WO2017217267A1 - Electric current sensor - Google Patents

Electric current sensor Download PDF

Info

Publication number
WO2017217267A1
WO2017217267A1 PCT/JP2017/020740 JP2017020740W WO2017217267A1 WO 2017217267 A1 WO2017217267 A1 WO 2017217267A1 JP 2017020740 W JP2017020740 W JP 2017020740W WO 2017217267 A1 WO2017217267 A1 WO 2017217267A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
magnetic
phase
current sensor
magnetic shield
Prior art date
Application number
PCT/JP2017/020740
Other languages
French (fr)
Japanese (ja)
Inventor
卓馬 江坂
江介 野村
亮輔 酒井
達明 杉戸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016226096A external-priority patent/JP6536544B2/en
Priority claimed from JP2016240590A external-priority patent/JP6536553B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/088,470 priority Critical patent/US10746821B2/en
Priority to CN201780036909.4A priority patent/CN109313223B/en
Publication of WO2017217267A1 publication Critical patent/WO2017217267A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present disclosure relates to a current sensor that detects a magnetic flux generated from a current path and performs magnetoelectric conversion, and a current sensor that detects a magnetic field generated from the current path and converts it into an electric signal, and detects a current flowing through the current path. Is.
  • the current detection system includes a magnetic plate, a bus bar corresponding to these, and a semiconductor substrate.
  • a magnetoelectric conversion element that converts magnetic flux into an electric signal is formed on the semiconductor substrate.
  • the current detection system is arranged such that two sets of magnetic plates are adjacent to each other. A bus bar and a semiconductor substrate are disposed between the opposing magnetic plates in each set. Therefore, in the current detection system, the magnetic plate disposed opposite to the one bus bar and the semiconductor substrate and the magnetic plate disposed opposite to the other bus bar and the semiconductor substrate are separated. For this reason, there is a possibility that the current detection system generates a leakage magnetic field from the end of the magnetic plate.
  • the magnetic plate of the current detection system when the magnetic plate of the current detection system is magnetically saturated, it is magnetically saturated from the surface on the side facing the semiconductor substrate. For this reason, in the current detection system, a leakage magnetic field from the magnetic plate due to magnetic saturation may easily affect the magnetoelectric conversion element.
  • the current detection system is arranged so that three sets of magnetic plates (hereinafter referred to as magnetic shields) are adjacent to each other.
  • a bus bar and a semiconductor substrate are arranged between the magnetic shields arranged to face each other. Therefore, in the current detection system, adjacent magnetic shields are separated.
  • a pair of magnetic shields, a bus bar sandwiched between the pair of magnetic shields, and a semiconductor substrate are also referred to as phases. Therefore, it can be said that the current detection system has three phases arranged next to each other.
  • One of the opposed magnetic shields is also called an upper shield and the other is also called a lower shield.
  • the present disclosure has as its first object to provide a current sensor that can suppress the leakage magnetic field and can suppress the influence of the leakage magnetic field due to magnetic saturation, and secondly to provide a current sensor that can detect a current with high accuracy. The purpose.
  • the current sensor detects a magnetic flux generated from the current path and performs a magnetoelectric conversion, and is disposed around the magnetic detection element, and is external to the magnetic detection element. And at least two magnetic shields for shielding magnetic flux.
  • the at least two magnetic shields have a first magnetic shield and a second magnetic shield arranged to face each other while sandwiching the magnetic detection element and the current path. At least one of the first magnetic shield and the second magnetic shield has at least two base portions and a connecting portion connecting at least two base portions, and the other first magnetic shield and second magnetic shield. A recess that is recessed from the periphery is formed on the opposite surface.
  • the current sensor is formed by connecting the two base portions of the magnetic shield by the connecting portion, the leakage magnetic field from the end portion of the base portion can be suppressed. That is, the current sensor can suppress the leakage magnetic field from the end portion of the base portion, compared to the case where the two base portions are not connected by the connecting portion and are divided.
  • the current sensor since the current sensor has a recess formed in the magnetic shield, the magnetic flux generated from the current path can flow on the surface of the magnetic shield opposite to the facing region side. For this reason, in the current sensor, the side opposite to the facing region side in the magnetic shield, that is, the side far from the magnetic detection element in the magnetic shield is likely to be magnetically saturated. Therefore, the current sensor can suppress the leakage magnetic field due to the magnetic saturation of the magnetic shield from affecting the magnetic detection element.
  • the current sensor is a current sensor that individually detects a current flowing through each of the plurality of current paths, and is disposed to face one current path and is generated from the current path.
  • a magnetic detection element that detects and converts the magnetic detection element into an electric signal, and shields a magnetic field from the outside with respect to the magnetic detection element, and a pair of first shields disposed opposite to each other while sandwiching the current path and the magnetic detection element
  • a plurality of phases having a magnetic shield part including a second shield corresponding to each of a plurality of current paths.
  • the first shield, the current path, the magnetic detection element, and the second shield are laminated in this order in the lamination direction, and are arranged in the arrangement direction orthogonal to the lamination direction.
  • an end phase in the arrangement direction is an end phase
  • a first shield in the end phase is a first end phase shield
  • a second shield in the end phase is a second end phase shield
  • At least one of the first end-phase shield and the second end-phase shield has a leakage magnetic field from one end direction of one of the first end-phase shield and the second end-phase shield that is higher than that of the end-phase detection element.
  • a magnetic field exchange unit is provided for exchanging the magnetic field between the first end-phase shield and the second end-phase shield so that the other of the one-end phase shield and the second end-phase shield can be easily reached.
  • At least one of the first end-phase shield and the second end-phase shield includes the magnetic field exchange unit. Accordingly, the present disclosure provides that the leakage magnetic field from the extreme end portion in the arrangement direction of the first end-phase shield and the second end-phase shield is opposite to the end-phase detection element, and the other end-side first end-phase shield is disposed. And it becomes easy to reach the second terminal phase shield. For this reason, the present disclosure can suppress the leakage magnetic field from reaching the end phase detection element and can detect the current with high accuracy.
  • the current sensor is a current sensor that individually detects a current flowing through each of the plurality of current paths, and is arranged to face one current path and generate a magnetic field generated from the current path.
  • a magnetic detection element that detects and converts the magnetic detection element into an electric signal, and shields a magnetic field from the outside with respect to the magnetic detection element, and a pair of first shields disposed opposite to each other while sandwiching the current path and the magnetic detection element
  • a plurality of phases having a magnetic shield part including a second shield corresponding to each of a plurality of current paths. In each phase, the first shield, the current path, the magnetic detection element, and the second shield are laminated in this order in the lamination direction, and are arranged in the arrangement direction orthogonal to the lamination direction.
  • an end phase in the arrangement direction is an end phase
  • a first shield in the end phase is a first end phase shield
  • a second shield in the end phase is a second end phase shield
  • the magnetic shield portion is continuously provided at the end portion in the arrangement direction of the first end-phase shield and the second end-phase shield in order to exchange the magnetic field between the first end-phase shield and the second end-phase shield,
  • a magnetic field exchanging unit is provided in which the one end phase shield and the second end phase shield are integrated.
  • the first end-phase shield and the second end-phase shield are continuously provided at the end portions in the arrangement direction of the first end-phase shield and the second end-phase shield. Is provided as a single unit.
  • the present disclosure can reduce the occurrence of a leakage magnetic field from the end portions in the arrangement direction of the first end-phase shield and the second end-phase shield. For this reason, the present disclosure can suppress the leakage magnetic field from reaching the end phase detection element and can detect the current with high accuracy.
  • the three directions orthogonal to each other are referred to as an X direction, a Y direction, and a Z direction.
  • a plane defined by the X direction and the Y direction is an XY plane
  • a plane defined by the X direction and the Z direction is an XZ plane
  • a plane defined by the Y direction and the Z direction is a YZ plane.
  • the current sensor 100 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the current sensor 100 is used for inverter control of a vehicle-mounted motor, for example.
  • the current sensor 100 detects a current to be detected flowing in the bus bars 210 and 220 connected to the in-vehicle battery that supplies power to the in-vehicle motor for inverter control.
  • Bus bars 210 and 220 correspond to current paths.
  • the current sensor 100 is used in, for example, an electric vehicle or a hybrid vehicle. Moreover, the current sensor 100 can employ, for example, a coreless current sensor that does not require a magnetic core.
  • the current sensor 100 includes a first magnetic detection element 11, a second magnetic detection element 12, a first magnetic shield 21, and a second magnetic shield 22.
  • Each of the first magnetic detection element 11 and the second magnetic detection element 12 includes, for example, a sensor chip, a bias magnet, and a circuit chip mounted on a substrate, and these are sealed with a sealing resin body and connected to the circuit chip.
  • a sealing resin body A configuration in which the lead is exposed to the outside of the sealing resin body can be employed.
  • the sensor chip for example, a giant magnetoresistive element (GMR), an anisotropic magnetoresistive element (AMR), a tunnel magnetoresistive element (TMR), or a Hall element can be adopted.
  • the first magnetic detection element 11 and the second magnetic detection element 12 are arranged side by side in the X direction. As shown in FIG. 2, the first magnetic detection element 11 is disposed to face the first bus bar 210 in the Z direction. On the other hand, the second magnetic detection element 12 is disposed to face the second bus bar 220 in the Z direction.
  • the Z direction can also be referred to as the thickness direction of the magnetic shields 21 and 22.
  • Each of the first magnetic shield 21 and the second magnetic shield 22 is made of a magnetic material and prevents the external magnetic field from passing through the magnetic detection elements 11 and 12.
  • the first magnetic shield 21 and the second magnetic shield 22 are provided in common to the magnetic detection elements 11 and 12.
  • the first magnetic shield 21 and the second magnetic shield 22 are plate-like members.
  • the first magnetic shield 21 and the second magnetic shield 22 are opposed to each other with a gap in the Z direction.
  • the first magnetic shield 21 and the second magnetic shield 22 are arranged so as to sandwich the magnetic detection elements 11 and 12 and the bus bars 210 and 220 in the Z direction. Therefore, it can be said that the magnetic detection elements 11 and 12 are arranged in a region where the first magnetic shield 21 and the second magnetic shield 22 face each other.
  • the first magnetic shield 21 and the second magnetic shield 22 have different shapes.
  • the second magnetic shield 22 is a plate-shaped plate member.
  • the second magnetic shield 22 has a surface facing the first magnetic shield 21 and a surface opposite to the facing surface.
  • the opposing surface and the opposite surface of the second magnetic shield 22 are flat surfaces. Further, the thickness of the second magnetic shield 22 in the Z direction is uniform over the entire area. It can be said that the opposite surface of the second magnetic shield 22 is the outer surface of the second magnetic shield 22.
  • the second magnetic shield 22 having a rectangular outer shape on the opposite surface and an outer surface on the opposite surface is employed.
  • the present disclosure is not limited to this.
  • the first magnetic shield 21 is a plate-like member having a recess 1 as shown in FIG. That is, the first magnetic shield 21 has the recess 1 that is recessed from the periphery. As shown in FIG. 1, the recess 1 is provided from one end of the first magnetic shield 21 in the Y direction to the other end, and can be said to be a groove. In addition, it can be said that the recess 1 is formed from one end of the first magnetic shield 21 to the other end along the direction of current flow in the bus bars 210 and 220.
  • the recess 1 is a hole with a bottom, and is not a hole that penetrates the first magnetic shield 21 in the Z direction.
  • the recess 1 is provided so as to be orthogonal to the magnetic flux flowing in the magnetic shields 21 and 22 when the detected current flows in the bus bars 210 and 220.
  • the flow of magnetic flux in a magnetic shield such as the first magnetic shield 21 can be referred to as a magnetic flow path.
  • the first magnetic shield 21 has a surface facing the second magnetic shield 22 and a surface opposite to the facing surface.
  • the opposite surface of the first magnetic shield 21 is a flat surface.
  • the opposing surface of the first magnetic shield 21 is a flat surface in which a part that is recessed in part is formed. That is, the recessed portion corresponds to the recess 1. Therefore, the first magnetic shield 21 is formed with the concave portion 1 opened on the side facing the second magnetic shield 22. It can be said that the opposite surface of the first magnetic shield 21 is the outer surface of the first magnetic shield 21.
  • the first magnetic shield 21 has the thick part 2 and the thin part 3.
  • the thick part 2 corresponds to a base part.
  • the thin portion 3 corresponds to a connecting portion.
  • the thick part 2 is a part where the thickness in the Z direction is thicker than the thin part 3.
  • the thin part 3 is sandwiched between two thick parts 2 and is provided continuously with the two thick parts 2. That is, the first magnetic shield 21 includes the thick part 2 facing the first magnetic detection element 11 and the thick part 2 facing the second magnetic detection element 12, and the two thick parts 2 are It is connected by the thin part 3.
  • the opposite surface of the first magnetic shield 21 is configured to be flush with the thick portion 2 and the thin portion 3.
  • the opposing surface of the first magnetic shield 21 differs in the position in the Z direction between the thick portion 2 and the thin portion 3. Therefore, it can be said that the concave portion 1 is a region opposed to the thin portion 3 and is sandwiched between the two thick portions 2. Further, it can be said that the first magnetic shield 21 is formed with a concave portion 1 which is recessed from the peripheral thick portion 2 and opened in the facing region at a position facing the thin portion 3.
  • the first magnetic shield 21 is provided with a recess 1 at a portion facing the middle between the first magnetic detection element 11 and the second magnetic detection element 12 when viewed from the Z direction. And preferred. That is, the recess 1 is provided at a portion facing the intermediate position between the two magnetic detection elements 11 and 12.
  • the distance X1 from the first magnetic detection element 11 to the recess 1 is approximately the same as the distance X2 from the second magnetic detection element 12 to the recess 1.
  • the current sensor 100 can suppress the influence of the leakage magnetic field on the magnetic detection elements 11 and 12 even when the leakage magnetic field is generated from the recess 1.
  • the position of the recess 1 is not limited to this.
  • the first magnetic shield 21 having a rectangular outer shape on the opposite surface and an outer surface on the opposite surface is employed.
  • the present disclosure is not limited to this.
  • the current sensor 100 is configured by assembling magnetic detection elements 11 and 12 and magnetic shields 21 and 22.
  • an assembly structure of each component of the current sensor 100 and the first bus bar 210 and the second bus bar 220 will be described.
  • the first bus bar 210 and the second bus bar 220 having a flat plate shape are employed.
  • the part extended in the Y direction in the 1st bus bar 210 and the 2nd bus bar 220 is shown in figure.
  • the 1st bus bar 210 and the 2nd bus bar 220 have the site
  • the detected current flows in the Y direction of the first bus bar 210 and the second bus bar 220 shown in FIG.
  • the current sensor 100 is assembled with the first bus bar 210 and the second bus bar 220 in order to detect the detected current flowing through the first bus bar 210 and the second bus bar 220.
  • the first magnetic shield 21 and the second magnetic shield 22 are disposed to face each other in the Z direction. In the region where the first magnetic shield 21 and the second magnetic shield 22 are opposed, the magnetic detection elements 11 and 12 and the bus bars 210 and 220 are disposed.
  • the first magnetic detection element 11 is disposed between the first bus bar 210 and the first magnetic shield 21 in the Z direction. Specifically, the first magnetic detection element 11 is disposed between the first bus bar 210 and one thick portion 2 of the first magnetic shield 21. In addition, the first magnetic detection element 11 is disposed with a space between the first bus bar 210 and the first magnetic shield 21.
  • the second magnetic detection element 12 is disposed between the second bus bar 220 and the first magnetic shield 21 in the Z direction. More specifically, the second magnetic detection element 12 is disposed between the second bus bar 220 and the other thick part 2 of the first magnetic shield 21. In addition, the second magnetic detection element 12 is disposed with a space between the second bus bar 220 and the first magnetic shield 21. In addition, the 2nd magnetic shield 22, the 1st bus bar 210, and the 2nd bus bar 220 are arrange
  • the first bus bar 210 and the first magnetic detection element 11 are arranged in the opposing region of one thick part 2.
  • the 2nd bus bar 220 is arrange
  • FIG. Therefore, the first magnetic detection element 11 and the second magnetic detection element 12 are arranged side by side in the X direction with the opposing region of the recess 1 interposed therebetween.
  • the first bus bar 210 and the second bus bar 220 are arranged side by side in the X direction across the opposing region of the recess 1.
  • each component of the current sensor 100 and the bus bars 210 and 220 are arranged and assembled in this way.
  • each component of the current sensor 100 and the bus bars 210 and 220 have an assembly structure fixed to a housing or the like.
  • the structure in which the bus bars 210 and 220, the magnetic detection elements 11 and 12, and the magnetic shields 21 and 22 are assembled can be referred to as a terminal block of the current sensor 100.
  • the detected current flows in the direction in which the bus bars 210 and 220 extend, that is, in the Y direction in FIG. Therefore, as shown in FIG. 2, the flow of the detected current in the Y direction generates a magnetic field according to the right-handed screw law on a plane orthogonal to the Y direction.
  • This magnetic field can also be referred to as a detected magnetic flux.
  • each of the first magnetic detection element 11 and the second magnetic detection element 12 converts the detected magnetic flux into an electrical signal. That is, the first magnetic detection element 11 converts the detected magnetic flux flowing through the first bus bar 210 into an electrical signal.
  • the second magnetic detection element 12 converts the detected magnetic flux flowing through the second bus bar 220 into an electrical signal. In this way, the current sensor 100 detects the detected current.
  • the case where the 1st bus bar 210 is an energized phase and the 2nd bus bar 220 is a detection phase is employ
  • the current sensor of the comparative example employed here is not provided with the thin portion 3, and has a thick portion 2 that faces the first magnetic detection element 11 and a thick portion 2 that faces the second magnetic detection element 12. It is different from the current sensor 100 in that it is disconnected. For this reason, the same code
  • the current sensor of the comparative example has a dotted arrow in FIG. 2 from the end of the thick portion 2 facing the first magnetic detection element 11 when a current flows through the first bus bar 210.
  • This end portion is an end portion on the thick portion 2 side facing the second magnetic detection element 12 in the thick portion 2 facing the first magnetic detection element 11.
  • the second magnetic detection element 12 on the detection phase side is affected by the leakage magnetic field.
  • the current sensor 100 of the comparative example may cause an error in the detection result of the second magnetic detection element 12.
  • the thick part 2 facing the first magnetic detection element 11 and the thick part 2 facing the second magnetic detection element 12 are connected via the thin part 3.
  • the leakage magnetic field can be reduced as compared with the current sensor of the comparative example. Therefore, the second magnetic detection element 12 is not easily affected by the leakage magnetic field when detecting the detected current. For this reason, the current sensor 100 can suppress the occurrence of an error in the detection result of the second magnetic detection element 12. That is, the current sensor 100 can improve the detection accuracy of the second magnetic detection element 12 as compared with the current sensor of the comparative example.
  • the current sensor 100 since the current sensor 100 is provided with the recess 1 in the first magnetic shield 21, the magnetic flux can flow on the outer surface of the first magnetic shield 21. That is, the current sensor 100 controls the magnetic flow path by providing the concave portion 1 in the first magnetic shield 21 so that the magnetic flux flows on the outer surface of the first magnetic shield 21.
  • the current sensor 100 the side opposite to the facing region side in the first magnetic shield 21, that is, the side far from the magnetic detection elements 11 and 12 in the first magnetic shield 21 is likely to be magnetically saturated. That is, the current sensor 100 can suppress magnetic saturation of the side near the magnetic detection elements 11 and 12 in the first magnetic shield 21. Therefore, the current sensor 100 can suppress the leakage magnetic field due to the magnetic saturation of the first magnetic shield 21 from affecting the magnetic detection elements 11 and 12.
  • the recess 1 is provided to control the magnetic flow path in the first magnetic shield 21. Therefore, the recessed part 1 can also be called a magnetic path control part.
  • the current sensor 100 including the two magnetic detection elements 11, 12, the first magnetic shield 21, and the second magnetic shield 22 is employed corresponding to the two-phase bus bars 210, 220.
  • the present disclosure is not limited to this, and may include three magnetic detection elements, a first magnetic shield 21, and a second magnetic shield 22 corresponding to a three-phase bus bar.
  • the 1st magnetic shield 21 is provided with two thin parts provided between the three thick parts which oppose each of three magnetic detection elements, and the adjacent thick part.
  • FIG. 3 is a cross-sectional view corresponding to FIG.
  • the current sensor 101 includes a first magnetic shield 21A and a second magnetic shield 22A. Since the first magnetic shield 21A is the same as the first magnetic shield 21, description thereof is omitted.
  • the second magnetic shield 22A is provided with a thick portion 2A and a thin portion 3A, similarly to the first magnetic shield 21.
  • the second magnetic shield 22 ⁇ / b> A is formed with a recess 1 ⁇ / b> A, similar to the first magnetic shield 21. That is, the second magnetic shield 22A includes a thick part 2A that faces the first bus bar 210, a thick part 2A that faces the second bus bar 220, and a thin part 3A that connects the two thick parts 2A. I have.
  • the thick part 2A can be said to be an opposing base part.
  • the thin portion 3A can be said to be an opposing connecting portion.
  • the current sensor 101 can achieve the same effects as the current sensor 100. Furthermore, since the second magnetic shield 22 ⁇ / b> A has the same configuration as the first magnetic shield 21, the same effect as that of the first magnetic shield 21 described above can be achieved. Therefore, the current sensor 101 can improve detection accuracy as compared with the current sensor 100. In addition, the current sensor 101 can easily maintain the shielding function of the second magnetic shield 22A, and can easily prevent the magnetic detection elements 11 and 12 from being affected by the magnetic saturation of the second magnetic shield 22A.
  • Modification 2 The current sensor 102 according to the second modification will be described with reference to FIG.
  • the current sensor 102 differs from the current sensor 100 in the structure of the first magnetic shield 21B.
  • 4 is a cross-sectional view corresponding to FIG.
  • the current sensor 102 includes a first magnetic shield 21B and a second magnetic shield 22B. Since the second magnetic shield 22B is the same as the second magnetic shield 22, description thereof is omitted.
  • the first magnetic shield 21 ⁇ / b> B includes two thick portions 2 and a thin portion 3 ⁇ / b> B connecting the two thick portions 2.
  • the thin portion 3B corresponds to a connecting portion.
  • the opposite surface and the opposite surface of the first magnetic shield 21B are flat surfaces in which a part that is recessed is formed. That is, the first magnetic shield 21 ⁇ / b> B is provided with the outer concave portion 1 ⁇ / b> B on the opposite side in addition to the concave portion 1.
  • the current sensor 102 can achieve the same effect as the current sensor 100.
  • the current sensor 103 according to the third modification will be described with reference to FIG.
  • the current sensor 103 is different from the current sensor 100 in the structure of the first magnetic shield 21C.
  • 5 is a cross-sectional view corresponding to FIG.
  • the current sensor 103 includes a first magnetic shield 21C and a second magnetic shield 22C. Since the second magnetic shield 22C is the same as the second magnetic shield 22, description thereof is omitted.
  • the first magnetic shield 21 ⁇ / b> C includes two thick portions 2 and a lid portion 3 ⁇ / b> C that connects the two thick portions 2.
  • the two thick portions 2 are connected by the lid portion 3C to form the recess 1.
  • the lid portion 3C corresponds to a connecting portion.
  • the lid 3 ⁇ / b> C has a thickness in the Z direction that is thinner than the thick portion 2.
  • the lid portion 3 ⁇ / b> C is connected to the opposite surfaces of the two thick portions 2.
  • the current sensor 103 can achieve the same effect as the current sensor 100.
  • the current sensor 104 according to the fourth modification will be described with reference to FIG.
  • the current sensor 104 is different from the current sensor 100 in the structure of the first magnetic shield 21D.
  • 6 is a cross-sectional view corresponding to FIG.
  • the current sensor 104 includes a first magnetic shield 21D and a second magnetic shield 22D. Since the second magnetic shield 22D is the same as the second magnetic shield 22, description thereof is omitted.
  • the first magnetic shield 21D includes two base portions 2D and a projecting portion 3D that connects the two base portions 2D.
  • the base portion 2D corresponds to the thick portion 2 of the above embodiment.
  • the protruding part 3D corresponds to a connecting part.
  • the protruding portion 3D protrudes on the opposite surface side with respect to the base portion 2D.
  • the protruding portion 3D is provided so as to protrude on the opposite side of the facing region in the first magnetic shield 21D.
  • the protruding portion 3D includes a portion including a portion thinner than the base portion 2D between the connecting portion with the one base portion 2D and the connecting portion with the other base portion 2D.
  • the thickness of the protrusion 3D is the thickness in the X direction at the portion extending in the Z direction and the thickness in the Z direction at the portion extending in the X direction. Therefore, the protrusion 3 ⁇ / b> D is a part having the same function as the thin part 3.
  • the first magnetic shield 21D has a recess 1 formed in the protrusion 3D.
  • the first magnetic shield 21 ⁇ / b> D can make the depth of the recess 1 in the Z direction deeper than the first magnetic shield 21.
  • the recess 1 is formed deeper than the thickness of the first magnetic shield 21. That is, in the first magnetic shield 21D, the length in the Z direction from the virtual plane along the facing surface to the bottom of the recess 1 is longer than the thickness in the Z direction of the base portion 2D.
  • the current sensor 104 can achieve the same effect as the current sensor 100. Furthermore, since the concave portion 1 is deeper than the concave portion 1 of the current sensor 100 in the current sensor 104, it is easy to place the component 30 in the concave portion 1. Further, when the electronic component 30 is disposed in the recess 1, the current sensor 104 has a mechanical shielding function for the electronic component 30, and does not need to protect the electronic component with a protective member such as a gel. Therefore, the current sensor 104 can reduce the number of manufacturing processes and can be expected to reduce the cost.
  • Modification 5 With reference to FIG. 7, the current sensor 105 of Modification 5 will be described.
  • the current sensor 105 is different from the current sensor 100 in the structure of the first magnetic shield 21E. 7 is a cross-sectional view corresponding to FIG.
  • the current sensor 105 includes a first magnetic shield 21E and a second magnetic shield 22E. Since the second magnetic shield 22E is the same as the second magnetic shield 22, the description thereof is omitted.
  • the first magnetic shield 21E includes two thick portions 2 and a thin portion 3B that connects the two thick portions 2. And the recessed part 1 is formed in the 1st magnetic shield 21E. More specifically, the first magnetic shield 21E has a recess 1 whose side wall is an inclined portion 1E. Therefore, the recessed area 1 of the first magnetic shield 21E has an opening area that increases from the bottom of the recessed section 1 toward the opening end.
  • the concave portion 1 of the first magnetic shield 21E is formed by pressing. Therefore, the 1st magnetic shield 21E can form the inclination part 1E by providing the metal mold
  • the current sensor 105 can achieve the same effect as the current sensor 100. Furthermore, since the side wall of the recessed part 1 is the inclined part 1E, the current sensor 105 can easily remove the mold from the recessed part 1 during press working.
  • FIG. 8 is a cross-sectional view corresponding to FIG.
  • the current sensor 106 includes a first magnetic shield 21F and a second magnetic shield 22F. Since the second magnetic shield 22F is the same as the second magnetic shield 22E, description thereof is omitted.
  • the first magnetic shield 21F includes two base portions 2F and a projecting portion 3F connecting the two base portions 2F.
  • the base portion 2F corresponds to the thick portion 2 of the above embodiment.
  • the protruding part 3F corresponds to a connecting part.
  • the 1st magnetic shield 21F has the recessed part 1 whose side wall is the inclined part 1F similarly to the 1st magnetic shield 21E.
  • the first magnetic shield 21F is different from the first magnetic shield 21E mainly in that the protruding portion 3F protrudes on the opposite surface side. Further, the concave portion 1 of the first magnetic shield 21F can be formed by pressing as in the fifth modification.
  • the current sensor 106 can achieve the same effect as the current sensor 105. Furthermore, the current sensor 106 can be easily manufactured by pressing because the protruding portion 3F protrudes on the opposite surface side.
  • FIG. 9 is a cross-sectional view corresponding to FIG.
  • the current sensor 107 includes a first magnetic shield 21G and a second magnetic shield 22G. Since the second magnetic shield 22F is the same as the second magnetic shield 22E, description thereof is omitted.
  • the first magnetic shield 21G has a recess 1 formed in the vicinity of the first bus bar 210 and in the vicinity of the second bus bar 220. Specifically, the recess 1 is formed at a position facing the first bus bar 210 and a position facing the second bus bar 220. That is, the recess 1 is formed at a position facing each of the magnetic detection elements 11 and 12.
  • the first magnetic shield 21 ⁇ / b> G is provided with a heat radiating gel 40 in the recess 1.
  • the heat radiating gel 40 corresponds to a heat radiating member.
  • the current sensor 107 can achieve the same effect as the current sensor 100. Further, the current sensor 107 is provided with a heat radiating gel 40 in the vicinity of the bus bars 210, 220 in the first magnetic shield 21G, here, at a position facing the bus bars 210, 220. For this reason, the current sensor 107 easily transfers the heat generated by the bus bars 210 and 220 to the first magnetic shield 21G via the heat dissipation gel 40. Furthermore, since the thermal sensor 40 is provided in the recessed part 1, the current sensor 107 can improve the mechanical strength of the first magnetic shield 21G as compared with the case where the recessed part 1 is a space.
  • the current sensor 107 may be provided with the concave portion 1 at a position facing the bus bars 210 and 220 in the second magnetic shield 22G, and the heat radiation gel 40 may be disposed in the concave portion 1. In this case, the current sensor 107 can further improve the heat dissipation. Moreover, the current sensor 107 can improve the mechanical strength of the second magnetic shield 22G by disposing the heat radiating gel 40 in the concave portion 1 as compared with the case where the concave portion is a space in the second magnetic shield 22G.
  • the current sensor 108 according to Modification 8 will be described with reference to FIGS. 10 and 11.
  • the current sensor 108 is different from the current sensor 100 in the structure of the first magnetic shield 21G.
  • Current sensor 108 is different from current sensor 100 in that it is configured as a four-phase sensor.
  • FIG. 10 is a cross-sectional view corresponding to FIG.
  • the current sensor 108 includes a first sensor block 108A, a second sensor block 108B, a third sensor block 108C, and a fourth sensor block 108D.
  • the current sensor 108 is configured by assembling a plurality of sensor blocks 108A to 108D. Further, it can be said that the current sensor 108 is modularized by connecting a plurality of sensor blocks 108A to 108D. Each of the sensor blocks 108A to 108D has the same configuration.
  • each of the sensor blocks 108A to 108D will be described with reference to FIG.
  • the first sensor block 108A will be described as a representative example.
  • the first sensor block 108A includes the magnetic detection element 11, the bus bar 210, the first magnetic shield 21H, the second magnetic shield 22H, and the sealing resin portion 50.
  • the bus bar 210 of the first sensor block 108A can be said to be the first bus bar 210 in which the current of the first phase flows. Further, it can be said that the magnetic detection element 11 of the first sensor block 108A is the first magnetic detection element 11 that detects the current of the first phase.
  • Each of the first magnetic shield 21H and the second magnetic shield 22H is made of a magnetic material.
  • the first magnetic shield 21H and the second magnetic shield 22H are configured as plate-like members orthogonal to the Z direction.
  • the first magnetic shield 21H and the second magnetic shield 22H are disposed to face each other with an interval in the Z direction.
  • first magnetic shield 21H and the second magnetic shield 22H are arranged so as to sandwich the magnetic detection element 11 and the bus bar 210 in the Z direction. Therefore, it can be said that the magnetic detection element 11 and the bus bar 210 are disposed in the opposing region of the first magnetic shield 21H and the second magnetic shield 22H.
  • the first magnetic detection element 11 faces the first magnetic shield 21H without the bus bar 210 interposed therebetween, and faces the second magnetic shield 22H with the bus bar 210 interposed therebetween.
  • the first magnetic shield 21H and the second magnetic shield 22H having the same shape are employed.
  • the first magnetic shield 21H and the second magnetic shield 22H are flat plate-like plate members.
  • the first magnetic shield 21H has a first opposing surface S2 that is an opposing surface to the second magnetic shield 22H, and a first opposing surface S1 that is an opposite surface of the first opposing surface S2.
  • the second magnetic shield 22H has a second opposing surface S4 that is an opposing surface to the first magnetic shield 21H, and a second opposing surface S3 that is an opposite surface of the second opposing surface S4.
  • the first opposite surface S1, the first opposite surface S2, the second opposite surface S3, and the second opposite surface S4 are flat surfaces. Further, the first magnetic shield 21H and the second magnetic shield 22H have a uniform thickness in the Z direction over the entire area.
  • the first magnetic detection element 11, the first bus bar 210, the first magnetic shield 21H, and the second magnetic shield 22H are integrally configured by the sealing resin portion 50.
  • the first magnetic detection element 11 and the first bus bar 210 are sealed with a sealing resin portion 50 in a state where the first magnetic detection element 11 and the first bus bar 210 are arranged in the opposing region of the magnetic shield 21H and the second magnetic shield 22H. Note that both ends of the first bus bar 210 in the Y direction are exposed from the sealing resin portion 50.
  • the magnetic shield 21H and the second magnetic shield 22H are fixed to the sealing resin portion 50.
  • the first magnetic shield 21H and the second magnetic shield 22H include regions where the sealing resin portion 50 is not formed at both ends in the X direction. This is because adjacent sensor blocks are connected by the first magnetic shield 21H and the second magnetic shield 22H.
  • the second sensor block 108B includes a second bus bar 220 through which a second-phase current flows as a bus bar, and a second magnetic detection element 12 that detects a second-phase current as a magnetic detection element.
  • the third sensor block 108C includes a third bus bar 230 through which a third-phase current flows as a bus bar, and a third magnetic detection element 13 that detects a third-phase current as a magnetic detection element.
  • the fourth sensor block 108D includes a fourth bus bar 240 through which a fourth-phase current flows as a bus bar, and a fourth magnetic detection element 14 that detects a fourth-phase current as a magnetic detection element.
  • the bus bars 230 and 240 correspond to current paths.
  • the current sensor 108 arranged in the order of the first sensor block 108A, the second sensor block 108B, the third sensor block 108C, and the fourth sensor block 108D is employed.
  • the current sensor 108 is assembled in a state where the second sensor block 108B and the fourth sensor block 108D are turned upside down with respect to the first sensor block 108A and the third sensor block 108C. Therefore, the current sensor 108 is assembled with a plurality of sensor blocks 108A to 108D so that the first magnetic shield 21H and the second magnetic shield 22H of adjacent sensor blocks are in contact with each other.
  • the first magnetic shield 21H of the first sensor block 108A and the second magnetic shield 22H of the second sensor block 108B are in contact with each other, and the second magnetic shield 22H of the first sensor block 108A and the second sensor block 108A are in contact.
  • the first magnetic shield 21H of 108B is in contact.
  • the current sensor 108 is in contact with the second facing surface S4 of the first sensor block 108A and the first opposite surface S1 of the second sensor block 108B, and the first opposite surface S1 of the first sensor block 108A and the second sensor block 108A.
  • 108B 2nd opposing surface S4 is assembled
  • the first magnetic shield 21H of the second sensor block 108B and the second magnetic shield 22H of the third sensor block 108C are in contact with each other, and the second magnetic shield 22H of the second sensor block 108B and the third sensor block 108B are in contact.
  • the first magnetic shield 21H of 108C is in contact.
  • the current sensor 108 is in contact with the first opposite surface S1 of the second sensor block 108B and the second opposite surface S4 of the third sensor block 108C, and the second opposite surface S4 of the second sensor block 108B and the third sensor block 108B.
  • 108C 1st opposing surface S1 is contact
  • the current sensor 108 is in contact with the first magnetic shield 21H of the third sensor block 108C and the second magnetic shield 22H of the fourth sensor block 108D, and the second magnetic shield 22H of the third sensor block 108C and the fourth sensor block 108C.
  • the first magnetic shield 21H of 108D is in contact.
  • the current sensor 108 is in contact with the second opposing surface S4 of the third sensor block 108C and the first opposite surface S1 of the fourth sensor block 108D, and the first opposite surface S1 of the third sensor block 108C and the fourth sensor block.
  • 108D 2nd opposing surface S4 is assembled
  • the current sensor 108 is integrated by connecting these contacting parts.
  • symbol 21H1 in FIG. 10 is a connection part in an upper magnetic shield.
  • reference numeral 22H1 is a connecting portion in the lower magnetic shield.
  • the magnetic shield in which the second magnetic shield 22H of the first sensor block 108A and the third sensor block 108C and the first magnetic shield 21H of the second sensor block 108B and the fourth sensor block 108D are integrated is an upper magnetic shield. It can be called a shield.
  • the magnetic shield in which the first magnetic shield 21H of the first sensor block 108A and the third sensor block 108C and the second magnetic shield 22H of the second sensor block 108B and the fourth sensor block 108D are integrated is the lower side. It can be called a magnetic shield.
  • the current sensor 108 is formed such that the second magnetic shield 22H of the first sensor block 108A or the third sensor block 108C is recessed with respect to the first magnetic shield 21H of the second sensor block 108B or the fourth sensor block 108D. .
  • the current sensor 108 is formed such that the second magnetic shield 22H of the second sensor block 108B or the fourth sensor block 108D is recessed with respect to the first magnetic shield 21H of the first sensor block 108A or the third sensor block 108C.
  • the sensor blocks 108A to 108D are assembled as described above, so that it can be said that the concave portion 1 recessed from the periphery is formed on the surface facing the other magnetic shield.
  • the current sensor 108 can achieve the same effect as the current sensor 100. That is, the current sensor 108 has a configuration in which adjacent sensor blocks, for example, the first sensor block 108A and the second sensor block 108B are connected by the first magnetic shield 21H and the second magnetic shield 22H. For this reason, the current sensor 108 can suppress the leakage magnetic field.
  • the current sensor 108 since the current sensor 108 is formed with the recess 1, a magnetic field is generated in the first magnetic shield 21 ⁇ / b> H and the second magnetic shield 22 ⁇ / b> H as indicated by a straight arrow extending in the X direction in FIG. 10. That is, the current sensor 108 can cause the magnetic flux to flow on the outer surface of the first magnetic shield 21H. In other words, the current sensor 108 can control the magnetic flow path so as to flow on the surface of the first magnetic shield 21H on the side far from the magnetic detection elements 11-14. For this reason, each of the magnetic detection elements 11 to 14 is not easily affected by the leakage magnetic field due to magnetic saturation.
  • each of the sensor blocks 108A to 108D has the same configuration. That is, the sensor blocks 108A to 108D are standardized. As described above, the current sensor 108 is configured by assembling the standardized sensor blocks 108A to 108D, so that the cost can be reduced. The current sensor 108 can also be implemented in combination with the modified example 7, and the heat radiating gel 40 may be embedded in the recess 1.
  • FIG. 12 is a cross-sectional view corresponding to FIG.
  • the current sensor 109 includes one first magnetic detection element 11, a first magnetic shield 21I, and a second magnetic shield 22I.
  • the first magnetic detection element 11 is located at a position facing the first bus bar 210 and is disposed in a facing region between the first magnetic shield 21I and the second magnetic shield 22I.
  • the first magnetic detection element 11 and the first bus bar 210 are arranged at a position where the central thick part 2 of the first magnetic shield 21I and the thick part 2A of the second magnetic shield 22I face each other. Has been.
  • the first magnetic shield 21I includes three thick portions 2 and two thin portions 3. Therefore, the first magnetic shield 21I has the recesses 1 formed in two places.
  • the second magnetic shield 22I is the same as the first magnetic shield 21I.
  • the concave portion 1 of the first magnetic shield 21I and the concave portion 1A of the second magnetic shield 22I are arranged to face each other.
  • the current sensor 109 is configured as a one-phase sensor.
  • the current sensor 109 has a recess 1 formed in the first magnetic shield 21I. For this reason, in the current sensor 109, the disturbance magnetic field flows on the outer surface of the first magnetic shield 21I. Therefore, like the current sensor 100, the current sensor 109 can suppress the influence of magnetic saturation from occurring in the first magnetic detection element 11. In addition, since the current sensor 109 has the recess 1A formed in the second magnetic shield 22I, it is possible to further suppress the influence of magnetic saturation on the first magnetic detection element 11.
  • the current sensor 109 may employ the second magnetic shield 22 or the second magnetic shield 22A instead of the second magnetic shield 22I.
  • FIG. 13 is a cross-sectional view corresponding to FIG.
  • the first magnetic shield 21J is formed by laminating a plurality of layers made of a magnetic material.
  • a first magnetic shield 21J in which a first surface layer 21J1, a first intermediate layer 21J2, and a first facing layer 21J3 are stacked is employed.
  • the first surface layer 21J1 is a single flat plate member.
  • the first intermediate layer 21J2 and the first opposing layer 21J3 are two flat plate members.
  • the thick part 2 of the first magnetic shield 21J is configured by laminating a first surface layer 21J1, a first intermediate layer 21J2, and a first opposing layer 21J3. Further, the thick part 2 of the first magnetic shield 21J is laminated in the order of the first facing layer 21J3, the first intermediate layer 21J2, and the first surface layer 21J1 from the second magnetic shield 22J side.
  • the thin portion 3 of the first magnetic shield 21J is not provided with the first opposing layer 21J3 and the first intermediate layer 21J2, but is constituted by the first surface layer 21J1. That is, in the first magnetic shield 21J, each of the first intermediate layer 21J2 and the first opposing layer 21J3 is divided in order to form the recess 1.
  • the second magnetic shield 22J is formed by laminating a plurality of layers made of a magnetic material.
  • a second magnetic shield 22J in which a second surface layer 22J1, a second intermediate layer 22J2, and a second opposing layer 22J3 are stacked is employed.
  • the layers 22J1 to 22J3 of the second magnetic shield 22J correspond to the layers 21J1 to 21J3 of the first magnetic shield 21J.
  • the current sensor 110 can achieve the same effect as the current sensor 101. Note that the current sensor 110 may employ the second magnetic shield 22 or the second magnetic shield 22A instead of the second magnetic shield 22J.
  • the current sensor 110 may use materials having different magnetic permeability between the first surface layer 21J1, the first intermediate layer 21J2, and the first opposing layer 21J3. Similarly, the current sensor 110 may use materials having different magnetic permeability between the second surface layer 22J1, the second intermediate layer 22J2, and the second facing layer 22J3.
  • the first surface layer 21J1 and the second surface layer 22J1 are made of a material having a magnetic permeability ⁇ A.
  • the first intermediate layer 21J2, the first counter layer 21J3, the second intermediate layer 22J2, and the second counter layer 22J3 are made of a material having a magnetic permeability ⁇ B.
  • the relationship between ⁇ A and ⁇ B is ⁇ A> ⁇ B.
  • the first surface layer 21J1 and the second surface layer 22J1 correspond to the outermost layer on the opposite side of the facing region.
  • the current sensor 110 configured in this way, magnetic flux is more likely to collect in the first surface layer 21J1 and the second surface layer 22J1 made of a material having low magnetic resistance than the other layers, and the other layers are less likely to be magnetically saturated. Become. That is, in the current sensor 110, the thick portions 2 and 2A are less likely to be magnetically saturated. Moreover, since the thin-walled portions 3 and 3A have a lower magnetic resistance than the thick-walled portions 2 and 2A, the leakage magnetic field in the recesses 1 and 1A can be suppressed.
  • the other layers are the first intermediate layer 21J2, the first counter layer 21J3, the second intermediate layer 22J2, and the second counter layer 22J3.
  • the current sensor 110 may use materials having different saturation magnetic flux densities in the first surface layer 21J1, the first intermediate layer 21J2, and the first opposing layer 21J3. Similarly, the current sensor 110 may use materials having different saturation magnetic flux densities in the second surface layer 22J1, the second intermediate layer 22J2, and the second facing layer 22J3.
  • the first surface layer 21J1 and the second surface layer 22J1 are made of a material having a saturation magnetic flux density BsA.
  • the first intermediate layer 21J2, the first counter layer 21J3, the second intermediate layer 22J2, and the second counter layer 22J3 are made of a material having a saturation magnetic flux density BsB.
  • the relationship between BsA and BsB is BsA> BsB.
  • the first surface layer 21J1 and the second surface layer 22J1 are less likely to be magnetically saturated than the other layers, so that a relatively large current flows through the first bus bar 210 and the second bus bar 220. Even in this case, the leakage magnetic field from the recesses 1 and 1A can be suppressed.
  • the current sensor 111 according to the modification 11 will be described with reference to FIG.
  • the current sensor 111 is different from the current sensor 110 in the configuration of the second magnetic shield 22K.
  • 14 is a cross-sectional view corresponding to FIG.
  • the first magnetic shield 21K is configured by laminating a first surface layer 21K1, a first intermediate layer 21K2, and a first opposing layer 21K3, similarly to the first magnetic shield 21J.
  • a first surface layer 21K1, a first intermediate layer 21K2, and a first opposing layer 21K3 similarly to the first magnetic shield 21J.
  • the layers 21K1 to 21K3 of the first magnetic shield 21K for example, the one shown in the modified example 10 can be adopted.
  • the second magnetic shield 22K is configured by laminating a second surface layer 22K1, a second intermediate layer 22K2, and a second opposing layer 22K3, similarly to the second magnetic shield 22J. Further, each layer 22K1 to 22K3 of the second magnetic shield 22K is held by a resinous housing 22K4. In other words, each layer 22K1 to 22K3 of the second magnetic shield 22K is covered with the housing 22K4.
  • the second surface layer 22K1 and the second facing layer 22K3 have a larger area in contact with the housing 22K4 than the second intermediate layer 22K2.
  • the second surface layer 22K1 corresponds to the outermost layer on the opposite side of the facing region.
  • the second facing layer 22K3 corresponds to the outermost layer on the facing region side.
  • the first bus bar 210 and the second bus bar 220 are mounted on the housing 22K4.
  • the housing 22K4 corresponds to a resin member.
  • the linear expansion coefficients of the constituent elements 22K1 to 22K4 are set as follows.
  • the linear expansion coefficient of the second surface layer 22K1 and the second opposing layer 22K3 is ⁇ A
  • the linear expansion coefficient of the second intermediate layer 22K2 is ⁇ B
  • the linear expansion coefficient of the housing 22K4 is ⁇ C.
  • the relationship between the linear expansion coefficients ⁇ A to ⁇ C is
  • the current sensor 111 can achieve the same effect as the current sensor 100. Further, in the current sensor 111, the relationship of the linear expansion coefficient between the housing 22K4 and each of the layers 22K1 to 22K3 is as described above, so that the interface between the housing 22K4 and the second surface layer 22K1, the housing 22K4 and the second facing layer 22K3. Can be prevented from peeling at the interface.
  • the current sensor 112 according to the modification 12 will be described with reference to FIGS. 15 and 16.
  • the current sensor 112 is different from the current sensor 110 in the configuration of the first magnetic shield 21L and the second magnetic shield 22L.
  • the first magnetic shield 21L is configured by laminating a first surface layer 21L1, a first intermediate layer 21L2, and a first opposing layer 21L3, like the first magnetic shield 21J.
  • a first surface layer 21L1, a first intermediate layer 21L2, and a first opposing layer 21L3, like the first magnetic shield 21J As each of the layers 21L1 to 21L3 of the first magnetic shield 21L, for example, the one shown in the modified example 10 can be adopted.
  • the recess 1 does not reach both ends in the Y direction, as shown in FIG. That is, in the first magnetic shield 21L, a bottomed hole portion surrounded by the bottom portion and the annular side wall is formed as the concave portion 1. Therefore, in the first magnetic shield 21L, portions 3E having the same thickness as the thick portion 2 are formed on both sides of the recess 1 in the Y direction. This portion 3E corresponds to the beam portion 3E. For this reason, it can be said that the first magnetic shield 21 ⁇ / b> L has the beam portions 3 ⁇ / b> E provided continuously with the two thick portions 2 on both sides of the recess 1.
  • the second magnetic shield 22L is configured by laminating a first surface layer 22L1, a first intermediate layer 22L2, and a first facing layer 22L3, similarly to the second magnetic shield 22J.
  • the layers 22L1 to 22L3 of the second magnetic shield 22L for example, the one shown in the modified example 10 can be adopted.
  • the second magnetic shield 22L like the first magnetic shield 21L, has the recessed portion 1A that does not reach both ends in the Y direction and has a beam portion 3E.
  • the current sensor 112 can achieve the same effect as the current sensor 110. Furthermore, since the concave portions 1 and 1A do not reach both ends in the Y direction, the current sensor 112 can improve the mechanical strength as compared with the current sensor 110.
  • FIG. 17 is a cross-sectional view corresponding to FIG.
  • an upper phase in which the two bus bars 210 and 220 are arranged and a lower phase in which the two bus bars 230 and 240 are arranged are stacked in the thickness direction (Z direction) of the first magnetic shield 21A.
  • the current sensor 113 has the same configuration as the current sensor 101 described in Modification 1 as an upper phase 113A and a lower phase 113B. That is, the current sensor 113 has a configuration in which the two current sensors 101 are integrally assembled.
  • the current sensor 113 is provided so as to face the two magnetic detection elements 11 and 12 provided to face the bus bars 210 and 220 in the upper phase 113A, and to the bus bars 230 and 240 in the lower phase 113B, respectively.
  • the two magnetic detection elements 13 and 14 are provided.
  • the current sensor 113 includes two magnetic shields 21A and 22A that sandwich the bus bars 210 and 220 and the magnetic detection elements 11 and 12 in the upper phase 113A.
  • the current sensor 113 includes two magnetic shields 21A and 22A that sandwich the bus bars 230 and 240 and the magnetic detection elements 13 and 14 in the lower phase 113B.
  • the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B are arranged to face each other.
  • the opposite surface of the second magnetic shield 22A in the upper phase 113A and the opposite surface of the first magnetic shield 21A in the lower phase 113B are arranged to face each other.
  • the current sensor 113 is configured as a four-phase sensor.
  • the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B can be said to be intermediate magnetic shields.
  • the thick part 2A of the second magnetic shield 22A in the upper phase 113A and the thick part 2 of the first magnetic shield 21A in the lower phase 113B can be said to be intermediate base parts.
  • the thin portion 3A of the second magnetic shield 22A in the upper phase 113A and the thin portion 3 of the first magnetic shield 21A in the lower phase 113B can be said to be intermediate coupling portions.
  • the current sensor 113 can achieve the same effect as the current sensor 101. Further, since the current sensor 113 includes the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B as intermediate magnetic shields, magnetic interference between the upper phase 113A and the lower phase 113B. Can be relaxed. For example, when the upper phase 113A has an energized phase and the upper phase 113A has a detection phase, the current sensor 113 can reduce the leakage magnetic field from the upper phase 113A to the lower phase 113B.
  • the present invention is not limited to this, and three or more bus bars may be arranged in the upper phase 113A, and three or more bus bars may be arranged in the lower phase 113B.
  • a magnetic detection element is arranged to face each of the bus bars.
  • magnetic detection elements are arranged to face the respective bus bars.
  • the current sensor 114 according to the modified example 14 will be described with reference to FIG.
  • the current sensor 114 is different from the current sensor 113 in the positional relationship between the magnetic detection elements 13 and 14 and the bus bars 230 and 240 in the lower phase 114B.
  • 18 is a cross-sectional view corresponding to FIG.
  • the current sensor 114 includes an upper phase 114A and a lower phase 114B.
  • the upper phase 114A is the same as the upper phase 113A.
  • the magnetic detection elements 13 and 14 are disposed on the second magnetic shield 22A side, and the bus bars 230 and 240 are disposed on the first magnetic shield 21A side.
  • the current sensor 114 can achieve the same effect as the current sensor 113.
  • FIG. 19 is a cross-sectional view corresponding to FIG.
  • the current sensor 115 includes an upper phase 115A and a lower phase 115B.
  • the intermediate magnetic shield 23 includes two thick portions 5 and a thin portion 6 that connects the two thick portions 5.
  • the intermediate magnetic shield 23 includes a thick part 5 that faces the first magnetic detection element 11 and the third magnetic detection element 13, and a thick part 5 that faces the second magnetic detection element 12 and the fourth magnetic detection element 14. I have.
  • the intermediate magnetic shield 23 includes the thick part 5 on the first magnetic detection element 11 and the third magnetic detection element 13 side, and the thick part 5 on the second magnetic detection element 12 and the fourth magnetic detection element 14 side. It has.
  • the intermediate magnetic shield 23 has a facing surface that faces the first magnetic shield 21A on the upper phase 115A side and a facing surface that faces the second magnetic shield 22A on the lower phase 115B side.
  • the thick part 5 can be said to be an intermediate base part. It can be said that the thin part 6 is an intermediate
  • the intermediate magnetic shield 23 includes the thick portion 5 and the thin portion 6 so that the concave portion 4 opened on the upper phase 115A side and the concave portion 4 opened on the lower phase 115B side are formed.
  • the intermediate magnetic shield 23 can be regarded as a single body of the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B in Modification 13.
  • the current sensor 115 can achieve the same effect as the current sensor 113. Furthermore, since the intermediate magnetic shield 23 is configured as an integrated object in the current sensor 115, the size of the current sensor 115 in the Z direction can be reduced. That is, the current sensor 115 can be made smaller than the current sensor 113 in which the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B are intermediate magnetic shields.
  • the current sensor 116 includes an upper phase 116A and a lower phase 116B.
  • the upper phase 116A is the same as the upper phase 115A.
  • the magnetic detection elements 13 and 14 are disposed on the second magnetic shield 22A side, and the bus bars 230 and 240 are disposed on the intermediate magnetic shield 23 side.
  • the current sensor 116 can achieve the same effect as the current sensor 115.
  • FIG. 21 is a cross-sectional view corresponding to FIG.
  • the current sensor 117 includes an upper phase 117A and a lower phase 117B.
  • the intermediate magnetic shield 24 includes two base portions 5A and a thin portion 6 that connects the two base portions 5A.
  • the intermediate magnetic shield 23 includes a base portion 5A that faces the first magnetic detection element 11 and the third magnetic detection element 13, and a base portion 5A that faces the second magnetic detection element 12 and the fourth magnetic detection element 14. Yes.
  • the intermediate magnetic shield 23 includes a base portion 5A on the first magnetic detection element 11 and third magnetic detection element 13 side, and a base portion 5A on the second magnetic detection element 12 and fourth magnetic detection element 14 side.
  • the base portion 5A can be said to be an intermediate base portion. It can be said that the thin part 6 is an intermediate
  • the base portion 5A is formed with a space portion 7 penetrating in the Y direction. That is, it can be said that the intermediate magnetic shield 23 is provided with the space portion 7 in a region where the bus bars 210 and 220 on the upper phase 117A side and the bus bars 230 and 240 on the lower phase 117B side face each other.
  • the space portion 7 corresponds to a nonmagnetic portion.
  • the space 7 may be filled with a nonmagnetic material.
  • the intermediate magnetic shield 24 has a facing surface that faces the first magnetic shield 21A on the upper phase 117A side, and a facing surface that faces the second magnetic shield 22A on the lower phase 117B side.
  • the interval between the opposing surfaces in the base portion 5 ⁇ / b> A is longer than the thickness of the thin portion 6 in the Z direction.
  • the current sensor 117 can achieve the same effect as the current sensor 115. Furthermore, since the space portion 7 is formed in the intermediate magnetic shield 24, the current sensor 117 can control the magnetic flow path in the intermediate magnetic shield 24.
  • FIG. 22 is a cross-sectional view corresponding to FIG.
  • the current sensor 118 includes an upper phase 118A and a lower phase 118B.
  • the upper phase 118A is the same as the upper phase 117A.
  • the magnetic detection elements 13 and 14 are disposed on the second magnetic shield 22A side, and the bus bars 230 and 240 are disposed on the intermediate magnetic shield 24 side.
  • the current sensor 118 can achieve the same effect as the current sensor 117.
  • the current sensor 119 according to the modification 19 will be described with reference to FIGS.
  • the current sensor 119 is different from the current sensor 101 in that it includes three magnetic detection elements 11 to 13 and the shape of the first magnetic shield 21M. Further, unlike the modification 13 and the like, the current sensor 119 does not have a configuration in which an upper phase and a lower phase are stacked. In other words, the current sensor 119 is a single-phase structure current sensor. Note that the current sensors after the modification 20 described later are also single-phase current sensors.
  • an inverter that converts DC power into three-phase AC power and a current sensor 119 that is mounted on the vehicle together with a motor generator that is driven by the three-phase AC power from the inverter are employed.
  • Current sensor 119 detects a current flowing between the inverter and the motor generator. More specifically, the current sensor 119 individually detects the current flowing through each of the three bus bars 210 to 230 that electrically connect the inverter and the motor generator.
  • the current sensor 119 includes three phases P1 to P3.
  • Each of the phases P1 to P3 is provided corresponding to each phase between the inverter and the motor generator.
  • Each of the phases P1 to P3 includes one magnetic detection element, a part of the first magnetic shield 21M, and a part of the second magnetic shield 22M.
  • the first magnetic detection element 11 is the magnetic detection element of the first phase P1
  • the second magnetic detection element 12 is the magnetic detection element of the second phase P2
