JP5242120B2 - ドライブシャフトの軸トルク測定装置および測定方法 - Google Patents

ドライブシャフトの軸トルク測定装置および測定方法 Download PDF

Info

Publication number
JP5242120B2
JP5242120B2 JP2007267481A JP2007267481A JP5242120B2 JP 5242120 B2 JP5242120 B2 JP 5242120B2 JP 2007267481 A JP2007267481 A JP 2007267481A JP 2007267481 A JP2007267481 A JP 2007267481A JP 5242120 B2 JP5242120 B2 JP 5242120B2
Authority
JP
Japan
Prior art keywords
rotation
sensor
drive shaft
torque
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007267481A
Other languages
English (en)
Other versions
JP2009097895A (ja
Inventor
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007267481A priority Critical patent/JP5242120B2/ja
Publication of JP2009097895A publication Critical patent/JP2009097895A/ja
Application granted granted Critical
Publication of JP5242120B2 publication Critical patent/JP5242120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、自動車のエンジンの動力を車輪に伝達する役目を持っている駆動輪車軸、すなわちドライブシャフトにおいて、その軸トルクを測定する装置、その軸トルク測定装置を搭載した車輪駆動用ユニット、および軸トルク測定方法に関する。このようなドライブシャフトとしては、前輪駆動車の前輪軸、後輪駆動車の後車軸、全輪駆動車の全車軸が該当する。
独立懸架方式のサスペンションを採用する自動車のドライブシャフトでは、サスペンションの動きに追随しながら駆動力を伝達する必要がある。このため、ドライブシャフトの一端は等速ジョイントを介してディファレンシャルと連結され、他端は等速ジョイントを介して車軸(アクスル)と連結される。このようにしてドライブシャフトはエンジンの動力を車輪まで伝える駆動系統に組み込まれ、エンジンの動力は最終的にドライブシャフトによって車輪に伝えられる。
また、最近の自動車はあらゆる部分に電子制御技術が導入されており、アンチロックブレーキシステム(ABS)、トラクションコントロールシステム(TCS)、ノンスリップデフ(LSD)、などの走行制御では車輪速信号が利用されている。このため、通常、ドライブシャフトのアウトボード側(アクスル側)にABS(アンチロックブレーキシステム)制御用のパルサーリングが設けられ、車輪の回転に伴い歯車状のパルサーリングが回転すると、それに近接して車体側に設置された電磁ピックアップに車輪回転数に比例した周波数のパルスが発生するようになっている。
特許文献1において、両端に等速ジョイントを具備した自動車のドライブシャフトであって、各等速ジョイントすなわちインボード側、アウトボード側のそれぞれの等速ジョイントの外輪にパルサーリングを取付け、両パルサーリングによって発生する回転信号を検出し、ドライブシャフトに生じたねじれに対応する回転信号の位相差を演算処理して軸トルクを求めるドライブシャフトの軸トルク測定方法が示されている。
また、求めた軸トルク信号に基づいてエンジンの出力を制御することにより、過大トルクの発生を防止し、この過大トルクの発生防止によってドライブシャフトの軸径および等速ジョイントのサイズダウンによる軽量化を図ることが開示されている。
また、特許文献2においては、両端が等速ジョイントを介して自動車の駆動系統に接続されるドライブシャフトにおけるディファレンシャル側の等速ジョイントの外輪と、前記ドライブシャフトが等速ジョイントを介して連結される車輪用軸受の回転側部材であるハブとにエンコーダをそれぞれ取付けると共に、これら各エンコーダに対向して、各エンコーダの回転を検出するセンサを設け、これらセンサが出力する回転信号の位相差からドライブシャフトのねじれ量を測定して軸トルクを求めるものが開示されている。
特開平7−63628号公報 特開2004−069332号公報
特許文献1に開示されている技術では、回転パルスを出力するセンサを使用し、ドライブシャフト両端での回転パルス出力における位相ずれを演算することによってねじれ量を検出している。しかし、これでは、停止状態から駆動を始める場合のように、一方の軸端が停止状態あるいは回転速度が極端に低い場合には、正確に軸トルクを検出できないという問題がある。
また、特許文献2に開示の技術の場合にも、通常の駆動トルクにおけるドライブシャフトのねじれ角が小さいため、軸トルク検出に必要なわずかな位相差を自動車の使用環境で安定して得るのは難しい。
この発明の目的は、ドライブシャフトの一端側が停止状態あるいは極端に回転速度が低い場合でも、正確に軸トルクを検出できるドライブシャフトの軸トルク測定装置、軸トルク測定装置付き車輪駆動用ユニット、およびドライブシャフトの軸トルク測定方法を提供することである。
この発明のドライブシャフトの軸トルク測定装置は、両端にて等速ジョイントを介して自動車の駆動系統に接続されるドライブシャフトにおけるディファレンシャル側の等速ジョイントの外輪と、前記ドライブシャフトが等速ジョイントを介して連結される車輪用軸受の回転側部材とにセンサターゲットを設けると共に、これら各センサターゲットに対向して、各センサターゲットの回転を検出するセンサを設け、これらのセンサの出力比較によりドライブシャフトの軸トルクを求めるドライブシャフトの軸トルク測定装置であって、前記各センサは、対向する前記各センサターゲットの回転を直接検出する磁気センサと、この磁気センサが出力する回転信号を逓倍して高分解能な回転パルスを生成する逓倍回路とを有するものとし、前記各センサの逓倍回路が生成する回転パルスを計数して、これらの計数値の差分を求める回転パルス差分算出手段と、前記差分からドライブシャフトのねじれ量を測定して軸トルクを求める軸トルク演算手段とを設け、前記回転パルス差分算出手段は、前記各逓倍回路が生成する回転パルスを計数する複数のカウンタを有し、これらのカウンタによる計数値を前記各センサターゲットの1回転に1回リセットする機能を有することを特徴とする。
