JP5641276B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP5641276B2
JP5641276B2 JP2009174763A JP2009174763A JP5641276B2 JP 5641276 B2 JP5641276 B2 JP 5641276B2 JP 2009174763 A JP2009174763 A JP 2009174763A JP 2009174763 A JP2009174763 A JP 2009174763A JP 5641276 B2 JP5641276 B2 JP 5641276B2
Authority
JP
Japan
Prior art keywords
primary conductor
current
sensor
magnetic field
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009174763A
Other languages
Japanese (ja)
Other versions
JP2011013200A (en
Inventor
立志 宮脇
立志 宮脇
岡田 章
章 岡田
信幸 新地
信幸 新地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2009174763A priority Critical patent/JP5641276B2/en
Publication of JP2011013200A publication Critical patent/JP2011013200A/en
Application granted granted Critical
Publication of JP5641276B2 publication Critical patent/JP5641276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

この発明は、被測定電流が印加されるU字型一次導体の、U字型形状部の近傍において、被測定電流を測定する電流センサに関するものである。  The present invention relates to a current sensor that measures a current to be measured in the vicinity of a U-shaped portion of a U-shaped primary conductor to which the current to be measured is applied.

従来、非接触で被測定電流を計測する手法としては、一般的に、磁気コアを用いたものがある。磁気コアを利用した電流センサは、磁気コアを被測定電流の流れる導体を取り囲む様に設置し、磁気コアに設けたギャップ部とともに磁気回路を形成する。ギャップ部に設置した磁電変換素子を通じて、被測定電流により磁気回路に生じた磁束の大きさを測定することで、非接触で被測定電流の大きさを測定する。  Conventionally, as a method for measuring a current to be measured in a non-contact manner, there is generally a method using a magnetic core. In a current sensor using a magnetic core, the magnetic core is installed so as to surround a conductor through which a current to be measured flows, and a magnetic circuit is formed together with a gap portion provided in the magnetic core. The magnitude of the current to be measured is measured in a non-contact manner by measuring the magnitude of the magnetic flux generated in the magnetic circuit by the current to be measured through the magnetoelectric conversion element installed in the gap portion.

一方、小型化や軽量化、あるいは高精度化等を目的とした、磁気コアを用いない電流センサが提案されている。従来の磁電変換素子を利用した、磁気コアを用いない電流センサとして、複数の磁気抵抗効果素子からなるブリッジ回路を、絶縁体を介して所定の間隔を離してU字型の一次導体に配置したものがある(例えば、特許文献1参照)。  On the other hand, current sensors that do not use a magnetic core have been proposed for the purpose of miniaturization, weight reduction, and high accuracy. As a current sensor that uses a conventional magnetoelectric conversion element and does not use a magnetic core, a bridge circuit made up of a plurality of magnetoresistive elements is arranged on a U-shaped primary conductor with a predetermined interval through an insulator. There are some (see, for example, Patent Document 1).

特開平8−211138JP 8-21138

宮崎照宣他:日本応用磁気学会誌,Vol.14,No.2(1990)221Terunobu Miyazaki et al .: Journal of Japan Society of Applied Magnetics, Vol. 14, no. 2 (1990) 221 中村斉他:日本金属学会誌,Vol.56,No.7(1992)849Nakamura, et al .: Journal of the Japan Institute of Metals, Vol. 56, no. 7 (1992) 849

上記特許文献1に開示されている電流センサまたは磁気センサの一次導体は、左右対称的なU字型構造で、磁気抵抗効果素子で構成するブリッジ回路の左右の各ハーフブリッジに逆方向磁界が印加され、一様な外部磁界を除去する利点がある。しかしながら、上記一次導体は左右対称的なU字型構造で、磁気抵抗効果素子の両側に位置する各一次導体は直線形状で固定されたものであり、各磁気抵抗効果素子の長手方向に対して、概ね直角となるある一方向からの磁界を印加する構成のため、電流センサの製造工程において一次導体の設置位置にずれが生じ、直角からずれた方向から磁界を印加した場合、磁気抵抗効果素子の応答、つまりは電流センサの出力に不連続な誤差が重畳する問題が生じる恐れがあった。この現象は、上記非特許文献1に開示されており、文献中の図3において、直角方向である90°から+2°、あるいは−2°といったわずかにずれた場合でも、磁気抵抗曲線に左右非対称な履歴が示されている。本文献では、蒸着による薄膜の磁気抵抗効果曲線の非対称性は、試料の磁気的不均一性に伴う一方向性の磁気異方性によるものと考えている。磁気抵抗効果素子の製造上、試料の磁気的不均一性を回避することは困難であり、不連続な誤差を低減するには直角となる方向から磁界を印加することが望ましいが、電流センサの製造工程において磁気抵抗効果素子の長手方向に対して一次導体の設置位置を正確に制御することは難しく、また一次導体から印加する磁界の方向を調整する手段は設けられていないため、作製した電流センサによって不連続な誤差の程度が異なる現象が生じ、結果として電流センサの性能がばらつくという問題点があった。  The primary conductor of the current sensor or magnetic sensor disclosed in Patent Document 1 has a symmetrical U-shaped structure, and a reverse magnetic field is applied to each of the left and right half bridges of a bridge circuit composed of magnetoresistive elements. And has the advantage of removing a uniform external magnetic field. However, the primary conductors have a symmetrical U-shaped structure, and the primary conductors located on both sides of the magnetoresistive effect element are fixed in a straight line shape. Because of the configuration in which a magnetic field is applied from one direction that is substantially perpendicular, a shift occurs in the installation position of the primary conductor in the manufacturing process of the current sensor. In other words, there is a possibility that a discontinuous error is superimposed on the output of the current sensor, that is, the output of the current sensor. This phenomenon is disclosed in Non-Patent Document 1, and in FIG. 3 in the document, the magnetoresistive curve is asymmetrical even if it is slightly deviated from 90 °, which is a perpendicular direction, to + 2 ° or −2 °. History is shown. In this document, it is considered that the asymmetry of the magnetoresistance effect curve of the thin film by vapor deposition is due to the unidirectional magnetic anisotropy associated with the magnetic nonuniformity of the sample. It is difficult to avoid magnetic non-uniformity of the sample in the manufacture of the magnetoresistive effect element, and it is desirable to apply a magnetic field from a direction perpendicular to reduce the discontinuous error. In the manufacturing process, it is difficult to accurately control the installation position of the primary conductor with respect to the longitudinal direction of the magnetoresistive effect element, and there is no means for adjusting the direction of the magnetic field applied from the primary conductor. There is a problem in that the degree of discontinuous error varies depending on the sensor, and as a result, the performance of the current sensor varies.

