WO2017217298A1 - トルク検出装置 - Google Patents

トルク検出装置 Download PDF

Info

Publication number
WO2017217298A1
WO2017217298A1 PCT/JP2017/021119 JP2017021119W WO2017217298A1 WO 2017217298 A1 WO2017217298 A1 WO 2017217298A1 JP 2017021119 W JP2017021119 W JP 2017021119W WO 2017217298 A1 WO2017217298 A1 WO 2017217298A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
torque
angle
outer ring
inner ring
Prior art date
Application number
PCT/JP2017/021119
Other languages
English (en)
French (fr)
Inventor
小池 孝誌
靖之 福島
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112017003008.0T priority Critical patent/DE112017003008T5/de
Priority to CN201780036824.6A priority patent/CN109313092B/zh
Publication of WO2017217298A1 publication Critical patent/WO2017217298A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1428Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers
    • G01L3/1435Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers involving magnetic or electromagnetic means

Definitions

  • the present invention relates to a torque detection device used for detecting torque applied to a shaft, and more particularly to a technique for detecting torque applied to a joint or the like of an industrial robot.
  • Patent Document 1 discloses a torque detection device that detects torque applied to a joint portion of an industrial robot.
  • this torque detection device an outer ring and an inner ring are connected by a plurality of elastic beams, and a displacement is generated between a pair of inner ring protruding pieces and an outer ring that are arranged to protrude from the inner ring to the outer ring on the diameter side.
  • the amount is measured by two displacement sensors, and the shaft torque acting on the inner and outer rings is detected from the two measured displacement amounts.
  • Patent Document 1 measures a displacement amount generated between a pair of inner ring projecting pieces and an outer ring with two displacement sensors, and thus a pair of inner ring projecting pieces in an initial setting. It is difficult to adjust the mechanical clearance between the outer ring and the outer ring. Patent Document 1 does not describe a method for calculating torque from the output values of two displacement sensors, but estimates the rotational displacement amounts of the outer ring and the inner ring from the output values of the two displacement sensors. This process is necessary, and the processing circuit is considered to be complicated.
  • An object of the present invention is to provide a torque detection device that does not require mechanical adjustment at the time of initial setting and is capable of stable torque detection with a simple mechanism.
  • a torque detection device is a torque detection device that includes an outer ring and an inner ring that are rotatable relative to each other, and detects torque acting between the outer ring and the inner ring.
  • An elastic member that is directly or indirectly connected and deforms according to rotational displacement between the outer ring and the inner ring, an angle sensor that detects a rotation angle between the outer ring and the inner ring, and a rotation angle detected by the angle sensor Torque acquisition means (torque calculation means) 10 for acquiring torque is provided.
  • the angle sensor is a magnetic encoder provided on one of the outer ring and the inner ring, the magnetic encoder having magnetic poles arranged in a circumferential direction, and a magnetic sensor provided on the other of the outer ring and the inner ring. And a magnetic sensor for detecting a magnetic field of the magnetic encoder.
  • the angle sensor has a magnetic encoder and a magnetic sensor
  • the rotational displacement angle information is detected as a digital value, so there is no output offset like an analog signal and stable torque output is possible.
  • the angle sensor has a magnetic encoder and a magnetic sensor
  • the magnetic encoder has at least one row of magnetic encoder tracks in which N poles and S poles are alternately magnetized
  • the angle sensor is a high frequency obtained by electrically multiplying the angle of one pole pair of the N pole and the S pole of the magnetic encoder track from the magnetic signal output by the magnetic sensor due to the rotational displacement between the magnetic encoder and the magnetic sensor.
  • a multiplying circuit 61 that generates a pulse signal with a resolution; and a counter 62 that counts the pulse signal generated by the multiplying circuit 61 and sends angle information indicated by the counted pulse signal to the torque acquisition means 10. Also good.
  • the magnetic encoder has a double-row magnetic encoder track in which N poles and S poles are alternately magnetized with different numbers of pole pairs.
  • the magnetic sensor has a plurality of detection units for detecting magnetic fields of the double-row magnetic encoder tracks,
  • the angle sensor detects a phase difference between magnetic signals output from the plurality of detection units of the magnetic sensor by rotational displacement between the magnetic encoder and the magnetic sensor, and the phase difference detection unit.
  • An absolute angle calculation unit 52 that calculates the absolute angle of the rotational displacement based on the phase difference detected at 51, and transmission that sends absolute angle information about the absolute angle calculated by the absolute angle calculation unit 52 to the torque calculation unit 10. Part 53 may be included.
  • a phase shift occurs between the detection signals of the plurality of detection units as a result of the relative rotation between the magnetic encoder tracks of the double row with different numbers of pairs of magnetic poles and the plurality of detection units of the magnetic sensor.
  • This phase difference is detected by the phase difference detection unit 51, and the absolute angle of the rotational displacement between the outer ring and the inner ring is calculated by the absolute angle calculation unit 52 based on the phase difference.
  • the calculated absolute angle information is sent to the torque calculation means 10 by the transmission unit 53. Since the absolute angle between the outer ring and the inner ring is converted into torque, accurate torque can be obtained.
  • the range in which the angle of the magnetic encoder can be detected may be a part of the circumference. Since the outer ring and the inner ring are connected by an elastic member and are only slightly rotated with each other, there is no problem even if the angle detection range of the magnetic encoder is a part of the circumference.
  • the outer ring and the inner ring may be an outer ring and an inner ring of a bearing, respectively, and the angle sensor may be provided integrally with the bearing, and the bearing and the angle sensor may constitute a bearing with an angle sensor.
  • a torque detection apparatus can be comprised using the existing shaft with an angle.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a diagram showing a magnetization pattern of a magnetic encoder of the torque detection device of FIG.
  • FIG. 1 showing a state seen from a III-III section of FIG.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 8 is a diagram showing a magnetization pattern of each magnetic encoder track of the magnetic encoder of the torque detection device of FIG.
  • FIG. 7 shows a state viewed from the IX-IX cross section of FIG. It is sectional drawing fractured
  • FIG. 13 is a sectional view taken along line XIII-XIII in FIG. 12. It is a figure which shows the magnetization pattern of the magnetic encoder of an angle sensor different from the angle sensor of FIG. It is a block diagram which shows the structure of the angle sensor of FIG.
  • FIG. 1 is a cross-sectional view taken along a plane passing through the axis of the mechanism of the torque detector according to the first embodiment of the present invention
  • FIG. The torque detection device 1 includes a mechanism unit 1a and a processing circuit 1b.
  • the processing circuit 1 b includes an angle calculation unit 50 and a torque calculation unit (torque acquisition unit) 10.
  • the angle calculation means 50 and the torque calculation means 10 are each configured by mounting a microcomputer and an electronic circuit on a circuit board, or are constituted by a personal computer.
  • the processing circuit 1b may be provided in the mechanism part 1a, or may be provided outside connected by wiring. Details of the processing circuit 1b will be described later.
