JP5630633B2 - Multiphase current detector - Google Patents

Multiphase current detector Download PDF

Info

Publication number
JP5630633B2
JP5630633B2 JP2009265627A JP2009265627A JP5630633B2 JP 5630633 B2 JP5630633 B2 JP 5630633B2 JP 2009265627 A JP2009265627 A JP 2009265627A JP 2009265627 A JP2009265627 A JP 2009265627A JP 5630633 B2 JP5630633 B2 JP 5630633B2
Authority
JP
Japan
Prior art keywords
current
primary conductor
magnetic flux
conversion element
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009265627A
Other languages
Japanese (ja)
Other versions
JP2011095234A (en
Inventor
信幸 新地
信幸 新地
岡田 章
章 岡田
守夫 中住
守夫 中住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2009265627A priority Critical patent/JP5630633B2/en
Publication of JP2011095234A publication Critical patent/JP2011095234A/en
Application granted granted Critical
Publication of JP5630633B2 publication Critical patent/JP5630633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、被測定電流が印加される、ザグリ部あるいはU字形成部を有した複数の一次導体により多相が形成され、各ザグリ部あるいは各U字形成部の近傍において各相に印加された被測定電流を検出する、多相電流の検出装置に関するものである。  In the present invention, a polyphase is formed by a plurality of primary conductors having a counterbore or U-shaped portion to which a current to be measured is applied, and is applied to each phase in the vicinity of each counterbore or U-shaped portion. The present invention relates to a multiphase current detection device for detecting a measured current.

従来、非接触で被測定電流を計測する手法としては、一般的に、磁気コアを用いたものがある。磁気コアを利用した電流センサは、磁気コアを被測定電流の流れる導体を取り囲む様に設置し、磁気コアに設けたギャップ部とともに磁気回路を形成する。ギャップ部に設置した磁電変換素子を通じて、被測定電流により磁気回路に生じた磁束の大きさを測定することで、非接触で被測定電流の大きさを測定する。  Conventionally, as a method for measuring a current to be measured in a non-contact manner, there is generally a method using a magnetic core. In a current sensor using a magnetic core, the magnetic core is installed so as to surround a conductor through which a current to be measured flows, and a magnetic circuit is formed together with a gap portion provided in the magnetic core. The magnitude of the current to be measured is measured in a non-contact manner by measuring the magnitude of the magnetic flux generated in the magnetic circuit by the current to be measured through the magnetoelectric conversion element installed in the gap portion.

近年、小型化や軽量化、あるいは高精度化等を目的とし、特に大電流計測において磁気コアを用いないコアレスタイプの電流センサが提案されている。コアレスタイプの電流センサによる多相電流の検出装置としては、各表面実装型電流センサを、クランク状に2度直角に折り曲げた各被検出電流路の中央部に配置し、各被検出電流路を整列したものがある(例えば、特許文献1参照)。  In recent years, a coreless type current sensor that does not use a magnetic core has been proposed for the purpose of miniaturization, weight reduction, high accuracy, and the like, particularly in large current measurement. As a multiphase current detection device using a coreless type current sensor, each surface mount type current sensor is arranged in the center of each detected current path bent at a right angle in a crank shape twice, and each detected current path is Some are aligned (see, for example, Patent Document 1).

また、別の多相電流の検出装置としては、クランク状に折り曲げられた折り曲げ部を有する各被測定導体の折り曲げ部近傍に、各磁電変換素子を配置し、折り曲げ部が重複しないように各被測定導体を略平行に配置したものがある(例えば、特許文献2の図6参照)。  As another multiphase current detection device, each magnetoelectric conversion element is arranged in the vicinity of a bent portion of each conductor to be measured having a bent portion bent in a crank shape so that the bent portions do not overlap each other. There is one in which measurement conductors are arranged substantially in parallel (see, for example, FIG. 6 of Patent Document 2).

特開2005−233692公報  JP-A-2005-233692 特開2001−74783公報  JP 2001-74783 A

発明が解決しようとする課題Problems to be solved by the invention

前記特許文献1に開示されている多相電流検出装置は、表面実装型電流センサを用いて、多相電流を測定する場合、ある相の電流を検出する表面実装型電流センサが、他の相の電流により発生した磁界の影響を基本的には受けずに多相電流の検出ができる構成となっている。しかしながら、厳密には他相の被検出電流路からの漏れ磁界が表面実装型電流センサの感磁方向に印加される構成のため、各相を接近して小型、省スペースで設置する場合に検出誤差が発生し、小型化に向かないという問題点があった。  In the multiphase current detection device disclosed in Patent Document 1, when a multiphase current is measured by using a surface mount type current sensor, the surface mount type current sensor for detecting a current of a certain phase is different from the other phase. The multi-phase current can be detected without being basically affected by the magnetic field generated by the current. However, strictly speaking, since the leakage magnetic field from the detected current path of the other phase is applied in the direction of magnetic sensing of the surface mount type current sensor, it is detected when each phase is close and installed in a small space-saving manner. There was a problem that an error occurred and it was not suitable for miniaturization.

また前記特許文献2では、クランク状に折り曲げられた折り曲げ部を有する各被測定導体の折り曲げ部近傍に、感磁方向が面外方向である磁電変換素子をそれぞれに配置し、かつ折り曲げ部が重複しないように各被測定導体を略平行に配置しているため、他の相の電流により発生した磁界の影響を受けずに多相電流の検出ができる構成となっている。しかしながら、折り曲げ部が重複しないように折り曲げ部をずらして配置する必要があるため、それに伴い電流検出器が大型化するという問題点があった。また、同一基板上に各磁電変換素子を設置して構成する場合、電流検出器のみならず基板も大型化し、低コスト化に向かないという問題点があった。  Moreover, in the said patent document 2, the magnetoelectric conversion element whose magnetosensitive direction is an out-of-plane direction is each arrange | positioned in the vicinity of the bending part of each to-be-measured conductor which has the bending part bent in crank shape, and a bending part overlaps. Since the conductors to be measured are arranged substantially parallel to each other, the multiphase current can be detected without being affected by the magnetic field generated by the current of the other phase. However, since it is necessary to dispose the bent portions so that the bent portions do not overlap with each other, there is a problem that the current detector increases in size accordingly. Further, when each magnetoelectric conversion element is installed on the same substrate, there is a problem that not only the current detector but also the substrate is increased in size and is not suitable for cost reduction.

この発明は上記のような課題を鑑み、解決するためになされたもので、多相電流の検出時に他相電流の影響を低減し、各相においてより正確な電流を検出でき、かつ感磁方向が面外方向である磁電変換素子を用いても小型で、低コストな多相電流の検出装置を得ることを目的とする。  The present invention has been made in order to solve the problems as described above, reduces the influence of other phase currents when detecting a multiphase current, can detect a more accurate current in each phase, and has a magnetic sensing direction. An object of the present invention is to obtain a multi-phase current detection device that is small in size and low in cost even when using a magnetoelectric conversion element having an out-of-plane direction.

課題を解決するための手段Means for solving the problem

この発明に係わる多相電流の検出装置は、それぞれに少なくとも一つのザグリ部を有した複数の一次導体と、各一次導体の少なくとも一つの前記ザグリ部の内部において感磁面の面外方向に被測定電流により発生する磁束が印加されるように設置される少なくとも一つの磁電変換素子とを備え、ザグリ部とは異なる部位の一次導体断面の中心位置と磁電変換素子の感磁面が略一致するとともに、複数の一次導体は相互に略平行で同一平面内に配置したものである。  The multiphase current detection device according to the present invention includes a plurality of primary conductors each having at least one counterbore portion, and an inner surface of at least one counterbore portion of each primary conductor in a direction outside the surface of the magnetosensitive surface. At least one magnetoelectric conversion element installed so that a magnetic flux generated by the measurement current is applied, and the center position of the cross section of the primary conductor different from the counterbore part substantially coincides with the magnetosensitive surface of the magnetoelectric conversion element In addition, the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.