また、上記非特許文献2においては、形状磁気異方性の方向と誘導磁気異方性の方向に注目し、磁気抵抗曲線の左右非対称に生じる履歴について言及している。磁気抵抗効果素子の長軸方向、つまりは形状磁気異方性の方向に対する誘導磁気異方性の傾きをθとすると、磁気抵抗応答曲線における磁気抵抗効果素子の応答の不連続変化の影響が最小となる磁界の方向が、θの増大とともに、直角方向から増加する。このようにθの値に応じて、不連続な誤差を低減する、ある磁界の方向(本文献では、直角方向から数度程度以内)が存在する。不連続な誤差を低減するには、一次導体から印加する磁界の方向を少なくとも数度程度調整することが望ましいが、上記特許文献1には調整手段は設けられておらず、作製した電流センサによって不連続な誤差の程度が異なる現象が生じ、結果として電流センサの性能がばらつくという問題点があった。  In Non-Patent Document 2, attention is paid to the direction of shape magnetic anisotropy and the direction of induced magnetic anisotropy, and the history that occurs in the left-right asymmetry of the magnetoresistance curve is mentioned. When the inclination of the induced magnetic anisotropy with respect to the major axis direction of the magnetoresistive element, that is, the shape magnetic anisotropy direction is θ, the influence of the discontinuous change in the response of the magnetoresistive element on the magnetoresistive response curve is minimized. The direction of the magnetic field increases from the perpendicular direction as θ increases. Thus, depending on the value of θ, there is a certain magnetic field direction (in this document, within a few degrees from the perpendicular direction) that reduces discontinuous errors. In order to reduce the discontinuous error, it is desirable to adjust the direction of the magnetic field applied from the primary conductor by at least several degrees. There is a problem that a phenomenon in which the degree of discontinuous error differs occurs, and as a result, the performance of the current sensor varies.

この発明は上記のような課題を鑑み、解決するためになされたもので、一次導体から磁気抵抗効果素子に印加する磁界の方向を調整する手段を設けることで、磁気抵抗効果素子の応答における不連続な誤差を低減でき、性能のばらつきを抑制した電流センサを提供することを目的とする。  The present invention has been made in order to solve the above-described problems. By providing a means for adjusting the direction of the magnetic field applied from the primary conductor to the magnetoresistive element, there is a problem in the response of the magnetoresistive element. It is an object of the present invention to provide a current sensor that can reduce continuous errors and suppress variation in performance.

この発明に係る電流センサは、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置された電流検知デバイスと、少なくとも1つのU字型形状を有する一次導体を有し、設置基板の中心線と一次導体のU字型形状の対称軸が略一致するように少なくとも一つの電流検知デバイスがU字型形状部の近傍に配置されるとともに、設置基板の中心線上に位置する設置基板の中心点を略中点として、一次導体に対して設置基板が回転可能な構造をとるものである。  The current sensor according to the present invention includes four magnetoresistive elements on the installation board, the first half bridge circuit is arranged in one area separated from the center line of the installation board, and the other area. Current detection device having a second half-bridge circuit disposed therein and at least one primary conductor having a U-shape, and the center line of the installation board and the symmetry axis of the U-shape of the primary conductor substantially coincide with each other The at least one current detection device is disposed in the vicinity of the U-shaped portion, and the installation board is disposed with respect to the primary conductor with the center point of the installation board located on the center line of the installation board as a substantially midpoint. It has a rotatable structure.

また、この発明に係わる電流センサは、一次導体におけるU字型形状の対称軸上のU字型底部、またはその近傍に設けた貫通孔を基点として、電流検知デバイスに対して一次導体が回転可能な構造をとるものである。  In addition, the current sensor according to the present invention is capable of rotating the primary conductor relative to the current detection device with the U-shaped bottom of the U-shaped symmetrical axis of the primary conductor or a through hole provided in the vicinity thereof as a base point. It takes a simple structure.

