오스(Ara)를 투여한 DT16의 공복 시 혈당은 고지방식이(HFD)만 투여한 마우스와 비교하여 유의적으로 낮은 수준을 유지하고 있으며, 이는 정상마우스의 혈당 수준과 같은 수준임을 확인할 수 있었다.
GTT 결과, DT16을 투여한 그룹의 마우스는 HFD 단독 투여군과 비교하여 유의적으로 혈당 조절능력이 우수하여 정상 마우스의 혈당 수준을 유지하고 있었으며, DT16과 DT18 사이에는 DT16 투여군이 DT18 투여군에 비해 효과가 우수하고 공복 시 혈당이 유의적으로 낮은 수준임을 확인할 수 있었다.
 구분 혈당 (mg/dl) 0분 30분 60분 90분 120분
대조구 정상식이(RD)  평균 123.60 328.60 324.00 235.60 151.20
편차 6.44 12.80 30.00 16.84 6.57
대조구 고지방식이(HFD) 평균 188.70 479.70 461.60 458.40 250.10
편차 10.67 26.87 39.06 33.42 27.98
실시예 2-1 DT20  (TauAlc 8.6+Xyl 3.5) 평균 115.00 306.40 330.40 240.40 142.80
편차 7.00 33.04 35.07 32.68 15.94
비교예2-3-2 DT 21(Tau 8.6+Xyl 3.5)  평균 134.20 340.60 331.40 240.40 155.40
편차 13.04 27.41 29.45 35.59 19.60
대조구   Metformin(MET)   평균 144.20 386.40 301.40 194.40 135.20
편차 15.92 17.73 24.43 21.21 17.23
그룹 투여전 30분후 60분후 90분후 120분후
HFD vs DT20 0.0005 0.0019 0.0513 0.0012 0.0233
HFD vs DT21 0.0089 0.0065 0.0483 0.0014 0.0440
DT20 vs DT21 0.2306 0.4486 0.9831 1.0000 0.6314
상기 표 43 및 44로부터, 변성 타우린(TauAlc) 및 자일로오스(Ara)를 투여한 DT20과 타우린(Tau) 및 자일로오스(Ara)를 투여한 DT21의 공복 시 혈당은 고지방식이(HFD)만 투여한 마우스와 비교하여 모두 낮은 수준을 유지하고 있으며, 이는 정상 마우스의 혈당 수준과 유사한 수준임을 확인할 수 있었다.
GTT 결과, DT20과 DT21을 투여한 그룹의 마우스 모두 HFD 단독 투여군과 비교하여 유의적으로 혈당 조절능력이 우수하였고, DT20과 DT21 사이에는 유의적인 차이는 없으나 DT20 투여군이 DT21 투여군 보다 우수한 효과를 나타낸다는 것을 알 수 있었다.
 구분 혈당 (mg/dl) 0분 30분 60분 90분 120분
대조구 정상식이(RD) 평균 120.60 392.80 296.00 203.20 158.60
편차 2.16 58.61 40.72 27.48 17.28
대조구 고지방식이(HFD) 평균 210.80 528.20 527.40 448.80 342.20
편차 13.79 23.68 17.28 37.78 44.72
실시예2-5 DT4 (TauAlc 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 121.20 418.75 347.25 265.25 182.75
편차 7.81 25.89 10.69 25.07 9.81
비교예2-6 DT6  (Tau 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 199.60 505.80 471.40 417.40 318.40
편차 13.55 33.81 65.31 75.23 61.39
대조구 Metformin(MET)  평균 104.40 438.40 296.40 178.00 146.20
편차 3.72 8.68 23.15 14.35 3.02
그룹 투여전 30분 후 60분 후 90분 후 120분 후
HFD vs DT4 0.0005 0.0211 0.0001 0.0075 0.0176
HFD vs DT6 0.5783 0.6021 0.4312 0.7189 0.7620
DT4 vs DT6 0.0010 0.1003 0.1409 0.1303 0.0949
상기 표 45 및 46으로부터, 변성 타우린(TauAlc), 에피갈로카테킨 갈레이트(EGCG), 베타인(Bet) 및 자일로오스(Xyl)을 투여한 DT4의 공복 시 혈당은 고지방식이(HFD)만 투여한 마우스와 비교하여 유의적으로 낮은 수준을 유지하고 있으며, 이는 정상 마우스의 혈당 수준과 유사한 수준임을 확인할 수 있었다.
GTT 결과, DT4를 투여한 그룹의 마우스는 HFD 단독 투여군과 비교하여 유의적으로 혈당 조절능력이 우수하였으나, DT6을 투여한 그룹의 마우스는 혈당 조절능력이 낮다는 것을 알 수 있었다.