  • the third magnetic detection element 13 is the magnetic detection of the third phase P3. A detection element is used.
  • the current sensor 119 includes a second magnetic shield 22M, magnetic detection elements 11 to 13, and a first magnetic shield 21M stacked in this order in the Z direction. Therefore, it can be said that the Z direction is also a stacking direction.
  • the three bus bars 210 to 230 have, for example, a shape in which a plate-like conductive member is bent.
  • the first bus bar 210 can be said to be the bus bar for the first phase P1
  • the second bus bar 220 can be said to be the bus bar for the second phase P2
  • the third bus bar 230 can be said to be the bus bar for the third phase P3.
  • three bus bars 210 to 230 having different shapes are employed. This is because the distance between the terminals of the motor generator is different from the distance between the terminals of the inverter.
  • the first bus bar 210 includes a first end portion 211 that is an end portion on the motor generator side, a second end portion 212 that is an end portion on the inverter side, a facing portion 213, a bent portion 214, A first extension 215 and a second extension 216 are included.
  • the opposed portion 213 is a portion disposed in a facing region between the first magnetic shield 21M and the second magnetic shield 22M. Further, the opposed portion 213 is a portion facing the first magnetic detection element 11. Therefore, the first magnetic detection element 11 is provided in a facing region between the opposed portion 213 and the first magnetic shield 21M.
  • the bent portion 214 is a portion bent in the Z direction from the opposed portion 213.
  • the first extension portion 215 and the second extension portion 216 are portions for connecting the bent portion 214 and the second end portion 212.
  • the first bus bar 210 since the first bus bar 210 includes the first extension 215 and the second extension 216, the first bus bar 210 is provided to reach the region on the Y direction side in the second phase P2.
  • the second bus bar 220 includes a first end 221 that is an end portion on the motor generator side, a second end portion 222 that is an end portion on the inverter side, and a facing portion 223, a bent portion 224, and an extension between both ends.
  • Part 225 is included.
  • the opposed part 223 is a part facing the second magnetic detection element 12. Therefore, the second magnetic detection element 12 is provided in a facing region between the opposed portion 223 and the first magnetic shield 21M.
  • the second bus bar 220 is different from the first bus bar 210 in the configuration (length) of the extension 225. As shown in FIG. 23, since the second bus bar 220 includes the extension 225, the second bus bar 220 is provided to reach the region on the Y direction side in the third phase P3.
  • Third bus bar 230 includes a first end 231 that is an end on the motor generator side, a second end 232 that is an end on the inverter side, and a facing portion 233 and a bent portion 234 between both ends. It is out. As described above, the third bus bar 230 is different from the first bus bar 210 and the second bus bar 220 in that the bent portion 234 and the second end portion 232 are connected without an extension. Further, the opposed part 233 is a part facing the third magnetic detection element 13. Therefore, the third magnetic detection element 13 is provided in a facing region between the opposed portion 233 and the first magnetic shield 21M.
  • bus bars 210 to 230 employed in the present modification are examples.
  • the bus bars 210 to 230 are not limited to this.
  • the first magnetic shield 21M is the same as the configuration in which the thick part 2 of the first magnetic shield 21M is increased to three.
  • the second magnetic shield 22M is the same as the configuration in which the thick part 2A of the second magnetic shield 22A is increased to three.
  • the first magnetic shield 21M As shown in FIG. 24, three thick portions 2 are arranged in the X direction, and each of the three thick portions 2 is opposed to each of the magnetic detection elements 11-13. Has been placed.
  • the first magnetic shield 21 ⁇ / b> M protrudes from the surface layer portion 21 ⁇ / b> M ⁇ b> 1 including the thin portion 3, and the end layer portion provided continuously with the thin portion 3 in each thick portion 2, and the end layer portion in each thick portion 2. It has the protrusion part 21M2, and the recessed part 1 is formed between the protrusion parts 21M2. That is, it can be said that the surface layer portion 21M1 includes a part of the thick portion 2 and the thin portion 3.
  • the first magnetic shield 21M including the three protrusions 21M2 included in each of the three phases P1 to P3 and the two thin portions 3 is employed.
  • the end layer portion is a portion excluding the thin portion 3 in the surface layer portion 21M1, and is a portion facing the protruding portion 21M2 in the thick portion 2.
  • the end layer portion can also be said to be a portion extending in the X direction with respect to the thin portion 3.
  • the first magnetic shield 21M having a structure in which the surface layer portion 21M1 and the protruding portion 21M2 are laminated and integrated is adopted.
  • Each of the surface layer portion 21M1 and the protruding portion 21M2 may be configured by laminating a plurality of layers made of a magnetic material.
  • the first magnetic shield 21M is not limited to this, and the surface layer portion 21M1 and the protruding portion 21M2 may be integrally formed using a mold, or the surface layer portion 21M1 and the protruding portion 21M2 may be formed by cutting or the like. It may be formed integrally.
  • the second magnetic shield 22M includes a thin layer portion 3A and a surface layer portion 22M1 including an end layer portion connected to the thin portion 3A in each thick portion 2A, and an end layer portion in each thick portion 2A. And a recess 1 is formed between the protrusions 22M2.
  • the second magnetic shield 22M differs from the surface layer portion 21M1 of the first magnetic shield 21M in the thickness of the surface layer portion 22M1, and the other points are the same.
  • the protruding portion 21M2 of the first magnetic shield 21M is disposed opposite to the protruding portion 22M2 of the second magnetic shield 22M. That is, in the current sensor 119, the projecting portion 21M2 of the first phase P1 and the projecting portion 22M2 are arranged to face each other, the projecting portion 21M2 of the second phase P2 and the projecting portion 22M2 are arranged to face each other, and the projecting portion of the third phase P3. 21M2 and the protrusion 22M2 are arranged to face each other.
  • Each of the magnetic detection elements 11 to 13 is individually arranged in a facing region of the projecting portions 21M2 and 22M2 arranged to face each other.
  • the thick portions 2 and 2A disposed to face the first magnetic detection element 11 can be said to be the thick portions 2 and 2A of the first phase P1. Therefore, the protruding portions 21M2 and 22M2 in the thick portions 2 and 2A can be said to be the protruding portions 21M2 and 22M2 of the first phase P1. Furthermore, it can be said that the end layer part which is the part which this protrusion part 21M2, 22M2 opposes is an end layer part of the 1st phase P1. The same applies to the thick portions 2 and 2A disposed opposite to the second magnetic detection element 12 and the thick portions 2 and 2A disposed opposite to the third magnetic detection element 13.
  • both magnetic shields 21M and 22M are formed of the thin portions 3 and 3A connecting the thick portions 2 and 2A of the first phase P1 and the thick portions 2 and 2A of the second phase P2, and the second phase P2. It can be said that the thick portions 2 and 2A and the thin portions 3 and 3A connecting the thick portions 2 and 2A of the third phase P3 are included.
  • the first phase P1 is opposed to the first magnetic detection element 11, the thick portion 2 facing the first magnetic detection element 11 in the first magnetic shield 21M, and the first magnetic detection element 11 in the second magnetic shield 22M. It can be said that the thick part 2A to be included is included. That is, the first phase P1 includes the first magnetic detection element 11 that is disposed to face the first bus bar 210 and detects a magnetic field generated from the first bus bar 210 and converts it into an electric signal.
  • the second phase P2 is opposed to the second magnetic detection element 12, the thick portion 2 facing the second magnetic detection element 12 in the first magnetic shield 21M, and the second magnetic detection element 12 in the second magnetic shield 22M.
  • the thick part 2A to be included is included. That is, the second phase P ⁇ b> 2 includes the second magnetic detection element 12 that is disposed opposite to the second bus bar 220 and detects a magnetic field generated from the second bus bar 220 and converts it into an electric signal.
  • the third phase P3 faces the third magnetic detection element 13, the thick portion 2 facing the third magnetic detection element 13 in the first magnetic shield 21M, and the third magnetic detection element 13 in the second magnetic shield 22M.
  • the thick part 2A is included. That is, the third phase P3 includes the third magnetic detection element 13 that is disposed opposite to the third bus bar 230 and detects a magnetic field generated from the third bus bar 230 and converts it into an electric signal.
  • the current sensor 119 is configured by, for example, integrally assembling each phase P1 to P3 via a circuit board or a housing. This circuit board is electrically connected to the magnetic detection elements 11 to 13, and sensor signals from the magnetic detection elements 11 to 13 are input. Further, the current sensor 119 may be configured by integrally assembling the bus bars 210 to 230 via the circuit board and the housing in addition to the phases P1 to P3. Thus, the structure in which the bus bars 210 to 230 and the like are integrally assembled can also be called a terminal block. Each of the phases P1 to P3 can also be regarded as including the corresponding bus bars 210, 220, and 230.
  • the three phases P1 to P3 thus configured are arranged side by side in the X direction as shown in FIGS. 23 and 24, and the thick portions 2 and 2A are connected via the thin portions 3 and 3A. .
  • the phases P1 to P3 are arranged so that the current flowing direction (Y direction) is parallel in the opposed portions 213, 223, and 233.
  • adjacent phases are also referred to as adjacent phases.
  • the direction in which the three phases P1 to P3 are arranged can be said to be the arrangement direction.
  • the second phase P2 can be said to be an intermediate phase sandwiched between the first phase P1 and the third phase P3.
  • the second phase P2 is adjacent to the first phase P1 and is adjacent to the third phase P3. That is, the first phase P1 and the third phase P3 are not adjacent to each other.
  • the magnetic detection elements 11 to 13 are arranged side by side in the X direction.
  • the first magnetic shield 20 has the thick portions 2 arranged in the X direction.
  • the thick portions 2A are arranged in the X direction.
  • the opposed portions 213, 223, and 233 corresponding to the phases P1 to P3 are also arranged in the X direction.
  • the current sensor 119 configured in this manner detects a detected current flowing in a bus bar that is a detection target in a phase adjacent to this phase when a relatively large current such as 1200 A flows in the bus bar that is a detection target in a certain phase.
  • a relatively large current such as 1200 A flows in the bus bar that is a detection target in a certain phase.
  • a bus bar in which a relatively large current flows can be a noise generation source.
  • the phase for which this bus bar is the detection target can be said to be a noise phase.
  • the phase for detecting the detected current can be said to be a detection phase.
  • the situation where the third phase P3 is a noise phase and the second phase P2 is a detection phase is adopted as an example.
  • the magnetic field generated from the third bus bar 230 in the noise phase is generated concentrically according to the right-hand rule of amperes. This magnetic field is concentrated inside the first magnetic shield 21M and the second magnetic shield 22M. Then, as shown in FIG. 24, magnetic flux flows through the first magnetic shield 21M and the second magnetic shield 22M in the direction indicated by the solid line arrow, in other words, lines of magnetic force run.
  • the current sensor 119 controls the magnetic flow path by providing the concave portions 1 in both the magnetic shields 21M and 22M as described in the above-described embodiments and modifications, so that the lines of magnetic force of the magnetic shields 21M and 22M. It runs on the outer surface. For this reason, as for the current sensor 119, a magnetic force line runs through both surface layer parts 21M1 and 22M1.
  • the magnetic field lines in the first magnetic shield 21M and the magnetic field lines in the second magnetic shield 22M are inverse vectors.
  • the current sensor 119 can reduce the leakage magnetic field more than the current sensor of the comparative example.
  • a leakage magnetic field may be generated from the recess 1 due to the size of both surface layer portions 21M1 and 22M1, the magnetic flux flowing through both surface layer portions 21M1 and 22M1, or the like.
  • a leakage magnetic field as typified by an alternate long and short dash line LM1 or LM2 is generated from the recess 1 of both magnetic shields 21M and 22M.
  • the second magnetic detection element 12 corresponds to a magnetic detection element sandwiched between two magnetic detection elements 11 and 13.
  • the vectors of the leakage magnetic fields LM1 and LM2 are inverse vectors at the position of the second magnetic detection element 12. Therefore, the current sensor 119 cancels out the leakage magnetic field LM1 and the leakage magnetic field LM2, and prevents both the leakage magnetic fields LM1 and LM2 from reaching the second magnetic detection element 12 in the intermediate phase and the second magnetic shield 21M. At least one shape of the shield 22M is adjusted. That is, in the current sensor 119, the shape of at least one of the first magnetic shield 21M and the second magnetic shield 22M is adjusted so that the leakage magnetic fields LM1 and LM2 are canceled at the position of the second magnetic detection element 12. It can be said.
  • both magnetic shields 21M and 22M have shapes adjusted so as to cancel each other with both leakage magnetic fields LM1 and LM2 so that both leakage magnetic fields LM1 and LM2 do not reach the second magnetic detection element 12. It can also be said.
  • the thicknesses of the surface layer portions 21M1 and 22M1 are adjusted with respect to the total thickness of the magnetic shields 21M and 22M.
  • the total thickness is a thickness obtained by adding the thickness of the surface layer portion 21M1 and the thickness of the protruding portion 21M2.
  • the thickness is a length in the stacking direction.
  • the overall thickness t1 of the first magnetic shield 21M and the overall thickness t1 of the second magnetic shield 22M are the same.
  • the thickness t3 of the surface layer portion 21M1 of the first magnetic shield 21M is adjusted to be larger than the thickness t2 of the surface layer portion 22M1 of the second magnetic shield 22M.
  • the example that is being adopted is adopted.
  • FIG. 25 is an enlarged view of a part of the first magnetic shield 21M in FIG.
  • FIG. 26 is a cross-sectional view when the surface layer portion 21M1 of the first magnetic shield 21M has the same thickness as the surface layer portion 22M1 of the second magnetic shield 22M. Therefore, the second magnetic shield 22M can be regarded as the same shape and size as the first magnetic shield 21M shown in FIG.
  • the present disclosure is not limited to this.
  • at least one of the thickness of the surface layer portion 21M1 with respect to the entire thickness of the first magnetic shield 21M and the thickness of the surface layer portion 22M1 with respect to the entire thickness of the second magnetic shield 22M is determined according to the state of the leakage magnetic fields LM1 and LM2. Should be adjusted.
  • the amount of the leakage magnetic field decreases as the thickness increases, and the amount of the leakage magnetic field increases as the thickness decreases. That is, the current sensor 119 controls the amount of the leakage magnetic field by adjusting the thickness of at least one of the surface layer portions 21M1 and 22M1, and the leakage magnetic field LM1 and the leakage magnetic field LM2 cancel each other at the position of the second magnetic detection element 12. It is configured to be. Therefore, in the present embodiment, the amount of the leakage magnetic field LM1 from the recess 1 of the first magnetic shield 21M is reduced, and both the leakage magnetic fields LM1 and LM2 are canceled at the position of the second magnetic detection element 12. Yes.
  • the current sensor 119 controls the amount of the leakage magnetic field by adjusting at least one of the thickness of the surface layer portion 21M1 and the thickness of the surface layer portion 22M1, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are transferred to the second magnetic detection element 12. It can be said that the influence is suppressed. Furthermore, it can be said that the current sensor 119 is configured such that the leakage magnetic field LM1 and the leakage magnetic field LM2 are weakened at the position of the second magnetic detection element 12.
  • the thickness of the surface layer portion 21M1 with respect to the entire thickness of the first magnetic shield 21M is the number of magnetic material layers constituting the surface layer portion 21M1 and the number of magnetic material layers constituting the protruding portion 21M2. Can be adjusted by number. The same applies to the adjustment of the thickness of the surface layer portion 22M1 with respect to the entire thickness of the second magnetic shield 22M.
  • the thickness of the surface layer portion 21M1 and the thickness of the surface layer portion 22M1 can be set to values such that both the leakage magnetic fields LM1 and LM2 are canceled at the position of the second magnetic detection element 12 by simulation or experiment.
  • the thickness of at least one of the surface layer portions 21M1 and 22M1 is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12. For this reason, even when the leakage magnetic fields LM1 and LM2 are generated from the recesses 1 of the magnetic shields 21M and 22M toward the second magnetic detection element 12, the current sensor 119 uses the leakage magnetic fields LM1 and LM2 for the second time. It can suppress that the magnetic detection element 12 senses. Therefore, the current sensor 119 can detect the current with high accuracy. Naturally, the current sensor 119 can achieve the same effects as the current sensors 100 and 101.
  • the magnetic detection element of the detection phase may affect the magnetoelectric conversion result even if the magnetic field generated from the noise phase bus bar is sensed.
  • the second magnetic detection element 12 is affected by the magnetic field emitted from the extension 215, the second extension 216, etc. of the first bus bar 210.
  • the thickness of the first surface layer portions 21M1 and 22M1 is set so that not only the leakage magnetic fields LM1 and LM2 but also the magnetic field generated from the first bus bar 210 does not reach the second magnetic detection element 12. And preferred.
  • the modified example 19 can be implemented in combination with each of the modified examples 10 to 12. Even in this case, the same effect as the current sensor 119 can be obtained. Further, the current sensor 119 can employ two magnetic shields 21M and 22M having the same shape as the first magnetic shield 21B of the second modification and the first magnetic shield 21C of the third modification. When the first magnetic shield 21B is employed, the current sensor 119 has a configuration in which the thickness of the thin portion 3B is adjusted. On the other hand, the current sensor 119 has a configuration in which the thickness of the lid portion 3C is adjusted when the first magnetic shield 21C of Modification 3 is employed. These points are the same in the following modified examples.
  • FIG. 27 shows only the first magnetic shield 21M as an example.
  • FIG. 27 is a cross-sectional view corresponding to FIG.
  • the current sensor of Modification 20 is different from the current sensor 119 in that the gap g1 between the protrusions is adjusted. That is, in the current sensor, the gap g1 in at least one of the two magnetic shields 21M and 22M is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example.
  • at least one of the two magnetic shields 21 ⁇ / b> M and 22 ⁇ / b> M has a shape in which a gap g ⁇ b> 1 between adjacent protrusions is adjusted via the recess 1.
  • the gap g1 is, for example, the distance in the X direction between the protruding portion 21M2 of the first phase P1 and the protruding portion 21M2 of the second phase P2 in the first magnetic shield 21M.
  • gap g1 here can also be said to be the width
  • the current sensor controls the amount of the leakage magnetic field by adjusting the distance g1 between at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the positions of the magnetic detection elements in the detection phase. It is configured to be canceled by.
  • the current sensor is configured such that the gap g1 in the first magnetic shield 21M is narrower than the gap g1 in the second magnetic shield 22M.
  • Modification 20 can provide the same effects as Modification 19.
  • the present disclosure can be implemented by combining the technique disclosed in the modification 20 and the technique disclosed in the modification 19. Even in this case, the same effects as those of Modification 20 can be obtained.
  • Modification 21 A current sensor of Modification 21 will be described with reference to FIG. In addition, in this modification, the same code
  • the current sensor of Modification 21 is different from the current sensor 119 in that the length t12 of the thin portions 3 and 3A is adjusted. That is, in the current sensor, the length of the thin portions 3 and 3A in at least one of the two magnetic shields 21M and 22M is set such that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example. t12 is adjusted. In other words, at least one of the two magnetic shields 21M and 22M has a shape in which the length t12 of the thin portions 3 and 3A at the facing portion is adjusted.
  • the length t12 is the length of the thin portion 3 in the Y direction.
  • the length t12 can also be said to be the length of the thin portion 3 in the direction orthogonal to the stacking direction and the arrangement direction.
  • the length t11 of the thick portion 2 described later is the length in the Y direction, similarly to t12.
  • the thick portions 2 adjacent to each other through the thin portions 3 are connected to each other through only the thin portions 3 through a part of the opposing portions.
  • the thick part 2 of the first phase P1 and the thick part 2 of the second phase P2 are connected via the thin part 3 only in a part in the Z direction and the Y direction at the mutually facing portions. Yes.
  • the length t11 of the thick part 2 is longer than the length t12 of the thin part 3. Therefore, the first magnetic shield 21M has a recess formed between the adjacent thick portions 2 in the XY plane.
  • the second magnetic shield 22M is connected to the thick portions 2A adjacent to each other through the thin portions 3A, and only a part of the opposing portions are connected via the thin portions 3A.
  • the current sensor may have a configuration in which at least one of the two magnetic shields 21M and 22M is partially connected as described above. Therefore, for example, one of the two magnetic shields 21M and 22M may have a configuration in which the whole in the Y direction is connected as employed in the modification 19.
  • the current sensor controls the amount of the leakage magnetic field by adjusting the length t12 of at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the detection phase magnetic detection elements. It is configured to be canceled at the position.
  • the current sensor is configured such that the length t12 in the first magnetic shield 21M is shorter than the length t12 in the second magnetic shield 22M.
  • Modification 21 can achieve the same effects as Modification 19. Moreover, this indication can also be implemented combining the technique disclosed by the modification 21 and the technique disclosed by the modifications 19 and 20. FIG. Even in this case, the same effect as that of the modified example 21 can be obtained.
  • FIG. 29 shows only the first magnetic shield 21M as an example.
  • FIG. 29 is a cross-sectional view corresponding to FIG.
  • the current sensor of Modification 22 employs the same shape as that of the first magnetic shield 21D of Modification 4 for at least one of the two magnetic shields 21M and 22M.
  • the current sensor of Modification 22 is different from the current sensor 119 in that the depth t4 of the recesses 1 and 1A is adjusted. That is, the current sensor has a depth t4 of the recesses 1 and 1A in at least one of the two magnetic shields 21M and 22M so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at, for example, the position of the second magnetic detection element 12.
  • at least one of the two magnetic shields 21M and 22M is adjusted in the depth t4 of the recesses 1 and 1A.
  • the depth t4 is the length in the Z direction.
  • one of the two magnetic shields 21M and 22M has the configuration shown in FIG. Therefore, for example, one of the two magnetic shields 21 ⁇ / b> M and 22 ⁇ / b> M may have the configuration employed in the modification 19.
  • the current sensor controls the amount of the leakage magnetic field by adjusting the depth t4 of at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the detection phase magnetic detection elements. It is configured to be canceled at the position.
  • the current sensor is configured such that the depth t4 in the first magnetic shield 21M is shorter than the depth t4 in the second magnetic shield 22M.
  • Modification 22 can provide the same effects as Modification 19.
  • the present disclosure can be implemented by combining the technique disclosed in the modification 22 and each of the techniques disclosed in the modifications 19 to 21. Even in this case, the same effects as those of the modification 22 can be obtained.
  • the modified example 22 can achieve the same effects as the modified example 4.
  • FIG. 30 illustrates only the first magnetic shield 21M as an example.
  • FIG. 30 is a cross-sectional view corresponding to FIG.
  • the current sensor of Modification Example 23 employs the same shape as that of the first magnetic shield 21E of Modification Example 5 for at least one of the two magnetic shields 21M and 22M.
  • the current sensor of Modification 23 is different from the current sensor 119 in that the inclination angle ⁇ of the inclined portion 1M corresponding to the inclined portion 1E of the first magnetic shield 21E is adjusted. That is, in the current sensor, the inclination angle ⁇ in at least one of the two magnetic shields 21M and 22M is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example. .
  • at least one of the two magnetic shields 21M and 22M has the inclination angle ⁇ adjusted as a shape.
  • tilt angle (theta) is corresponded to the angle which the bottom face and side surface (inclination part 1M) of the recessed part 1 in an XZ plane make.
  • At least one of the two magnetic shields 21M and 22M may be configured as shown in FIG. Therefore, for example, one of the two magnetic shields 21 ⁇ / b> M and 22 ⁇ / b> M may have the configuration employed in the modification 19.
  • the current sensor controls the amount of the leakage magnetic field by adjusting the inclination angle ⁇ of at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the detection phase magnetic detection elements. It is configured to be canceled at the position.
  • the current sensor is configured such that the inclination angle ⁇ in the first magnetic shield 21M is smaller than the inclination angle ⁇ in the second magnetic shield 22M.
  • Modification 23 can achieve the same effects as Modification 19.
  • the present disclosure can be implemented by combining the technology disclosed in the modified example 23 and each of the technologies disclosed in the modified examples 19 to 22. Even in this case, the same effect as that of the modified example 23 can be obtained.
  • the modified example 23 can achieve the same effects as the modified example 5.
  • the current sensor of Modification Example 23 can adopt the same shape as the first magnetic shield 21F of Modification Example 6 for at least one of the two magnetic shields 21M and 22M. Even in this case, the same effect can be obtained. Furthermore, in this case, the current sensor can adjust the amount of the leakage magnetic field not only by the inclination angle ⁇ but also by the depth of the recess 1.
  • FIG. 31 shows only the first magnetic shield 21M as an example.
  • FIG. 31 is a cross-sectional view corresponding to FIG.
  • the current sensor of Modification 24 employs a shape in which the protrusion 8 is formed on at least one of the two magnetic shields 21M and 22M.
  • the first magnetic shield 21 ⁇ / b> M has protrusions 8 formed at positions along the concave portion 1 in the thick portion 2.
  • the current sensor of Modification 24 is different from the current sensor 119 in that the length of the protrusion 8 is adjusted. That is, in the current sensor, the length of the protrusion 8 on at least one of the two magnetic shields 21M and 22M is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example. ing. In other words, at least one of the two magnetic shields 21M and 22M is shaped so that the length of the protrusion 8 is adjusted. This length is the length in the Z direction.
  • At least one of the two magnetic shields 21M and 22M may be configured as shown in FIG. Therefore, for example, one of the two magnetic shields 21 ⁇ / b> M and 22 ⁇ / b> M may have the configuration employed in the modification 19.
  • the current sensor controls the amount of the leakage magnetic field by adjusting the length of at least one protrusion 8 of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 detect the magnetic phase. It is configured to cancel at the position of the element.
  • the current sensor is configured such that the length of the protrusion 8 on the first magnetic shield 21M is shorter than the length of the protrusion 8 on the second magnetic shield 22M.
  • Modification 24 can achieve the same effects as Modification 19.
  • the present disclosure can be implemented by combining the technology disclosed in the modified example 24 and each of the technologies disclosed in the modified examples 19 to 23. Even in this case, the same effect as that of the modified example 24 can be obtained.
  • the amount of the leakage magnetic field can be adjusted by adjusting the length of at least one of the two protrusions 8 along the recess 1.
  • the current sensor 120 according to the modified example 25 will be described with reference to FIGS. In the present modification, for convenience, the same reference numerals as those in the modification 19 are used for some of the reference numerals.
  • the current sensor 120 is different from the current sensor 119 in the number of phases and the configuration of the two magnetic shields 21N and 22N. Further, the current sensor 120 can be regarded as an example of a configuration in which the techniques of the modified examples 19 to 21 are combined.
  • the current sensor 120 has a fourth phase P4 corresponding to the fourth bus bar 240 in addition to the first phase P1 to the third phase P3.
  • the fourth phase P3 includes the fourth magnetic detection element 14 and the thick portions 2 and 2A, like the other phases P1 to P3.
  • the fourth magnetic detection element 14 is disposed opposite to the fourth bus bar 240 and has the same configuration as the other magnetic detection elements 11 to 13.
  • the first magnetic shield 21N includes a surface layer portion 21N1 and a protruding portion 21N2.
  • the thickness of the surface layer part 21N1 is adjusted like the modification 19. That is, in the first magnetic shield 21N, as shown in FIG. 33, the thickness of the surface layer portion 21N1 of the first phase P1 and the second phase P2 is the same, and the thickness of the surface layer portion 21N1 of the third phase P3 and the fourth phase P4. And the thicknesses of the surface layer portions 21N1 of the first phase P1 and the third phase P3 are adjusted to be different.
  • the interval of the first magnetic shield 21N is adjusted as in Modification 20. That is, as shown in FIGS. 32 and 33, the first magnetic shield 21N includes an interval g4 between the first phase P1 and the second phase P2, an interval g5 between the second phase P2 and the third phase P3, and a third phase. The gap g6 between P3 and the fourth phase P4 is adjusted to be different. These intervals are g5 ⁇ g4 ⁇ g6.
  • the length of the thin portion 3 of the first magnetic shield 21N is adjusted as in the modified example 21. That is, in the first magnetic shield 21N, as shown in FIG. 32, the length of the thin portion 3 between the third phase P3 and the fourth phase P4 is adjusted to be shorter than the lengths of the other thin portions 3. .
  • the second magnetic shield 22N includes a surface layer portion 22N1 and a protruding portion 22N2.
  • the thickness of surface layer part 22N1 is adjusted like the modification 19. That is, in the second magnetic shield 22N, as shown in FIG. 33, the thickness of the surface layer portion 22N1 of the second phase P2 and the third phase P3 is the same, and the thickness of the surface layer portion 22N1 of the first phase P1 and the fourth phase P4. And the thicknesses of the surface layer portions 22N1 of the first phase P1 and the second phase P2 are adjusted to be different.
  • the length of the thin part 3 is adjusted. That is, in the second magnetic shield 22N, as shown in FIG. 34, the length of the thin portion 3 between the first phase P1 and the second phase P2 is adjusted to be shorter than the length of the other thin portions 3. .
  • the shape of the current sensor 120 thus configured is adjusted so that the leakage magnetic fields LM1 and LM2 from the recesses 1 and 1A do not reach the detection phase magnetic detection element. Therefore, the modified example 25 can achieve the same effects as the modified example 19.
  • FIG. 35 is a cross-sectional view corresponding to FIG. However, FIG. 35 illustrates only the opposed portions 213 and 223 for the first bus bar 210 and the second bus bar 220 in order to simplify the drawing.
  • the current sensor 121 is different from the current sensor 119 in that the number of phases is two. That is, the current sensor 121 has the first phase P1 and the second phase P2, but does not have the third phase P3.
  • one phase may be a noise phase and the other phase may be a detection phase.
  • the present modification as shown in FIG. 35, a situation where the second phase P2 is a noise phase and the first phase P1 is a detection phase is adopted as an example.
  • the current sensor 121 may affect the magnetoelectric conversion result by the first magnetic detection element 11.
  • the current sensor 121 is adjusted in shape so that at least one of the thicknesses of the surface layer portions 21M1 and 22M1 with respect to the total thickness of the magnetic shields 21M and 22M is adjusted.
  • both magnetic shields 21M and 22M have shapes adjusted so as to cancel each other with both leakage magnetic fields LM1 and LM2 so that both leakage magnetic fields LM1 and LM2 do not reach the first magnetic detection element 11. It can also be said.
  • Modification 26 can achieve the same effects as Modification 19.
  • the present disclosure can be implemented by combining the technology disclosed in the modified example 26 and each of the technologies disclosed in the modified examples 19 to 25. Even in this case, the same effect as that of the modified example 26 can be obtained. Further, the current sensor 121 of the modified example 26 can achieve the same effect even when the first phase P1 and the second phase P2 are two phases of three or more phases.
  • the current sensor 400 is mounted on a vehicle together with, for example, an inverter that converts DC power into three-phase AC power and a motor generator that is driven by the three-phase AC power from the inverter.
  • Current sensor 400 detects a current flowing between the inverter and the motor generator. More specifically, current sensor 400 individually detects the current flowing through each of a plurality of bus bars 340 electrically connecting the inverter and the motor generator.
  • a coreless current sensor that does not require a magnetic collecting core can be adopted.
  • Current sensor 400 is not limited to one that detects a current flowing between the inverter and the motor generator.
  • the current sensor 400 includes a plurality of phases P1 to Pn. At least three of the phases P1 to Pn are provided corresponding to the phases between the inverter and the motor generator.
  • Bus bar 340 corresponds to a current path. It can be said that the current flowing through the bus bar 340 is a detected current.
  • a bus bar 340 including a first end portion, a second end portion, and an intermediate portion 340a sandwiched between both end portions is employed.
  • the first end is an end on the motor generator side
  • the second end is an end on the inverter side.
  • the intermediate part 340a is a part between the first end part and the second end part, and is a part sandwiched between a first shield and a second shield described later.
  • the configuration of the bus bar 340 is not limited to this.
  • the current sensor 400 includes a first phase P1 to an n-th phase Pn as shown in FIGS.
  • the first phase P1 to the n-th phase Pn are arranged in the X direction. Therefore, it can be said that the X direction is also an arrangement direction. Furthermore, the arrangement direction is a direction orthogonal to the stacking direction described later.
  • the first phase P1 and the nth phase are phases at both ends in the arrangement direction, they can be said to be end phases.
  • the second phase P2 to the (n-1) th phase Pn-1 are intervening phases because they are interposed between the end phases P1 and Pn.
  • n is a natural number of 3 or more.
  • the present disclosure can be adopted if n is 2 or more.
  • the current sensor in this case does not have an intervening phase which will be described later.
  • Each phase P1 to Pn includes magnetic detection elements 310 and 311. Further, each of the phases P1 to Pn includes a magnetic shield portion including a pair of first shields 321 and 322 and second shields 331 and 332 that are arranged to face each other while sandwiching the bus bar 340 and the magnetic detection elements 310 and 311. .
  • Each of the magnetic detection elements 310 and 311 is disposed opposite to one bus bar 340, detects a magnetic field generated from the bus bar 340, and converts it into an electric signal.
  • a sensor chip, a bias magnet, and a circuit chip are mounted on a substrate, and these are sealed with a sealing resin body, and leads connected to the circuit chip are outside the sealing resin body. An exposed configuration can be adopted.
  • the sensor chip for example, a giant magnetoresistive element (GMR), an anisotropic magnetoresistive element (AMR), a tunnel magnetoresistive element (TMR), or a Hall element can be adopted.
  • the magnetic detection elements 311 of the end phases P1 and Pn can be said to be end phase detection elements 311.
  • the magnetic detecting elements 310 of the intervening phases P2 to Pn-1 can be said to be intervening detecting elements 310.
  • the first shields 321 and 322 and the second shields 331 and 332 are made of a magnetic material, and shield the magnetic field from the outside with respect to the magnetic detection elements 310 and 311.
  • the shields 321, 322, 331, and 332 are arranged to face each other while sandwiching the bus bar 340 and the magnetic detection elements 310 and 311. In other words, the shields 321, 322, 331, and 332 are for suppressing the external magnetic field from reaching or passing through the magnetic detection elements 310 and 311.
  • the first shields 321 and 322 and the second shields 331 and 332 correspond to magnetic shield portions.
  • Each shield 321, 322, 331, 332 is configured by laminating flat magnetic materials, for example. Therefore, as shown in FIGS. 36 and 37, each of the shields 321, 322, 331, and 332 is a flat plate member, and has, for example, a rectangular shape in the XY plane, the YZ plane, and the XZ plane. Further, the shields 321, 322, 331, and 332 are large enough to cover the opposing areas of the magnetic detection elements 310 and 311 and the opposing area of the intermediate portion 340a. The facing area is an area in the Z direction.
  • the first shield 322 of the end phases P1 and Pn can be said to be the first end phase shield 322.
  • the second shield 332 of the end phases P1 and Pn can be said to be the second end phase shield 332. Therefore, the current sensor 400 includes two first end phase shields 322 and two second end phase shields 332.
  • first shield 321 of the intervening phases P2 to Pn-1 can be said to be the first intervening shield 321.
  • the second shield 331 of the intervening phases P2 to Pn-1 can be said to be the second intervening shield 331.
  • the first shield includes the first intervening shield 321 and the first end-phase shield 322.
  • the second shield includes a second intervening shield 331 and a second end phase shield 332.
  • the first shields 321 and 322 are arranged on one side in the Z direction with reference to the bus bar 340 and the magnetic detection elements 310 and 311.
  • the second shields 331 and 332 are arranged on the other side in the Z direction with respect to the bus bar 340 and the magnetic detection elements 310 and 311.
  • the first shields 321 and 322 are disposed on the side facing the bus bar 340
  • the second shields 331 and 332 are disposed on the side facing the magnetic detection elements 310 and 311.
  • Each of the first shields 321 and 322 and each of the second shields 331 and 332 make a pair, and are arranged to face each other with an interval in the Z direction.
  • the first end-phase shield 322 and the second end-phase shield 332 make a pair, and the first end-phase shield 322 and the second end-phase shield 332 are arranged to face each other in the Z direction.
  • the first end-phase shield 322 and the second end-phase shield 332 are arranged so as to sandwich the end-phase detection element 311 and the bus bar 340 in the Z direction.
  • the end phase detection element 311 and the intermediate portion 340 a are disposed in the opposing region of the first end phase shield 322 and in the opposing region of the second end phase shield 332.
  • the first end phase shield 322, the intermediate portion 340a of the bus bar 340, the end phase detection element 311 and the second end phase shield 332 are stacked in this order. That is, in the first phase P1, these components are stacked in the Z direction.
  • the first interposed shield 321 and the second interposed shield 331 form a pair, and the first interposed shield 321 and the second interposed shield 331 are arranged to face each other in the Z direction. Yes.
  • the first interposed shield 321 and the second interposed shield 331 are arranged so as to sandwich the interposed detection element 310 and the bus bar 340 in the Z direction.
  • the interposition detection element 310 and the intermediate portion 340a are disposed in the opposing region of the first intervening shield 321 and in the opposing region of the second intervening shield 331.
  • the first interposed shield 321, the intermediate portion 340a of the bus bar 340, the interposed detecting element 310, and the second interposed shield 331 are stacked in this order. That is, in the second phase P2, these components are laminated in the Z direction.
  • the current sensor 400 has a configuration in which the first shields 321 and 322 are divided for each of the phases P1 to Pn and the second shields 331 and 332 are divided for each of the phases P1 to Pn.
  • each of the first shields 321 and 322 and the second shields 331 and 332 may be integrated by a material that does not have a function as a magnetic shield such as resin.
  • the first shields 321 and 322 are arranged side by side in the X direction.
  • the second shields 331 and 332 are arranged side by side in the X direction.
  • the intermediate portion 340a of the bus bar 340 corresponding to each phase P1 to Pn is also arranged in the X direction.
  • an opposing surface (hereinafter referred to as a first opposing surface) facing the intermediate portion 340a is provided in parallel with the XY plane.
  • the 1st shield 321,322 the 1st opposing surface is provided on the same virtual plane parallel to XY plane.
  • the second shields 331 and 332 for example, opposing surfaces (hereinafter referred to as second opposing surfaces) facing the magnetic detection elements 310 and 311 are provided in parallel with the XY plane.
  • the second opposing surfaces of the second shields 331 and 332 are provided on the same virtual plane parallel to the XY plane.
  • the virtual plane in which the 1st opposing surface is provided differs in the position in a Z direction from the virtual plane in which the 2nd opposing surface is provided.
  • the first facing surface is a surface facing the second shields 331 and 332.
  • the second facing surface is a surface on the side facing the first shields 321 and 322.
  • the 1st shield 321,322 and the 2nd shield 331,332 are arrange
  • first shields 321 and 322 have different positions in the X direction, but have the same positions in the Y direction and the Z direction.
  • second shields 331 and 332 have different positions in the X direction, but have the same positions in the Y direction and the Z direction.
  • a relatively large current such as 1200A flows through the bus bar 340 that is a detection target of a certain phase, and the detected current that flows through the bus bar 340 that is the detection target in the adjacent phase of this phase. Can be detected.
  • the bus bar 340 in which a relatively large current flows can be a source of noise.
  • the phase for which this bus bar is the detection target can be said to be a noise phase.
  • the phase for detecting the detected current can be said to be a detection phase.
  • FIG. 37 a situation where the second phase P2 is a noise phase and the first phase P1 is a detection phase is adopted as an example.
  • the magnetic field generated from the noise phase bus bar 340 is generated concentrically by the right-handed screw law of amperes. This magnetic field is concentrated inside the shields 321, 322, 331, and 332. Then, as shown in FIG. 37, a magnetic flux flows in each shield 321, 322, 331, 332 in the direction indicated by the solid line arrow, in other words, a line of magnetic force runs.
  • the magnetic field reaches the extreme end of the end phase.
  • magnetic field exchange occurs between the first shield and the second shield in the end phase.
  • first phase P ⁇ b> magnetic field exchange from the outermost end portion of the second end phase shield 332 to the first end phase shield 322 occurs.
  • n-th phase Pn magnetic field exchange from the outermost end portion of the first end-phase shield 322 to the second end-phase shield 332 occurs.
  • the leakage magnetic field from the endmost part of the second end-phase shield 332 is transmitted to the endmost part of the first end-phase shield 322.
  • the leakage magnetic field from the endmost portion of the first end-phase shield 322 is transmitted to the endmost portion of the second end-phase shield 332.
  • the end phase detection element 311 senses this leakage magnetic field, a current detection error occurs.
  • the direction may be opposite to the example adopted here.
  • the endmost portion is an end portion in the X direction, and is an end portion of the end phase shields 322 and 332 on the side not facing the intervening shields 321 and 331.
  • the current sensor 400 is provided with a first end-phase shield 322 and a second end-phase shield 332 in order to suppress the occurrence of a current detection error.
  • first end phase shield 322 and the second end phase shield 332 will be described.
  • the first end phase shield 322 and the second end phase shield 332 have the same configuration.
  • the end phase shields 322 and 332 are different in configuration from the intervening shields 321 and 331.
  • the end-phase shields 322 and 332 are different in positional relationship and size with the magnetic detection element 311 from the positional relationship between the intervening shields 321 and 331 and the intervening detection element 310 and the size of the intervening shields 321 and 331. .
  • the first end shield 322 includes a first base 322a and a first extension 322b.
  • the second end phase shield 332 includes a second base portion 332a and a second extension portion 332b. Both the extension portions 322b and 332b make it easier for the leakage magnetic field from the endmost portion of the end phase shields 322 and 332 to reach the opposite end phase shields 322 and 332 arranged opposite to each other than the end phase detection element 311. In addition, this is a part for exchanging magnetic fields between the two-phase shields 322 and 332.
  • a magnetic field is transmitted from the second extension 332b of the first phase P1 to the first extension 322b of the first phase P1, and the first extension 322b of the n-phase Pn 2
  • the magnetic field is transmitted to the extension 332b.
  • Both extension parts 322b and 332b correspond to a magnetic field exchange part.
  • the first end phase shield 322 is provided with a first base 322a and a first extension 322b integrally.
  • the first base portion 322 a is a portion facing the end phase detection element 311.
  • the first base 322a has a length in the X direction that is the same as that of the first interposed shield 321. Therefore, the length of the first end phase shield 322 in the X direction is longer than that of the first intermediate shield 321 because the first extension portion 322b is included.
  • the first end-phase shield 322 includes a portion (first extension portion 322b) having a length X2 longer than the length X1 in the X direction as a magnetic field exchange portion.
  • the length X2 is the length from the facing portion of the end phase detection element 311 to the outermost end where a leakage magnetic field is generated.
  • the length X1 is a length from the facing portion of the intervening detection element 310 in the first intervening shield 321 to the end on the most end side.
  • the intervening detection element 310 is arranged so that the first intervening shield 321 faces the center of the first intervening shield 321 in the X direction.
  • the end phase detection element 311 is arranged so that the first end phase shield 322 faces a position shifted from the center of the first end phase shield 322 in the X direction.
  • the end phase detection element 311 is disposed to face the position shifted from the center of the first end phase shield 322 to the side opposite to the endmost portion. Since the same applies to the second end phase shield 332, the description can be applied with reference to the description of the first end phase shield 322.
  • the both-end phase shields 322 and 332 are provided with the extension portions 322b and 332b.
  • the leakage magnetic field from the extreme end portion in the X direction in the both-end phase shields 322 and 332 reaches the opposite-side end-phase shields 322 and 332 that are opposed to each other than the end-phase detection element 311. It becomes easy.
  • the current sensor 400 can suppress the leakage magnetic field from the extreme end in the X direction in the double-phase shields 322 and 332 from entering the space between the double-phase shields 322 and 332. For this reason, the current sensor 400 can suppress the leakage magnetic field from reaching the end phase detection element 311 and can detect the current with high accuracy.
  • the current sensor 400 in which the extension portions 322b and 332b are provided in both the first end-phase shield 322 and the second end-phase shield 332 is employed.
  • the present disclosure is not limited to this, and can be adopted as long as it is provided on at least one of the first end phase shield 322 and the second end phase shield 332.
  • the second embodiment and the third to fifth embodiments can be implemented independently, but can also be implemented in appropriate combination.
  • the present disclosure is not limited to the combinations shown in the embodiments, and can be implemented by various combinations.
  • FIG. 38 is a cross-sectional view corresponding to FIG.
  • the current sensor 410 is different from the current sensor 400 in the configuration of the end phase shields 323 and 333.
  • the difference from the current sensor 400 will be mainly described.
  • the first end phase shield 323 includes a first base 323a and a first protrusion 323b.
  • the first protrusion 323b is a part that performs magnetic field exchange between the first end-phase shield 323 and the second end-phase shield 333, and corresponds to a magnetic field exchange unit.
  • the 2nd end phase shield 333 contains the 2nd base 333a and the 2nd projection part 333b.
  • the second protrusion 333b is a part that performs magnetic field exchange between the second end-phase shield 333 and the first end-phase shield 323, and corresponds to a magnetic field exchange unit.
  • the first end phase shield 323 corresponds to a first shield.
  • the second end phase shield 333 corresponds to a second shield.
  • the first base portion 323a is a flat plate-like portion facing the end phase detection element 311 as in the first base portion 322a of the above embodiment.
  • the first protruding portion 323b is a portion bent from the end portion of the first base portion 323a toward the second end phase shield 333 side.
  • the end portion of the first base portion 323a is an end portion on the opposite side to the side facing the first interposed shield 321. Therefore, the first end shield 323 has an L shape in the XZ plane. Since the same applies to the second end phase shield 333, it can be applied with reference to the description of the first end phase shield 323.
  • the end phase shields 323 and 333 serve as magnetic field exchange portions by bending portions (protrusions 323b and 333b) bent toward the opposite end phase shields 323 and 333 rather than the facing portion of the end phase detection element 311. I have. Therefore, in the current sensor 410, the Z-direction interval Z2 between the first protrusion 323b and the second protrusion 333b is shorter than the Z-direction interval Z1 between the first intermediate shield 321 and the second intermediate shield 331. ing.
  • the Z-direction interval Z1 is the interval between the surface opposite to the surface facing the bus bar 340 in the first interposed shield 321 and the surface opposite to the surface facing the interposed detection element 310 in the second interposed shield 331.
  • the current sensor 410 can achieve the same effects as the current sensor 400. Furthermore, since the current sensor 410 has the end phase shields 323 and 333 bent, the physique in the X direction can be made smaller than the current sensor 400.
  • FIG. 39 is a cross-sectional view corresponding to FIG.
  • the current sensor 420 is different from the current sensor 410 in the configuration of the end phase shields 324 and 334.
  • the difference from the current sensor 410 will be mainly described.
  • the first end phase shield 324 has a flat plate shape.
  • the second end phase shield 334 includes a second base portion 334a and a second protrusion 334b.
  • the second end phase shield 334 has an L shape similarly to the second end phase shield 333.
  • the second protrusion 334b is a part that performs magnetic field exchange between the second end-phase shield 334 and the first end-phase shield 324, and corresponds to a magnetic field exchange unit.
  • the first end phase shield 324 corresponds to the first shield.
  • the second end phase shield 334 corresponds to a second shield.
  • the current sensor 420 can achieve the same effect as the current sensor 410. That is, the current sensor 420 can achieve the same effect as the current sensor 410 as long as at least one of the end-phase shields 324 and 334 has a portion corresponding to the magnetic field exchange unit.
  • Modification 2 With reference to FIG. 40, the current sensor 430 of Modification 2 in the third embodiment will be described. 40 is a cross-sectional view corresponding to FIG. The current sensor 430 is different from the current sensor 410 in the configuration of the end phase shields 325 and 335. Here, the difference from the current sensor 410 will be mainly described.
  • the first end shield 325 includes a first base 325a and a first bent portion 325b.
  • the first bent portion 325b is a portion that performs magnetic field exchange between the first end-phase shield 325 and the second end-phase shield 335, and corresponds to a magnetic field exchange portion.
  • the second end phase shield 335 includes a second base portion 335a and a second bent portion 335b.
  • the second bent portion 335b is a portion that performs magnetic field exchange between the second end phase shield 335 and the first end phase shield 325, and corresponds to a magnetic field exchange portion.
  • the first end shield 325 corresponds to the first shield.
  • the second end phase shield 335 corresponds to a second shield.
  • the first base portion 325a is a flat plate-like portion similar to the first base portion 322a and is opposed to the end phase detection element 311.
  • the first bent portion 325b is a portion bent from the end portion of the first base portion 325a toward the second end phase shield 335 side.
  • the end portion of the first base portion 325a is an end portion on the opposite side to the side facing the first interposed shield 321.
  • the first end phase shield 325 has a first bent portion 325b bent in a curved shape. That is, as for the 1st end phase shield 325, a part of surface facing the bus bar 340 and a part of the opposite surface are curved surfaces.
  • the first end shield 325 can be manufactured, for example, by bending a flat shield plate by pressing or the like. Since the same applies to the second end phase shield 335, the description can be applied with reference to the description of the first end phase shield 325.
  • the end phase shields 325 and 335 serve as magnetic field exchange portions by bending portions (bent portions 325b and 335b) bent toward the opposite end phase shields 325 and 335 rather than the facing portion of the end phase detection element 311. I have.
  • the current sensor 430 can achieve the same effect as the current sensor 410.
  • the current sensor 440 according to the fourth embodiment will be described with reference to FIGS. 41 and 42.
  • the current sensor 440 is different from the current sensor 400 in that a shield configuration, a circuit board 350, and a housing 360 are provided.
  • the difference from the current sensor 400 will be mainly described.
  • the current sensor 440 includes a circuit board 350 and a housing 360 as shown in FIG.
  • the circuit board 350 is electrically connected to the magnetic detection elements 310 and 311, and sensor signals from the magnetic detection elements 310 and 311 are input. More specifically, the circuit board 350 is formed with circuit elements, conductive wirings, and the like, and the magnetic detection elements 310 and 311 are mounted thereon. In the circuit board 350, the magnetic detection elements 310 and 311 are electrically connected to a part of the wiring. The surface on which the magnetic detection elements 310 and 311 are mounted on the circuit board 350 can be said to be a mounting surface.
  • the circuit board 350 has through holes formed in the stacking direction.
  • This through hole is a hole into which a fixing member 337a described later is inserted. And the through hole is provided in the circuit board 350 in the position which opposes the fixing hole 337 demonstrated later.
  • the housing 360 is made of, for example, resin, and integrally holds the first shield and the bus bar 340.
  • the housing 360 can integrally hold the first shield and the bus bar 340 by insert molding or insertion.
  • the housing 360 that integrally holds the first shield and the bus bar 340 is referred to as a structure.
  • the housing 360 is provided with a hole for fixing the fixing member 337a at a portion facing the circuit board 350. This hole is provided at a position facing the fixing hole 337.
  • a female screw corresponding to the fixing member 337a which is a male screw, for example, can be used for this hole.
  • the first shield has a first thin portion 326 that is thinner than the first intermediate shield 321 and the first end-phase shield 322 in addition to the first intermediate shield 321 and the first end-phase shield 322. Is included.
  • the first intervening shield 321 and the first end-phase shield 322 are integrally configured via the first thin portion 326. That is, the 1st shield has the structure connected by the 1st thin part 326 for every phase. Note that the first intervening shield 321 and the first end-phase shield 322 can be referred to as thick portions with respect to the first thin portion 326.
  • the first shield has a shape in which a recess is formed on the surface on the magnetic detection element 310, 311 side. Further, as shown in FIG. 42, the first shield is provided such that the surface on which the concave portion is formed is opposed to the surface opposite to the mounting surface of the circuit board 350.
  • the thickness is a thickness in the stacking direction.
  • the second shield includes a second thin portion 336 that is thinner than the second intermediate shield 331 and the second end-phase shield 332 in addition to the second intermediate shield 331 and the second end-phase shield 332.
  • the second intervening shield 331 and the second end-phase shield 332 are integrally formed via the second thin portion 336.
  • a fixing hole 337 penetrating in the stacking direction is formed in the second extension 332b.
  • fixing holes 337 are formed at the four corners of the second phase shield 332.
  • the fixing hole 337 is a hole into which a fixing member 337a for integrally fixing the second shield, the circuit board 350, and the housing 360 is inserted.
  • the structure, the circuit board 350, and the second shield are stacked in this order.
  • the laminated structure, the circuit board 350, and the second shield are fixed by a fixing member 337a. That is, it can be said that the components of the respective phases P1 to Pn are integrally configured via the circuit board 350 and the housing 360.
  • the structure integrally configured in this way can also be called a sensor terminal block.
  • the current sensor 440 can achieve the same effect as the current sensor 400.
  • the current sensor 440 can achieve the same effect as the current sensor 400 even if it does not include the circuit board 350, the housing 360, the fixing member 337a, and the like.
  • the current sensor 440 since the current sensor 440 includes the second extension 332b, a fixing hole 337 can be formed in the second extension 332b. That is, the current sensor 440 can be fixed to the circuit board 350, the housing 360, or the like while using a configuration for high accuracy of current detection. For this reason, the current sensor 440 is preferable to a case where the size of the current sensor 440 is increased only for fixing to the circuit board 350, the housing 360, and the like.
  • the current sensor 440 can be employed even if the end-phase shields 322 and 332 and the intervening shields 321 and 331 are separated, like the current sensor 400 and the like.
  • the second interposed shield 331 can be fixed to the circuit board 350 by an adhesive, screwing, or the like.
  • the current sensor 440 can be employed even if the end phase shields 322 and 332 are bent, like the current sensor 410 and the like.
  • the circuit board 350 may be provided with a circuit element on the opposite surface of the mounting surface.
  • the current sensor 440 can be reduced in size by assembling the current sensor 440 into the recess formed in the second shield so that the circuit element on the opposite surface is disposed. That is, the current sensor 440 can reduce the size of at least one of the X direction and the Y direction as compared with the case where the circuit element on the opposite surface is disposed outside the opposing region of the second shield.
  • a current sensor 450 according to the fifth embodiment will be described with reference to FIG. 43 is a cross-sectional view corresponding to FIG.
  • the current sensor 450 is different from the current sensor 400 in the configuration of the first shield and the second shield.
  • the difference from the current sensor 400 will be mainly described.
  • the current sensor 450 includes a third shield 338 as a magnetic shield part in addition to the intervening shields 321 and 331.
  • the third shield 338 is made of a magnetic material, like the intervening shields 321 and 331.
  • the third shield 338 mainly shields a magnetic field from the outside with respect to the end phase detection element 311.
  • the third shield 338 includes a first base 338a, a second base 338b, and a side wall 338c.
  • the first base 338a and the second base 338b correspond to end-phase shields.
  • the first base portion 338a is disposed to face the bus bar 340.
  • the second base portion 338 b is disposed to face the end phase detection element 311.
  • Both base portions 338a and 338b are flat portions parallel to the XY plane.
  • the third shield 338 includes the first base portion 338a corresponding to the first end phase shield and the second base portion 338b corresponding to the second end phase shield.
  • the side wall part 338c corresponds to a magnetic field exchange part.
  • the side wall portion 338c is a portion that is continuously provided at the end of the base portions 338a and 338b in the arrangement direction so as to exchange magnetic fields between the base portions 338a and 338b, and the base portions 338a and 338b are integrally formed.
  • the side wall part 338c is a flat part parallel to the YZ plane.
  • the third shield 338 has a U shape in the XZ plane.
  • the first interposed shield 321 and the first base portion 338a correspond to the first shield.
  • the second interposed shield 331 and the second base 338b correspond to a second shield.
  • the third shield 338 can also be said to be a configuration in which the first end-phase shield 322 and the second end-phase shield 332 are integrated by the side wall portion 338c.
  • the current sensor 450 is continuously provided at the end of the both base portions 338a and 338b in the arrangement direction, and includes the side wall portion 338c in which the base portions 338a and 338b are integrated.
  • the current sensor 450 can reduce the occurrence of a leakage magnetic field from the ends in the arrangement direction of the both base portions 338a and 338b. For this reason, the current sensor 450 can suppress the leakage magnetic field from reaching the end phase detection element 311 and can detect the current with high accuracy.