また、この発明に係わる電流センサは、U字型形状を成す一次導体の上面、もしくは下面、もしくはその両面に円弧状のザグリ部を備え、前記ザグリ部を介してセンサ基板を連結した構造をとるものである。  In addition, the current sensor according to the present invention has a structure in which an arcuate counterbore portion is provided on the upper surface, the lower surface, or both surfaces of a U-shaped primary conductor, and a sensor substrate is connected via the counterbore portion. Is.

また、この発明に係わる電流センサは、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置された電流検知デバイスと、少なくとも1つのU字型形状を有する一次導体と、少なくとも2つのバイアス磁界発生部を有し、前記電流検知デバイスは複数の前記バイアス磁界発生部によって挟まれた領域内に、かつ前記電流検知デバイスの前記設置基板の中心線と前記一次導体のU字型形状の対称軸が略一致するように配置されるとともに、一次導体に対して電流検知デバイスが、U字型形状部の対称軸に対して直角方向に移動可能な構造をとるものである。  In addition, the current sensor according to the present invention includes four magnetoresistive elements on the installation board, the first half-bridge circuit is arranged in one area separated from the center line of the installation board, and the other A current sensing device in which a second half-bridge circuit is disposed in the region, at least one U-shaped primary conductor, and at least two bias magnetic field generators, wherein the current sensing device includes a plurality of the current sensing devices. In the region sandwiched by the bias magnetic field generation unit, and arranged so that the center line of the installation substrate of the current detection device and the U-shaped symmetry axis of the primary conductor substantially coincide with each other, On the other hand, the current detection device has a structure that can move in a direction perpendicular to the symmetry axis of the U-shaped portion.

また、この発明に係わる電流センサは、少なくとも一つの一次導体が、一次導体におけるU字型形状部の対称軸に対して直角方向に移動可能な構造をとるものである。  The current sensor according to the present invention has a structure in which at least one primary conductor is movable in a direction perpendicular to the symmetry axis of the U-shaped portion of the primary conductor.

この発明の電流センサによると、一つの設置基板上に四つの磁気抵抗効果素子にて、設置基板上の中心線に対して分けられた一方の領域に第一のハーフブリッジ回路が配置されるとともに、他方の領域に第二のハーフブリッジ回路が配置され、それぞれのハーフブリッジ回路に逆方向の磁界が印加される構造のため、一様な外部磁界を除去する効果がある。
また、磁気抵抗効果素子の面内に印加する磁界の方向が可変可能であり、それに伴い磁気抵抗効果素子の応答における不連続な誤差が低減するように調整可能なため、電流センサの出力ばらつき、出力誤差が減少する効果がある。
According to the current sensor of the present invention, the first half-bridge circuit is arranged in one region divided with respect to the center line on the installation board by four magnetoresistive elements on one installation board. The second half-bridge circuit is arranged in the other region, and a magnetic field in the opposite direction is applied to each half-bridge circuit, so that there is an effect of removing a uniform external magnetic field.
In addition, the direction of the magnetic field applied in the plane of the magnetoresistive effect element can be varied, and accordingly, it can be adjusted so as to reduce discontinuous errors in the response of the magnetoresistive effect element. This has the effect of reducing the output error.

また、この発明の電流センサによると、一次導体の直線的な移動のみで磁気抵抗効果素子に印加する磁界の方向を調整する手段を得られ、それに伴い磁気抵抗効果素子の応答における不連続な誤差を低減できるため、小型化、ならびに低コスト化の効果もある。  Further, according to the current sensor of the present invention, it is possible to obtain means for adjusting the direction of the magnetic field applied to the magnetoresistive effect element only by linear movement of the primary conductor, and accordingly, a discontinuous error in the response of the magnetoresistive effect element. Therefore, there is an effect of downsizing and cost reduction.

この発明の実施形態1による電流センサの平面図である。It is a top view of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの一次導体を示す斜視図である。It is a perspective view which shows the primary conductor of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの断面図である。It is sectional drawing of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの図3に示す電流検知デバイス部近傍の磁界ベクトルとその分解ベクトルである。It is a magnetic field vector and its decomposition | disassembly vector of the electric current sensor by Embodiment 1 of this invention near the electric current detection device part shown in FIG. この発明の実施形態1による電流センサの電流検知デバイス部を示す平面図である。It is a top view which shows the current detection device part of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの電流検知デバイス部を示す構成概略図である。It is a structure schematic diagram which shows the current detection device part of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの調整時に被測定電流を印加する方向を示す平面図である。It is a top view which shows the direction which applies a to-be-measured current at the time of adjustment of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの調整時に被測定電流を印加する別の方向を示す平面図である。It is a top view which shows another direction which applies a to-be-measured current at the time of adjustment of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの補償導電線を配置した構成図である。It is a block diagram which has arrange | positioned the compensation electrically conductive line of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの、異なる一次導体を用いたときの電流検知デバイス部近傍の磁界ベクトルとその分解ベクトルである。It is a magnetic field vector of the current detection device part vicinity when the different primary conductor of the current sensor by Embodiment 1 of this invention is used, and its decomposition vector. この発明の実施形態2による電流センサの平面図である。It is a top view of the current sensor by Embodiment 2 of this invention. この発明の実施形態2による電流センサの一次導体を示す斜視図である。It is a perspective view which shows the primary conductor of the current sensor by Embodiment 2 of this invention. この発明の実施形態3による電流センサの平面図である。It is a top view of the current sensor by Embodiment 3 of this invention. この発明の実施形態3による電流センサの一次導体を示す斜視図である。It is a perspective view which shows the primary conductor of the current sensor by Embodiment 3 of this invention. この発明の実施形態4による電流センサの平面図である。It is a top view of the current sensor by Embodiment 4 of this invention. この発明の実施形態4による電流センサの断面図である。It is sectional drawing of the current sensor by Embodiment 4 of this invention.