(3) 혈액 생화학 검사 결과
중성지방, AST 및 ALT 검사결과와 이에 대한 T-test 결과를 하기 표 47 내지 56에 나타내었다.
그룹 중성지방(㎎/㎗) AST(IU/L) ALT(IU/L)
대조구 정상식이(RD) 평균 76.02 91.34 10.85
표준편차 14.42 7.23 6.20
대조구 고지방식이(HFD) 평균 148.78 129.70 24.71
표준편차 32.47 6.48 3.75
대조구 Metformin(MET) 평균 62.99 110.32 22.80
표준편차 10.70 16.00 7.16
실시예 1-2(3) DT15  (TauAlc) 평균 53.62 98.96 14.02
표준편차 7.22 6.11 3.82
비교예 1-1 DT19  (Tau) 평균 116.20 118.63 25.47
표준편차 13.34 12.02 8.60
그룹 중성지방 AST ALT
HFD vs DT15 0.0383 0.0118 0.0890
HFD vs DT19 0.3805 0.4408 0.9372
DT15 vs DT19 0.0066 0.2211 0.3034
상기 표 47 및 48에 나타난 바와 같이, DT15(변성 타우린)는 정상 마우스와 유사하거나 더 우수한 수준의 중성지방, AST 및 ALT 수치를 보이고 있으며, DT19(타우린) 보다 중성지방 수치가 유의적으로 낮고, AST 및 ALT 수치도 낮게 나타났다.
그룹 중성지방(㎎/㎗) AST(IU/L) ALT(IU/L)
대조구 정상식이(RD) 평균 76.02 91.34 10.85
표준편차 14.42 7.23 6.20
대조구 고지방식이(HFD) 평균 148.78 129.70 24.71
표준편차 32.47 6.48 3.75
대조구 Metformin(MET) 평균 62.99 110.32 22.80
표준편차 10.70 16.00 7.16
실시예 2-1 DT16  (TauAlc 8.6+Ara 2.5)  평균 54.30 96.48 10.68
표준편차 8.66 3.52 4.15
비교예2-3-2 DT 18(Tau 8.6+Ara 2.5)  평균 66.97 94.51 7.02
표준편차 18.17 3.02 7.09
그룹 중성지방 AST ALT
HFD vs DT16 0.0402 0.0042 0.0407
HFD vs DT18 0.1208 0.0076 0.0492
DT16 vs DT18 0.5202 0.7015 0.6546
상기 표 49 및 50에 나타난 바와 같이, DT16(변성 타우린+아라비노오스) 및 DT18(타우린 +아라비노오스)은 정상식이(RD)와 유사한 수준의 AST 및 ALT 수치를 보이고 있으며, 고지방식이(HFD)의 AST 및 ALT보다 유의적으로 작은 값을 나타내었다. 또한, DT16은 정상식이(RD) 보다 낮은 수준의 중성지방 수치를 나타내었다.
그룹 중성지방(㎎/㎗) AST(IU/L) ALT(IU/L)
대조구 정상식이(RD) 평균 76.02 91.34 10.85
표준편차 14.42 7.23 6.20
대조구 고지방식이(HFD) 평균 148.78 129.70 24.71
표준편차 32.47 6.48 3.75
대조구 Metformin(MET) 평균 62.99 110.32 22.80
표준편차 10.70 16.00 7.16
실시예 2-1 DT20  (TauAlc 8.6+Xyl 3.5) 평균 60.81 100.44 8.67
표준편차 23.96 8.57 3.04
비교예2-3-2 DT 21(Tau 8.6+Xyl 3.5)  평균 42.35 85.41 6.76
표준편차 5.26 2.97 0.71
그룹 중성지방 AST ALT
HFD vs DT20 0.0609 0.0261 0.0105
HFD vs DT21 0.0120 0.0003 0.0015
DT20 vs DT21 0.4732 0.1363 0.5582
상기 표 51 및 52에 나타난 바와 같이, DT20(변성 타우린+자일로오스) 및 DT18(타우린 +자일로오스)은 정상식이(RD)와 유사한 수준의 AST 및 ALT 수치를 보이고 있으며, 고지방식이(HFD)의 AST 및 ALT보다 유의적으로 작은 값을 나타내었다. 또한, DT20 및 DT21은 정상식이(RD) 보다 낮은 수준의 중성지방 수치를 나타내었다.