また、この発明に係わる多相電流の検出装置は、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、各一次導体の少なくとも一つの前記U字形成部の内部において感磁面の面外方向に被測定電流により発生する磁束が印加されるように設置される少なくとも一つの磁電変換素子とを備え、U字形成部とは異なる部位の一次導体断面の中心位置と磁電変換素子の感磁面が略一致するとともに、複数の一次導体は相互に略平行で同一平面内に配置したものである。  According to another aspect of the present invention, there is provided a multiphase current detection device including a plurality of primary conductors each having at least one U-shaped portion, and a magnetosensitive surface within at least one U-shaped portion of each primary conductor. And at least one magnetoelectric conversion element installed so that a magnetic flux generated by the current to be measured is applied in the out-of-plane direction, and the central position of the cross section of the primary conductor different from the U-shaped portion and the magnetoelectric conversion element These magnetic sensitive surfaces substantially coincide with each other, and the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.

また、この発明に係わる多相電流の検出装置は、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、各一次導体の少なくとも一つの前記U字形成部の内部において感磁面の面外方向に被測定電流により発生する磁束が印加されるように設置される少なくとも一つの磁電変換素子とを備え、U字形成部の断面の重心位置と磁電変換素子の感磁面が略一致するとともに、複数の一次導体は相互に略平行で同一平面内に配置したものである。  According to another aspect of the present invention, there is provided a multiphase current detection device including a plurality of primary conductors each having at least one U-shaped portion, and a magnetosensitive surface within at least one U-shaped portion of each primary conductor. At least one magnetoelectric conversion element installed so that a magnetic flux generated by the current to be measured is applied in the out-of-plane direction, and the position of the center of gravity of the cross section of the U-shaped portion and the magnetosensitive surface of the magnetoelectric conversion element are substantially The plurality of primary conductors are substantially parallel to each other and arranged in the same plane.

また、この発明に係わる多相電流の検出装置は、各磁電変換素子は少なくとも1枚のセンサ基板に設置され、センサ基板は、磁電変換素子をザグリ部、またはU字形成部の所定の位置に保持するとともに、一次導体上に固定されるものである。  In the multiphase current detection device according to the present invention, each magnetoelectric conversion element is installed on at least one sensor board, and the sensor board places the magnetoelectric conversion element at a predetermined position in the counterbore part or the U-shaped formation part. It is held and fixed on the primary conductor.

また、この発明に係わる多相電流の検出装置は、センサ基板の内部に導電性を有するシールド層を設置し、センサ基板の表面にセンサ回路部を設けたものである。  According to another aspect of the present invention, there is provided a multiphase current detection device in which a conductive shield layer is provided inside a sensor substrate, and a sensor circuit portion is provided on the surface of the sensor substrate.

発明の効果Effect of the invention

以上のように、この発明によれば、感磁方向が面外方向である磁電変換素子を、それぞれの一次導体のそれぞれのザグリ部に設置したため、それぞれの一次導体の長手方向においてそれぞれのザグリ部が相互に重複して設置されても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出する効果がある。
また、上述のようにザグリ部が相互に重複してもよく、ザグリ部をずらして配置する必要がないため、一次導体の長手方向に多相電流の検出装置の寸法が拡大することなく、小型化の効果がある。
As described above, according to the present invention, since the magnetoelectric conversion element whose magnetic sensing direction is the out-of-plane direction is installed in each counterbore part of each primary conductor, each counterbore part in the longitudinal direction of each primary conductor. Even if they are installed overlapping each other, there is an effect of reducing the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current and detecting the current to be measured with high accuracy.
Further, the counterbore portions may overlap each other as described above, and it is not necessary to displace the counterbore portions, so that the size of the multiphase current detection device does not increase in the longitudinal direction of the primary conductor, and the size is small. Has the effect of

また、感磁方向が面外方向である磁電変換素子を、それぞれの一次導体のそれぞれのU字形成部に設置したため、それぞれの一次導体の長手方向においてそれぞれのU字形成部が相互に重複して設置されても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出する効果がある。
また、上述のようにU字形成部が相互に重複してもよく、U字形成部をずらして配置する必要がないため、一次導体の長手方向に多相電流の検出装置の寸法が拡大することなく、小型化の効果がある。
In addition, since the magnetoelectric transducers having the magnetosensitive direction in the out-of-plane direction are installed in the respective U-shaped forming portions of the respective primary conductors, the respective U-shaped forming portions overlap each other in the longitudinal direction of the respective primary conductors. Even when installed, there is an effect of reducing the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current and detecting the current to be measured with high accuracy.
Further, as described above, the U-shaped forming portions may overlap each other, and it is not necessary to shift the U-shaped forming portions so that the dimensions of the multiphase current detecting device are increased in the longitudinal direction of the primary conductor. There is no effect of downsizing.

また、少なくとも1枚の小型なセンサ基板で多相に対応でき、装置が小型となり、製造工程の簡略化ならびに低コスト化の効果がある。  In addition, at least one small sensor substrate can cope with multiple phases, and the apparatus can be miniaturized, thereby simplifying the manufacturing process and reducing costs.

さらにまた、センサ基板内層にシールド層を設置することで、センサ回路部に対して、主に一次導体から生じる電界ノイズを除去あるいは低減することができるため、センサ出力の高精度化の効果がある。  Furthermore, by providing a shield layer on the inner layer of the sensor substrate, electric field noise mainly generated from the primary conductor can be removed or reduced with respect to the sensor circuit unit, which has the effect of increasing the accuracy of the sensor output. .

この発明の実施形態1による多相電流の検出装置の一次導体の斜視図である。It is a perspective view of the primary conductor of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による一つの電流センサにおけるザグリ部断面近傍の磁束線図である。It is a magnetic flux diagram of the counterbore part cross-section vicinity in one current sensor by Embodiment 1 of this invention. この発明の実施形態1による一つの電流センサの磁電変換素子における感磁部近傍の磁束ベクトル説明図である。It is magnetic flux vector explanatory drawing of the magnetic sensing part vicinity in the magnetoelectric conversion element of one current sensor by Embodiment 1 of this invention. この発明の実施形態1による一つの電流センサの別の磁電変換素子における感磁部近傍の磁束ベクトル説明図である。It is magnetic flux vector explanatory drawing of the magnetic sensing part vicinity in another magnetoelectric conversion element of one current sensor by Embodiment 1 of this invention. この発明の実施形態2による多相電流の検出装置の一次導体の斜視図である。It is a perspective view of the primary conductor of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による一つの電流センサにおけるU字形成部断面近傍の磁束線図である。It is a magnetic flux diagram of the U-shaped formation part cross section vicinity in one current sensor by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の別の一次導体の斜視図である。It is a perspective view of another primary conductor of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態3による多相電流の検出装置の斜視図である。It is a perspective view of the detection apparatus of the multiphase current by Embodiment 3 of this invention. この発明の実施形態3による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 3 of this invention. この発明の実施形態3による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 3 of this invention.

実施の形態1.
図1は、この発明の実施の形態1による多相電流の検出装置1における一次導体4のみの斜視図を示すもので、図2は多相電流の検出装置1の平面図(XY面)、図3は図1および図2におけるAA断面(YZ面)を示す断面図、図4は図1〜図3における一相分のAA断面(YZ面)において被測定電流印加時の磁束線図である。図に示した多相電流の検出装置1は、例えば三相交流電流において、それぞれの相電流を相毎に設置した電流センサ2にて検出する例であり、一相分の電流センサ2は、磁電変換素子3と一次導体4により構成され、さらに一次導体4はザグリ部5が設けられている。なお図において、一次導体4は、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。また、実際の装置構成では、磁電変換素子3はプリント基板等に接続されて設置されるが、ここでは省略し、他の実施の形態において説明する。
本実施の形態1では、各一次導体4の一部にザグリ部5を形成し、各ザグリ部5内に1つの磁電変換素子3を配置し、かつ各ザグリ部5が各一次導体4の長手方向に対して重複するように各一次導体4を略平行に配置したものである。
Embodiment 1 FIG.
FIG. 1 shows a perspective view of only a primary conductor 4 in a multiphase current detection apparatus 1 according to Embodiment 1 of the present invention. FIG. 2 is a plan view (XY plane) of the multiphase current detection apparatus 1. 3 is a cross-sectional view showing the AA cross section (YZ plane) in FIGS. 1 and 2, and FIG. 4 is a magnetic flux diagram at the time of applying the current to be measured in the AA cross section (YZ plane) for one phase in FIGS. is there. The multiphase current detection device 1 shown in the figure is an example in which, for example, in a three-phase alternating current, each phase current is detected by a current sensor 2 installed for each phase. It is composed of a magnetoelectric conversion element 3 and a primary conductor 4, and the primary conductor 4 is further provided with a counterbore part 5. In the figure, the primary conductor 4 is shown only in the vicinity of the current sensor 2 for simplicity, but it is actually extended and connected to a power source, various devices, and the like. In the actual apparatus configuration, the magnetoelectric conversion element 3 is installed connected to a printed circuit board or the like, but is omitted here and will be described in another embodiment.
In the first embodiment, counterbore portions 5 are formed in a part of each primary conductor 4, one magnetoelectric conversion element 3 is arranged in each counterbore portion 5, and each counterbore portion 5 is the longitudinal length of each primary conductor 4. The primary conductors 4 are arranged substantially in parallel so as to overlap with the direction.