実施の形態1.
図1は、この発明の実施の形態1による電流センサの平面図を示すもので、図2は図1の一次導体のみを示す斜視図、図3は図1におけるAA’断面(XZ面)の一部を示す断面図である。図において、電流センサ1は、電流検知デバイス部7、センサ回路部9を有するセンサ基板2と、一次導体3により構成される。
本実施の形態1における一次導体3は、電気伝導性を有する金属板から作製される。一次導体3の形状はZ方向から見てU字型となっており、U字形状を示すU字部4、左右対称な導体部分を接続するU字底部5、および面内方向に伸長する接続導体部6によって構成される。U字部4における一次導体3の表面は円弧状のザグリ部8を有し、センサ基板2はこのザグリ部8上に設置される。
まず、電流検知デバイス部7の構成について説明する。
図5は電流検知デバイス部7の平面図を示すもので、設置基板17上において、設置基板17の中心線11によって2つの領域に分けられ、それぞれの領域に磁気抵抗効果素子14a、14b、磁気抵抗効果素子14c、14dが線対称に等しく配置される。ここで、磁気抵抗効果素子14の感磁方向はX方向とし、長手方向はY方向とする。4つの磁気抵抗効果素子14a〜14dは、設置基板17の中心線11に対して相互に平行方向に配置され、磁気抵抗効果素子14a、14dは、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有するように、また、磁気抵抗効果素子14b、14cは、互いに逆方向の磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有するように、図には省略したが、磁気抵抗効果素子上にはバーバーポール電極構造が形成されている。なお、4つの磁気抵抗効果素子14はそれぞれ1本で構成したが、クランク形状に複数の磁気抵抗効果素子を接続し、線路長を長く構成してもよい。また、中心線11上の中心点に対して点対称に構成してもよい。接続電流線15は、4つの磁気抵抗効果素子14間を接続することにより、ブリッジ回路18を構成するものであり、接続エリア16は、外部とブリッジ回路18の入出力用の端子部として用いる。
Embodiment 1 FIG.
1 is a plan view of a current sensor according to Embodiment 1 of the present invention, FIG. 2 is a perspective view showing only a primary conductor of FIG. 1, and FIG. 3 is a cross-sectional view taken along the line AA ′ (XZ plane) in FIG. It is sectional drawing which shows a part. In the figure, the current sensor 1 includes a sensor substrate 2 having a current detection device unit 7 and a sensor circuit unit 9, and a primary conductor 3.
The primary conductor 3 in this Embodiment 1 is produced from the metal plate which has electrical conductivity. The shape of the primary conductor 3 is U-shaped when viewed from the Z direction, the U-shaped portion 4 showing the U-shape, the U-shaped bottom portion 5 connecting the symmetrical conductor portions, and the connection extending in the in-plane direction. The conductor portion 6 is used. The surface of the primary conductor 3 in the U-shaped part 4 has an arcuate counterbore part 8, and the sensor substrate 2 is installed on the counterbore part 8.
First, the configuration of the current detection device unit 7 will be described.
FIG. 5 shows a plan view of the current detection device unit 7, which is divided into two regions on the installation substrate 17 by the center line 11 of the installation substrate 17. In each region, the magnetoresistive effect elements 14 a and 14 b, magnetic Resistive effect elements 14c and 14d are arranged equally in line symmetry. Here, the magnetic sensitive direction of the magnetoresistive effect element 14 is the X direction, and the longitudinal direction is the Y direction. The four magnetoresistive effect elements 14a to 14d are arranged in parallel to each other with respect to the center line 11 of the installation substrate 17, and the magnetoresistive effect elements 14a and 14d have a resistance value corresponding to an increase in the magnetic field in the opposite direction. The magnetoresistive effect elements 14b and 14c have a magnetoresistive effect characteristic in which the resistance value decreases together with an increase in the magnetic field in the opposite direction. Although not shown, a barber pole electrode structure is formed on the magnetoresistive element. The four magnetoresistive effect elements 14 are each configured as one, but a plurality of magnetoresistive effect elements may be connected in a crank shape to increase the line length. Further, it may be configured symmetrically with respect to the center point on the center line 11. The connection current line 15 forms a bridge circuit 18 by connecting the four magnetoresistive effect elements 14, and the connection area 16 is used as an input / output terminal portion of the bridge circuit 18.