  • the mechanism unit 1 a includes an outer ring 2 and an inner ring 3.
  • An inner diameter surface 2a of the outer ring 2 and an outer diameter surface 3a of the inner ring 3 are in slidable contact with each other in the circumferential direction, and the outer ring 2 and the inner ring 3 are rotatable relative to each other.
  • the outer ring 2 and the inner ring 3 are connected by a plurality of elastic members 4.
  • four elastic members 4 are arranged at equal intervals in the circumferential direction. Both ends of each elastic member 4 are inserted into the mounting groove 2b of the outer ring 2 and the mounting groove 3b of the inner ring 3, respectively.
  • the mounting groove 2b of the outer ring 2 is located at the bottom of a notch 2c formed in the inner diameter surface 2a of the outer ring 2, and the mounting groove 3b of the inner ring 3 is a notch formed in the outer diameter surface 3a of the inner ring 3. Located at the bottom of 3c. For this reason, the center part of the elastic member 4 located in the notches 2c and 3c is not in contact with the outer ring 2 and the inner ring 3, and the deformation of the elastic member 4 is not hindered.
  • the elastic member 4 may be a member that can be elastically deformed (has flexibility), and may be, for example, a leaf spring or rubber. Further, the circumferential thickness of the elastic member 4 and the circumferential widths of the mounting groove 2b of the outer ring 2 and the mounting groove 3b of the inner ring 3 depend on the torque that is expected to be input to the torque detection device 1. Set as appropriate.
  • the outer ring 2 has a collar-shaped shoulder 2d extending toward the inner diameter side at the first end in the axial direction.
  • One end surface 3e of the inner ring 3 is in contact with the side surface of the shoulder portion 2d (one end surface in the axial direction of the shoulder portion 2d).
  • a lid 5 is attached to the second end portion of the outer ring 2 in the axial direction, and the end surface 5a of the lid 5 presses the step surface 3f of the inner ring 3 in the axial direction so that the inner ring 3 does not come off in the axial direction. It has become.
  • the side surface of the shoulder portion 2d of the outer ring 2, the end surface 3e of the inner ring 3, the end surface 5a of the lid 5, and the step surface 3f of the inner ring 3 are respectively similar to the inner diameter surface 2a of the outer ring 2 and the outer diameter surface 3a of the inner ring 3. It is slidable.
  • the above sliding surfaces may be coated with a sliding material having good sliding characteristics, such as a fluororesin. Further, instead of coating the sliding surface with the sliding material, a bearing (not shown) may be interposed between the surfaces of the outer ring 2 and the inner ring 3 that are rotationally displaced from each other.
  • a bearing (not shown) may be interposed between the surfaces of the outer ring 2 and the inner ring 3 that are rotationally displaced from each other.
  • a magnetic sensor 6 is provided on the first portion of the inner diameter surface 2a of the outer ring 2. As shown in FIG. The magnetic sensor 6 is mounted on a substrate 7 fixed to the inner diameter surface 2 a of the outer ring 2. The magnetic sensor 6 has two detectors 6a and 6b (FIG. 1) arranged in the axial direction.
  • a concave portion 3d is formed in the first portion of the outer diameter surface 3a of the inner ring 3 and corresponding to the first portion of the inner diameter surface 2a of the outer ring 2.
  • a magnetic encoder 8 is provided in the recess 3d so as to face the magnetic sensor 6 in the radial direction and extend in the circumferential direction.
  • the magnetic encoder 8 has a first magnetic encoder track 8a (FIG. 1) and a second magnetic encoder track 8b (FIG. 1) arranged in the axial direction.
  • the magnetic encoder 8 has an arc shape and is provided only in a part of the circumference. Since the outer ring 2 and the inner ring 3 are connected by an elastic member 4 and only slightly rotate with each other, there is no problem even if the range in which the angle of the magnetic encoder 8 can be detected is part of the circumference.
  • the magnetic field of the first magnetic encoder track 8a is detected by the detection unit 6a of the magnetic sensor 6, and the magnetic field of the second magnetic encoder track 8b is detected by the detection unit 6b of the magnetic sensor 6.
  • the magnetic sensor 6 and the magnetic encoder 8 constitute an angle detector 40a.
  • the angle detection unit 40a and the angle calculation means 50 of the processing circuit 1b constitute an angle sensor 40 that detects the rotation angle between the outer ring 2 and the inner ring 3.
  • a key 9 is provided on the second portion of the outer diameter surface of the inner ring 3.
  • a key groove 2 e that is wider in the circumferential direction than the key 9 is formed. Is formed.
  • FIG. 3 shows the magnetization patterns of the magnetic encoder tracks 8a and 8b of the magnetic encoder 8 as seen from the III-III section of FIG.
  • the first and second magnetic encoder tracks 8a and 8b are alternately magnetized with N and S poles, respectively.
  • the number of magnetic poles of both magnetic encoder tracks 8a and 8b are different from each other.
  • the first magnetic encoder track 8a has a larger number of magnetic poles than the second magnetic encoder track 8b.
  • the number of magnetic poles of the first magnetic encoder track 8a is 32 pole pairs
  • the number of magnetic poles of the second magnetic encoder track 8b is 31 pole pairs. It is.
  • FIG. 4 is a block diagram showing the configuration of the angle sensor 40 and the angle calculation means 50.
  • the angle calculation unit 50 includes a phase difference detection unit 51, an absolute angle calculation unit 52, and a transmission unit 53.
  • Magnetic signals (see the charts (A) and (B) in FIG. 5) output from the detectors 6a and 6b of the magnetic sensor 6 are sent to the circuit of the angle calculation means 50.
  • the number of magnetic poles per circumference is 32 pole pairs in the first magnetic encoder track 8a and 31 pole pairs in the second magnetic encoder track 8b
  • the magnetic sensor 6 and the magnetic encoder 8 are When relatively rotated, a phase difference corresponding to one magnetic pole pair per rotation (see chart (C) in FIG. 5) is generated.
  • This phase difference is detected by the phase difference detector 51, and the absolute angle calculator 52 calculates the absolute angle of the rotational displacement based on the phase difference.
  • the obtained absolute angle information is sent to the torque calculation means 10 described later by the transmission unit 53.
  • High-resolution absolute angle information can be obtained by electrically multiplying the magnetic signals output from the detectors 6a and 6b by a multiplier circuit (not shown).
  • FIG. 6 is a block diagram of the torque calculation means 10.
  • the torque calculation unit 10 includes a table 12, a torque calculation unit 13, and an output unit 14.
  • torque calculation means 10 torque acting between the outer ring 2 and the inner ring 3 by the torque calculation unit 13 based on the absolute angle information sent from the angle sensor 40 and the information recorded in the table 12. Is calculated.
  • the table 12 records the relationship between the rotation angle of the outer ring 2 and the inner ring 3 and the torque.
  • the torque value calculated by the torque calculation unit 13 is output to the outside via the output unit 14.
  • the output unit 14 outputs the torque value to the outside with an output specification selected from PWM output, serial communication, or the like.
  • the angular resolution of the magnetic sensor 6 is about 16 bits to 18 bits. can get. If tentatively 1 resolution per revolution 18 bits, the amount of change in the angular difference of the outer ring 2 and the inner ring 3 are once if any 728 pulses (218/360) is obtained. Since the output signal is a digital signal, the output offset is suppressed due to environmental changes.
  • This torque detector 1 has the above-described configuration and operates as follows. That is, when torque is applied between the outer ring 2 and the inner ring 3, the elastic member 4 connecting the outer ring 2 and the inner ring 3 is deformed, and rotational displacement occurs between the outer ring 2 and the inner ring 3. The angle of this rotational displacement is detected by the angle sensor 40, and the torque calculation means 10 calculates the torque from the detected value.