この構成によると、ドライブシャフトの微小なねじれ角を高分解能に検出できるため、軸トルクを正確に検出でき、最適な印加トルクをタイヤに供給するような車両走行制御も可能になる。また、回転パルスを計数することで軸トルクを演算するので、2つのセンサターゲットのうち一方が止まっていても、つまり例えばドライブシャフトの一端側が停止状態あるいは極端に回転速度が低い場合でも、正確に軸トルクを検出できる。
この発明において、前記等速ジョイントおよび車輪用軸受の回転側部材に設けられた各センサターゲットが前記等速ジョイントの外輪および車輪用軸受の回転側部材と同心のリング状に設けられた磁気エンコーダであり、前記磁気センサが、前記磁気エンコーダの磁極ピッチ内で互いにずれた位置に配置された複数のセンサ素子を有し、sin および cosの2相の信号出力を得られるものであって、前記逓倍回路が生成する回転パルスは、前記磁極内における位置を逓倍して検出するものであっても良い。この構成の場合、磁気エンコーダの磁極内の位置をより細かく検出でき、より高分解能な回転パルスを生成できる。
この発明において、前記等速ジョイントおよび車輪用軸受の回転側部材に設けられた各センサターゲットが前記等速ジョイントの外輪および車輪用軸受の回転側部材と同心のリング状に設けられた磁気エンコーダであり、前記磁気センサが、前記磁気エンコーダの磁極の並び方向に沿ってセンサ素子が並ぶラインセンサで構成され、sin, cosの2相の信号出力を演算によって生成するものであって、前記逓倍回路が生成する回転パルスは、前記磁極内における位置を逓倍して検出するものであっても良い。この構成の場合、磁界パターンの歪みやノイズの影響が低減されて、より高い精度で磁気エンコーダの位相を検出することが可能である。これにより、十分大きい磁極ピッチの磁気エンコーダを使用しても、数倍〜数十倍の分解能で磁気エンコーダの位相を検出することが可能であるため、小さなトルクによるわずかなドライブシャフトのねじれ角をも検出することができる。
この発明において、前記各センサの逓倍回路の生成する回転パルスが、互いに90°位相の異なるA相およびB相の2つのパルス信号であっても良い。この構成の場合、これら2相の信号によって回転方向を判別することができるため、正負のどちらの方向の軸トルクをも検出することが可能となる。また、坂道での運転における微小な前進や後戻りなども、回転方向と共に軸トルクを検出することができるので、条件に応じた最適なブレーキ制御やトルク制御により、車両の運転しやすさを向上させることが可能となる。
この発明において、前記回転パルス差分算出手段により求められた回転パルスの差分と、運転状態を示す所定のデータとから、前記軸トルク演算手段により求められる軸トルクに含まれる定常オフセット量を推定して、前記軸トルクからオフセット分をキャンセルするオフセットキャンセル手段を設けても良い。
各回転パルスをカウンタで計数し、ドライブシャフトの現在回転角度を計数値として保持する場合には、機械的なガタによって計数値に定常オフセットが発生したり、ノイズによる誤カウントによって両カウンタの計数値がずれたりして、軸トルク演算に誤差が生じることがある。上記オフセットキャンセル手段で、前記軸トルク演算手段のトルク出力値すなわち角度差をモニタしながら、運転状態に関するデータ(加減速状態、エンジン回転数など)に応じたフィルタ処理を行なって定常オフセット分を抽出して、軸トルク演算手段での演算処理においてオフセット分をキャンセルすると、機械的ガタなどによって発生するオフセットの影響を低減して、正確な軸トルクを検出することができる。
この発明において、前記回転パルス差分算出手段が計数する計数値を、軸トルクの印加されていない運転状態においてリセットする計数値リセット手段を設けても良い。この構成の場合、前記計数値に積算されたノイズの影響などを除去して、正確な軸トルクを検出することができる。
この発明の軸トルク測定装置付き車輪駆動用ユニットは、この発明の上記いずれかの構成の軸トルク測定装置を、車輪用軸受およびドライブシャフトを備える車輪駆動用ユニットに搭載したものである。
この構成によると、ドライブシャフトの微小なねじれ角を高分解能に検出できるため、軸トルクを正確に検出でき、最適な印加トルクをタイヤに供給するような車両走行制御も可能になる。これにより、車輪駆動用ユニットの軽量化が可能になる。
この発明のドライブシャフトの軸トルク測定方法は、両端にて等速ジョイントを介して自動車の駆動系統に接続されるドライブシャフトにおけるディファレンシャル側の等速ジョイントの外輪と、前記ドライブシャフトが等速ジョイントを介して連結される車輪用軸受の回転側部材とにセンサターゲットを設け、これら各センサターゲットに対向して設けたセンサで各センサターゲットの回転を検出し、これらのセンサの出力比較によりドライブシャフトの軸トルクを求めるドライブシャフトの軸トルク測定方法であって、前記各センサによる各センサターゲットの回転検出は、対向する前記各センサターゲットの回転を磁気センサで直接検出し、この磁気センサが出力する回転信号を逓倍回路で逓倍して高分解能な回転パルスを生成するものとし、前記各センサの逓倍回路が生成する回転パルスを計数して、これらの計数値の差分を求め、前記差分からドライブシャフトのねじれ量を測定して軸トルクを求め、前記各逓倍回路で生成した回転パルスの計数値を、前記各センサターゲットの1回転に1回リセットすることを特徴とする。
この軸トルク測定方法によると、ドライブシャフトの微小なねじれ角を高分解能に検出できて、軸トルクを正確に検出でき、最適な印加トルクをタイヤに供給するような車両走行制御も可能になる。また、回転パルスを計数する検出方式のため、2つのセンサターゲットのうち一方が止まっていても、つまり例えばドライブシャフトの一端側が停止状態あるいは極端に回転速度が低い場合でも、正確に軸トルクを検出できる。