まず、多相電流の検出装置1の全体構成、ならびに電流センサ2の構成について説明する。
図1に示すように、被測定電流を印加する各一次導体4は直線状の導体であり、ここでは三相電流の検出例であるため、3本の一次導体が略平行に配置されている。各一次導体4には、それぞれ電流センサ2が設けられ、各相の被測定電流値をそれぞれの電流センサ2にて検出する構成となっている。それぞれの電流センサ2は、各一次導体4の長手方向、つまりはX方向において、相互に重複する位置に設置される。
一相分の電流センサ2の構成について、まず一次導体4から説明する。各一次導体4の上面の一部には、ザグリ加工が施され、Z方向のザグリ深さは、少なくとも非ザグリ部である一次導体4のZ方向高さの半分以上となるように形成される。一次導体4のザグリ部5近傍において一次導体の占める断面積は、使用する磁電変換素子の種類にもよるが、概ね磁電変換素子3に付与したい磁束密度、つまりは検出する被測定電流の範囲に応じて決定される。大きな電流値まで検出するのであれば、ザグリ部5近傍における一次導体部分の電流密度を下げるために、断面積は大きいほうが望ましく、小さい電流値を検出するのであれば、ザグリ部5近傍における一次導体部分の電流密度を上げるために、断面積は小さいほうが望ましい。また、図2の平面図から明らかなように、各ザグリ部5は一次導体4の長手方向、つまりここではX方向に各ザグリ部5の位置が重複するように、一致させて設置される。このような一次導体4は、例えば銅などの金属板材から直方体状の一次導体4を切り出した後にザグリ部をザグリ加工にて形成して作製、もしくは鋳造等により作製される。
磁電変換素子3は各ザグリ部5に少なくとも1つ設置され、一次導体4とともに電流センサ2を構成する。一次導体4に被測定電流が印加されたとき、一次導体4の周囲には磁束が発生するが、ここでは、Y方向の磁束を磁電変換素子3の内部に設けられた感磁面8の面外で計測する、面外方向に感磁方向を有した素子を利用する。例えば上述の素子としては、ホール素子、あるいはホール素子と処理回路とを一体化したホールICなどを用いるが、これらに限るものではない。磁電変換素子3を設置する位置は、図3において説明すると、各磁電変換素子3の感磁面8がZ位置で略一致するとともに、各一次導体の非ザグリ部を貫通する中心線7aとも一致する位置とする。また、Y方向の位置は、各磁電変換素子3の各感磁面8が各一次導体4の中心線7bと一致する位置とする。
First, the overall configuration of the multiphase current detection device 1 and the configuration of the current sensor 2 will be described.
As shown in FIG. 1, each primary conductor 4 to which a current to be measured is applied is a linear conductor, and here is a detection example of a three-phase current, and therefore three primary conductors are arranged substantially in parallel. . Each primary conductor 4 is provided with a current sensor 2, and is configured such that each current sensor 2 detects a measured current value of each phase. Each current sensor 2 is installed at a position overlapping each other in the longitudinal direction of each primary conductor 4, that is, in the X direction.
The configuration of the current sensor 2 for one phase will be described first from the primary conductor 4. A part of the upper surface of each primary conductor 4 is subjected to counterbore processing, and the counterbored depth in the Z direction is formed to be at least half of the height in the Z direction of the primary conductor 4 which is a non-counterbore part. . The cross-sectional area occupied by the primary conductor in the vicinity of the counterbore part 5 of the primary conductor 4 depends on the type of the magnetoelectric conversion element to be used, but is approximately within the range of the magnetic flux density desired to be applied to the magnetoelectric conversion element 3, that is, the current to be measured to be detected. Will be decided accordingly. If a large current value is detected, it is desirable that the cross-sectional area is large in order to reduce the current density of the primary conductor portion in the vicinity of the counterbore part 5, and if a small current value is detected, the primary conductor in the vicinity of the counterbore part 5 In order to increase the current density of the portion, it is desirable that the cross-sectional area is small. Further, as is apparent from the plan view of FIG. 2, the counterbore portions 5 are installed so that the positions of the counterbore portions 5 overlap in the longitudinal direction of the primary conductor 4, that is, the X direction here. Such a primary conductor 4 is produced by cutting a rectangular parallelepiped primary conductor 4 from, for example, a metal plate material such as copper, and then forming a counterbored portion by counterboring, or by casting or the like.
At least one magnetoelectric conversion element 3 is installed in each counterbore part 5 and constitutes the current sensor 2 together with the primary conductor 4. When a current to be measured is applied to the primary conductor 4, a magnetic flux is generated around the primary conductor 4. Here, the surface of the magnetosensitive surface 8 provided inside the magnetoelectric conversion element 3 with the magnetic flux in the Y direction. An element having a magnetosensitive direction in an out-of-plane direction that is measured outside is used. For example, as the above-described element, a Hall element or a Hall IC in which a Hall element and a processing circuit are integrated is used, but the element is not limited thereto. The position where the magnetoelectric conversion element 3 is installed will be described with reference to FIG. 3. The magnetosensitive surface 8 of each magnetoelectric conversion element 3 substantially coincides with the Z position, and also coincides with the center line 7a penetrating the non-counterbore portion of each primary conductor. It is a position to do. The position in the Y direction is a position where each magnetosensitive surface 8 of each magnetoelectric conversion element 3 coincides with the center line 7 b of each primary conductor 4.

