JP5622027B2 - Multiphase current detector - Google Patents

Multiphase current detector Download PDF

Info

Publication number
JP5622027B2
JP5622027B2 JP2010094463A JP2010094463A JP5622027B2 JP 5622027 B2 JP5622027 B2 JP 5622027B2 JP 2010094463 A JP2010094463 A JP 2010094463A JP 2010094463 A JP2010094463 A JP 2010094463A JP 5622027 B2 JP5622027 B2 JP 5622027B2
Authority
JP
Japan
Prior art keywords
current
primary conductor
magnetoelectric conversion
conversion element
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010094463A
Other languages
Japanese (ja)
Other versions
JP2011209256A (en
Inventor
信幸 新地
信幸 新地
岡田 章
章 岡田
守夫 中住
守夫 中住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2010094463A priority Critical patent/JP5622027B2/en
Publication of JP2011209256A publication Critical patent/JP2011209256A/en
Application granted granted Critical
Publication of JP5622027B2 publication Critical patent/JP5622027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

この発明は、被測定電流が印加される、ザグリ部あるいはU字形成部を有した複数の一次導体により多相が形成され、各ザグリ部あるいは各U字形成部の近傍に強磁性材とともに設置した磁電変換素子において、各相に印加された被測定電流を検出する、多相電流の検出装置に関するものである。  In the present invention, a polyphase is formed by a plurality of primary conductors having a counterbore or U-shaped portion to which a current to be measured is applied, and is installed together with a ferromagnetic material in the vicinity of each counterbore or U-shaped portion. The present invention relates to a multiphase current detection device for detecting a current to be measured applied to each phase in the magnetoelectric transducer.

従来、非接触で被測定電流を計測する手法としては、一般的に、磁気コアを用いたものがある。磁気コアを利用した電流センサは、磁気コアを被測定電流の流れる導体を取り囲む様に設置し、磁気コアに設けたギャップ部とともに磁気回路を形成する。ギャップ部に設置した磁電変換素子を通じて、被測定電流により磁気回路に生じた磁束の大きさを測定することで、非接触で被測定電流の大きさを測定する。  Conventionally, as a method for measuring a current to be measured in a non-contact manner, there is generally a method using a magnetic core. In a current sensor using a magnetic core, the magnetic core is installed so as to surround a conductor through which a current to be measured flows, and a magnetic circuit is formed together with a gap portion provided in the magnetic core. The magnitude of the current to be measured is measured in a non-contact manner by measuring the magnitude of the magnetic flux generated in the magnetic circuit by the current to be measured through the magnetoelectric conversion element installed in the gap portion.

近年、小型化や軽量化、あるいは高精度化等を目的とし、特に大電流計測において磁気コアを用いないコアレスタイプの電流センサが提案されている。コアレスタイプの電流センサによる多相電流の検出装置としては、各表面実装型電流センサを、クランク状に2度直角に折り曲げた各被検出電流路の中央部に配置し、各被検出電流路を整列したものがある(例えば、特許文献1参照)。  In recent years, a coreless type current sensor that does not use a magnetic core has been proposed for the purpose of miniaturization, weight reduction, high accuracy, and the like, particularly in large current measurement. As a multiphase current detection device using a coreless type current sensor, each surface mount type current sensor is arranged in the center of each detected current path bent at a right angle in a crank shape twice, and each detected current path is Some are aligned (see, for example, Patent Document 1).

また、別の多相電流の検出装置としては、クランク状に折り曲げられた折り曲げ部を有する各被測定導体の折り曲げ部近傍に、各磁電変換素子を配置し、折り曲げ部が重複しないように各被測定導体を略平行に配置したものがある(例えば、特許文献2の図6参照)。  As another multiphase current detection device, each magnetoelectric conversion element is arranged in the vicinity of a bent portion of each conductor to be measured having a bent portion bent in a crank shape so that the bent portions do not overlap each other. There is one in which measurement conductors are arranged substantially in parallel (see, for example, FIG. 6 of Patent Document 2).

また、単相構成ではあるが、磁気コアを用いず平板形状の磁性体を有した電流検出装置としては、クランク状に折り曲げられた折り曲げ部を有する被測定導体の折り曲げ部近傍に、磁電変換素子と2枚の磁性体を配置し、2枚の磁性体をズラして磁電変換素子を挟み込むことで磁路を変更したものがある(例えば、特許文献3参照)。  Moreover, although it is a single phase structure, as a current detection apparatus having a flat plate-like magnetic body without using a magnetic core, a magnetoelectric conversion element is provided in the vicinity of a bent portion of a conductor to be measured having a bent portion bent in a crank shape. And two magnetic bodies are arranged, the magnetic path is changed by shifting the two magnetic bodies and sandwiching the magnetoelectric conversion element (see, for example, Patent Document 3).

特開2005−233692公報  JP-A-2005-233692 特開2001−74783公報  JP 2001-74783 A 特開2010−44019公報  JP 2010-44019 A

発明が解決しようとする課題Problems to be solved by the invention

前記特許文献1に開示されている多相電流検出装置は、表面実装型電流センサを用いて、多相電流を測定する場合、ある相の電流を検出する表面実装型電流センサが、他の相の電流により発生した磁界の影響を基本的には受けずに多相電流の検出ができる構成となっている。しかしながら、厳密には他相の被検出電流路からの漏れ磁界が表面実装型電流センサの感磁方向に印加される構成のため、各相を接近して小型、省スペースで設置する場合に検出誤差が発生し、小型化に向かないという問題点があった。  In the multiphase current detection device disclosed in Patent Document 1, when a multiphase current is measured by using a surface mount type current sensor, the surface mount type current sensor for detecting a current of a certain phase is different from the other phase. The multi-phase current can be detected without being basically affected by the magnetic field generated by the current. However, strictly speaking, since the leakage magnetic field from the detected current path of the other phase is applied in the direction of magnetic sensing of the surface mount type current sensor, it is detected when each phase is close and installed in a small space-saving manner. There was a problem that an error occurred and it was not suitable for miniaturization.

また前記特許文献2では、クランク状に折り曲げられた折り曲げ部を有する各被測定導体の折り曲げ部近傍に、感磁方向が面外方向である磁電変換素子をそれぞれに配置し、かつ折り曲げ部が重複しないように各被測定導体を略平行に配置しているため、他の相の電流により発生した磁界の影響を受けずに多相電流の検出ができる構成となっている。しかしながら、折り曲げ部が重複しないように折り曲げ部をずらして配置する必要があるため、それに伴い電流検出装置が大型化するという問題点があった。また、同一基板上に各磁電変換素子を設置して構成する場合、基板も大型化し、低コスト化に向かないという問題点があった。  Moreover, in the said patent document 2, the magnetoelectric conversion element whose magnetosensitive direction is an out-of-plane direction is each arrange | positioned in the vicinity of the bending part of each to-be-measured conductor which has the bending part bent in crank shape, and a bending part overlaps. Since the conductors to be measured are arranged substantially parallel to each other, the multiphase current can be detected without being affected by the magnetic field generated by the current of the other phase. However, since it is necessary to displace the bent portions so that the bent portions do not overlap with each other, there is a problem in that the current detecting device increases in size. Further, when each magnetoelectric conversion element is installed on the same substrate, the size of the substrate is increased, which is not suitable for cost reduction.

また前記特許文献3では、クランク状に折り曲げられた折り曲げ部を有する被測定導体の折り曲げ部近傍に、感磁方向が面外方向である磁電変換素子と2枚の磁性体を配置し、2枚の磁性体をずらして磁電変換素子を挟み込むことで磁路を変更しているため、小型化できる構成となっている。しかしながら、検出磁路を正確に、安定して磁電変換素子に与えるためには、2枚の磁性体の位置精度が重要であるため、それに伴い製造コストが増加するという問題点があった。また、この電流検出装置を用いて多相を構成する場合、折り曲げ部が重複しないように折り曲げ部をずらし、かつ他相のバスバーもずらして配置する必要があるため、それに伴い電流検出装置が大型化するという問題点があった。  In Patent Document 3, a magnetoelectric conversion element having a magnetosensitive direction that is an out-of-plane direction and two magnetic bodies are disposed in the vicinity of a bent portion of a conductor to be measured having a bent portion bent in a crank shape. Since the magnetic path is changed by shifting the magnetic material and sandwiching the magnetoelectric conversion element, the structure can be reduced in size. However, in order to provide the detection magnetic path to the magnetoelectric conversion element accurately and stably, the positional accuracy of the two magnetic bodies is important, and there is a problem that the manufacturing cost increases accordingly. Further, when a multi-phase is configured using this current detection device, it is necessary to shift the bent portions so that the bent portions do not overlap with each other, and the bus bars of other phases also need to be shifted so that the current detection device becomes large. There was a problem of becoming.

この発明は上記のような課題を鑑み、解決するためになされたもので、多相電流の検出時に他相電流の影響を低減し、各相においてより正確な電流を検出でき、かつ感磁方向が面外方向である磁電変換素子と強磁性材を用いて小型で、低コストな多相電流の検出装置を得ることを目的とする。  The present invention has been made in order to solve the problems as described above, reduces the influence of other phase currents when detecting a multiphase current, can detect a more accurate current in each phase, and has a magnetic sensing direction. An object of the present invention is to obtain a small-sized and low-cost multiphase current detection device using a magnetoelectric conversion element and a ferromagnetic material whose surface is in the out-of-plane direction.

課題を解決するための手段Means for solving the problem

この発明に係わる多相電流の検出装置は、それぞれに少なくとも一つのザグリ部を有した複数の一次導体と、各一次導体の少なくとも一つの前記ザグリ部の内部において感磁面である面外方向に被測定電流により発生する磁束が印加されるように設置される少なくとも一つの磁電変換素子と、磁電変換素子の近傍に少なくとも一つの強磁性材とを備え、ザグリ部とは異なる部位の一次導体断面の中心位置と磁電変換素子の感磁面が略一致するとともに、複数の一次導体は相互に略平行で同一平面内に配置したものである。  A multiphase current detection device according to the present invention includes a plurality of primary conductors each having at least one counterbore portion, and an out-of-plane direction that is a magnetically sensitive surface inside at least one counterbore portion of each primary conductor. A cross section of a primary conductor that is provided with at least one magnetoelectric transducer installed so that a magnetic flux generated by a current to be measured is applied, and at least one ferromagnetic material in the vicinity of the magnetoelectric transducer, and is different from the counterbore portion The center position of the magnet and the magnetosensitive surface of the magnetoelectric transducer substantially coincide with each other, and the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.