図6はこの発明の実施の形態1による電流センサ1の電流検知デバイス7を示す構成概略図であり、図6において、4つの磁気抵抗効果素子14間を接続電流線15で接続することにより、磁気抵抗効果素子14a、14bの直列接続からなるハーフブリッジ回路(第1のハーフブリッジ回路)19a、磁気抵抗効果素子14c、14dの直列接続からなるハーフブリッジ回路(第2のハーフブリッジ回路)19bの並列接続からなるブリッジ回路18を構成するものである。
接続エリア(第1の接続エリア)16aは、ブリッジ回路18の磁気抵抗効果素子14a、14c間の接続電流線15に接続され、もう一方の接続エリア(第2の接続エリア)16bは、ブリッジ回路18の磁気抵抗効果素子14b、14d間の接続電流線15に接続されており、接続エリア16a、16bからブリッジ回路18に電圧が供給されるものである。接続エリア(第3の接続エリア)16cは、ブリッジ回路18の磁気抵抗効果素子14a、14b間の接続電流線15に接続され、もう一方の接続エリア(第4の接続エリア)16dは、ブリッジ回路18の磁気抵抗効果素子14c、14d間の接続電流線15に接続されており、接続エリア16c、16dからブリッジ回路18の出力電圧が検出されるものである。
FIG. 6 is a schematic configuration diagram showing the current detection device 7 of the current sensor 1 according to Embodiment 1 of the present invention. In FIG. 6, by connecting the four magnetoresistive effect elements 14 with the connection current line 15, FIG. A half-bridge circuit (first half-bridge circuit) 19a comprising a series connection of magnetoresistive elements 14a and 14b, and a half-bridge circuit (second half-bridge circuit) 19b comprising a series connection of magnetoresistive elements 14c and 14d. A bridge circuit 18 composed of parallel connections is configured.
The connection area (first connection area) 16a is connected to the connection current line 15 between the magnetoresistive effect elements 14a and 14c of the bridge circuit 18, and the other connection area (second connection area) 16b is the bridge circuit. 18 is connected to the connection current line 15 between the magnetoresistive effect elements 14b and 14d, and a voltage is supplied to the bridge circuit 18 from the connection areas 16a and 16b. The connection area (third connection area) 16c is connected to the connection current line 15 between the magnetoresistive elements 14a and 14b of the bridge circuit 18, and the other connection area (fourth connection area) 16d is the bridge circuit. It is connected to a connection current line 15 between 18 magnetoresistive elements 14c and 14d, and the output voltage of the bridge circuit 18 is detected from the connection areas 16c and 16d.

なお、図5および図6には示していないが、設置基板17上の4つの磁気抵抗効果素子14a〜14dの上方、または下方、またはその両方に絶縁層を介して補償導電線20を配置し、ブリッジ回路18の出力電圧に基づいて、それらの補償導電線20に4つの磁気抵抗効果素子14の近傍に発生する磁界を打ち消すような電流を供給する磁気平衡型の構成としてもよい。  Although not shown in FIGS. 5 and 6, the compensation conductive line 20 is disposed above or below the four magnetoresistive elements 14 a to 14 d on the installation substrate 17, or both through an insulating layer. A magnetic balance type configuration may be employed in which a current that cancels the magnetic field generated in the vicinity of the four magnetoresistive elements 14 is supplied to the compensation conductive lines 20 based on the output voltage of the bridge circuit 18.