Abstract

An electric current sensor is provided with: a magnetism detection element (11-14) for sensing magnetic flux emitted by an electric current path (210-240) and performing magnetoelectric conversion; and at least two magnetic shields (21, 21A-21N, 22, 22A-22N, 23, 24) disposed around the magnetism detection element, the magnetic shields shielding the magnetism detection element against magnetic flux from the exterior. The at least two magnetic shields include a first magnetic shield and a second magnetic shield that are disposed opposite each other while sandwiching the magnetism detection element and the electric current path. At least one among the first magnetic shield and the second magnetic shield has at least two base sections and a connection section by which the at least two base parts are linked. A recessed section (1, 1A, 4) that is recessed further than a peripheral section is formed in a surface that faces the other among the first magnetic shield and the second magnetic shield.

Description

電流センサCurrent sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年6月15日に出願された日本出願番号2016-119135号と、2016年11月21日に出願された日本出願番号2016-226096号と、2016年12月12日に出願された日本出願番号2016-240590号に基づくもので、ここにその記載内容を援用する。 This application includes Japanese application No. 2016-119135 filed on June 15, 2016, Japanese application No. 2016-2226096 filed on November 21, 2016, and application filed on December 12, 2016. Which is based on Japanese Patent Application No. 2016-240590, which is incorporated herein by reference.
 本開示は、電流経路から発生する磁束を検知して磁電変換を行う電流センサ、および、電流経路から発生する磁界を検知して電気信号に変換し、電流経路に流れる電流を検出する電流センサに関するものである。 The present disclosure relates to a current sensor that detects a magnetic flux generated from a current path and performs magnetoelectric conversion, and a current sensor that detects a magnetic field generated from the current path and converts it into an electric signal, and detects a current flowing through the current path. Is.
 従来、電流センサとして、特許文献1に開示された電流検出システムがある。電流検出システムは、磁性板と、これらに対応するバスバ、及び半導体基板を有している。また、半導体基板には、磁束を電気信号に変換する磁電変換素子が形成されている。 Conventionally, there is a current detection system disclosed in Patent Document 1 as a current sensor. The current detection system includes a magnetic plate, a bus bar corresponding to these, and a semiconductor substrate. In addition, a magnetoelectric conversion element that converts magnetic flux into an electric signal is formed on the semiconductor substrate.
特開2015-194472号公報JP2015-194472A
 特許文献1に開示された電流検出システムの一例によれば、電流検出システムは、2組の磁性板が隣り合うように配置されている。そして、各組における対向配置された磁性板間には、バスバと半導体基板が配置されている。よって、電流検出システムは、一方のバスバと半導体基板に対向配置された磁性板と、他方のバスバと半導体基板に対向配置された磁性板とが分断されている。このため、電流検出システムは、磁性板の端部から漏れ磁場が発生すると言う可能性がある。 According to an example of the current detection system disclosed in Patent Document 1, the current detection system is arranged such that two sets of magnetic plates are adjacent to each other. A bus bar and a semiconductor substrate are disposed between the opposing magnetic plates in each set. Therefore, in the current detection system, the magnetic plate disposed opposite to the one bus bar and the semiconductor substrate and the magnetic plate disposed opposite to the other bus bar and the semiconductor substrate are separated. For this reason, there is a possibility that the current detection system generates a leakage magnetic field from the end of the magnetic plate.
 また、電流検出システムの磁性板は、磁気飽和する場合、半導体基板に対向する側の表面から磁気飽和することになる。このため、電流検出システムは、磁気飽和による磁性板からの漏れ磁場が、磁電変換素子に影響しやすいという可能性がある。 Also, when the magnetic plate of the current detection system is magnetically saturated, it is magnetically saturated from the surface on the side facing the semiconductor substrate. For this reason, in the current detection system, a leakage magnetic field from the magnetic plate due to magnetic saturation may easily affect the magnetoelectric conversion element.
 特許文献1に開示された電流検出システムの他の一例によれば、電流検出システムは、3組の磁性板(以下、磁気シールド)が隣り合うように配置されている。そして、各組における対向配置された磁気シールド間には、バスバと半導体基板が配置されている。よって、電流検出システムは、隣り合う磁気シールドどうしが分断されている。 According to another example of the current detection system disclosed in Patent Document 1, the current detection system is arranged so that three sets of magnetic plates (hereinafter referred to as magnetic shields) are adjacent to each other. A bus bar and a semiconductor substrate are arranged between the magnetic shields arranged to face each other. Therefore, in the current detection system, adjacent magnetic shields are separated.
 なお、以下においては、1組の磁気シールドと、1組の磁気シールドに挟みこまれたバスバと半導体基板とを相とも称する。よって、上記電流検出システムは、三つの相が隣り合って配置されていると言える。また、対向配置された磁気シールドの一方を上側シールド、他方を下側シールドとも称する。 In the following, a pair of magnetic shields, a bus bar sandwiched between the pair of magnetic shields, and a semiconductor substrate are also referred to as phases. Therefore, it can be said that the current detection system has three phases arranged next to each other. One of the opposed magnetic shields is also called an upper shield and the other is also called a lower shield.
 このように構成された電流検出システムは、ある相のバスバに例えば1200Aなどの比較的大電流を通電すると、そのバスバから磁界が発生する。その磁界は、バスバに対向配置された磁気シールド内部に集中し、隣相の磁気シールドへと伝搬する。そして、端部に配置された磁気シールドでは、上側シールドと下側シールドでの磁界交換が起きる。このため、電流検出システムでは、磁界交換の一部を、端部の磁電変換素子がセンシングしてしまい、電流の検出誤差が生じるという可能性がある。 In the current detection system configured as described above, when a relatively large current such as 1200 A is supplied to a bus bar of a certain phase, a magnetic field is generated from the bus bar. The magnetic field concentrates inside the magnetic shield disposed opposite to the bus bar and propagates to the adjacent magnetic shield. In the magnetic shield arranged at the end, magnetic field exchange occurs between the upper shield and the lower shield. For this reason, in the current detection system, there is a possibility that a part of the magnetic field exchange is sensed by the magnetoelectric conversion element at the end, resulting in a current detection error.
 本開示は、漏れ磁場を抑制できるとともに、磁気飽和による漏れ磁場の影響を抑制できる電流センサを提供することを第1の目的とし、高精度に電流を検出できる電流センサを提供することを第2の目的とする。 The present disclosure has as its first object to provide a current sensor that can suppress the leakage magnetic field and can suppress the influence of the leakage magnetic field due to magnetic saturation, and secondly to provide a current sensor that can detect a current with high accuracy. The purpose.
 本開示の第1の態様によれば、電流センサは、電流経路から発生する磁束を検知して磁電変換を行う磁気検出素子と、磁気検出素子の周囲に配置され、磁気検出素子に対する外部からの磁束を遮蔽する少なくとも二つの磁気シールドと、を備える。 According to the first aspect of the present disclosure, the current sensor detects a magnetic flux generated from the current path and performs a magnetoelectric conversion, and is disposed around the magnetic detection element, and is external to the magnetic detection element. And at least two magnetic shields for shielding magnetic flux.
 少なくとも二つの磁気シールドは、磁気検出素子と電流経路とを挟み込みつつ、対向配置された第1磁気シールドと第2磁気シールドを有している。第1磁気シールドと第2磁気シールドのうちの少なくとも一方は、少なくとも二つのベース部と、少なくとも二つのベース部を繋いでいる連結部とを有し、他方の第1磁気シールドと第2磁気シールドとの対向面に、周辺よりも凹んだ凹部が形成されている。 The at least two magnetic shields have a first magnetic shield and a second magnetic shield arranged to face each other while sandwiching the magnetic detection element and the current path. At least one of the first magnetic shield and the second magnetic shield has at least two base portions and a connecting portion connecting at least two base portions, and the other first magnetic shield and second magnetic shield. A recess that is recessed from the periphery is formed on the opposite surface.
 このように、電流センサは、磁気シールドにおける二つのベース部が連結部で繋がって形成されているため、ベース部の端部からの漏れ磁場を抑制できる。つまり、電流センサは、二つのベース部が連結部で繋がっておらず分割されている場合よりも、ベース部の端部からの漏れ磁場を抑制できる。 Thus, since the current sensor is formed by connecting the two base portions of the magnetic shield by the connecting portion, the leakage magnetic field from the end portion of the base portion can be suppressed. That is, the current sensor can suppress the leakage magnetic field from the end portion of the base portion, compared to the case where the two base portions are not connected by the connecting portion and are divided.
 また、電流センサは、磁気シールドに凹部が形成されているため、電流経路から発生する磁束を、磁気シールドにおける対向領域側とは反対側の表面を流れるようにすることができる。このため、電流センサは、磁気シールドにおける対向領域側とは反対側、すなわち、磁気シールドにおける磁気検出素子から遠い側が磁気飽和しやすくなる。よって、電流センサは、磁気シールドの磁気飽和による漏れ磁場が、磁気検出素子に影響することを抑制できる。 In addition, since the current sensor has a recess formed in the magnetic shield, the magnetic flux generated from the current path can flow on the surface of the magnetic shield opposite to the facing region side. For this reason, in the current sensor, the side opposite to the facing region side in the magnetic shield, that is, the side far from the magnetic detection element in the magnetic shield is likely to be magnetically saturated. Therefore, the current sensor can suppress the leakage magnetic field due to the magnetic saturation of the magnetic shield from affecting the magnetic detection element.
 本開示の第2の態様によれば、電流センサは、複数の電流経路のそれぞれに流れる電流を個別に検出する電流センサであって、一つの電流経路に対向配置され、電流経路から発生する磁界を検知して電気信号に変換する磁気検出素子と、磁気検出素子に対する外部からの磁界を遮蔽するものであり、電流経路と磁気検出素子とを挟み込みつつ、対向配置された一対の第1シールドと第2シールドを含む磁気シールド部と、を有する複数の相を複数の電流経路のそれぞれに対応して備えている。各相は、第1シールド、電流経路、磁気検出素子、第2シールドがこの順序で積層方向に積層され、且つ、積層方向に直交する配置方向に配置されている。 According to the second aspect of the present disclosure, the current sensor is a current sensor that individually detects a current flowing through each of the plurality of current paths, and is disposed to face one current path and is generated from the current path. A magnetic detection element that detects and converts the magnetic detection element into an electric signal, and shields a magnetic field from the outside with respect to the magnetic detection element, and a pair of first shields disposed opposite to each other while sandwiching the current path and the magnetic detection element A plurality of phases having a magnetic shield part including a second shield corresponding to each of a plurality of current paths. In each phase, the first shield, the current path, the magnetic detection element, and the second shield are laminated in this order in the lamination direction, and are arranged in the arrangement direction orthogonal to the lamination direction.
 ここで、複数の相のうち、配置方向の端の相を端相とし、端相における第1シールドを第1端相シールドとし、端相における第2シールドを第2端相シールドとし、端相における磁気検出素子を端相検出素子とする。 Here, among the plurality of phases, an end phase in the arrangement direction is an end phase, a first shield in the end phase is a first end phase shield, a second shield in the end phase is a second end phase shield, The magnetic detection element in FIG.
 第1端相シールドと第2端相シールドの少なくとも一方は、第1端相シールドと第2端相シールドの一方の配置方向の最端部からの漏れ磁界が、端相検出素子よりも、第1端相シールドと第2端相シールドの他方へ達しやすくなるように、第1端相シールドと第2端相シールド間で磁界交換を行うための磁界交換部を備えている。 At least one of the first end-phase shield and the second end-phase shield has a leakage magnetic field from one end direction of one of the first end-phase shield and the second end-phase shield that is higher than that of the end-phase detection element. A magnetic field exchange unit is provided for exchanging the magnetic field between the first end-phase shield and the second end-phase shield so that the other of the one-end phase shield and the second end-phase shield can be easily reached.
 このように、本開示の第2の態様によれば、第1端相シールド及び第2端相シールドの少なくとも一方が磁界交換部を備えている。これによって、本開示は、第1端相シールド及び第2端相シールドにおける配置方向の最端部からの漏れ磁界が、端相検出素子よりも、対向配置された相手側の第1端相シールド及び第2端相シールドへ達しやすくなる。このため、本開示は、漏れ磁界が端相検出素子に達することを抑制でき高精度に電流を検出できる。 Thus, according to the second aspect of the present disclosure, at least one of the first end-phase shield and the second end-phase shield includes the magnetic field exchange unit. Accordingly, the present disclosure provides that the leakage magnetic field from the extreme end portion in the arrangement direction of the first end-phase shield and the second end-phase shield is opposite to the end-phase detection element, and the other end-side first end-phase shield is disposed. And it becomes easy to reach the second terminal phase shield. For this reason, the present disclosure can suppress the leakage magnetic field from reaching the end phase detection element and can detect the current with high accuracy.
 本開示の第3の態様によれば、電流センサは、複数の電流経路のそれぞれに流れる電流を個別に検出する電流センサであって、一つの電流経路に対向配置され、電流経路から発生する磁界を検知して電気信号に変換する磁気検出素子と、磁気検出素子に対する外部からの磁界を遮蔽するものであり、電流経路と磁気検出素子とを挟み込みつつ、対向配置された一対の第1シールドと第2シールドを含む磁気シールド部と、を有する複数の相を複数の電流経路のそれぞれに対応して備えている。各相は、第1シールド、電流経路、磁気検出素子、第2シールドがこの順序で積層方向に積層され、且つ、積層方向に直交する配置方向に配置されている。 According to the third aspect of the present disclosure, the current sensor is a current sensor that individually detects a current flowing through each of the plurality of current paths, and is arranged to face one current path and generate a magnetic field generated from the current path. A magnetic detection element that detects and converts the magnetic detection element into an electric signal, and shields a magnetic field from the outside with respect to the magnetic detection element, and a pair of first shields disposed opposite to each other while sandwiching the current path and the magnetic detection element A plurality of phases having a magnetic shield part including a second shield corresponding to each of a plurality of current paths. In each phase, the first shield, the current path, the magnetic detection element, and the second shield are laminated in this order in the lamination direction, and are arranged in the arrangement direction orthogonal to the lamination direction.
 ここで、複数の相のうち、配置方向の端の相を端相とし、端相における第1シールドを第1端相シールドとし、端相における第2シールドを第2端相シールドとし、端相における磁気検出素子を端相検出素子とする。 Here, among the plurality of phases, an end phase in the arrangement direction is an end phase, a first shield in the end phase is a first end phase shield, a second shield in the end phase is a second end phase shield, The magnetic detection element in FIG.
 磁気シールド部は、第1端相シールドと第2端相シールド間で磁界交換を行うために、第1端相シールドと第2端相シールドにおける配置方向の端部に連続的に設けられ、第1端相シールドと第2端相シールドを一体物とする磁界交換部を備えている。 The magnetic shield portion is continuously provided at the end portion in the arrangement direction of the first end-phase shield and the second end-phase shield in order to exchange the magnetic field between the first end-phase shield and the second end-phase shield, A magnetic field exchanging unit is provided in which the one end phase shield and the second end phase shield are integrated.
 このように、本開示の第3の態様によれば、第1端相シールドと第2端相シールドにおける配置方向の端部に連続的に設けられ、第1端相シールドと第2端相シールドを一体物とする磁界交換部を備えている。これによって、本開示は、第1端相シールドと第2端相シールドにおける配置方向の端部から漏れ磁界が発生することを低減できる。このため、本開示は、漏れ磁界が端相検出素子に達することを抑制でき高精度に電流を検出できる。 Thus, according to the third aspect of the present disclosure, the first end-phase shield and the second end-phase shield are continuously provided at the end portions in the arrangement direction of the first end-phase shield and the second end-phase shield. Is provided as a single unit. Thus, the present disclosure can reduce the occurrence of a leakage magnetic field from the end portions in the arrangement direction of the first end-phase shield and the second end-phase shield. For this reason, the present disclosure can suppress the leakage magnetic field from reaching the end phase detection element and can detect the current with high accuracy.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
第1実施形態における電流センサの概略構成を示す平面図であり、 図1のII‐II線に沿う断面図であり、 第1実施形態の変形例1における電流センサの概略構成を示す断面図であり、 変形例2における電流センサの概略構成を示す断面図であり、 変形例3における電流センサの概略構成を示す断面図であり、 変形例4における電流センサの概略構成を示す断面図であり、 変形例5における電流センサの概略構成を示す断面図であり、 変形例6における電流センサの概略構成を示す断面図であり、 変形例7における電流センサの概略構成を示す断面図であり、 変形例8における電流センサの概略構成を示す断面図であり、 変形例8におけるセンサブロックの概略構成を示す断面図であり、 変形例9における電流センサの概略構成を示す断面図であり、 変形例10における電流センサの概略構成を示す断面図であり、 変形例11における電流センサの概略構成を示す断面図であり、 変形例12における電流センサの概略構成を示す断面図であり、 図15のXVI‐XVI線に沿う断面図であり、 変形例13における電流センサの概略構成を示す断面図であり、 変形例14における電流センサの概略構成を示す断面図であり、 変形例15における電流センサの概略構成を示す断面図であり、 変形例16における電流センサの概略構成を示す断面図であり、 変形例17における電流センサの概略構成を示す断面図であり、 変形例18における電流センサの概略構成を示す断面図であり、 変形例19における電流センサの概略構成を示す平面図であり、 図23におけるXXIV‐XXIV線に沿う断面図であり、 図23におけるXXV‐XXV線に沿う断面図であり、 比較対象における第1磁気シールドの断面図であり、 変形例20における第1磁気シールドの概略構成示す断面図であり、 変形例21における第1磁気シールドの概略構成示す断面図であり、 変形例22における第1磁気シールドの概略構成示す断面図であり、 変形例23における第1磁気シールドの概略構成示す断面図であり、 変形例24における第1磁気シールドの概略構成示す断面図であり、 変形例25における電流センサの概略構成を示す平面図であり、 図32におけるXXXIII‐XXXIII線に沿う断面図であり、 図33におけるXXXIV方向からの平面図であり、 変形例26における電流センサの概略構成を示す平面図であり、 第2実施形態における電流センサの概略構成を示す平面図であり、 図36のXXXVII‐XXXVII線に沿う断面図であり、 第3実施形態における電流センサの概略構成を示す断面図であり、 第3実施形態の変形例1における電流センサの概略構成を示す断面図であり、 変形例2における電流センサの概略構成を示す断面図であり、 第4実施形態における電流センサの概略構成を示す断面図であり、 図41のXLII‐XLII線に沿う断面図であり、 第5実施形態における電流センサの概略構成を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
It is a top view which shows schematic structure of the current sensor in 1st Embodiment, It is sectional drawing which follows the II-II line of FIG. It is sectional drawing which shows schematic structure of the current sensor in the modification 1 of 1st Embodiment, It is sectional drawing which shows schematic structure of the current sensor in the modification 2, It is sectional drawing which shows schematic structure of the current sensor in the modification 3, It is sectional drawing which shows schematic structure of the current sensor in the modification 4, It is sectional drawing which shows schematic structure of the current sensor in the modification 5, It is sectional drawing which shows schematic structure of the current sensor in the modification 6, It is sectional drawing which shows schematic structure of the current sensor in the modification 7, It is sectional drawing which shows schematic structure of the current sensor in the modification 8, It is sectional drawing which shows schematic structure of the sensor block in the modification 8, It is sectional drawing which shows schematic structure of the current sensor in the modification 9, It is sectional drawing which shows schematic structure of the current sensor in the modification 10, It is sectional drawing which shows schematic structure of the current sensor in the modification 11, It is sectional drawing which shows schematic structure of the current sensor in the modification 12, It is sectional drawing which follows the XVI-XVI line of FIG. It is sectional drawing which shows schematic structure of the current sensor in the modification 13, It is sectional drawing which shows schematic structure of the current sensor in the modification 14, It is sectional drawing which shows schematic structure of the current sensor in the modification 15, It is sectional drawing which shows schematic structure of the current sensor in the modification 16, It is sectional drawing which shows schematic structure of the current sensor in the modification 17, It is sectional drawing which shows schematic structure of the current sensor in the modification 18, It is a top view which shows schematic structure of the current sensor in the modification 19, It is sectional drawing which follows the XXIV-XXIV line in FIG. It is sectional drawing which follows the XXV-XXV line in FIG. It is sectional drawing of the 1st magnetic shield in a comparison object, It is sectional drawing which shows schematic structure of the 1st magnetic shield in the modification 20, It is sectional drawing which shows schematic structure of the 1st magnetic shield in the modification 21, It is sectional drawing which shows schematic structure of the 1st magnetic shield in the modification 22, It is sectional drawing which shows schematic structure of the 1st magnetic shield in the modification 23, It is sectional drawing which shows schematic structure of the 1st magnetic shield in the modification 24, It is a top view which shows schematic structure of the current sensor in the modification 25, It is sectional drawing which follows the XXXIII-XXXIII line in FIG. It is a top view from XXXIV direction in FIG. It is a top view which shows schematic structure of the current sensor in the modification 26, It is a top view which shows schematic structure of the current sensor in 2nd Embodiment, It is sectional drawing which follows the XXXVII-XXXVII line of FIG. It is sectional drawing which shows schematic structure of the current sensor in 3rd Embodiment, It is sectional drawing which shows schematic structure of the current sensor in the modification 1 of 3rd Embodiment, It is sectional drawing which shows schematic structure of the current sensor in the modification 2, It is sectional drawing which shows schematic structure of the current sensor in 4th Embodiment, It is sectional drawing which follows the XLII-XLII line | wire of FIG. It is sectional drawing which shows schematic structure of the current sensor in 5th Embodiment.
 以下において、図面を参照しながら、本開示の複数の実施形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other configurations described above can be applied to other portions of the configuration.
 なお、以下においては、互いに直交する3方向をX方向、Y方向、Z方向とする。また、X方向とY方向とによって規定される平面をXY平面、X方向とZ方向とによって規定される平面をXZ平面、Y方向とZ方向とによって規定される平面をYZ平面とする。 In the following, the three directions orthogonal to each other are referred to as an X direction, a Y direction, and a Z direction. A plane defined by the X direction and the Y direction is an XY plane, a plane defined by the X direction and the Z direction is an XZ plane, and a plane defined by the Y direction and the Z direction is a YZ plane.
 (第1実施形態)
 図1、図2を用いて、第1実施形態の電流センサ100に関して説明する。電流センサ100は、例えば、車載モータのインバータ制御に用いられる。電流センサ100は、インバータ制御のために、車載モータに電源を供給する車載バッテリに接続されたバスバ210,220に流れる被検出電流を検出するものである。バスバ210,220は、電流経路に相当する。
(First embodiment)
The current sensor 100 according to the first embodiment will be described with reference to FIGS. 1 and 2. The current sensor 100 is used for inverter control of a vehicle-mounted motor, for example. The current sensor 100 detects a current to be detected flowing in the bus bars 210 and 220 connected to the in-vehicle battery that supplies power to the in-vehicle motor for inverter control. Bus bars 210 and 220 correspond to current paths.
 なお、電流センサ100は、例えば電気自動車やハイブリッド車に用いられる。また、電流センサ100は、例えば集磁コアを必要としないコアレス電流センサを採用できる。 The current sensor 100 is used in, for example, an electric vehicle or a hybrid vehicle. Moreover, the current sensor 100 can employ, for example, a coreless current sensor that does not require a magnetic core.
 電流センサ100は、第1磁気検出素子11と、第2磁気検出素子12と、第1磁気シールド21と、第2磁気シールド22とを備えて構成されている。 The current sensor 100 includes a first magnetic detection element 11, a second magnetic detection element 12, a first magnetic shield 21, and a second magnetic shield 22.
 第1磁気検出素子11と第2磁気検出素子12のそれぞれは、例えばセンサチップやバイアス磁石や回路チップが基板に搭載されるとともに、これらが封止樹脂体で封止され、回路チップと接続されたリードが封止樹脂体の外部に露出した構成を採用できる。センサチップとしては、例えば、巨大磁気抵抗素子(GMR)、異方性磁気抵抗素子(AMR)、トンネル磁気抵抗素子(TMR)、又はホール素子などを採用できる。 Each of the first magnetic detection element 11 and the second magnetic detection element 12 includes, for example, a sensor chip, a bias magnet, and a circuit chip mounted on a substrate, and these are sealed with a sealing resin body and connected to the circuit chip. A configuration in which the lead is exposed to the outside of the sealing resin body can be employed. As the sensor chip, for example, a giant magnetoresistive element (GMR), an anisotropic magnetoresistive element (AMR), a tunnel magnetoresistive element (TMR), or a Hall element can be adopted.
 図1、図2に示すように、第1磁気検出素子11と第2磁気検出素子12は、X方向に並べられて配置されている。図2に示すように、第1磁気検出素子11は、Z方向において、第1バスバ210に対向して配置されている。一方、第2磁気検出素子12は、Z方向において、第2バスバ220に対向して配置されている。なお、Z方向は、磁気シールド21,22の厚み方向と称することもできる。 1 and 2, the first magnetic detection element 11 and the second magnetic detection element 12 are arranged side by side in the X direction. As shown in FIG. 2, the first magnetic detection element 11 is disposed to face the first bus bar 210 in the Z direction. On the other hand, the second magnetic detection element 12 is disposed to face the second bus bar 220 in the Z direction. The Z direction can also be referred to as the thickness direction of the magnetic shields 21 and 22.
 第1磁気シールド21と第2磁気シールド22のそれぞれは、磁性材料によって構成されており、外部磁界が磁気検出素子11,12を透過することを抑制するものである。第1磁気シールド21と第2磁気シールド22は、磁気検出素子11,12に共通に設けられている。 Each of the first magnetic shield 21 and the second magnetic shield 22 is made of a magnetic material and prevents the external magnetic field from passing through the magnetic detection elements 11 and 12. The first magnetic shield 21 and the second magnetic shield 22 are provided in common to the magnetic detection elements 11 and 12.
 図1、図2に示すように、第1磁気シールド21と第2磁気シールド22は、板状部材である。第1磁気シールド21と第2磁気シールド22は、Z方向において、間隔をあけて対向配置されている。また、第1磁気シールド21と第2磁気シールド22は、Z方向において、磁気検出素子11,12やバスバ210,220を挟みこむように配置される。よって、磁気検出素子11,12は、第1磁気シールド21と第2磁気シールド22との対向領域に配置されていると言える。 1 and 2, the first magnetic shield 21 and the second magnetic shield 22 are plate-like members. The first magnetic shield 21 and the second magnetic shield 22 are opposed to each other with a gap in the Z direction. The first magnetic shield 21 and the second magnetic shield 22 are arranged so as to sandwich the magnetic detection elements 11 and 12 and the bus bars 210 and 220 in the Z direction. Therefore, it can be said that the magnetic detection elements 11 and 12 are arranged in a region where the first magnetic shield 21 and the second magnetic shield 22 face each other.
 図1、図2に示すように、第1磁気シールド21と第2磁気シールド22とは、形状が異なる。第2磁気シールド22は、平板形状の板状部材である。第2磁気シールド22は、第1磁気シールド21との対向面と、対向面の反対面とを有している。そして、第2磁気シールド22の対向面及び反対面は、平坦面となっている。また、第2磁気シールド22のZ方向の厚みは、全域で均一である。なお、第2磁気シールド22の反対面は、第2磁気シールド22における外側表面と言うことができる。 As shown in FIGS. 1 and 2, the first magnetic shield 21 and the second magnetic shield 22 have different shapes. The second magnetic shield 22 is a plate-shaped plate member. The second magnetic shield 22 has a surface facing the first magnetic shield 21 and a surface opposite to the facing surface. The opposing surface and the opposite surface of the second magnetic shield 22 are flat surfaces. Further, the thickness of the second magnetic shield 22 in the Z direction is uniform over the entire area. It can be said that the opposite surface of the second magnetic shield 22 is the outer surface of the second magnetic shield 22.
 本実施形態では、対向面の外形と反対面の外形とが矩形状の第2磁気シールド22を採用している。しかしながら、本開示はこれに限定されない。 In the present embodiment, the second magnetic shield 22 having a rectangular outer shape on the opposite surface and an outer surface on the opposite surface is employed. However, the present disclosure is not limited to this.
 一方、第1磁気シールド21は、図2に示すように、凹部1を有した板状部材である。つまり、第1磁気シールド21は、周辺よりも窪んだ凹部1を有している。凹部1は、図1に示すように、第1磁気シールド21におけるY方向の一方の端部から他方の端部にわたって設けられており、溝部とも言える。また、凹部1は、バスバ210,220における電流の流れ方向に沿って、第1磁気シールド21の一方の端部から他方の端部にわたって形成されていると言える。なお、凹部1は、有底の穴であり、第1磁気シールド21をZ方向に貫通している穴ではない。 On the other hand, the first magnetic shield 21 is a plate-like member having a recess 1 as shown in FIG. That is, the first magnetic shield 21 has the recess 1 that is recessed from the periphery. As shown in FIG. 1, the recess 1 is provided from one end of the first magnetic shield 21 in the Y direction to the other end, and can be said to be a groove. In addition, it can be said that the recess 1 is formed from one end of the first magnetic shield 21 to the other end along the direction of current flow in the bus bars 210 and 220. The recess 1 is a hole with a bottom, and is not a hole that penetrates the first magnetic shield 21 in the Z direction.
 この凹部1は、バスバ210,220に被検出電流が流れることで磁気シールド21,22に流れる磁束に対して、直交するように設けられている。なお、第1磁気シールド21などの磁気シールドにおける磁束の流れは、磁気流路と称することができる。 The recess 1 is provided so as to be orthogonal to the magnetic flux flowing in the magnetic shields 21 and 22 when the detected current flows in the bus bars 210 and 220. The flow of magnetic flux in a magnetic shield such as the first magnetic shield 21 can be referred to as a magnetic flow path.
 第1磁気シールド21は、第2磁気シールド22との対向面と、対向面の反対面とを有している。そして、第1磁気シールド21の反対面は、平坦面となっている。しかしながら、第1磁気シールド21の対向面は、一部に窪んだ部位が形成された平坦面となっている。つまり、この窪んだ部位が凹部1に対応する。よって、第1磁気シールド21は、第2磁気シールド22と対向する側に開口した凹部1が形成されている。なお、第1磁気シールド21の反対面は、第1磁気シールド21における外側表面と言うことができる。 The first magnetic shield 21 has a surface facing the second magnetic shield 22 and a surface opposite to the facing surface. The opposite surface of the first magnetic shield 21 is a flat surface. However, the opposing surface of the first magnetic shield 21 is a flat surface in which a part that is recessed in part is formed. That is, the recessed portion corresponds to the recess 1. Therefore, the first magnetic shield 21 is formed with the concave portion 1 opened on the side facing the second magnetic shield 22. It can be said that the opposite surface of the first magnetic shield 21 is the outer surface of the first magnetic shield 21.
 また、第1磁気シールド21は、厚肉部2と薄肉部3とを有していると言える。厚肉部2は、ベース部に相当する。一方、薄肉部3は、連結部に相当する。 Further, it can be said that the first magnetic shield 21 has the thick part 2 and the thin part 3. The thick part 2 corresponds to a base part. On the other hand, the thin portion 3 corresponds to a connecting portion.
 厚肉部2は、Z方向における厚みが、薄肉部3よりも厚い部位である。薄肉部3は、二つの厚肉部2によって挟まれ、二つの厚肉部2と連続的に設けられている。つまり、第1磁気シールド21は、第1磁気検出素子11に対向する厚肉部2と、第2磁気検出素子12に対向する厚肉部2とを含んでおり、二つの厚肉部2が薄肉部3で繋がっている。 The thick part 2 is a part where the thickness in the Z direction is thicker than the thin part 3. The thin part 3 is sandwiched between two thick parts 2 and is provided continuously with the two thick parts 2. That is, the first magnetic shield 21 includes the thick part 2 facing the first magnetic detection element 11 and the thick part 2 facing the second magnetic detection element 12, and the two thick parts 2 are It is connected by the thin part 3.
 また、第1磁気シールド21の反対面は、厚肉部2と薄肉部3で面一に構成されている。一方、第1磁気シールド21の対向面は、厚肉部2と薄肉部3とでZ方向の位置が異なる。よって、凹部1は、薄肉部3の対向領域であり、且つ二つの厚肉部2によって挟まれた領域と言える。さらに、第1磁気シールド21は、薄肉部3に対向する位置に、周辺の厚肉部2よりも窪んで対向領域に開口した凹部1が形成されていると言える。 Further, the opposite surface of the first magnetic shield 21 is configured to be flush with the thick portion 2 and the thin portion 3. On the other hand, the opposing surface of the first magnetic shield 21 differs in the position in the Z direction between the thick portion 2 and the thin portion 3. Therefore, it can be said that the concave portion 1 is a region opposed to the thin portion 3 and is sandwiched between the two thick portions 2. Further, it can be said that the first magnetic shield 21 is formed with a concave portion 1 which is recessed from the peripheral thick portion 2 and opened in the facing region at a position facing the thin portion 3.
 さらに、図1に示すように、第1磁気シールド21は、Z方向から見た場合、第1磁気検出素子11と第2磁気検出素子12の中間に対向する部位に凹部1が設けられていると好ましい。つまり、凹部1は、二つの磁気検出素子11,12の中間位置に対向する部位に設けられている。第1磁気検出素子11から凹部1までの距離X1は、第2磁気検出素子12から凹部1までの距離X2と同程度である。電流センサ100は、凹部1から漏れ磁場が発生した場合であっても、磁気検出素子11,12に漏れ磁場が影響することを抑制できる。しかしながら、凹部1の位置は、これに限定されない。 Further, as shown in FIG. 1, the first magnetic shield 21 is provided with a recess 1 at a portion facing the middle between the first magnetic detection element 11 and the second magnetic detection element 12 when viewed from the Z direction. And preferred. That is, the recess 1 is provided at a portion facing the intermediate position between the two magnetic detection elements 11 and 12. The distance X1 from the first magnetic detection element 11 to the recess 1 is approximately the same as the distance X2 from the second magnetic detection element 12 to the recess 1. The current sensor 100 can suppress the influence of the leakage magnetic field on the magnetic detection elements 11 and 12 even when the leakage magnetic field is generated from the recess 1. However, the position of the recess 1 is not limited to this.
 なお、本実施形態では、対向面の外形と反対面の外形とが矩形状の第1磁気シールド21を採用している。しかしながら、本開示はこれに限定されない。 In the present embodiment, the first magnetic shield 21 having a rectangular outer shape on the opposite surface and an outer surface on the opposite surface is employed. However, the present disclosure is not limited to this.
 電流センサ100は、磁気検出素子11,12と磁気シールド21,22とが組み付けられて構成されている。ここで、電流センサ100の各構成要素と第1バスバ210及び第2バスバ220との組み付け構造に関して説明する。なお、本実施形態では、平板形状の第1バスバ210と第2バスバ220を採用している。図1では、第1バスバ210と第2バスバ220におけるY方向に延びている部位を図示している。また、第1バスバ210と第2バスバ220は、X方向において間隔をあけて、平行に配置されている部位を有している。被検出電流は、図1に示している第1バスバ210と第2バスバ220のY方向に流れている。 The current sensor 100 is configured by assembling magnetic detection elements 11 and 12 and magnetic shields 21 and 22. Here, an assembly structure of each component of the current sensor 100 and the first bus bar 210 and the second bus bar 220 will be described. In the present embodiment, the first bus bar 210 and the second bus bar 220 having a flat plate shape are employed. In FIG. 1, the part extended in the Y direction in the 1st bus bar 210 and the 2nd bus bar 220 is shown in figure. Moreover, the 1st bus bar 210 and the 2nd bus bar 220 have the site | part arrange | positioned in parallel at intervals in the X direction. The detected current flows in the Y direction of the first bus bar 210 and the second bus bar 220 shown in FIG.
 電流センサ100は、第1バスバ210及び第2バスバ220に流れる被検出電流を検出するために、第1バスバ210及び第2バスバ220と組み付けられている。図2に示すように、第1磁気シールド21と第2磁気シールド22とは、Z方向において対向配置されている。そして、第1磁気シールド21と第2磁気シールド22との対向領域には、磁気検出素子11,12とバスバ210,220とが配置されている。 The current sensor 100 is assembled with the first bus bar 210 and the second bus bar 220 in order to detect the detected current flowing through the first bus bar 210 and the second bus bar 220. As shown in FIG. 2, the first magnetic shield 21 and the second magnetic shield 22 are disposed to face each other in the Z direction. In the region where the first magnetic shield 21 and the second magnetic shield 22 are opposed, the magnetic detection elements 11 and 12 and the bus bars 210 and 220 are disposed.
 第1磁気検出素子11は、図2に示すように、Z方向において、第1バスバ210と第1磁気シールド21との間に配置されている。詳述すると、第1磁気検出素子11は、第1バスバ210と、第1磁気シールド21における一方の厚肉部2との間に配置されている。また、第1磁気検出素子11は、第1バスバ210との間、及び第1磁気シールド21との間に間隔をあけて配置されている。 As shown in FIG. 2, the first magnetic detection element 11 is disposed between the first bus bar 210 and the first magnetic shield 21 in the Z direction. Specifically, the first magnetic detection element 11 is disposed between the first bus bar 210 and one thick portion 2 of the first magnetic shield 21. In addition, the first magnetic detection element 11 is disposed with a space between the first bus bar 210 and the first magnetic shield 21.
 第2磁気検出素子12は、図2に示すように、Z方向において、第2バスバ220と第1磁気シールド21との間に配置されている。詳述すると、第2磁気検出素子12は、第2バスバ220と、第1磁気シールド21における他方の厚肉部2との間に配置されている。また、第2磁気検出素子12は、第2バスバ220との間、及び第1磁気シールド21との間に間隔をあけて配置されている。なお、第2磁気シールド22と、第1バスバ210及び第2バスバ220とは、Z方向において、間隔をあけて配置されている。 As shown in FIG. 2, the second magnetic detection element 12 is disposed between the second bus bar 220 and the first magnetic shield 21 in the Z direction. More specifically, the second magnetic detection element 12 is disposed between the second bus bar 220 and the other thick part 2 of the first magnetic shield 21. In addition, the second magnetic detection element 12 is disposed with a space between the second bus bar 220 and the first magnetic shield 21. In addition, the 2nd magnetic shield 22, the 1st bus bar 210, and the 2nd bus bar 220 are arrange | positioned at intervals in the Z direction.
 第1バスバ210は、第1磁気検出素子11とともに、一方の厚肉部2の対向領域に配置されている。第2バスバ220は、第2磁気検出素子12とともに、他方の厚肉部2の対向領域に配置されている。よって、第1磁気検出素子11と第2磁気検出素子12は、凹部1の対向領域を挟んでX方向に並べて配置されている。同様に、第1バスバ210と第2バスバ220は、凹部1の対向領域を挟んでX方向に並べて配置されている。 The first bus bar 210 and the first magnetic detection element 11 are arranged in the opposing region of one thick part 2. The 2nd bus bar 220 is arrange | positioned in the opposing area | region of the other thick part 2 with the 2nd magnetic detection element 12. FIG. Therefore, the first magnetic detection element 11 and the second magnetic detection element 12 are arranged side by side in the X direction with the opposing region of the recess 1 interposed therebetween. Similarly, the first bus bar 210 and the second bus bar 220 are arranged side by side in the X direction across the opposing region of the recess 1.
 電流センサ100の各構成要素とバスバ210,220とは、このように配置されて、組み付けられている。例えば、電流センサ100の各構成要素とバスバ210,220とは、ハウジングなどに固定された組み付け構造を有している。なお、バスバ210,220と、磁気検出素子11,12と、磁気シールド21,22とが組み付けられた構造体は、電流センサ100の端子台と称することができる。 Each component of the current sensor 100 and the bus bars 210 and 220 are arranged and assembled in this way. For example, each component of the current sensor 100 and the bus bars 210 and 220 have an assembly structure fixed to a housing or the like. The structure in which the bus bars 210 and 220, the magnetic detection elements 11 and 12, and the magnetic shields 21 and 22 are assembled can be referred to as a terminal block of the current sensor 100.
 被検出電流は、バスバ210,220の延びる方向、すなわち図1ではY方向に流動する。したがって、図2に示すように、被検出電流のY方向の流動によって、Y方向に直交する平面にて右ねじの法則にしたがった磁場が発生する。この磁場は、被検出磁束ともいうことができる。電流センサ100は、第1磁気検出素子11と、第2磁気検出素子12のそれぞれが、この被検出磁束を電気信号に変換する。つまり、第1磁気検出素子11は、第1バスバ210に流れる被検出磁束を電気信号に変換する。一方、第2磁気検出素子12は、第2バスバ220に流れる被検出磁束を電気信号に変換する。このようにして、電流センサ100は、被検出電流を検出する。 The detected current flows in the direction in which the bus bars 210 and 220 extend, that is, in the Y direction in FIG. Therefore, as shown in FIG. 2, the flow of the detected current in the Y direction generates a magnetic field according to the right-handed screw law on a plane orthogonal to the Y direction. This magnetic field can also be referred to as a detected magnetic flux. In the current sensor 100, each of the first magnetic detection element 11 and the second magnetic detection element 12 converts the detected magnetic flux into an electrical signal. That is, the first magnetic detection element 11 converts the detected magnetic flux flowing through the first bus bar 210 into an electrical signal. On the other hand, the second magnetic detection element 12 converts the detected magnetic flux flowing through the second bus bar 220 into an electrical signal. In this way, the current sensor 100 detects the detected current.
 なお、本実施形態では、図2に示すように、第1バスバ210が通電相で、第2バスバ220が検出相である場合を一例として採用している。このため、第1バスバ210に電流が流れることによって、磁気シールド21,22には、図2の実線矢印で示すように、磁束が流れることになる。また、本実施形態では、通電相である第1バスバ210がノイズ発生源となる。 In addition, in this embodiment, as shown in FIG. 2, the case where the 1st bus bar 210 is an energized phase and the 2nd bus bar 220 is a detection phase is employ | adopted as an example. For this reason, when a current flows through the first bus bar 210, a magnetic flux flows through the magnetic shields 21 and 22, as indicated by solid arrows in FIG. Moreover, in this embodiment, the 1st bus bar 210 which is an electricity supply phase becomes a noise generation source.
 ここで、電流センサ100の効果に関して、比較例の電流センサと対比して説明する。ここで採用する比較例の電流センサは、薄肉部3が設けられておらず、第1磁気検出素子11に対向する厚肉部2と第2磁気検出素子12に対向する厚肉部2とが切り離されている点が、電流センサ100と異なる。このため、比較例の電流センサの構成要素は、電流センサ100の構成要素と同じ符号を用いる。 Here, the effect of the current sensor 100 will be described in comparison with the current sensor of the comparative example. The current sensor of the comparative example employed here is not provided with the thin portion 3, and has a thick portion 2 that faces the first magnetic detection element 11 and a thick portion 2 that faces the second magnetic detection element 12. It is different from the current sensor 100 in that it is disconnected. For this reason, the same code | symbol as the component of the current sensor 100 is used for the component of the current sensor of a comparative example.
 比較例の電流センサは、図2に示す場合と同様に、第1バスバ210に電流が流れた場合、第1磁気検出素子11に対向する厚肉部2の端部から、図2の点線矢印で示すように漏れ磁場が発生する。この端部とは、第1磁気検出素子11に対向する厚肉部2における、第2磁気検出素子12に対向する厚肉部2側の端部である。 As in the case shown in FIG. 2, the current sensor of the comparative example has a dotted arrow in FIG. 2 from the end of the thick portion 2 facing the first magnetic detection element 11 when a current flows through the first bus bar 210. As shown in FIG. This end portion is an end portion on the thick portion 2 side facing the second magnetic detection element 12 in the thick portion 2 facing the first magnetic detection element 11.
 このように漏れ磁場が発生した場合、検出相側の第2磁気検出素子12は、漏れ磁場の影響を受けることになる。このため、比較例の電流センサ100は、第2磁気検出素子12の検出結果に誤差が生じる可能性がある。 When the leakage magnetic field is generated in this way, the second magnetic detection element 12 on the detection phase side is affected by the leakage magnetic field. For this reason, the current sensor 100 of the comparative example may cause an error in the detection result of the second magnetic detection element 12.
 これに対して、電流センサ100は、第1磁気検出素子11に対向する厚肉部2と、第2磁気検出素子12に対向する厚肉部2とが薄肉部3を介して繋がっているため、比較例の電流センサよりも、漏れ磁場を低減できる。よって、第2磁気検出素子12は、被検出電流を検出する際に漏れ磁場の影響を受けにくい。このため、電流センサ100は、第2磁気検出素子12の検出結果に誤差が生じることを抑制できる。つまり、電流センサ100は、比較例の電流センサよりも、第2磁気検出素子12の検出精度を向上できる。 On the other hand, in the current sensor 100, the thick part 2 facing the first magnetic detection element 11 and the thick part 2 facing the second magnetic detection element 12 are connected via the thin part 3. The leakage magnetic field can be reduced as compared with the current sensor of the comparative example. Therefore, the second magnetic detection element 12 is not easily affected by the leakage magnetic field when detecting the detected current. For this reason, the current sensor 100 can suppress the occurrence of an error in the detection result of the second magnetic detection element 12. That is, the current sensor 100 can improve the detection accuracy of the second magnetic detection element 12 as compared with the current sensor of the comparative example.
 また、電流センサ100は、第1磁気シールド21に凹部1が設けられているため、磁束が第1磁気シールド21の外側表面を流れるようにすることができる。つまり、電流センサ100は、第1磁気シールド21に凹部1を設けることで磁気流路をコントロールして、磁束が第1磁気シールド21の外側表面を流れるようにしている。 Moreover, since the current sensor 100 is provided with the recess 1 in the first magnetic shield 21, the magnetic flux can flow on the outer surface of the first magnetic shield 21. That is, the current sensor 100 controls the magnetic flow path by providing the concave portion 1 in the first magnetic shield 21 so that the magnetic flux flows on the outer surface of the first magnetic shield 21.
 このため、電流センサ100は、第1磁気シールド21における対向領域側とは反対側、すなわち、第1磁気シールド21における磁気検出素子11,12から遠い側が磁気飽和しやすくなる。つまり、電流センサ100は、第1磁気シールド21における磁気検出素子11,12に近い側が磁気飽和することを抑制できる。よって、電流センサ100は、第1磁気シールド21の磁気飽和による漏れ磁場が、磁気検出素子11,12に影響することを抑制できる。 For this reason, in the current sensor 100, the side opposite to the facing region side in the first magnetic shield 21, that is, the side far from the magnetic detection elements 11 and 12 in the first magnetic shield 21 is likely to be magnetically saturated. That is, the current sensor 100 can suppress magnetic saturation of the side near the magnetic detection elements 11 and 12 in the first magnetic shield 21. Therefore, the current sensor 100 can suppress the leakage magnetic field due to the magnetic saturation of the first magnetic shield 21 from affecting the magnetic detection elements 11 and 12.
 このように、凹部1は、第1磁気シールド21における磁気流路をコントロールするために設けられている。よって、凹部1は、磁路コントロール部とも称することができる。 Thus, the recess 1 is provided to control the magnetic flow path in the first magnetic shield 21. Therefore, the recessed part 1 can also be called a magnetic path control part.
 本実施形態では、2相のバスバ210,220に対応して、二つの磁気検出素子11,12と、第1磁気シールド21と、第2磁気シールド22とを備えた電流センサ100を採用した。しかしながら、本開示は、これに限定されず、3相のバスバに対応して、三つの磁気検出素子と、第1磁気シールド21と、第2磁気シールド22とを備えたものであってもよい。この場合、第1磁気シールド21は、三つの磁気検出素子のそれぞれに対向する三つの厚肉部と、隣り合う厚肉部との間に設けられた二つの薄肉部を備えることになる。 In the present embodiment, the current sensor 100 including the two magnetic detection elements 11, 12, the first magnetic shield 21, and the second magnetic shield 22 is employed corresponding to the two- phase bus bars 210, 220. However, the present disclosure is not limited to this, and may include three magnetic detection elements, a first magnetic shield 21, and a second magnetic shield 22 corresponding to a three-phase bus bar. . In this case, the 1st magnetic shield 21 is provided with two thin parts provided between the three thick parts which oppose each of three magnetic detection elements, and the adjacent thick part.
 以下に、第1実施形態の変形例1~26に関して説明する。上記第1実施形態及び変形例1~26は、それぞれ単独で実施することも可能であるが、適宜組み合わせて実施することも可能である。本開示は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。 Hereinafter, modifications 1 to 26 of the first embodiment will be described. The first embodiment and the modified examples 1 to 26 can be implemented independently, but can be implemented in combination as appropriate. The present disclosure is not limited to the combinations shown in the embodiments, and can be implemented by various combinations.
 (変形例1)
 図3を用いて、変形例1の電流センサ101に関して説明する。電流センサ101は、第2磁気シールド22Aの構造が電流センサ100と異なる。なお、図3は、図2に相当する断面図である。
(Modification 1)
The current sensor 101 according to the first modification will be described with reference to FIG. The current sensor 101 is different from the current sensor 100 in the structure of the second magnetic shield 22A. FIG. 3 is a cross-sectional view corresponding to FIG.
 電流センサ101は、第1磁気シールド21Aと第2磁気シールド22Aとを備えている。第1磁気シールド21Aは、第1磁気シールド21と同様であるため説明を省略する。 The current sensor 101 includes a first magnetic shield 21A and a second magnetic shield 22A. Since the first magnetic shield 21A is the same as the first magnetic shield 21, description thereof is omitted.
 一方、第2磁気シールド22Aは、第1磁気シールド21と同様に、厚肉部2Aと薄肉部3Aとを備えている。また、第2磁気シールド22Aは、第1磁気シールド21と同様に、凹部1Aが形成されている。つまり、第2磁気シールド22Aは、第1バスバ210に対向する厚肉部2Aと、第2バスバ220に対向する厚肉部2Aと、二つの厚肉部2Aを繋いでいる薄肉部3Aとを備えている。厚肉部2Aは、対向ベース部と言える。一方、薄肉部3Aは、対向連結部と言える。 On the other hand, the second magnetic shield 22A is provided with a thick portion 2A and a thin portion 3A, similarly to the first magnetic shield 21. The second magnetic shield 22 </ b> A is formed with a recess 1 </ b> A, similar to the first magnetic shield 21. That is, the second magnetic shield 22A includes a thick part 2A that faces the first bus bar 210, a thick part 2A that faces the second bus bar 220, and a thin part 3A that connects the two thick parts 2A. I have. The thick part 2A can be said to be an opposing base part. On the other hand, the thin portion 3A can be said to be an opposing connecting portion.
 電流センサ101は、電流センサ100と同様の効果を奏することができる。さらに、第2磁気シールド22Aは、第1磁気シールド21と同様の構成を有しているため、上記した第1磁気シールド21の効果と同様の効果を奏することができる。よって、電流センサ101は、電流センサ100よりも、検出精度を向上できる。また、電流センサ101は、第2磁気シールド22Aのシールド機能を維持しやすく、第2磁気シールド22Aの磁気飽和の影響が磁気検出素子11,12に生じることを抑制しやすい。 The current sensor 101 can achieve the same effects as the current sensor 100. Furthermore, since the second magnetic shield 22 </ b> A has the same configuration as the first magnetic shield 21, the same effect as that of the first magnetic shield 21 described above can be achieved. Therefore, the current sensor 101 can improve detection accuracy as compared with the current sensor 100. In addition, the current sensor 101 can easily maintain the shielding function of the second magnetic shield 22A, and can easily prevent the magnetic detection elements 11 and 12 from being affected by the magnetic saturation of the second magnetic shield 22A.
 (変形例2)
 図4を用いて、変形例2の電流センサ102に関して説明する。電流センサ102は、第1磁気シールド21Bの構造が電流センサ100と異なる。なお、図4は、図2に相当する断面図である。
(Modification 2)
The current sensor 102 according to the second modification will be described with reference to FIG. The current sensor 102 differs from the current sensor 100 in the structure of the first magnetic shield 21B. 4 is a cross-sectional view corresponding to FIG.
 電流センサ102は、第1磁気シールド21Bと第2磁気シールド22Bとを備えている。第2磁気シールド22Bは、第2磁気シールド22と同様であるため説明を省略する。 The current sensor 102 includes a first magnetic shield 21B and a second magnetic shield 22B. Since the second magnetic shield 22B is the same as the second magnetic shield 22, description thereof is omitted.
 第1磁気シールド21Bは、二つの厚肉部2と、二つの厚肉部2を繋いでいる薄肉部3Bとを備えている。薄肉部3Bは、連結部に相当する。第1磁気シールド21Bの反対面及び対向面は、一部に窪んだ部位が形成された平坦面となっている。つまり、第1磁気シールド21Bは、凹部1に加えて、反対面側にも外側凹部1Bが設けられている。電流センサ102は、電流センサ100と同様の効果を奏することができる。 The first magnetic shield 21 </ b> B includes two thick portions 2 and a thin portion 3 </ b> B connecting the two thick portions 2. The thin portion 3B corresponds to a connecting portion. The opposite surface and the opposite surface of the first magnetic shield 21B are flat surfaces in which a part that is recessed is formed. That is, the first magnetic shield 21 </ b> B is provided with the outer concave portion 1 </ b> B on the opposite side in addition to the concave portion 1. The current sensor 102 can achieve the same effect as the current sensor 100.
 (変形例3)
 図5を用いて、変形例3の電流センサ103に関して説明する。電流センサ103は、第1磁気シールド21Cの構造が電流センサ100と異なる。なお、図5は、図2に相当する断面図である。
(Modification 3)
The current sensor 103 according to the third modification will be described with reference to FIG. The current sensor 103 is different from the current sensor 100 in the structure of the first magnetic shield 21C. 5 is a cross-sectional view corresponding to FIG.
 電流センサ103は、第1磁気シールド21Cと第2磁気シールド22Cとを備えている。第2磁気シールド22Cは、第2磁気シールド22と同様であるため説明を省略する。 The current sensor 103 includes a first magnetic shield 21C and a second magnetic shield 22C. Since the second magnetic shield 22C is the same as the second magnetic shield 22, description thereof is omitted.
 第1磁気シールド21Cは、二つの厚肉部2と、二つの厚肉部2を繋いでいる蓋部3Cとを備えている。第1磁気シールド21Cは、二つの厚肉部2が蓋部3Cで連結されて凹部1が形成されている。なお、蓋部3Cは、連結部に相当する。蓋部3Cは、一例として、Z方向の厚みが厚肉部2よりも薄い。蓋部3Cは、二つの厚肉部2の反対面に連結されている。電流センサ103は、電流センサ100と同様の効果を奏することができる。 The first magnetic shield 21 </ b> C includes two thick portions 2 and a lid portion 3 </ b> C that connects the two thick portions 2. In the first magnetic shield 21C, the two thick portions 2 are connected by the lid portion 3C to form the recess 1. The lid portion 3C corresponds to a connecting portion. As an example, the lid 3 </ b> C has a thickness in the Z direction that is thinner than the thick portion 2. The lid portion 3 </ b> C is connected to the opposite surfaces of the two thick portions 2. The current sensor 103 can achieve the same effect as the current sensor 100.
 (変形例4)
 図6を用いて、変形例4の電流センサ104に関して説明する。電流センサ104は、第1磁気シールド21Dの構造が電流センサ100と異なる。なお、図6は、図2に相当する断面図である。
(Modification 4)
The current sensor 104 according to the fourth modification will be described with reference to FIG. The current sensor 104 is different from the current sensor 100 in the structure of the first magnetic shield 21D. 6 is a cross-sectional view corresponding to FIG.
 電流センサ104は、第1磁気シールド21Dと第2磁気シールド22Dとを備えている。第2磁気シールド22Dは、第2磁気シールド22と同様であるため説明を省略する。 The current sensor 104 includes a first magnetic shield 21D and a second magnetic shield 22D. Since the second magnetic shield 22D is the same as the second magnetic shield 22, description thereof is omitted.
 第1磁気シールド21Dは、二つのベース部2Dと、二つのベース部2Dを繋いでいる突出部3Dとを備えている。ベース部2Dは、上記実施形態の厚肉部2に相当する。突出部3Dは、連結部に相当する。 The first magnetic shield 21D includes two base portions 2D and a projecting portion 3D that connects the two base portions 2D. The base portion 2D corresponds to the thick portion 2 of the above embodiment. The protruding part 3D corresponds to a connecting part.
 突出部3Dは、ベース部2Dに対して、反対面側に突出している。言い換えると、突出部3Dは、第1磁気シールド21Dにおける対向領域の反対側に突出して設けられている。突出部3Dは、一例として、一方のベース部2Dとの連結部から、他方のベース部2Dとの連結部までの間に、厚みがベース部2Dよりも薄い部位を含んだものを採用している。突出部3Dの厚みは、Z方向に延びる部位におけるX方向の厚み、X方向に延びる部位におけるZ方向の厚みである。よって、突出部3Dは、薄肉部3と同様の機能を有した部位である。 The protruding portion 3D protrudes on the opposite surface side with respect to the base portion 2D. In other words, the protruding portion 3D is provided so as to protrude on the opposite side of the facing region in the first magnetic shield 21D. As an example, the protruding portion 3D includes a portion including a portion thinner than the base portion 2D between the connecting portion with the one base portion 2D and the connecting portion with the other base portion 2D. Yes. The thickness of the protrusion 3D is the thickness in the X direction at the portion extending in the Z direction and the thickness in the Z direction at the portion extending in the X direction. Therefore, the protrusion 3 </ b> D is a part having the same function as the thin part 3.
 第1磁気シールド21Dは、突出部3Dに凹部1が形成されている。このため、第1磁気シールド21Dは、第1磁気シールド21よりも凹部1のZ方向の深さを深くできる。このため、凹部1は、第1磁気シールド21の厚みよりも深く形成されている。つまり、第1磁気シールド21Dは、対向面に沿う仮想平面から凹部1の底までのZ方向の長さを、ベース部2DのZ方向の厚みよりも長く設けている。 The first magnetic shield 21D has a recess 1 formed in the protrusion 3D. For this reason, the first magnetic shield 21 </ b> D can make the depth of the recess 1 in the Z direction deeper than the first magnetic shield 21. For this reason, the recess 1 is formed deeper than the thickness of the first magnetic shield 21. That is, in the first magnetic shield 21D, the length in the Z direction from the virtual plane along the facing surface to the bottom of the recess 1 is longer than the thickness in the Z direction of the base portion 2D.
 電流センサ104は、電流センサ100と同様の効果を奏することができる。さらに、電流センサ104は、凹部1が電流センサ100の凹部1よりも深いため、凹部1に部品30を配置しやすくなる。また、電流センサ104は、凹部1に電子部品30を配置する場合、電子部品30用に機械的なシールド機能を設け、電子部品をゲルなどの保護部材で保護する必要がない。よって、電流センサ104は、製造工程数を減らすことができるとともに、コスト低減も期待できる。 The current sensor 104 can achieve the same effect as the current sensor 100. Furthermore, since the concave portion 1 is deeper than the concave portion 1 of the current sensor 100 in the current sensor 104, it is easy to place the component 30 in the concave portion 1. Further, when the electronic component 30 is disposed in the recess 1, the current sensor 104 has a mechanical shielding function for the electronic component 30, and does not need to protect the electronic component with a protective member such as a gel. Therefore, the current sensor 104 can reduce the number of manufacturing processes and can be expected to reduce the cost.
 (変形例5)
 図7を用いて、変形例5の電流センサ105に関して説明する。電流センサ105は、第1磁気シールド21Eの構造が電流センサ100と異なる。なお、図7は、図2に相当する断面図である。
(Modification 5)
With reference to FIG. 7, the current sensor 105 of Modification 5 will be described. The current sensor 105 is different from the current sensor 100 in the structure of the first magnetic shield 21E. 7 is a cross-sectional view corresponding to FIG.