また、この発明に係わる多相電流の検出装置は、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、各一次導体の少なくとも一つの前記U字形成部の内部において感磁面である面外方向に被測定電流により発生する磁束が印加されるように設置される少なくとも一つの磁電変換素子と、磁電変換素子の近傍に少なくとも一つの強磁性材とを備え、U字形成部とは異なる部位の一次導体断面の中心位置と磁電変換素子の感磁面が略一致するとともに、複数の一次導体は相互に略平行で同一平面内に配置したものである。  According to another aspect of the present invention, there is provided a multiphase current detection device including a plurality of primary conductors each having at least one U-shaped portion, and a magnetosensitive surface within at least one U-shaped portion of each primary conductor. A U-shaped forming portion including at least one magnetoelectric conversion element installed so that a magnetic flux generated by a current to be measured is applied in an out-of-plane direction, and at least one ferromagnetic material in the vicinity of the magnetoelectric conversion element. The central position of the cross section of the primary conductor different from that of the magnetoelectric transducer and the magnetosensitive surface of the magnetoelectric transducer substantially coincide with each other, and the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.

また、この発明に係わる多相電流の検出装置は、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、各一次導体の少なくとも一つの前記U字形成部の内部において感磁面である面外方向に被測定電流により発生する磁束が印加されるように設置される少なくとも一つの磁電変換素子と、磁電変換素子の近傍に少なくとも一つの強磁性材とを備え、U字形成部の断面の重心位置と磁電変換素子の感磁面が略一致するとともに、複数の一次導体は相互に略平行で同一平面内に配置したものである。  According to another aspect of the present invention, there is provided a multiphase current detection device including a plurality of primary conductors each having at least one U-shaped portion, and a magnetosensitive surface within at least one U-shaped portion of each primary conductor. A U-shaped forming portion including at least one magnetoelectric conversion element installed so that a magnetic flux generated by a current to be measured is applied in an out-of-plane direction, and at least one ferromagnetic material in the vicinity of the magnetoelectric conversion element. The position of the center of gravity of the cross section and the magnetosensitive surface of the magnetoelectric transducer substantially coincide, and the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.

また、この発明に係わる多相電流の検出装置は、磁電変換素子の両側にそれぞれ少なくとも一つの強磁性材が、磁電変換素子の感磁面を挟み込むように設置されたものである。  In the multiphase current detection apparatus according to the present invention, at least one ferromagnetic material is installed on both sides of the magnetoelectric conversion element so as to sandwich the magnetosensitive surface of the magnetoelectric conversion element.

また、この発明に係わる多相電流の検出装置は、各磁電変換素子は少なくとも1枚のセンサ基板に設置され、センサ基板は、磁電変換素子をザグリ部、またはU字形成部の所定の位置に保持するとともに、一次導体上に固定されるものである。  In the multiphase current detection device according to the present invention, each magnetoelectric conversion element is installed on at least one sensor board, and the sensor board places the magnetoelectric conversion element at a predetermined position in the counterbore part or the U-shaped formation part. It is held and fixed on the primary conductor.

また、この発明に係わる多相電流の検出装置は、センサ基板の内部に導電性を有するシールド層を設置し、センサ基板の表面にセンサ回路部を設けたものである。  According to another aspect of the present invention, there is provided a multiphase current detection device in which a conductive shield layer is provided inside a sensor substrate, and a sensor circuit portion is provided on the surface of the sensor substrate.

また、この発明に係わる多相電流の検出装置は、複数の一次導体の、少なくとも最両端に位置する一次導体のそれぞれに、少なくとも一つの磁気シールド板を、一次導体の側面に沿って、磁電変換素子の近傍に設けたものである。  In addition, the multiphase current detection device according to the present invention includes a plurality of primary conductors, at least one of the primary conductors positioned at both ends, and at least one magnetic shield plate along the side surface of the primary conductor. It is provided in the vicinity of the element.

また、この発明に係わる多相電流の検出装置は、複数の一次導体の、少なくとも最両端に位置する一次導体のそれぞれに、断面が略L字形状である磁気シールド板を、一次導体の側面に沿って、磁電変換素子の近傍に設けたものである。  In addition, the multiphase current detection device according to the present invention includes a magnetic shield plate having a substantially L-shaped cross section on each side of the primary conductor, at least at each of the primary conductors located at the outermost ends of the primary conductors. Along the magnetoelectric conversion element.

また、この発明に係わる多相電流の検出装置は、複数の一次導体の、少なくとも最両端に位置する一次導体のそれぞれに、断面が略U字形状である磁気シールドを、一次導体の側面に沿って、前記磁電変換素子の近傍に設けたものである。  In addition, the multiphase current detection device according to the present invention provides a magnetic shield having a substantially U-shaped cross section along each side of the primary conductor on each of the primary conductors at least at both ends of the plurality of primary conductors. And provided in the vicinity of the magnetoelectric transducer.

発明の効果Effect of the invention

以上のように、この発明によれば、感磁方向が面外方向である磁電変換素子を、それぞれの一次導体のそれぞれのザグリ部もしくはU字形成部に設置したため、それぞれの一次導体の長手方向においてそれぞれのザグリ部もしくはU字形成部が相互に重複して設置されても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出する効果がある。
また、上述のようにザグリ部もしくはU字形成部が相互に重複してもよく、ザグリ部もしくはU字形成部をずらして配置する必要がないため、一次導体の長手方向に多相電流の検出装置の寸法が拡大することなく、小型化の効果がある。
また、磁電変換素子の両側に、それぞれ少なくとも一つの強磁性材が、磁電変換素子の感磁面を挟み込むように設置されたため、感磁方向に一様に分布した磁束が広範囲で得られ、精度良く被測定電流を検出でき、磁電変換素子の高精度な位置決めが不要となるため、製造工程の簡略化ならびに低コスト化の効果もある。
As described above, according to the present invention, since the magnetoelectric conversion element whose magnetosensitive direction is the out-of-plane direction is installed in each counterbore part or U-shaped part of each primary conductor, the longitudinal direction of each primary conductor Even if each counterbore part or U-shaped formation part is installed overlapping each other, the effect of reducing the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current and detecting the current to be measured accurately There is.
Further, as described above, the counterbore part or the U-shaped part may overlap with each other, and it is not necessary to shift the counterbore part or the U-shaped part, so that the detection of the polyphase current in the longitudinal direction of the primary conductor is possible. There is an effect of downsizing without increasing the size of the apparatus.
In addition, at least one ferromagnetic material is installed on both sides of the magnetoelectric conversion element so as to sandwich the magnetosensitive surface of the magnetoelectric conversion element, so that a magnetic flux uniformly distributed in the magnetosensitive direction can be obtained over a wide range. Since the current to be measured can be detected well and the highly accurate positioning of the magnetoelectric transducer is not required, the manufacturing process can be simplified and the cost can be reduced.

また、複数の一次導体の、少なくとも最両端に位置する一次導体のそれぞれに、板状、もしくは断面が略L字形状、もしくは断面が略U字形状である磁気シールド板を、一次導体の側面に沿って、磁電変換素子の近傍に設けたため、それぞれの磁電変換素子の感磁方向に外部から磁界が印加されても、多相電流の検出時に外部磁界の影響を低減し、精度良く被測定電流を検出する効果がある。  Further, a magnetic shield plate having a plate shape, or a substantially L-shaped cross section, or a substantially U-shaped cross section is provided on each side of the primary conductor on each of at least the primary conductors of the plurality of primary conductors. Therefore, even if a magnetic field is applied from the outside in the magnetosensitive direction of each magnetoelectric transducer, the influence of the external magnetic field is reduced when detecting a multiphase current, and the current to be measured is accurately measured. Has the effect of detecting.

また、少なくとも1枚の小型なセンサ基板で多相に対応でき、装置が小型となり、製造工程の簡略化ならびに低コスト化の効果がある。  In addition, at least one small sensor substrate can cope with multiple phases, and the apparatus can be miniaturized, thereby simplifying the manufacturing process and reducing costs.

さらにまた、センサ基板内層にシールド層を設置することで、センサ回路部に対して、主に一次導体から生じる電界ノイズを除去あるいは低減することができるため、センサ出力の高精度化の効果がある。  Furthermore, by providing a shield layer on the inner layer of the sensor substrate, electric field noise mainly generated from the primary conductor can be removed or reduced with respect to the sensor circuit unit, which has the effect of increasing the accuracy of the sensor output. .

この発明の実施形態1による多相電流の検出装置の一次導体の斜視図である。It is a perspective view of the primary conductor of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による一つの電流センサにおけるザグリ部断面近傍の磁束線図である。It is a magnetic flux diagram of the counterbore part cross-section vicinity in one current sensor by Embodiment 1 of this invention. この発明の実施形態1による一つの電流センサの磁電変換素子における感磁部近傍の磁束ベクトル説明図である。It is magnetic flux vector explanatory drawing of the magnetic sensing part vicinity in the magnetoelectric conversion element of one current sensor by Embodiment 1 of this invention. この発明の実施形態1による一つの電流センサの磁電変換素子3の両側に磁性材5を設置したときの感磁方向の磁束密度分布を示すコンタ図である。It is a contour figure which shows magnetic flux density distribution of the magnetic sensing direction when the magnetic material 5 is installed in the both sides of the magnetoelectric conversion element 3 of one current sensor by Embodiment 1 of this invention. この発明の実施形態1による一つの電流センサの磁電変換素子3の両側に磁性材5を設置しないときの感磁方向の磁束密度分布を示すコンタ図である。It is a contour figure which shows the magnetic flux density distribution of a magnetic sensitive direction when the magnetic material 5 is not installed in the both sides of the magnetoelectric conversion element 3 of one current sensor by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の別の一次導体の斜視図である。It is a perspective view of another primary conductor of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態2による多相電流の検出装置の一次導体の斜視図である。It is a perspective view of the primary conductor of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による一つの電流センサにおけるU字形成部断面近傍の磁束線図である。It is a magnetic flux diagram of the U-shaped formation part cross section vicinity in one current sensor by Embodiment 2 of this invention. この発明の実施形態3による多相電流の検出装置の斜視図である。It is a perspective view of the detection apparatus of the multiphase current by Embodiment 3 of this invention. この発明の実施形態3による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 3 of this invention. この発明の実施形態3による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 3 of this invention. この発明の実施形態3による多相電流の検出装置の別の断面図である。It is another sectional drawing of the detection apparatus of the multiphase current by Embodiment 3 of this invention.