그룹 중성지방 AST(IU/L) ALT(IU/L)
대조구 정상식이(RD) 평균 113.61 10.30 5.32
표준편차 22.21 1.41 0.33
대조구 고지방식이(HFD) 평균 135.37 21.60 13.31
표준편차 22.74 4.33 3.96
대조구 Metformin(MET) 평균 107.14 16.06 8.05
표준편차 10.29 0.99 0.72
실시예2-4-1 DT7   (TauAlc 8.6+Cat 3+Bet 4) 평균 100.68 11.41 7.01
표준편차 7.23 1.71 1.07
그룹 중성지방 AST ALT
HFD vs DT7 0.451 0.071 0.176
상기 표 53 및 54에 나타난 바와 같이, DT7(변성 타우린+카테킨+베타인)은 정상식이(RD)와 유사한 수준의 AST 및 ALT 수치를 보이고 있으며, 고지방식이(HFD)의 AST 및 ALT보다 작은 값을 나타내었다. 또한, DT7은 정상식이(RD) 보다 낮은 수준의 중성지방 수치를 나타내었다.
그룹 중성지방 AST(IU/L) ALT(IU/L)
대조구 정상식이(RD) 평균 81.39 10.09 0.99
표준편차 17.61 3.35 0.38
대조구 고지방식이(HFD) 평균 133.80 26.92 14.79
표준편차 8.13 4.44 5.31
대조구 Metformin(MET) 평균 46.75 14.10 3.50
표준편차 16.82 5.08 1.20
실시예2-5 DT4 (TauAlc 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 59.85 13.52 1.03
표준편차 7.61 2.66 0.43
비교예2-6 DT6  (Tau 8.6+EGCG 1.5+Bet 4+Xyl 3.5) 평균 86.72 14.10 11.22
표준편차 17.42 5.08 4.19
그룹 중성지방 AST ALT
HFD vs DT4 0.003 0.0465 0.0565
HFD vs DT6 0.0386 0.0940 0.6119
DT4 vs DT6 0.2458 0.9284 0.0695
상기 표 55 및 56에 나타난 바와 같이, DT4(변성 타우린+EGCG+베타인+자일로오스)는 정상식이(RD)와 유사한 수준의 AST 및 ALT 수치를 보이고 있으며, 고지방식이(HFD)의 AST 및 ALT보다 유의적으로 작은 값을 나타내었다. 또한, DT4는 정상식이(RD) 보다 낮은 수준의 중성지방 수치를 나타내었다.
(4) 조직학적 검사 결과
실험 마우스의 간, 백색지방조직(WAT), 갈색지방조직(BAT) 및 신장 조직의 검사 결과를 도 20 내지 23에 나타내었다.
도 20으로부터, 고지방식이(HFD)에서는 지방세포의 크기가 비대해지고, 갈색지방조직에 지방의 축적이 증가하고, 지방간이 심하게 나타났으나, DT15(변성 타우린)는 메트포민(Metformin, MET)과 유사한 정도의 지방세포 크기를 나타내고, 갈색지방조직에 지방의 축적이 감소하였으며, 지방간의 발생이 감소하였고, 신장 독성 또한 나타나지 않은 것을 알 수 있었다.
도 21로부터, 고지방식이(HFD)에서는 지방세포의 크기가 비대해지고, 갈색지방조직에 지방의 축적이 증가하고, 지방간이 심하게 나타났으나, DT16(변성 타우린+아라비노오스)은 갈색지방조직에 지방의 축적이 감소하였으며, 지방간의 발생이 감소하였고, 신장 독성 또한 나타나지 않은 것을 알 수 있었다.
도 22로부터, 고지방식이(HFD)에서는 지방세포의 크기가 비대해지고, 갈색지방조직에 지방의 축적이 크게 증가하고, 사구체의 크기가 증가하며, 지방간이 심하게 나타났으나, DT7(변성 타우린+카테킨+베타인)은 지방세포 크기가 감소하고, 갈색지방조직에 지방의 축적이 감소하고, 사구체의 크기 증가가 억제되고, 지방간의 발생이 감소하였고, 신장 독성 또한 나타나지 않은 것을 알 수 있었다.
도 23으로부터, 고지방식이(HFD)에서는 지방세포의 크기와 지방세포 사이에 대식세포의 축적이 증가하고, 갈색지방조직에 지방의 증가하고, 사구체의 크기가 증가하며, 지방간이 심하게 나타났으나, DT4(변성 타우린+EGCG+베타인+자일로오스)는 지방의 크기가 일부 증가하나 대식세포의 축적이 나타나지 않았고, 갈색지방조직에 지방의 축적이 감소하였으며, 사구체의 크기 증가가 억제되고, 지방간의 발생이 감소하였고, 신장 독성 또한 나타나지 않은 것을 알 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명의 변성 타우린은 대사질환 예방 및 치료 효과가 우수하므로, 의학 분야에 널리 이용될 것으로 기대된다.