  • the torque detection device 1 detects the amount of bending of the elastic member 4 as an absolute angle change between the outer ring 2 and the inner ring 3 and converts the angle into torque.
  • the relationship between the amount of change in angle between the outer ring 2 and the inner ring 3 and the torque varies depending on the rigidity of the elastic member 4.
  • the amount of change in angle is generally minute, since the absolute angle can be detected with high resolution, it is possible to detect torque with high accuracy and little temperature drift.
  • the processing circuit 1b can be simplified. Further, since a minute rotational displacement between the outer ring 2 and the inner ring 3 is measured and converted into torque, mechanical adjustment after mounting the angle sensor 40 is unnecessary. Furthermore, in the case of this embodiment, since the absolute angle between the outer ring 2 and the inner ring 3 is converted into torque, accurate torque can be obtained.
  • an example is shown in which an angle sensor capable of detecting an absolute angle of one rotation is used as the magnetic angle sensor 40, but a rotation angle range of 90 degrees or 180 degrees is detected by an absolute angle.
  • Possible sensors may be used.
  • FIG. 7 is a cross-sectional view taken along a plane passing through the axis of the mechanism of the torque detector according to the second embodiment of the present invention
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII.
  • the torque detector 15 is an axial type in which the magnetic encoder 8 faces the magnetic sensor 6 in the axial direction.
  • FIG. 9 shows magnetization patterns of the magnetic encoder tracks 8a and 8b of the magnetic encoder 8 as viewed from the IX-IX cross section of FIG.
  • the magnetic encoder 8 is provided for one circumference in the circumferential direction. However, like the one shown in FIGS. 1 and 2, the magnetic encoder 8 is provided only in a necessary range in the circumferential direction. It is good also as the sector shape limited to. Other than that, it is the same structure as the torque detection apparatus 1 of FIG.1 and FIG.2, and the same effect
  • FIG. 10 is a cross-sectional view taken along a plane passing through the axis of the mechanism of the torque detector according to the third embodiment of the present invention
  • FIG. 11 is a view taken along the line XI.
  • This torque detector 16 incorporates a bearing 17 with an angle sensor. And this bearing 17 with an angle sensor functions as an angle detection part.
  • the bearing 17 with an angle sensor includes a bearing 23 and an angle sensor 40.
  • the bearing 23 includes an inner ring 18 that is a rotating ring, an outer ring 19 that is a fixed ring, a plurality of rolling elements 20, a cage 21, and a seal 22.
  • the angle sensor 40 includes the magnetic encoder 24, the magnetic sensor 6, and the angle calculation means 50 (FIG. 4).
  • a magnetic encoder 24 that is a rotating element is attached to the outer diameter surface of one end of the inner ring 18.
  • the magnetic encoder 24 includes a cored bar 25 and a double-row magnetic encoder 26 having two rows of magnetic encoder tracks 26a and 26b.
  • the two rows of magnetic encoder tracks 26a and 26b are alternately magnetized with N and S poles, respectively.
  • One end of a metal ring 27 is fitted to the inner diameter surface of one end of the outer ring 19, and an annular sensor housing 28 made of resin is attached to the metal ring 27.
  • a printed circuit board 29 on which the magnetic sensor 6 is mounted is attached inside the sensor housing 28.
  • the magnetic sensor 6 is connected to the angle calculation means 50 (see FIG. 4), and the angle calculation means 50 is connected to the torque calculation means 10 (see FIG. 6).
  • the angle calculation means 50 and the torque calculation means 10 may be provided in the sensor housing 28 or may be provided outside the bearing 17 with the angle sensor.
  • the outer ring 19 of the bearing 23 is assembled into the inner diameter hole 30b in a state of being in contact with the shoulder 30a of the housing 30, and the bearing cover 31 is fastened to the housing 30 with a bolt (not shown), thereby It is integrated.
  • the shaft 32 is press-fitted and fixed in the inner diameter hole 18 a of the inner ring 18, and the inner ring 18 and the shaft 32 are integrated.
  • the one end 32 a of the shaft 32 and the housing 30 are joined via a plurality of elastic members 4. Both ends of the elastic member 4 are fixed to an axial groove 32b provided on the outer diameter surface of the end portion of the shaft 32 and an axial groove 30c provided on the inner diameter surface of the end portion of the housing 30 by press-fitting or adhesive. Is done. One end of the elastic member 4 may be slidable along the axial groove 32b or 30c as long as it can restrain the rattling in the circumferential direction. By connecting the shaft 32 and the housing 30 via the elastic member 4 in this way, the inner ring 18 and the outer ring 19 of the bearing 23 are indirectly connected via the elastic member 4.
  • the elastic member 4 When a torque is applied to the shaft 32, the elastic member 4 is deformed and the shaft 32 rotates slightly. The angle is detected by the angle sensor 40, and the torque is detected by the torque calculation means 10 (see FIG. 6) converting the angle information into torque. If the output of the bearing 17 with the angle sensor when the load torque is not applied and the elastic member 4 is not bent is set to zero degrees, the offset correction at the time of torque conversion can be omitted.
  • FIG. 12 is a sectional view taken along a plane passing through the axis of a torque detector according to a fourth embodiment of the present invention
  • FIG. 13 is an XIII-XIII sectional view thereof.
  • the elastic member unit 36 includes an outer diameter ring 34 fixed to the end face of the housing 30 (FIG. 12), an inner diameter ring 35 fixed to the end portion of the shaft 32 (FIG. 12), It consists of a plurality of elastic members 4 that connect the outer diameter ring 34 and the inner diameter ring 35.
  • the housing 30 and the outer diameter ring 34 are fixed, and the shaft 32 and the inner diameter ring 35 are fixed using a bolt (not shown) or the like.
  • the configuration is the same as that of the torque detection device 16 of FIGS. 10 and 11.
  • the torque detectors 1, 15, 16, 33 of the above embodiments detect the amount of bending of the elastic member 4 as an absolute angle change between the outer rings 2, 19 and the inner rings 3, 18, and convert the angle into torque. Even without the absolute angle detection function, the rotation angle can be grasped and the torque calculated by counting high-resolution pulse outputs (90-phase phase difference A-phase and B-phase outputs) with a counter (reversible counter). Is also possible.
  • FIG. 14 shows an example of a magnetic encoder and a magnetic sensor that output a high-resolution pulse signal.
  • the magnetic encoder 8 is formed with a single-row magnetic encoder track 8a in which N poles and S poles are alternately magnetized.
  • the magnetic sensor 6 electrically multiplies the magnetic signal obtained from the N pole and the S pole, and outputs a high resolution pulse signal.
  • the angle detection unit 40 a including the magnetic encoder 8 and the magnetic sensor 6 constitutes the angle sensor 40 together with the angle calculation means 60.
  • the angle detection means 60 converts the magnetic signal sent from the magnetic sensor 6 into angle information.
  • the multiplication circuit 61 electrically multiplies the angle of one pole pair of the N pole and the S pole of the magnetic encoder track 8a to generate a high resolution pulse signal. For example, if the width of one pole pair of N pole and S pole is 2.54 mm and the distance between the pole pairs is multiplied by 4096 divisions, a high resolution position signal of 0.625 ⁇ m per pulse can be obtained.
  • the generated pulse signal is counted by the counter 62 to obtain angle information. In this case, the counter 62 may be reset in a state where no torque is applied.
  • the angle information obtained here is converted into torque using the torque detection means 10 similar to that in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