この発明のドライブシャフトの軸トルク測定装置は、両端にて等速ジョイントを介して自動車の駆動系統に接続されるドライブシャフトにおけるディファレンシャル側の等速ジョイントの外輪と、前記ドライブシャフトが等速ジョイントを介して連結される車輪用軸受の回転側部材とにセンサターゲットを設けると共に、これら各センサターゲットに対向して、各センサターゲットの回転を検出するセンサを設け、これらのセンサの出力比較によりドライブシャフトの軸トルクを求めるドライブシャフトの軸トルク測定装置であって、前記各センサは、対向する前記各センサターゲットの回転を直接検出する磁気センサと、この磁気センサが出力する回転信号を逓倍して高分解能な回転パルスを生成する逓倍回路とを有するものとし、前記各センサの逓倍回路が生成する回転パルスを計数して、これらの計数値の差分を求める回転パルス差分算出手段と、前記差分からドライブシャフトのねじれ量を測定して軸トルクを求める軸トルク演算手段とを設け、前記回転パルス差分算出手段は、前記各逓倍回路が生成する回転パルスを計数する複数のカウンタを有し、これらのカウンタによる計数値を前記各センサターゲットの1回転に1回リセットする機能を有するため、ドライブシャフトの一端側が停止状態あるいは極端に回転速度が低い場合でも、正確に軸トルクを検出できる。
この発明の軸トルク測定装置付き車輪駆動用ユニットは、この発明の軸トルク測定装置を、車輪用軸受およびドライブシャフトを備える車輪駆動用ユニットに搭載したものであるため、ドライブシャフトの微小なねじれ角を高分解能に検出でき、軸トルクを正確に検出でき、最適な印加トルクをタイヤに供給するような車両走行制御も可能になり、これにより、車輪駆動用ユニットの軽量化が可能になる。
この発明のドライブシャフトの軸トルク測定方法は、両端にて等速ジョイントを介して自動車の駆動系統に接続されるドライブシャフトにおけるディファレンシャル側の等速ジョイントの外輪と、前記ドライブシャフトが等速ジョイントを介して連結される車輪用軸受の回転側部材とにセンサターゲットを設け、これら各センサターゲットに対向して設けたセンサで各センサターゲットの回転を検出し、これらのセンサの出力比較によりドライブシャフトの軸トルクを求めるドライブシャフトの軸トルク測定方法であって、前記各センサによる各センサターゲットの回転検出は、対向する前記各センサターゲットの回転を磁気センサで直接検出し、この磁気センサが出力する回転信号を逓倍回路で逓倍して高分解能な回転パルスを生成するものとし、前記各センサの逓倍回路が生成する回転パルスを計数して、これらの計数値の差分を求め、前記差分からドライブシャフトのねじれ量を測定して軸トルクを求め、前記各逓倍回路で生成した回転パルスの計数値を、前記各センサターゲットの1回転に1回リセットするものであるため、ドライブシャフトの微小なねじれ角を高分解能に検出できて、軸トルクを正確に検出でき、最適な印加トルクをタイヤに供給するような車両走行制御も可能になる。また、信号位相差を検出するのではなく回転パルスを計数する検出方式のため、2つのセンサターゲットのうち一方が止まっていても、正確に軸トルクを検出できる。
この発明の一実施形態を、図1ないし図10と共に説明する。図1は、ドライブシャフト1および車輪用軸受50を備える自動車の車輪駆動用ユニットであって、ドライブシャフト1は両端にて等速ジョイント2,3を介して駆動系統に接続される。この明細書において、車輪駆動用ユニットを車両に取り付けた状態で車両幅方向の外側寄りとなる側をアウトボード側と呼び、車両幅方向の中央側となる側をインボード側と呼ぶ。図示する実施形態の場合、ドライブシャフト1のインボード側はトリポート型スライド式等速ジョイント2によりディファレンシャル(図示せず)と連結され、アウトボード側はバーフィールド型固定式等速ジョイント3により車輪用軸受50の内方部材52と連結される。
なお、ドライブシャフト1の両端の等速ジョイントは、図示例のような組合せに限られない。例えば、前輪駆動車の前輪軸すなわち駆動輪前車軸の場合、前輪が操舵されるため、車輪側となるアウトボード側の等速ジョイント3は大きな作動角と共に等速性が要求される。この要求を満たすため、アウトボード側の等速ジョイント3にはバーフィールド型固定式継手(ゼッパ型固定式継手)、トリポード型固定式等速ジョイントなどが用いられる。車体側となるインボード側の等速ジョイント2にはサスペンションの動きを許容する作動角が要求される。この作動角は車輪側等速ジョイント3ほど大きくないが、サスペンションの動きに伴う車体の長さ変化を可能にする必要がある。このためインボード側等速ジョイント2にはバーフィールド型スライド式継手、トリポート型スライド式継手、クロスグローブ型継手などが用いられる。独立懸架方式の駆動輪後車軸は舵取り機能が不要で大きな作動角を必要としないためカルダン継手が使用される場合もある。
図2は、図1における車輪用軸受50側の部分を拡大して示す縦断面図である。この車輪用軸受50は、外方部材51と内方部材52の間に複列の転動体53を介在させ、車体に対して車輪を回転自在に支持するものである。
外方部材51は固定側の部材であり、内方部材52は回転側の部材である。各列の転動体53は、各列毎に保持器54に保持されており、外方部材51の内周に形成された複列の転走面55と、内方部材52の外周に形成された複列の転走面56との間に介在する。この車輪用軸受50は、複列のアンギュラ玉軸受型とされ、両列の転走面55,55,56,56は、互いに接触角が背面合わせとなるように形成されている。
図2の例は、いわゆる第4世代型とした例であり、内方部材52が、ハブ輪57と等速ジョイント3の外輪3aとで構成される。
等速ジョイント3は、その外輪3aの球形内面と内輪3bの球形外面とに、軸方向に沿う軌道溝をそれぞれ複数形成し、対向する軌道溝間にトルク伝達ボール83を介在させたものである。トルク伝達ボール83は保持器84に保持される。内輪3bはドライブシャフト1に嵌合させる。等速ジョイント3の外輪3aは、カップ部3aaの外底面から中空軸状のステム部3abが突出する。このステム部3abを車輪用軸受50のハブ輪57内に挿入し、拡径加締によりハブ輪57と一体結合している。ハブ輪57および等速ジョイント3の外輪3aに、内方部材52の各列の転走面56が形成される。等速ジョイント3の外輪3aのカップ部3aaの開口とドライブシャフト1の外周との間には、蛇腹状のブーツ87が被せてある。
ハブ輪57は、アウトボード側の端部近傍の外周に車輪取付フランジ57bを有し、車輪取付フランジ57bにホイールおよびブレーキロータ(いずれも図示せず)が重ね状態で、ハブボルト59によって取付けられる。ハブボルト59は、車輪取付フランジ57bに設けられたボルト取付孔に圧入されている。外方部材51は、全体が一体の部材からなり、外周に車体取付フランジ51bを有している。外方部材51は、車体取付フランジ51bのボルト孔60に挿通されたナックルボルトにより、懸架装置のナックル(図示せず)に取り付けられる。
外方部材51と内方部材52間の軸受空間の両端は、接触シールなどからなる密封装置61,62によって密封されている。