実施の形態1.
図1は、この発明の実施の形態1による多相電流の検出装置1における一次導体4のみの斜視図を示すもので、図2は多相電流の検出装置1の平面図(XY面)、図3は図1および図2におけるAA断面(YZ面)を示す断面図、図4は図1〜図3における一相分のAA断面(YZ面)において被測定電流印加時の磁束線図である。図に示した多相電流の検出装置1は、例えば三相交流電流において、それぞれの相電流を相毎に設置した電流センサ2にて検出する例であり、一相分の電流センサ2は、磁電変換素子3、一次導体4および強磁性材5により構成され、さらに一次導体4にはU字形成部6が設けられている。なお図において一次導体4は、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。また、実際の装置構成では、磁電変換素子3はプリント基板等に接続されて設置されるが、ここでは省略し、他の実施の形態において説明する。強磁性材5の実際の設置構成についても後述する。
本実施の形態1では、各一次導体4の一部にU字形成部6を形成し、各U字形成部6内に1つの磁電変換素子3とその両側に磁電変換素子3を挟み込むように強磁性材5を配置し、かつ各U字形成部6が各一次導体4の長手方向に対して重複するように各一次導体4を略平行に配置したものである。
Embodiment 1 FIG.
FIG. 1 shows a perspective view of only a primary conductor 4 in a multiphase current detection apparatus 1 according to Embodiment 1 of the present invention. FIG. 2 is a plan view (XY plane) of the multiphase current detection apparatus 1. 3 is a cross-sectional view showing the AA cross section (YZ plane) in FIGS. 1 and 2, and FIG. 4 is a magnetic flux diagram at the time of applying the current to be measured in the AA cross section (YZ plane) for one phase in FIGS. is there. The multiphase current detection device 1 shown in the figure is an example in which, for example, in a three-phase alternating current, each phase current is detected by a current sensor 2 installed for each phase. The magnetoelectric conversion element 3, the primary conductor 4, and the ferromagnetic material 5 are configured. Further, the primary conductor 4 is provided with a U-shaped forming portion 6. In the figure, the primary conductor 4 is shown only in the vicinity of the current sensor 2 for simplicity, but it is actually extended and connected to a power source, various devices, and the like. In the actual apparatus configuration, the magnetoelectric conversion element 3 is installed connected to a printed circuit board or the like, but is omitted here and will be described in another embodiment. The actual installation configuration of the ferromagnetic material 5 will also be described later.
In the first embodiment, a U-shaped forming portion 6 is formed on a part of each primary conductor 4, and one magnetoelectric conversion element 3 is sandwiched between each U-shaped forming portion 6 and the magnetoelectric conversion elements 3 are sandwiched on both sides thereof. The ferromagnetic material 5 is arranged, and the primary conductors 4 are arranged substantially in parallel so that the U-shaped forming parts 6 overlap each other in the longitudinal direction of the primary conductors 4.

まず、多相電流の検出装置1の全体構成、ならびに電流センサ2の構成について説明する。
図1に示すように、被測定電流を印加する各一次導体4は直線状の導体であり、ここでは三相電流の検出例であるため、3本の一次導体が略平行に配置されている。各一次導体4には、それぞれ電流センサ2が設けられ、各相の被測定電流値をそれぞれの電流センサ2にて検出する構成となっている。それぞれの電流センサ2は、各一次導体4の長手方向、つまりはX方向において、相互に重複する位置に設置される。
一相分の電流センサ2の構成について、まず一次導体4から説明する。各一次導体4の一部には、U字形成部6が形成される。U字形成部6の断面積は、使用する磁電変換素子の種類にもよるが、概ね磁電変換素子3に付与したい磁束密度、つまりは検出する被測定電流の範囲に応じて決定される。大きな電流値まで検出するのであれば、U字形成部6近傍における電流密度を下げるために、断面積は大きい、つまりはU字形状が大きいほうが望ましく、小さい電流値を検出するのであれば、U字形成部6近傍における電流密度を上げるために、断面積は小さい、つまりはU字形状が小さいほうが望ましい。また、図2の平面図から明らかなように、各U字形成部6は一次導体4の長手方向、つまりここではX方向に各U字形成部6の位置が重複するように、一致させて設置される。このような一次導体4は、例えば銅などの金属板材から凸形状への切り出しと凸部をU字形状に加工する曲げ加工の組合せ、もしくは鋳造等により作製される。なおU字形成部6のX方向の長さであるが、安定してU字形成部6に被測定電流を流すためには、設置する磁電変換素子3のX方向長さの少なくとも5倍以上であることが望ましい。
磁電変換素子3は各U字形成部6の内部に少なくとも1つ、強磁性材5とともに設置され、電流センサ2を構成する。一次導体4に被測定電流が印加されたとき、一次導体4の周囲には磁束が発生するが、本実施の形態でも、Y方向の磁束を磁電変換素子3の面外で計測する、例えば上述の素子としては、ホール素子、あるいはホール素子と処理回路とを一体化したホールICなどを用いるが、これらに限るものではない。磁電変換素子3を設置する位置は、図3において説明すると、各磁電変換素子3の感磁面9のZ方向の中心点がZ位置で略一致するとともに、各U字形成部6の重心位置に略一致する位置とする。また、Y方向の位置は、各磁電変換素子3の各感磁面9が各U字形成部6の中心線8bと略一致する位置とする。
強磁性材5は、磁電変換素子3の両側に磁電変換素子3を挟み込むようにして、磁電変換素子3の感磁方向に安定した磁束密度分布を得るために設置される。強磁性材5の設置の効果を、図6、図7により説明する。図6は磁電変換素子3の両側に磁性材5を設置したときの磁電変換素子3におけるY方向、つまりは感磁方向の磁束密度分布を示すコンタ図であり、図7は磁性材5を設置しないときの同様のコンタ図を示す。何れの図においても、斜線の部分が所望の磁束密度分布を示す領域であり、太線9aは感磁面である。図からわかるように、強磁性材5を設置した場合、設置しない場合に比べて3倍程度、所望の磁束密度分布を示す領域が拡大している。つまりは、感磁面全体をカバーするように、安定した所望の磁束密度分布が得られることになり、検出精度の向上につながる。また、所望の磁束密度分布を示す領域が拡大することで、磁電変換素子3の高精度な位置決めが不要となるため、製造工程の簡略化ならびに低コスト化の効果もある。
強磁性材5の設置方法であるが、本実施の形態1における図では、強磁性材5は磁電変換素子3から離間して描かれているが、磁電変換素子3に接着して、密着した形態で設置してもよい。非磁性の部材を介した設置でも構わない。また、強磁性材5を一次導体4のU字形成部6壁面に、接着してもよいが、安定した磁束密度分布を得るためには、磁電変換素子3に近づけて設置するのが望ましい。強磁性材5の大きさは、磁電変換素子3の感磁面と同等程度かそれ以上であればよく、磁電変換素子3の全てを覆う必要はない。
なお強磁性材5としては、パーマロイ等のバルク材が考えられるが、これに限るものではなく、箔状で形成できるアモルファス磁性材等を利用してもよい。強磁性材5の形状は特に示していないが、製造の容易さ、低コスト化等から、四角形状で構わない。本実施の形態では、磁電変換素子3の両側に強磁性材5を一つずつ設置した構成を示したがこれに限るものではなく、片側のみ、あるいはさらに複数の強磁性材5を積層して設置する構成としてもよい。
First, the overall configuration of the multiphase current detection device 1 and the configuration of the current sensor 2 will be described.
As shown in FIG. 1, each primary conductor 4 to which a current to be measured is applied is a linear conductor, and here is a detection example of a three-phase current, and therefore three primary conductors are arranged substantially in parallel. . Each primary conductor 4 is provided with a current sensor 2, and is configured such that each current sensor 2 detects a measured current value of each phase. Each current sensor 2 is installed at a position overlapping each other in the longitudinal direction of each primary conductor 4, that is, in the X direction.
The configuration of the current sensor 2 for one phase will be described first from the primary conductor 4. A U-shaped forming portion 6 is formed on a part of each primary conductor 4. The cross-sectional area of the U-shaped portion 6 is determined according to the magnetic flux density desired to be applied to the magnetoelectric conversion element 3, that is, the range of the current to be detected, although it depends on the type of the magnetoelectric conversion element to be used. If a large current value is to be detected, it is desirable that the cross-sectional area is large, that is, that the U-shape is large in order to reduce the current density in the vicinity of the U-shaped portion 6, and if a small current value is to be detected, U In order to increase the current density in the vicinity of the character forming portion 6, it is desirable that the cross-sectional area is small, that is, the U shape is small. As is clear from the plan view of FIG. 2, the U-shaped portions 6 are aligned so that the positions of the U-shaped portions 6 overlap in the longitudinal direction of the primary conductor 4, that is, the X direction here. Installed. Such a primary conductor 4 is produced by, for example, a combination of cutting a metal plate material such as copper into a convex shape and bending the convex portion into a U shape, or casting. The length of the U-shaped portion 6 in the X direction is at least five times the length of the magnetoelectric transducer 3 to be installed in order to allow the current to be measured to flow stably through the U-shaped portion 6. It is desirable that
At least one magnetoelectric conversion element 3 is installed together with the ferromagnetic material 5 in each U-shaped portion 6 to constitute the current sensor 2. When a current to be measured is applied to the primary conductor 4, a magnetic flux is generated around the primary conductor 4. Even in this embodiment, the magnetic flux in the Y direction is measured out of the plane of the magnetoelectric transducer 3. As the element, a Hall element or a Hall IC in which a Hall element and a processing circuit are integrated is used, but the element is not limited thereto. The position where the magnetoelectric conversion element 3 is installed will be described with reference to FIG. 3. The center point in the Z direction of the magnetosensitive surface 9 of each magnetoelectric conversion element 3 substantially coincides with the Z position, and the gravity center position of each U-shaped forming portion 6. The position is approximately the same. The position in the Y direction is a position where each magnetosensitive surface 9 of each magnetoelectric conversion element 3 substantially coincides with the center line 8 b of each U-shaped forming portion 6.
The ferromagnetic material 5 is installed to obtain a stable magnetic flux density distribution in the magnetosensitive direction of the magnetoelectric conversion element 3 so as to sandwich the magnetoelectric conversion element 3 on both sides of the magnetoelectric conversion element 3. The effect of installing the ferromagnetic material 5 will be described with reference to FIGS. FIG. 6 is a contour diagram showing the magnetic flux density distribution in the Y direction, that is, the magnetic sensing direction, in the magnetoelectric conversion element 3 when the magnetic material 5 is installed on both sides of the magnetoelectric conversion element 3, and FIG. The same contour diagram when not doing is shown. In any figure, the shaded area is a region showing a desired magnetic flux density distribution, and the thick line 9a is a magnetic sensitive surface. As can be seen from the figure, when the ferromagnetic material 5 is installed, the region showing the desired magnetic flux density distribution is expanded about three times as compared with the case where the ferromagnetic material 5 is not installed. In other words, a stable desired magnetic flux density distribution can be obtained so as to cover the entire magnetosensitive surface, leading to improved detection accuracy. Further, since the region showing the desired magnetic flux density distribution is expanded, it is not necessary to position the magnetoelectric conversion element 3 with high accuracy, so that the manufacturing process can be simplified and the cost can be reduced.
Although the method of installing the ferromagnetic material 5 is illustrated in FIG. 1 in the first embodiment, the ferromagnetic material 5 is drawn away from the magnetoelectric conversion element 3, but is adhered and adhered to the magnetoelectric conversion element 3. You may install in the form. Installation via a non-magnetic member may be used. Further, the ferromagnetic material 5 may be adhered to the wall surface of the U-shaped portion 6 of the primary conductor 4, but it is desirable to install the ferromagnetic material 5 close to the magnetoelectric conversion element 3 in order to obtain a stable magnetic flux density distribution. The size of the ferromagnetic material 5 may be equal to or larger than the magnetosensitive surface of the magnetoelectric conversion element 3, and it is not necessary to cover the entire magnetoelectric conversion element 3.
The ferromagnetic material 5 may be a bulk material such as permalloy, but is not limited thereto, and an amorphous magnetic material that can be formed in a foil shape may be used. Although the shape of the ferromagnetic material 5 is not particularly shown, a rectangular shape may be used for ease of manufacture and cost reduction. In the present embodiment, a configuration in which one ferromagnetic material 5 is installed on each side of the magnetoelectric conversion element 3 is shown, but the present invention is not limited to this, and only one side or a plurality of ferromagnetic materials 5 are laminated. It is good also as a structure to install.