 電流センサ105は、第1磁気シールド21Eと第2磁気シールド22Eとを備えている。第2磁気シールド22Eは、第2磁気シールド22と同様であるため説明を省略する。 The current sensor 105 includes a first magnetic shield 21E and a second magnetic shield 22E. Since the second magnetic shield 22E is the same as the second magnetic shield 22, the description thereof is omitted.
 第1磁気シールド21Eは、二つの厚肉部2と、二つの厚肉部2を繋いでいる薄肉部3Bとを備えている。そして、第1磁気シールド21Eは、凹部1が形成されている。詳述すると、第1磁気シールド21Eは、側壁が傾斜部1Eである凹部1が形成されている。よって、第1磁気シールド21Eの凹部1は、凹部1の底から開口端部にいくにつれて、開口面積が広くなっている。 The first magnetic shield 21E includes two thick portions 2 and a thin portion 3B that connects the two thick portions 2. And the recessed part 1 is formed in the 1st magnetic shield 21E. More specifically, the first magnetic shield 21E has a recess 1 whose side wall is an inclined portion 1E. Therefore, the recessed area 1 of the first magnetic shield 21E has an opening area that increases from the bottom of the recessed section 1 toward the opening end.
 なお、第1磁気シールド21Eの凹部1は、プレス加工によって形成する。よって、第1磁気シールド21Eは、プレス機械の金型に傾斜を設けておくことで、傾斜部1Eを形成できる。 Note that the concave portion 1 of the first magnetic shield 21E is formed by pressing. Therefore, the 1st magnetic shield 21E can form the inclination part 1E by providing the metal mold | die of a press machine with the inclination.
 電流センサ105は、電流センサ100と同様の効果を奏することができる。さらに、電流センサ105は、凹部1の側壁が傾斜部1Eであるため、プレス加工する際に、金型を凹部1から抜きやすくできる。 The current sensor 105 can achieve the same effect as the current sensor 100. Furthermore, since the side wall of the recessed part 1 is the inclined part 1E, the current sensor 105 can easily remove the mold from the recessed part 1 during press working.
 (変形例6)
 図8を用いて、変形例6の電流センサ106に関して説明する。電流センサ106は、第1磁気シールド21Fの構造が電流センサ105と異なる。なお、図8は、図2に相当する断面図である。
(Modification 6)
The current sensor 106 according to Modification 6 will be described with reference to FIG. The current sensor 106 is different from the current sensor 105 in the structure of the first magnetic shield 21F. FIG. 8 is a cross-sectional view corresponding to FIG.
 電流センサ106は、第1磁気シールド21Fと第2磁気シールド22Fとを備えている。第2磁気シールド22Fは、第2磁気シールド22Eと同様であるため説明を省略する。 The current sensor 106 includes a first magnetic shield 21F and a second magnetic shield 22F. Since the second magnetic shield 22F is the same as the second magnetic shield 22E, description thereof is omitted.
 第1磁気シールド21Fは、二つのベース部2Fと、二つのベース部2Fを繋いでいる突出部3Fとを備えている。ベース部2Fは、上記実施形態の厚肉部2に相当する。突出部3Fは、連結部に相当する。そして、第1磁気シールド21Fは、第1磁気シールド21Eと同様に、側壁が傾斜部1Fである凹部1が形成されている。 The first magnetic shield 21F includes two base portions 2F and a projecting portion 3F connecting the two base portions 2F. The base portion 2F corresponds to the thick portion 2 of the above embodiment. The protruding part 3F corresponds to a connecting part. And the 1st magnetic shield 21F has the recessed part 1 whose side wall is the inclined part 1F similarly to the 1st magnetic shield 21E.
 このように、第1磁気シールド21Fは、主に、突出部3Fが反対面側に突出している点が第1磁気シールド21Eと異なる。また、第1磁気シールド21Fの凹部1は、変形例5と同様にプレス加工によって形成することができる。 Thus, the first magnetic shield 21F is different from the first magnetic shield 21E mainly in that the protruding portion 3F protrudes on the opposite surface side. Further, the concave portion 1 of the first magnetic shield 21F can be formed by pressing as in the fifth modification.
 電流センサ106は、電流センサ105と同様の効果を奏することができる。さらに、電流センサ106は、突出部3Fが反対面側に突出しているため、プレス加工で容易に製造できる。 The current sensor 106 can achieve the same effect as the current sensor 105. Furthermore, the current sensor 106 can be easily manufactured by pressing because the protruding portion 3F protrudes on the opposite surface side.
 (変形例7)
 図9を用いて、変形例7の電流センサ107に関して説明する。電流センサ107は、第1磁気シールド21Gの構造が電流センサ100と異なる。なお、図9は、図2に相当する断面図である。
(Modification 7)
The current sensor 107 according to the modified example 7 will be described with reference to FIG. The current sensor 107 is different from the current sensor 100 in the structure of the first magnetic shield 21G. FIG. 9 is a cross-sectional view corresponding to FIG.
 電流センサ107は、第1磁気シールド21Gと第2磁気シールド22Gとを備えている。第2磁気シールド22Fは、第2磁気シールド22Eと同様であるため説明を省略する。 The current sensor 107 includes a first magnetic shield 21G and a second magnetic shield 22G. Since the second magnetic shield 22F is the same as the second magnetic shield 22E, description thereof is omitted.
 第1磁気シールド21Gは、第1バスバ210の近傍、及び第2バスバ220の近傍に凹部1が形成されている。詳述すると、凹部1は、第1バスバ210の対向する位置、及び第2バスバ220に対向する位置に形成されている。つまり、凹部1は、各磁気検出素子11、12に対向する位置に形成されている。また、第1磁気シールド21Gは、凹部1に放熱ゲル40が設けられている。放熱ゲル40は、放熱部材に相当する。 The first magnetic shield 21G has a recess 1 formed in the vicinity of the first bus bar 210 and in the vicinity of the second bus bar 220. Specifically, the recess 1 is formed at a position facing the first bus bar 210 and a position facing the second bus bar 220. That is, the recess 1 is formed at a position facing each of the magnetic detection elements 11 and 12. The first magnetic shield 21 </ b> G is provided with a heat radiating gel 40 in the recess 1. The heat radiating gel 40 corresponds to a heat radiating member.
 電流センサ107は、電流センサ100と同様の効果を奏することができる。さらに、電流センサ107は、第1磁気シールド21Gにおけるバスバ210,220の近傍、ここではバスバ210,220に対向する位置に放熱ゲル40が設けられている。このため、電流センサ107は、バスバ210,220で発せられた熱を、放熱ゲル40を介して第1磁気シールド21Gに伝熱しやすくなる。さらに、電流センサ107は、凹部1に放熱ゲル40が設けられているため、凹部1が空間である場合よりも、第1磁気シールド21Gの機械的強度を向上できる。 The current sensor 107 can achieve the same effect as the current sensor 100. Further, the current sensor 107 is provided with a heat radiating gel 40 in the vicinity of the bus bars 210, 220 in the first magnetic shield 21G, here, at a position facing the bus bars 210, 220. For this reason, the current sensor 107 easily transfers the heat generated by the bus bars 210 and 220 to the first magnetic shield 21G via the heat dissipation gel 40. Furthermore, since the thermal sensor 40 is provided in the recessed part 1, the current sensor 107 can improve the mechanical strength of the first magnetic shield 21G as compared with the case where the recessed part 1 is a space.
 また、電流センサ107は、第2磁気シールド22Gにおける、バスバ210,220に対向する位置に凹部1を設けて、この凹部1に放熱ゲル40を配置してもよい。この場合、電流センサ107は、放熱性をより一層向上できる。また、電流センサ107は、凹部1に放熱ゲル40を配置することで、第2磁気シールド22Gに凹部が空間である場合より、第2磁気シールド22Gの機械的強度を向上できる。 Further, the current sensor 107 may be provided with the concave portion 1 at a position facing the bus bars 210 and 220 in the second magnetic shield 22G, and the heat radiation gel 40 may be disposed in the concave portion 1. In this case, the current sensor 107 can further improve the heat dissipation. Moreover, the current sensor 107 can improve the mechanical strength of the second magnetic shield 22G by disposing the heat radiating gel 40 in the concave portion 1 as compared with the case where the concave portion is a space in the second magnetic shield 22G.
 (変形例8)
 図10、図11を用いて、変形例8の電流センサ108に関して説明する。電流センサ108は、第1磁気シールド21Gの構造が電流センサ100と異なる。また、電流センサ108は、4相用のセンサとして構成されている点が電流センサ100と異なる。なお、図10は、図2に相当する断面図である。
(Modification 8)
The current sensor 108 according to Modification 8 will be described with reference to FIGS. 10 and 11. The current sensor 108 is different from the current sensor 100 in the structure of the first magnetic shield 21G. Current sensor 108 is different from current sensor 100 in that it is configured as a four-phase sensor. FIG. 10 is a cross-sectional view corresponding to FIG.
 電流センサ108は、第1センサブロック108A、第2センサブロック108B、第3センサブロック108C、第4センサブロック108Dを備えている。そして、電流センサ108は、複数のセンサブロック108A~108Dが組み付けられて構成されている。また、電流センサ108は、複数のセンサブロック108A~108Dが接続されてモジュール化されていると言える。各センサブロック108A~108Dは、同一構成をなしている。 The current sensor 108 includes a first sensor block 108A, a second sensor block 108B, a third sensor block 108C, and a fourth sensor block 108D. The current sensor 108 is configured by assembling a plurality of sensor blocks 108A to 108D. Further, it can be said that the current sensor 108 is modularized by connecting a plurality of sensor blocks 108A to 108D. Each of the sensor blocks 108A to 108D has the same configuration.
 ここで、図11を用いて、各センサブロック108A~108Dの構成に関して説明する。なお、ここでは、代表例として、第1センサブロック108Aを用いて説明する。 Here, the configuration of each of the sensor blocks 108A to 108D will be described with reference to FIG. Here, the first sensor block 108A will be described as a representative example.
 第1センサブロック108Aは、磁気検出素子11と、バスバ210と、第1磁気シールド21Hと、第2磁気シールド22Hと、封止樹脂部50とを備えている。なお、第1センサブロック108Aのバスバ210は、1相目の電流が流れる第1バスバ210と言える。また、第1センサブロック108Aの磁気検出素子11は、1相目の電流を検出する第1磁気検出素子11と言える。 The first sensor block 108A includes the magnetic detection element 11, the bus bar 210, the first magnetic shield 21H, the second magnetic shield 22H, and the sealing resin portion 50. The bus bar 210 of the first sensor block 108A can be said to be the first bus bar 210 in which the current of the first phase flows. Further, it can be said that the magnetic detection element 11 of the first sensor block 108A is the first magnetic detection element 11 that detects the current of the first phase.
 第1磁気シールド21Hと第2磁気シールド22Hのそれぞれは、磁性材料によって構成されている。第1磁気シールド21Hと第2磁気シールド22Hは、Z方向に直交する板状部材として構成されている。第1磁気シールド21Hと第2磁気シールド22Hは、Z方向において、間隔をあけて対向配置されている。 Each of the first magnetic shield 21H and the second magnetic shield 22H is made of a magnetic material. The first magnetic shield 21H and the second magnetic shield 22H are configured as plate-like members orthogonal to the Z direction. The first magnetic shield 21H and the second magnetic shield 22H are disposed to face each other with an interval in the Z direction.
 また、第1磁気シールド21Hと第2磁気シールド22Hは、Z方向において、磁気検出素子11とバスバ210を挟みこむように配置される。よって、磁気検出素子11とバスバ210は、第1磁気シールド21Hと第2磁気シールド22Hとの対向領域に配置されていると言える。なお、第1磁気検出素子11は、バスバ210を間に挟むことなく第1磁気シールド21Hと対向しており、且つ、バスバ210を間に挟んで第2磁気シールド22Hと対向している。 Also, the first magnetic shield 21H and the second magnetic shield 22H are arranged so as to sandwich the magnetic detection element 11 and the bus bar 210 in the Z direction. Therefore, it can be said that the magnetic detection element 11 and the bus bar 210 are disposed in the opposing region of the first magnetic shield 21H and the second magnetic shield 22H. The first magnetic detection element 11 faces the first magnetic shield 21H without the bus bar 210 interposed therebetween, and faces the second magnetic shield 22H with the bus bar 210 interposed therebetween.
 本実施形態では、同一形状の第1磁気シールド21Hと第2磁気シールド22Hとを採用している。第1磁気シールド21Hと第2磁気シールド22Hは、平板形状の板状部材である。第1磁気シールド21Hは、第2磁気シールド22Hとの対向面である第1対向面S2と、第1対向面S2の反対面である第1反対面S1とを有している。一方、第2磁気シールド22Hは、第1磁気シールド21Hとの対向面である第2対向面S4と、第2対向面S4の反対面である第2反対面S3とを有している。 In the present embodiment, the first magnetic shield 21H and the second magnetic shield 22H having the same shape are employed. The first magnetic shield 21H and the second magnetic shield 22H are flat plate-like plate members. The first magnetic shield 21H has a first opposing surface S2 that is an opposing surface to the second magnetic shield 22H, and a first opposing surface S1 that is an opposite surface of the first opposing surface S2. On the other hand, the second magnetic shield 22H has a second opposing surface S4 that is an opposing surface to the first magnetic shield 21H, and a second opposing surface S3 that is an opposite surface of the second opposing surface S4.
 第1磁気シールド21Hと第2磁気シールド22Hは、第1反対面S1、第1対向面S2、第2反対面S3、第2対向面S4が平坦面となっている。また、第1磁気シールド21Hと第2磁気シールド22Hは、Z方向の厚みが全域で均一である。 In the first magnetic shield 21H and the second magnetic shield 22H, the first opposite surface S1, the first opposite surface S2, the second opposite surface S3, and the second opposite surface S4 are flat surfaces. Further, the first magnetic shield 21H and the second magnetic shield 22H have a uniform thickness in the Z direction over the entire area.
 第1センサブロック108Aは、第1磁気検出素子11と、第1バスバ210と、第1磁気シールド21Hと、第2磁気シールド22Hとが封止樹脂部50によって一体的に構成されている。第1磁気検出素子11と第1バスバ210は、磁気シールド21Hと第2磁気シールド22Hとの対向領域に配置された状態で、封止樹脂部50で封止されている。なお、第1バスバ210は、Y方向の両端が封止樹脂部50から露出している。また、磁気シールド21Hと第2磁気シールド22Hとは、封止樹脂部50に固定されている。 In the first sensor block 108A, the first magnetic detection element 11, the first bus bar 210, the first magnetic shield 21H, and the second magnetic shield 22H are integrally configured by the sealing resin portion 50. The first magnetic detection element 11 and the first bus bar 210 are sealed with a sealing resin portion 50 in a state where the first magnetic detection element 11 and the first bus bar 210 are arranged in the opposing region of the magnetic shield 21H and the second magnetic shield 22H. Note that both ends of the first bus bar 210 in the Y direction are exposed from the sealing resin portion 50. The magnetic shield 21H and the second magnetic shield 22H are fixed to the sealing resin portion 50.
 第1磁気シールド21Hと第2磁気シールド22Hは、X方向の両端に、封止樹脂部50が形成されていない領域を含んでいる。これは、隣り合うセンサブロックどうしを、第1磁気シールド21H及び第2磁気シールド22Hで接続するためである。 The first magnetic shield 21H and the second magnetic shield 22H include regions where the sealing resin portion 50 is not formed at both ends in the X direction. This is because adjacent sensor blocks are connected by the first magnetic shield 21H and the second magnetic shield 22H.
 なお、第2センサブロック108Bは、バスバとして2相目の電流が流れる第2バスバ220と、磁気検出素子として2相目の電流を検出する第2磁気検出素子12とを備えている。同様に、第3センサブロック108Cは、バスバとして3相目の電流が流れる第3バスバ230と、磁気検出素子として3相目の電流を検出する第3磁気検出素子13とを備えている。そして、第4センサブロック108Dは、バスバとして4相目の電流が流れる第4バスバ240と、磁気検出素子として4相目の電流を検出する第4磁気検出素子14とを備えている。バスバ230,240は、電流経路に相当する。 The second sensor block 108B includes a second bus bar 220 through which a second-phase current flows as a bus bar, and a second magnetic detection element 12 that detects a second-phase current as a magnetic detection element. Similarly, the third sensor block 108C includes a third bus bar 230 through which a third-phase current flows as a bus bar, and a third magnetic detection element 13 that detects a third-phase current as a magnetic detection element. The fourth sensor block 108D includes a fourth bus bar 240 through which a fourth-phase current flows as a bus bar, and a fourth magnetic detection element 14 that detects a fourth-phase current as a magnetic detection element. The bus bars 230 and 240 correspond to current paths.
 本実施形態では、一例として、第1センサブロック108A、第2センサブロック108B、第3センサブロック108C、第4センサブロック108Dの順に並べられている電流センサ108を採用する。また、電流センサ108は、第2センサブロック108Bと第4センサブロック108Dが、第1センサブロック108Aと第3センサブロック108Cに対して、上下反転された状態で組み付けられている。よって、電流センサ108は、隣り合うセンサブロックの第1磁気シールド21Hと第2磁気シールド22Hが接すように、複数のセンサブロック108A~108Dが組み付けられている。 In the present embodiment, as an example, the current sensor 108 arranged in the order of the first sensor block 108A, the second sensor block 108B, the third sensor block 108C, and the fourth sensor block 108D is employed. The current sensor 108 is assembled in a state where the second sensor block 108B and the fourth sensor block 108D are turned upside down with respect to the first sensor block 108A and the third sensor block 108C. Therefore, the current sensor 108 is assembled with a plurality of sensor blocks 108A to 108D so that the first magnetic shield 21H and the second magnetic shield 22H of adjacent sensor blocks are in contact with each other.
 つまり、電流センサ108は、第1センサブロック108Aの第1磁気シールド21Hと第2センサブロック108Bの第2磁気シールド22Hとが接し、第1センサブロック108Aの第2磁気シールド22Hと第2センサブロック108Bの第1磁気シールド21Hとが接している。そして、電流センサ108は、第1センサブロック108Aの第2対向面S4と第2センサブロック108Bの第1反対面S1とが接し、第1センサブロック108Aの第1反対面S1と第2センサブロック108Bの第2対向面S4とが接して組み付けられている。これらの接している部位は、第1磁気シールド21Hと第2磁気シールド22Hにおける封止樹脂部50が設けられていない部位である。 That is, in the current sensor 108, the first magnetic shield 21H of the first sensor block 108A and the second magnetic shield 22H of the second sensor block 108B are in contact with each other, and the second magnetic shield 22H of the first sensor block 108A and the second sensor block 108A are in contact. The first magnetic shield 21H of 108B is in contact. The current sensor 108 is in contact with the second facing surface S4 of the first sensor block 108A and the first opposite surface S1 of the second sensor block 108B, and the first opposite surface S1 of the first sensor block 108A and the second sensor block 108A. 108B 2nd opposing surface S4 is assembled | attached in contact. These contact portions are portions where the sealing resin portion 50 is not provided in the first magnetic shield 21H and the second magnetic shield 22H.
 また、電流センサ108は、第2センサブロック108Bの第1磁気シールド21Hと第3センサブロック108Cの第2磁気シールド22Hとが接し、第2センサブロック108Bの第2磁気シールド22Hと第3センサブロック108Cの第1磁気シールド21Hとが接している。そして、電流センサ108は、第2センサブロック108Bの第1反対面S1と第3センサブロック108Cの第2対向面S4とが接し、第2センサブロック108Bの第2対向面S4と第3センサブロック108Cの第1反対面S1とが接して組み付けられている。 In the current sensor 108, the first magnetic shield 21H of the second sensor block 108B and the second magnetic shield 22H of the third sensor block 108C are in contact with each other, and the second magnetic shield 22H of the second sensor block 108B and the third sensor block 108B are in contact. The first magnetic shield 21H of 108C is in contact. The current sensor 108 is in contact with the first opposite surface S1 of the second sensor block 108B and the second opposite surface S4 of the third sensor block 108C, and the second opposite surface S4 of the second sensor block 108B and the third sensor block 108B. 108C 1st opposing surface S1 is contact | attached and assembled | attached.
 さらに、電流センサ108は、第3センサブロック108Cの第1磁気シールド21Hと第4センサブロック108Dの第2磁気シールド22Hとが接し、第3センサブロック108Cの第2磁気シールド22Hと第4センサブロック108Dの第1磁気シールド21Hとが接している。そして、電流センサ108は、第3センサブロック108Cの第2対向面S4と第4センサブロック108Dの第1反対面S1とが接し、第3センサブロック108Cの第1反対面S1と第4センサブロック108Dの第2対向面S4とが接して組み付けられている。 Further, the current sensor 108 is in contact with the first magnetic shield 21H of the third sensor block 108C and the second magnetic shield 22H of the fourth sensor block 108D, and the second magnetic shield 22H of the third sensor block 108C and the fourth sensor block 108C. The first magnetic shield 21H of 108D is in contact. The current sensor 108 is in contact with the second opposing surface S4 of the third sensor block 108C and the first opposite surface S1 of the fourth sensor block 108D, and the first opposite surface S1 of the third sensor block 108C and the fourth sensor block. 108D 2nd opposing surface S4 is assembled | attached in contact.
 電流センサ108は、これらの接している部位どうしが連結されて一体化されている。なお、図10における符号21H1は、上側の磁気シールドにおける連結部である。一方、符号22H1は、下側の磁気シールドにおける連結部である。また、第1センサブロック108Aと第3センサブロック108Cの第2磁気シールド22Hと、第2センサブロック108Bと第4センサブロック108Dの第1磁気シールド21Hとが一体化された磁気シールドは、上側磁気シールドと称することができる。一方、第1センサブロック108Aと第3センサブロック108Cの第1磁気シールド21Hと、第2センサブロック108Bと第4センサブロック108Dの第2磁気シールド22Hとが一体化された磁気シールドは、下側磁気シールドと称することができる。 The current sensor 108 is integrated by connecting these contacting parts. In addition, the code | symbol 21H1 in FIG. 10 is a connection part in an upper magnetic shield. On the other hand, reference numeral 22H1 is a connecting portion in the lower magnetic shield. In addition, the magnetic shield in which the second magnetic shield 22H of the first sensor block 108A and the third sensor block 108C and the first magnetic shield 21H of the second sensor block 108B and the fourth sensor block 108D are integrated is an upper magnetic shield. It can be called a shield. On the other hand, the magnetic shield in which the first magnetic shield 21H of the first sensor block 108A and the third sensor block 108C and the second magnetic shield 22H of the second sensor block 108B and the fourth sensor block 108D are integrated is the lower side. It can be called a magnetic shield.
 電流センサ108は、第1センサブロック108Aや第3センサブロック108Cの第2磁気シールド22Hが、第2センサブロック108Bや第4センサブロック108Dの第1磁気シールド21Hに対して窪んで形成されている。同様に、電流センサ108は、第2センサブロック108Bや第4センサブロック108Dの第2磁気シールド22Hが、第1センサブロック108Aや第3センサブロック108Cの第1磁気シールド21Hに対して窪んで形成されている。電流センサ108は、上記のように各センサブロック108A~108Dが組み付けられることで、他方の磁気シールドとの対向面に、周辺よりも凹んだ凹部1が形成されていると言える。 The current sensor 108 is formed such that the second magnetic shield 22H of the first sensor block 108A or the third sensor block 108C is recessed with respect to the first magnetic shield 21H of the second sensor block 108B or the fourth sensor block 108D. . Similarly, the current sensor 108 is formed such that the second magnetic shield 22H of the second sensor block 108B or the fourth sensor block 108D is recessed with respect to the first magnetic shield 21H of the first sensor block 108A or the third sensor block 108C. Has been. In the current sensor 108, the sensor blocks 108A to 108D are assembled as described above, so that it can be said that the concave portion 1 recessed from the periphery is formed on the surface facing the other magnetic shield.
 電流センサ108は、電流センサ100と同様の効果を奏することができる。つまり、電流センサ108は、隣り合うセンサブロック、例えば第1センサブロック108Aと第2センサブロック108Bどうしなどが、第1磁気シールド21H及び第2磁気シールド22Hで接続された構成を有している。このため、電流センサ108は、漏れ磁場を抑制できる。 The current sensor 108 can achieve the same effect as the current sensor 100. That is, the current sensor 108 has a configuration in which adjacent sensor blocks, for example, the first sensor block 108A and the second sensor block 108B are connected by the first magnetic shield 21H and the second magnetic shield 22H. For this reason, the current sensor 108 can suppress the leakage magnetic field.
 また、電流センサ108は、凹部1が形成されているため、図10におけるX方向に延びる直線矢印のように、第1磁気シールド21H内及び第2磁気シールド22H内を磁界が生じる。つまり、電流センサ108は、磁束が第1磁気シールド21Hの外側表面を流れるようにすることができる。言い換えると、電流センサ108は、第1磁気シールド21Hにおける各磁気検出素子11~14から遠い側の表面を流れるように、磁気流路がコントロールできる。このため、電流センサ108は、磁気飽和による漏れ磁場の影響を磁気検出素子11~14のそれぞれが受けにくい。 Further, since the current sensor 108 is formed with the recess 1, a magnetic field is generated in the first magnetic shield 21 </ b> H and the second magnetic shield 22 </ b> H as indicated by a straight arrow extending in the X direction in FIG. 10. That is, the current sensor 108 can cause the magnetic flux to flow on the outer surface of the first magnetic shield 21H. In other words, the current sensor 108 can control the magnetic flow path so as to flow on the surface of the first magnetic shield 21H on the side far from the magnetic detection elements 11-14. For this reason, each of the magnetic detection elements 11 to 14 is not easily affected by the leakage magnetic field due to magnetic saturation.
 さらに、電流センサ108は、各センサブロック108A~108Dのそれぞれが同一構成を有している。つまり、各センサブロック108A~108Dは、標準化されている。このように、電流センサ108は、標準化された各センサブロック108A~108Dを組み付けることで構成されているため、コストを低減できる。なお、電流センサ108は、変形例7と組み合わせて実施することも可能であり、凹部1に放熱ゲル40が埋設されていてもよい。 Furthermore, in the current sensor 108, each of the sensor blocks 108A to 108D has the same configuration. That is, the sensor blocks 108A to 108D are standardized. As described above, the current sensor 108 is configured by assembling the standardized sensor blocks 108A to 108D, so that the cost can be reduced. The current sensor 108 can also be implemented in combination with the modified example 7, and the heat radiating gel 40 may be embedded in the recess 1.
 (変形例9)
 図12を用いて、変形例9の電流センサ109に関して説明する。電流センサ109は、磁気抵抗素子の数と凹部1,1Aの位置が電流センサ101と異なる。なお、図12は、図2に相当する断面図である。
(Modification 9)
The current sensor 109 according to the modified example 9 will be described with reference to FIG. The current sensor 109 differs from the current sensor 101 in the number of magnetoresistive elements and the positions of the recesses 1 and 1A. FIG. 12 is a cross-sectional view corresponding to FIG.
 電流センサ109は、一つの第1磁気検出素子11と、第1磁気シールド21Iと、第2磁気シールド22Iとを備えている。第1磁気検出素子11は、第1バスバ210と対向する位置であり、且つ、第1磁気シールド21Iと第2磁気シールド22Iとの対向領域に配置されている。詳述すると、第1磁気検出素子11及び第1バスバ210は、第1磁気シールド21Iの中央の厚肉部2と、第2磁気シールド22Iの中央の厚肉部2Aとが対向する位置に配置されている。 The current sensor 109 includes one first magnetic detection element 11, a first magnetic shield 21I, and a second magnetic shield 22I. The first magnetic detection element 11 is located at a position facing the first bus bar 210 and is disposed in a facing region between the first magnetic shield 21I and the second magnetic shield 22I. Specifically, the first magnetic detection element 11 and the first bus bar 210 are arranged at a position where the central thick part 2 of the first magnetic shield 21I and the thick part 2A of the second magnetic shield 22I face each other. Has been.
 第1磁気シールド21Iは、三つの厚肉部2と、二つの薄肉部3とを備えている。よって、第1磁気シールド21Iは、二箇所に凹部1が形成されている。第2磁気シールド22Iは、第1磁気シールド21Iと同様である。電流センサ109は、第1磁気シールド21Iの凹部1と第2磁気シールド22Iの凹部1Aとが対向して配置されている。このように、電流センサ109は、1相用のセンサとして構成されている。 The first magnetic shield 21I includes three thick portions 2 and two thin portions 3. Therefore, the first magnetic shield 21I has the recesses 1 formed in two places. The second magnetic shield 22I is the same as the first magnetic shield 21I. In the current sensor 109, the concave portion 1 of the first magnetic shield 21I and the concave portion 1A of the second magnetic shield 22I are arranged to face each other. Thus, the current sensor 109 is configured as a one-phase sensor.
 電流センサ109は、第1磁気シールド21Iに凹部1が形成されている。このため、電流センサ109は、外乱磁界が第1磁気シールド21Iの外側表面を流れる。よって、電流センサ109は、電流センサ100と同様に、磁気飽和の影響が第1磁気検出素子11に生じることを抑制できる。また、電流センサ109は、第2磁気シールド22Iにも凹部1Aが形成されているため、磁気飽和の影響が第1磁気検出素子11に生じることをより一層抑制できる。 The current sensor 109 has a recess 1 formed in the first magnetic shield 21I. For this reason, in the current sensor 109, the disturbance magnetic field flows on the outer surface of the first magnetic shield 21I. Therefore, like the current sensor 100, the current sensor 109 can suppress the influence of magnetic saturation from occurring in the first magnetic detection element 11. In addition, since the current sensor 109 has the recess 1A formed in the second magnetic shield 22I, it is possible to further suppress the influence of magnetic saturation on the first magnetic detection element 11.
 なお、電流センサ109は、第2磁気シールド22Iのかわりに、第2磁気シールド22や第2磁気シールド22Aなどを採用してもよい。 Note that the current sensor 109 may employ the second magnetic shield 22 or the second magnetic shield 22A instead of the second magnetic shield 22I.
 (変形例10)
 図13を用いて、変形例10の電流センサ110に関して説明する。電流センサ110は、第1磁気シールド21Jと第2磁気シールド22Jの構成が電流センサ101と異なる。なお、図13は、図2に相当する断面図である。
(Modification 10)
The current sensor 110 according to the tenth modification will be described with reference to FIG. The current sensor 110 is different from the current sensor 101 in the configuration of the first magnetic shield 21J and the second magnetic shield 22J. FIG. 13 is a cross-sectional view corresponding to FIG.
 第1磁気シールド21Jは、磁性材料によって構成された複数の層が積層されて構成されている。本変形例では、第1表面層21J1と、第1中間層21J2と、第1対向層21J3とが積層された第1磁気シールド21Jを採用する。第1表面層21J1は、一枚の平板部材である。一方、第1中間層21J2や第1対向層21J3は、二枚の平板部材である。 The first magnetic shield 21J is formed by laminating a plurality of layers made of a magnetic material. In this modification, a first magnetic shield 21J in which a first surface layer 21J1, a first intermediate layer 21J2, and a first facing layer 21J3 are stacked is employed. The first surface layer 21J1 is a single flat plate member. On the other hand, the first intermediate layer 21J2 and the first opposing layer 21J3 are two flat plate members.
 第1磁気シールド21Jの厚肉部2は、第1表面層21J1と第1中間層21J2と第1対向層21J3とが積層されて構成されている。また、第1磁気シールド21Jの厚肉部2は、第2磁気シールド22J側から第1対向層21J3、第1中間層21J2、第1表面層21J1の順番で積層されている。 The thick part 2 of the first magnetic shield 21J is configured by laminating a first surface layer 21J1, a first intermediate layer 21J2, and a first opposing layer 21J3. Further, the thick part 2 of the first magnetic shield 21J is laminated in the order of the first facing layer 21J3, the first intermediate layer 21J2, and the first surface layer 21J1 from the second magnetic shield 22J side.
 第1磁気シールド21Jの薄肉部3は、第1対向層21J3及び第1中間層21J2は設けられておらず、第1表面層21J1で構成されている。つまり、第1磁気シールド21Jは、凹部1を構成するために、第1中間層21J2と第1対向層21J3のそれぞれが分断されている。 The thin portion 3 of the first magnetic shield 21J is not provided with the first opposing layer 21J3 and the first intermediate layer 21J2, but is constituted by the first surface layer 21J1. That is, in the first magnetic shield 21J, each of the first intermediate layer 21J2 and the first opposing layer 21J3 is divided in order to form the recess 1.
 また、第2磁気シールド22Jは、磁性材料によって構成された複数の層が積層されて構成されている。本変形例では、第2表面層22J1と、第2中間層22J2、第2対向層22J3とが積層された第2磁気シールド22Jを採用する。第2磁気シールド22Jの各層22J1~22J3は、第1磁気シールド21Jの各層21J1~21J3と対応している。 Further, the second magnetic shield 22J is formed by laminating a plurality of layers made of a magnetic material. In this modification, a second magnetic shield 22J in which a second surface layer 22J1, a second intermediate layer 22J2, and a second opposing layer 22J3 are stacked is employed. The layers 22J1 to 22J3 of the second magnetic shield 22J correspond to the layers 21J1 to 21J3 of the first magnetic shield 21J.
 電流センサ110は、電流センサ101と同様の効果を奏することができる。なお、電流センサ110は、第2磁気シールド22Jのかわりに、第2磁気シールド22や第2磁気シールド22Aなどを採用してもよい。 The current sensor 110 can achieve the same effect as the current sensor 101. Note that the current sensor 110 may employ the second magnetic shield 22 or the second magnetic shield 22A instead of the second magnetic shield 22J.
 さらに、電流センサ110は、第1表面層21J1と、第1中間層21J2及び第1対向層21J3とで透磁率が異なる材料を用いてもよい。同様に、電流センサ110は、第2表面層22J1と、第2中間層22J2及び第2対向層22J3とで透磁率が異なる材料を用いてもよい。 Furthermore, the current sensor 110 may use materials having different magnetic permeability between the first surface layer 21J1, the first intermediate layer 21J2, and the first opposing layer 21J3. Similarly, the current sensor 110 may use materials having different magnetic permeability between the second surface layer 22J1, the second intermediate layer 22J2, and the second facing layer 22J3.
 第1表面層21J1と第2表面層22J1は、透磁率μAの材料で構成されている。一方、第1中間層21J2、第1対向層21J3、第2中間層22J2、及び第2対向層22J3は、透磁率μBの材料で構成されている。そして、μAとμBの関係は、μA>μBである。なお、第1表面層21J1と第2表面層22J1は、対向領域の反対側の最外層に相当する。 The first surface layer 21J1 and the second surface layer 22J1 are made of a material having a magnetic permeability μA. On the other hand, the first intermediate layer 21J2, the first counter layer 21J3, the second intermediate layer 22J2, and the second counter layer 22J3 are made of a material having a magnetic permeability μB. The relationship between μA and μB is μA> μB. The first surface layer 21J1 and the second surface layer 22J1 correspond to the outermost layer on the opposite side of the facing region.
 このように構成された電流センサ110は、磁気抵抗が低い材料で構成された第1表面層21J1と第2表面層22J1に磁束が他の層よりも集まりやすく、他の層が磁気飽和しにくくなる。つまり、電流センサ110は、厚肉部2,2Aが磁気飽和しにくくなる。また、薄肉部3,3Aは、厚肉部2,2Aよりも磁気抵抗が低いため、凹部1,1Aでの漏れ磁場を抑制できる。なお、他の層とは、第1中間層21J2、第1対向層21J3、第2中間層22J2、及び第2対向層22J3である。 In the current sensor 110 configured in this way, magnetic flux is more likely to collect in the first surface layer 21J1 and the second surface layer 22J1 made of a material having low magnetic resistance than the other layers, and the other layers are less likely to be magnetically saturated. Become. That is, in the current sensor 110, the thick portions 2 and 2A are less likely to be magnetically saturated. Moreover, since the thin- walled portions 3 and 3A have a lower magnetic resistance than the thick- walled portions 2 and 2A, the leakage magnetic field in the recesses 1 and 1A can be suppressed. The other layers are the first intermediate layer 21J2, the first counter layer 21J3, the second intermediate layer 22J2, and the second counter layer 22J3.
 さらに、電流センサ110は、第1表面層21J1と、第1中間層21J2及び第1対向層21J3とで飽和磁束密度が異なる材料を用いてもよい。同様に、電流センサ110は、第2表面層22J1と、第2中間層22J2及び第2対向層22J3とで飽和磁束密度が異なる材料を用いてもよい。 Furthermore, the current sensor 110 may use materials having different saturation magnetic flux densities in the first surface layer 21J1, the first intermediate layer 21J2, and the first opposing layer 21J3. Similarly, the current sensor 110 may use materials having different saturation magnetic flux densities in the second surface layer 22J1, the second intermediate layer 22J2, and the second facing layer 22J3.
 第1表面層21J1と第2表面層22J1は、飽和磁束密度BsAの材料で構成されている。一方、第1中間層21J2、第1対向層21J3、第2中間層22J2、及び第2対向層22J3は、飽和磁束密度BsBの材料で構成されている。そして、BsAとBsBの関係は、BsA>BsBである。 The first surface layer 21J1 and the second surface layer 22J1 are made of a material having a saturation magnetic flux density BsA. On the other hand, the first intermediate layer 21J2, the first counter layer 21J3, the second intermediate layer 22J2, and the second counter layer 22J3 are made of a material having a saturation magnetic flux density BsB. The relationship between BsA and BsB is BsA> BsB.
 このように構成された電流センサ110は、第1表面層21J1と第2表面層22J1が他の層よりも磁気飽和しにくいため、第1バスバ210や第2バスバ220に比較的大電流が流れた場合であっても、凹部1,1Aからの漏れ磁場を抑制できる。 In the current sensor 110 configured in this way, the first surface layer 21J1 and the second surface layer 22J1 are less likely to be magnetically saturated than the other layers, so that a relatively large current flows through the first bus bar 210 and the second bus bar 220. Even in this case, the leakage magnetic field from the recesses 1 and 1A can be suppressed.
 (変形例11)
 図14を用いて、変形例11の電流センサ111に関して説明する。電流センサ111は、第2磁気シールド22Kの構成が電流センサ110と異なる。なお、図14は、図2に相当する断面図である。
(Modification 11)
The current sensor 111 according to the modification 11 will be described with reference to FIG. The current sensor 111 is different from the current sensor 110 in the configuration of the second magnetic shield 22K. 14 is a cross-sectional view corresponding to FIG.
 第1磁気シールド21Kは、第1磁気シールド21Jと同様に、第1表面層21K1、第1中間層21K2、第1対向層21K3が積層されて構成されている。第1磁気シールド21Kの各層21K1~21K3は、例えば、変形例10で示したものを採用できる。 The first magnetic shield 21K is configured by laminating a first surface layer 21K1, a first intermediate layer 21K2, and a first opposing layer 21K3, similarly to the first magnetic shield 21J. As each of the layers 21K1 to 21K3 of the first magnetic shield 21K, for example, the one shown in the modified example 10 can be adopted.
 第2磁気シールド22Kは、第2磁気シールド22Jと同様に、第2表面層22K1、第2中間層22K2、第2対向層22K3が積層されて構成されている。さらに、第2磁気シールド22Kは、各層22K1~22K3が樹脂性のハウジング22K4にて保持されている。言い換えると、第2磁気シールド22Kは、各層22K1~22K3がハウジング22K4によって覆われている。 The second magnetic shield 22K is configured by laminating a second surface layer 22K1, a second intermediate layer 22K2, and a second opposing layer 22K3, similarly to the second magnetic shield 22J. Further, each layer 22K1 to 22K3 of the second magnetic shield 22K is held by a resinous housing 22K4. In other words, each layer 22K1 to 22K3 of the second magnetic shield 22K is covered with the housing 22K4.
 よって、第2表面層22K1と第2対向層22K3は、第2中間層22K2と比べて、ハウジング22K4と接す面積が広い。第2表面層22K1は、対向領域の反対側の最外層に相当する。第2対向層22K3は、対向領域側の最外層に相当する。 Therefore, the second surface layer 22K1 and the second facing layer 22K3 have a larger area in contact with the housing 22K4 than the second intermediate layer 22K2. The second surface layer 22K1 corresponds to the outermost layer on the opposite side of the facing region. The second facing layer 22K3 corresponds to the outermost layer on the facing region side.
 なお、第1バスバ210と第2バスバ220は、ハウジング22K4に実装されている。ハウジング22K4は、樹脂部材に相当する。 The first bus bar 210 and the second bus bar 220 are mounted on the housing 22K4. The housing 22K4 corresponds to a resin member.
 また、第2磁気シールド22Kは、各構成要素22K1~22K4の線膨張係数が以下のように設定されている。第2表面層22K1と第2対向層22K3の線膨張係数をαA、第2中間層22K2の線膨張係数をαB、ハウジング22K4の線膨張係数をαCとする。そして、各線膨張係数αA~αCの関係は|αA-αC|<|αB-αC|である。 In the second magnetic shield 22K, the linear expansion coefficients of the constituent elements 22K1 to 22K4 are set as follows. The linear expansion coefficient of the second surface layer 22K1 and the second opposing layer 22K3 is αA, the linear expansion coefficient of the second intermediate layer 22K2 is αB, and the linear expansion coefficient of the housing 22K4 is αC. The relationship between the linear expansion coefficients αA to αC is | αA−αC | <| αB−αC |.
 電流センサ111は、電流センサ100と同様の効果を奏することができる。さらに、電流センサ111は、ハウジング22K4と各層22K1~22K3との線膨張係数の関係を上記のようにしたことで、ハウジング22K4と第2表面層22K1との界面、ハウジング22K4と第2対向層22K3との界面での剥離を抑制できる。 The current sensor 111 can achieve the same effect as the current sensor 100. Further, in the current sensor 111, the relationship of the linear expansion coefficient between the housing 22K4 and each of the layers 22K1 to 22K3 is as described above, so that the interface between the housing 22K4 and the second surface layer 22K1, the housing 22K4 and the second facing layer 22K3. Can be prevented from peeling at the interface.
 (変形例12)
 図15、図16を用いて、変形例12の電流センサ112に関して説明する。電流センサ112は、第1磁気シールド21Lと第2磁気シールド22Lの構成が電流センサ110と異なる。
(Modification 12)
The current sensor 112 according to the modification 12 will be described with reference to FIGS. 15 and 16. The current sensor 112 is different from the current sensor 110 in the configuration of the first magnetic shield 21L and the second magnetic shield 22L.
 第1磁気シールド21Lは、第1磁気シールド21Jと同様に、第1表面層21L1、第1中間層21L2、第1対向層21L3が積層されて構成されている。第1磁気シールド21Lの各層21L1~21L3は、例えば、変形例10で示したものを採用できる。 The first magnetic shield 21L is configured by laminating a first surface layer 21L1, a first intermediate layer 21L2, and a first opposing layer 21L3, like the first magnetic shield 21J. As each of the layers 21L1 to 21L3 of the first magnetic shield 21L, for example, the one shown in the modified example 10 can be adopted.
 しかしながら、第1磁気シールド21Lは、図15に示すように、凹部1がY方向の両端に達していない。つまり、第1磁気シールド21Lは、凹部1として、底部と環状の側壁で囲まれた有底の穴部が形成されている。よって、第1磁気シールド21Lは、凹部1のY方向における両隣に、厚肉部2と同じ厚みの部位3Eが形成されている。この部位3Eは、梁部3Eに相当する。このため、第1磁気シールド21Lは、凹部1の両側に、二つの厚肉部2と連続的に設けられた梁部3Eを有していると言える。 However, in the first magnetic shield 21L, the recess 1 does not reach both ends in the Y direction, as shown in FIG. That is, in the first magnetic shield 21L, a bottomed hole portion surrounded by the bottom portion and the annular side wall is formed as the concave portion 1. Therefore, in the first magnetic shield 21L, portions 3E having the same thickness as the thick portion 2 are formed on both sides of the recess 1 in the Y direction. This portion 3E corresponds to the beam portion 3E. For this reason, it can be said that the first magnetic shield 21 </ b> L has the beam portions 3 </ b> E provided continuously with the two thick portions 2 on both sides of the recess 1.
 また、第2磁気シールド22Lは、第2磁気シールド22Jと同様に、第1表面層22L1、第1中間層22L2、第1対向層22L3が積層されて構成されている。第2磁気シールド22Lの各層22L1~22L3は、例えば、変形例10で示したものを採用できる。なお、第2磁気シールド22Lは、第1磁気シールド21Lと同様に、凹部1AがY方向の両端に達しておらず梁部3Eを有している。 Further, the second magnetic shield 22L is configured by laminating a first surface layer 22L1, a first intermediate layer 22L2, and a first facing layer 22L3, similarly to the second magnetic shield 22J. As each of the layers 22L1 to 22L3 of the second magnetic shield 22L, for example, the one shown in the modified example 10 can be adopted. The second magnetic shield 22L, like the first magnetic shield 21L, has the recessed portion 1A that does not reach both ends in the Y direction and has a beam portion 3E.
 電流センサ112は、電流センサ110と同様の効果を奏することができる。さらに、電流センサ112は、凹部1、1AがY方向の両端に達していないため、電流センサ110よりも機械的強度を向上できる。 The current sensor 112 can achieve the same effect as the current sensor 110. Furthermore, since the concave portions 1 and 1A do not reach both ends in the Y direction, the current sensor 112 can improve the mechanical strength as compared with the current sensor 110.
 (変形例13)
 図17を用いて、変形例13の電流センサ113に関して説明する。電流センサ113は、上相113Aと下相113Bとを備えている点で電流センサ101と異なる。なお、図17は、図2に相当する断面図である。
(Modification 13)
With reference to FIG. 17, the current sensor 113 of Modification 13 will be described. Current sensor 113 is different from current sensor 101 in that it includes an upper phase 113A and a lower phase 113B. FIG. 17 is a cross-sectional view corresponding to FIG.
 電流センサ113は、二つのバスバ210,220が配置された上相と、二つのバスバ230,240が配置された下相とが、第1磁気シールド21Aの厚み方向(Z方向)に積層されている。電流センサ113は、上相113A及び下相113Bとして、変形例1で説明した電流センサ101と同様の構成を備えている。つまり、電流センサ113は、二つの電流センサ101が一体的に組み立てられた構成を有している。 In the current sensor 113, an upper phase in which the two bus bars 210 and 220 are arranged and a lower phase in which the two bus bars 230 and 240 are arranged are stacked in the thickness direction (Z direction) of the first magnetic shield 21A. Yes. The current sensor 113 has the same configuration as the current sensor 101 described in Modification 1 as an upper phase 113A and a lower phase 113B. That is, the current sensor 113 has a configuration in which the two current sensors 101 are integrally assembled.
 このため、電流センサ113は、上相113Aにおけるバスバ210,220のそれぞれに対向して設けられた二つの磁気検出素子11,12と、下相113Bにおけるバスバ230,240のそれぞれに対向して設けられた二つの磁気検出素子13,14とを備えている。また、電流センサ113は、上相113Aにおけるバスバ210,220と磁気検出素子11,12を挟み込む二つの磁気シールド21A,22Aを備えている。さらに、電流センサ113は、下相113Bにおけるバスバ230,240と磁気検出素子13,14を挟み込む二つの磁気シールド21A,22Aを備えている。 Therefore, the current sensor 113 is provided so as to face the two magnetic detection elements 11 and 12 provided to face the bus bars 210 and 220 in the upper phase 113A, and to the bus bars 230 and 240 in the lower phase 113B, respectively. The two magnetic detection elements 13 and 14 are provided. The current sensor 113 includes two magnetic shields 21A and 22A that sandwich the bus bars 210 and 220 and the magnetic detection elements 11 and 12 in the upper phase 113A. Furthermore, the current sensor 113 includes two magnetic shields 21A and 22A that sandwich the bus bars 230 and 240 and the magnetic detection elements 13 and 14 in the lower phase 113B.
 電流センサ113は、上相113Aの第2磁気シールド22Aと下相113Bの第1磁気シールド21Aとが対向して配置されている。詳述すると、上相113Aにおける第2磁気シールド22Aの反対面と、下相113Bにおける第1磁気シールド21Aの反対面とは対向して配置されている。このように、電流センサ113は、4相用のセンサとして構成されている。 In the current sensor 113, the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B are arranged to face each other. Specifically, the opposite surface of the second magnetic shield 22A in the upper phase 113A and the opposite surface of the first magnetic shield 21A in the lower phase 113B are arranged to face each other. Thus, the current sensor 113 is configured as a four-phase sensor.
 上相113Aの第2磁気シールド22Aと、下相113Bの第1磁気シールド21Aは、中間磁気シールドと言える。上相113Aにおける第2磁気シールド22Aの厚肉部2Aと、下相113Bにおける第1磁気シールド21Aの厚肉部2は、中間ベース部と言える。また、上相113Aにおける第2磁気シールド22Aの薄肉部3Aと、下相113Bにおける第1磁気シールド21Aの薄肉部3は、中間連結部と言える。 The second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B can be said to be intermediate magnetic shields. The thick part 2A of the second magnetic shield 22A in the upper phase 113A and the thick part 2 of the first magnetic shield 21A in the lower phase 113B can be said to be intermediate base parts. Further, the thin portion 3A of the second magnetic shield 22A in the upper phase 113A and the thin portion 3 of the first magnetic shield 21A in the lower phase 113B can be said to be intermediate coupling portions.
 電流センサ113は、電流センサ101と同様の効果を奏することができる。また、電流センサ113は、中間磁気シールドとしての、上相113Aの第2磁気シールド22Aと下相113Bの第1磁気シールド21Aとを備えているため、上相113Aと下相113Bでの磁気干渉を緩和できる。電流センサ113は、例えば、上相113Aに通電相があり、上相113Aに検出相があった場合、上相113Aから下相113Bへの漏れ磁場を低減できる。 The current sensor 113 can achieve the same effect as the current sensor 101. Further, since the current sensor 113 includes the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B as intermediate magnetic shields, magnetic interference between the upper phase 113A and the lower phase 113B. Can be relaxed. For example, when the upper phase 113A has an energized phase and the upper phase 113A has a detection phase, the current sensor 113 can reduce the leakage magnetic field from the upper phase 113A to the lower phase 113B.
 なお、本変形例では、これに限定されず、上相113Aに三つ以上のバスバが配置され、下相113Bに三つ以上のバスバが配置されていてもよい。この場合、上相113Aには、各バスバのそれぞれに対向して磁気検出素子が配置される。同様に、下相113Bには、各バスバのそれぞれに対向して磁気検出素子が配置される。 In this modification, the present invention is not limited to this, and three or more bus bars may be arranged in the upper phase 113A, and three or more bus bars may be arranged in the lower phase 113B. In this case, in the upper phase 113A, a magnetic detection element is arranged to face each of the bus bars. Similarly, in the lower phase 113B, magnetic detection elements are arranged to face the respective bus bars.
 (変形例14)
 図18を用いて、変形例14の電流センサ114に関して説明する。電流センサ114は、下相114Bにおける磁気検出素子13,14とバスバ230,240との位置関係が電流センサ113と異なる。なお、図18は、図2に相当する断面図である。
(Modification 14)
The current sensor 114 according to the modified example 14 will be described with reference to FIG. The current sensor 114 is different from the current sensor 113 in the positional relationship between the magnetic detection elements 13 and 14 and the bus bars 230 and 240 in the lower phase 114B. 18 is a cross-sectional view corresponding to FIG.
 電流センサ114は、上相114Aと下相114Bとを備えている。上相114Aは、上相113Aと同様である。一方、下相114Bは、下相113Bと異なり、磁気検出素子13,14が第2磁気シールド22A側に配置され、バスバ230,240が第1磁気シールド21A側に配置されている。電流センサ114は、電流センサ113と同様の効果を奏することができる。 The current sensor 114 includes an upper phase 114A and a lower phase 114B. The upper phase 114A is the same as the upper phase 113A. On the other hand, in the lower phase 114B, unlike the lower phase 113B, the magnetic detection elements 13 and 14 are disposed on the second magnetic shield 22A side, and the bus bars 230 and 240 are disposed on the first magnetic shield 21A side. The current sensor 114 can achieve the same effect as the current sensor 113.
 (変形例15)
 図19を用いて、変形例15の電流センサ115に関して説明する。電流センサ115は、中間磁気シールド23が一体物として構成されている点が電流センサ113と異なる。なお、図19は、図2に相当する断面図である。
(Modification 15)
The current sensor 115 according to the modification 15 will be described with reference to FIG. The current sensor 115 is different from the current sensor 113 in that the intermediate magnetic shield 23 is configured as an integral body. FIG. 19 is a cross-sectional view corresponding to FIG.
 電流センサ115は、上相115Aと下相115Bとを備えている。中間磁気シールド23は、二つの厚肉部5と、二つの厚肉部5を繋いでいる薄肉部6とを備えている。 The current sensor 115 includes an upper phase 115A and a lower phase 115B. The intermediate magnetic shield 23 includes two thick portions 5 and a thin portion 6 that connects the two thick portions 5.
 中間磁気シールド23は、第1磁気検出素子11及び第3磁気検出素子13と対向する厚肉部5と、第2磁気検出素子12及び第4磁気検出素子14と対向する厚肉部5とを備えている。言い換えると、中間磁気シールド23は、第1磁気検出素子11及び第3磁気検出素子13側の厚肉部5と、第2磁気検出素子12及び第4磁気検出素子14側の厚肉部5とを備えている。中間磁気シールド23は、上相115A側において第1磁気シールド21Aと対向する対向面と、下相115B側において第2磁気シールド22Aと対向する対向面とを有している。厚肉部5は、中間ベース部と言える。薄肉部6は、中間連結部と言える。 The intermediate magnetic shield 23 includes a thick part 5 that faces the first magnetic detection element 11 and the third magnetic detection element 13, and a thick part 5 that faces the second magnetic detection element 12 and the fourth magnetic detection element 14. I have. In other words, the intermediate magnetic shield 23 includes the thick part 5 on the first magnetic detection element 11 and the third magnetic detection element 13 side, and the thick part 5 on the second magnetic detection element 12 and the fourth magnetic detection element 14 side. It has. The intermediate magnetic shield 23 has a facing surface that faces the first magnetic shield 21A on the upper phase 115A side and a facing surface that faces the second magnetic shield 22A on the lower phase 115B side. The thick part 5 can be said to be an intermediate base part. It can be said that the thin part 6 is an intermediate | middle connection part.
 また、中間磁気シールド23は、厚肉部5と薄肉部6とを備えることで、上相115A側に開口した凹部4と、下相115B側に開口した凹部4とが形成されている。このように、中間磁気シールド23は、変形例13における上相113Aの第2磁気シールド22Aと、下相113Bの第1磁気シールド21Aとが一体物として構成されているとみなせる。 Further, the intermediate magnetic shield 23 includes the thick portion 5 and the thin portion 6 so that the concave portion 4 opened on the upper phase 115A side and the concave portion 4 opened on the lower phase 115B side are formed. As described above, the intermediate magnetic shield 23 can be regarded as a single body of the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B in Modification 13.
 電流センサ115は、電流センサ113と同様の効果を奏することができる。さらに、電流センサ115は、中間磁気シールド23が一体物として構成されているため、電流センサ115のZ方向における体格を小型化できる。つまり、電流センサ115は、上相113Aの第2磁気シールド22Aと、下相113Bの第1磁気シールド21Aとを中間磁気シールドとしている電流センサ113よりも小型化できる。 The current sensor 115 can achieve the same effect as the current sensor 113. Furthermore, since the intermediate magnetic shield 23 is configured as an integrated object in the current sensor 115, the size of the current sensor 115 in the Z direction can be reduced. That is, the current sensor 115 can be made smaller than the current sensor 113 in which the second magnetic shield 22A of the upper phase 113A and the first magnetic shield 21A of the lower phase 113B are intermediate magnetic shields.
 (変形例16)
 図20を用いて、変形例16の電流センサ116に関して説明する。電流センサ116は、下相116Bにおける磁気検出素子13,14とバスバ230,240との位置関係が電流センサ115と異なる。なお、図20は、図2に相当する断面図である。
(Modification 16)
The current sensor 116 according to the modified example 16 will be described with reference to FIG. Current sensor 116 is different from current sensor 115 in the positional relationship between magnetic detection elements 13 and 14 and bus bars 230 and 240 in lower phase 116B. 20 is a cross-sectional view corresponding to FIG.
 電流センサ116は、上相116Aと下相116Bとを備えている。上相116Aは、上相115Aと同様である。一方、下相116Bは、下相115Bと異なり、磁気検出素子13,14が第2磁気シールド22A側に配置され、バスバ230,240が中間磁気シールド23側に配置されている。電流センサ116は、電流センサ115と同様の効果を奏することができる。 The current sensor 116 includes an upper phase 116A and a lower phase 116B. The upper phase 116A is the same as the upper phase 115A. On the other hand, in the lower phase 116B, unlike the lower phase 115B, the magnetic detection elements 13 and 14 are disposed on the second magnetic shield 22A side, and the bus bars 230 and 240 are disposed on the intermediate magnetic shield 23 side. The current sensor 116 can achieve the same effect as the current sensor 115.
 (変形例17)
 図21を用いて、変形例17の電流センサ117に関して説明する。電流センサ117は、中間磁気シールド24の構成が電流センサ115と異なる。なお、図21は、図2に相当する断面図である。
(Modification 17)
The current sensor 117 according to the modified example 17 will be described with reference to FIG. The current sensor 117 is different from the current sensor 115 in the configuration of the intermediate magnetic shield 24. FIG. 21 is a cross-sectional view corresponding to FIG.
 電流センサ117は、上相117Aと下相117Bとを備えている。中間磁気シールド24は、二つのベース部5Aと、二つのベース部5Aを繋いでいる薄肉部6とを備えている。中間磁気シールド23は、第1磁気検出素子11及び第3磁気検出素子13と対向するベース部5Aと、第2磁気検出素子12及び第4磁気検出素子14と対向するベース部5Aとを備えている。言い換えると、中間磁気シールド23は、第1磁気検出素子11及び第3磁気検出素子13側のベース部5Aと、第2磁気検出素子12及び第4磁気検出素子14側のベース部5Aとを備えている。ベース部5Aは、中間ベース部と言える。薄肉部6は、中間連結部と言える。 The current sensor 117 includes an upper phase 117A and a lower phase 117B. The intermediate magnetic shield 24 includes two base portions 5A and a thin portion 6 that connects the two base portions 5A. The intermediate magnetic shield 23 includes a base portion 5A that faces the first magnetic detection element 11 and the third magnetic detection element 13, and a base portion 5A that faces the second magnetic detection element 12 and the fourth magnetic detection element 14. Yes. In other words, the intermediate magnetic shield 23 includes a base portion 5A on the first magnetic detection element 11 and third magnetic detection element 13 side, and a base portion 5A on the second magnetic detection element 12 and fourth magnetic detection element 14 side. ing. The base portion 5A can be said to be an intermediate base portion. It can be said that the thin part 6 is an intermediate | middle connection part.
 ベース部5Aは、Y方向に貫通する空間部7が形成されている。つまり、中間磁気シールド23は、上相117A側のバスバ210,220と下相117B側のバスバ230,240との対向領域に、空間部7が設けられていると言える。空間部7は、非磁性部に相当する。また、空間部7は、非磁性材料で満たされていてもよい。 The base portion 5A is formed with a space portion 7 penetrating in the Y direction. That is, it can be said that the intermediate magnetic shield 23 is provided with the space portion 7 in a region where the bus bars 210 and 220 on the upper phase 117A side and the bus bars 230 and 240 on the lower phase 117B side face each other. The space portion 7 corresponds to a nonmagnetic portion. The space 7 may be filled with a nonmagnetic material.
 中間磁気シールド24は、上相117A側において第1磁気シールド21Aと対向する対向面と、下相117B側において第2磁気シールド22Aと対向する対向面とを有している。ベース部5Aにおける対向面の間隔は、薄肉部6におけるZ方向の厚みよりも長い。 The intermediate magnetic shield 24 has a facing surface that faces the first magnetic shield 21A on the upper phase 117A side, and a facing surface that faces the second magnetic shield 22A on the lower phase 117B side. The interval between the opposing surfaces in the base portion 5 </ b> A is longer than the thickness of the thin portion 6 in the Z direction.
 電流センサ117は、電流センサ115と同様の効果を奏することができる。さらに、電流センサ117は、中間磁気シールド24に空間部7が形成されているため、中間磁気シールド24における磁気流路をコントロールできる。 The current sensor 117 can achieve the same effect as the current sensor 115. Furthermore, since the space portion 7 is formed in the intermediate magnetic shield 24, the current sensor 117 can control the magnetic flow path in the intermediate magnetic shield 24.
 (変形例18)
 図22を用いて、変形例18の電流センサ118に関して説明する。電流センサ118は、下相118Bにおける磁気検出素子13,14とバスバ230,240との位置関係が電流センサ117と異なる。なお、図22は、図2に相当する断面図である。
(Modification 18)
The current sensor 118 according to the modified example 18 will be described with reference to FIG. The current sensor 118 differs from the current sensor 117 in the positional relationship between the magnetic detection elements 13 and 14 and the bus bars 230 and 240 in the lower phase 118B. FIG. 22 is a cross-sectional view corresponding to FIG.
 電流センサ118は、上相118Aと下相118Bとを備えている。上相118Aは、上相117Aと同様である。一方、下相118Bは、下相117Bと異なり、磁気検出素子13,14が第2磁気シールド22A側に配置され、バスバ230,240が中間磁気シールド24側に配置されている。電流センサ118は、電流センサ117と同様の効果を奏することができる。 The current sensor 118 includes an upper phase 118A and a lower phase 118B. The upper phase 118A is the same as the upper phase 117A. On the other hand, in the lower phase 118B, unlike the lower phase 117B, the magnetic detection elements 13 and 14 are disposed on the second magnetic shield 22A side, and the bus bars 230 and 240 are disposed on the intermediate magnetic shield 24 side. The current sensor 118 can achieve the same effect as the current sensor 117.
 (変形例19)
 図23~図26を用いて、変形例19の電流センサ119に関して説明する。電流センサ119は、三つの磁気検出素子11~13を備えている点、及び第1磁気シールド21Mの形状が電流センサ101と異なる。また、電流センサ119は、変形例13などと異なり、上相と下相とが積層された構成を有していない。言い換えると、電流センサ119は、単相構造の電流センサである。なお、後程説明する変形例20以降の電流センサに関しても、単相構造の電流センサである。
(Modification 19)
The current sensor 119 according to the modification 19 will be described with reference to FIGS. The current sensor 119 is different from the current sensor 101 in that it includes three magnetic detection elements 11 to 13 and the shape of the first magnetic shield 21M. Further, unlike the modification 13 and the like, the current sensor 119 does not have a configuration in which an upper phase and a lower phase are stacked. In other words, the current sensor 119 is a single-phase structure current sensor. Note that the current sensors after the modification 20 described later are also single-phase current sensors.