次に、電流センサ1の全体構成について説明する。
図1および図2に示すように、一次導体3の形状はZ方向から見てU字型となっており、U字部4の導体上に円弧状のザグリ部8を設けている。このザグリ部8を介してセンサ基板2を設置し、後述の調整時、ザグリ部8に沿ってセンサ基板2を回転移動するため、ザグリ部8はセンサ基板2の移動時のガイドとなる。なお本実施の形態1に示した図では、U字底部5の両脇部分が直角形状に構成されているが、電流検知デバイス部7にU字部4の両側に位置する一次導体から安定して逆方向の磁界が印加される構造であれば丸みを帯びた形状などでもよく、これに限るものではないが、安定して逆方向の磁界を印加するためにはU字部4が少なくとも電流検知デバイス部7の近傍において左右対称であることが望ましい。
図1に示すように、U字部4を有する一次導体3の一点鎖線で示した対称軸、および電流検知デバイス部7の中心線11が略一致するように、センサ基板2はザグリ部8を介しての一次導体3の上方にまずは設置する。本実施の形態においては、電流検知デバイス7をセンサ基板2の上面側に設置した例を示しており、設置位置は上面に限るものではないが、後述するセンサ基板2の内層に設けた電界シールド層12を有効利用するためには、上面に設置するのが望ましい。電流検知デバイス部7は、機械的な設置だけでなく、後述のセンサ回路部9と電気的に接続されるようにワイヤボンディングやバンプ等を用いて電気的にも接続される。電流検知デバイス部7を含むセンサ基板2の設置位置(特にZ方向)は、磁気抵抗効果素子14に付与したい磁界、つまりは被測定電流の大きさに応じて決定するが、Z方向における1次導体3の中央となる位置(図3 破線O)では感磁方向の付与磁界が0となるため、中央からずらして設置するのがよい。その決定された位置に応じてセンサ基板2を設置する。また、一次導体3の断面積は、印加する被測定電流値に応じて決定される。このような一次導体3は、例えば電気伝導性の良好な銅などの金属板材からの打ち抜き加工により作製されるが、作製方法はこれに限るものではなく、例えば板厚を拡大する場合などは、鋳造等により作製してもよい。
図1にのみ示したが、センサ基板2上には、電流検知デバイス部7とともにセンサ回路部9を配置する。センサ回路部9は、電流検知デバイス部7の接続エリア16a、16bにブリッジ回路18の電圧を供給すると共に、ブリッジ回路18の出力電圧を適度な増幅を施して出力するが、電流センサ1と外部の入出力端を電気的に接続するには、端子10を利用する。
センサ基板2と1次導体3は、後述する調整後に、特に図示しないが接着剤や取付部材等を用いて固定する。取付部材は特に材料を限定しないが、非磁性で経時劣化の少ないものが望ましく、絶縁性や耐圧の効果を上げるために全体、あるいは一部を樹脂モールドしてもよい。
図3の断面図に示したように、センサ基板2の内層には導電性を有する電界シールド層12を設置する。電界シールド層12は、電流センサとしての性能を低下させるノイズとして、外部から磁気抵抗効果素子14やセンサ回路部9へ印加される電界ノイズを、除去あるいは低減するためのもので、少なくとも磁気抵抗効果素子14やセンサ回路部9と一次導体3の間に設置する必要があり、可能であれば磁気抵抗効果素子14やセンサ回路部9を覆うように設置するのが望ましい。電界シールド層12の材料は、導電性を有すればよく、例えば銅、アルミニウム等が考えられ、センサ基板2に設けた電気的なグランドと接続される。設置の形態としては、例えば多層基板の内層の少なくとも1層にグランド層を設けたものでもよい。
Next, the overall configuration of the current sensor 1 will be described.
As shown in FIGS. 1 and 2, the shape of the primary conductor 3 is U-shaped when viewed from the Z direction, and an arcuate counterbore portion 8 is provided on the conductor of the U-shape portion 4. Since the sensor substrate 2 is installed via the counterbore part 8 and the sensor substrate 2 is rotationally moved along the counterbore part 8 at the time of adjustment described later, the counterbore part 8 serves as a guide when the sensor board 2 is moved. In the figure shown in the first embodiment, both side portions of the U-shaped bottom portion 5 are formed in a right-angled shape, but the current detection device portion 7 is stabilized from the primary conductor located on both sides of the U-shaped portion 4. However, the shape may be rounded or the like as long as the magnetic field in the reverse direction is applied, and the shape is not limited thereto. However, in order to stably apply the magnetic field in the reverse direction, the U-shaped portion 4 has at least a current. It is desirable that the detection device unit 7 is symmetrical in the vicinity of the detection device unit 7.
As shown in FIG. 1, the sensor substrate 2 has a counterbore portion 8 so that the axis of symmetry indicated by the one-dot chain line of the primary conductor 3 having the U-shaped portion 4 and the center line 11 of the current detection device portion 7 substantially coincide. First, it is installed above the primary conductor 3. In the present embodiment, an example is shown in which the current detection device 7 is installed on the upper surface side of the sensor substrate 2, and the installation position is not limited to the upper surface, but the electric field shield provided in the inner layer of the sensor substrate 2 described later. In order to use the layer 12 effectively, it is desirable to install it on the upper surface. The current detection device unit 7 is not only mechanically installed but also electrically connected using wire bonding, bumps, or the like so as to be electrically connected to a sensor circuit unit 9 described later. The installation position (in particular, the Z direction) of the sensor substrate 2 including the current detection device unit 7 is determined according to the magnetic field to be applied to the magnetoresistive effect element 14, that is, the magnitude of the current to be measured. Since the applied magnetic field in the magnetosensitive direction is 0 at the position that is the center of the conductor 3 (broken line O in FIG. 3), it is preferable that the conductor 3 be installed shifted from the center. The sensor substrate 2 is installed according to the determined position. The cross-sectional area of the primary conductor 3 is determined according to the measured current value to be applied. Such a primary conductor 3 is produced, for example, by punching from a metal plate material such as copper having good electrical conductivity, but the production method is not limited to this. For example, when the plate thickness is increased, You may produce by casting etc.
Although only shown in FIG. 1, the sensor circuit unit 9 is disposed on the sensor substrate 2 together with the current detection device unit 7. The sensor circuit unit 9 supplies the voltage of the bridge circuit 18 to the connection areas 16a and 16b of the current detection device unit 7 and outputs the output voltage of the bridge circuit 18 with appropriate amplification. The terminal 10 is used to electrically connect the input / output terminals.
The sensor substrate 2 and the primary conductor 3 are fixed using an adhesive, a mounting member, or the like, although not particularly illustrated, after adjustment described later. The mounting member is not particularly limited in material, but is preferably non-magnetic and less deteriorated with time, and may be entirely or partially resin-molded in order to increase the effect of insulation and pressure resistance.
As shown in the cross-sectional view of FIG. 3, the electric field shield layer 12 having conductivity is provided on the inner layer of the sensor substrate 2. The electric field shield layer 12 is for removing or reducing electric field noise applied to the magnetoresistive effect element 14 and the sensor circuit unit 9 from the outside as noise that degrades the performance as a current sensor. It is necessary to install between the element 14 or the sensor circuit unit 9 and the primary conductor 3, and it is desirable to install the magnetoresistive effect element 14 or the sensor circuit unit 9 if possible. The material of the electric field shield layer 12 only needs to have conductivity. For example, copper, aluminum or the like can be considered, and the electric field shield layer 12 is connected to an electrical ground provided on the sensor substrate 2. As a form of installation, for example, a ground layer may be provided on at least one of the inner layers of the multilayer substrate.