初期設定時の機械的な調整が不要で、しかも簡単な機構でありながら、安定したトルク検出が可能なトルク検出装置を提供する。トルク検出装置(1)は、互いに回転可能な外輪(2)と内輪(3)とを有し、これら外輪(2)と内輪(3)間に作用するトルクを検出する。外輪(2)と内輪(3)とを直接または間接に連結し外輪(2)と内輪(3)との回転変位に応じて変形する弾性部材(4)を有する。角度センサ(40)が、外輪(2)と内輪(3)との回転角を検出する。トルク取得手段(10)が、角度センサ(40)が検出した回転角からトルクを取得する。

Description

トルク検出装置 関連出願
 本出願は、2016年6月15日出願の特願2016-118618の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、シャフトに負荷されたトルクを検出するために用いるトルク検出装置に関し、特に産業ロボットの関節等に負荷されるトルクを検出する技術に関する。
 特許文献1に、産業用ロボットの関節部に負荷されるトルクを検出するトルク検出装置が開示されている。このトルク検出装置は、外輪と内輪とが弾性を有する複数のはりで連結されており、内輪から外輪側に直径上に張出して配置された一対の内輪張出片と外輪との間に生じる変位量を2個の変位センサでそれぞれ測定し、その測定された2つの変位量から内外輪に作用する軸トルクを検出する。
特許第3136816号公報
 特許文献1に開示されているトルク検出装置は、一対の内輪張出片と外輪との間に生じる変位量を2個の変位センサでそれぞれ測定するため、初期設定での一対の内輪張出片と外輪との機械的な隙間調整が難しい。また、特許文献1には、2個の変位センサの出力値からトルクを算出する手法についての記載はないが、2個の変位センサの出力値から外輪と内輪との回転変位量を推定する等の処理が必要であり、処理回路が煩雑になると考えられる。
 この発明の目的は、初期設定時の機械的な調整が不要で、しかも簡単な機構でありながら、安定したトルク検出が可能なトルク検出装置を提供することである。
 以下、便宜上理解を容易にするために、実施形態の符号を必要に応じて参照して説明する。
 この発明の一構成に係るトルク検出装置は、互いに回転可能な外輪と内輪とを有し、これら外輪と内輪間に作用するトルクを検出するトルク検出装置であって、前記外輪と前記内輪とを直接または間接に連結し前記外輪と前記内輪との回転変位に応じて変形する弾性部材と、前記外輪と前記内輪との回転角を検出する角度センサと、この角度センサが検出した回転角から前記トルクを取得するトルク取得手段(トルク算出手段)10とを備える。
 この構成によると、外輪と内輪間にトルクが印加されると、外輪と内輪とを連結する弾性部材が変形し、外輪と内輪間に回転変位が発生する。この回転変位の角度を角度センサで検出し、その検出された回転角からトルク取得手段10がトルクを取得する。このように、外輪と内輪間の回転変位を直接検出するため、従来のように2個の変位センサの検出値から外輪と内輪との回転変位量を推定する等の処理が不要であり、処理回路を簡略にできる。また、外輪と内輪間の微小な回転変位を測定して、それをトルクに換算するため、角度センサ装着後の機械的な調整が不要である。
 前記角度センサは、前記外輪および前記内輪のいずれか一方に設けられた磁気エンコーダであって、磁極が円周方向に並ぶ磁気エンコーダと、前記外輪および前記内輪のいずれか他方に設けられた磁気センサであって、前記磁気エンコーダの磁界を検出する磁気センサとを有してもよい。
 角度センサが磁気エンコーダと磁気センサとを有すると、回転変位の角度情報がデジタル値で検出されるため、アナログ信号のような出力オフセットがなく、安定したトルク出力が可能である。
 角度センサが磁気エンコーダと磁気センサとを有する場合、前記磁気エンコーダが、N極とS極とが交互に着磁された磁気エンコーダトラックを少なくとも1列有し、
 前記角度センサが、前記磁気エンコーダと前記磁気センサとの回転変位により前記磁気センサが出力する磁気信号から、前記磁気エンコーダトラックのN極とS極の1極対の角度を電気的に逓倍した高分解能のパルス信号を生成する逓倍回路61と、この逓倍回路61で生成されたパルス信号をカウントし、そのカウントしたパルス信号が示す角度情報を前記トルク取得手段10へ送るカウンタ62とを有してもよい。
 この構成によれば、外輪と内輪との回転角を高分解能で検出できるため、外輪と内輪との間に作用するトルクを正確に検出できる。
 角度センサが磁気エンコーダと磁気センサとを有する場合、代わりに、前記磁気エンコーダが、互いに異なる着磁極対数でそれぞれN極とS極とが交互に着磁された複列の磁気エンコーダトラックを有し、前記磁気センサが、前記複列の磁気エンコーダトラックの磁界をそれぞれ検出する複数の検出部を有し、
 前記角度センサが、前記磁気エンコーダと前記磁気センサとの回転変位により前記磁気センサの前記複数の検出部がそれぞれ出力する磁気信号の位相差を検出する位相差検出部51と、この位相差検出部51で検出された位相差に基づき前記回転変位の絶対角を算出する絶対角算出部52と、この絶対角算出部52が算出した絶対角についての絶対角情報を前記トルク算出手段10へ送る送信部53とを有してもよい。
 この構成によれば、着磁極対数が異なる複列の磁気エンコーダトラックと磁気センサの複数の検出部とが相対回転することで、複数の検出部の検出信号間に位相のずれが発生する。この位相差を位相差検出部51で検出し、その位相差に基づいて絶対角算出部52により外輪と内輪との回転変位の絶対角を算出する。算出された絶対角情報は、送信部53によりトルク算出手段10へ送られる。外輪と内輪との絶対角をトルクに換算するため、正確なトルクが得られる。