 本変形例では、一例として、直流電力を三相交流電力に変換するインバータと、インバータからの三相交流電力によって駆動されるモータジェネレータとともに車両に搭載される電流センサ119を採用する。電流センサ119は、インバータとモータジェネレータとの間に流れる電流を検出する。詳述すると、電流センサ119は、インバータとモータジェネレータを電気的に接続している三つのバスバ210~230のそれぞれに流れる電流を個別に検出する。 In this modification, as an example, an inverter that converts DC power into three-phase AC power and a current sensor 119 that is mounted on the vehicle together with a motor generator that is driven by the three-phase AC power from the inverter are employed. Current sensor 119 detects a current flowing between the inverter and the motor generator. More specifically, the current sensor 119 individually detects the current flowing through each of the three bus bars 210 to 230 that electrically connect the inverter and the motor generator.
 また、後程説明するが、電流センサ119は、三つの相P1~P3を備えている。この各相P1~P3のそれぞれは、インバータとモータジェネレータとの間における各相に対応して設けられている。そして、各相P1~P3のそれぞれは、一つの磁気検出素子と、第1磁気シールド21Mの一部と、第2磁気シールド22Mの一部とを含んでいる。なお、ここでは、第1磁気検出素子11を第1相P1の磁気検出素子、第2磁気検出素子12を第2相P2の磁気検出素子、第3磁気検出素子13を第3相P3の磁気検出素子とする。 As will be described later, the current sensor 119 includes three phases P1 to P3. Each of the phases P1 to P3 is provided corresponding to each phase between the inverter and the motor generator. Each of the phases P1 to P3 includes one magnetic detection element, a part of the first magnetic shield 21M, and a part of the second magnetic shield 22M. Here, the first magnetic detection element 11 is the magnetic detection element of the first phase P1, the second magnetic detection element 12 is the magnetic detection element of the second phase P2, and the third magnetic detection element 13 is the magnetic detection of the third phase P3. A detection element is used.
 また、電流センサ119は、第2磁気シールド22M、磁気検出素子11~13、第1磁気シールド21Mが、この順番でZ方向に積層されている。よって、Z方向は、積層方向とも言える。 The current sensor 119 includes a second magnetic shield 22M, magnetic detection elements 11 to 13, and a first magnetic shield 21M stacked in this order in the Z direction. Therefore, it can be said that the Z direction is also a stacking direction.
 まず、三つのバスバ210~230に関して説明する。三つのバスバ210~230は、例えば、板状の導電性部材が屈曲した形状をなしている。また、三つのバスバ210~230は、第1バスバ210が第1相P1のバスバ、第2バスバ220が第2相P2のバスバ、第3バスバ230が第3相P3のバスバと言える。本変形例では、図23に示すように、形状が異なる三つのバスバ210~230を採用している。これは、モータジェネレータの端子の間隔と、インバータの端子の間隔が異なるためである。 First, the three bus bars 210 to 230 will be described. The three bus bars 210 to 230 have, for example, a shape in which a plate-like conductive member is bent. Of the three bus bars 210 to 230, the first bus bar 210 can be said to be the bus bar for the first phase P1, the second bus bar 220 can be said to be the bus bar for the second phase P2, and the third bus bar 230 can be said to be the bus bar for the third phase P3. In this modification, as shown in FIG. 23, three bus bars 210 to 230 having different shapes are employed. This is because the distance between the terminals of the motor generator is different from the distance between the terminals of the inverter.
 第1バスバ210は、モータジェネレータ側の端部である第1端部211と、インバータ側の端部である第2端部212と、両端部の間に被対向部213、屈曲部214、第1延長部215、第2延長部216を含んでいる。被対向部213は、第1磁気シールド21Mと第2磁気シールド22Mとの対向領域に配置された部位である。また、被対向部213は、第1磁気検出素子11と対向する部位である。よって、第1磁気検出素子11は、被対向部213と第1磁気シールド21Mとの対向領域に設けられている。 The first bus bar 210 includes a first end portion 211 that is an end portion on the motor generator side, a second end portion 212 that is an end portion on the inverter side, a facing portion 213, a bent portion 214, A first extension 215 and a second extension 216 are included. The opposed portion 213 is a portion disposed in a facing region between the first magnetic shield 21M and the second magnetic shield 22M. Further, the opposed portion 213 is a portion facing the first magnetic detection element 11. Therefore, the first magnetic detection element 11 is provided in a facing region between the opposed portion 213 and the first magnetic shield 21M.
 屈曲部214は、被対向部213からZ方向に屈曲した部位である。第1延長部215と第2延長部216は、屈曲部214と第2端部212とを繋ぐための部位である。図23に示すように、第1バスバ210は、第1延長部215と第2延長部216を含んでいるため、第2相P2におけるY方向側の領域に達するように設けられている。 The bent portion 214 is a portion bent in the Z direction from the opposed portion 213. The first extension portion 215 and the second extension portion 216 are portions for connecting the bent portion 214 and the second end portion 212. As shown in FIG. 23, since the first bus bar 210 includes the first extension 215 and the second extension 216, the first bus bar 210 is provided to reach the region on the Y direction side in the second phase P2.
 第2バスバ220は、モータジェネレータ側の端部である第1端部221と、インバータ側の端部である第2端部222と、両端部の間に被対向部223、屈曲部224、延長部225を含んでいる。また、被対向部223は、第2磁気検出素子12と対向する部位である。よって、第2磁気検出素子12は、被対向部223と第1磁気シールド21Mとの対向領域に設けられている。 The second bus bar 220 includes a first end 221 that is an end portion on the motor generator side, a second end portion 222 that is an end portion on the inverter side, and a facing portion 223, a bent portion 224, and an extension between both ends. Part 225 is included. Further, the opposed part 223 is a part facing the second magnetic detection element 12. Therefore, the second magnetic detection element 12 is provided in a facing region between the opposed portion 223 and the first magnetic shield 21M.
 第2バスバ220は、延長部225の構成(長さ)が第1バスバ210と異なる。図23に示すように、第2バスバ220は、延長部225を含んでいるため、第3相P3におけるY方向側の領域に達するように設けられている。 The second bus bar 220 is different from the first bus bar 210 in the configuration (length) of the extension 225. As shown in FIG. 23, since the second bus bar 220 includes the extension 225, the second bus bar 220 is provided to reach the region on the Y direction side in the third phase P3.
 第3バスバ230は、モータジェネレータ側の端部である第1端部231と、インバータ側の端部である第2端部232と、両端部の間に被対向部233、屈曲部234を含んでいる。このように、第3バスバ230は、延長部を介さずに屈曲部234と第2端部232が繋がっている点が第1バスバ210、第2バスバ220と異なる。また、被対向部233は、第3磁気検出素子13と対向する部位である。よって、第3磁気検出素子13は、被対向部233と第1磁気シールド21Mとの対向領域に設けられている。 Third bus bar 230 includes a first end 231 that is an end on the motor generator side, a second end 232 that is an end on the inverter side, and a facing portion 233 and a bent portion 234 between both ends. It is out. As described above, the third bus bar 230 is different from the first bus bar 210 and the second bus bar 220 in that the bent portion 234 and the second end portion 232 are connected without an extension. Further, the opposed part 233 is a part facing the third magnetic detection element 13. Therefore, the third magnetic detection element 13 is provided in a facing region between the opposed portion 233 and the first magnetic shield 21M.
 なお、本変形例で採用したバスバ210~230は一例である。バスバ210~230はこれに限定されない。 Note that the bus bars 210 to 230 employed in the present modification are examples. The bus bars 210 to 230 are not limited to this.
 次に、第1磁気シールド21Mと第2磁気シールド22Mに関して説明する。第1磁気シールド21Mは、第1磁気シールド21Mの厚肉部2を三つに増やした構成と同様である。一方、第2磁気シールド22Mは、第2磁気シールド22Aの厚肉部2Aを三つに増やした構成と同様である。 Next, the first magnetic shield 21M and the second magnetic shield 22M will be described. The first magnetic shield 21M is the same as the configuration in which the thick part 2 of the first magnetic shield 21M is increased to three. On the other hand, the second magnetic shield 22M is the same as the configuration in which the thick part 2A of the second magnetic shield 22A is increased to three.
 第1磁気シールド21Mは、図24に示すように、三つの厚肉部2がX方向に配置され、且つ、三つの厚肉部2のそれぞれが、各磁気検出素子11~13のそれぞれに対向配置されている。第1磁気シールド21Mは、薄肉部3と、各厚肉部2における薄肉部3と連なって設けられた端層部とを含む表層部21M1と、各厚肉部2における端層部から突出した突出部21M2とを有し、突出部21M2間に凹部1が形成されている。つまり、表層部21M1は、厚肉部2の一部と、薄肉部3とを含んでいると言える。本変形例では、三つの相P1~P3のそれぞれに含まれる三つの突出部21M2と、二つの薄肉部3を含む第1磁気シールド21Mを採用している。 In the first magnetic shield 21M, as shown in FIG. 24, three thick portions 2 are arranged in the X direction, and each of the three thick portions 2 is opposed to each of the magnetic detection elements 11-13. Has been placed. The first magnetic shield 21 </ b> M protrudes from the surface layer portion 21 </ b> M <b> 1 including the thin portion 3, and the end layer portion provided continuously with the thin portion 3 in each thick portion 2, and the end layer portion in each thick portion 2. It has the protrusion part 21M2, and the recessed part 1 is formed between the protrusion parts 21M2. That is, it can be said that the surface layer portion 21M1 includes a part of the thick portion 2 and the thin portion 3. In this modification, the first magnetic shield 21M including the three protrusions 21M2 included in each of the three phases P1 to P3 and the two thin portions 3 is employed.
 なお、端層部は、表層部21M1における薄肉部3を除く部位であり、厚肉部2における突出部21M2に対向する部位である。また、端層部は、薄肉部3に対してX方向に延びる部位とも言える。 The end layer portion is a portion excluding the thin portion 3 in the surface layer portion 21M1, and is a portion facing the protruding portion 21M2 in the thick portion 2. The end layer portion can also be said to be a portion extending in the X direction with respect to the thin portion 3.
 ここでは、一例として、表層部21M1と突出部21M2とが積層されて一体化された構造の第1磁気シールド21Mを採用している。また、表層部21M1と突出部21M2のそれぞれは、磁性材料によって構成された複数の層が積層されて構成されていてもよい。しかしながら、第1磁気シールド21Mは、これに限定されず、型を用いて表層部21M1と突出部21M2とが一体的に形成されてもよいし、切削などによって表層部21M1と突出部21M2とが一体的に形成されてもよい。 Here, as an example, the first magnetic shield 21M having a structure in which the surface layer portion 21M1 and the protruding portion 21M2 are laminated and integrated is adopted. Each of the surface layer portion 21M1 and the protruding portion 21M2 may be configured by laminating a plurality of layers made of a magnetic material. However, the first magnetic shield 21M is not limited to this, and the surface layer portion 21M1 and the protruding portion 21M2 may be integrally formed using a mold, or the surface layer portion 21M1 and the protruding portion 21M2 may be formed by cutting or the like. It may be formed integrally.
 同様に、第2磁気シールド22Mは、薄肉部3Aと、各厚肉部2Aにおける薄肉部3Aと連なって設けられた端層部とを含む表層部22M1と、各厚肉部2Aにおける端層部から突出した突出部22M2とを有し、突出部22M2間に凹部1が形成されている。第2磁気シールド22Mは、表層部22M1の厚みが、第1磁気シールド21Mの表層部21M1と異なり、その他の点は同様である。 Similarly, the second magnetic shield 22M includes a thin layer portion 3A and a surface layer portion 22M1 including an end layer portion connected to the thin portion 3A in each thick portion 2A, and an end layer portion in each thick portion 2A. And a recess 1 is formed between the protrusions 22M2. The second magnetic shield 22M differs from the surface layer portion 21M1 of the first magnetic shield 21M in the thickness of the surface layer portion 22M1, and the other points are the same.
 また、第1磁気シールド21Mの突出部21M2は、第2磁気シールド22Mの突出部22M2と対向配置されている。つまり、電流センサ119は、第1相P1の突出部21M2と突出部22M2とが対向配置され、第2相P2の突出部21M2と突出部22M2とが対向配置され、第3相P3の突出部21M2と突出部22M2とが対向配置されている。そして、各磁気検出素子11~13は、対向配置された突出部21M2,22M2の対向領域に個別に配置されている。 Further, the protruding portion 21M2 of the first magnetic shield 21M is disposed opposite to the protruding portion 22M2 of the second magnetic shield 22M. That is, in the current sensor 119, the projecting portion 21M2 of the first phase P1 and the projecting portion 22M2 are arranged to face each other, the projecting portion 21M2 of the second phase P2 and the projecting portion 22M2 are arranged to face each other, and the projecting portion of the third phase P3. 21M2 and the protrusion 22M2 are arranged to face each other. Each of the magnetic detection elements 11 to 13 is individually arranged in a facing region of the projecting portions 21M2 and 22M2 arranged to face each other.
 両磁気シールド21M、22Mにおいて、第1磁気検出素子11に対向配置された厚肉部2,2Aは、第1相P1の厚肉部2,2Aと言える。よって、この厚肉部2,2Aにおける突出部21M2,22M2は、第1相P1の突出部21M2,22M2と言える。さらに、この突出部21M2,22M2の対向する部位である端層部は、第1相P1の端層部と言える。第2磁気検出素子12に対向配置された厚肉部2,2A、及び第3磁気検出素子13に対向配置された厚肉部2,2Aに関しても同様である。また、両磁気シールド21M、22Mは、第1相P1の厚肉部2,2Aと第2相P2の厚肉部2,2Aとを繋いでいる薄肉部3,3Aと、第2相P2の厚肉部2,2Aと第3相P3の厚肉部2,2Aとを繋いでいる薄肉部3,3Aとを含んでいると言える。 In both the magnetic shields 21M and 22M, the thick portions 2 and 2A disposed to face the first magnetic detection element 11 can be said to be the thick portions 2 and 2A of the first phase P1. Therefore, the protruding portions 21M2 and 22M2 in the thick portions 2 and 2A can be said to be the protruding portions 21M2 and 22M2 of the first phase P1. Furthermore, it can be said that the end layer part which is the part which this protrusion part 21M2, 22M2 opposes is an end layer part of the 1st phase P1. The same applies to the thick portions 2 and 2A disposed opposite to the second magnetic detection element 12 and the thick portions 2 and 2A disposed opposite to the third magnetic detection element 13. Moreover, both magnetic shields 21M and 22M are formed of the thin portions 3 and 3A connecting the thick portions 2 and 2A of the first phase P1 and the thick portions 2 and 2A of the second phase P2, and the second phase P2. It can be said that the thick portions 2 and 2A and the thin portions 3 and 3A connecting the thick portions 2 and 2A of the third phase P3 are included.
 このため、第1相P1は、第1磁気検出素子11、第1磁気シールド21Mにおける第1磁気検出素子11に対向する厚肉部2、第2磁気シールド22Mにおける第1磁気検出素子11に対向する厚肉部2Aを含んでいると言える。つまり、第1相P1は、第1バスバ210に対向配置され、第1バスバ210から発生する磁界を検知して電気信号に変換する第1磁気検出素子11を含んでいる。 Therefore, the first phase P1 is opposed to the first magnetic detection element 11, the thick portion 2 facing the first magnetic detection element 11 in the first magnetic shield 21M, and the first magnetic detection element 11 in the second magnetic shield 22M. It can be said that the thick part 2A to be included is included. That is, the first phase P1 includes the first magnetic detection element 11 that is disposed to face the first bus bar 210 and detects a magnetic field generated from the first bus bar 210 and converts it into an electric signal.
 同様に、第2相P2は、第2磁気検出素子12、第1磁気シールド21Mにおける第2磁気検出素子12に対向する厚肉部2、第2磁気シールド22Mにおける第2磁気検出素子12に対向する厚肉部2Aを含んでいる。つまり、第2相P2は、第2バスバ220に対向配置され、第2バスバ220から発生する磁界を検知して電気信号に変換する第2磁気検出素子12を含んでいる。 Similarly, the second phase P2 is opposed to the second magnetic detection element 12, the thick portion 2 facing the second magnetic detection element 12 in the first magnetic shield 21M, and the second magnetic detection element 12 in the second magnetic shield 22M. The thick part 2A to be included is included. That is, the second phase P <b> 2 includes the second magnetic detection element 12 that is disposed opposite to the second bus bar 220 and detects a magnetic field generated from the second bus bar 220 and converts it into an electric signal.
 また、第3相P3は、第3磁気検出素子13、第1磁気シールド21Mにおける第3磁気検出素子13に対向する厚肉部2、第2磁気シールド22Mにおける第3磁気検出素子13に対向する厚肉部2Aを含んでいる。つまり、第3相P3は、第3バスバ230に対向配置され、第3バスバ230から発生する磁界を検知して電気信号に変換する第3磁気検出素子13を含んでいる。 Further, the third phase P3 faces the third magnetic detection element 13, the thick portion 2 facing the third magnetic detection element 13 in the first magnetic shield 21M, and the third magnetic detection element 13 in the second magnetic shield 22M. The thick part 2A is included. That is, the third phase P3 includes the third magnetic detection element 13 that is disposed opposite to the third bus bar 230 and detects a magnetic field generated from the third bus bar 230 and converts it into an electric signal.
 なお、電流センサ119は、例えば、各相P1~P3が回路基板やハウジングを介して一体的に組み付けられて構成されている。この回路基板は、各磁気検出素子11~13と電気的に接続され、各磁気検出素子11~13からのセンサ信号が入力される。さらに、電流センサ119は、各相P1~P3に加えて、バスバ210~230が回路基板やハウジングを介して一体的に組み付けられて構成されていてもよい。このように、バスバ210~230などが一体的に組み付けられた構造体は、端子台と称することもできる。なお、各相P1~P3のそれぞれは、対応するバスバ210、220、230を含んでいるとみなすこともできる。 Note that the current sensor 119 is configured by, for example, integrally assembling each phase P1 to P3 via a circuit board or a housing. This circuit board is electrically connected to the magnetic detection elements 11 to 13, and sensor signals from the magnetic detection elements 11 to 13 are input. Further, the current sensor 119 may be configured by integrally assembling the bus bars 210 to 230 via the circuit board and the housing in addition to the phases P1 to P3. Thus, the structure in which the bus bars 210 to 230 and the like are integrally assembled can also be called a terminal block. Each of the phases P1 to P3 can also be regarded as including the corresponding bus bars 210, 220, and 230.
 このように構成された三つの相P1~P3は、図23、図24に示すように、X方向に並べて配置され、各厚肉部2,2Aが薄肉部3,3Aを介して繋がっている。また、各相P1~P3は、被対向部213,223,233において電流が流れる方向(Y方向)が平行となるように配置されていると言える。なお、以下においては、隣り合う相を隣相とも記載する。三つの相P1~P3が配置されている方向は、配置方向とも言える。 The three phases P1 to P3 thus configured are arranged side by side in the X direction as shown in FIGS. 23 and 24, and the thick portions 2 and 2A are connected via the thin portions 3 and 3A. . In addition, it can be said that the phases P1 to P3 are arranged so that the current flowing direction (Y direction) is parallel in the opposed portions 213, 223, and 233. In the following, adjacent phases are also referred to as adjacent phases. The direction in which the three phases P1 to P3 are arranged can be said to be the arrangement direction.
 本実施形態では、X方向において、第1相P1、第2相P2、第3相P3の順番で配置されている例を採用する。よって、第2相P2は、第1相P1と第3相P3で挟まれた中間相と言える。また、第2相P2は、第1相P1と隣相であり、且つ、第3相P3と隣相である。つまり、第1相P1と第3相P3とは、隣り合っていない。 In this embodiment, an example in which the first phase P1, the second phase P2, and the third phase P3 are arranged in the order in the X direction is employed. Therefore, the second phase P2 can be said to be an intermediate phase sandwiched between the first phase P1 and the third phase P3. The second phase P2 is adjacent to the first phase P1 and is adjacent to the third phase P3. That is, the first phase P1 and the third phase P3 are not adjacent to each other.
 このため、各磁気検出素子11~13は、X方向に並べて配置されている。また、第1磁気シールド20は、厚肉部2がX方向に並べて配置されている。同様に、第2磁気シールド22Mは、厚肉部2AがX方向に並べて配置されている。なお、各相P1~P3に対応する被対向部213,223,233に関してもX方向に並べて配置されている。 For this reason, the magnetic detection elements 11 to 13 are arranged side by side in the X direction. Further, the first magnetic shield 20 has the thick portions 2 arranged in the X direction. Similarly, in the second magnetic shield 22M, the thick portions 2A are arranged in the X direction. The opposed portions 213, 223, and 233 corresponding to the phases P1 to P3 are also arranged in the X direction.
 このように構成された電流センサ119は、ある相の検出対象であるバスバに例えば1200Aなどの比較的大電流が流れ、この相の隣相で検出対象のバスバに流れている被検出電流を検出する状況となりうる。なお、比較的大電流が流れるバスバは、ノイズの発生源となりうる。このため、このバスバを検出対象としている相は、ノイズ相と言うことができる。一方、被検出電流を検出する相は、検出相と言うことができる。本変形例では、図24に示すように、第3相P3がノイズ相、第2相P2が検出相である状況を一例として採用する。 The current sensor 119 configured in this manner detects a detected current flowing in a bus bar that is a detection target in a phase adjacent to this phase when a relatively large current such as 1200 A flows in the bus bar that is a detection target in a certain phase. Situation. A bus bar in which a relatively large current flows can be a noise generation source. For this reason, the phase for which this bus bar is the detection target can be said to be a noise phase. On the other hand, the phase for detecting the detected current can be said to be a detection phase. In this modification, as shown in FIG. 24, the situation where the third phase P3 is a noise phase and the second phase P2 is a detection phase is adopted as an example.
 ノイズ相の第3バスバ230から発生する磁場は、アンペアの右ねじの法則により、同心円状に発生する。この磁場は、第1磁気シールド21M及び第2磁気シールド22M内部に集中する。そして、第1磁気シールド21M及び第2磁気シールド22Mには、図24に示すように、実線矢印で示す方向に磁束が流れる、言い換えると磁力線が走る。 The magnetic field generated from the third bus bar 230 in the noise phase is generated concentrically according to the right-hand rule of amperes. This magnetic field is concentrated inside the first magnetic shield 21M and the second magnetic shield 22M. Then, as shown in FIG. 24, magnetic flux flows through the first magnetic shield 21M and the second magnetic shield 22M in the direction indicated by the solid line arrow, in other words, lines of magnetic force run.
 特に、電流センサ119は、上記の実施形態や変形例で説明したように、両磁気シールド21M,22Mに凹部1を設けることで磁気流路をコントロールして、磁力線が両磁気シールド21M,22Mの外側表面を走るようにしている。このため、電流センサ119は、両表層部21M1,22M1を磁力線が走る。なお、第1磁気シールド21Mにおける磁力線と第2磁気シールド22Mにおける磁力線とは、逆ベクトルとなる。 In particular, the current sensor 119 controls the magnetic flow path by providing the concave portions 1 in both the magnetic shields 21M and 22M as described in the above-described embodiments and modifications, so that the lines of magnetic force of the magnetic shields 21M and 22M. It runs on the outer surface. For this reason, as for the current sensor 119, a magnetic force line runs through both surface layer parts 21M1 and 22M1. The magnetic field lines in the first magnetic shield 21M and the magnetic field lines in the second magnetic shield 22M are inverse vectors.
 このため、電流センサ119は、上記比較例の電流センサよりも、漏れ磁場を低減できる。しかしながら、電流センサ119は、図24に示すように、両表層部21M1,22M1のサイズや、両表層部21M1,22M1に流れる磁束などによって凹部1から漏れ磁場が発生することもある。本実施形態では、図24に示すように、両磁気シールド21M,22Mの凹部1から、一点鎖線LM1やLM2で代表されるような漏れ磁場が発生する例を採用している。 For this reason, the current sensor 119 can reduce the leakage magnetic field more than the current sensor of the comparative example. However, in the current sensor 119, as shown in FIG. 24, a leakage magnetic field may be generated from the recess 1 due to the size of both surface layer portions 21M1 and 22M1, the magnetic flux flowing through both surface layer portions 21M1 and 22M1, or the like. In the present embodiment, as shown in FIG. 24, an example is adopted in which a leakage magnetic field as typified by an alternate long and short dash line LM1 or LM2 is generated from the recess 1 of both magnetic shields 21M and 22M.
 この漏れ磁場LM1,LM2は、第2相P2の第2磁気検出素子12に向かい、第2磁気検出素子12を透過すると、第2磁気検出素子12による磁電変換結果に影響を及ぼす可能性がある。つまり、電流センサ119は、凹部1,1Aから形成された磁場が第2磁気検出素子12に達する場合、第2磁気検出素子12による磁電変換結果に影響を及ぼす可能性がある。なお、第2磁気検出素子12は、二つの磁気検出素子11,13で挟まれた磁気検出素子に相当する。 When the leakage magnetic fields LM1 and LM2 are directed to the second magnetic detection element 12 of the second phase P2 and pass through the second magnetic detection element 12, there is a possibility that the magnetoelectric conversion result by the second magnetic detection element 12 is affected. . That is, when the magnetic field formed from the recesses 1 and 1A reaches the second magnetic detection element 12, the current sensor 119 may affect the magnetoelectric conversion result by the second magnetic detection element 12. The second magnetic detection element 12 corresponds to a magnetic detection element sandwiched between two magnetic detection elements 11 and 13.
 この漏れ磁場LM1、LM2のベクトルは、第2磁気検出素子12の位置では逆ベクトルとなる。そこで、電流センサ119は、漏れ磁場LM1と漏れ磁場LM2とで打ち消し合い、両漏れ磁場LM1,LM2が中間相における第2磁気検出素子12に到達しないように、第1磁気シールド21Mと第2磁気シールド22Mの少なくとも一方の形状が調整されている。つまり、電流センサ119は、第2磁気検出素子12の位置で、両漏れ磁場LM1,LM2が打ち消されるように、第1磁気シールド21Mと第2磁気シールド22Mの少なくとも一方の形状が調整されていると言える。このため、両磁気シールド21M,22Mは、両漏れ磁場LM1,LM2が第2磁気検出素子12に到達しないように、両漏れ磁場LM1,LM2で打ち消し合うように調整された形状を有しているとも言える。 The vectors of the leakage magnetic fields LM1 and LM2 are inverse vectors at the position of the second magnetic detection element 12. Therefore, the current sensor 119 cancels out the leakage magnetic field LM1 and the leakage magnetic field LM2, and prevents both the leakage magnetic fields LM1 and LM2 from reaching the second magnetic detection element 12 in the intermediate phase and the second magnetic shield 21M. At least one shape of the shield 22M is adjusted. That is, in the current sensor 119, the shape of at least one of the first magnetic shield 21M and the second magnetic shield 22M is adjusted so that the leakage magnetic fields LM1 and LM2 are canceled at the position of the second magnetic detection element 12. It can be said. For this reason, both magnetic shields 21M and 22M have shapes adjusted so as to cancel each other with both leakage magnetic fields LM1 and LM2 so that both leakage magnetic fields LM1 and LM2 do not reach the second magnetic detection element 12. It can also be said.
 本変形例では、形状として、磁気シールド21M,22Mの全体の厚みに対する表層部21M1,22M1の厚みが調整されている例を採用している。全体の厚みとは、例えば、第1磁気シールド21Mの場合、表層部21M1の厚みと、突出部21M2の厚みを足した厚みである。なお、ここでの厚みは、積層方向における長さである。 In this modification, an example is adopted in which the thicknesses of the surface layer portions 21M1 and 22M1 are adjusted with respect to the total thickness of the magnetic shields 21M and 22M. For example, in the case of the first magnetic shield 21M, the total thickness is a thickness obtained by adding the thickness of the surface layer portion 21M1 and the thickness of the protruding portion 21M2. Here, the thickness is a length in the stacking direction.
 また、本変形例では、第1磁気シールド21Mの全体の厚みt1と第2磁気シールド22Mの全体の厚みt1が同じである。そして、本変形例では、図25、図26に示すように、第1磁気シールド21Mの表層部21M1の厚みt3が、第2磁気シールド22Mの表層部22M1の厚みt2よりも厚くなるように調整されている例を採用している。なお、図25は、図24における第1磁気シールド21Mの一部を拡大した図面である。 Further, in this modification, the overall thickness t1 of the first magnetic shield 21M and the overall thickness t1 of the second magnetic shield 22M are the same. In this modification, as shown in FIGS. 25 and 26, the thickness t3 of the surface layer portion 21M1 of the first magnetic shield 21M is adjusted to be larger than the thickness t2 of the surface layer portion 22M1 of the second magnetic shield 22M. The example that is being adopted is adopted. FIG. 25 is an enlarged view of a part of the first magnetic shield 21M in FIG.
 したがって、第1磁気シールド21Mは、突出部21M2の厚み(t1-t3)が、第2磁気シールド22Mの突出部22M2の厚み(t1-t2)よりも薄くなっている。なお、図26は、第1磁気シールド21Mの表層部21M1を、第2磁気シールド22Mの表層部22M1と同じ厚みとした場合の断面図である。よって、第2磁気シールド22Mは、図26に示す第1磁気シールド21Mと同様の形状及びサイズとみなすことができる。 Therefore, in the first magnetic shield 21M, the thickness (t1-t3) of the protruding portion 21M2 is thinner than the thickness (t1-t2) of the protruding portion 22M2 of the second magnetic shield 22M. FIG. 26 is a cross-sectional view when the surface layer portion 21M1 of the first magnetic shield 21M has the same thickness as the surface layer portion 22M1 of the second magnetic shield 22M. Therefore, the second magnetic shield 22M can be regarded as the same shape and size as the first magnetic shield 21M shown in FIG.
 しかしながら、本開示は、これに限定されない。本開示は、漏れ磁場LM1,LM2の状態に応じて、第1磁気シールド21Mの全体の厚みに対する表層部21M1の厚みと、第2磁気シールド22Mの全体の厚みに対する表層部22M1の厚みの少なくとも一方が調整されていればよい。 However, the present disclosure is not limited to this. In the present disclosure, at least one of the thickness of the surface layer portion 21M1 with respect to the entire thickness of the first magnetic shield 21M and the thickness of the surface layer portion 22M1 with respect to the entire thickness of the second magnetic shield 22M is determined according to the state of the leakage magnetic fields LM1 and LM2. Should be adjusted.
 表層部21M1,22M1のそれぞれは、厚みが厚くなるにしたがって漏れ磁場の量が減少し、厚みが薄くなるにしたがって漏れ磁場の量が増加する。つまり、電流センサ119は、表層部21M1,22M1の少なくとも一方の厚みを調整することで漏れ磁場の量をコントロールして、漏れ磁場LM1と漏れ磁場LM2とが第2磁気検出素子12の位置で打ち消されるように構成されている。よって、本実施形態では、第1磁気シールド21Mの凹部1からの漏れ磁場LM1の量を減少させて、両漏れ磁場LM1,LM2が第2磁気検出素子12の位置で打ち消されるように構成されている。 In each of the surface layer portions 21M1 and 22M1, the amount of the leakage magnetic field decreases as the thickness increases, and the amount of the leakage magnetic field increases as the thickness decreases. That is, the current sensor 119 controls the amount of the leakage magnetic field by adjusting the thickness of at least one of the surface layer portions 21M1 and 22M1, and the leakage magnetic field LM1 and the leakage magnetic field LM2 cancel each other at the position of the second magnetic detection element 12. It is configured to be. Therefore, in the present embodiment, the amount of the leakage magnetic field LM1 from the recess 1 of the first magnetic shield 21M is reduced, and both the leakage magnetic fields LM1 and LM2 are canceled at the position of the second magnetic detection element 12. Yes.
 なお、電流センサ119は、表層部21M1の厚みと表層部22M1の厚みの少なくとも一方を調整することで漏れ磁場の量をコントロールして、漏れ磁場LM1と漏れ磁場LM2が第2磁気検出素子12へ影響することを抑制されていると言える。さらに、電流センサ119は、第2磁気検出素子12の位置で、漏れ磁場LM1と漏れ磁場LM2が互いに弱められるように構成されていると言える。 The current sensor 119 controls the amount of the leakage magnetic field by adjusting at least one of the thickness of the surface layer portion 21M1 and the thickness of the surface layer portion 22M1, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are transferred to the second magnetic detection element 12. It can be said that the influence is suppressed. Furthermore, it can be said that the current sensor 119 is configured such that the leakage magnetic field LM1 and the leakage magnetic field LM2 are weakened at the position of the second magnetic detection element 12.
 ところで、第1磁気シールド21Mの全体の厚みに対する表層部21M1の厚みは、表層部21M1を構成している磁性材料の層の積層数と、突出部21M2を構成している磁性材料の層の積層数とによって調整できる。第2磁気シールド22Mの全体の厚みに対する表層部22M1の厚みを調整する場合も同様である。 By the way, the thickness of the surface layer portion 21M1 with respect to the entire thickness of the first magnetic shield 21M is the number of magnetic material layers constituting the surface layer portion 21M1 and the number of magnetic material layers constituting the protruding portion 21M2. Can be adjusted by number. The same applies to the adjustment of the thickness of the surface layer portion 22M1 with respect to the entire thickness of the second magnetic shield 22M.
 また、表層部21M1の厚みや表層部22M1の厚みは、シミュレーションや実験などによって、両漏れ磁場LM1,LM2が第2磁気検出素子12の位置で打ち消されるような値に設定することができる。 Further, the thickness of the surface layer portion 21M1 and the thickness of the surface layer portion 22M1 can be set to values such that both the leakage magnetic fields LM1 and LM2 are canceled at the position of the second magnetic detection element 12 by simulation or experiment.
 以上のように、電流センサ119は、漏れ磁場LM1と漏れ磁場LM2とが、第2磁気検出素子12の位置で打ち消されるように、表層部21M1,22M1の少なくとも一方の厚みが調整されている。このため、電流センサ119は、両磁気シールド21M,22Mの凹部1から第2磁気検出素子12に向かって漏れ磁場LM1,LM2が発生した場合であっても、この漏れ磁場LM1,LM2を第2磁気検出素子12がセンシングすることを抑制できる。したがって、電流センサ119は、高精度に電流を検出できる。当然ながら、電流センサ119は、電流センサ100,101と同様の効果を奏することができる。 As described above, in the current sensor 119, the thickness of at least one of the surface layer portions 21M1 and 22M1 is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12. For this reason, even when the leakage magnetic fields LM1 and LM2 are generated from the recesses 1 of the magnetic shields 21M and 22M toward the second magnetic detection element 12, the current sensor 119 uses the leakage magnetic fields LM1 and LM2 for the second time. It can suppress that the magnetic detection element 12 senses. Therefore, the current sensor 119 can detect the current with high accuracy. Naturally, the current sensor 119 can achieve the same effects as the current sensors 100 and 101.
 さらに、検出相の磁気検出素子は、ノイズ相のバスバから発せられる磁場をセンシングしてしまった場合でも磁電変換結果に影響がでる可能性がある。例えば、第1相P1をノイズ相、第2相P2を検出相とした場合、第2磁気検出素子12は、第1バスバ210の延長部215や第2延長部216などから発せられる磁場の影響を受ける可能性がある。そこで、電流センサ119は、漏れ磁場LM1,LM2だけではなく、第1バスバ210から発せられる磁場が第2磁気検出素子12に到達しないように第1表層部21M1,22M1の厚みが設定されていると好ましい。 Furthermore, the magnetic detection element of the detection phase may affect the magnetoelectric conversion result even if the magnetic field generated from the noise phase bus bar is sensed. For example, when the first phase P1 is a noise phase and the second phase P2 is a detection phase, the second magnetic detection element 12 is affected by the magnetic field emitted from the extension 215, the second extension 216, etc. of the first bus bar 210. There is a possibility of receiving. Therefore, in the current sensor 119, the thickness of the first surface layer portions 21M1 and 22M1 is set so that not only the leakage magnetic fields LM1 and LM2 but also the magnetic field generated from the first bus bar 210 does not reach the second magnetic detection element 12. And preferred.
 なお、変形例19は、変形例10~12のそれぞれと組み合わせて実施することもできる。この場合であっても、電流センサ119と同様の効果を奏することができる。また、電流センサ119は、二つの磁気シールド21M,22Mが、変形例2の第1磁気シールド21Bや変形例3の第1磁気シールド21Cと同様の形状でも採用できる。電流センサ119は、第1磁気シールド21Bを採用した場合、薄肉部3Bの厚みが調整された構成となる。一方、電流センサ119は、変形例3の第1磁気シールド21Cを採用した場合、蓋部3Cの厚みが調整された構成となる。これらの点は、以下の変形例でも同様である。 Note that the modified example 19 can be implemented in combination with each of the modified examples 10 to 12. Even in this case, the same effect as the current sensor 119 can be obtained. Further, the current sensor 119 can employ two magnetic shields 21M and 22M having the same shape as the first magnetic shield 21B of the second modification and the first magnetic shield 21C of the third modification. When the first magnetic shield 21B is employed, the current sensor 119 has a configuration in which the thickness of the thin portion 3B is adjusted. On the other hand, the current sensor 119 has a configuration in which the thickness of the lid portion 3C is adjusted when the first magnetic shield 21C of Modification 3 is employed. These points are the same in the following modified examples.
 (変形例20)
 図27を用いて、変形例20の電流センサに関して説明する。なお、本変形例では、便宜的に、変形例19と同じ符号を採用する。また、図27では、一例として、第1磁気シールド21Mのみを図示している。図27は、図25に相当する断面図である。
(Modification 20)
A current sensor of Modification 20 will be described with reference to FIG. In addition, in this modification, the same code | symbol as the modification 19 is employ | adopted for convenience. FIG. 27 shows only the first magnetic shield 21M as an example. FIG. 27 is a cross-sectional view corresponding to FIG.
 変形例20の電流センサは、突出部間の間隔g1が調整されている点が電流センサ119と異なる。つまり、電流センサは、漏れ磁場LM1と漏れ磁場LM2とが、例えば第2磁気検出素子12の位置で打ち消されるように、二つの磁気シールド21M,22Mの少なくとも一方における間隔g1が調整されている。言い換えると、二つの磁気シールド21M,22Mの少なくとも一方は、形状として、凹部1を介して隣り合う突出部間の間隔g1が調整されている。 The current sensor of Modification 20 is different from the current sensor 119 in that the gap g1 between the protrusions is adjusted. That is, in the current sensor, the gap g1 in at least one of the two magnetic shields 21M and 22M is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example. In other words, at least one of the two magnetic shields 21 </ b> M and 22 </ b> M has a shape in which a gap g <b> 1 between adjacent protrusions is adjusted via the recess 1.
 この間隔g1は、例えば、第1磁気シールド21Mにおける第1相P1の突出部21M2と、第2相P2の突出部21M2とのX方向における距離である。なお、ここでの間隔g1は、X方向における凹部1の幅とも言える。 The gap g1 is, for example, the distance in the X direction between the protruding portion 21M2 of the first phase P1 and the protruding portion 21M2 of the second phase P2 in the first magnetic shield 21M. In addition, the space | gap g1 here can also be said to be the width | variety of the recessed part 1 in a X direction.
 各磁気シールド21M,22Mは、間隔g1が狭くなるにしたがって漏れ磁場の量が減少し、間隔g1が広くなるにしたがって漏れ磁場の量が増加する。よって、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方の間隔g1を調整することで漏れ磁場の量をコントロールして、漏れ磁場LM1と漏れ磁場LM2とが検出相の磁気検出素子の位置で打ち消されるように構成されている。例えば、電流センサは、第1磁気シールド21Mにおける間隔g1が、第2磁気シールド22Mにおける間隔g1よりも狭くなるように構成されている。 In each of the magnetic shields 21M and 22M, the amount of the leakage magnetic field decreases as the interval g1 decreases, and the amount of the leakage magnetic field increases as the interval g1 increases. Therefore, the current sensor controls the amount of the leakage magnetic field by adjusting the distance g1 between at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the positions of the magnetic detection elements in the detection phase. It is configured to be canceled by. For example, the current sensor is configured such that the gap g1 in the first magnetic shield 21M is narrower than the gap g1 in the second magnetic shield 22M.
 変形例20は、変形例19と同様の効果を奏することができる。また、本開示は、変形例20で開示した技術と、変形例19で開示した技術とを組み合わせて実施することもできる。この場合であっても、変形例20と同様の効果を奏することができる。 Modification 20 can provide the same effects as Modification 19. In addition, the present disclosure can be implemented by combining the technique disclosed in the modification 20 and the technique disclosed in the modification 19. Even in this case, the same effects as those of Modification 20 can be obtained.
 (変形例21)
 図28を用いて、変形例21の電流センサに関して説明する。なお、本変形例では、便宜的に、変形例19と同じ符号を採用する。また、図28では、一例として、第1磁気シールド21Mのみを図示している。この図28は、図25に相当する断面図である。
(Modification 21)
A current sensor of Modification 21 will be described with reference to FIG. In addition, in this modification, the same code | symbol as the modification 19 is employ | adopted for convenience. In FIG. 28, only the first magnetic shield 21M is illustrated as an example. FIG. 28 is a cross-sectional view corresponding to FIG.
 変形例21の電流センサは、薄肉部3,3Aの長さt12が調整されている点が電流センサ119と異なる。つまり、電流センサは、漏れ磁場LM1と漏れ磁場LM2とが、例えば第2磁気検出素子12の位置で打ち消されるように、二つの磁気シールド21M,22Mの少なくとも一方における薄肉部3,3Aの長さt12が調整されている。言い換えると、二つの磁気シールド21M,22Mの少なくとも一方は、形状として、対向部位における薄肉部3,3Aの長さt12が調整されている。 The current sensor of Modification 21 is different from the current sensor 119 in that the length t12 of the thin portions 3 and 3A is adjusted. That is, in the current sensor, the length of the thin portions 3 and 3A in at least one of the two magnetic shields 21M and 22M is set such that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example. t12 is adjusted. In other words, at least one of the two magnetic shields 21M and 22M has a shape in which the length t12 of the thin portions 3 and 3A at the facing portion is adjusted.
 なお、この長さt12は、Y方向における薄肉部3の長さである。また、長さt12は、積層方向及び配置方向に直交する方向における薄肉部3の長さとも言える。後程説明する厚肉部2の長さt11は、t12と同様に、Y方向における長さである。 The length t12 is the length of the thin portion 3 in the Y direction. The length t12 can also be said to be the length of the thin portion 3 in the direction orthogonal to the stacking direction and the arrangement direction. The length t11 of the thick portion 2 described later is the length in the Y direction, similarly to t12.
 第1磁気シールド21Mは、図28に示すように、薄肉部3を介して隣り合う厚肉部2どうしが、互いの対向部位の一部のみが薄肉部3を介して繋がれている。例えば、第1相P1の厚肉部2と、第2相P2の厚肉部2とは、互いの対向部位における、Z方向及びY方向の一部のみが薄肉部3を介して繋がれている。このため、厚肉部2の長さt11は、薄肉部3の長さt12よりも長い。よって、第1磁気シールド21Mは、XY平面において、隣り合う厚肉部2間に凹みが形成されている。 In the first magnetic shield 21M, as shown in FIG. 28, the thick portions 2 adjacent to each other through the thin portions 3 are connected to each other through only the thin portions 3 through a part of the opposing portions. For example, the thick part 2 of the first phase P1 and the thick part 2 of the second phase P2 are connected via the thin part 3 only in a part in the Z direction and the Y direction at the mutually facing portions. Yes. For this reason, the length t11 of the thick part 2 is longer than the length t12 of the thin part 3. Therefore, the first magnetic shield 21M has a recess formed between the adjacent thick portions 2 in the XY plane.
 なお、第2磁気シールド22Mは、第1磁気シールド21Mと同様に、薄肉部3Aを介して隣り合う厚肉部2Aどうしが、互いの対向部位の一部のみが薄肉部3Aを介して繋がれている。しかしながら、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方が、上記のように一部のみが繋がれた構成であればよい。よって、例えば、二つの磁気シールド21M,22Mの一方は、変形例19で採用したように、Y方向における全体が繋がれた構成であってもよい。 As in the case of the first magnetic shield 21M, the second magnetic shield 22M is connected to the thick portions 2A adjacent to each other through the thin portions 3A, and only a part of the opposing portions are connected via the thin portions 3A. ing. However, the current sensor may have a configuration in which at least one of the two magnetic shields 21M and 22M is partially connected as described above. Therefore, for example, one of the two magnetic shields 21M and 22M may have a configuration in which the whole in the Y direction is connected as employed in the modification 19.
 各磁気シールド21M,22Mは、長さt12が長くなるにしたがって漏れ磁場の量が減少し、長さt12が短くなるにしたがって漏れ磁場の量が増加する。よって、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方の長さt12を調整することで漏れ磁場の量をコントロールして、漏れ磁場LM1と漏れ磁場LM2とが検出相の磁気検出素子の位置で打ち消されるように構成されている。例えば、電流センサは、第1磁気シールド21Mにおける長さt12が、第2磁気シールド22Mにおける長さt12よりも短くなるように構成されている。 In each of the magnetic shields 21M and 22M, the amount of the leakage magnetic field decreases as the length t12 increases, and the amount of the leakage magnetic field increases as the length t12 decreases. Therefore, the current sensor controls the amount of the leakage magnetic field by adjusting the length t12 of at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the detection phase magnetic detection elements. It is configured to be canceled at the position. For example, the current sensor is configured such that the length t12 in the first magnetic shield 21M is shorter than the length t12 in the second magnetic shield 22M.
 変形例21は、変形例19と同様の効果を奏することができる。また、本開示は、変形例21で開示した技術と、変形例19,20で開示した技術とを組み合わせて実施することもできる。この場合であっても、変形例21と同様の効果を奏することができる。 Modification 21 can achieve the same effects as Modification 19. Moreover, this indication can also be implemented combining the technique disclosed by the modification 21 and the technique disclosed by the modifications 19 and 20. FIG. Even in this case, the same effect as that of the modified example 21 can be obtained.
 (変形例22)
 図29を用いて、変形例22の電流センサに関して説明する。なお、本変形例では、便宜的に、変形例19と同じ符号を採用する。また、図29では、一例として、第1磁気シールド21Mのみを図示している。この図29は、図25に相当する断面図である。
(Modification 22)
With reference to FIG. 29, the current sensor of Modification 22 will be described. In addition, in this modification, the same code | symbol as the modification 19 is employ | adopted for convenience. FIG. 29 shows only the first magnetic shield 21M as an example. FIG. 29 is a cross-sectional view corresponding to FIG.
 変形例22の電流センサは、二つの磁気シールド21M,22Mの少なくとも一方に、変形例4の第1磁気シールド21Dと同様の形状を採用している。変形例22の電流センサは、凹部1,1Aの深さt4が調整されている点が電流センサ119と異なる。つまり、電流センサは、漏れ磁場LM1と漏れ磁場LM2とが、例えば第2磁気検出素子12の位置で打ち消されるように、二つの磁気シールド21M,22Mの少なくとも一方における凹部1,1Aの深さt4が調整されている。言い換えると、二つの磁気シールド21M,22Mの少なくとも一方は、形状として、凹部1,1Aの深さt4が調整されている。なお、この深さt4は、Z方向における長さである。 The current sensor of Modification 22 employs the same shape as that of the first magnetic shield 21D of Modification 4 for at least one of the two magnetic shields 21M and 22M. The current sensor of Modification 22 is different from the current sensor 119 in that the depth t4 of the recesses 1 and 1A is adjusted. That is, the current sensor has a depth t4 of the recesses 1 and 1A in at least one of the two magnetic shields 21M and 22M so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at, for example, the position of the second magnetic detection element 12. Has been adjusted. In other words, at least one of the two magnetic shields 21M and 22M is adjusted in the depth t4 of the recesses 1 and 1A. The depth t4 is the length in the Z direction.
 なお、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方が、図29に示す構成であればよい。よって、例えば、二つの磁気シールド21M,22Mの一方は、変形例19で採用した構成であってもよい。 In the current sensor, it is sufficient that at least one of the two magnetic shields 21M and 22M has the configuration shown in FIG. Therefore, for example, one of the two magnetic shields 21 </ b> M and 22 </ b> M may have the configuration employed in the modification 19.
 各磁気シールド21M,22Mは、深さt4が深くなるにしたがって漏れ磁場の量が減少し、深さt4が浅くなるにしたがって漏れ磁場の量が増加する。よって、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方の深さt4を調整することで漏れ磁場の量をコントロールして、漏れ磁場LM1と漏れ磁場LM2とが検出相の磁気検出素子の位置で打ち消されるように構成されている。例えば、電流センサは、第1磁気シールド21Mにおける深さt4が、第2磁気シールド22Mにおける深さt4よりも短くなるように構成されている。 In each of the magnetic shields 21M and 22M, the amount of the leakage magnetic field decreases as the depth t4 increases, and the amount of the leakage magnetic field increases as the depth t4 decreases. Therefore, the current sensor controls the amount of the leakage magnetic field by adjusting the depth t4 of at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the detection phase magnetic detection elements. It is configured to be canceled at the position. For example, the current sensor is configured such that the depth t4 in the first magnetic shield 21M is shorter than the depth t4 in the second magnetic shield 22M.
 変形例22は、変形例19と同様の効果を奏することができる。また、本開示は、変形例22で開示した技術と、変形例19~21で開示した技術のそれぞれとを組み合わせて実施することもできる。この場合であっても、変形例22と同様の効果を奏することができる。さらに、変形例22は、変形例4と同様の効果を奏することができる。 Modification 22 can provide the same effects as Modification 19. In addition, the present disclosure can be implemented by combining the technique disclosed in the modification 22 and each of the techniques disclosed in the modifications 19 to 21. Even in this case, the same effects as those of the modification 22 can be obtained. Furthermore, the modified example 22 can achieve the same effects as the modified example 4.
 (変形例23)
 図30を用いて、変形例23の電流センサに関して説明する。なお、本変形例では、便宜的に、変形例19と同じ符号を採用する。また、図30では、一例として、第1磁気シールド21Mのみを図示している。この図30は、図25に相当する断面図である。
(Modification 23)
With reference to FIG. 30, the current sensor of Modification Example 23 will be described. In addition, in this modification, the same code | symbol as the modification 19 is employ | adopted for convenience. FIG. 30 illustrates only the first magnetic shield 21M as an example. FIG. 30 is a cross-sectional view corresponding to FIG.
 変形例23の電流センサは、二つの磁気シールド21M,22Mの少なくとも一方に、変形例5の第1磁気シールド21Eと同様の形状を採用している。変形例23の電流センサは、第1磁気シールド21Eの傾斜部1Eに相当する傾斜部1Mの傾斜角θが調整されている点が電流センサ119と異なる。つまり、電流センサは、漏れ磁場LM1と漏れ磁場LM2とが、例えば第2磁気検出素子12の位置で打ち消されるように、二つの磁気シールド21M,22Mの少なくとも一方における傾斜角θが調整されている。言い換えると、二つの磁気シールド21M,22Mの少なくとも一方は、形状として、傾斜角θが調整されている。なお、この傾斜角θは、XZ平面における凹部1の底面と側面(傾斜部1M)のなす角度に相当する。 The current sensor of Modification Example 23 employs the same shape as that of the first magnetic shield 21E of Modification Example 5 for at least one of the two magnetic shields 21M and 22M. The current sensor of Modification 23 is different from the current sensor 119 in that the inclination angle θ of the inclined portion 1M corresponding to the inclined portion 1E of the first magnetic shield 21E is adjusted. That is, in the current sensor, the inclination angle θ in at least one of the two magnetic shields 21M and 22M is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example. . In other words, at least one of the two magnetic shields 21M and 22M has the inclination angle θ adjusted as a shape. In addition, this inclination | tilt angle (theta) is corresponded to the angle which the bottom face and side surface (inclination part 1M) of the recessed part 1 in an XZ plane make.
 なお、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方が、図30に示す構成であればよい。よって、例えば、二つの磁気シールド21M,22Mの一方は、変形例19で採用した構成であってもよい。 In the current sensor, at least one of the two magnetic shields 21M and 22M may be configured as shown in FIG. Therefore, for example, one of the two magnetic shields 21 </ b> M and 22 </ b> M may have the configuration employed in the modification 19.
 各磁気シールド21M,22Mは、傾斜角θが小さくなるにしたがって漏れ磁場の量が減少し、傾斜角θが大きくなるにしたがって漏れ磁場の量が増加する。よって、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方の傾斜角θを調整することで漏れ磁場の量をコントロールして、漏れ磁場LM1と漏れ磁場LM2とが検出相の磁気検出素子の位置で打ち消されるように構成されている。例えば、電流センサは、第1磁気シールド21Mにおける傾斜角θが、第2磁気シールド22Mにおける傾斜角θよりも小さくなるように構成されている。 In each of the magnetic shields 21M and 22M, the amount of the leakage magnetic field decreases as the inclination angle θ decreases, and the amount of the leakage magnetic field increases as the inclination angle θ increases. Therefore, the current sensor controls the amount of the leakage magnetic field by adjusting the inclination angle θ of at least one of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 are the detection phase magnetic detection elements. It is configured to be canceled at the position. For example, the current sensor is configured such that the inclination angle θ in the first magnetic shield 21M is smaller than the inclination angle θ in the second magnetic shield 22M.
 変形例23は、変形例19と同様の効果を奏することができる。また、本開示は、変形例23で開示した技術と、変形例19~22で開示した技術のそれぞれとを組み合わせて実施することもできる。この場合であっても、変形例23と同様の効果を奏することができる。さらに、変形例23は、変形例5と同様の効果を奏することができる。 Modification 23 can achieve the same effects as Modification 19. In addition, the present disclosure can be implemented by combining the technology disclosed in the modified example 23 and each of the technologies disclosed in the modified examples 19 to 22. Even in this case, the same effect as that of the modified example 23 can be obtained. Furthermore, the modified example 23 can achieve the same effects as the modified example 5.
 また、変形例23の電流センサは、二つの磁気シールド21M,22Mの少なくとも一方に、変形例6の第1磁気シールド21Fと同様の形状を採用することもできる。この場合であっても同様の効果を奏することができる。さらに、この場合、電流センサは、傾斜角θに加えて、凹部1の深さによっても漏れ磁場の量を調整できる。 In addition, the current sensor of Modification Example 23 can adopt the same shape as the first magnetic shield 21F of Modification Example 6 for at least one of the two magnetic shields 21M and 22M. Even in this case, the same effect can be obtained. Furthermore, in this case, the current sensor can adjust the amount of the leakage magnetic field not only by the inclination angle θ but also by the depth of the recess 1.
 (変形例24)
 図31を用いて、変形例24の電流センサに関して説明する。なお、本変形例では、便宜的に、変形例19と同じ符号を採用する。また、図31では、一例として、第1磁気シールド21Mのみを図示している。この図31は、図25に相当する断面図である。
(Modification 24)
With reference to FIG. 31, the current sensor of Modification Example 24 will be described. In addition, in this modification, the same code | symbol as the modification 19 is employ | adopted for convenience. FIG. 31 shows only the first magnetic shield 21M as an example. FIG. 31 is a cross-sectional view corresponding to FIG.
 変形例24の電流センサは、二つの磁気シールド21M,22Mの少なくとも一方に、突起8が形成された形状を採用している。例えば、第1磁気シールド21Mは、図31に示すように、厚肉部2における凹部1に沿う位置に突起8が形成されている。変形例24の電流センサは、突起8の長さが調整されている点が電流センサ119と異なる。つまり、電流センサは、漏れ磁場LM1と漏れ磁場LM2とが、例えば第2磁気検出素子12の位置で打ち消されるように、二つの磁気シールド21M,22Mの少なくとも一方における突起8の長さが調整されている。言い換えると、二つの磁気シールド21M,22Mの少なくとも一方は、形状として、突起8の長さが調整されている。なお、この長さは、Z方向における長さである。 The current sensor of Modification 24 employs a shape in which the protrusion 8 is formed on at least one of the two magnetic shields 21M and 22M. For example, as shown in FIG. 31, the first magnetic shield 21 </ b> M has protrusions 8 formed at positions along the concave portion 1 in the thick portion 2. The current sensor of Modification 24 is different from the current sensor 119 in that the length of the protrusion 8 is adjusted. That is, in the current sensor, the length of the protrusion 8 on at least one of the two magnetic shields 21M and 22M is adjusted so that the leakage magnetic field LM1 and the leakage magnetic field LM2 are canceled at the position of the second magnetic detection element 12, for example. ing. In other words, at least one of the two magnetic shields 21M and 22M is shaped so that the length of the protrusion 8 is adjusted. This length is the length in the Z direction.
 なお、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方が、図31に示す構成であればよい。よって、例えば、二つの磁気シールド21M,22Mの一方は、変形例19で採用した構成であってもよい。 In the current sensor, at least one of the two magnetic shields 21M and 22M may be configured as shown in FIG. Therefore, for example, one of the two magnetic shields 21 </ b> M and 22 </ b> M may have the configuration employed in the modification 19.
 各磁気シールド21M,22Mは、突起8の長さが長くなるにしたがって漏れ磁場の量が減少し、突起8の長さが短くなるにしたがって漏れ磁場の量が増加する。よって、電流センサは、二つの磁気シールド21M,22Mの少なくとも一方の突起8の長さを調整することで漏れ磁場の量をコントロールして、漏れ磁場LM1と漏れ磁場LM2とが検出相の磁気検出素子の位置で打ち消されるように構成されている。例えば、電流センサは、第1磁気シールド21Mにおける突起8の長さが、第2磁気シールド22Mにおける突起8の長さよりも短くなるように構成されている。 In each of the magnetic shields 21M and 22M, the amount of the leakage magnetic field decreases as the length of the protrusion 8 increases, and the amount of the leakage magnetic field increases as the length of the protrusion 8 decreases. Therefore, the current sensor controls the amount of the leakage magnetic field by adjusting the length of at least one protrusion 8 of the two magnetic shields 21M and 22M, and the leakage magnetic field LM1 and the leakage magnetic field LM2 detect the magnetic phase. It is configured to cancel at the position of the element. For example, the current sensor is configured such that the length of the protrusion 8 on the first magnetic shield 21M is shorter than the length of the protrusion 8 on the second magnetic shield 22M.
 変形例24は、変形例19と同様の効果を奏することができる。また、本開示は、変形例24で開示した技術と、変形例19~23で開示した技術のそれぞれとを組み合わせて実施することもできる。この場合であっても、変形例24と同様の効果を奏することができる。なお、変形例24は、凹部1に沿う二つの突起8の少なくとも一方の長さを調整することで、漏れ磁場の量を調整することができる。 Modification 24 can achieve the same effects as Modification 19. In addition, the present disclosure can be implemented by combining the technology disclosed in the modified example 24 and each of the technologies disclosed in the modified examples 19 to 23. Even in this case, the same effect as that of the modified example 24 can be obtained. In the modified example 24, the amount of the leakage magnetic field can be adjusted by adjusting the length of at least one of the two protrusions 8 along the recess 1.
 (変形例25)
 図32~図34を用いて、変形例25の電流センサ120に関して説明する。なお、本変形例では、便宜的に、一部の符号に変形例19と同じ符号を採用する。電流センサ120は、相数と、二つの磁気シールド21N,22Nの構成が電流センサ119と異なる。また、電流センサ120は、変形例19~21の技術を組み合わせた構成の一例とみなすことができる。
(Modification 25)
The current sensor 120 according to the modified example 25 will be described with reference to FIGS. In the present modification, for convenience, the same reference numerals as those in the modification 19 are used for some of the reference numerals. The current sensor 120 is different from the current sensor 119 in the number of phases and the configuration of the two magnetic shields 21N and 22N. Further, the current sensor 120 can be regarded as an example of a configuration in which the techniques of the modified examples 19 to 21 are combined.
 図32、図33、図34に示すように、電流センサ120は、第1相P1~第3相P3に加えて、第4バスバ240に対応する第4相P4を有している。なお、第4相P3は、その他の相P1~P3と同様に、第4磁気検出素子14、厚肉部2,2Aを含んでいる。また、第4磁気検出素子14は、第4バスバ240に対向配置されており、その他の磁気検出素子11~13と同様の構成である。 32, 33, and 34, the current sensor 120 has a fourth phase P4 corresponding to the fourth bus bar 240 in addition to the first phase P1 to the third phase P3. The fourth phase P3 includes the fourth magnetic detection element 14 and the thick portions 2 and 2A, like the other phases P1 to P3. The fourth magnetic detection element 14 is disposed opposite to the fourth bus bar 240 and has the same configuration as the other magnetic detection elements 11 to 13.
 第1磁気シールド21Nは、表層部21N1と突出部21N2とを含んでいる。第1磁気シールド21Nは、変形例19のように、表層部21N1の厚みが調整されている。つまり、第1磁気シールド21Nは、図33に示すように、第1相P1と第2相P2の表層部21N1の厚みが同じで、第3相P3と第4相P4の表層部21N1の厚みが同じで、且つ、第1相P1と第3相P3の表層部21N1の厚みが異なるように調整されている。 The first magnetic shield 21N includes a surface layer portion 21N1 and a protruding portion 21N2. As for the 1st magnetic shield 21N, the thickness of the surface layer part 21N1 is adjusted like the modification 19. That is, in the first magnetic shield 21N, as shown in FIG. 33, the thickness of the surface layer portion 21N1 of the first phase P1 and the second phase P2 is the same, and the thickness of the surface layer portion 21N1 of the third phase P3 and the fourth phase P4. And the thicknesses of the surface layer portions 21N1 of the first phase P1 and the third phase P3 are adjusted to be different.