次に、電流センサ2の動作について図3、図4により説明する。図4は上述した位置に磁電変換素子3aを設置した場合、一相分のAA断面(YZ面)において、被測定電流印加時の一次導体4a周囲の磁束線7aと一部の磁束ベクトル10aを示すものである。一次導体4aのU字形成部6aにおいて、その断面は凹形状となる。そのため磁束線7aはU字形成部6a近傍において、湾曲された楕円形状となる。そのとき、U字形成部6aの重心を貫通する中心線8a上の磁束ベクトル10は、例えば磁束ベクトル10a1、磁束ベクトル10a2で示されるように、U字形成部6aの形状にもよるが、概ね中心線8aに対してZ方向、つまりY方向と直角方向となる。ただし感磁面9aにおいては、感磁方向と一致する磁束ベクトル10aが付与される。
図5は、磁電変換素子3aの感磁面9aにおける磁束ベクトル10を示すものである。各一次導体4に被測定電流が流れると各一次導体4の周囲に被測定電流の大きさに応じて磁束が発生し、図3にて磁束の一例を破線の磁束線7で示すと、一次導体4aは磁束線7a、一次導体4bは磁束線7b、一次導体4cは磁束線7cとなる。これら各一次導体4にて発生する各磁束線7に起因した、磁電変換素子3aの感磁面9aにおける磁束ベクトル10は、一次導体4aは磁束ベクトル10a、一次導体4bは磁束ベクトル10b、一次導体4cは磁束ベクトル10cとなる。図5からわかるように、磁束ベクトル10bと磁束ベクトル10cは感磁面9aに対して面内方向となるため、磁電変換素子3aにおいて不感方向であり検出されず、検出されるのは感磁面9aの面外方向と一致する、一次導体4aによる磁束ベクトル10aのみとなる。このように磁電変換素子3aの感磁面9aのZ方向の中心点が、U字形成部6bとU字形成部6cの重心位置を貫通する中心線8aと一致した場合、一次導体4bと一次導体4cにおいて発生する磁束ベクトル10bおよび10cは、感磁面9aに対して面内方向つまりは不感方向となるため、一次導体4aの被測定電流測定に影響を与えない。つまり他相の影響は受けず、検出すべき被測定電流にて発生する磁束を精度良く捉えることができる。
ここでは、一次導体4aにおける電流センサ2aについての動作のみ、図3、図4、図5を用いて説明したが、電流センサ2b、電流センサ2cが、X方向において、相互に重複した位置に設置されても、何れも他相の影響は受けない構成については同様である。
なお本実施の形態においては、一次導体の一部にU字形成部を設置した構成としたが、一次導体の一部に逆向きのU字形成部、つまり凸状のU字形成部を設置する構成としてもよく、また、U字形成部のU字底部の形状は円弧状に限るものではなく、角形等であっても構わない。本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよく、各U字形成部6が各一次導体4の長手方向に対して重複しないように各一次導体4を略平行に配置しても、他相の影響を受けることはない。ただしU字形成部6が重複しない場合、U字形成部6内に設置した磁電変換素子3の感磁面9のZ方向の中心点が、他の一次導体4の非U字形成部を貫通する中心線と略一致するように構成することが前提となる。
Next, the operation of the current sensor 2 will be described with reference to FIGS. In FIG. 4, when the magnetoelectric conversion element 3a is installed at the position described above, the magnetic flux line 7a around the primary conductor 4a and a part of the magnetic flux vector 10a at the time of applying the current to be measured are shown on the AA cross section (YZ plane) for one phase. It is shown. In the U-shaped formation part 6a of the primary conductor 4a, the cross section becomes a concave shape. Therefore, the magnetic flux line 7a becomes a curved ellipse shape in the vicinity of the U-shaped portion 6a. At that time, the magnetic flux vector 10 on the center line 8a that penetrates the center of gravity of the U-shaped portion 6a is generally based on the shape of the U-shaped portion 6a, as indicated by the magnetic flux vector 10a1 and the magnetic flux vector 10a2, for example. The center line 8a is in the Z direction, that is, the direction perpendicular to the Y direction. However, a magnetic flux vector 10a that coincides with the magnetic sensing direction is applied to the magnetic sensitive surface 9a.
FIG. 5 shows the magnetic flux vector 10 on the magnetosensitive surface 9a of the magnetoelectric transducer 3a. When a current to be measured flows through each primary conductor 4, a magnetic flux is generated around each primary conductor 4 according to the magnitude of the current to be measured. In FIG. 3, an example of the magnetic flux is indicated by a broken magnetic flux line 7. The conductor 4a becomes the magnetic flux line 7a, the primary conductor 4b becomes the magnetic flux line 7b, and the primary conductor 4c becomes the magnetic flux line 7c. The magnetic flux vector 10 on the magnetosensitive surface 9a of the magnetoelectric transducer 3a caused by the magnetic flux lines 7 generated in each primary conductor 4 is the magnetic vector 10a for the primary conductor 4a, the magnetic flux vector 10b for the primary conductor 4b, and the primary conductor. 4c becomes the magnetic flux vector 10c. As can be seen from FIG. 5, since the magnetic flux vector 10b and the magnetic flux vector 10c are in the in-plane direction with respect to the magnetosensitive surface 9a, the magnetoelectric transducer 3a is insensitive and is not detected. Only the magnetic flux vector 10a by the primary conductor 4a coincides with the out-of-plane direction of 9a. In this way, when the center point in the Z direction of the magnetosensitive surface 9a of the magnetoelectric transducer 3a coincides with the center line 8a passing through the center of gravity of the U-shaped portion 6b and the U-shaped portion 6c, the primary conductor 4b and the primary conductor 4b The magnetic flux vectors 10b and 10c generated in the conductor 4c are in the in-plane direction, that is, the insensitive direction with respect to the magnetosensitive surface 9a, and thus do not affect the measured current of the primary conductor 4a. That is, the magnetic flux generated by the current to be measured to be detected can be accurately captured without being influenced by other phases.
Here, only the operation of the current sensor 2a in the primary conductor 4a has been described with reference to FIGS. 3, 4, and 5. However, the current sensor 2b and the current sensor 2c are installed at positions overlapping each other in the X direction. However, the same applies to the configuration that is not affected by other phases.
In this embodiment, the U-shaped forming part is installed on a part of the primary conductor, but the reverse U-shaped forming part, that is, the convex U-shaped forming part is installed on a part of the primary conductor. In addition, the shape of the U-shaped bottom portion of the U-shaped forming portion is not limited to the arc shape, and may be a square shape or the like. In the present embodiment, a three-phase AC current detection example has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases. Even if the primary conductors 4 are arranged substantially in parallel so as not to overlap with the longitudinal direction of the four, they are not affected by other phases. However, when the U-shaped portion 6 does not overlap, the center point in the Z direction of the magnetosensitive element 9 of the magnetoelectric transducer 3 installed in the U-shaped portion 6 penetrates the non-U-shaped portion of the other primary conductor 4. It is premised that the configuration is substantially coincident with the center line.