車輪用軸受50の回転側の部材である内方部材52の外周面には、ABS(アンチロックブレーキシステム)制御用としても利用されるセンサターゲット5が取り付けられている。また、図1のように、ドライブシャフト1のインボード側の等速ジョイント2の外輪2aにも同種のセンサターゲット4が取り付けられている。このセンサターゲット4に近接した車体側には、磁気センサ11(図5)等からなるセンサ側ユニット6が設置され、センサターゲット4が回転するとセンサ側ユニット6の磁気センサ11が回転数に比例した周波数の回転信号を出力する。車輪用軸受50の内方部材52の外周面に取り付けられた前記センサターゲット5に近接した位置、つまり車輪用軸受50の外方部材51には、同じく磁気センサ11等からなるセンサ側ユニット7が設置され、センサターゲット5が回転するとセンサ側ユニット7の磁気センサ11が回転数に比例した周波数の回転信号を出力する。対応する各センサターゲット4,5とセンサ側ユニット6,7とで、回転速度や回転角度を検出する回転検出器8,9をそれぞれ構成する。
なお、センサターゲット4が等速ジョイント2の外輪2aに取り付けられるインボード側の回転検出器8については、取付位置をデフケース内の軸受部など、等速ジョイント2が結合されている駆動部品の回転を検出できる位置に設けても良い。例えば、軸受に回転センサを内蔵したものであっても良い。
センサターゲット4,5は、例えば図6(A),(B)に半部断面図および斜視図で示すように、周面の円周方向に複数の磁極対4a(5a)を等配位置に並べて着磁させたリング状の磁気エンコーダからなる。前記等速ジョイント2の外輪2aに取り付けられるセンサターゲット4である磁気エンコーダは、外輪2aに対して同心となるように取り付けられる。車輪用軸受50の内方部材52の外周面に取り付けられるセンサターゲット5である磁気エンコーダも、内方部材52に対して同心となるように取り付けられる。この場合、前記磁気センサ11は、センサターゲット(磁気エンコーダ)4,5の磁極N,Sを直接検出できるように、センサターゲット(磁気エンコーダ)4,5の周面に対して微小のギャップを介して径方向(ラジアル方向)に対向するように外径側に配置される。
図6のセンサターゲット4,5である磁気エンコーダの構成例は、周面に磁極対4a(5a)を着磁させたラジアルタイプであるが、センサターゲット(磁気エンコーダ)4,5は図7(A),(B)に半部断面図および斜視図で示すアキシアルタイプのものであっても良い。図7の構成例では、例えば断面をL字形としたリング状のバックメタル10の円筒部10aの一端から外径側に延びるフランジ部10bの側面の円周方向に、複数の磁極対4a(5a)を等配位置に並べて着磁させていて、前記等速ジョイント2の外輪2aおよび車輪用軸受50の内方部材52に前記バックメタル10の円筒部10aを嵌合させることで、等速ジョイント外輪2aおよび車輪用軸受50の内方部材52に対して同心となるように取り付けられる。この場合、磁気センサ11は、センサターゲット(磁気エンコーダ)4,5の着磁面に対向するように軸方向に向けて配置される。
なお、センサターゲット4,5としては、前記した磁気エンコーダのほか、歯車状の磁性体からなるパルサーリングを用いても良い。
車輪用軸受50に設けられる回転検出器9のセンサ側ユニット7は、図2のように、外方部材51に、両転動体列53,53間で径方向に貫通させたセンサ取付孔63に挿通して取り付けられる。センサターゲット5である磁気エンコーダが図6に示すラジアルタイプである場合、センサ側ユニット7の先端に配置される磁気センサ11が、前記センサターゲット5に対して径方向にギャップを介して対向させられる。センサターゲット5である磁気エンコーダが図7に示すアキシアルタイプである場合、図3のように、センサ側ユニット7の先端に配置される磁気センサ11が、前記センサターゲット(磁気エンコーダ)5に対して軸方向にギャップを介して対向させられる。センサ取付孔63は、例えば断面形状が円形の貫通孔である。センサ取付孔63の内面とセンサ側ユニット7との間は、Oリング等の接触シールや、接着剤等で密封する。
図4はこのドライブシャフトの軸トルク測定装置の概略構成を示し、図5は上記した回転検出器8,9の概略構成を示す。回転検出器8,9は、上記したように前記センサターゲット4,5と、これらセンサターゲット4,5に対向して配置されるセンサ側ユニット6,7とでなる。センサ側ユニット6,7は、対向する各センサターゲット4,5の回転を直接検出する磁気センサ11と、この磁気センサ11が出力する回転信号を逓倍して高分解能な回転パルスを生成する逓倍回路12とを有する。
磁気センサ11は、対応するセンサターゲット(磁気エンコーダ)4,5の磁極対4a,5aよりも高い分解能で磁極検出できる機能、つまりセンサターゲット4,5の磁極の範囲内における位置の情報を検出する機能を有するものとされる。この機能を満たすために、例えば磁気センサ11として、対応するセンサターゲット4,5の1磁極対4a(5a)のピッチλを1周期とするとき、図8のように構成しても良い。すなわち、90度位相差(λ/4)となるように磁極の並び方向に離して配置したホール素子などの2つの磁気センサ素子11A,11Bを用い、これら2つの磁気センサ素子11A,11Bにより得られる2相の信号(sinφ,cosφ) から磁極内位相 (φ=tan-1(sinφ/ cosφ) )を逓倍して算出するものとしても良い。なお、図8の波形図は、センサターゲット(磁気エンコーダ)4,5の磁極の配列を磁界強度に換算して示したものである。この場合、図5における逓倍回路12は、前記磁極内における逓倍位置情報として回転パルスを出力する。
磁気センサ11をこのような構成とすると、磁極内の位置をより細かく検出でき、より高い精度でセンサターゲット(磁気エンコーダ)4,5の位相を検出することが可能である。この場合、磁気ノイズの影響を低減するため、前記2つの磁気センサ素子11A,11Bを差動構成として、より安定した信号を得るように構成しても良い。
センサターゲット4,5である磁気エンコーダの磁極内における位置の情報を検出する機能を有する磁気センサ11の他の例として、図9(B)に示すようなラインセンサを用いても良い。すなわち、磁気センサ11として、対応するセンサターゲット(磁気エンコーダ)4,5の磁極の並び方向に沿って磁気センサ素子11aが並ぶラインセンサ11AA,11ABを用いる。なお、図9(A)は、センサターゲット(磁気エンコーダ)4,5における1磁極の区間を磁界強度に換算して波形図で示したものである。この場合、磁気センサ11の第1のラインセンサ11AAは、図9(A)における180度の位相区間のうち90度の位相区間に対応付けて配置し、第2のラインセンサ11ABは残りの90度の位相区間に対応付けて配置する。このような配置構成により、第1のラインセンサ11AAの検出信号を加算回路31で加算した信号S1と、第2のラインセンサ11ABの検出信号を加算回路32で加算した信号S2を別の加算回路33で加算することで、図9(C)に示すような磁界信号に応じたsin 信号を得る。また、信号S1と、インバータ35を介した信号S2をさらに別の加算回路34で加算することで、図9(C)に示すような磁界信号に応じた cos信号を得る。このようにして得られた2相の出力信号sin , cosを、例えば図10に示す構成の逓倍回路12で処理することにより、磁極内におけ逓倍位置情報として回転パルスを得る。