 また、第1磁気シールド21Nは、変形例20のように、間隔が調整されている。つまり、第1磁気シールド21Nは、図32、図33に示すように、第1相P1と第2相P2との間隔g4、第2相P2と第3相P3との間隔g5、第3相P3と第4相P4との間隔g6が異なるように調整されている。なお、これらの間隔は、g5<g4<g6となっている。 Further, the interval of the first magnetic shield 21N is adjusted as in Modification 20. That is, as shown in FIGS. 32 and 33, the first magnetic shield 21N includes an interval g4 between the first phase P1 and the second phase P2, an interval g5 between the second phase P2 and the third phase P3, and a third phase. The gap g6 between P3 and the fourth phase P4 is adjusted to be different. These intervals are g5 <g4 <g6.
 さらに、第1磁気シールド21Nは、変形例21のように、薄肉部3の長さが調整されている。つまり、第1磁気シールド21Nは、図32に示すように、第3相P3と第4相P4の間の薄肉部3の長さが、他の薄肉部3の長さよりも短く調整されている。 Furthermore, the length of the thin portion 3 of the first magnetic shield 21N is adjusted as in the modified example 21. That is, in the first magnetic shield 21N, as shown in FIG. 32, the length of the thin portion 3 between the third phase P3 and the fourth phase P4 is adjusted to be shorter than the lengths of the other thin portions 3. .
 一方、第2磁気シールド22Nは、表層部22N1と突出部22N2とを含んでいる。第2磁気シールド22Nは、変形例19のように、表層部22N1の厚みが調整されている。つまり、第2磁気シールド22Nは、図33に示すように、第2相P2と第3相P3の表層部22N1の厚みが同じで、第1相P1と第4相P4の表層部22N1の厚みが同じで、且つ、第1相P1と第2相P2の表層部22N1の厚みが異なるように調整されている。 On the other hand, the second magnetic shield 22N includes a surface layer portion 22N1 and a protruding portion 22N2. As for the 2nd magnetic shield 22N, the thickness of surface layer part 22N1 is adjusted like the modification 19. That is, in the second magnetic shield 22N, as shown in FIG. 33, the thickness of the surface layer portion 22N1 of the second phase P2 and the third phase P3 is the same, and the thickness of the surface layer portion 22N1 of the first phase P1 and the fourth phase P4. And the thicknesses of the surface layer portions 22N1 of the first phase P1 and the second phase P2 are adjusted to be different.
 また、第2磁気シールド22Nは、変形例20のように、間隔が調整されている。つまり、第2磁気シールド22Nは、図33、図34に示すように、第1相P1と第2相P2との間隔g7、第2相P2と第3相P3との間隔g8、第3相P3と第4相P4との間隔g9が異なるように調整されている。なお、これらの間隔は、g8<g7=g9となっている。 Further, the interval of the second magnetic shield 22N is adjusted as in Modification 20. That is, as shown in FIGS. 33 and 34, the second magnetic shield 22N includes an interval g7 between the first phase P1 and the second phase P2, an interval g8 between the second phase P2 and the third phase P3, and a third phase. The gap g9 between P3 and the fourth phase P4 is adjusted to be different. These intervals are g8 <g7 = g9.
 そして、第2磁気シールド22Nは、変形例21のように、薄肉部3の長さが調整されている。つまり、第2磁気シールド22Nは、図34に示すように、第1相P1と第2相P2の間の薄肉部3の長さが、他の薄肉部3の長さよりも短く調整されている。 And as for the 2nd magnetic shield 22N like the modification 21, the length of the thin part 3 is adjusted. That is, in the second magnetic shield 22N, as shown in FIG. 34, the length of the thin portion 3 between the first phase P1 and the second phase P2 is adjusted to be shorter than the length of the other thin portions 3. .
 このように構成された電流センサ120は、凹部1,1Aからの漏れ磁場LM1,LM2が検出相の磁気検出素子に到達しないように、形状が調整されている。よって、変形例25は、変形例19と同様の効果を奏することができる。 The shape of the current sensor 120 thus configured is adjusted so that the leakage magnetic fields LM1 and LM2 from the recesses 1 and 1A do not reach the detection phase magnetic detection element. Therefore, the modified example 25 can achieve the same effects as the modified example 19.
 (変形例26)
 図35を用いて、変形例26の電流センサ121に関して説明する。なお、本変形例では、便宜的に、変形例19と同じ符号を採用する。図35は、図24に相当する断面図である。ただし、図35は、図面を簡略化するために、第1バスバ210、第2バスバ220に関しては被対向部213,223のみを図示している。
(Modification 26)
The current sensor 121 according to the modified example 26 will be described with reference to FIG. In addition, in this modification, the same code | symbol as the modification 19 is employ | adopted for convenience. FIG. 35 is a cross-sectional view corresponding to FIG. However, FIG. 35 illustrates only the opposed portions 213 and 223 for the first bus bar 210 and the second bus bar 220 in order to simplify the drawing.
 電流センサ121は、相数が2である点が電流センサ119と異なる。つまり、電流センサ121は、第1相P1と第2相P2を有しているが、第3相P3を有していない。 The current sensor 121 is different from the current sensor 119 in that the number of phases is two. That is, the current sensor 121 has the first phase P1 and the second phase P2, but does not have the third phase P3.
 このような電流センサ121であっても、一方の相がノイズ相で他方の相が検出相となることがある。本変形例では、図35に示すように、第2相P2がノイズ相、第1相P1が検出相である状況を一例として採用する。この場合、電流センサ121は、凹部1,1Aから形成された磁場が第1磁気検出素子11に達する場合、第1磁気検出素子11による磁電変換結果に影響を及ぼす可能性がある。 Even in such a current sensor 121, one phase may be a noise phase and the other phase may be a detection phase. In the present modification, as shown in FIG. 35, a situation where the second phase P2 is a noise phase and the first phase P1 is a detection phase is adopted as an example. In this case, when the magnetic field formed from the recesses 1, 1 </ b> A reaches the first magnetic detection element 11, the current sensor 121 may affect the magnetoelectric conversion result by the first magnetic detection element 11.
 そこで、電流センサ121は、変形例19と同様に、形状として、磁気シールド21M,22Mの全体の厚みに対する表層部21M1,22M1の厚みの少なくとも一方が調整されている。このため、両磁気シールド21M,22Mは、両漏れ磁場LM1,LM2が第1磁気検出素子11に到達しないように、両漏れ磁場LM1,LM2で打ち消し合うように調整された形状を有しているとも言える。 Therefore, as in the modification 19, the current sensor 121 is adjusted in shape so that at least one of the thicknesses of the surface layer portions 21M1 and 22M1 with respect to the total thickness of the magnetic shields 21M and 22M is adjusted. For this reason, both magnetic shields 21M and 22M have shapes adjusted so as to cancel each other with both leakage magnetic fields LM1 and LM2 so that both leakage magnetic fields LM1 and LM2 do not reach the first magnetic detection element 11. It can also be said.
 変形例26は、変形例19と同様の効果を奏することができる。また、本開示は、変形例26で開示した技術と、変形例19~25で開示した技術のそれぞれとを組み合わせて実施することもできる。この場合であっても、変形例26と同様の効果を奏することができる。また、変形例26の電流センサ121は、第1相P1と第2相P2が三相以上のうちの二相であっても同様の効果を奏することができる。 Modification 26 can achieve the same effects as Modification 19. In addition, the present disclosure can be implemented by combining the technology disclosed in the modified example 26 and each of the technologies disclosed in the modified examples 19 to 25. Even in this case, the same effect as that of the modified example 26 can be obtained. Further, the current sensor 121 of the modified example 26 can achieve the same effect even when the first phase P1 and the second phase P2 are two phases of three or more phases.
 (第2実施形態)
 図36、図37を用いて、第2実施形態の電流センサ400に関して説明する。電流センサ400は、例えば、直流電力を三相交流電力に変換するインバータと、インバータからの三相交流電力によって駆動されるモータジェネレータとともに車両に搭載される。そして、電流センサ400は、インバータとモータジェネレータとの間に流れる電流を検出する。詳述すると、電流センサ400は、インバータとモータジェネレータを電気的に接続している複数のバスバ340のそれぞれに流れる電流を個別に検出する。電流センサ400は、例えば集磁コアを必要としないコアレス電流センサを採用できる。なお、電流センサ400は、インバータとモータジェネレータとの間に流れる電流を検出するものに限定されない。
(Second Embodiment)
The current sensor 400 according to the second embodiment will be described with reference to FIGS. The current sensor 400 is mounted on a vehicle together with, for example, an inverter that converts DC power into three-phase AC power and a motor generator that is driven by the three-phase AC power from the inverter. Current sensor 400 detects a current flowing between the inverter and the motor generator. More specifically, current sensor 400 individually detects the current flowing through each of a plurality of bus bars 340 electrically connecting the inverter and the motor generator. As the current sensor 400, for example, a coreless current sensor that does not require a magnetic collecting core can be adopted. Current sensor 400 is not limited to one that detects a current flowing between the inverter and the motor generator.
 また、後程説明するが、電流センサ400は、複数の相P1~Pnを備えている。この各相P1~Pnの少なくとも三つは、インバータとモータジェネレータとの間における各相に対応して設けられている。なお、バスバ340は、電流経路に相当する。バスバ340に流れる電流は、被検出電流とも言える。 As will be described later, the current sensor 400 includes a plurality of phases P1 to Pn. At least three of the phases P1 to Pn are provided corresponding to the phases between the inverter and the motor generator. Bus bar 340 corresponds to a current path. It can be said that the current flowing through the bus bar 340 is a detected current.
 本実施形態では、一例として、第1端部と、第2端部と、両端部に挟まれた中間部340aとを含むバスバ340を採用している。バスバ340は、例えば、第1端部がモータジェネレータ側の端部で、第2端部がインバータ側の端部である。中間部340aは、第1端部と第2端部との間の部位であり、後程説明する第1シールドと第2シールドで挟まれる部位である。しかしながら、バスバ340の構成は、これに限定されない。 In the present embodiment, as an example, a bus bar 340 including a first end portion, a second end portion, and an intermediate portion 340a sandwiched between both end portions is employed. In the bus bar 340, for example, the first end is an end on the motor generator side, and the second end is an end on the inverter side. The intermediate part 340a is a part between the first end part and the second end part, and is a part sandwiched between a first shield and a second shield described later. However, the configuration of the bus bar 340 is not limited to this.
 電流センサ400は、図36、図37に示すように、第1相P1~第n相Pnを備えている。電流センサ400は、第1相P1~第n相PnがX方向に並んで配置されている。よって、X方向は、配置方向とも言える。さらに、配置方向は、後程説明する積層方向に直交する方向である。 The current sensor 400 includes a first phase P1 to an n-th phase Pn as shown in FIGS. In the current sensor 400, the first phase P1 to the n-th phase Pn are arranged in the X direction. Therefore, it can be said that the X direction is also an arrangement direction. Furthermore, the arrangement direction is a direction orthogonal to the stacking direction described later.
 また、第1相P1と第n相は、配置方向における両端の相であるため端相と言える。一方、第2相P2~第n-1相Pn-1は、端相P1,Pn間に介在しているため介在相と言える。なお、本実施形態では、nが3以上の自然数である例を採用する。しかしながら、本開示は、nが2以上であれば採用できる。この場合の電流センサは、後程説明する介在相が存在しない。 Moreover, since the first phase P1 and the nth phase are phases at both ends in the arrangement direction, they can be said to be end phases. On the other hand, the second phase P2 to the (n-1) th phase Pn-1 are intervening phases because they are interposed between the end phases P1 and Pn. In the present embodiment, an example in which n is a natural number of 3 or more is employed. However, the present disclosure can be adopted if n is 2 or more. The current sensor in this case does not have an intervening phase which will be described later.
 各相P1~Pnは、磁気検出素子310,311を備えている。さらに、各相P1~Pnは、バスバ340と磁気検出素子310,311を挟み込みつつ、対向配置された一対の第1シールド321,322と第2シールド331,332を含む磁気シールド部を備えている。 Each phase P1 to Pn includes magnetic detection elements 310 and 311. Further, each of the phases P1 to Pn includes a magnetic shield portion including a pair of first shields 321 and 322 and second shields 331 and 332 that are arranged to face each other while sandwiching the bus bar 340 and the magnetic detection elements 310 and 311. .
 磁気検出素子310,311のそれぞれは、一つのバスバ340に対向配置され、バスバ340から発生する磁界を検知して電気信号に変換する。磁気検出素子310,311は、例えばセンサチップやバイアス磁石や回路チップが基板に搭載されるとともに、これらが封止樹脂体で封止され、回路チップと接続されたリードが封止樹脂体の外部に露出した構成を採用できる。センサチップとしては、例えば、巨大磁気抵抗素子(GMR)、異方性磁気抵抗素子(AMR)、トンネル磁気抵抗素子(TMR)、又はホール素子などを採用できる。なお、端相P1,Pnの磁気検出素子311は、端相検出素子311と言える。一方、介在相P2~Pn-1の磁気検出素子310は、介在検出素子310と言える。 Each of the magnetic detection elements 310 and 311 is disposed opposite to one bus bar 340, detects a magnetic field generated from the bus bar 340, and converts it into an electric signal. In the magnetic detection elements 310 and 311, for example, a sensor chip, a bias magnet, and a circuit chip are mounted on a substrate, and these are sealed with a sealing resin body, and leads connected to the circuit chip are outside the sealing resin body. An exposed configuration can be adopted. As the sensor chip, for example, a giant magnetoresistive element (GMR), an anisotropic magnetoresistive element (AMR), a tunnel magnetoresistive element (TMR), or a Hall element can be adopted. The magnetic detection elements 311 of the end phases P1 and Pn can be said to be end phase detection elements 311. On the other hand, the magnetic detecting elements 310 of the intervening phases P2 to Pn-1 can be said to be intervening detecting elements 310.
 第1シールド321,322と第2シールド331,332は、磁性材料によって構成されており、磁気検出素子310,311に対する外部からの磁界を遮蔽するものである。各シールド321,322,331,332は、バスバ340と磁気検出素子310,311とを挟み込みつつ対向配置されている。言い換えると、各シールド321,322,331,332は、外部磁界が磁気検出素子310,311に達すること、もしくは、透過することを抑制するためのものである。この第1シールド321,322と第2シールド331,332は、磁気シールド部に相当する。 The first shields 321 and 322 and the second shields 331 and 332 are made of a magnetic material, and shield the magnetic field from the outside with respect to the magnetic detection elements 310 and 311. The shields 321, 322, 331, and 332 are arranged to face each other while sandwiching the bus bar 340 and the magnetic detection elements 310 and 311. In other words, the shields 321, 322, 331, and 332 are for suppressing the external magnetic field from reaching or passing through the magnetic detection elements 310 and 311. The first shields 321 and 322 and the second shields 331 and 332 correspond to magnetic shield portions.
 各シールド321,322,331,332は、例えば、平板状の磁性材料が積層されて構成されている。よって、図36、図37に示すように、各シールド321,322,331,332は、平板状部材であり、例えば、XY平面、YZ平面、XZ平面において矩形状である。さらに、各シールド321,322,331,332は、磁気検出素子310,311の対向領域、及び中間部340aの対向領域を覆うことができる程度の大きさである。対向領域は、Z方向における領域である。 Each shield 321, 322, 331, 332 is configured by laminating flat magnetic materials, for example. Therefore, as shown in FIGS. 36 and 37, each of the shields 321, 322, 331, and 332 is a flat plate member, and has, for example, a rectangular shape in the XY plane, the YZ plane, and the XZ plane. Further, the shields 321, 322, 331, and 332 are large enough to cover the opposing areas of the magnetic detection elements 310 and 311 and the opposing area of the intermediate portion 340a. The facing area is an area in the Z direction.
 なお、端相P1,Pnの第1シールド322は、第1端相シールド322と言える。同様に、端相P1,Pnの第2シールド332は、第2端相シールド332と言える。よって、電流センサ400は、二つの第1端相シールド322と、二つの第2端相シールド332を含んでいる。 The first shield 322 of the end phases P1 and Pn can be said to be the first end phase shield 322. Similarly, the second shield 332 of the end phases P1 and Pn can be said to be the second end phase shield 332. Therefore, the current sensor 400 includes two first end phase shields 322 and two second end phase shields 332.
 一方、介在相P2~Pn-1の第1シールド321は、第1介在シールド321と言える。同様に、介在相P2~Pn-1の第2シールド331は、第2介在シールド331と言える。 On the other hand, the first shield 321 of the intervening phases P2 to Pn-1 can be said to be the first intervening shield 321. Similarly, the second shield 331 of the intervening phases P2 to Pn-1 can be said to be the second intervening shield 331.
 このように、第1シールドは、第1介在シールド321と第1端相シールド322とを含んでいる。また、第2シールドは、第2介在シールド331と第2端相シールド332とを含んでいる。 Thus, the first shield includes the first intervening shield 321 and the first end-phase shield 322. The second shield includes a second intervening shield 331 and a second end phase shield 332.
 第1シールド321,322は、バスバ340と磁気検出素子310,311とを基準として、Z方向の一方側に配置されている。第2シールド331,332は、バスバ340と磁気検出素子310,311とを基準として、Z方向の他方側に配置されている。具体的には、第1シールド321,322がバスバ340と対向する側に配置され、第2シールド331,332が磁気検出素子310,311と対向する側に配置されている。 The first shields 321 and 322 are arranged on one side in the Z direction with reference to the bus bar 340 and the magnetic detection elements 310 and 311. The second shields 331 and 332 are arranged on the other side in the Z direction with respect to the bus bar 340 and the magnetic detection elements 310 and 311. Specifically, the first shields 321 and 322 are disposed on the side facing the bus bar 340, and the second shields 331 and 332 are disposed on the side facing the magnetic detection elements 310 and 311.
 第1シールド321,322のそれぞれと、第2シールド331,332のそれぞれは、対をなしており、Z方向において間隔をあけて対向配置されている。例えば、第1相P1は、第1端相シールド322と第2端相シールド332とが対をなしており、Z方向において、第1端相シールド322と第2端相シールド332とが対向配置されている。そして、第1端相シールド322と第2端相シールド332は、Z方向において、端相検出素子311とバスバ340とを挟み込むように配置されている。 Each of the first shields 321 and 322 and each of the second shields 331 and 332 make a pair, and are arranged to face each other with an interval in the Z direction. For example, in the first phase P1, the first end-phase shield 322 and the second end-phase shield 332 make a pair, and the first end-phase shield 322 and the second end-phase shield 332 are arranged to face each other in the Z direction. Has been. The first end-phase shield 322 and the second end-phase shield 332 are arranged so as to sandwich the end-phase detection element 311 and the bus bar 340 in the Z direction.
 よって、端相検出素子311及び中間部340aは、第1端相シールド322の対向領域内及び第2端相シールド332の対向領域内に配置されていると言える。また、第1相P1は、図37に示すように、第1端相シールド322、バスバ340の中間部340a、端相検出素子311、第2端相シールド332がこの順序で積層されている。つまり、第1相P1は、これらの構成要素がZ方向に積層されている。 Therefore, it can be said that the end phase detection element 311 and the intermediate portion 340 a are disposed in the opposing region of the first end phase shield 322 and in the opposing region of the second end phase shield 332. In the first phase P1, as shown in FIG. 37, the first end phase shield 322, the intermediate portion 340a of the bus bar 340, the end phase detection element 311 and the second end phase shield 332 are stacked in this order. That is, in the first phase P1, these components are stacked in the Z direction.
 また、例えば、第2相P2は、第1介在シールド321と第2介在シールド331とが対をなしており、Z方向において、第1介在シールド321と第2介在シールド331とが対向配置されている。そして、第1介在シールド321と第2介在シールド331は、Z方向において、介在検出素子310とバスバ340とを挟み込むように配置されている。 Further, for example, in the second phase P2, the first interposed shield 321 and the second interposed shield 331 form a pair, and the first interposed shield 321 and the second interposed shield 331 are arranged to face each other in the Z direction. Yes. The first interposed shield 321 and the second interposed shield 331 are arranged so as to sandwich the interposed detection element 310 and the bus bar 340 in the Z direction.
 よって、介在検出素子310及び中間部340aは、第1介在シールド321の対向領域内及び第2介在シールド331の対向領域内に配置されていると言える。また、第2相P2は、図37に示すように、第1介在シールド321、バスバ340の中間部340a、介在検出素子310、第2介在シールド331がこの順序で積層されている。つまり、第2相P2は、これらの構成要素がZ方向に積層されている。 Therefore, it can be said that the interposition detection element 310 and the intermediate portion 340a are disposed in the opposing region of the first intervening shield 321 and in the opposing region of the second intervening shield 331. In the second phase P2, as shown in FIG. 37, the first interposed shield 321, the intermediate portion 340a of the bus bar 340, the interposed detecting element 310, and the second interposed shield 331 are stacked in this order. That is, in the second phase P2, these components are laminated in the Z direction.
 このように、電流センサ400は、第1シールド321,322が相P1~Pn毎に分断され、第2シールド331,332が相P1~Pn毎に分断された構成をなしている。しかしながら、第1シールド321,322と第2シールド331,332のそれぞれは、樹脂等の磁気シールドとしての機能を有さない材料によって一体化されていてもよい。 As described above, the current sensor 400 has a configuration in which the first shields 321 and 322 are divided for each of the phases P1 to Pn and the second shields 331 and 332 are divided for each of the phases P1 to Pn. However, each of the first shields 321 and 322 and the second shields 331 and 332 may be integrated by a material that does not have a function as a magnetic shield such as resin.
 第1シールド321,322は、X方向に並べて配置されている。同様に、第2シールド331,332は、X方向に並べて配置されている。なお、各相P1~Pnに対応するバスバ340の中間部340aに関してもX方向に並べて配置されている。 The first shields 321 and 322 are arranged side by side in the X direction. Similarly, the second shields 331 and 332 are arranged side by side in the X direction. Note that the intermediate portion 340a of the bus bar 340 corresponding to each phase P1 to Pn is also arranged in the X direction.
 第1シールド321,322は、例えば、中間部340aと対向する対向面(以下、第1対向面)がXY平面と平行に設けられている。第1シールド321,322は、第1対向面が、XY平面と平行な同一の仮想平面上に設けられている。同様に、第2シールド331,332は、例えば、磁気検出素子310,311と対向する対向面(以下、第2対向面)がXY平面と平行に設けられている。第2シールド331,332は、第2対向面が、XY平面と平行な同一の仮想平面上に設けられている。そして、第1対向面が設けられている仮想平面は、Z方向における位置が、第2対向面が設けられている仮想平面と異なる。 In the first shields 321 and 322, for example, an opposing surface (hereinafter referred to as a first opposing surface) facing the intermediate portion 340a is provided in parallel with the XY plane. As for the 1st shield 321,322, the 1st opposing surface is provided on the same virtual plane parallel to XY plane. Similarly, in the second shields 331 and 332, for example, opposing surfaces (hereinafter referred to as second opposing surfaces) facing the magnetic detection elements 310 and 311 are provided in parallel with the XY plane. The second opposing surfaces of the second shields 331 and 332 are provided on the same virtual plane parallel to the XY plane. And the virtual plane in which the 1st opposing surface is provided differs in the position in a Z direction from the virtual plane in which the 2nd opposing surface is provided.
 なお、第1対向面は、第2シールド331,332と対向する側の面である。一方、第2対向面は、第1シールド321,322と対向する側の面である。また、第1シールド321,322と第2シールド331,332は、平行に配置されているため、平行平板シールドとも言える。 Note that the first facing surface is a surface facing the second shields 331 and 332. On the other hand, the second facing surface is a surface on the side facing the first shields 321 and 322. Moreover, since the 1st shield 321,322 and the 2nd shield 331,332 are arrange | positioned in parallel, it can also be said to be a parallel plate shield.
 また、第1シールド321,322のそれぞれは、X方向における位置は異なるが、Y方向及びZ方向の位置が同じである。同様に、第2シールド331,332のそれぞれは、X方向における位置は異なるが、Y方向及びZ方向の位置が同じである。 Further, the first shields 321 and 322 have different positions in the X direction, but have the same positions in the Y direction and the Z direction. Similarly, the second shields 331 and 332 have different positions in the X direction, but have the same positions in the Y direction and the Z direction.
 このように構成された電流センサ400は、ある相の検出対象であるバスバ340に例えば1200Aなどの比較的大電流が流れ、この相の隣相で検出対象のバスバ340に流れている被検出電流を検出する状況となりうる。なお、比較的大電流が流れるバスバ340は、ノイズの発生源となりうる。このため、このバスバを検出対象としている相は、ノイズ相と言うことができる。一方、被検出電流を検出する相は、検出相と言うことができる。本変形例では、図37に示すように、第2相P2がノイズ相、第1相P1が検出相である状況を一例として採用する。 In the current sensor 400 configured in this way, a relatively large current such as 1200A flows through the bus bar 340 that is a detection target of a certain phase, and the detected current that flows through the bus bar 340 that is the detection target in the adjacent phase of this phase. Can be detected. Note that the bus bar 340 in which a relatively large current flows can be a source of noise. For this reason, the phase for which this bus bar is the detection target can be said to be a noise phase. On the other hand, the phase for detecting the detected current can be said to be a detection phase. In the present modification, as shown in FIG. 37, a situation where the second phase P2 is a noise phase and the first phase P1 is a detection phase is adopted as an example.
 ノイズ相のバスバ340から発生する磁界は、アンペアの右ねじの法則により、同心円状に発生する。この磁界は、各シールド321,322,331,332の内部に集中する。そして、各シールド321,322,331,332には、図37に示すように、実線矢印で示す方向に磁束が流れる、言い換えると磁力線が走る。 The magnetic field generated from the noise phase bus bar 340 is generated concentrically by the right-handed screw law of amperes. This magnetic field is concentrated inside the shields 321, 322, 331, and 332. Then, as shown in FIG. 37, a magnetic flux flows in each shield 321, 322, 331, 332 in the direction indicated by the solid line arrow, in other words, a line of magnetic force runs.
 そして、磁界は、端相の最端部まで達する。この結果、電流センサ400は、端相において、第1シールドと第2シールドとの間で磁界交換が起こる。具体的には、第1相P1では、第2端相シールド332の最端部から、第1端相シールド322への磁界交換が起こる。同様に、第n相Pnでは、第1端相シールド322の最端部から、第2端相シールド332への磁界交換が起こる。言い換えると、第1相P1では、第2端相シールド332の最端部からの漏れ磁界が、第1端相シールド322の最端部へと伝達される。同様に、第n相Pnでは、第1端相シールド322の最端部からの漏れ磁界が、第2端相シールド332の最端部へと伝達される。電流センサ400は、この漏れ磁界を端相検出素子311がセンシングしてしまうと、電流の検出誤差が生じる。 And the magnetic field reaches the extreme end of the end phase. As a result, in the current sensor 400, magnetic field exchange occurs between the first shield and the second shield in the end phase. Specifically, in the first phase P <b> 1, magnetic field exchange from the outermost end portion of the second end phase shield 332 to the first end phase shield 322 occurs. Similarly, in the n-th phase Pn, magnetic field exchange from the outermost end portion of the first end-phase shield 322 to the second end-phase shield 332 occurs. In other words, in the first phase P <b> 1, the leakage magnetic field from the endmost part of the second end-phase shield 332 is transmitted to the endmost part of the first end-phase shield 322. Similarly, in the n-th phase Pn, the leakage magnetic field from the endmost portion of the first end-phase shield 322 is transmitted to the endmost portion of the second end-phase shield 332. In the current sensor 400, if the end phase detection element 311 senses this leakage magnetic field, a current detection error occurs.
 なお、バスバ340に流れる電流の方向によっては、ここで採用した例とは反対方向となることもある。ここでの最端部とは、X方向の端部であり、端相シールド322,332における介在シールド321,331と向き合っていない側の端部である。 In addition, depending on the direction of the current flowing through the bus bar 340, the direction may be opposite to the example adopted here. Here, the endmost portion is an end portion in the X direction, and is an end portion of the end phase shields 322 and 332 on the side not facing the intervening shields 321 and 331.
 そこで、電流センサ400は、電流の検出誤差が生じることを抑制するために第1端相シールド322と第2端相シールド332が設けられている。ここで、第1端相シールド322と第2端相シールド332に関して説明する。第1端相シールド322と第2端相シールド332は、同様の構成を有している。しかしながら、端相シールド322,332は、介在シールド321,331と構成が異なる。具体的には、端相シールド322,332は、磁気検出素子311との位置関係やサイズが、介在シールド321,331と介在検出素子310との位置関係や、介在シールド321,331のサイズと異なる。 Therefore, the current sensor 400 is provided with a first end-phase shield 322 and a second end-phase shield 332 in order to suppress the occurrence of a current detection error. Here, the first end phase shield 322 and the second end phase shield 332 will be described. The first end phase shield 322 and the second end phase shield 332 have the same configuration. However, the end phase shields 322 and 332 are different in configuration from the intervening shields 321 and 331. Specifically, the end- phase shields 322 and 332 are different in positional relationship and size with the magnetic detection element 311 from the positional relationship between the intervening shields 321 and 331 and the intervening detection element 310 and the size of the intervening shields 321 and 331. .
 第1端相シールド322は、第1基部322aと第1延長部322bとを含んでいる。同様に、第2端相シールド332は、第2基部332aと第2延長部332bとを含んでいる。両延長部322b,332bは、端相シールド322,332における最端部からの漏れ磁界が、端相検出素子311よりも、対向配置された相手側の端相シールド322,332へ達しやすくなるように、両端相シールド322,332間で磁界交換を行うための部位である。本実施形態では、第1相P1の第2延長部332bから第1相P1の第1延長部322bへと磁界が伝達され、第n相Pnの第1延長部322bから第n相Pnの第2延長部332bへと磁界が伝達される。両延長部322b,332bは、磁界交換部に相当する。 The first end shield 322 includes a first base 322a and a first extension 322b. Similarly, the second end phase shield 332 includes a second base portion 332a and a second extension portion 332b. Both the extension portions 322b and 332b make it easier for the leakage magnetic field from the endmost portion of the end phase shields 322 and 332 to reach the opposite end phase shields 322 and 332 arranged opposite to each other than the end phase detection element 311. In addition, this is a part for exchanging magnetic fields between the two- phase shields 322 and 332. In the present embodiment, a magnetic field is transmitted from the second extension 332b of the first phase P1 to the first extension 322b of the first phase P1, and the first extension 322b of the n-phase Pn 2 The magnetic field is transmitted to the extension 332b. Both extension parts 322b and 332b correspond to a magnetic field exchange part.
 第1端相シールド322は、第1基部322aと第1延長部322bとが一体的に設けられている。第1基部322aは、端相検出素子311に対向する部位である。例えば、第1基部322aは、X方向の長さが、第1介在シールド321と同様である。よって、第1端相シールド322は、第1延長部322bを含んでいる分、第1介在シールド321よりもX方向の長さが長くなっている。 The first end phase shield 322 is provided with a first base 322a and a first extension 322b integrally. The first base portion 322 a is a portion facing the end phase detection element 311. For example, the first base 322a has a length in the X direction that is the same as that of the first interposed shield 321. Therefore, the length of the first end phase shield 322 in the X direction is longer than that of the first intermediate shield 321 because the first extension portion 322b is included.
 つまり、第1端相シールド322は、磁界交換部として、X方向において、長さX2が長さX1よりも長い部位(第1延長部322b)を含んでいると言える。長さX2は、端相検出素子311の対向部から漏れ磁界が発生している最端部までの長さである。一方、長さX1は、第1介在シールド321における介在検出素子310の対向部から最端部側の端部までの長さである。 That is, it can be said that the first end-phase shield 322 includes a portion (first extension portion 322b) having a length X2 longer than the length X1 in the X direction as a magnetic field exchange portion. The length X2 is the length from the facing portion of the end phase detection element 311 to the outermost end where a leakage magnetic field is generated. On the other hand, the length X1 is a length from the facing portion of the intervening detection element 310 in the first intervening shield 321 to the end on the most end side.
 また、第1介在シールド321は、第1介在シールド321のX方向における中心に対向するように介在検出素子310が配置されている。これに対して、第1端相シールド322は、第1端相シールド322のX方向における中心からずれた位置に対向するように端相検出素子311が配置されている。具体的には、端相検出素子311は、第1端相シールド322における中心から、最端部とは反対側にずれた位置に対向配置されている。なお、第2端相シールド332に関しても同様であるため、第1端相シールド322の説明を参照して適用できる。 Further, the intervening detection element 310 is arranged so that the first intervening shield 321 faces the center of the first intervening shield 321 in the X direction. On the other hand, the end phase detection element 311 is arranged so that the first end phase shield 322 faces a position shifted from the center of the first end phase shield 322 in the X direction. Specifically, the end phase detection element 311 is disposed to face the position shifted from the center of the first end phase shield 322 to the side opposite to the endmost portion. Since the same applies to the second end phase shield 332, the description can be applied with reference to the description of the first end phase shield 322.
 このように、電流センサ400は、両端相シールド322,332が延長部322b,332bを備えている。これによって、電流センサ400は、両端相シールド322,332におけるX方向の最端部からの漏れ磁界が、端相検出素子311よりも、対向配置された相手側の端相シールド322,332へ達しやすくなる。言い換えると、電流センサ400は、両端相シールド322,332におけるX方向の最端部からの漏れ磁界が、両端相シールド322,332間の空間に入り込むことを抑制できる。このため、電流センサ400は、漏れ磁界が端相検出素子311に達することを抑制でき高精度に電流を検出できる。 Thus, in the current sensor 400, the both-end phase shields 322 and 332 are provided with the extension portions 322b and 332b. As a result, in the current sensor 400, the leakage magnetic field from the extreme end portion in the X direction in the both-end phase shields 322 and 332 reaches the opposite-side end- phase shields 322 and 332 that are opposed to each other than the end-phase detection element 311. It becomes easy. In other words, the current sensor 400 can suppress the leakage magnetic field from the extreme end in the X direction in the double- phase shields 322 and 332 from entering the space between the double- phase shields 322 and 332. For this reason, the current sensor 400 can suppress the leakage magnetic field from reaching the end phase detection element 311 and can detect the current with high accuracy.
 なお、本実施形態では、第1端相シールド322と第2端相シールド332の両方に、延長部322b,332bが設けられた電流センサ400を採用した。しかしながら、本開示は、これに限定されず、第1端相シールド322と第2端相シールド332の少なくとも一方に設けられていれば採用できる。 In this embodiment, the current sensor 400 in which the extension portions 322b and 332b are provided in both the first end-phase shield 322 and the second end-phase shield 332 is employed. However, the present disclosure is not limited to this, and can be adopted as long as it is provided on at least one of the first end phase shield 322 and the second end phase shield 332.
 以下に、本開示の第3実施形態~第5実施形態に関して説明する。上記第2実施形態及び第3実施形態~第5実施形態は、それぞれ単独で実施することも可能であるが、適宜組み合わせて実施することも可能である。本開示は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。 Hereinafter, the third embodiment to the fifth embodiment of the present disclosure will be described. The second embodiment and the third to fifth embodiments can be implemented independently, but can also be implemented in appropriate combination. The present disclosure is not limited to the combinations shown in the embodiments, and can be implemented by various combinations.
 (第3実施形態)
 図38を用いて、本実施形態の電流センサ410に関して説明する。図38は、図37に相当する断面図である。電流センサ410は、端相シールド323,333の構成が電流センサ400と異なる。ここでは、主に、電流センサ400との相違点に関して説明する。
(Third embodiment)
The current sensor 410 of this embodiment will be described with reference to FIG. FIG. 38 is a cross-sectional view corresponding to FIG. The current sensor 410 is different from the current sensor 400 in the configuration of the end phase shields 323 and 333. Here, the difference from the current sensor 400 will be mainly described.
 第1端相シールド323は、第1基部323aと第1突起部323bとを含んでいる。第1突起部323bは、第1端相シールド323と第2端相シールド333とで磁界交換を行う部位であり、磁界交換部に相当する。同様に、第2端相シールド333は、第2基部333aと第2突起部333bとを含んでいる。第2突起部333bは、第2端相シールド333と第1端相シールド323とで磁界交換を行う部位であり、磁界交換部に相当する。第1端相シールド323は、第1シールドに相当する。第2端相シールド333は、第2シールドに相当する。 The first end phase shield 323 includes a first base 323a and a first protrusion 323b. The first protrusion 323b is a part that performs magnetic field exchange between the first end-phase shield 323 and the second end-phase shield 333, and corresponds to a magnetic field exchange unit. Similarly, the 2nd end phase shield 333 contains the 2nd base 333a and the 2nd projection part 333b. The second protrusion 333b is a part that performs magnetic field exchange between the second end-phase shield 333 and the first end-phase shield 323, and corresponds to a magnetic field exchange unit. The first end phase shield 323 corresponds to a first shield. The second end phase shield 333 corresponds to a second shield.
 第1基部323aは、上記実施形態の第1基部322aと同様に、平板状で、端相検出素子311に対向する部位である。第1突起部323bは、第1基部323aの端部から、第2端相シールド333側へ屈曲した部位である。ここでの第1基部323aの端部とは、第1介在シールド321と向き合う側とは反対側の端部である。よって、第1端相シールド323は、XZ平面においてL字形状をなしている。なお、第2端相シールド333に関しても同様であるため、第1端相シールド323の説明を参照して適用できる。 The first base portion 323a is a flat plate-like portion facing the end phase detection element 311 as in the first base portion 322a of the above embodiment. The first protruding portion 323b is a portion bent from the end portion of the first base portion 323a toward the second end phase shield 333 side. Here, the end portion of the first base portion 323a is an end portion on the opposite side to the side facing the first interposed shield 321. Therefore, the first end shield 323 has an L shape in the XZ plane. Since the same applies to the second end phase shield 333, it can be applied with reference to the description of the first end phase shield 323.
 このように、端相シールド323,333は、磁界交換部として、端相検出素子311の対向部よりも、相手側の端相シールド323,333側へ屈曲した部位(突起部323b,333b)を備えている。このため、電流センサ410は、第1突起部323bと第2突起部333bとのZ方向の間隔Z2が、第1介在シールド321と第2介在シールド331とのZ方向の間隔Z1よりも短くなっている。なお、Z方向の間隔Z1は、第1介在シールド321におけるバスバ340との対向面の反対面と、第2介在シールド331における介在検出素子310との対向面の反対面との間隔である。 In this manner, the end phase shields 323 and 333 serve as magnetic field exchange portions by bending portions ( protrusions 323b and 333b) bent toward the opposite end phase shields 323 and 333 rather than the facing portion of the end phase detection element 311. I have. Therefore, in the current sensor 410, the Z-direction interval Z2 between the first protrusion 323b and the second protrusion 333b is shorter than the Z-direction interval Z1 between the first intermediate shield 321 and the second intermediate shield 331. ing. The Z-direction interval Z1 is the interval between the surface opposite to the surface facing the bus bar 340 in the first interposed shield 321 and the surface opposite to the surface facing the interposed detection element 310 in the second interposed shield 331.
 電流センサ410は、電流センサ400と同様の効果を奏することができる。さらに、電流センサ410は、端相シールド323,333を屈曲されているため、電流センサ400よりもX方向の体格を小型化できる。 The current sensor 410 can achieve the same effects as the current sensor 400. Furthermore, since the current sensor 410 has the end phase shields 323 and 333 bent, the physique in the X direction can be made smaller than the current sensor 400.
 (変形例1)
 図39を用いて、第3実施形態における変形例1の電流センサ420に関して説明する。図39は、図37に相当する断面図である。電流センサ420は、端相シールド324,334の構成が電流センサ410と異なる。ここでは、主に、電流センサ410との相違点に関して説明する。
(Modification 1)
With reference to FIG. 39, the current sensor 420 according to the first modification of the third embodiment will be described. FIG. 39 is a cross-sectional view corresponding to FIG. The current sensor 420 is different from the current sensor 410 in the configuration of the end phase shields 324 and 334. Here, the difference from the current sensor 410 will be mainly described.
 第1端相シールド324は、第1端相シールド323と異なり平板状である。一方、第2端相シールド334は、第2基部334aと第2突起部334bとを含んでいる。そして、第2端相シールド334は、第2端相シールド333と同様にL字形状を成している。第2突起部334bは、第2端相シールド334と第1端相シールド324とで磁界交換を行う部位であり、磁界交換部に相当する。第1端相シールド324は、第1シールドに相当する。第2端相シールド334は、第2シールドに相当する。 Unlike the first end phase shield 323, the first end phase shield 324 has a flat plate shape. On the other hand, the second end phase shield 334 includes a second base portion 334a and a second protrusion 334b. The second end phase shield 334 has an L shape similarly to the second end phase shield 333. The second protrusion 334b is a part that performs magnetic field exchange between the second end-phase shield 334 and the first end-phase shield 324, and corresponds to a magnetic field exchange unit. The first end phase shield 324 corresponds to the first shield. The second end phase shield 334 corresponds to a second shield.
 電流センサ420は、電流センサ410と同様の効果を奏することができる。つまり、電流センサ420は、端相シールド324,334の少なくとも一方に磁界交換部に相当する部位を備えていれば、電流センサ410と同様の効果を奏することができる。 The current sensor 420 can achieve the same effect as the current sensor 410. That is, the current sensor 420 can achieve the same effect as the current sensor 410 as long as at least one of the end- phase shields 324 and 334 has a portion corresponding to the magnetic field exchange unit.
 (変形例2)
 図40を用いて、第3実施形態における変形例2の電流センサ430に関して説明する。図40は、図37に相当する断面図である。電流センサ430は、端相シールド325,335の構成が電流センサ410と異なる。ここでは、主に、電流センサ410との相違点に関して説明する。
(Modification 2)
With reference to FIG. 40, the current sensor 430 of Modification 2 in the third embodiment will be described. 40 is a cross-sectional view corresponding to FIG. The current sensor 430 is different from the current sensor 410 in the configuration of the end phase shields 325 and 335. Here, the difference from the current sensor 410 will be mainly described.
 第1端相シールド325は、第1基部325aと第1屈曲部325bとを含んでいる。第1屈曲部325bは、第1端相シールド325と第2端相シールド335とで磁界交換を行う部位であり、磁界交換部に相当する。同様に、第2端相シールド335は、第2基部335aと第2屈曲部335bとを含んでいる。第2屈曲部335bは、第2端相シールド335と第1端相シールド325とで磁界交換を行う部位であり、磁界交換部に相当する。第1端相シールド325は、第1シールドに相当する。第2端相シールド335は、第2シールドに相当する。 The first end shield 325 includes a first base 325a and a first bent portion 325b. The first bent portion 325b is a portion that performs magnetic field exchange between the first end-phase shield 325 and the second end-phase shield 335, and corresponds to a magnetic field exchange portion. Similarly, the second end phase shield 335 includes a second base portion 335a and a second bent portion 335b. The second bent portion 335b is a portion that performs magnetic field exchange between the second end phase shield 335 and the first end phase shield 325, and corresponds to a magnetic field exchange portion. The first end shield 325 corresponds to the first shield. The second end phase shield 335 corresponds to a second shield.
 第1基部325aは、上記第1基部322aと同様に、平板状で、端相検出素子311に対向する部位である。第1屈曲部325bは、第1基部325aの端部から、第2端相シールド335側へ屈曲した部位である。ここでの第1基部325aの端部とは、第1介在シールド321と向き合う側とは反対側の端部である。 The first base portion 325a is a flat plate-like portion similar to the first base portion 322a and is opposed to the end phase detection element 311. The first bent portion 325b is a portion bent from the end portion of the first base portion 325a toward the second end phase shield 335 side. Here, the end portion of the first base portion 325a is an end portion on the opposite side to the side facing the first interposed shield 321.
 また、第1端相シールド325は、第1端相シールド323と異なり、第1屈曲部325bが曲線状に屈曲している。つまり、第1端相シールド325は、バスバ340との対向面の一部、及びその反対面の一部が曲面となっている。第1端相シールド325は、例えば、平板状のシールド板をプレス加工などによって湾曲させることで製造することができる。なお、第2端相シールド335に関しても同様であるため、第1端相シールド325の説明を参照して適用できる。 Further, unlike the first end phase shield 323, the first end phase shield 325 has a first bent portion 325b bent in a curved shape. That is, as for the 1st end phase shield 325, a part of surface facing the bus bar 340 and a part of the opposite surface are curved surfaces. The first end shield 325 can be manufactured, for example, by bending a flat shield plate by pressing or the like. Since the same applies to the second end phase shield 335, the description can be applied with reference to the description of the first end phase shield 325.
 このように、端相シールド325,335は、磁界交換部として、端相検出素子311の対向部よりも、相手側の端相シールド325,335側へ屈曲した部位(屈曲部325b,335b)を備えている。電流センサ430は、電流センサ410と同様の効果を奏することができる。 As described above, the end phase shields 325 and 335 serve as magnetic field exchange portions by bending portions ( bent portions 325b and 335b) bent toward the opposite end phase shields 325 and 335 rather than the facing portion of the end phase detection element 311. I have. The current sensor 430 can achieve the same effect as the current sensor 410.
 (第4実施形態)
 図41、図42を用いて、第4実施形態の電流センサ440に関して説明する。電流センサ440は、シールドの構成、及び回路基板350、ハウジング360を備えている点が電流センサ400と異なる。ここでは、主に、電流センサ400との相違点に関して説明する。
(Fourth embodiment)
The current sensor 440 according to the fourth embodiment will be described with reference to FIGS. 41 and 42. The current sensor 440 is different from the current sensor 400 in that a shield configuration, a circuit board 350, and a housing 360 are provided. Here, the difference from the current sensor 400 will be mainly described.
 電流センサ440は、図42に示すように、回路基板350とハウジング360を備えている。回路基板350は、磁気検出素子310、311と電気的に接続されており、磁気検出素子310,311からのセンサ信号が入力される。詳述すると、回路基板350は、回路素子や導電性の配線などが形成されており、磁気検出素子310,311が実装されている。そして、回路基板350は、磁気検出素子310,311が配線の一部と電気的に接続されている。なお、回路基板350における磁気検出素子310,311が実装された面は、実装面と言える。 The current sensor 440 includes a circuit board 350 and a housing 360 as shown in FIG. The circuit board 350 is electrically connected to the magnetic detection elements 310 and 311, and sensor signals from the magnetic detection elements 310 and 311 are input. More specifically, the circuit board 350 is formed with circuit elements, conductive wirings, and the like, and the magnetic detection elements 310 and 311 are mounted thereon. In the circuit board 350, the magnetic detection elements 310 and 311 are electrically connected to a part of the wiring. The surface on which the magnetic detection elements 310 and 311 are mounted on the circuit board 350 can be said to be a mounting surface.
 さらに、回路基板350は、積層方向に貫通穴が形成されている。この貫通穴は、後程説明する固定部材337aが挿入される穴である。そして、貫通穴は、回路基板350における、後程説明する固定用穴部337に対向する位置に設けられている。 Furthermore, the circuit board 350 has through holes formed in the stacking direction. This through hole is a hole into which a fixing member 337a described later is inserted. And the through hole is provided in the circuit board 350 in the position which opposes the fixing hole 337 demonstrated later.
 ハウジング360は、例えば樹脂などによって構成されており、第1シールドとバスバ340とを一体的に保持している。ハウジング360は、インサート成型や挿入などによって、第1シールドとバスバ340を一体的に保持することができる。以下においては、第1シールドとバスバ340とを一体的に保持したハウジング360を構造体と称する。 The housing 360 is made of, for example, resin, and integrally holds the first shield and the bus bar 340. The housing 360 can integrally hold the first shield and the bus bar 340 by insert molding or insertion. Hereinafter, the housing 360 that integrally holds the first shield and the bus bar 340 is referred to as a structure.
 また、ハウジング360は、回路基板350と対向する部位に、固定部材337aが固定される穴が設けられている。この穴は、固定用穴部337に対向する位置に設けられている。また、この穴は、例えばおねじである固定部材337aに対応するめねじを採用できる。 Further, the housing 360 is provided with a hole for fixing the fixing member 337a at a portion facing the circuit board 350. This hole is provided at a position facing the fixing hole 337. In addition, a female screw corresponding to the fixing member 337a, which is a male screw, for example, can be used for this hole.
 第1シールドは、図42に示すように、第1介在シールド321と第1端相シールド322に加えて、第1介在シールド321と第1端相シールド322よりも厚みが薄い第1薄肉部326を含んでいる。そして、第1シールドは、第1介在シールド321と第1端相シールド322とが第1薄肉部326を介して一体的に構成されている。つまり、第1シールドは、相毎に第1薄肉部326によって連結された構成を有している。なお、第1介在シールド321と第1端相シールド322は、第1薄肉部326に対して、厚肉部を言うことができる。 As shown in FIG. 42, the first shield has a first thin portion 326 that is thinner than the first intermediate shield 321 and the first end-phase shield 322 in addition to the first intermediate shield 321 and the first end-phase shield 322. Is included. In the first shield, the first intervening shield 321 and the first end-phase shield 322 are integrally configured via the first thin portion 326. That is, the 1st shield has the structure connected by the 1st thin part 326 for every phase. Note that the first intervening shield 321 and the first end-phase shield 322 can be referred to as thick portions with respect to the first thin portion 326.
 このため、第1シールドは、磁気検出素子310,311側の表面に凹部が形成された形状を有している。また、第1シールドは、図42に示すように、凹部が形成された側の表面が、回路基板350における実装面の反対面と対向して設けられている。なお、ここでの厚みは、積層方向における厚みである。 For this reason, the first shield has a shape in which a recess is formed on the surface on the magnetic detection element 310, 311 side. Further, as shown in FIG. 42, the first shield is provided such that the surface on which the concave portion is formed is opposed to the surface opposite to the mounting surface of the circuit board 350. Here, the thickness is a thickness in the stacking direction.
 同様に、第2シールドは、第2介在シールド331と第2端相シールド332に加えて、第2介在シールド331と第2端相シールド332よりも厚みが薄い第2薄肉部336を含んでいる。そして、第2シールドは、第2介在シールド331と第2端相シールド332とが第2薄肉部336を介して一体的に構成されている。 Similarly, the second shield includes a second thin portion 336 that is thinner than the second intermediate shield 331 and the second end-phase shield 332 in addition to the second intermediate shield 331 and the second end-phase shield 332. . In the second shield, the second intervening shield 331 and the second end-phase shield 332 are integrally formed via the second thin portion 336.
 さらに、第2端相シールド332は、第2延長部332bに、積層方向に貫通する固定用穴部337が形成されている。第2端相シールド332は、図41に示すように、例えば、四隅に固定用穴部337が形成されている。この固定用穴部337は、第2シールド、回路基板350、ハウジング360を一体的に固定するための固定部材337aが挿入される穴である。 Furthermore, in the second end phase shield 332, a fixing hole 337 penetrating in the stacking direction is formed in the second extension 332b. As shown in FIG. 41, for example, fixing holes 337 are formed at the four corners of the second phase shield 332. The fixing hole 337 is a hole into which a fixing member 337a for integrally fixing the second shield, the circuit board 350, and the housing 360 is inserted.
 電流センサ440は、構造体と回路基板350と第2シールドとが、この順序で積層されている。そして、電流センサ440は、積層された、構造体と回路基板350と第2シールドとが、固定部材337aによって固定されている。つまり、各相P1~Pnの構成要素は、回路基板350とハウジング360を介して一体的に構成されていると言える。このように一体的に構成された構造体は、センサ端子台と言うこともできる。 In the current sensor 440, the structure, the circuit board 350, and the second shield are stacked in this order. In the current sensor 440, the laminated structure, the circuit board 350, and the second shield are fixed by a fixing member 337a. That is, it can be said that the components of the respective phases P1 to Pn are integrally configured via the circuit board 350 and the housing 360. The structure integrally configured in this way can also be called a sensor terminal block.
 電流センサ440は、電流センサ400と同様の効果を奏することができる。なお、電流センサ440は、回路基板350、ハウジング360、固定部材337aなどを含んでいなくても、電流センサ400と同様の効果を奏することができる。 The current sensor 440 can achieve the same effect as the current sensor 400. The current sensor 440 can achieve the same effect as the current sensor 400 even if it does not include the circuit board 350, the housing 360, the fixing member 337a, and the like.
 さらに、電流センサ440は、第2延長部332bを備えているため、第2延長部332bに固定用穴部337を形成することができる。つまり、電流センサ440は、電流検出の高精度化のため構成を利用しつつ、回路基板350やハウジング360などと固定を行うことができる。このため、電流センサ440は、回路基板350やハウジング360などとの固定のためだけに体格が大型化する場合よりも好ましい。 Furthermore, since the current sensor 440 includes the second extension 332b, a fixing hole 337 can be formed in the second extension 332b. That is, the current sensor 440 can be fixed to the circuit board 350, the housing 360, or the like while using a configuration for high accuracy of current detection. For this reason, the current sensor 440 is preferable to a case where the size of the current sensor 440 is increased only for fixing to the circuit board 350, the housing 360, and the like.
 なお、電流センサ440は、電流センサ400などと同様に、端相シールド322,332と介在シールド321,331とが分断された構成であっても採用できる。この場合、第2介在シールド331は、接着剤やねじ止めなどによって回路基板350に固定することができる。さらに、電流センサ440は、電流センサ410などと同様に、端相シールド322,332が屈曲した形状であっても採用できる。 Note that the current sensor 440 can be employed even if the end- phase shields 322 and 332 and the intervening shields 321 and 331 are separated, like the current sensor 400 and the like. In this case, the second interposed shield 331 can be fixed to the circuit board 350 by an adhesive, screwing, or the like. Furthermore, the current sensor 440 can be employed even if the end phase shields 322 and 332 are bent, like the current sensor 410 and the like.
 また、回路基板350は、実装面の反対面に回路素子が設けられていてもよい。そして、電流センサ440は、第2シールドに形成された凹部に、反対面の回路素子が配置されるように組み付けることで、体格を小型化できる。つまり、電流センサ440は、反対面の回路素子を、第2シールドの対向領域外に配置する場合よりも、X方向とY方向の少なくとも一方の体格を小型化できる。 Further, the circuit board 350 may be provided with a circuit element on the opposite surface of the mounting surface. The current sensor 440 can be reduced in size by assembling the current sensor 440 into the recess formed in the second shield so that the circuit element on the opposite surface is disposed. That is, the current sensor 440 can reduce the size of at least one of the X direction and the Y direction as compared with the case where the circuit element on the opposite surface is disposed outside the opposing region of the second shield.
 (第5実施形態)
 図43を用いて、第5実施形態の電流センサ450に関して説明する。図43は、図37に相当する断面図である。電流センサ450は、第1シールドと第2シールドの構成が電流センサ400と異なる。ここでは、主に、電流センサ400との相違点に関して説明する。
(Fifth embodiment)
A current sensor 450 according to the fifth embodiment will be described with reference to FIG. 43 is a cross-sectional view corresponding to FIG. The current sensor 450 is different from the current sensor 400 in the configuration of the first shield and the second shield. Here, the difference from the current sensor 400 will be mainly described.
 電流センサ450は、磁気シールド部として、介在シールド321,331に加えて、第3シールド338を含んでいる。第3シールド338は、介在シールド321,331などと同様に、磁性材料によって構成されている。第3シールド338は、主に、端相検出素子311に対する外部からの磁界を遮蔽するものである。第3シールド338は、第1基部338aと、第2基部338bと、側壁部338cとを含んでいる。 The current sensor 450 includes a third shield 338 as a magnetic shield part in addition to the intervening shields 321 and 331. The third shield 338 is made of a magnetic material, like the intervening shields 321 and 331. The third shield 338 mainly shields a magnetic field from the outside with respect to the end phase detection element 311. The third shield 338 includes a first base 338a, a second base 338b, and a side wall 338c.
 第1基部338aと第2基部338bは、端相シールドに相当する。第1基部338aは、バスバ340に対向配置されている。一方、第2基部338bは、端相検出素子311に対向配置されている。両基部338a,338bは、XY平面に平行な平板状の部位である。このように、第3シールド338は、第1端相シールドに相当する第1基部338aと、第2端相シールドに相当する第2基部338bとを含んでいると言える。 The first base 338a and the second base 338b correspond to end-phase shields. The first base portion 338a is disposed to face the bus bar 340. On the other hand, the second base portion 338 b is disposed to face the end phase detection element 311. Both base portions 338a and 338b are flat portions parallel to the XY plane. Thus, it can be said that the third shield 338 includes the first base portion 338a corresponding to the first end phase shield and the second base portion 338b corresponding to the second end phase shield.
 側壁部338cは、磁界交換部に相当する。側壁部338cは、両基部338a,338b間で磁界交換を行うために、両基部338a,338bにおける配置方向の端部に連続的に設けられ、両基部338a,338bを一体物とする部位である。側壁部338cは、YZ平面に平行な平板状の部位である。 The side wall part 338c corresponds to a magnetic field exchange part. The side wall portion 338c is a portion that is continuously provided at the end of the base portions 338a and 338b in the arrangement direction so as to exchange magnetic fields between the base portions 338a and 338b, and the base portions 338a and 338b are integrally formed. . The side wall part 338c is a flat part parallel to the YZ plane.
 つまり、第3シールド338は、第1基部338aと、第2基部338bと、側壁部338cとが一体物として構成されている。よって、第3シールド338は、図43に示すように、XZ平面においてコ字形状をなしている。 That is, in the third shield 338, the first base portion 338a, the second base portion 338b, and the side wall portion 338c are configured as a single body. Therefore, as shown in FIG. 43, the third shield 338 has a U shape in the XZ plane.
 なお、第1介在シールド321と第1基部338aは、第1シールドに相当する。第2介在シールド331と第2基部338bは、第2シールドに相当する。また、第3シールド338は、第1端相シールド322と第2端相シールド332とが側壁部338cで一体化された構成とも言える。 The first interposed shield 321 and the first base portion 338a correspond to the first shield. The second interposed shield 331 and the second base 338b correspond to a second shield. The third shield 338 can also be said to be a configuration in which the first end-phase shield 322 and the second end-phase shield 332 are integrated by the side wall portion 338c.
 このように、電流センサ450は、両基部338a,338bにおける配置方向の端部に連続的に設けられ、両基部338a,338bを一体物とする側壁部338cを備えている。これによって、電流センサ450は、両基部338a,338bにおける配置方向の端部から漏れ磁界が発生することを低減できる。このため、電流センサ450は、漏れ磁界が端相検出素子311に達することを抑制でき高精度に電流を検出できる。 As described above, the current sensor 450 is continuously provided at the end of the both base portions 338a and 338b in the arrangement direction, and includes the side wall portion 338c in which the base portions 338a and 338b are integrated. As a result, the current sensor 450 can reduce the occurrence of a leakage magnetic field from the ends in the arrangement direction of the both base portions 338a and 338b. For this reason, the current sensor 450 can suppress the leakage magnetic field from reaching the end phase detection element 311 and can detect the current with high accuracy.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiment, it is understood that the present disclosure is not limited to the embodiment or the structure. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (27)