Claims (8)

  1. 탄소(C)와 황(S)의 원자간 거리가 1.7730 내지 1.7779(Å)이고,
    황(S)과 3개 산소(O)의 원자간 평균거리가 1.452 내지 1.462(Å)이며,
    황(S)과 3개 산소(O)의 원자간 최대거리가 1.458 내지 1.468(Å)인, 변성 타우린.
  2. 제 1항에 있어서,
    상기 변성 타우린은 라만 스펙트럼상의 위치 847, 891, 1182, 1256, 1427, 및 1458㎝-1에서 891/847 흡수대 세기 비율, 1182/1256 흡수대 세기 비율, 및 1427/1458 흡수대 세기 비율이 모두 1 미만인 것을 특징으로 하는, 변성 타우린.
  3. 제 1항에 있어서,
    상기 변성 타우린은 녹기 시작하는 점(onset point)이 330℃ 내지 340℃인 것을 특징으로 하는, 변성 타우린.
  4. 제 1항에 있어서,
    상기 변성 타우린은 수용해도가 75 내지 79g/L인 것을 특징으로 하는, 변성 타우린.
  5. 제 1항에 있어서,
    상기 변성 타우린은 최대 밀도가 1.74 내지 1.76g/cm3인 것을 특징으로 하는, 변성 타우린.
  6. 제 1항에 있어서,
    상기 변성 타우린은 적외선분광(FT-IR)에서 1650 내지 2800 cm-1 위치의 흡수파장이 타우린과 상이한 것을 특징으로 하는, 변성 타우린.
  7. (a) 물에 타우린을 용해시키는 단계;
    (b) 상기 (a)에 알코올을 첨가하여 타우린, 물, 및 알코올을 결합시키는 단계; 및
    (c) 상기 (b)에서 물 및 알코올을 제거하여 타우린을 재결정화 하는 단계;를 포함하는 변성 타우린의 제조방법.
  8. 제 7항에 있어서,
    상기 (a) 단계에서의 물은 타우린 포화 수용액에 해당하는 물의 양의 1 내지 20배로 사용하는 것을 특징으로 하는, 변성 타우린의 제조방법.
PCT/KR2017/006187 2016-06-15 2017-06-14 변성 타우린 및 이의 제조방법 WO2017217757A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17813580.2A EP3473612A4 (en) 2016-06-15 2017-06-14 MODIFIED TAURINE AND PREPARATION METHOD THEREOF
CN201780037190.6A CN109476590A (zh) 2016-06-15 2017-06-14 改性牛磺酸及其制备方法
US16/301,817 US20190152905A1 (en) 2016-06-15 2017-06-14 Modified taurine and preparation method therefor
JP2018564948A JP6730463B2 (ja) 2016-06-15 2017-06-14 変性タウリン及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0074639 2016-06-15
KR20160074639 2016-06-15
KR10-2017-0074035 2017-06-13
KR1020170074035A KR101851728B1 (ko) 2016-06-15 2017-06-13 변성 타우린 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017217757A1 true WO2017217757A1 (ko) 2017-12-21

Family

ID=60664161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006187 WO2017217757A1 (ko) 2016-06-15 2017-06-14 변성 타우린 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2017217757A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070023351A (ko) * 2005-08-24 2007-02-28 이화여자대학교 산학협력단 타우린과 환원당을 이용한 2-메톡시-5(또는 6)-메틸피라진의 제조방법
KR20110021690A (ko) * 2009-08-25 2011-03-04 한올바이오파마주식회사 메트포르민 타우린염, 그의 제조방법, 그를 포함하는 약학 조성물 및 그를 포함하는 복합제제
CN105037787A (zh) * 2015-07-21 2015-11-11 常州大学 一种牛磺酸改性胶原基材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070023351A (ko) * 2005-08-24 2007-02-28 이화여자대학교 산학협력단 타우린과 환원당을 이용한 2-메톡시-5(또는 6)-메틸피라진의 제조방법
KR20110021690A (ko) * 2009-08-25 2011-03-04 한올바이오파마주식회사 메트포르민 타우린염, 그의 제조방법, 그를 포함하는 약학 조성물 및 그를 포함하는 복합제제
CN105037787A (zh) * 2015-07-21 2015-11-11 常州大学 一种牛磺酸改性胶原基材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHO, HYE JEONG ET AL.: "Anti-adipogenic Effect of Taurine-Carbohydrate Derivatives", BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 35, no. 6, 2014, pages 1863 - 1866, XP055450110 *