次に、電流センサ2の動作について説明する。図4は上述した位置に磁電変換素子3aを設置した場合、一相分のAA断面(YZ面)において、被測定電流印加時の一次導体4a周囲の磁束線6aと一部の磁束ベクトル9aを示すものである。一次導体4aのザグリ部5aにおいて、一次導体4aの断面は凹形状となる。そのため磁束線6aは一次導体4a近傍において、湾曲された楕円形状となる。そのとき、一次導体4aの外部における中心線7a上の磁束ベクトル9は、例えば磁束ベクトル9a1、磁束ベクトル9a2で示されるように、ザグリ部5の形状にもよるが、概ね中心線7aに対してZ方向、つまりY方向と直角方向となる。ただし感磁面8aにおいては、感磁方向と一致する磁束ベクトル9aが付与される。
図5は、磁電変換素子3aの感磁面8a.における磁束ベクトル9を示すものである。各一次導体4に被測定電流が流れると各一次導体4の周囲に被測定電流の大きさに応じて磁束が発生し、図3にて磁束の一例を破線の磁束線6で示すと、一次導体4aは磁束線6a、一次導体4bは磁束線6b、一次導体4cは磁束線6cとなる。これら各一次導体4にて発生する各磁束線6に起因した、磁電変換素子3aの感磁面8aにおける磁束ベクトル9は、一次導体4aは磁束ベクトル9a、一次導体4bは磁束ベクトル9b、一次導体4cは磁束ベクトル9cとなる。図5からわかるように、磁束ベクトル9bと磁束ベクトル9cは感磁面8aの感磁方向に対して面内方向となるため、磁電変換素子3aにおいて不感方向であり検出されず、検出されるのは感磁面8aの面外方向と一致する、一次導体4aによる磁束ベクトル9aのみとなる。このように磁電変換素子3aの感磁面8aが、一次導体4bと一次導体4cを貫通する中心線7aと略一致した場合、一次導体4bと一次導体4cにおいて発生する磁束ベクトル9bおよび磁束ベクトル9cは、感磁面8aの感磁方向に対して直角方向つまりは不感方向となるため、一次導体3aの被測定電流検出に影響を与えない。つまり他相の影響は受けず、検出すべき被測定電流にて発生する磁束を精度良く捉えることができる。
ここでは、一次導体4aにおける電流センサ2aについての動作のみ、図3、図4、図5を用いて説明したが、電流センサ2b、電流センサ2cについても、何れも他相の影響は受けない構成については同様である。
なお本実施の形態においては、一次導体の上面側にザグリ部を設置した構成としたが、一次導体の下面側にザグリ部を設置する構成としてもよく、また、ザグリ部の形状は角形に限るものではなく、丸形等であっても構わない。本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよく、各ザグリ部5が各一次導体4の長手方向に対して重複しないように各一次導体4を略平行に配置しても、他相の影響を受けることはない。また本実施の形態においては、各磁電変換素子3の感磁面8が、各磁電変換素子3内部の中央に位置せず、中央からシフトして設置されたものとしたがこれに限るものではなく、各磁電変換素子3内部の中央に感磁面8が位置しても構わない。
Next, the operation of the current sensor 2 will be described. In FIG. 4, when the magnetoelectric conversion element 3a is installed at the position described above, the magnetic flux line 6a around the primary conductor 4a and a part of the magnetic flux vector 9a at the time of applying the current to be measured are shown on the AA cross section (YZ plane) for one phase. It is shown. In the counterbore part 5a of the primary conductor 4a, the cross section of the primary conductor 4a has a concave shape. Therefore, the magnetic flux line 6a becomes a curved ellipse in the vicinity of the primary conductor 4a. At that time, the magnetic flux vector 9 on the center line 7a outside the primary conductor 4a is substantially relative to the center line 7a, although it depends on the shape of the counterbore part 5, as indicated by, for example, the magnetic flux vector 9a1 and the magnetic flux vector 9a2. The direction is the Z direction, that is, the direction perpendicular to the Y direction. However, on the magnetic sensitive surface 8a, a magnetic flux vector 9a coinciding with the magnetic sensitive direction is applied.
FIG. 5 shows the magnetosensitive surface 8a. The magnetic flux vector 9 in FIG. When a current to be measured flows through each primary conductor 4, a magnetic flux is generated around each primary conductor 4 according to the magnitude of the current to be measured. In FIG. 3, an example of the magnetic flux is indicated by a broken magnetic flux line 6. The conductor 4a becomes the magnetic flux line 6a, the primary conductor 4b becomes the magnetic flux line 6b, and the primary conductor 4c becomes the magnetic flux line 6c. The magnetic flux vector 9 on the magnetosensitive surface 8a of the magnetoelectric transducer 3a caused by the magnetic flux lines 6 generated in each primary conductor 4 is the primary conductor 4a magnetic flux vector 9a, the primary conductor 4b magnetic flux vector 9b, and the primary conductor. 4c becomes the magnetic flux vector 9c. As can be seen from FIG. 5, since the magnetic flux vector 9b and the magnetic flux vector 9c are in the in-plane direction with respect to the magnetic sensitive direction of the magnetic sensitive surface 8a, the magnetoelectric conversion element 3a is insensitive and not detected. Is only the magnetic flux vector 9a by the primary conductor 4a which coincides with the out-of-plane direction of the magnetic sensitive surface 8a. Thus, when the magnetosensitive surface 8a of the magnetoelectric transducer 3a substantially coincides with the center line 7a passing through the primary conductor 4b and the primary conductor 4c, the magnetic flux vector 9b and the magnetic flux vector 9c generated in the primary conductor 4b and the primary conductor 4c. Is in a direction perpendicular to the magnetic sensing direction of the magnetic sensing surface 8a, that is, the insensitive direction, and thus does not affect the detection of the current to be measured of the primary conductor 3a. That is, the magnetic flux generated by the current to be measured to be detected can be accurately captured without being influenced by other phases.
Here, only the operation for the current sensor 2a in the primary conductor 4a has been described with reference to FIGS. 3, 4, and 5. However, neither the current sensor 2b nor the current sensor 2c is affected by other phases. The same applies to.
In this embodiment, the counterbore part is installed on the upper surface side of the primary conductor. However, the counterbore part may be installed on the lower surface side of the primary conductor, and the shape of the counterbore part is limited to a square shape. It may be a round shape or the like. In the present embodiment, an example of detecting a three-phase AC current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases. Even if the primary conductors 4 are arranged substantially in parallel so as not to overlap with each other in the longitudinal direction, they are not affected by other phases. In the present embodiment, the magnetosensitive surface 8 of each magnetoelectric conversion element 3 is not located at the center inside each magnetoelectric conversion element 3, but is shifted from the center. However, the present invention is not limited to this. Alternatively, the magnetosensitive surface 8 may be located in the center of each magnetoelectric conversion element 3.

次に、磁電変換素子3を設置するZ方向の位置は、図3と同様とし、Y方向の位置を可変したときの例について示す。前述の例では、Y方向において、磁電変換素子3aの感磁面8aが一次導体4aの中心線7bと一致する位置としたが、ザグリ部5a内で磁電変換素子3aの感磁面8aが一次導体4aの中心線7bと一致しない位置とする。図6は、中心線7bと一致しない位置に磁電変換素子3aを設置した場合の、磁電変換素子3aの感磁面8aにおける磁束ベクトル9を示すものである。一次導体4bと一次導体4cにおいて発生する磁束ベクトル9bおよび9cは、感磁面8aに対して面内方向となり、一次導体3aの被測定電流測定に影響を与えないことについては、図5と同様である。磁電変換素子3aの感磁面8aが一次導体4aの中心線7bと一致しないため、一次導体4aによる磁束ベクトル9aの方向は、Y方向と一致せず、Y軸に対して角度を有した方向となる。そのため、磁電変換素子3aの感磁面8aにおいて、感磁方向であるY方向に付与される磁束は、磁束ベクトル9aをY方向に分解した磁束ベクトル9a’となり、磁束ベクトル9aを低めた値となる。よって、被測定電流が大電流であっても磁電変換素子3aに印加される磁束が抑制され、出力の飽和などを気にすることなく、かつ電流検出装置としての外形寸法を大型化することなく、大電流の検出が容易に行える。
なお、本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。
Next, the position in the Z direction where the magnetoelectric conversion element 3 is installed is the same as in FIG. 3, and an example in which the position in the Y direction is varied will be described. In the above example, in the Y direction, the magnetosensitive surface 8a of the magnetoelectric conversion element 3a is set to a position coincident with the center line 7b of the primary conductor 4a. However, the magnetosensitive surface 8a of the magnetoelectric conversion element 3a is primary in the counterbore portion 5a. The position does not coincide with the center line 7b of the conductor 4a. FIG. 6 shows the magnetic flux vector 9 on the magnetosensitive surface 8a of the magnetoelectric conversion element 3a when the magnetoelectric conversion element 3a is installed at a position not coincident with the center line 7b. The magnetic flux vectors 9b and 9c generated in the primary conductor 4b and the primary conductor 4c are in the in-plane direction with respect to the magnetic sensitive surface 8a, and do not affect the current measurement of the primary conductor 3a as in FIG. It is. Since the magnetosensitive surface 8a of the magnetoelectric transducer 3a does not coincide with the center line 7b of the primary conductor 4a, the direction of the magnetic flux vector 9a by the primary conductor 4a does not coincide with the Y direction and is an angle with respect to the Y axis. It becomes. Therefore, on the magnetic sensing surface 8a of the magnetoelectric transducer 3a, the magnetic flux applied in the Y direction, which is the magnetic sensing direction, becomes a magnetic flux vector 9a 'obtained by resolving the magnetic flux vector 9a in the Y direction, and a value obtained by lowering the magnetic flux vector 9a. Become. Therefore, even if the current to be measured is a large current, the magnetic flux applied to the magnetoelectric conversion element 3a is suppressed, without worrying about output saturation, etc., and without increasing the external dimensions of the current detection device. , Large current can be easily detected.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases.

以上のように、この実施の形態1によれば、磁電変換素子を設置した、それぞれのザグリ部をそれぞれの一次導体の長手方向において相互に重複するように、それぞれの一次導体を同一平面内に略平行で配置しても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出することができる。  As described above, according to the first embodiment, the primary conductors are arranged in the same plane so that the counterbore portions provided with the magnetoelectric conversion elements overlap each other in the longitudinal direction of the primary conductors. Even when arranged substantially in parallel, the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current can be reduced, and the current to be measured can be detected with high accuracy.