  1.  電流経路(210~240)から発生する磁束を検知して磁電変換を行う磁気検出素子(11~14)と、
     前記磁気検出素子の周囲に配置され、前記磁気検出素子に対する外部からの磁束を遮蔽する少なくとも二つの磁気シールド(21,21A~21N,22,22A~22N,23,24)と、を備えた電流センサであって、
     前記少なくとも二つの磁気シールドは、前記磁気検出素子と前記電流経路とを挟み込みつつ、対向配置された第1磁気シールドと第2磁気シールドを有しており、
     前記第1磁気シールドと前記第2磁気シールドのうちの少なくとも一方は、少なくとも二つのベース部と、前記少なくとも二つのベース部を繋いでいる連結部とを有し、他方の前記第1磁気シールドと前記第2磁気シールドとの対向面に、周辺よりも凹んだ凹部(1,1A、4)が形成されている電流センサ。
    A magnetic detection element (11-14) for detecting a magnetic flux generated from the current path (210-240) and performing magnetoelectric conversion;
    An electric current provided with at least two magnetic shields (21, 21A to 21N, 22, 22A to 22N, 23, 24) arranged around the magnetic detection element and configured to shield a magnetic flux from the outside with respect to the magnetic detection element; A sensor,
    The at least two magnetic shields have a first magnetic shield and a second magnetic shield arranged to face each other while sandwiching the magnetic detection element and the current path,
    At least one of the first magnetic shield and the second magnetic shield has at least two base portions and a connecting portion connecting the at least two base portions, and the other first magnetic shield and A current sensor in which concave portions (1, 1A, 4) recessed from the periphery are formed on a surface facing the second magnetic shield.
  2.  二つの前記電流経路のそれぞれに対向して設けられた二つの前記磁気検出素子を備えており、
     前記第1磁気シールドと前記第2磁気シールドは、二つの前記磁気検出素子と二つの前記電流経路とを挟み込みつつ、対向配置されており、
     前記凹部は、二つの前記磁気検出素子の中間位置に対向する部位に設けられている請求項1に記載の電流センサ。
    Two magnetic sensing elements provided opposite to each of the two current paths,
    The first magnetic shield and the second magnetic shield are disposed opposite to each other while sandwiching the two magnetic detection elements and the two current paths,
    The current sensor according to claim 1, wherein the concave portion is provided at a portion facing an intermediate position between the two magnetic detection elements.
  3.  一つの前記電流経路に対向して設けられた一つの前記磁気検出素子を備えており、
     前記第1磁気シールドと前記第2磁気シールドは、一つの前記磁気検出素子と一つの前記電流経路とを挟み込みつつ、対向配置されている請求項1に記載の電流センサ。
    One magnetic detection element provided opposite to the one current path,
    2. The current sensor according to claim 1, wherein the first magnetic shield and the second magnetic shield are disposed to face each other while sandwiching one magnetic detection element and one current path.
  4.  前記凹部は、前記第1磁気シールドと前記第2磁気シールドのそれぞれに形成されている請求項1乃至3のいずれか一項に記載の電流センサ。 The current sensor according to any one of claims 1 to 3, wherein the recess is formed in each of the first magnetic shield and the second magnetic shield.
  5.  前記凹部は、前記連結部に対向する位置に形成されている請求項1乃至4のいずれか一項に記載の電流センサ。 The current sensor according to any one of claims 1 to 4, wherein the concave portion is formed at a position facing the connecting portion.
  6.  前記連結部は、前記第1磁気シールドと前記第2磁気シールドで挟まれた領域である対向領域の反対側に突出して設けられており、
     前記凹部は、前記凹部が形成された前記第1磁気シールドと前記第2磁気シールドの少なくとも一方の厚みよりも深く形成されている請求項5に記載の電流センサ。
    The connecting portion is provided so as to protrude to the opposite side of a facing region that is a region sandwiched between the first magnetic shield and the second magnetic shield,
    The current sensor according to claim 5, wherein the recess is formed deeper than a thickness of at least one of the first magnetic shield and the second magnetic shield in which the recess is formed.
  7.  前記凹部は、底から開口端部にいくにつれて開口面積が広くなるように、側壁が傾斜した形状を有している請求項5又は6に記載の電流センサ。 The current sensor according to claim 5 or 6, wherein the recess has a shape in which a side wall is inclined so that an opening area becomes wider from a bottom toward an opening end.
  8.  前記凹部は、放熱部材が埋設されている請求項1乃至7のいずれか一項に記載の電流センサ。 The current sensor according to any one of claims 1 to 7, wherein a heat radiating member is embedded in the recess.
  9.  前記第1磁気シールドと前記第2磁気シールドの少なくとも一方は、複数の層が積層されたものであり、前記第1磁気シールドと前記第2磁気シールドで挟まれた対向領域の反対側の最外層は、他の層よりも透磁率が大きい請求項1乃至8のいずれか一項に記載の電流センサ。 At least one of the first magnetic shield and the second magnetic shield is a laminate of a plurality of layers, and is the outermost layer on the opposite side of the facing region sandwiched between the first magnetic shield and the second magnetic shield. The current sensor according to any one of claims 1 to 8, which has a larger permeability than other layers.
  10.  前記第1磁気シールドと前記第2磁気シールドの少なくとも一方は、複数の層が積層されたものであり、前記第1磁気シールドと前記第2磁気シールドで挟まれた対向領域の反対側の最外層は、他の層よりも飽和磁束密度が大きい請求項1乃至8のいずれか一項に記載の電流センサ。 At least one of the first magnetic shield and the second magnetic shield is a laminate of a plurality of layers, and is the outermost layer on the opposite side of the facing region sandwiched between the first magnetic shield and the second magnetic shield. The current sensor according to any one of claims 1 to 8, wherein the saturation magnetic flux density is larger than that of the other layers.
  11.  前記第1磁気シールドと前記第2磁気シールドの少なくとも一方は、三つ以上の層が積層され、樹脂部材によって覆われたものであり、前記第1磁気シールドと前記第2磁気シールドで挟まれた対向領域側の最外層と前記対向領域の反対側の最外層は、他の層よりも、前記樹脂部材との線膨張係数差が小さい請求項1乃至8のいずれか一項に記載の電流センサ。 At least one of the first magnetic shield and the second magnetic shield has three or more layers laminated and covered with a resin member, and is sandwiched between the first magnetic shield and the second magnetic shield. 9. The current sensor according to claim 1, wherein the outermost layer on the opposing region side and the outermost layer on the opposite side of the opposing region have a smaller difference in linear expansion coefficient from the resin member than other layers. .
  12.  前記凹部は、前記電流経路における電流の流れ方向に沿って、前記凹部が形成された前記第1磁気シールドと前記第2磁気シールドの少なくとも一方の、一方の端部から他方の端部にわたって形成されている請求項1乃至11のいずれか一項に記載の電流センサ。 The recess is formed from one end to the other end of at least one of the first magnetic shield and the second magnetic shield in which the recess is formed, along a current flow direction in the current path. The current sensor according to any one of claims 1 to 11.
  13.  前記凹部は、底部と環状の側壁で囲まれた有底の穴部である請求項1乃至11のいずれか一項に記載の電流センサ。 The current sensor according to any one of claims 1 to 11, wherein the concave portion is a bottomed hole portion surrounded by a bottom portion and an annular side wall.
  14.  二つ以上の前記電流経路が配置された上相と、二つ以上の前記電流経路が配置された下相とが、前記磁気シールドの厚み方向に積層されており、
     前記磁気検出素子は、前記上相における前記電流経路のそれぞれに対向して設けられた二つ以上の上相磁気検出素子と、前記下相における前記電流経路のそれぞれに対向して設けられた二つ以上の下相磁気検出素子とを備えており、
     前記少なくとも二つの磁気シールドは、前記上相における前記電流経路と前記上相磁気検出素子を挟み込む第1上相磁気シールド及び第2上相磁気シールドと、前記下相における前記電流経路と前記下相磁気検出素子を挟み込む第1下相磁気シールド及び第2下相磁気シールドとを備えている請求項1乃至13のいずれか一項に記載の電流センサ。
    An upper phase in which two or more current paths are arranged and a lower phase in which two or more current paths are arranged are stacked in the thickness direction of the magnetic shield,
    The magnetic detection elements include two or more upper phase magnetic detection elements provided to face each of the current paths in the upper phase, and two provided to face each of the current paths in the lower phase. With at least two lower phase magnetic sensing elements,
    The at least two magnetic shields include a first upper phase magnetic shield and a second upper phase magnetic shield sandwiching the current path in the upper phase and the upper phase magnetic sensing element, and the current path and the lower phase in the lower phase. The current sensor according to claim 1, further comprising a first lower-phase magnetic shield and a second lower-phase magnetic shield that sandwich the magnetic detection element.
  15.  前記第1上相磁気シールド及び前記第2上相磁気シールドの前記下相側の一方と、前記第1下相磁気シールド及び前記第2下相磁気シールドの前記上相側の一方は、一体的に設けられて中間磁気シールドを構成している請求項14に記載の電流センサ。 One of the lower phase side of the first upper phase magnetic shield and the second upper phase magnetic shield is integrated with one of the upper phase side of the first lower phase magnetic shield and the second lower phase magnetic shield. The current sensor according to claim 14, wherein the current sensor constitutes an intermediate magnetic shield.
  16.  前記中間磁気シールドは、前記上相側の前記電流経路と前記下相側の前記電流経路との対向領域に、非磁性部が設けられている請求項15に記載の電流センサ。 The current sensor according to claim 15, wherein the intermediate magnetic shield is provided with a nonmagnetic portion in a region facing the current path on the upper phase side and the current path on the lower phase side.
  17.  二つ以上の前記電流経路のそれぞれに対向して設けられた二つ以上の前記磁気検出素子を有しており、
     前記第1磁気シールドと前記第2磁気シールドのそれぞれは、前記連結部と各ベース部における前記連結部と連なって設けられた端層部とを含む表層部(21M1,22M1,21N1,22N1)と、各ベース部における前記端層部から突出した突出部(21M2,22M2,21N2,22N2)とを有し、前記突出部間に前記凹部が形成されており、
     前記第1磁気シールドの前記突出部は、前記第2磁気シールドの前記突出部と対向配置され、
     各磁気検出素子は、対向配置された前記突出部の対向領域に個別に配置され、
     前記第1磁気シールドにおける前記凹部からの漏れ磁場と、前記第2磁気シールドにおける前記凹部からの漏れ磁場とで打ち消し合い、前記漏れ磁場が前記磁気検出素子に到達しないように、前記第1磁気シールドと前記第2磁気シールドの少なくとも一方の形状が調整されている請求項1乃至13のいずれか一項に記載の電流センサ。
    Having two or more magnetic sensing elements provided opposite to each of the two or more current paths;
    Each of the first magnetic shield and the second magnetic shield includes a surface layer portion (21M1, 22M1, 21N1, 22N1) including the connecting portion and an end layer portion provided in continuity with the connecting portion in each base portion; And a protruding portion (21M2, 22M2, 21N2, 22N2) protruding from the end layer portion in each base portion, and the recess is formed between the protruding portions,
    The protrusion of the first magnetic shield is disposed opposite the protrusion of the second magnetic shield;
    Each magnetic detection element is individually disposed in a facing region of the projecting portion disposed to face each other,
    The first magnetic shield is configured so that the leakage magnetic field from the recess in the first magnetic shield and the leakage magnetic field from the recess in the second magnetic shield cancel each other so that the leakage magnetic field does not reach the magnetic detection element. The current sensor according to claim 1, wherein a shape of at least one of the second magnetic shield is adjusted.
  18.  前記第1磁気シールドと前記第2磁気シールドの少なくとも一方は、前記形状として、前記表層部と前記突出部とを合わせた厚みに対する前記表層部の厚みが調整されている請求項17に記載の電流センサ。 18. The current according to claim 17, wherein at least one of the first magnetic shield and the second magnetic shield has a thickness of the surface layer portion with respect to a total thickness of the surface layer portion and the protrusion as the shape. Sensor.
  19.  前記第1磁気シールドと前記第2磁気シールドの少なくとも一方は、前記形状として、前記凹部を介して隣り合う前記突出部間の間隔が調整されている請求項17又は18に記載の電流センサ。 The current sensor according to claim 17 or 18, wherein at least one of the first magnetic shield and the second magnetic shield has the shape, and an interval between the protruding portions adjacent to each other via the concave portion is adjusted.
  20.  前記連結部を介して隣り合う前記ベース部どうしは、互いの対向部位の一部のみが前記連結部を介して繋がれており、
     前記第1磁気シールドと前記第2磁気シールドの少なくとも一方は、前記形状として、前記対向部位における前記連結部の長さが調整されている請求項17乃至19のいずれか一項に記載の電流センサ。
    The base parts that are adjacent to each other via the connecting part are connected to each other only through a part of the opposing part,
    20. The current sensor according to claim 17, wherein at least one of the first magnetic shield and the second magnetic shield has the shape, and the length of the connecting portion at the facing portion is adjusted. .
  21.  三つの前記電流経路のそれぞれに対向して設けられた三つの前記磁気検出素子を有しており、
     前記第1磁気シールドと前記第2磁気シールドのそれぞれは、三つの前記磁気検出素子のそれぞれに対向する三つの前記ベース部を有しており、
     前記第1磁気シールドにおける前記凹部からの前記漏れ磁場と、前記第2磁気シールドにおける前記凹部からの前記漏れ磁場とで打ち消し合い、前記漏れ磁場が三つの前記磁気検出素子のうちの二つの前記磁気検出素子で挟まれた一つの前記磁気検出素子に到達しないように、前記第1磁気シールドと前記第2磁気シールドの少なくとも一方の形状が調整されている請求項17乃至20のいずれか一項に記載の電流センサ。
    Having three magnetic sensing elements provided facing each of the three current paths;
    Each of the first magnetic shield and the second magnetic shield has three base portions facing the three magnetic detection elements,
    The leakage magnetic field from the concave portion in the first magnetic shield and the leakage magnetic field from the concave portion in the second magnetic shield cancel each other, and the leakage magnetic field is the two magnetisms of the three magnetic detection elements. The shape of at least one of the first magnetic shield and the second magnetic shield is adjusted so as not to reach one magnetic detection element sandwiched between the detection elements. The current sensor described.
  22.  複数の電流経路(340)のそれぞれに流れる電流を個別に検出する電流センサであって、
     一つの前記電流経路に対向配置され、前記電流経路から発生する磁界を検知して電気信号に変換する磁気検出素子(310,311)と、
     前記磁気検出素子に対する外部からの磁界を遮蔽するものであり、前記電流経路と前記磁気検出素子とを挟み込みつつ、対向配置された一対の第1シールド(321~325)と第2シールド(331~335)を含む磁気シールド部と、を有する複数の相を複数の前記電流経路のそれぞれに対応して備えており、 各相は、前記第1シールド、前記電流経路、前記磁気検出素子、前記第2シールドがこの順序で積層方向に積層され、且つ、前記積層方向に直交する配置方向に配置されており、
     前記複数の相のうち、前記配置方向の端の相を端相とし、
     前記端相における前記第1シールドを第1端相シールド(322~325)とし、
     前記端相における前記第2シールドを第2端相シールド(332~335)とし、
     前記端相における前記磁気検出素子を端相検出素子(311)とし、
     前記第1端相シールドと前記第2端相シールドの少なくとも一方は、前記第1端相シールドと前記第2端相シールドの一方の前記配置方向の最端部からの漏れ磁界が、前記端相検出素子よりも、前記第1端相シールドと前記第2端相シールドの他方へ達しやすくなるように、前記第1端相シールドと前記第2端相シールド間で磁界交換を行うための磁界交換部(322b,323b,325b、332b~335b)を備えている電流センサ。
    A current sensor for individually detecting a current flowing through each of the plurality of current paths (340);
    A magnetic detection element (310, 311) disposed opposite to one of the current paths to detect a magnetic field generated from the current path and convert it into an electrical signal;
    A magnetic field from the outside to the magnetic detection element is shielded, and a pair of first shields (321 to 325) and second shields (331 to 331) arranged to face each other while sandwiching the current path and the magnetic detection element. 335) corresponding to each of the plurality of current paths, each phase including the first shield, the current path, the magnetic detection element, the first 2 shields are laminated in this order in the laminating direction, and arranged in an arrangement direction perpendicular to the laminating direction,
    Among the plurality of phases, an end phase in the arrangement direction is an end phase,
    The first shield in the end phase is a first end phase shield (322 to 325),
    The second shield in the end phase is a second end phase shield (332 to 335),
    The magnetic detection element in the end phase is an end phase detection element (311),
    At least one of the first end phase shield and the second end phase shield has a leakage magnetic field from one end of the first end phase shield and the second end phase shield in the arrangement direction. Magnetic field exchange for exchanging the magnetic field between the first end-phase shield and the second end-phase shield so that it can reach the other of the first end-phase shield and the second end-phase shield more easily than the detection element. Current sensor including a portion (322b, 323b, 325b, 332b to 335b).
  23.  少なくとも三つの前記電流経路(40)のそれぞれに流れる電流を個別に検出する電流センサであって、
     前記端相以外の相における前記第1シールドを第1介在シールド(321)とし、
     前記端相以外の相における前記第2シールドを第2介在シールド(331)とし、
     前記第1介在シールドと前記第2介在シールドで挟まれた前記磁気検出素子を介在検出素子(310)とし、
     前記第1端相シールドと前記第2端相シールドの少なくとも一方は、前記磁界交換部(322b,332b)として、前記配置方向において、前記端相検出素子の対向部から前記漏れ磁界が発生している前記最端部までの長さが、対応する前記第1介在シールドと前記第2介在シールドにおける前記介在検出素子の対向部から前記最端部側の端部までの長さよりも長い部位を備えている請求項22に記載の電流センサ。
    A current sensor for individually detecting a current flowing through each of the at least three current paths (40),
    The first shield in the phase other than the end phase is a first interposed shield (321),
    The second shield in the phase other than the end phase is a second interposed shield (331),
    The magnetic detection element sandwiched between the first interposed shield and the second interposed shield is an interposed detection element (310),
    At least one of the first end-phase shield and the second end-phase shield is configured such that the leakage magnetic field is generated from the facing portion of the end-phase detection element in the arrangement direction as the magnetic field exchange unit (322b, 332b). A length of the first intermediate shield and the second intermediate shield corresponding to the first intermediate shield and the second intermediate shield is longer than a length from an opposing portion of the intermediate detection element to an end on the extreme end side. The current sensor according to claim 22.
  24.  前記第1端相シールドと前記第2端相シールドの少なくとも一方は、前記磁界交換部(323b,325b、333b~335b)として、前記端相検出素子の対向部よりも、対応する前記第1端相シールドと前記第2端相シールドの他方側へ屈曲した部位を備えている請求項22に記載の電流センサ。 At least one of the first end-phase shield and the second end-phase shield corresponds to the first end corresponding to the magnetic field exchanging portion (323b, 325b, 333b to 335b) rather than the facing portion of the end-phase detection element. The current sensor according to claim 22, further comprising a portion bent toward the other side of the phase shield and the second end phase shield.
  25.  前記第1シールドと前記第2シールドのそれぞれは、前記複数の相毎に分断された構成を有している請求項22乃至24のいずれか一項に記載の電流センサ。 The current sensor according to any one of claims 22 to 24, wherein each of the first shield and the second shield has a configuration divided for each of the plurality of phases.
  26.  前記第1シールドと前記第2シールドのそれぞれは、前記第1シールドおよび前記第2シールドよりも積層方向の厚みが薄い薄肉部(326,336)によって、前記複数の相毎に連結された構成を有している請求項22乃至24のいずれか一項に記載の電流センサ。 Each of the first shield and the second shield is connected to each of the plurality of phases by a thin portion (326, 336) having a smaller thickness in the stacking direction than the first shield and the second shield. The current sensor according to any one of claims 22 to 24.
  27.  複数の電流経路(340)のそれぞれに流れる電流を個別に検出する電流センサであって、
     一つの前記電流経路に対向配置され、前記電流経路から発生する磁界を検知して電気信号に変換する磁気検出素子(310,311)と、
     前記磁気検出素子に対する外部からの磁界を遮蔽するものであり、前記電流経路と前記磁気検出素子とを挟み込みつつ、対向配置された一対の第1シールド(321,338a)と第2シールド(331,338b)を含む磁気シールド部と、を有する複数の相を複数の前記電流経路のそれぞれに対応して備えており、
     各相は、前記第1シールド、前記電流経路、前記磁気検出素子、前記第2シールドがこの順序で積層方向に積層され、且つ、前記積層方向に直交する配置方向に配置されており、
     前記複数の相のうち、前記配置方向の端の相を端相とし、
     前記端相における前記第1シールドを第1端相シールド(338a)とし、
     前記端相における前記第2シールドを第2端相シールド(338b)とし、
     前記端相における前記磁気検出素子を端相検出素子(311)とし、
     前記磁気シールド部は、前記第1端相シールドと前記第2端相シールド間で磁界交換を行うために、前記第1端相シールドと前記第2端相シールドにおける前記配置方向の端部に連続的に設けられ、前記第1端相シールドと前記第2端相シールドを一体物とする磁界交換部(338c)を備えている電流センサ。
    A current sensor for individually detecting a current flowing through each of the plurality of current paths (340);
    A magnetic detection element (310, 311) disposed opposite to one of the current paths to detect a magnetic field generated from the current path and convert it into an electrical signal;
    A magnetic field from the outside to the magnetic detection element is shielded, and a pair of first shield (321, 338a) and second shield (331, 331) arranged opposite to each other while sandwiching the current path and the magnetic detection element. 338b), and a plurality of phases having a plurality of phases corresponding to each of the plurality of current paths,
    In each phase, the first shield, the current path, the magnetic detection element, and the second shield are stacked in this order in the stacking direction, and are disposed in the layout direction orthogonal to the stacking direction,
    Among the plurality of phases, an end phase in the arrangement direction is an end phase,
    The first shield in the end phase is a first end phase shield (338a),
    The second shield in the end phase is a second end phase shield (338b),
    The magnetic detection element in the end phase is an end phase detection element (311),
    The magnetic shield portion is continuous with the end portion in the arrangement direction of the first end-phase shield and the second end-phase shield in order to exchange magnetic fields between the first end-phase shield and the second end-phase shield. A current sensor provided with a magnetic field exchanging part (338c) that is provided as a unit and that integrates the first end-phase shield and the second end-phase shield.
PCT/JP2017/020740 2016-06-15 2017-06-05 Electric current sensor WO2017217267A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/088,470 US10746821B2 (en) 2016-06-15 2017-06-05 Current sensor
CN201780036909.4A CN109313223B (en) 2016-06-15 2017-06-05 Current sensor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016119135 2016-06-15
JP2016-119135 2016-06-15
JP2016-226096 2016-11-21
JP2016226096A JP6536544B2 (en) 2016-06-15 2016-11-21 Current sensor
JP2016-240590 2016-12-12
JP2016240590A JP6536553B2 (en) 2016-12-12 2016-12-12 Current sensor