ここで、磁気抵抗効果素子の応答における不連続な誤差を低減する調整方法について詳細に説明する。
磁気抵抗効果素子の長軸方向、つまりは形状磁気異方性の方向に対する誘導磁気異方性の傾きθが0の場合、磁気抵抗効果素子の長軸方向に対して直角方向である90°方向から磁界を印加すれば、不連続な誤差を低減できる。また、形状磁気異方性の方向に対する誘導磁気異方性の傾きθが0ではない場合、直角方向から数度程度以内にある、一つの方向から磁界を印加すれば、不連続な誤差を低減できる。形状磁気異方性の方向に対する誘導磁気異方性の傾きθが既知であれば、自ずと決まる、不連続な誤差を低減できる印加磁界方向となるように、センサ基板2をザグリ部8に沿って回転させ、固定すればよい。しかしながら、例えば蒸着等による磁気抵抗効果素子の製造上、形状磁気異方性の方向に対する誘導磁気異方性の傾きθを0、あるいは一定値に完全に固定することは困難であり、できあがった磁気抵抗効果素子によって形状磁気異方性の方向に対する誘導磁気異方性の傾きθはばらつく場合が多い。
そのため、磁気抵抗効果素子の応答における不連続な誤差を低減する調整が必要となる。まずは図1に示すように、U字部4を有する一次導体3の一点鎖線で示した対称軸、および電流検知デバイス部7の中心線11が略一致するように、センサ基板2を設置する。その状態で各磁気抵抗効果素子の磁気抵抗応答曲線を取得するわけだが、ここでは電流センサを構成しているため、図7の矢印で示すように、一次導体3b側から被測定電流を印加し、電流値を可変し、外部端子10を介して電流センサの出力として、各磁気抵抗効果素子の磁気抵抗応答の結果を得る。次に図8の矢印で示すように、一次導体3a側から被測定電流を印加し、電流値を可変し、外部端子10を介して電流センサの出力として、各磁気抵抗効果素子の磁気抵抗応答の結果を得る。このように被測定電流の方向を逆転して得られた電流センサ出力の絶対値に、差異が生じていたならば、不連続な誤差が確認できたといえる。そのときは、センサ基板2をザグリ部8に沿って、センサ基板2の中心点を基点として回転させ、上述の測定を繰り返し、被測定電流の方向を逆転して得られた電流センサ出力の絶対値に差異が生じないセンサ基板2の設置位置が得られたところで測定を止め、センサ基板2を固定する。このような調整を実施することで、磁気抵抗効果素子の応答における不連続な誤差を確実に低減することが可能となる。
なお不連続な誤差が顕著に確認できる被測定電流値が既知であれば、被測定電流値を可変せず、ある一定の値に固定して調整してもよく、その結果、調整工程が簡素化される効果が得られる。
また、センサ基板2の回転角は数度程度であるため、一次導体3に設けたザグリ部8を逸脱することはなく、センサ基板2が数度程度移動できる部分にだけザグリ部8を限定して設けてもよい。
Here, the adjustment method for reducing the discontinuous error in the response of the magnetoresistive effect element will be described in detail.
When the inclination θ of the induced magnetic anisotropy with respect to the major axis direction of the magnetoresistive effect element, that is, the shape magnetic anisotropy direction is 0, the 90 ° direction that is perpendicular to the major axis direction of the magnetoresistive effect element If a magnetic field is applied from, discontinuous errors can be reduced. In addition, if the gradient θ of the induced magnetic anisotropy relative to the direction of the shape magnetic anisotropy is not 0, discontinuous errors can be reduced by applying a magnetic field from one direction within a few degrees from the perpendicular direction. it can. If the gradient θ of the induced magnetic anisotropy with respect to the direction of the shape magnetic anisotropy is known, the sensor substrate 2 is moved along the counterbore part 8 so as to be an applied magnetic field direction that can naturally reduce discontinuous errors. Rotate and fix. However, it is difficult to completely fix the gradient θ of the induced magnetic anisotropy with respect to the direction of the shape magnetic anisotropy to 0 or a constant value in the manufacture of the magnetoresistive effect element by vapor deposition or the like. In many cases, the inclination θ of the induced magnetic anisotropy with respect to the direction of the shape magnetic anisotropy varies depending on the resistive element.
Therefore, it is necessary to adjust to reduce discontinuous errors in the response of the magnetoresistive effect element. First, as shown in FIG. 1, the sensor substrate 2 is installed so that the symmetry axis indicated by the one-dot chain line of the primary conductor 3 having the U-shaped portion 4 and the center line 11 of the current detection device portion 7 substantially coincide. In this state, the magnetoresistive response curve of each magnetoresistive effect element is acquired. Since a current sensor is formed here, a current to be measured is applied from the primary conductor 3b side as shown by an arrow in FIG. The current value is varied, and the result of the magnetoresistive response of each magnetoresistive effect element is obtained as the output of the current sensor via the external terminal 10. Next, as shown by the arrows in FIG. 8, the current to be measured is applied from the primary conductor 3a side, the current value is varied, and the magnetoresistive response of each magnetoresistive element is output as the output of the current sensor via the external terminal 10. Get the result. In this way, if there is a difference in the absolute value of the current sensor output obtained by reversing the direction of the current to be measured, it can be said that a discontinuous error has been confirmed. At that time, the sensor substrate 2 is rotated along the counterbore part 8 with the center point of the sensor substrate 2 as a base point, the above measurement is repeated, and the absolute current sensor output obtained by reversing the direction of the current to be measured is obtained. The measurement is stopped when the installation position of the sensor substrate 2 that does not cause a difference in value is obtained, and the sensor substrate 2 is fixed. By performing such adjustment, it becomes possible to reliably reduce discontinuous errors in the response of the magnetoresistive effect element.
Note that if the measured current value for which a discontinuous error can be remarkably confirmed is known, the measured current value may be fixed and adjusted to a certain value without changing it, and as a result, the adjustment process is simplified. The effect is realized.
Further, since the rotation angle of the sensor board 2 is about several degrees, the counterbore part 8 is limited only to a part where the sensor board 2 can move about several degrees without departing from the counterbore part 8 provided on the primary conductor 3. May be provided.