図8は、この発明の実施の形態1による多相電流の検出装置1における別の一次導体4のみの斜視図を示すものであり、一次導体の構成を除き、その他の構成で重複する部分は省略する。図1等に示した先の例では、U字形成部は一次導体の一部である凸部に加工を施すことで形成していたが、図8の例では予めU字形成部を形成しておき、その両端部に一次導体を連結した構造をとるものである。特に連結の手法については図示していないが、ネジ止めやロー付け等で発熱を防ぐために密着して連結するのが望ましいものの、これらの手法に限るものではない。先の例では一次導体とU字形成部が一体化しているという利点があるが、板材から切り出して作製する場合、どうしても捨てる部分が発生し、ムダがあった。図8の例では、U字形成部と一次導体の連結に工数が発生するが、材料取りでのムダを防ぐことが可能となる。  FIG. 8 shows a perspective view of only another primary conductor 4 in the multiphase current detection apparatus 1 according to Embodiment 1 of the present invention. Except for the configuration of the primary conductor, the overlapping parts in other configurations are as follows. Omitted. In the previous example shown in FIG. 1 and the like, the U-shaped forming portion is formed by processing the convex portion which is a part of the primary conductor. However, in the example of FIG. The primary conductor is connected to both ends thereof. In particular, the connection method is not shown in the figure, but it is desirable to connect in close contact in order to prevent heat generation by screwing or brazing, but it is not limited to these methods. In the previous example, there is an advantage that the primary conductor and the U-shaped forming portion are integrated, but when cut out from the plate material, a portion to be discarded is inevitably generated and wasted. In the example of FIG. 8, man-hours are generated in the connection between the U-shaped forming portion and the primary conductor, but waste due to material removal can be prevented.

以上のように、この実施の形態1によれば、磁電変換素子を設置した、それぞれのU字形成部をそれぞれの一次導体の長手方向において相互に重複するように、それぞれの一次導体を同一平面内に略平行で配置しても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出することができる。また、磁電変換素子の両側に、それぞれ少なくとも一つの強磁性材が、磁電変換素子の感磁面を挟み込むように設置したため、感磁方向に一様に分布した磁束が広範囲で得られ、精度良く被測定電流を検出できるだけでなく、磁電変換素子の高精度な位置決めが不要となるため、製造工程の簡略化ならびに低コスト化の効果もある。  As described above, according to the first embodiment, the primary conductors are arranged on the same plane so that the U-shaped portions provided with the magnetoelectric conversion elements overlap each other in the longitudinal direction of the primary conductors. Even when arranged in parallel, the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current can be reduced, and the current to be measured can be detected with high accuracy. In addition, since at least one ferromagnetic material is installed on both sides of the magnetoelectric conversion element so as to sandwich the magnetosensitive surface of the magnetoelectric conversion element, a magnetic flux uniformly distributed in the magnetosensitive direction can be obtained in a wide range and with high accuracy. Not only can the current to be measured be detected, but also high-precision positioning of the magnetoelectric conversion element is not required, which has the effect of simplifying the manufacturing process and reducing costs.

また、感磁方向が面外方向である磁電変換素子をU字形成部内に収まるように設置する構成のため、幅方向に多相電流の検出装置の寸法が拡大することなく、小型に構成できる。  In addition, since the magnetoelectric conversion element having a magnetosensitive direction in the out-of-plane direction is installed so as to be accommodated in the U-shaped portion, the size of the multiphase current detection device can be reduced in size in the width direction without increasing the size. .

実施の形態2.
図9は、この発明の実施の形態2による多相電流の検出装置1における一次導体4のみの斜視図を示すもので、図10は多相電流の検出装置1の平面図(XY面)、図11は図9および図10におけるAA断面(YZ面)を示す断面図、図12は図9〜図11における一相分のAA断面(YZ面)において被測定電流印加時の磁束線図である。図に示した多相電流の検出装置1は、例えば三相交流電流において、それぞれの相電流を相毎に設置した電流センサ2にて検出する例であり、一相分の電流センサ2は、磁電変換素子3、一次導体4および強磁性材5により構成され、さらに一次導体4はザグリ部11が設けられている。なお図において、一次導体4は、実施の形態1と同様に、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。また、実際の装置構成では、磁電変換素子3はプリント基板等に接続されて設置されるが、ここでは省略し、他の実施の形態において説明する。
本実施の形態2では、各一次導体4の一部にザグリ部11を形成し、各ザグリ部11内に1つの磁電変換素子3とその両側に磁電変換素子3を挟み込むように強磁性材5を配置し、かつ各ザグリ部11が各一次導体4の長手方向に対して重複するように各一次導体4を略平行に配置したものである。
実施の形態2は、実施の形態1で各一次導体4に設けたU字形成部をザグリ部に変更した構成であり、その他の構成や動作で重複する部分は省略する。
Embodiment 2. FIG.
FIG. 9 shows a perspective view of only the primary conductor 4 in the multiphase current detection apparatus 1 according to Embodiment 2 of the present invention, and FIG. 10 is a plan view (XY plane) of the multiphase current detection apparatus 1. 11 is a cross-sectional view showing an AA cross section (YZ plane) in FIGS. 9 and 10, and FIG. 12 is a magnetic flux diagram at the time of applying a measurement current in the AA cross section (YZ plane) for one phase in FIGS. is there. The multiphase current detection device 1 shown in the figure is an example in which, for example, in a three-phase alternating current, each phase current is detected by a current sensor 2 installed for each phase. The magnetoelectric conversion element 3, the primary conductor 4 and the ferromagnetic material 5 are configured, and the primary conductor 4 is provided with a counterbore portion 11. In the figure, the primary conductor 4 is shown only in the vicinity of the current sensor 2 for simplicity as in the first embodiment, but it is actually extended and connected to a power source and various devices. In the actual apparatus configuration, the magnetoelectric conversion element 3 is installed connected to a printed circuit board or the like, but is omitted here and will be described in another embodiment.
In the present second embodiment, a counterbore part 11 is formed in a part of each primary conductor 4, and the ferromagnetic material 5 so as to sandwich one magnetoelectric conversion element 3 in each counterbore part 11 and the magnetoelectric conversion element 3 on both sides thereof. And the primary conductors 4 are arranged substantially in parallel so that the counterbored portions 11 overlap each other in the longitudinal direction of the primary conductors 4.
The second embodiment is a configuration in which the U-shaped forming portion provided in each primary conductor 4 in the first embodiment is changed to a counterbore portion, and the redundant portions in other configurations and operations are omitted.

一相分の電流センサ2の構成について、まず一次導体4から説明する。各一次導体4の上面の一部には、ザグリ加工が施され、Z方向のザグリ深さは、少なくとも非ザグリ部である一次導体4のZ方向高さの半分以上となるように形成される。一次導体4のザグリ部11近傍において一次導体の占める断面積は、使用する磁電変換素子の種類にもよるが、概ね磁電変換素子3に付与したい磁束密度、つまりは検出する被測定電流の範囲に応じて決定される。大きな電流値まで検出するのであれば、ザグリ部11近傍における一次導体部分の電流密度を下げるために、断面積は大きいほうが望ましく、小さい電流値を検出するのであれば、ザグリ部11近傍における一次導体部分の電流密度を上げるために、断面積は小さいほうが望ましい。また、図10の平面図から明らかなように、各ザグリ部11は一次導体4の長手方向、つまりここではX方向に各ザグリ部11の位置が重複するように、一致させて設置される。このような一次導体4は、例えば銅などの金属板材から直方体状の一次導体4を切り出した後にザグリ部をザグリ加工にて形成して作製、もしくは鋳造等により作製される。
磁電変換素子3は各ザグリ部11に少なくとも1つ設置され、一次導体4とともに電流センサ2を構成する。一次導体4に被測定電流が印加されたとき、一次導体4の周囲には磁束が発生するが、ここでは、Y方向の磁束を磁電変換素子3の内部に設けられた感磁面9の面外で計測する、面外方向に感磁方向を有した素子を利用する。例えば上述の素子としては、ホール素子、あるいはホール素子と処理回路とを一体化したホールICなどを用いるが、これらに限るものではない。各磁電変換素子3を設置する位置は、図11において説明すると、各磁電変換素子3の感磁面9のZ方向の中心点がZ位置で略一致するとともに、各一次導体の非ザグリ部を貫通する中心線8aとも一致する位置とする。また、Y方向の位置は、各磁電変換素子3の各感磁面9が各一次導体4の中心線8bと一致する位置とする。
強磁性材5は、磁電変換素子3の両側に磁電変換素子3を挟み込むようにして、磁電変換素子3の感磁方向に安定した磁束密度分布を得るために設置される。強磁性材5の設置の効果、設置方法、材料等は、実施の形態1と同様のため省略するが、強磁性材5を設置した場合、設置しない場合に比べて3倍程度、所望の磁束密度分布を示す領域が拡大し、安定した所望の磁束密度分布が得られることになり、検出精度の向上につながる効果が得られ、また、所望の磁束密度分布を示す領域が拡大することで、磁電変換素子3の高精度な位置決めが不要となるため、製造工程の簡略化ならびに低コスト化の効果があることも同様である。
The configuration of the current sensor 2 for one phase will be described first from the primary conductor 4. A part of the upper surface of each primary conductor 4 is subjected to counterbore processing, and the counterbored depth in the Z direction is formed to be at least half of the height in the Z direction of the primary conductor 4 which is a non-counterbore part. . The cross-sectional area occupied by the primary conductor in the vicinity of the counterbore part 11 of the primary conductor 4 depends on the type of the magnetoelectric conversion element to be used, but is approximately within the magnetic flux density to be applied to the magnetoelectric conversion element 3, that is, the range of the current to be measured. Will be decided accordingly. If a large current value is to be detected, it is desirable that the cross-sectional area be large in order to reduce the current density of the primary conductor portion in the vicinity of the counterbore part 11, and if a small current value is to be detected, the primary conductor in the vicinity of the counterbore part 11 is desired. In order to increase the current density of the portion, it is desirable that the cross-sectional area is small. Further, as is apparent from the plan view of FIG. 10, the counterbore portions 11 are installed so that the positions of the counterbore portions 11 overlap in the longitudinal direction of the primary conductor 4, that is, the X direction here. Such a primary conductor 4 is produced by cutting a rectangular parallelepiped primary conductor 4 from, for example, a metal plate material such as copper, and then forming a counterbored portion by counterboring, or by casting or the like.
At least one magnetoelectric conversion element 3 is installed in each counterbore part 11 and constitutes the current sensor 2 together with the primary conductor 4. When a current to be measured is applied to the primary conductor 4, a magnetic flux is generated around the primary conductor 4, but here, the magnetic flux in the Y direction is a surface of the magnetosensitive surface 9 provided inside the magnetoelectric transducer 3. An element having a magnetosensitive direction in an out-of-plane direction that is measured outside is used. For example, as the above-described element, a Hall element or a Hall IC in which a Hall element and a processing circuit are integrated is used, but the element is not limited thereto. The position where each magnetoelectric conversion element 3 is installed will be described with reference to FIG. 11. The center point in the Z direction of the magnetosensitive surface 9 of each magnetoelectric conversion element 3 substantially coincides with the Z position, and the non-curved portion of each primary conductor is It is set as the position which also corresponds with the penetrating center line 8a. The position in the Y direction is a position where each magnetosensitive surface 9 of each magnetoelectric conversion element 3 coincides with the center line 8 b of each primary conductor 4.
The ferromagnetic material 5 is installed to obtain a stable magnetic flux density distribution in the magnetosensitive direction of the magnetoelectric conversion element 3 so as to sandwich the magnetoelectric conversion element 3 on both sides of the magnetoelectric conversion element 3. The effect, installation method, material, and the like of the ferromagnetic material 5 are omitted because they are the same as those in the first embodiment. However, when the ferromagnetic material 5 is installed, the desired magnetic flux is about three times that when the ferromagnetic material 5 is not installed. By expanding the region showing the density distribution and obtaining a stable desired magnetic flux density distribution, an effect that leads to improved detection accuracy is obtained, and by expanding the region showing the desired magnetic flux density distribution, Since the highly accurate positioning of the magnetoelectric conversion element 3 is not necessary, the manufacturing process can be simplified and the cost can be reduced.