Publications (1)

Publication Number Publication Date
WO2017217267A1 true WO2017217267A1 (en) 2017-12-21

Family

ID=60664115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020740 WO2017217267A1 (en) 2016-06-15 2017-06-05 Electric current sensor

Country Status (1)

Country Link
WO (1) WO2017217267A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164074A (en) * 2018-03-20 2019-09-26 株式会社デンソー Current sensor
CN111936870A (en) * 2018-03-20 2020-11-13 株式会社电装 Current sensor
CN112368929A (en) * 2018-07-04 2021-02-12 日立汽车系统株式会社 Circuit arrangement
JPWO2021070834A1 (en) * 2019-10-08 2021-04-15
JPWO2021095566A1 (en) * 2019-11-15 2021-05-20
WO2023209967A1 (en) * 2022-04-28 2023-11-02 三菱電機株式会社 Current sensor device, current sensor device array, and power converting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327263A (en) * 1991-04-19 1993-12-10 Hitachi Plant Eng & Constr Co Ltd Magnetic shielded room
JP2004221463A (en) * 2003-01-17 2004-08-05 Sony Corp Magnetic memory
JP2010002277A (en) * 2008-06-19 2010-01-07 Tdk Corp Current sensor
JP2013117447A (en) * 2011-12-02 2013-06-13 Denso Corp Current sensor
JP2014134458A (en) * 2013-01-10 2014-07-24 Alps Green Devices Co Ltd Current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327263A (en) * 1991-04-19 1993-12-10 Hitachi Plant Eng & Constr Co Ltd Magnetic shielded room
JP2004221463A (en) * 2003-01-17 2004-08-05 Sony Corp Magnetic memory
JP2010002277A (en) * 2008-06-19 2010-01-07 Tdk Corp Current sensor
JP2013117447A (en) * 2011-12-02 2013-06-13 Denso Corp Current sensor
JP2014134458A (en) * 2013-01-10 2014-07-24 Alps Green Devices Co Ltd Current sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181170A1 (en) * 2018-03-20 2019-09-26 株式会社デンソー Current sensor
CN111936870A (en) * 2018-03-20 2020-11-13 株式会社电装 Current sensor
JP2019164074A (en) * 2018-03-20 2019-09-26 株式会社デンソー Current sensor
JP7087512B2 (en) 2018-03-20 2022-06-21 株式会社デンソー Current sensor
CN112368929A (en) * 2018-07-04 2021-02-12 日立汽车系统株式会社 Circuit arrangement
CN112368929B (en) * 2018-07-04 2024-04-16 日立安斯泰莫株式会社 Circuit arrangement
JP7295262B2 (en) 2019-10-08 2023-06-20 アルプスアルパイン株式会社 current detector
JPWO2021070834A1 (en) * 2019-10-08 2021-04-15
WO2021070834A1 (en) * 2019-10-08 2021-04-15 アルプスアルパイン株式会社 Current detection device
JPWO2021095566A1 (en) * 2019-11-15 2021-05-20
JP7242893B2 (en) 2019-11-15 2023-03-20 アルプスアルパイン株式会社 current detector
WO2021095566A1 (en) * 2019-11-15 2021-05-20 アルプスアルパイン株式会社 Current detection device
WO2023209967A1 (en) * 2022-04-28 2023-11-02 三菱電機株式会社 Current sensor device, current sensor device array, and power converting device

Similar Documents

Publication Publication Date Title
CN109313223B (en) Current sensor
WO2017217267A1 (en) Electric current sensor
JP6536544B2 (en) Current sensor
US10247759B2 (en) Current sensor
JP6477089B2 (en) Bus bar module with current sensor
JP6350785B2 (en) Inverter device
JP5945976B2 (en) Bus bar module
CN110050196B (en) Current sensor
US11105831B2 (en) Current sensor
JP2018096795A (en) Current sensor
JP6536553B2 (en) Current sensor
JP5945975B2 (en) Bus bar module
JP6237525B2 (en) Current sensor
US20200150155A1 (en) Electric current sensor
JP5622027B2 (en) Multiphase current detector
JP6638591B2 (en) Current sensor
WO2023209967A1 (en) Current sensor device, current sensor device array, and power converting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813166

Country of ref document: EP

Kind code of ref document: A1