 前記磁気エンコーダの角度検出可能な範囲が円周の一部であってもよい。外輪と内輪とは弾性部材で連結され、互いに微小回転しかしないので、磁気エンコーダの角度検出可能な範囲が円周の一部であっても問題ない。
 前記外輪および前記内輪はそれぞれ軸受の外輪および内輪であり、前記軸受に前記角度センサが一体に設けられ、これら軸受と角度センサとで角度センサ付き軸受を構成してもよい。これにより、既存の角度付き軸を使用してトルク検出装置を構成することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態にかかるトルク検出装置の機構部の軸心を通る平面で破断した断面図である。 図1のII-II断面図である。 図1のトルク検出装置の磁気エンコーダの着磁パターンを示す図であり、図1のIII-III断面から見た状態を示す。 図1のトルク検出装置の角度センサの構成を示すである。 図1のトルク検出装置の磁気エンコーダトラックの着磁パターンと磁気センサが出力する磁気信号との関係を示す図である。 図1のトルク検出装置のトルク算出手段のブロック図である。 この発明の第2の実施形態にかかるトルク検出装置の機構部の軸心を通る平面で破断した断面図である。 図7のVIII-VIII断面図である。 図7のトルク検出装置の磁気エンコーダの各磁気エンコーダトラックの着磁パターンを示す図であり、図7のIX-IX断面から見た状態を示す。 この発明の第3の実施形態にかかるトルク検出装置の機構部の軸心を通る平面で破断した断面図である。 図10のXI矢視図である。 この発明の第4の実施形態にかかるトルク検出装置の機構部の軸心を通る平面で破断した断面図である。 図12のXIII-XIII断面図である。 図9の角度センサとは異なる角度センサの磁気エンコーダの着磁パターンを示す図である。 図14の角度センサの構成を示すブロック図である。
 この発明の実施形態を図面と共に説明する。
 図1はこの発明の第1の実施形態にかかるトルク検出装置の機構部の軸心を通る平面で破断した断面図、図2はそのII-II断面図である。このトルク検出装置1は、機構部1aと処理回路1bとで構成される。処理回路1bは、角度算出手段50とトルク算出手段(トルク取得手段)10とからなる。これら角度算出手段50およびトルク算出手段10は、回路基板上にマイクロコンピュータと電子回路とを実装したものであるか、またはパーソナルコンピュータで構成されている。処理回路1bは、機構部1aに設けられていてもよく、あるいは配線で接続された外部に設けられていてもよい。処理回路1bの詳細については、後で説明する。
 機構部1aは、外輪2と内輪3とを備える。外輪2の内径面2aと内輪3の外径面3aとが円周方向に摺動自在に接しており、外輪2と内輪3とは互いに回転可能である。図2に示すように、外輪2と内輪3とは、複数の弾性部材4で連結されている。図示の例では、4つの弾性部材4が円周方向に等間隔で配置されている。各弾性部材4の両端は、外輪2の取付溝2bと内輪3の取付溝3bにそれぞれ挿入されている。外輪2の取付溝2bは、外輪2の内径面2aに形成された切欠き部2cの底部に位置し、内輪3の取付溝3bは、内輪3の外径面3aに形成された切欠き部3cの底部に位置する。このため、切欠き部2c,3cに位置する弾性部材4の中央部は外輪2および内輪3に接しておらず、弾性部材4の変形は妨げられない。
 なお、弾性部材4は、弾性変形可能な(可撓性を有する)部材であればよく、例えば、板バネやゴム等であってもよい。また、弾性部材4の周方向厚さ、ならびに外輪2の取り付け溝2bおよび内輪3の取り付け溝3bの周方向の幅は、トルク検出装置1に入力されることが予想されるトルク等に応じて適宜設定される。
 図1に示すように、外輪2は軸方向の第1の端部に内径側へ延びるつば状の肩部2dを有する。この肩部2dの側面(肩部2dの軸方向の一端面)に内輪3の一方の端面3eが当接している。外輪2の軸方向の第2の端部には蓋5が取り付けられ、この蓋5の端面5aが内輪3の段面3fを軸方向に押えることで、内輪3が軸方向に抜けないようになっている。外輪2の肩部2dの側面と内輪3の端面3e、および蓋5の端面5aと内輪3の段面3fは、外輪2の内径面2aと内輪3の外径面3aと同様に、それぞれ互いに摺動可能である。
 上記各摺動面には摺動特性の良い滑り材、例えばフッ素樹脂等をコーティングしてもよい。また、摺動面に滑り材をコーティングする代わりに、外輪2と内輪3の互いに回転変位する面の間に軸受(図示せず)を介在させてもよい。
 図1、図2において、外輪2の内径面2aの第1の部分には、磁気センサ6が設けられている。磁気センサ6は、外輪2の内径面2aに固定された基板7に実装されている。磁気センサ6は、軸方向に並ぶ2つの検出部6a,6b(図1)を有する。
 内輪3の外径面3aの第1の部分であって、外輪2の内径面2aの第1の部分に対応する部分には、凹部3dが形成されている。この凹部3dに、前記磁気センサ6と径方向に対峙し、円周方向に延びる磁気エンコーダ8が設けられている。磁気エンコーダ8は、軸方向に並ぶ第1の磁気エンコーダトラック8a(図1)と第2の磁気エンコーダトラック8b(図1)とを有する。磁気エンコーダ8は円弧状であり、円周の一部の範囲のみに設けられている。外輪2と内輪3とは弾性部材4で連結され、互いに微小回転しかしないので、磁気エンコーダ8の角度検出可能な範囲が円周の一部であっても問題ない。