磁気センサ11をこのようにラインセンサで構成した場合、磁界パターンの歪みやノイズの影響が低減されて、より高い精度でセンサターゲット(磁気エンコーダ)4,5の位相を検出することが可能である。この場合、十分大きい磁極ピッチのセンサターゲット(磁気エンコーダ)4,5を使用しても、数倍〜数十倍の分解能でセンサターゲット(磁気エンコーダ)4,5の位相を検出することが可能であるため、小さなトルクによるわずかなドライブシャフト1のねじれ角をも検出することができる。
この場合の図10の逓倍回路12は、信号発生手段41と、扇形検出手段42と、マルチプレクサ手段43と、微細内挿手段44とを備える。
信号発生手段41は、前記磁気センサ11の出力である2相の信号sin,cos から、同一の振幅A0 と同一の平均値C0 とを有し、mをn以下の正の整数、iを1〜2m-1の正の整数として、相継いで互いに2π/2m-1 ずつ位相がずれた、2m-1個の信号si を生成する手段である。
扇形発生手段42は、2m 個の等しい扇形Pi を定義するようにコード化された、m個のディジタル信号bn-m+1 ,bn-m+2 ,……,bn-1 ,bn を発生する、2m-1個の信号si によって区切られた2m 個の扇形Pi を検出する手段である。
マルチプレクサ手段43は、上記扇形発生手段42から発生するm個の上記ディジタル信号bn-m+1 ,bn-m+2 ,……,bn-1 ,bn によって制御され、上記信号発生手段41から生成される2m-1 個の上記信号si を処理して、振幅が一連の2m-1個の上記信号si の上記平均値C0 と第1のしきい値L1 との間にある部分によって構成される一方の信号Aと、振幅が一連の2m-1 個の上記信号si の上記第1のしきい値L1 とこのしきい値よりも高い第2のしきい値L2 との間にある部分によって構成される他方の信号Bとを生成するアナログの手段である。
微細内挿手段44は、所望の分解能を得るために、角度2π/2m の2m 個の上記扇形Pi の各々を角度2π/2n の2n-m 個の同じサブ扇形に細分するようにコード化された、(n−m)個のディジタル信号b1 ,b2 ,……,b n-m-1,bn-m を生成するために、2m 個の扇形Pi の各々において、上記マルチプレクサ手段43から生成される上記一方の信号Aと上記他方の信号Bとを微細内挿する手段である。
この逓倍回路12によって、磁気センサ11で得られた2相の信号sin,cos が、逓倍信号である(n−m)個のディジタル信号b1 ,b2 ,……,b n-m-1,bn-m (ここではb1 ,b2 ,……,b8 ,b9 )の回転パルスに逓倍される。
図4の構成において、回転パルス差分算出手段13は、前記各センサ側ユニット6,7の逓倍回路12が生成する回転パルスを計数して、これらの計数値の差分を求める手段である。この回転パルス差分算出手段13は、一方の回転検出器8側の逓倍回路12が生成する回転パルスを計数する第1のカウンタ14と、他方の回転検出器9側の逓倍回路12が生成する回転パルスを計数する第2のカウンタ15と、これら両カウンタ14,15の計数値の差分を算出する角度差算出手段16とを備える。
軸トルク演算手段17は、前記回転パルス差分算出手段16によって求められた差分からドライブシャフト1のねじれ量を測定し、そのねじれ量から軸トルクを演算する手段である。
出力回路18は、前記軸トルク演算手段17で求められた軸トルクを外部に出力する手段である。
コントローラ19は、オフセットキャンセル手段20と、計数値リセット手段21とを有する。オフセットキャンセル手段20は、前記回転パルス差分算出手段13により求められた回転パルスの差分と、自動車の制御部から送られてくる運転状態を示す所定のデータとから、前記軸トルク演算手段17により求められる軸トルクに含まれる定常オフセット分をキャンセルする手段である。計数値リセット手段21は、前記回転パルス差分算出手段13におけるカウンタ14,15が計数する計数値を、軸トルクの印加されていない運転状態においてリセットする手段である。
上記構成の軸トルク測定装置を用いた軸トルク測定方法を説明する。
自動車の急発進、急加速時においては、駆動系統に発生する軸トルクは大きく、四輪および二輪車の駆動系統の中でクラッチ部を除く最も剛性の低いところはドライブシャフトである。そのため、ドライブシャフト1はねじられる。このねじり角度を磁気センサ11などからなるセンサ側ユニット6,7からの回転パルスに基づいて演算し、軸トルクを求める。
具体的には、図4の各回転検出器8,9では、図5のように、各センサターゲット4,5の回転位置を磁気センサ11で検出し、この磁気センサ11が出力する回転信号を逓倍回路12で逓倍して高分解能な回転パルスを生成する。すなわち、センサターゲット4,5を磁気エンコーダとしたこの実施形態の場合、磁気センサ11と逓倍回路12とでなるセンサ側ユニット6,7(図5)は、センサターゲット4,5である磁気エンコーダの磁極数の数倍〜数十倍の回転パルスを生成する逓倍機能を備えている。これにより、ドライブシャフト1の回転を高分解能に検出することができる。この場合、センサターゲット(磁気エンコーダ)4,5の磁極ピッチを通常のABSセンサなどと同等(1〜3mm程度の極幅)に保ちながら、磁極数の数倍〜数十倍の高分解能で回転検出が可能になるため、センサギャップなど取付け公差を従来と同等(例えば0.5〜2mm程度のセンサギャップ)に保ちながら、自動車のような過酷な使用環境でも高分解能を得ることができる。したがって、わずかな回転ずれをも検出することが可能となり、両センサ側ユニット6,7の検出する回転角度の差から微小な軸トルクをも検出することが可能となる。
車輪用軸受50側に設けた回転検出器9は、車輪の回転センサとしても機能するため、軸トルク検出用と、従来のABS制御用、またはより高度な車輪の回転検出用とに兼用でき、コスト、重量、スペースの削減が可能となる。