次に、電流センサ2の動作について説明する。図12は上述した位置に磁電変換素子3aを設置した場合、一相分のAA断面(YZ面)において、被測定電流印加時の一次導体4a周囲の磁束線7aと一部の磁束ベクトル10aを示すものである。一次導体4aのザグリ部11aにおいて、一次導体4aの断面は凹形状となる。そのため磁束線7aは一次導体4a近傍において、湾曲された楕円形状となる。そのとき、一次導体4aの外部における中心線8a上の磁束ベクトル10は、例えば磁束ベクトル10a1、磁束ベクトル10a2で示されるように、ザグリ部11の形状にもよるが、概ね中心線8aに対してZ方向、つまりY方向と直角方向となる。ただし感磁面9aにおいては、感磁方向と一致する磁束ベクトル10aが付与される。
三相での動作を図9で説明する。なお磁束ベクトル説明図は図5と同等となる。各一次導体4に被測定電流が流れると各一次導体4の周囲に被測定電流の大きさに応じて磁束が発生し、図11にて磁束の一例を破線の磁束線7で示すと、一次導体4aは磁束線7a、一次導体4bは磁束線7b、一次導体4cは磁束線7cとなる。これら各一次導体4にて発生する各磁束線7に起因した、磁電変換素子3aの感磁面9aにおける磁束ベクトル10は、一次導体4aは磁束ベクトル10a、一次導体4bは磁束ベクトル10b、一次導体4cは磁束ベクトル10cとなる。図5からわかるように、磁束ベクトル10bと磁束ベクトル9cは感磁面9aの感磁方向に対して面内方向となるため、磁電変換素子3aにおいて不感方向であり検出されず、検出されるのは感磁面9aの面外方向と一致する、一次導体4aによる磁束ベクトル10aのみとなる。このように磁電変換素子3aの感磁面9aのZ方向の中心点が、一次導体4bと一次導体4cを貫通する中心線8aと略一致した場合、一次導体4bと一次導体4cにおいて発生する磁束ベクトル10bおよび磁束ベクトル10cは、感磁面9aの感磁方向に対して直角方向つまりは不感方向となるため、一次導体3aの被測定電流検出に影響を与えない。つまり他相の影響は受けず、検出すべき被測定電流にて発生する磁束を精度良く捉えることができる。
ここでは、一次導体4aにおける電流センサ2aについての動作のみ、図11、図12、図5を用いて説明したが、電流センサ2b、電流センサ2cが、X方向において、相互に重複した位置に設置されても、何れも他相の影響は受けない構成については同様である。
なお本実施の形態においては、一次導体の上面側にザグリ部を設置した構成としたが、一次導体の下面側にザグリ部を設置する構成としてもよく、また、ザグリ部の形状は角形に限るものではなく、丸形等であっても構わない。本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよく、各ザグリ部11が各一次導体4の長手方向に対して重複しないように各一次導体4を略平行に配置しても、他相の影響を受けることはない。また本実施の形態においては、各磁電変換素子3の感磁面9が、各磁電変換素子3内部の中央に位置せず、中央からシフトして設置されたものとしたがこれに限るものではなく、各磁電変換素子3内部の中央に感磁面9が位置しても構わない。
また本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。
Next, the operation of the current sensor 2 will be described. In FIG. 12, when the magnetoelectric conversion element 3a is installed at the position described above, the magnetic flux line 7a around the primary conductor 4a and a part of the magnetic flux vector 10a at the time of applying the current to be measured are shown on the AA cross section (YZ plane) for one phase. It is shown. In the counterbore part 11a of the primary conductor 4a, the cross section of the primary conductor 4a is concave. Therefore, the magnetic flux line 7a becomes a curved ellipse in the vicinity of the primary conductor 4a. At that time, the magnetic flux vector 10 on the center line 8a outside the primary conductor 4a is approximately relative to the center line 8a, although it depends on the shape of the counterbore part 11 as indicated by, for example, the magnetic flux vector 10a1 and the magnetic flux vector 10a2. The direction is the Z direction, that is, the direction perpendicular to the Y direction. However, a magnetic flux vector 10a that coincides with the magnetic sensing direction is applied to the magnetic sensitive surface 9a.
The operation in three phases will be described with reference to FIG. The magnetic flux vector explanatory diagram is the same as FIG. When a current to be measured flows through each primary conductor 4, a magnetic flux is generated around each primary conductor 4 according to the magnitude of the current to be measured. In FIG. 11, an example of the magnetic flux is indicated by a broken magnetic flux line 7. The conductor 4a becomes the magnetic flux line 7a, the primary conductor 4b becomes the magnetic flux line 7b, and the primary conductor 4c becomes the magnetic flux line 7c. The magnetic flux vector 10 on the magnetosensitive surface 9a of the magnetoelectric transducer 3a caused by the magnetic flux lines 7 generated in each primary conductor 4 is the magnetic vector 10a for the primary conductor 4a, the magnetic flux vector 10b for the primary conductor 4b, and the primary conductor. 4c becomes the magnetic flux vector 10c. As can be seen from FIG. 5, since the magnetic flux vector 10b and the magnetic flux vector 9c are in the in-plane direction with respect to the magnetic sensitive direction of the magnetic sensitive surface 9a, the magnetoelectric conversion element 3a is insensitive and not detected. Is only the magnetic flux vector 10a by the primary conductor 4a which coincides with the out-of-plane direction of the magnetic sensitive surface 9a. Thus, when the center point in the Z direction of the magnetosensitive surface 9a of the magnetoelectric transducer 3a substantially coincides with the center line 8a penetrating the primary conductor 4b and the primary conductor 4c, the magnetic flux generated in the primary conductor 4b and the primary conductor 4c. Since the vector 10b and the magnetic flux vector 10c are perpendicular to the magnetic sensing direction of the magnetic sensitive surface 9a, that is, the insensitive direction, they do not affect the current detection of the primary conductor 3a. That is, the magnetic flux generated by the current to be measured to be detected can be accurately captured without being influenced by other phases.
Here, only the operation of the primary conductor 4a with respect to the current sensor 2a has been described with reference to FIGS. 11, 12, and 5, but the current sensor 2b and the current sensor 2c are installed at positions overlapping each other in the X direction. However, the same applies to the configuration that is not affected by other phases.
In this embodiment, the counterbore part is installed on the upper surface side of the primary conductor. However, the counterbore part may be installed on the lower surface side of the primary conductor, and the shape of the counterbore part is limited to a square shape. It may be a round shape or the like. In the present embodiment, an example of detecting a three-phase AC current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases. Even if the primary conductors 4 are arranged substantially in parallel so as not to overlap with each other in the longitudinal direction, they are not affected by other phases. In the present embodiment, the magnetosensitive surface 9 of each magnetoelectric conversion element 3 is not located at the center inside each magnetoelectric conversion element 3, but is shifted from the center. However, the present invention is not limited to this. Alternatively, the magnetosensitive surface 9 may be located in the center of each magnetoelectric conversion element 3.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases.

以上のように、この実施の形態2によれば、磁電変換素子を設置した、それぞれのザグリ部をそれぞれの一次導体の長手方向において相互に重複するように、それぞれの一次導体を同一平面内に略平行で配置しても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出することができる。また、磁電変換素子の両側に、それぞれ少なくとも一つの強磁性材が、磁電変換素子の感磁面を挟み込むように設置したため、感磁方向に一様に分布した磁束が広範囲で得られ、精度良く被測定電流を検出できるだけでなく、磁電変換素子の高精度な位置決めが不要となるため、製造工程の簡略化ならびに低コスト化の効果もある。  As described above, according to the second embodiment, the primary conductors are arranged in the same plane so that the counterbore portions where the magnetoelectric conversion elements are installed overlap each other in the longitudinal direction of the primary conductors. Even when arranged substantially in parallel, the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current can be reduced, and the current to be measured can be detected with high accuracy. In addition, since at least one ferromagnetic material is installed on both sides of the magnetoelectric conversion element so as to sandwich the magnetosensitive surface of the magnetoelectric conversion element, a magnetic flux uniformly distributed in the magnetosensitive direction can be obtained in a wide range and with high accuracy. Not only can the current to be measured be detected, but also high-precision positioning of the magnetoelectric conversion element is not required, which has the effect of simplifying the manufacturing process and reducing costs.

また、感磁方向が面外方向である磁電変換素子をザグリ部内に収まるように設置する構成のため、高さ方向に多相電流の検出装置の寸法が拡大することなく、小型で、薄型に構成できる。  In addition, since the magnetoelectric transducer with the magnetosensitive direction being out-of-plane direction is installed so that it fits in the counterbore part, the size of the multiphase current detection device does not increase in the height direction, and it is small and thin. Can be configured.