 磁気センサ6の検出部6aにより第1の磁気エンコーダトラック8aの磁界が検出され、磁気センサ6の検出部6bにより第2の磁気エンコーダトラック8bの磁界が検出される。図4に示すように、磁気センサ6と磁気エンコーダ8とで、角度検出部40aが構成される。また、角度検出部40aと、処理回路1bの角度算出手段50とで、外輪2と内輪3との回転角を検出する角度センサ40が構成される。
 図1、図2において、内輪3の外径面の第2の部分にはキー9が設けられている。外輪2の内径面2aの第2の部分であって、内輪3の外径面3aの第2の部分に対応する部分には、前記キー9よりも円周方向の幅が広いキー溝2eが形成されている。これにより、外輪2に対する内輪3の回転範囲が、キー溝2eの円周方向の幅とキー9の円周方向の幅の差の範囲内に制限されている。
 図3は、図1のIII-III断面から見た磁気エンコーダ8の各磁気エンコーダトラック8a,8bの着磁パターンを示している。第1および第2の磁気エンコーダトラック8a,8bは、それぞれN極とS極とが交互に着磁されている。両磁気エンコーダトラック8a,8bの着磁極数は互いに異なっている。図3の例では、第1の磁気エンコーダトラック8aの方が第2の磁気エンコーダトラック8bよりも着磁極数が多い。例えば、磁気エンコーダ8が360度の範囲で存在すると仮定した場合、第1の磁気エンコーダトラック8aの着磁極数が32極対であり、第2の磁気エンコーダトラック8bの着磁極数が31極対である。
 図4は、角度センサ40角度算出手段50の構成を示すブロック図である。角度算出手段50は、位相差を位相差検出部51、絶対角算出部52および送信部53を有する。角度算出手段50の回路には、磁気センサ6の各検出部6a,6bが出力する磁気信号(図5のチャート(A)および(B)参照)が送られてくる。例えば、前述したように、円周当たりの着磁極数が第1の磁気エンコーダトラック8aで32極対、第2の磁気エンコーダトラック8bで31極対である場合、磁気センサ6と磁気エンコーダ8が相対的に回転すると、1回転につき1磁極対分の位相差(図5のチャート(C)参照)が発生する。この位相差を位相差検出部51で検出し、その位相差に基づいて絶対角算出部52が回転変位の絶対角を算出する。得られた絶対角情報は、送信部53によって後述のトルク算出手段10へ送られる。各検出部6a,6bが出力する磁気信号を逓倍回路(図示せず)で電気的に逓倍すれば、高分解能の絶対角情報が得られる。
 図6はトルク算出手段10のブロック図である。トルク算出手段10は、テーブル12、トルク算出部13および出力部14を有する。トルク算出手段10では、角度センサ40から送られてきた絶対角情報と、テーブル12に記録されている情報とを元にして、トルク算出部13で外輪2と内輪3との間に作用するトルクを算出する。なお、テーブル12には外輪2と内輪3の回転角とトルクとの関係が記録されている。トルク算出部13で算出されたトルク値は、出力部14を経由して外部に出力される、出力部14では、PWM出力、シリアル通信等から選択した出力仕様で外部にトルク値を出力する。
 例えば、円周当たりの着磁極数が第1の磁気エンコーダトラック8aで32極対、第2の磁気エンコーダトラック8bで31極対である場合、磁気センサ6の角度分解能は16ビットから18ビット程度得られる。仮に1回転当たり18ビットの分解能とすれば、外輪2と内輪3の角度差が1度あれば728パルス(218/360)の変化量が得られる。出力信号はデジタル信号であるため、環境変化により出力オフセットが抑制される。
 このトルク検出装置1は上記構成であり、以下のように動作する。すなわち、外輪2と内輪3間にトルクが印加されると、外輪2と内輪3とを連結する弾性部材4が変形し、外輪2と内輪3間に回転変位が発生する。この回転変位の角度を角度センサ40で検出し、その検出値からトルク算出手段10がトルクを算出する。
 つまり、トルク検出装置1は、弾性部材4の撓み量を外輪2と内輪3との絶対角度変化として検出し、その角度をトルクに換算する。外輪2と内輪3の角度変化量と、トルクとの関係は、弾性部材4の剛性によって変わる。角度変化量は一般的に微小であるが、高分解能で絶対角を検出できるため、高精度で温度ドリフトが少ないトルク検出が可能である。
 このように、外輪2と内輪3間の回転変位を角度センサ40で直接検出するため、回転以外の変位からトルクを求める場合のような、回転以外の変位を回転変位に換算する処理が不要であり、処理回路1bを簡略にできる。また、外輪2と内輪3間の微小な回転変位を測定して、それをトルクに換算するため、角度センサ40を装着した後の機械的な調整が不要である。さらに、この実施形態の場合、外輪2と内輪3との絶対角をトルクに換算するため、正確なトルクが得られる。
 この実施形態では、磁気式の角度センサ40として、1回転の絶対角を検出することが可能な角度センサを用いた例を示したが、90度または180度の回転角範囲を絶対角で検出可能なセンサを用いてもよい。例えば、軸倍角が2または4のレゾルバ(2X、4Xがこれらに相当する。
 図7はこの発明の第2の実施形態にかかるトルク検出装置の機構部の軸心を通る平面で破断した断面図、図8はそのVIII-VIII断面図である。このトルク検出装置15は、磁気エンコーダ8が磁気センサ6と軸方向に対峙するアキシアルタイプである。図9は、図7のIX-IX断面から見た磁気エンコーダ8の各磁気エンコーダトラック8a,8bの着磁パターンを示す。図示の例では、磁気エンコーダ8として円周方向に1周分あるものが設けられているが、図1および図2に示したものと同様に、磁気エンコーダ8を円周方向の必要な範囲のみに限定した扇形形状としてもよい。それ以外は、図1および図2のトルク検出装置1と同じ構成であり、図1および図2のトルク検出装置1と同じ作用および効果が得られる。