また,各センサ側ユニット6,7の逓倍回路12のうち、いずれか1つの逓倍回路12の生成する回転パルスは、互いに90°位相の異なるA相およびB相の2つのパルス信号であっても良い。この場合、これら2相の信号によって回転方向を判別することができるため、正負のどちらの方向の軸トルクをも検出することが可能となる。また、坂道での運転における微小な前進や後戻りなども、回転方向と共に軸トルクを検出することができるので、条件に応じた最適なブレーキ制御やトルク制御により、車両の運転しやすさを向上させることが可能となる。
前記回転検出器8,9からの出力である回転パルスは、それぞれカウンタ14,15で計数されて、それぞれの角度計数値に保持される。この場合、回転パルスが上記したAB相信号のような位相差信号であれば、正負の回転方向のどちらにも対応できるため、より都合が良い。角度差算出手段16は、各カウンタ14,15に保持されている計数値の差を算出する。軸トルク演算手段17は、算出された回転パルスの差分値からドライブシャフト1のねじれ量を測定し、予め設定されたパラメータにしたがって前記ねじれ量に対応する軸トルクを演算する。得られた軸トルク値は、出力回路18によって、電圧値、電流値、PWM信号、あるいはCANバスなどの通信インタフェースを通じたデータ形式として外部に出力される。
このように、各回転検出器8,9から出力される回転パルスから演算して軸トルクを求めるので、先に従来例として挙げた信号位相差を検出する方法では不可能であった、ホイールの片方が停止している状態での軸トルク検出も可能である。
前記2つの回転検出器8,9の各センサ側ユニット6,7は互いに異なる分解能であっても良い。この場合、図4の2つのカウンタ14,15は異なる速度で変化することになるので、各計数値の差分を求める前に、両者の公倍数になるように各計数値に定数を掛け算し、変化速度を同じになるようにしてやれば良い。
このように回転パルスを計数し、ドライブシャフト1の現在回転角度を計数値として保持する方法においては、車輪用軸受50側における等速ジョイント3と内方部材52との結合部分(例えばスプライン結合される場合にはスプライン結合部分)や、等速ジョイント2,3の内部に存在する機械的なガタによって計数値に定常オフセットが発生したり、ノイズによる誤カウントによって両カウンタ14,15の計数値がずれたりして、軸トルク演算に誤差が生じることがある。そこで、この実施形態では、コントローラ19におけるオフセットキャンセル手段20が、軸トルク演算手段17のトルク出力値すなわち角度差をモニタしながら、例えば車両走行制御装置から別途与えられる運転状態に関するデータ(加減速状態、エンジン回転数など)に応じたフィルタ処理を行なって定常オフセット分を抽出して、軸トルク演算手段17での演算処理においてオフセットを除去する。これにより、機械的ガタなどによって発生するオフセットの影響を低減して、正確な軸トルクを検出することができる。
また、この実施形態では、コントローラ19における計数値リセット手段21が、軸トルクの印加されていない運転状態のタイミングで、定期的にカウンタ14,15をリセットする処理を行う。このほか、カウンタ14,15に積算された誤カウント値をリセットするようにしても良い。これにより、カウンタ14,15に積算されたノイズの影響などを除去して、正確な軸トルクを検出することができる。なお、回転検出器8,9から出力される回転パルスが、ABZ信号のようにインデックス信号Zを備えている場合には、ノイズなどによる誤カウントは1回転に1回リセットされるため、前記計数値リセット手段21からリセット指令を出さなくても良い。
このように、このドライブシャフトの軸トルク測定方法によると、ドライブシャフト1の微小なねじれ角を高分解能に検出できるため、軸トルクを正確に検出でき、最適な印加トルクをタイヤに供給するような車両走行制御も可能になる。これにより、ドライブシャフト1の軽量化にも貢献できる。また、回転パルスを計数する検出方式のため、2つのセンサターゲット5,6のうち一方が止まっていても検出することができる。したがって、例えば自動車のスタート時にエンジントルクがタイヤを通じて路面に伝わる状態の検出も可能になり、高度なエンジン制御、クラッチ制御などにより、運転しやすさ、安全性の向上が可能となる。
図11および図12は、図1,図2における車輪用軸受50の他の例を示したものである。この例の車輪用軸受50は、いわゆる第3世代型のものである。内方部材52は、ハブ輪57と、このハブ輪57の軸部57aのインボード側部の外周に嵌合させた内輪58との2つの部材からなり、ハブ輪57の軸部57aおよび内輪58の外周に各列の転走面56がそれぞれ形成されている。ハブ輪57の軸部57aは、内部に等速ジョイント外輪3a(図1,図2参照)のステム部3abを挿通させる中心孔57cを有している。内輪58は、ハブ輪57の軸部57aに形成された段差部内に嵌合し、軸部57aのインボード側端に設けられた加締部57aaによりハブ輪57に対して固定されている。その他の構成は、図1および図2の例と同様であり、センサターゲットとなる磁気エンコーダ5もラジアルタイプとされている。
センサ側ユニット7は、センサ取付孔63にほぼ嵌合する外の軸状の挿入部7aと、非挿入部である頭部7bとを有し、頭部7bは外方部材51の外周面に接して配置される。頭部7bからケーブル22が引き出されいる。上記挿入部7aおよび頭部7bは、例えば弾性部材等で構成される。
図13および図14は、図11および図12に示した車輪用軸受50において、回転検出器9として、そのセンサターゲット(磁気エンコーダ)5と磁気センサ11の対向方向をアキシアル方向とした図7の例のものを搭載したものである。その他の構成は、図11および図12の例と同様である。
図15および図16も、図11および図12に示した車輪用軸受50において、回転検出器9として、そのセンサターゲット5である磁気エンコーダと磁気センサ11の対向方向をアキシアル方向とした図7の例のものを搭載したものである。回転検出器9のセンサ側ユニット7は、外方部材51のインボード側端にセンサ取付部材72を介して取り付けている。センサ取付部材72は、外方部材51の外周面に嵌合して端面に当接するリング状の金属板であり、周方向の一部に、センサ側ユニット7を取付けるセンサ取付片72aを有している。センサターゲット(磁気エンコーダ)5は内輪58の外周に嵌合させて、インボード側の密封装置61の一部を兼ねるものとされる。
この構成の場合、外方部材51に、前記各例の場合のようなセンサ取付孔63が設けられないため、センサ取付孔からの水の浸入の問題がない。その他の構成は、図11および図12の例と同様である。
図17および図18は、図15および図16に示した例において、インボード側の軸受空間の密封装置61を、センサターゲット(磁気エンコーダ)5よりも外部に配置したものである。すなわち、外方部材51に取り付けられた環状のセンサ取付部材72と内輪58との間に、接触シール等からなる密封装置61を設けている。