また、感磁方向が面外方向である磁電変換素子をザグリ部内に収まるように設置する構成のため、高さ方向に多相電流の検出装置の寸法が拡大することなく、小型で、薄型に構成できる。  In addition, since the magnetoelectric transducer with the magnetosensitive direction being out-of-plane direction is installed so that it fits in the counterbore part, the size of the multiphase current detection device does not increase in the height direction, and it is small and thin. Can be configured.

また、磁電変換素子の感磁方向への印加する磁束を、磁電変換素子の設置位置により可変できる構成としたため、大電流の検出が容易に可能となり、一次導体を含めた多相電流の検出装置の構造が小型にできる。  In addition, since the magnetic flux applied in the magnetic sensing direction of the magnetoelectric conversion element can be varied depending on the installation position of the magnetoelectric conversion element, a large current can be easily detected, and a multiphase current detection device including a primary conductor The structure can be made compact.

実施の形態2.
図7は、この発明の実施の形態2による多相電流の検出装置1における一次導体4のみの斜視図を示すもので、図8は多相電流の検出装置1の平面図(XY面)、図9は図7および図8におけるAA断面(YZ面)を示す断面図、図10は図7〜図9における一相分のAA断面(YZ面)において被測定電流印加時の磁束線図である。図に示した多相電流の検出装置1は、例えば三相交流電流において、それぞれの相電流を相毎に設置した電流センサ2にて検出する例であり、一相分の電流センサ2は、磁電変換素子3と一次導体4により構成され、さらに一次導体4にはU字形成部10が設けられている。なお図において一次導体4は、実施の形態1と同様に、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。また、実際の装置構成では、磁電変換素子3はプリント基板等に接続されて設置されるが、ここでは省略し、他の実施の形態において説明する。
本実施の形態2では、各一次導体4の一部にU字形成部10を形成し、各U字形成部10内に1つの磁電変換素子3を配置し、かつ各U字形成部10が各一次導体4の長手方向に対して重複するように各一次導体4を略平行に配置したものである。
実施の形態2は、実施の形態1で各一次導体4に設けたザグリ部をU字形成部に変更した構成であり、その他の構成や動作で重複する部分は省略する。
Embodiment 2. FIG.
FIG. 7 shows a perspective view of only the primary conductor 4 in the multiphase current detection apparatus 1 according to Embodiment 2 of the present invention. FIG. 8 is a plan view (XY plane) of the multiphase current detection apparatus 1. 9 is a cross-sectional view showing the AA cross section (YZ plane) in FIGS. 7 and 8. FIG. 10 is a magnetic flux diagram at the time of applying the current to be measured in the AA cross section (YZ plane) for one phase in FIGS. is there. The multiphase current detection device 1 shown in the figure is an example in which, for example, in a three-phase alternating current, each phase current is detected by a current sensor 2 installed for each phase. The magnetoelectric conversion element 3 and the primary conductor 4 are configured, and the primary conductor 4 is provided with a U-shaped forming portion 10. In the figure, the primary conductor 4 is shown only in the vicinity of the current sensor 2 for the sake of simplicity, as in the first embodiment, but is actually extended and connected to a power source and various devices. In the actual apparatus configuration, the magnetoelectric conversion element 3 is installed connected to a printed circuit board or the like, but is omitted here and will be described in another embodiment.
In the second embodiment, a U-shaped forming portion 10 is formed on a part of each primary conductor 4, one magnetoelectric conversion element 3 is disposed in each U-shaped forming portion 10, and each U-shaped forming portion 10 is Each primary conductor 4 is arranged substantially in parallel so as to overlap with the longitudinal direction of each primary conductor 4.
The second embodiment is a configuration in which the counterbore portion provided in each primary conductor 4 in the first embodiment is changed to a U-shaped formation portion, and the redundant portions in other configurations and operations are omitted.

一相分の電流センサ2の構成について、まず一次導体4から説明する。各一次導体4の一部には、U字形成部10が形成される。U字形成部10の断面積は、使用する磁電変換素子の種類にもよるが、概ね磁電変換素子3に付与したい磁束密度、つまりは検出する被測定電流の範囲に応じて決定される。大きな電流値まで検出するのであれば、U字形成部10近傍における電流密度を下げるために、断面積は大きい、つまりはU字形状が大きいほうが望ましく、小さい電流値を検出するのであれば、U字形成部10近傍における電流密度を上げるために、断面積は小さい、つまりはU字形状が小さいほうが望ましい。また、図8の平面図から明らかなように、各U字形成部10は一次導体4の長手方向、つまりここではX方向に各U字形成部10の位置が重複するように、一致させて設置される。このような一次導体4は、例えば銅などの金属板材から凸形状への切り出しと凸部をU字形状に加工する曲げ加工の組合せ、もしくは鋳造等により作製される。なおU字形成部10のX方向の長さであるが、安定してU字形成部10に被測定電流を流すためには、設置する磁電変換素子3のX方向長さの少なくとも5倍以上であることが望ましい。
磁電変換素子3は各U字形成部10の内部に少なくとも1つ設置され、電流センサ2を構成する。一次導体4に被測定電流が印加されたとき、一次導体4の周囲には磁束が発生するが、本実施の形態でも、Y方向の磁束を磁電変換素子3の面外で計測する、例えば上述の素子としては、ホール素子、あるいはホール素子と処理回路とを一体化したホールICなどを用いるが、これらに限るものではない。磁電変換素子3を設置する位置は、図9において説明すると、各磁電変換素子3の感磁面8がZ位置で略一致するとともに、各U字形成部10の重心位置に略一致する位置とする。また、Y方向の位置は、各磁電変換素子3の各感磁面8が各U字形成部10の中心線7bと一致する位置とする。
The configuration of the current sensor 2 for one phase will be described first from the primary conductor 4. A U-shaped forming portion 10 is formed on a part of each primary conductor 4. Although the cross-sectional area of the U-shaped forming part 10 depends on the type of the magnetoelectric conversion element to be used, it is generally determined according to the magnetic flux density to be applied to the magnetoelectric conversion element 3, that is, the range of the current to be detected. If a large current value is to be detected, it is desirable that the cross-sectional area is large, that is, that the U-shape is large in order to reduce the current density in the vicinity of the U-shaped portion 10, and if a small current value is to be detected, U In order to increase the current density in the vicinity of the character forming portion 10, it is desirable that the cross-sectional area is small, that is, the U-shape is small. Further, as is apparent from the plan view of FIG. 8, the U-shaped portions 10 are aligned so that the positions of the U-shaped portions 10 overlap in the longitudinal direction of the primary conductor 4, that is, the X direction here. Installed. Such a primary conductor 4 is produced by, for example, a combination of cutting a metal plate material such as copper into a convex shape and bending the convex portion into a U shape, or casting. The length in the X direction of the U-shaped portion 10 is at least five times the length in the X direction of the magnetoelectric transducer 3 to be installed in order to allow the current to be measured to flow stably through the U-shaped portion 10. It is desirable that
At least one magnetoelectric conversion element 3 is installed inside each U-shaped forming portion 10 and constitutes a current sensor 2. When a current to be measured is applied to the primary conductor 4, a magnetic flux is generated around the primary conductor 4. Even in this embodiment, the magnetic flux in the Y direction is measured out of the plane of the magnetoelectric transducer 3. As the element, a Hall element or a Hall IC in which a Hall element and a processing circuit are integrated is used, but the element is not limited thereto. The position where the magnetoelectric conversion element 3 is installed will be described with reference to FIG. 9. To do. The position in the Y direction is a position where each magnetosensitive surface 8 of each magnetoelectric conversion element 3 coincides with the center line 7 b of each U-shaped portion 10.