実施の形態3.
図13は、この発明の実施の形態3による多相電流の検出装置1の斜視図を示すもので、図14は多相電流の検出装置1の平面図(XY面)、図15は図13および図14におけるAA断面(YZ面)を示す断面図である。図に示した多相電流の検出装置1は、例えば三相交流電流において、それぞれの相電流を相毎に設置した電流センサ2にて検出する例であり、一相分の電流センサ2は、ザグリ部11が設けられた一次導体4、磁電変換素子3および強磁性材5により構成され、磁電変換素子3は一次導体4の上部に設けた、磁気シールド板14を有するセンサ基板12に接続される。なお図において、一次導体4は、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。
本実施の形態3では、各一次導体4の一部にザグリ部11を形成し、各ザグリ部11内に1つの磁電変換素子3と2つの強磁性体5を配置し、各磁電変換素子3は磁気シールド板14を有したセンサ基板12に接続されて固定され、かつ各ザグリ部11が各一次導体4の長手方向に対して重複するように各一次導体4を略平行に配置したものである。
実施の形態3は、実施の形態2に磁気シールド板を有したセンサ基板を付加した構成であり、その他の構成で重複する部分は省略する。
Embodiment 3 FIG.
13 is a perspective view of a multiphase current detection device 1 according to Embodiment 3 of the present invention. FIG. 14 is a plan view (XY plane) of the multiphase current detection device 1, and FIG. It is sectional drawing which shows the AA cross section (YZ surface) in FIG. The multiphase current detection device 1 shown in the figure is an example in which, for example, in a three-phase alternating current, each phase current is detected by a current sensor 2 installed for each phase. The primary conductor 4 provided with the counterbore 11, the magnetoelectric conversion element 3, and the ferromagnetic material 5, and the magnetoelectric conversion element 3 is connected to a sensor substrate 12 having a magnetic shield plate 14 provided on the primary conductor 4. The In the figure, the primary conductor 4 is shown only in the vicinity of the current sensor 2 for simplicity, but it is actually extended and connected to a power source, various devices, and the like.
In the third embodiment, a counterbore part 11 is formed in a part of each primary conductor 4, one magnetoelectric conversion element 3 and two ferromagnetic bodies 5 are arranged in each counterbore part 11, and each magnetoelectric conversion element 3. Is connected to the sensor substrate 12 having the magnetic shield plate 14 and fixed, and the primary conductors 4 are arranged substantially in parallel so that the counterbore portions 11 overlap with the longitudinal direction of the primary conductors 4. is there.
The third embodiment is a configuration in which a sensor substrate having a magnetic shield plate is added to the second embodiment, and overlapping portions in other configurations are omitted.

本実施の形態における、多相電流の検出装置1の構成について説明する。センサ基板12の一面には、スペーサ17を介して強磁性体5を両側に付与した各磁電変換素子3を配置する。スペーサ17は、実施の形態2に示した所定の位置に各磁電変換素子3を機械的に設置するために設けるもので、被測定電流の検出に影響を加えない、例えば樹脂材のような非磁性部材を用いることが望ましい。また各磁電変換素子3は、後述のセンサ回路部13と接続するために、ワイヤボンディングや半田等を介してセンサ基板12と電気的にも接続される。センサ基板12の他面にはセンサ回路部13が設けられ、各磁電変換素子3へ電圧あるいは電流を供給すると共に、各磁電変換素子3の出力電圧または出力電流に適度な増幅や調整等を施して出力するが、外部の入出力端と電気的に接続するには、外部端子15を利用する。
センサ基板12の両側には、断面形状がL字型で一次導体4の縦寸法を少なくともカバーできる寸法を有した磁気シールド板14が設置されている。磁気シールド板14は、各磁電変換素子3に被測定電流の測定上、誤差として印加される主に感磁方向の外部磁界を除去あるいは低減するために設けるもので、例えばパーマロイのような強磁性部材を用いて、センサ基板12とネジ止め等により固定する。感磁方向であるY方向から印加される外部磁界が、各磁電変換素子3に付与されぬよう、特に中心線8aから逸れるように、断面形状がL字型であることが望ましいが、設置の都合等によりL字型でなく平板形状であっても、磁気シールドとしての効果は有する。なお磁気シールド板14をL字型としたため、図15ではL字形成部を直角として示したがこれに限るものではなく、特に中心線8aから外部磁界が逸れることが磁気シールド板14を設置する目的であるため、直角より大きな角度を有していても構わない。また他の実施の形態と同様に、多相電流検出時に他相の電流により発生する磁界の影響は受けない構成のため、磁気シールド板14は外部から印加される磁界のみの対応となり、センサ基板12の両側のみに設置すればよいため、多相電流の検出装置1は小型となる。
センサ基板12と1次導体4は、特に図示しないが接着剤や取付部材等を用いて固定する。取付部材は特に材料を限定しないが、非磁性で経時劣化の少ないものが望ましく、絶縁性や耐圧の効果を上げるために全体、あるいは一部を樹脂モールドしてもよい。
図15の断面図に示したように、センサ基板12の内層には導電性を有する電界シールド層16を設置する。電界シールド層16は、電流センサとしての性能を低下させるノイズとして、センサ回路部13へ印加される電界ノイズを、除去あるいは低減するためのもので、センサ回路部13と一次導体4の間に設置する必要があり、可能であれば磁電変換素子3やセンサ回路部13を覆うように設置するのが望ましい。電界シールド層16の材料は、導電性を有すればよく、例えば銅、アルミニウム等が考えられ、センサ基板12に設けた電気的なグランドと接続される。設置の形態としては、例えば多層基板の内層の少なくとも1層にグランド層を設けたものでもよい。
なお各電流センサ2の動作は、実施の形態2と同様であり、重複するため省略する。
The configuration of the multiphase current detection device 1 in the present embodiment will be described. On one surface of the sensor substrate 12, each magnetoelectric conversion element 3 provided with the ferromagnetic material 5 on both sides via the spacer 17 is disposed. The spacer 17 is provided to mechanically install each magnetoelectric conversion element 3 at the predetermined position shown in the second embodiment, and does not affect the detection of the current to be measured. It is desirable to use a magnetic member. Each magnetoelectric conversion element 3 is also electrically connected to the sensor substrate 12 via wire bonding, solder, or the like in order to connect to a sensor circuit unit 13 described later. A sensor circuit unit 13 is provided on the other surface of the sensor substrate 12 to supply a voltage or current to each magnetoelectric conversion element 3 and to appropriately amplify or adjust the output voltage or output current of each magnetoelectric conversion element 3. The external terminal 15 is used for electrical connection with an external input / output terminal.
On both sides of the sensor substrate 12, magnetic shield plates 14 having an L-shaped cross-section and a dimension that can cover at least the vertical dimension of the primary conductor 4 are installed. The magnetic shield plate 14 is provided to remove or reduce an external magnetic field mainly applied in the magnetic sensing direction as an error in measuring the current to be measured in each magnetoelectric conversion element 3. For example, a ferromagnetic shield such as permalloy. The member is fixed to the sensor substrate 12 by screws or the like. It is desirable that the cross-sectional shape is L-shaped so that the external magnetic field applied from the Y direction, which is the magnetic sensing direction, is not applied to each magnetoelectric conversion element 3, and particularly deviates from the center line 8a. Even if it is not L-shaped but has a flat plate shape, it has an effect as a magnetic shield. Note that since the magnetic shield plate 14 is L-shaped, the L-shaped portion is shown as a right angle in FIG. 15, but this is not restrictive, and the magnetic shield plate 14 is installed particularly when the external magnetic field deviates from the center line 8 a. For the purpose, it may have an angle larger than a right angle. Similarly to the other embodiments, since the configuration is not affected by the magnetic field generated by the current of the other phase at the time of detecting the multiphase current, the magnetic shield plate 14 corresponds only to the magnetic field applied from the outside. Therefore, the multi-phase current detection device 1 is small in size.
The sensor substrate 12 and the primary conductor 4 are fixed using an adhesive, a mounting member, or the like, although not particularly shown. The mounting member is not particularly limited in material, but is preferably non-magnetic and less deteriorated with time, and may be entirely or partially resin-molded in order to increase the effect of insulation and pressure resistance.
As shown in the cross-sectional view of FIG. 15, an electric field shield layer 16 having conductivity is provided on the inner layer of the sensor substrate 12. The electric field shield layer 16 is for removing or reducing electric field noise applied to the sensor circuit unit 13 as noise that degrades the performance as a current sensor, and is installed between the sensor circuit unit 13 and the primary conductor 4. If possible, it is desirable to install so as to cover the magnetoelectric conversion element 3 and the sensor circuit unit 13. The material of the electric field shield layer 16 may be conductive, for example, copper, aluminum or the like, and is connected to an electrical ground provided on the sensor substrate 12. As a form of installation, for example, a ground layer may be provided on at least one of the inner layers of the multilayer substrate.
The operation of each current sensor 2 is the same as that of the second embodiment, and is omitted because it overlaps.

図16は、この発明の実施の形態3による多相電流の検出装置1における別の断面図を示すものであり、磁気シールド板14の形状を除き、その他の構成で重複する部分は省略する。図15に示した先の例では、磁気シールド板14の断面形状はL字型としていたが、図16の例では磁気シールド板14の断面形状をU字型としたものである。先の例では、外部磁界を磁電変換素子3ならびに一次導体4の下側に逸らすように、磁気シールド板14の断面形状はL字型としていた。図16の例では、外部磁界を磁電変換素子3ならびに一次導体4の下側および上側に逸らすように、磁気シールド板14の断面形状はU字型としたものであり、U字型とすることで、さらに効果的に感磁方向の外部磁界を除去あるいは低減することが可能となる。  FIG. 16 shows another cross-sectional view of the multiphase current detection apparatus 1 according to Embodiment 3 of the present invention. Except for the shape of the magnetic shield plate 14, the overlapping portions in other configurations are omitted. In the previous example shown in FIG. 15, the cross-sectional shape of the magnetic shield plate 14 is L-shaped, but in the example of FIG. 16, the cross-sectional shape of the magnetic shield plate 14 is U-shaped. In the previous example, the cross-sectional shape of the magnetic shield plate 14 is L-shaped so that the external magnetic field is diverted to the lower side of the magnetoelectric conversion element 3 and the primary conductor 4. In the example of FIG. 16, the cross-sectional shape of the magnetic shield plate 14 is U-shaped so that the external magnetic field is diverted to the lower side and upper side of the magnetoelectric conversion element 3 and the primary conductor 4. Thus, it is possible to more effectively remove or reduce the external magnetic field in the magnetic sensitive direction.