この構成の場合、センサターゲット(磁気エンコーダ)5が密封装置61により、外部空間に対して密封され、センサターゲット5とセンサ側ユニット7との間に異物を噛み込むこと等が防止される。その他の構成は、図11および図12の例と同様である。
この発明の一実施形態にかかるドライブシャフトの軸トルク測定装置を適用する車輪駆動用ユニットの縦断面図である。 同車輪用軸受ユニットにおける車輪用軸受側部分の拡大断面図である。 同車輪用軸受側部分の他の構成例を示す拡大断面図である。 軸トルク測定装置の概略構成を示すブロック図である。 同軸トルク測定装置における回転検出器の概略構成を示すブロック図である。 (A)は同軸トルク測定装置におけるセンサターゲットの一構成例を示す半部断面図、(B)は同センサターゲットの斜視図である。 (A)は同軸トルク測定装置におけるセンサターゲットの他の構成例を示す半部断面図、(B)は同センサターゲットの斜視図である。 同軸トルク測定装置における磁気センサの一構成例の説明図である。 同軸トルク測定装置における磁気センサの他の構成例の説明図である。 同軸トルク測定装置における逓倍回路の一構成例を示すブロック図である。 車輪駆動用ユニットにおける車輪用軸受の他の例を示す縦断面図である。 同車輪用軸受をインボード側から見た側面図である。 車輪駆動用ユニットにおける車輪用軸受のさらに他の例を示す縦断面図である。 同車輪用軸受をインボード側から見た側面図である。 車輪駆動用ユニットにおける車輪用軸受のさらに他の例を示す縦断面図である。 同車輪用軸受をインボード側から見た側面図である。 車輪駆動用ユニットにおける車輪用軸受のさらに他の例を示す縦断面図である。 同車輪用軸受をインボード側から見た側面図である。
符号の説明
1…ドライブシャフト
2,3…等速ジョイント
2a…等速ジョイントの外輪
4,5…センサターゲット
6,7…センサ側ユニット
8,9…回転検出器
11…磁気センサ
11A,11B…磁気センサ素子
11a…センサ素子
11AA,11AB…ラインセンサ
12…逓倍回路
13…回転パルス差分算出手段
17…軸トルク演算手段
20…オフセットキャンセル手段
21…計数値リセット手段
50…車輪用軸受
52…内方部材(回転側部材)

Claims (8)

  1. 両端にて等速ジョイントを介して自動車の駆動系統に接続されるドライブシャフトにおけるディファレンシャル側の等速ジョイントの外輪と、前記ドライブシャフトが等速ジョイントを介して連結される車輪用軸受の回転側部材とにセンサターゲットを設けると共に、これら各センサターゲットに対向して、各センサターゲットの回転を検出するセンサを設け、これらのセンサの出力比較によりドライブシャフトの軸トルクを求めるドライブシャフトの軸トルク測定装置であって、
    前記各センサは、対向する前記各センサターゲットの回転を直接検出する磁気センサと、この磁気センサが出力する回転信号を逓倍して高分解能な回転パルスを生成する逓倍回路とを有するものとし、前記各センサの逓倍回路が生成する回転パルスを計数して、これらの計数値の差分を求める回転パルス差分算出手段と、前記差分からドライブシャフトのねじれ量を測定して軸トルクを求める軸トルク演算手段とを設け、前記回転パルス差分算出手段は、前記各逓倍回路が生成する回転パルスを計数する複数のカウンタを有し、これらのカウンタによる計数値を前記各センサターゲットの1回転に1回リセットする機能を有することを特徴とするドライブシャフトの軸トルク測定装置。
  2. 請求項1において、前記等速ジョイントおよび車輪用軸受の回転側部材に設けられた各センサターゲットが前記等速ジョイントの外輪および車輪用軸受の回転側部材と同心のリング状に設けられた磁気エンコーダであり、前記磁気センサが、前記磁気エンコーダの磁極ピッチ内で互いにずれた位置に配置された複数のセンサ素子を有し、sin および cosの2相の信号出力を得られるものであって、前記逓倍回路が生成する回転パルスは、前記磁極内における位置を逓倍して検出するものであるドライブシャフトの軸トルク測定装置。
  3. 請求項1において、前記等速ジョイントおよび車輪用軸受の回転側部材に設けられた各センサターゲットが前記等速ジョイントの外輪および車輪用軸受の回転側部材と同心のリング状に設けられた磁気エンコーダであり、前記磁気センサが、前記磁気エンコーダの磁極の並び方向に沿ってセンサ素子が並ぶラインセンサで構成され、sin, cosの2相の信号出力を演算によって生成するものであって、前記逓倍回路が生成する回転パルスは、前記磁極内における位置を逓倍して検出するものであるドライブシャフトの軸トルク測定装置。
  4. 請求項1ないし請求項3のいずれか1項において、前記各センサの逓倍回路の生成する回転パルスが、互いに90°位相の異なるA相およびB相の2つのパルス信号であるドライブシャフトの軸トルク測定装置。
  5. 請求項1ないし請求項4のいずれか1項において、前記回転パルス差分算出手段により求められた回転パルスの差分と、運転状態を示す所定のデータとから、前記軸トルク演算手段により求められる軸トルクに含まれる定常オフセット量を推定して、前記軸トルクからオフセット分をキャンセルするオフセットキャンセル手段を設けたドライブシャフトの軸トルク測定装置。
  6. 請求項1ないし請求項5のいずれか1項において、前記回転パルス差分算出手段が計数する計数値を、軸トルクの印加されていない運転状態においてリセットする計数値リセット手段を設けたドライブシャフトの軸トルク測定装置。
  7. 請求項1ないし請求項6のいずれか1項に記載の軸トルク測定装置を、車輪用軸受およびドライブシャフトを備える車輪駆動用ユニットに搭載した軸トルク測定装置付き車輪駆動用ユニット。
  8. 両端にて等速ジョイントを介して自動車の駆動系統に接続されるドライブシャフトにおけるディファレンシャル側の等速ジョイントの外輪と、前記ドライブシャフトが等速ジョイントを介して連結される車輪用軸受の回転側部材とにセンサターゲットを設け、これら各センサターゲットに対向して設けたセンサで各センサターゲットの回転を検出し、これらのセンサの出力比較によりドライブシャフトの軸トルクを求めるドライブシャフトの軸トルク測定方法であって、
    前記各センサによる各センサターゲットの回転検出は、対向する前記各センサターゲットの回転を磁気センサで直接検出し、この磁気センサが出力する回転信号を逓倍回路で逓倍して高分解能な回転パルスを生成するものとし、前記各センサの逓倍回路が生成する回転パルスを計数して、これらの計数値の差分を求め、前記差分からドライブシャフトのねじれ量を測定して軸トルクを求め、前記各逓倍回路で生成した回転パルスの計数値を、前記各センサターゲットの1回転に1回リセットすることを特徴とするドライブシャフトの軸トルク測定方法。