次に、電流センサ2の動作について図9、図10により説明する。図10は上述した位置に磁電変換素子3aを設置した場合、一相分のAA断面(YZ面)において、被測定電流印加時の一次導体4a周囲の磁束線6aと一部の磁束ベクトル9aを示すものである。一次導体4aのU字形成部10aにおいて、その断面は凹形状となる。そのため磁束線6aはU字形成部10a近傍において、湾曲された楕円形状となる。そのとき、U字形成部10aの重心を貫通する中心線7a上の磁束ベクトル9は、例えば磁束ベクトル9a1、磁束ベクトル9a2で示されるように、U字形成部10aの形状にもよるが、概ね中心線7aに対してZ方向、つまりY方向と直角方向となる。ただし感磁面8aにおいては、感磁方向と一致する磁束ベクトル9aが付与される。
三相での動作を図9で説明する。なお磁束ベクトル説明図は図5と同等となる。各一次導体4に被測定電流が流れると各一次導体4の周囲に被測定電流の大きさに応じて磁束が発生し、磁束の一例を破線の磁束線6で示すと、一次導体4aは磁束線6a、一次導体4bは磁束線6b、一次導体4cは磁束線6cとなる。これら各一次導体4にて発生する各磁束線6に起因した、磁電変換素子3aの感磁面8aにおける磁束ベクトル9は、一次導体4aは磁束ベクトル9a、一次導体4bは磁束ベクトル9b、一次導体4cは磁束ベクトル9cとなる。図5からわかるように、磁束ベクトル9bと磁束ベクトル9cは感磁面8aに対して面内方向となるため、磁電変換素子3aにおいて不感方向であり検出されず、検出されるのは感磁面8aの面外方向と一致する、一次導体4aによる磁束ベクトル9aのみとなる。このように磁電変換素子3aの感磁面8aが、U字形成部10bとU字形成部10cの重心位置を貫通する中心線7aと一致した場合、一次導体4bと一次導体4cにおいて発生する磁束ベクトル9bおよび9cは、感磁面8aに対して面内方向つまりは不感方向となるため、一次導体3aの被測定電流測定に影響を与えない。つまり他相の影響は受けず、検出すべき被測定電流にて発生する磁束を精度良く捉えることができる。
ここでは、一次導体4aにおける電流センサ2aについての動作のみ、図5、図9、図10を用いて説明したが、電流センサ2b、電流センサ2cが、X方向において、相互に重複した位置に設置されても、何れも他相の影響は受けない構成については同様である。
なお本実施の形態においては、一次導体の一部にU字形成部を設置した構成としたが、一次導体の一部に逆向きのU字形成部、つまり凸状のU字形成部を設置する構成としてもよく、また、U字形成部のU字底部の形状は円弧状に限るものではなく、角形等であっても構わない。本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよく、各U字形成部10が各一次導体4の長手方向に対して重複しないように各一次導体4を略平行に配置しても、他相の影響を受けることはない。ただしU字形成部10が重複しない場合、U字形成部10内に設置した磁電変換素子3の感磁面8が、他の一次導体4の非U字形成部を貫通する中心線と一致するように構成することが前提となる。
Next, the operation of the current sensor 2 will be described with reference to FIGS. In FIG. 10, when the magnetoelectric conversion element 3a is installed at the position described above, the magnetic flux line 6a around the primary conductor 4a and a part of the magnetic flux vector 9a when the current to be measured is applied are taken along the AA cross section (YZ plane) for one phase. It is shown. In the U-shaped formation part 10a of the primary conductor 4a, the cross section has a concave shape. Therefore, the magnetic flux line 6a becomes a curved elliptical shape in the vicinity of the U-shaped forming portion 10a. At that time, the magnetic flux vector 9 on the center line 7a penetrating the center of gravity of the U-shaped portion 10a is generally based on the shape of the U-shaped portion 10a as shown by the magnetic flux vector 9a1 and the magnetic flux vector 9a2, for example. The center line 7a is in the Z direction, that is, the direction perpendicular to the Y direction. However, on the magnetic sensitive surface 8a, a magnetic flux vector 9a coinciding with the magnetic sensitive direction is applied.
The operation in three phases will be described with reference to FIG. The magnetic flux vector explanatory diagram is the same as FIG. When a current to be measured flows through each primary conductor 4, a magnetic flux is generated around each primary conductor 4 according to the magnitude of the current to be measured. When an example of the magnetic flux is indicated by a broken magnetic flux line 6, the primary conductor 4 a The line 6a and the primary conductor 4b become the magnetic flux line 6b, and the primary conductor 4c becomes the magnetic flux line 6c. The magnetic flux vector 9 on the magnetosensitive surface 8a of the magnetoelectric transducer 3a caused by the magnetic flux lines 6 generated in each primary conductor 4 is the primary conductor 4a magnetic flux vector 9a, the primary conductor 4b magnetic flux vector 9b, and the primary conductor. 4c becomes the magnetic flux vector 9c. As can be seen from FIG. 5, since the magnetic flux vector 9b and the magnetic flux vector 9c are in the in-plane direction with respect to the magnetosensitive surface 8a, the magnetoelectric transducer 3a is insensitive and is not detected. Only the magnetic flux vector 9a by the primary conductor 4a coincides with the out-of-plane direction of 8a. Thus, when the magnetosensitive surface 8a of the magnetoelectric transducer 3a coincides with the center line 7a passing through the center of gravity of the U-shaped portion 10b and the U-shaped portion 10c, the magnetic flux generated in the primary conductor 4b and the primary conductor 4c. Since the vectors 9b and 9c are in the in-plane direction, that is, the insensitive direction with respect to the magnetic sensitive surface 8a, they do not affect the current measurement of the primary conductor 3a. That is, the magnetic flux generated by the current to be measured to be detected can be accurately captured without being influenced by other phases.
Here, only the operation of the current sensor 2a in the primary conductor 4a has been described with reference to FIGS. 5, 9, and 10. However, the current sensor 2b and the current sensor 2c are installed at positions overlapping each other in the X direction. However, the same applies to the configuration that is not affected by other phases.
In this embodiment, the U-shaped forming part is installed on a part of the primary conductor, but the reverse U-shaped forming part, that is, the convex U-shaped forming part is installed on a part of the primary conductor. In addition, the shape of the U-shaped bottom portion of the U-shaped forming portion is not limited to the arc shape, and may be a square shape or the like. In the present embodiment, a three-phase AC current detection example has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases. Even if the primary conductors 4 are arranged substantially in parallel so as not to overlap with the longitudinal direction of the four, they are not affected by other phases. However, when the U-shaped portion 10 does not overlap, the magnetosensitive surface 8 of the magnetoelectric conversion element 3 installed in the U-shaped portion 10 coincides with the center line penetrating the non-U-shaped portion of the other primary conductor 4. It is assumed that this is configured.

図11は、この発明の実施の形態2による多相電流の検出装置1における別の一次導体4のみの斜視図を示すものであり、一次導体の構成を除き、その他の構成で重複する部分は省略する。図7等に示した先の例では、U字形成部は一次導体の一部である凸部に加工を施すことで形成していたが、図11の例では予めU字形成部を形成しておき、その両端部に一次導体を連結した構造をとるものである。特に連結の手法については図示していないが、ネジ止めやロー付け等で発熱を防ぐために密着して連結するのが望ましいものの、これらの手法に限るものではない。先の例では一次導体とU字形成部が一体化しているという利点があるが、板材から切り出して作製する場合、どうしても捨てる部分が発生し、ムダがあった。図11の例では、U字形成部と一次導体の連結に工数が発生するが、材料取りでのムダを防ぐことが可能となる。  FIG. 11 shows a perspective view of only another primary conductor 4 in the multiphase current detection device 1 according to Embodiment 2 of the present invention. Except for the configuration of the primary conductor, the overlapping parts in other configurations are as follows. Omitted. In the previous example shown in FIG. 7 and the like, the U-shaped forming part is formed by processing the convex part which is a part of the primary conductor, but in the example of FIG. 11, the U-shaped forming part is formed in advance. The primary conductor is connected to both ends thereof. In particular, the connection method is not shown in the figure, but it is desirable to connect in close contact in order to prevent heat generation by screwing or brazing, but it is not limited to these methods. In the previous example, there is an advantage that the primary conductor and the U-shaped forming portion are integrated, but when cut out from the plate material, a portion to be discarded is inevitably generated and wasted. In the example of FIG. 11, man-hours are generated in the connection between the U-shaped forming portion and the primary conductor, but it is possible to prevent waste during material removal.

以上のように、この実施の形態2によれば、磁電変換素子を設置した、それぞれのU字形成部をそれぞれの一次導体の長手方向において相互に重複するように、それぞれの一次導体を同一平面内に略平行で配置しても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出することができる。  As described above, according to the second embodiment, the primary conductors are arranged on the same plane so that the U-shaped portions provided with the magnetoelectric transducers overlap each other in the longitudinal direction of the primary conductors. Even when arranged in parallel, the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current can be reduced, and the current to be measured can be detected with high accuracy.