 図10はこの発明の第3の実施形態にかかるトルク検出装置の機構部の軸心を通る平面で破断した断面図、図11はそのXI矢視図である。このトルク検出装置16には、角度センサ付き軸受17が組み込まれている。そして、この角度センサ付き軸受17が角度検出部として機能する。
 角度センサ付き軸受17は、軸受23と角度センサ40とからなる。軸受23は、回転輪である内輪18と、固定輪である外輪19と、複数の転動体20と、保持器21と、シール22とで構成される。また、角度センサ40は、磁気エンコーダ24と、磁気センサ6と、角度算出手段50(図4)とで構成される。
 内輪18の一端部の外径面に、回転素子である磁気エンコーダ24が取り付けられている。磁気エンコーダ24は、芯金25と、2列の磁気エンコーダトラック26a,26bを有する複列磁気エンコーダ26とで構成される。2列の磁気エンコーダトラック26a,26bは、それぞれN極とS極とが交互に着磁されている。
 外輪19の一端部の内径面には金属環27の一端が嵌合し、この金属環27に樹脂製で環状のセンサハウジング28が取り付けられている。センサハウジング28の内部には、磁気センサ6を実装したプリント基板29が取り付けられている。磁気センサ6は前記角度算出手段50(図4参照)に接続され、また角度算出手段50は前記トルク算出手段10(図6参照)に接続されている。これら角度算出手段50およびトルク算出手段10は、センサハウジング28に設けられてもよく、または、角度センサ付き軸受17の外部に設けられてもよい。
 軸受23の外輪19は、ハウジング30の肩部30aに当接した状態で内径孔30bに組み込まれ、軸受カバー31をハウジング30に対してボルト(図示せず)で締結することで、ハウジング30と一体化されている。また、内輪18の内径孔18aにシャフト32が圧入固定され、内輪18とシャフト32とが一体化されている。
 シャフト32の一方の端部32aとハウジング30とは、複数の弾性部材4を介して接合されている。弾性部材4の両端部は、シャフト32の端部外径面に設けられた軸方向溝32bと、ハウジング30の端部内径面に設けられた軸方向溝30cとに、圧入または接着剤により固定される。弾性部材4の一方の端部は、周方向のがたつきを拘束することが可能であれば、軸方向溝32bまたは30cに沿って摺動できるようにしてもよい。このようにシャフト32とハウジング30とを弾性部材4を介して連結することで、軸受23の内輪18と外輪19とが弾性部材4を介して間接的に連結される。
 シャフト32にトルクが印加されると、弾性部材4が変形してシャフト32が微小回転する。この回転を角度センサ40が検出し、その角度情報をトルク算出手段10(図6参照)がトルクに換算することで、トルクが検出される。負荷トルクが印加されず、弾性部材4に撓みが無い状態での角度センサ付き軸受17の出力を零度に設定しておけば、トルク換算時のオフセット補正を省略することができる。
 図12はこの発明の第4の実施形態にかかるトルク検出装置の軸心を通る平面で破断した断面図、図13はそのXIII-XIII断面図である。このトルク検出装置33は、ハウジング30とシャフト32とが、弾性部材ユニット36を用いて連結している。図13に示すように、弾性部材ユニット36は、ハウジング30(図12)の端面に固定される外径輪34と、シャフト32(図12)の端部に固定される内径輪35と、これら外径輪34と内径輪35とを連結する複数本の弾性部材4とからなる。ハウジング30と外径輪34の固定、およびシャフト32と内径輪35の固定は、ボルト(図示せず)等を用いて行う。これ以外は、図10および図11のトルク検出装置16と同じ構成である。
 上記各実施形態のトルク検出装置1,15,16,33は、弾性部材4の撓み量を外輪2,19と内輪3,18との絶対角度変化として検出し、その角度をトルクに換算するが、絶対角検出機能がなくても、高分解能のパルス出力(90度位相差のA相、B相出力)をカウンタ(可逆カウンタ)でカウントすることで回転角を把握し、トルクを算出することも可能である。
 図14は、高分解能のパルス信号を出力する磁気エンコーダと磁気センサの例を示す。磁気エンコーダ8には、N極とS極とが交互に着磁された単列の磁気エンコーダトラック8aが形成されている。磁気センサ6は、N極、S極から得られる磁気信号を電気的に逓倍し、高分解能のパルス信号を出力する。
 図15に示すように、磁気エンコーダ8と磁気センサ6とからなる角度検出部40aは、角度算出手段60と共に角度センサ40を構成する。角度検出手段60は、磁気センサ6から送られてくる磁気信号を角度情報に変換する。具体的には、まず、逓倍回路61で磁気エンコーダトラック8aのN極とS極の1極対の角度を電気的に逓倍して高分解能のパルス信号を生成する。例えば、N極、S極の1極対の幅を2.54mmとし、1極対の間を4096分割で逓倍すれば、1パルス当たり0.625μmという高分解の位置信号を得られる。そして、生成されたパルス信号をカウンタ62でカウントして角度情報を得る。この場合は、トルクが印加されない状態でカウンタ62をリセットしてもよい。ここで得られた角度情報は、図6と同様のトルク検出手段10を用いてトルクに換算する。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1,15,16,33…トルク検出装置
2,19…外輪
3,18…内輪
4…弾性部材
10…トルク取得手段(トルク算出手段)
40…角度センサ