JP2007267481A 2007-10-15 2007-10-15 ドライブシャフトの軸トルク測定装置および測定方法 Active JP5242120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267481A JP5242120B2 (ja) 2007-10-15 2007-10-15 ドライブシャフトの軸トルク測定装置および測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267481A JP5242120B2 (ja) 2007-10-15 2007-10-15 ドライブシャフトの軸トルク測定装置および測定方法

Publications (2)

Publication Number Publication Date
JP2009097895A JP2009097895A (ja) 2009-05-07
JP5242120B2 true JP5242120B2 (ja) 2013-07-24

Family

ID=40701046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267481A Active JP5242120B2 (ja) 2007-10-15 2007-10-15 ドライブシャフトの軸トルク測定装置および測定方法

Country Status (1)

Country Link
JP (1) JP5242120B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557961B2 (ja) * 2014-11-13 2019-08-14 日本精工株式会社 回転装置
JP2017223528A (ja) * 2016-06-15 2017-12-21 Ntn株式会社 トルク検出装置
JP2023011354A (ja) * 2021-07-12 2023-01-24 ミネベアミツミ株式会社 トルク測定装置、トルク測定装置用の磁界発生装置、および、トルク測定装置用の磁界検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142221A (ja) * 1985-12-17 1987-06-25 Nippon Gakki Seizo Kk エンコ−ダ用変位検出装置
JPH0552583A (ja) * 1991-08-28 1993-03-02 Mitsubishi Electric Corp 磁気エンコーダ
FR2795507B1 (fr) * 1999-06-24 2001-08-03 Roulements Soc Nouvelle Capteur de couple a barrette de hall
JP2003130686A (ja) * 2001-10-22 2003-05-08 Sankyo Seiki Mfg Co Ltd 位置検出装置
JP2004069332A (ja) * 2002-08-01 2004-03-04 Nsk Ltd 車輪駆動用ユニット
JP2006010477A (ja) * 2004-06-25 2006-01-12 Ntn Corp 荷重センサ内蔵車輪用軸受装置
JP2007093407A (ja) * 2005-09-29 2007-04-12 Ntn Corp ドライブシャフトの軸トルク測定方法および測定装置

Also Published As

Publication number Publication date
JP2009097895A (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5207703B2 (ja) ドライブシャフトの軸トルク測定装置および測定方法
JP5450948B2 (ja) 回転検出装置付き車輪用軸受
EP3321640B1 (en) Rotation detecting device and bearing equipped with rotation detecting device
US9206850B2 (en) Sensor-equipped bearing device for wheel having integrated in-wheel motor
JP4277799B2 (ja) 車両制御システム
WO2011010593A1 (ja) 車両制御装置およびこれに用いる回転検出装置
WO2007029512A1 (ja) センサ付車輪用軸受
JP2006057817A (ja) センサ付車輪用軸受装置
JP5242120B2 (ja) ドライブシャフトの軸トルク測定装置および測定方法
JP2007183247A (ja) 荷重測定装置付回転支持装置
JP5242122B2 (ja) ドライブシャフトの軸トルク測定装置および測定方法
WO2010147004A1 (ja) タイヤ空気圧監視システム
US7336067B2 (en) Sensor assembly, sealing device, and roller bearing apparatus for vehicles having integrated connector and ring
JP5242117B2 (ja) ドライブシャフトの軸トルク測定装置・測定方法
JP2007093407A (ja) ドライブシャフトの軸トルク測定方法および測定装置
JP5566060B2 (ja) 車両制御装置
JP2012173258A (ja) トルク測定装置およびこれを搭載したステアリング装置
JP4269669B2 (ja) 転がり軸受ユニット用荷重測定装置
JP2009052935A (ja) 回転検出装置付き車輪用軸受
JP2006057818A (ja) センサ付車輪用軸受装置
JP2009103478A (ja) ドライブシャフトの軸トルク測定装置および測定方法
KR20050101549A (ko) 센서 조립체, 시일 장치 및 차량용 구름 베어링 장치
JP4821331B2 (ja) 転がり軸受ユニットの変位測定装置及び転がり軸受ユニットの荷重測定装置
JP5194879B2 (ja) 物理量測定装置付転がり軸受ユニット
JP2011080765A (ja) トルク測定装置およびこれを搭載したステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250