See also references of EP3473612A4 *
YANG, JIAO ET AL.: "Determination and Correlation of the Solubility for Taurine in Water and Organic Solvent Systems", JOURNAL OF CHEMICAL & ENGINEERING DATA, vol. 55, no. 7, 23 April 2010 (2010-04-23), pages 2620 - 2623, XP055450109 *

Similar Documents

Publication Publication Date Title
WO2022035115A1 (ko) 오리나무 추출물 또는 이로부터 분리된 화합물을 함유하는 골격근 근육관련 질환의 예방 및 치료용 조성물 및 이의 용도
WO2011083999A2 (ko) 바이구아나이드 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 약학 조성물
WO2011052950A2 (en) Pharmaceutical composition comprising indole compound
WO2018124508A1 (ko) 3,5-디카페오일퀴닉에시드 또는 국화 추출물을 함유하는 근육 질환 예방 및 치료용 또는 근 기능 개선용 조성물
WO2019212196A1 (ko) 신규한 asm 활성 직접 억제 화합물 2-아미노-2-(1,2,3-트리아졸-4-일)프로판-1,3-디올 유도체 및 이의 용도
EP2941263A1 (en) A purified extract isolated from pseudolysimachion rotundum var. subintegrum containing abundant amount of active ingredient, the preparation thereof, and the composition comprising the same as an active ingredient for preventing or treating inflammation, allergy and asthma
WO2014171801A1 (ko) 아미도피리딘올 유도체 또는 이의 약제학적 허용가능한 염 및 이를 유효성분으로 함유하는 약학조성물
WO2016099146A1 (ko) 변성 타우린 및 이를 포함하는 대사질환 예방 또는 치료용 약학조성물
WO2019168237A1 (ko) 신규 화합물 및 이를 유효성분으로 함유하는 섬유증 또는 비알코올성 지방간염의 예방, 개선 또는 치료용 조성물
WO2013183920A1 (ko) 베르베논 유도체를 함유하는 퇴행성 뇌질환 치료 또는 예방용 약학 조성물
WO2012067316A1 (ko) 테로카판계 화합물 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 대사성 질환 또는 이들의 합병증의 예방 또는 치료용, 또는 항산화용 조성물
WO2014007447A1 (ko) 하이드록시 챨콘 화합물을 유효성분으로 함유하는 혈관신생으로 인한 질환의 예방 또는 치료용 조성물
WO2017217757A1 (ko) 변성 타우린 및 이의 제조방법
WO2018004263A1 (ko) 광학 활성 피라노크로메닐페놀 유도체 및 그를 포함하는 약학적 조성물
WO2016108489A1 (ko) 신규한 루테늄 화합물 및 이를 유효성분으로 함유하는 암 질환 예방 또는 치료용 약학 조성물
WO2020091204A1 (ko) 벤조헤테로사이클 화합물 및 이를 유효성분으로 함유하는 암질환 예방 또는 치료용 조성물
WO2022220519A1 (ko) 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-n-(테트라하이드로-2h-피란-4-일)-1h-인돌-7-아민의 신규 결정형
WO2018230936A1 (ko) PPARα/γ 이중 작용 활성을 갖는 신규 화합물 및 이를 유효성분으로 함유하는 대사질환 예방 또는 치료용 조성물
WO2012138146A2 (ko) 돌콩의 열처리분말 또는 추출물을 유효성분으로 하는 당뇨병 및 당뇨합병증의 예방 및 치료를 위한 조성물
WO2021187766A1 (ko) P38 제거능을 갖는 화합물, 이의 제조방법 및 이를 포함하는 만성 염증성 질환 치료용 조성물
WO2020080912A1 (ko) 치료 효능을 개선한 핵산 변형체 및 이를 포함하는 항암용 약학 조성물
WO2019139365A1 (ko) 신규한 페닐설포닐 옥사졸 유도체 및 이의 용도
WO2021100897A1 (ko) 바이구아나이드 계열, 및 페로센 또는 페로센 유도체를 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물
WO2015046743A1 (ko) 댕댕이나무 열매 추출물을 유효성분으로 포함하는 갑상선 질환의 예방 또는 치료용 약학적 조성물
WO2018217009A1 (ko) 신선초 추출물 또는 이로부터 분리된 화합물을 함유하는 근육관련 질환의 예방 및 치료용 조성물 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017813580

Country of ref document: EP

Effective date: 20190115