Claims (6)

  1.  互いに回転可能な外輪と内輪とを有し、これら外輪と内輪間に作用するトルクを検出するトルク検出装置であって、
     前記外輪と前記内輪とを直接または間接に連結し前記外輪と前記内輪との回転変位に応じて変形する弾性部材と、
     前記外輪と前記内輪との回転角を検出する角度センサと、
     この角度センサが検出した回転角から前記トルクを取得するトルク取得手段とを備えたトルク検出装置。
  2.  請求項1に記載のトルク検出装置において、前記角度センサは、
      前記外輪および前記内輪のいずれか一方に設けられた磁気エンコーダであって、磁極が円周方向に並ぶ磁気エンコーダと、
      前記外輪および前記内輪のいずれか他方に設けられた磁気センサであって、前記磁気エンコーダの磁界を検出する磁気センサとを有するトルク検出装置。
  3.  請求項2に記載のトルク検出装置において、
     前記磁気エンコーダは、N極とS極とが交互に着磁された磁気エンコーダトラックを少なくとも1列有し、
     前記角度センサは、
      前記磁気エンコーダと前記磁気センサとの回転変位により前記磁気センサが出力する磁気信号から、前記磁気エンコーダトラックのN極とS極の1極対の角度を電気的に逓倍した高分解能のパルス信号を生成する逓倍回路と、
      この逓倍回路で生成されたパルス信号をカウントし、そのカウントしたパルス信号が示す角度情報を前記トルク取得手段へ送るカウンタとを有するトルク検出装置。
  4.  請求項2に記載のトルク検出装置において、
     前記磁気エンコーダは、互いに異なる着磁極対数でそれぞれN極とS極とが交互に着磁された複列の磁気エンコーダトラックを有し、
     前記磁気センサは、前記複列の磁気エンコーダトラックの磁界をそれぞれ検出する複数の検出部を有し、
     前記角度センサは、
      前記磁気エンコーダと前記磁気センサとの回転変位により前記磁気センサの前記複数の検出部がそれぞれ出力する磁気信号の位相差を検出する位相差検出部と、
      この位相差検出部で検出された位相差に基づき前記回転変位の絶対角を算出する絶対角算出部と、
      この絶対角算出部が算出した絶対角についての絶対角情報を前記トルク取得手段へ送る送信部とを有するトルク検出装置。
  5.  請求項3または請求項4に記載のトルク検出装置において、前記磁気エンコーダの角度検出可能な範囲が円周の一部であるトルク検出装置。
  6.  請求項1ないし請求項5のいずれか1項に記載のトルク検出装置において、前記外輪および前記内輪はそれぞれ軸受の外輪および内輪であり、前記軸受に前記角度センサが一体に設けられ、これら軸受と角度センサとで角度センサ付き軸受を構成するトルク検出装置。
PCT/JP2017/021119 2016-06-15 2017-06-07 トルク検出装置 WO2017217298A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017003008.0T DE112017003008T5 (de) 2016-06-15 2017-06-07 Drehmomenterfassungsvorrichtung
CN201780036824.6A CN109313092B (zh) 2016-06-15 2017-06-07 转矩检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-118618 2016-06-15
JP2016118618A JP2017223528A (ja) 2016-06-15 2016-06-15 トルク検出装置

Publications (1)

Publication Number Publication Date
WO2017217298A1 true WO2017217298A1 (ja) 2017-12-21

Family

ID=60663215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021119 WO2017217298A1 (ja) 2016-06-15 2017-06-07 トルク検出装置

Country Status (4)

Country Link
JP (1) JP2017223528A (ja)
CN (1) CN109313092B (ja)
DE (1) DE112017003008T5 (ja)
WO (1) WO2017217298A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108945270A (zh) * 2018-08-20 2018-12-07 苏州力矩优行智能科技有限公司 一种电动助力车力矩传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024284B (zh) * 2019-12-12 2022-01-11 刘军 纯机械式扭矩显示扭力工具
CN113289201A (zh) * 2021-05-06 2021-08-24 深圳高性能医疗器械国家研究院有限公司 一种血管介入手术辅助执行装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097895A (ja) * 2007-10-15 2009-05-07 Ntn Corp ドライブシャフトの軸トルク測定装置および測定方法
DE102010023355A1 (de) * 2010-06-10 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Anordnung zur Drehmomentmessung und Fahrrad mit einer solchen Anordnung
JP2012242114A (ja) * 2011-05-16 2012-12-10 Honda Motor Co Ltd 捩れセンサおよび駆動関節機構
JP2015055560A (ja) * 2013-09-12 2015-03-23 Ntn株式会社 トルクセンサユニット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136816B2 (ja) 1992-12-25 2001-02-19 トヨタ自動車株式会社 トルクセンサ付ロボットアーム
JP2002242829A (ja) * 2001-02-16 2002-08-28 Sanden Corp 容量可変圧縮機
US7222543B2 (en) * 2004-11-23 2007-05-29 Dr. Johannes Heidenhain Gmbh Modular encoder, method of producing a modular encoder, and system for measuring angular movement
JP5379748B2 (ja) * 2010-06-03 2013-12-25 Ntn株式会社 磁気エンコーダ
JP5973278B2 (ja) * 2012-08-16 2016-08-23 Ntn株式会社 磁気エンコーダの着磁装置
WO2015008622A1 (ja) * 2013-07-16 2015-01-22 Ntn株式会社 磁気エンコーダ装置および回転検出装置
CN103616105B (zh) * 2013-11-27 2015-07-22 天津大学 可检测传动力并进行传动的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097895A (ja) * 2007-10-15 2009-05-07 Ntn Corp ドライブシャフトの軸トルク測定装置および測定方法
DE102010023355A1 (de) * 2010-06-10 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Anordnung zur Drehmomentmessung und Fahrrad mit einer solchen Anordnung
JP2012242114A (ja) * 2011-05-16 2012-12-10 Honda Motor Co Ltd 捩れセンサおよび駆動関節機構
JP2015055560A (ja) * 2013-09-12 2015-03-23 Ntn株式会社 トルクセンサユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108945270A (zh) * 2018-08-20 2018-12-07 苏州力矩优行智能科技有限公司 一种电动助力车力矩传感器

Also Published As

Publication number Publication date
JP2017223528A (ja) 2017-12-21
CN109313092A (zh) 2019-02-05
CN109313092B (zh) 2021-05-11
DE112017003008T5 (de) 2019-02-28

Similar Documents

Publication Publication Date Title
JP5081553B2 (ja) 回転検出装置および回転検出装置付き軸受
US7775129B2 (en) Rotation angle sensor
US7726208B2 (en) Combined steering angle and torque sensor
EP3321640B1 (en) Rotation detecting device and bearing equipped with rotation detecting device
JP6165541B2 (ja) 回転検出装置および回転検出装置付き軸受
WO2017217298A1 (ja) トルク検出装置
US7772836B2 (en) Device for detecting absolute angle of multiple rotation and angle detection method
JP2006220529A (ja) 絶対回転角度およびトルク検出装置
US20090320613A1 (en) Rotation angle and torque detection device
EP2778624B1 (en) Rotation detecting device and bearing with rotation detecting device
US20120153938A1 (en) Angle sensor
JP5207703B2 (ja) ドライブシャフトの軸トルク測定装置および測定方法
JP2007183121A (ja) 回転角およびトルク検出装置
JP4897953B2 (ja) 回転角度検出装置
JP2008538415A (ja) ねじりモーメントの測定装置および方法
JP4107134B2 (ja) トルクセンサ
JP2008224440A (ja) 軸受回転検出装置
JP2017102019A (ja) トルクセンサユニット
JP6959133B2 (ja) トルクセンサ
JP2018165650A (ja) トルク検出装置
US9829399B2 (en) Transmission for miniature drive having a torque measuring element
JP5242120B2 (ja) ドライブシャフトの軸トルク測定装置および測定方法
JP5242122B2 (ja) ドライブシャフトの軸トルク測定装置および測定方法
JP2009069092A (ja) 回転検出装置および回転検出装置付き軸受
JP2008249353A (ja) 回転検出装置および回転検出装置付き軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813196

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17813196

Country of ref document: EP

Kind code of ref document: A1