また、感磁方向が面外方向である磁電変換素子をU字形成部内に収まるように設置する構成のため、幅方向に多相電流の検出装置の寸法が拡大することなく、小型に構成できる。  In addition, since the magnetoelectric conversion element having a magnetosensitive direction in the out-of-plane direction is installed so as to be accommodated in the U-shaped portion, the size of the multiphase current detection device can be reduced in size in the width direction without increasing the size. .

実施の形態3.
図12は、この発明の実施の形態3による多相電流の検出装置1の斜視図を示すもので、図13は多相電流の検出装置1の平面図(XY面)、図14は図12および図13におけるAA断面(YZ面)を示す断面図である。図に示した多相電流の検出装置1は、例えば三相交流電流において、それぞれの相電流を相毎に設置した電流センサ2にて検出する例であり、一相分の電流センサ2は、ザグリ部5が設けられた一次導体4と磁電変換素子3により構成され、磁電変換素子3は一次導体4の上部に設けたセンサ基板11に接続される。なお図において、一次導体4は、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする
本実施の形態3では、各一次導体4の一部にザグリ部5を形成し、各ザグリ部5内に1つの磁電変換素子3を配置し、各磁電変換素子3はセンサ基板11に接続されて固定され、かつ各ザグリ部5が各一次導体4の長手方向に対して重複するように各一次導体4を略平行に配置したものである。
実施の形態3は、実施の形態1にセンサ基板を付加した構成であり、その他の構成で重複する部分は省略する。
Embodiment 3 FIG.
12 is a perspective view of a multiphase current detection device 1 according to Embodiment 3 of the present invention. FIG. 13 is a plan view (XY plane) of the multiphase current detection device 1, and FIG. It is sectional drawing which shows the AA cross section (YZ surface) in FIG. The multiphase current detection device 1 shown in the figure is an example in which, for example, in a three-phase alternating current, each phase current is detected by a current sensor 2 installed for each phase. A primary conductor 4 provided with a counterbore part 5 and a magnetoelectric conversion element 3 are configured. The magnetoelectric conversion element 3 is connected to a sensor substrate 11 provided on the upper part of the primary conductor 4. In the drawing, the primary conductor 4 is shown only in the vicinity of the current sensor 2 for the sake of simplicity. However, in the present embodiment 3, each primary conductor 4 is assumed to be extended and connected to a power source, various devices, and the like. A counterbore part 5 is formed in part, one magnetoelectric conversion element 3 is arranged in each counterbore part 5, each magnetoelectric conversion element 3 is connected and fixed to the sensor substrate 11, and each counterbore part 5 is each primary The primary conductors 4 are arranged substantially in parallel so as to overlap with the longitudinal direction of the conductors 4.
The third embodiment has a configuration in which a sensor substrate is added to the first embodiment, and the overlapping portions in other configurations are omitted.

本実施の形態における、多相電流の検出装置1の構成について説明する。センサ基板11の一面には、スペーサ15を介して各磁電変換素子3を配置する。スペーサ15は、実施の形態1に示した所定の位置に各磁電変換素子3を機械的に設置するために設けるもので、被測定電流の検出に影響を加えない、例えば樹脂材のような非磁性部材を用いることが望ましい。また各磁電変換素子3は、後述のセンサ回路部12と接続するために、ワイヤボンディングや半田等を介してセンサ基板11と電気的にも接続される。センサ基板11の他面にはセンサ回路部12が設けられ、各磁電変換素子3へ電圧あるいは電流を供給すると共に、各磁電変換素子3の出力電圧または出力電流に適度な増幅や調整等を施して出力するが、外部の入出力端と電気的に接続するには、外部端子13を利用する。
センサ基板11と1次導体4は、特に図示しないが接着剤や取付部材等を用いて固定する。取付部材は特に材料を限定しないが、非磁性で経時劣化の少ないものが望ましく、絶縁性や耐圧の効果を上げるために全体、あるいは一部を樹脂モールドしてもよい。
図14の断面図に示したように、センサ基板11の内層には導電性を有する電界シールド層14を設置する。電界シールド層14は、電流センサとしての性能を低下させるノイズとして、センサ回路部12へ印加される電界ノイズを、除去あるいは低減するためのもので、センサ回路部12と一次導体4の間に設置する必要があり、可能であれば磁電変換素子3やセンサ回路部12を覆うように設置するのが望ましい。電界シールド層14の材料は、導電性を有すればよく、例えば銅、アルミニウム等が考えられ、センサ基板11に設けた電気的なグランドと接続される。設置の形態としては、例えば多層基板の内層の少なくとも1層にグランド層を設けたものでもよい。
なお各電流センサ2の動作は、実施の形態1と同様であり、重複するため省略する。
The configuration of the multiphase current detection device 1 in the present embodiment will be described. Each magnetoelectric conversion element 3 is arranged on one surface of the sensor substrate 11 via a spacer 15. The spacer 15 is provided to mechanically install each magnetoelectric conversion element 3 at the predetermined position shown in the first embodiment, and does not affect the detection of the current to be measured. It is desirable to use a magnetic member. Each magnetoelectric conversion element 3 is also electrically connected to the sensor substrate 11 via wire bonding, solder, or the like in order to connect to a sensor circuit unit 12 described later. A sensor circuit unit 12 is provided on the other surface of the sensor substrate 11 to supply voltage or current to each magnetoelectric conversion element 3 and to perform appropriate amplification or adjustment on the output voltage or output current of each magnetoelectric conversion element 3. The external terminal 13 is used for electrical connection with an external input / output terminal.
The sensor substrate 11 and the primary conductor 4 are fixed using an adhesive, a mounting member, or the like, although not particularly shown. The mounting member is not particularly limited in material, but is preferably non-magnetic and less deteriorated with time, and may be entirely or partially resin-molded in order to increase the effect of insulation and pressure resistance.
As shown in the cross-sectional view of FIG. 14, the electric field shield layer 14 having conductivity is provided on the inner layer of the sensor substrate 11. The electric field shield layer 14 is for removing or reducing electric field noise applied to the sensor circuit unit 12 as noise that degrades the performance as a current sensor, and is installed between the sensor circuit unit 12 and the primary conductor 4. If possible, it is desirable to install so as to cover the magnetoelectric conversion element 3 and the sensor circuit unit 12. The material of the electric field shield layer 14 may be conductive, for example, copper, aluminum or the like, and is connected to an electrical ground provided on the sensor substrate 11. As a form of installation, for example, a ground layer may be provided on at least one of the inner layers of the multilayer substrate.
The operation of each current sensor 2 is the same as that of the first embodiment, and is omitted because it is duplicated.

以上のように、この実施の形態3によれば、磁電変換素子を設置した、それぞれのザグリ部をそれぞれの一次導体の長手方向において相互に重複するように、それぞれの一次導体を同一平面内に略平行で配置しても、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、精度良く被測定電流を検出することができる。  As described above, according to the third embodiment, the primary conductors are arranged in the same plane so that the counterbore portions provided with the magnetoelectric transducers overlap each other in the longitudinal direction of the primary conductors. Even when arranged substantially in parallel, the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current can be reduced, and the current to be measured can be detected with high accuracy.

また、ザグリ部内に収まるように、感磁方向が面外方向である磁電変換素子をザグリ部内に設置しセンサ基板11と接続する構成のため、高さ方向ならびに幅方向に多相電流の検出装置の寸法が拡大することなく、小型、薄型に構成できる。  In addition, since the magnetoelectric transducer having a magnetosensitive direction that is out-of-plane direction is installed in the counterbore part and connected to the sensor substrate 11 so as to be accommodated in the counterbore part, a multiphase current detection device in the height direction and the width direction is provided. The size can be reduced in size and thickness without increasing the size.

また、少なくとも1枚の小型なセンサ基板で多相に対応でき、装置が小型となり、製造工程の簡略化ならびに低コスト化となる。  In addition, at least one small sensor substrate can cope with multiple phases, the apparatus becomes small, and the manufacturing process is simplified and the cost is reduced.

さらにまた、センサ基板の内層にシールド層を設置することで、センサ回路部に対して、主に一次導体から生じる電界ノイズを除去あるいは低減することができるため、センサ出力が高精度化する。  Furthermore, by providing a shield layer on the inner layer of the sensor substrate, electric field noise mainly generated from the primary conductor can be removed or reduced with respect to the sensor circuit unit, so that the sensor output is highly accurate.