以上のように、この実施の形態3によれば、少なくとも1枚の小型なセンサ基板で多相に対応でき、装置が小型となり、製造工程の簡略化ならびに低コスト化となる。  As described above, according to the third embodiment, at least one small sensor substrate can cope with multiple phases, the apparatus is downsized, the manufacturing process is simplified, and the cost is reduced.

また、センサ基板の内層にシールド層を設置することで、センサ回路部に対して、主に一次導体から生じる電界ノイズを除去あるいは低減することができるため、センサ出力が高精度化する。  Further, by providing a shield layer on the inner layer of the sensor substrate, electric field noise mainly generated from the primary conductor can be removed or reduced with respect to the sensor circuit unit, so that the sensor output is highly accurate.

また、センサ基板の両側に磁気シールド板を設置することで、磁電変換素子に対して、外部から印加される磁界を除去あるいは低減することができるため、センサ出力が高精度化する。  In addition, by installing magnetic shield plates on both sides of the sensor substrate, the magnetic field applied from the outside can be removed or reduced with respect to the magnetoelectric conversion element, so that the sensor output is highly accurate.

さらにまた、磁気シールド板は電流センサ毎ではなく、センサ基板の両側のみの設置でよいため、センサ基板、つまりは多相電流の検出装置は小型化する。  Furthermore, since the magnetic shield plate may be installed only on both sides of the sensor substrate, not for each current sensor, the sensor substrate, that is, the multi-phase current detection device is downsized.

1 多相電流の検出装置、2 電流センサ、3 磁電変換素子、4 一次導体、5 強磁性材、6 U字形成部、7 磁束線、8 中心線、9 感磁面、10 磁束ベクトル、11 ザグリ部、12 センサ基板、13 センサ回路部、14 磁気シールド板、15 外部端子、16 電界シールド層、17 スペーサDESCRIPTION OF SYMBOLS 1 Detection apparatus of multiphase current, 2 Current sensor, 3 Magnetoelectric conversion element, 4 Primary conductor, 5 Ferromagnetic material, 6 U-shaped formation part, 7 Magnetic flux line, 8 Center line, 9 Magnetosensitive surface, 10 Magnetic flux vector, 11 Counterbore part, 12 Sensor board, 13 Sensor circuit part, 14 Magnetic shield plate, 15 External terminal, 16 Electric field shield layer, 17 Spacer

Claims (5)

被測定電流がそれぞれに印加され、それぞれに少なくとも一つのザグリ部を有した複数の一次導体と、前記各一次導体の少なくとも一つの前記ザグリ部の内部において感磁面である面外方向に被測定電流により発生する磁束が印加されるように設置された少なくとも一つの磁電変換素子と、前記磁電変換素子の近傍に少なくとも一つの強磁性材とを備え、
前記ザグリ部とは異なる部位の前記一次導体断面の中心位置と前記磁電変換素子の感磁面の中心が略一致するとともに、
前記複数の一次導体は相互に略平行で同一平面内に配置されていることを特徴とする多相電流の検出装置。
A current to be measured is applied to each of the plurality of primary conductors each having at least one counterbore portion, and measurement is performed in an out-of-plane direction that is a magnetically sensitive surface inside at least one counterbore portion of each primary conductor. Comprising at least one magnetoelectric conversion element installed so that a magnetic flux generated by an electric current is applied, and at least one ferromagnetic material in the vicinity of the magnetoelectric conversion element,
The center position of the cross section of the primary conductor in a portion different from the counterbore part and the center of the magnetosensitive surface of the magnetoelectric transducer substantially coincide with each other,
The multi-phase current detection device, wherein the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.
被測定電流がそれぞれに印加され、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、前記一次導体のそれぞれのU字形成部の位置が前記一次導体の長手方向と垂直方向に略一致し、前記各一次導体の少なくとも一つの前記U字形成部の内部において感磁面である面外方向に被測定電流により発生する磁束が印加されるように設置された少なくとも一つの磁電変換素子と、前記磁電変換素子の近傍に少なくとも一つの強磁性材とを備えるとともに、前記複数の一次導体は相互に略平行で同一平面内に配置されていることを特徴とする多相電流の検出装置。A current to be measured is applied to each of the plurality of primary conductors each having at least one U-shaped portion, and the positions of the U-shaped portions of the primary conductor are perpendicular to the longitudinal direction of the primary conductor. At least one magnetoelectric conversion that is substantially coincident and is installed such that a magnetic flux generated by a current to be measured is applied in an out-of-plane direction that is a magnetic sensitive surface inside at least one of the U-shaped portions of each primary conductor. A multiphase current detection comprising: an element; and at least one ferromagnetic material in the vicinity of the magnetoelectric conversion element, wherein the plurality of primary conductors are substantially parallel to each other and arranged in the same plane. apparatus. 被測定電流がそれぞれに印加され、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、前記一次導体のそれぞれのU字形成部の位置が前記一次導体の長手方向と垂直方向に略一致し、前記各一次導体の少なくとも一つの前記U字形成部の内部において感磁面である面外方向に被測定電流により発生する磁束が印加されるように設置された少なくとも一つの磁電変換素子と、前記磁電変換素子の近傍に少なくとも一つの強磁性材とを備え、
前記U字形成部の断面の重心位置と前記磁電変換素子の感磁面の中心が略一致するとともに、
前記複数の一次導体は相互に略平行で同一平面内に配置されていることを特徴とする多相電流の検出装置。
A current to be measured is applied to each of the plurality of primary conductors each having at least one U-shaped portion, and the positions of the U-shaped portions of the primary conductor are perpendicular to the longitudinal direction of the primary conductor. At least one magnetoelectric conversion that is substantially coincident and is installed such that a magnetic flux generated by a current to be measured is applied in an out-of-plane direction that is a magnetic sensitive surface inside at least one of the U-shaped portions of each primary conductor. An element and at least one ferromagnetic material in the vicinity of the magnetoelectric conversion element,
The center of gravity position of the cross section of the U-shaped portion and the center of the magnetosensitive surface of the magnetoelectric transducer substantially coincide with each other,
The multi-phase current detection device, wherein the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.
前記強磁性材は、前記磁電変換素子の両側にそれぞれ少なくとも一つが、前記感磁面を挟み込むように設置されることを特徴とする請求項1または2または3に記載の多相電流の検出装置。4. The multiphase current detection device according to claim 1, wherein at least one of the ferromagnetic materials is disposed on both sides of the magnetoelectric conversion element so as to sandwich the magnetosensitive surface. 5. . 前記各磁電変換素子は少なくとも1枚のセンサ基板に設置され、前記センサ基板は前記磁電変換素子を前記ザグリ部、または前記U字形成部の所定の位置に保持するとともに、前記一次導体上に固定されることを特徴とする請求項4に記載の多相電流の検出装置。Each of the magnetoelectric conversion elements is installed on at least one sensor substrate, and the sensor substrate holds the magnetoelectric conversion element at a predetermined position of the counterbore part or the U-shaped formation part and is fixed on the primary conductor. The multiphase current detection device according to claim 4, wherein
JP2010094463A 2010-03-29 2010-03-29 Multiphase current detector Active JP5622027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094463A JP5622027B2 (en) 2010-03-29 2010-03-29 Multiphase current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094463A JP5622027B2 (en) 2010-03-29 2010-03-29 Multiphase current detector

Publications (2)

Publication Number Publication Date
JP2011209256A JP2011209256A (en) 2011-10-20
JP5622027B2 true JP5622027B2 (en) 2014-11-12

Family

ID=44940458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094463A Active JP5622027B2 (en) 2010-03-29 2010-03-29 Multiphase current detector

Country Status (1)

Country Link
JP (1) JP5622027B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006118A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Current sensor
JP6477089B2 (en) 2014-05-23 2019-03-06 株式会社デンソー Bus bar module with current sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874244B1 (en) * 1997-04-19 2002-01-30 LUST ANTRIEBSTECHNIK GmbH Procedure and apparatus for measuring electric currents in conductors
DE19838536A1 (en) * 1998-08-25 2000-03-02 Lust Antriebstechnik Gmbh Device and method for forming one or more magnetic field gradients through a straight conductor
JP3696448B2 (en) * 1999-09-02 2005-09-21 矢崎総業株式会社 Current detector
JP2005321206A (en) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp Current detection device
JP5107779B2 (en) * 2008-04-21 2012-12-26 矢崎総業株式会社 Current sensor
JP2009271044A (en) * 2008-05-07 2009-11-19 Kohshin Electric Corp Current sensor

Also Published As

Publication number Publication date
JP2011209256A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP2011080970A (en) Detection device of multiphase current
TWI574017B (en) Current sensor
EP2174152B1 (en) Current sensor having sandwiched magnetic permeability layer
JP2011145273A (en) Current sensor
JP5234459B2 (en) Current sensor
JP2011185914A (en) Current sensor
JP4853807B2 (en) Current sensing device
EP2347271A2 (en) Current sensor having field screening arrangement including electrical conductors sandwiching magnetic permeability layer
JP5630633B2 (en) Multiphase current detector
JP5641276B2 (en) Current sensor
JP2005321206A (en) Current detection device
WO2018051575A1 (en) Electric current sensor
JP2008016770A (en) Semiconductor module
JP5622027B2 (en) Multiphase current detector
JP4766477B2 (en) Current detection device and power conversion device including the same
JP5859273B2 (en) Distribution board
JP2018096793A (en) Current sensor
JP2009020085A (en) Multiphase current detector
JP5945975B2 (en) Bus bar module
JP2010256316A (en) Current sensor
JP5057245B2 (en) Current sensor
JP2009271044A (en) Current sensor
JP5458319B2 (en) Current sensor
JP6237525B2 (en) Current sensor
JP2008116429A (en) Magnetic sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5622027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250