1 多相電流の検出装置、2 電流センサ、3 磁電変換素子、4 一次導体、5 ザグリ部、6 磁束線、7 中心線、8 感磁面、9 磁束ベクトル、10 U字形成部、11 センサ基板、12 センサ回路部、13 外部端子、14 シールド層、15 スペーサDESCRIPTION OF SYMBOLS 1 Detection apparatus of multiphase current, 2 Current sensor, 3 Magnetoelectric conversion element, 4 Primary conductor, 5 Counterbore part, 6 Magnetic flux line, 7 Center line, 8 Magnetic sensing surface, 9 Magnetic flux vector, 10 U-shaped formation part, 11 Sensor Board, 12 Sensor circuit, 13 External terminal, 14 Shield layer, 15 Spacer

Claims (5)

被測定電流がそれぞれに印加され、それぞれに少なくとも一つのザグリ部を有した複数の一次導体と、前記各一次導体の少なくとも一つの前記ザグリ部の内部において感磁面の面外方向に被測定電流により発生する磁束が印加されるように設置された少なくとも一つの磁電変換素子とを備え、
前記ザグリ部とは異なる部位の前記一次導体断面の中心位置と前記磁電変換素子の感磁面が略一致するとともに、
前記複数の一次導体は相互に略平行で同一平面内に配置されていることを特徴とする多相電流の検出装置。
A current to be measured is applied to each of the plurality of primary conductors each having at least one counterbore, and the current to be measured in the out-of-plane direction of the magnetosensitive surface inside at least one of the counterbore of each primary conductor. And at least one magnetoelectric conversion element installed so that the magnetic flux generated by
While the center position of the cross section of the primary conductor of the part different from the counterbore part and the magnetosensitive surface of the magnetoelectric conversion element substantially coincide,
The multi-phase current detection device, wherein the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.
被測定電流がそれぞれに印加され、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、前記各一次導体の少なくとも一つの前記U字形成部の内部において感磁面の面外方向に被測定電流により発生する磁束が印加されるように設置された少なくとも一つの磁電変換素子とを備え、
前記U字形成部とは異なる部位の前記一次導体断面の中心位置と前記磁電変換素子の感磁面が略一致するとともに、
前記複数の一次導体は相互に略平行で同一平面内に配置されていることを特徴とする多相電流の検出装置。
A plurality of primary conductors each having a current to be measured, each having at least one U-shaped portion, and an out-of-plane direction of the magnetosensitive surface within at least one U-shaped portion of each primary conductor And at least one magnetoelectric transducer installed so that a magnetic flux generated by the current to be measured is applied to
While the central position of the cross section of the primary conductor at a site different from the U-shaped portion and the magnetosensitive surface of the magnetoelectric transducer substantially coincide,
The multi-phase current detection device, wherein the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.
被測定電流がそれぞれに印加され、それぞれに少なくとも一つのU字形成部を有した複数の一次導体と、前記各一次導体の少なくとも一つの前記U字形成部の内部において感磁面の面外方向に被測定電流により発生する磁束が印加されるように設置された少なくとも一つの磁電変換素子とを備え、
前記U字形成部の断面の重心位置と前記磁電変換素子の感磁面が略一致するとともに、
前記複数の一次導体は相互に略平行で同一平面内に配置されていることを特徴とする多相電流の検出装置。
A plurality of primary conductors each having a current to be measured, each having at least one U-shaped portion, and an out-of-plane direction of the magnetosensitive surface within at least one U-shaped portion of each primary conductor And at least one magnetoelectric transducer installed so that a magnetic flux generated by the current to be measured is applied to
The center of gravity position of the cross section of the U-shaped portion and the magnetosensitive surface of the magnetoelectric transducer substantially coincide with each other,
The multi-phase current detection device, wherein the plurality of primary conductors are substantially parallel to each other and arranged in the same plane.
前記各磁電変換素子は少なくとも1枚のセンサ基板に設置され、前記センサ基板は前記磁電変換素子を前記ザグリ部、または前記U字形成部の所定の位置に保持するとともに、前記一次導体上に固定されることを特徴とする請求項1または2または3に記載の多相電流の検出装置。  Each of the magnetoelectric conversion elements is installed on at least one sensor substrate, and the sensor substrate holds the magnetoelectric conversion element at a predetermined position of the counterbore part or the U-shaped formation part and is fixed on the primary conductor. The multiphase current detection device according to claim 1, 2, or 3. 前記センサ基板の内部に導電性を有するシールド層を設置し、前記センサ基板の表面にセンサ回路部を設けたことを特徴とする請求項4に記載の多相電流の検出装置。  The multiphase current detection device according to claim 4, wherein a conductive shield layer is provided inside the sensor substrate, and a sensor circuit portion is provided on a surface of the sensor substrate.
JP2009265627A 2009-10-29 2009-10-29 Multiphase current detector Active JP5630633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265627A JP5630633B2 (en) 2009-10-29 2009-10-29 Multiphase current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265627A JP5630633B2 (en) 2009-10-29 2009-10-29 Multiphase current detector

Publications (2)

Publication Number Publication Date
JP2011095234A JP2011095234A (en) 2011-05-12
JP5630633B2 true JP5630633B2 (en) 2014-11-26

Family

ID=44112289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265627A Active JP5630633B2 (en) 2009-10-29 2009-10-29 Multiphase current detector

Country Status (1)

Country Link
JP (1) JP5630633B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960403B2 (en) * 2011-09-26 2016-08-02 矢崎総業株式会社 Current sensor
JP2014066623A (en) * 2012-09-26 2014-04-17 Alps Green Devices Co Ltd Current sensor
JP6076860B2 (en) * 2013-08-26 2017-02-08 アルプス電気株式会社 Current detector
JP2015148470A (en) * 2014-02-05 2015-08-20 日立金属株式会社 current detection structure
JP6598040B2 (en) * 2018-06-01 2019-10-30 日立金属株式会社 Current detection structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838536A1 (en) * 1998-08-25 2000-03-02 Lust Antriebstechnik Gmbh Device and method for forming one or more magnetic field gradients through a straight conductor
JP3696448B2 (en) * 1999-09-02 2005-09-21 矢崎総業株式会社 Current detector
JP2002107384A (en) * 2000-09-29 2002-04-10 Stanley Electric Co Ltd Current sensor
JP2003028899A (en) * 2001-07-13 2003-01-29 Stanley Electric Co Ltd Current sensor
JP2005195446A (en) * 2004-01-07 2005-07-21 Fuji Electric Holdings Co Ltd Watt hour meter
JP4768962B2 (en) * 2004-02-17 2011-09-07 旭化成エレクトロニクス株式会社 Multiphase current detector
JP2005321206A (en) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp Current detection device
JP2008039734A (en) * 2006-08-10 2008-02-21 Koshin Denki Kk Current sensor
JP2008216230A (en) * 2007-03-02 2008-09-18 Koshin Denki Kk Current sensor
JP4873348B2 (en) * 2007-03-27 2012-02-08 甲神電機株式会社 Current sensor and current detection device
JP4893506B2 (en) * 2007-06-04 2012-03-07 甲神電機株式会社 Current sensor

Also Published As

Publication number Publication date
JP2011095234A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP2011080970A (en) Detection device of multiphase current
US9983238B2 (en) Magnetic field current sensors having enhanced current density regions
TWI574017B (en) Current sensor
JP2011145273A (en) Current sensor
JP2011185914A (en) Current sensor
JP5234459B2 (en) Current sensor
JP2006242946A (en) Surface-mount integrated current sensor
JP5630633B2 (en) Multiphase current detector
JP2008039734A (en) Current sensor
JP5641276B2 (en) Current sensor
JP2005321206A (en) Current detection device
JP6650045B2 (en) Current sensor
JP4853807B2 (en) Current sensing device
JP2008016770A (en) Semiconductor module
JP4766477B2 (en) Current detection device and power conversion device including the same
JP5622027B2 (en) Multiphase current detector
JP2009020085A (en) Multiphase current detector
JP5057245B2 (en) Current sensor
JP2010256316A (en) Current sensor
JP2009271044A (en) Current sensor
JP5458319B2 (en) Current sensor
JP2008116429A (en) Magnetic sensor device
JP6237525B2 (en) Current sensor
JP2011220952A (en) Current detection device and watt-hour meter using the same
JP2016200549A (en) Current-voltage sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5630633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250