次に、電流センサ1の動作について、図3、図4、図5により説明する。
一次導体3に被測定電流を印加すると、例えば第1の一次導体部3aには電流の方向に対して図3の破線に示すように左回転の磁界が、また第2の一次導体部3bには電流の方向に対して図3の破線に示すように右回転の磁界が、印加される被測定電流の大きさに応じて発生する。図には簡単のために各一次導体あたり2本の磁束線によって発生磁界を示した。その結果、電流検知デバイス部7を図3に示す位置に設置した場合、電流検知デバイス部7の左側に位置する磁気抵抗効果素子14a、14bには、図4に示す磁界ベクトル13aが印加され、右側に位置する磁気抵抗効果素子14c、14dには、磁界ベクトル13bが印加される。よって磁気抵抗効果素子14a、14bの感磁方向(X軸方向)には分解ベクトル13axが、磁気抵抗効果素子14c、14dの感磁方向(X軸方向)には分解ベクトル13bxが加わることになる。つまり、電流検知デバイス部7のXY面における、図5に示した磁気抵抗効果素子14a、14bには、中心線11より紙面左側の向きに磁界が加わり、磁気抵抗効果素子14c、14dには、中心線11より紙面右側の向きに磁界が加わる。
Next, the operation of the current sensor 1 will be described with reference to FIGS. 3, 4, and 5.
When a current to be measured is applied to the primary conductor 3, for example, a left-rotating magnetic field is applied to the first primary conductor portion 3a with respect to the direction of the current as indicated by a broken line in FIG. 3, and to the second primary conductor portion 3b. As shown by the broken line in FIG. 3, a clockwise magnetic field is generated according to the magnitude of the current to be measured. In the figure, the generated magnetic field is shown by two magnetic flux lines for each primary conductor for simplicity. As a result, when the current detection device unit 7 is installed at the position shown in FIG. 3, the magnetic field vector 13 a shown in FIG. 4 is applied to the magnetoresistive effect elements 14 a and 14 b located on the left side of the current detection device unit 7. The magnetic field vector 13b is applied to the magnetoresistive elements 14c and 14d located on the right side. Therefore, the decomposition vector 13ax is added to the magnetosensitive direction (X-axis direction) of the magnetoresistive effect elements 14a and 14b, and the decomposition vector 13bx is added to the magnetic sensitive direction (X-axis direction) of the magnetoresistive effect elements 14c and 14d. . That is, a magnetic field is applied to the magnetoresistive effect elements 14a and 14b shown in FIG. 5 on the XY plane of the current detection device unit 7 in the direction of the left side of the drawing with respect to the center line 11, and the magnetoresistive effect elements 14c and 14d have A magnetic field is applied in the direction of the right side of the drawing from the center line 11.

なお、磁気抵抗効果素子14a、14dでは、共に磁界の増加に応じて抵抗値が増加すると共に、磁界の減少に応じて抵抗値が減少する磁気抵抗効果特性を有するように、また、磁気抵抗効果素子14b、14cでは、逆に磁界の増加に応じて抵抗値が減少すると共に、磁界の減少に応じて抵抗値が増加する磁気抵抗効果特性を有するように構成されている。
よって、一次導体3に流れる電流の増加に応じて磁気抵抗効果素子14a、14dの抵抗値が増加すると共に、磁気抵抗効果素子14b、14cの抵抗値が減少し、一次導体3に流れる電流の減少に応じて磁気抵抗効果素子14a、14dの抵抗値が減少すると共に、磁気抵抗効果素子14b、14cの抵抗値が増加する。このように、一次導体3に印加される被測定電流の大きさに応じてブリッジ回路18の平衡が崩れ、これが電流検知デバイス部7のブリッジ回路18の出力となる。
The magnetoresistive elements 14a and 14d both have a magnetoresistive effect characteristic in which the resistance value increases as the magnetic field increases and the resistance value decreases as the magnetic field decreases. In contrast, the elements 14b and 14c are configured to have magnetoresistance effect characteristics in which the resistance value decreases as the magnetic field increases and the resistance value increases as the magnetic field decreases.
Therefore, as the current flowing through the primary conductor 3 increases, the resistance values of the magnetoresistive elements 14a and 14d increase, and the resistance values of the magnetoresistive elements 14b and 14c decrease, and the current flowing through the primary conductor 3 decreases. Accordingly, the resistance values of the magnetoresistive effect elements 14a and 14d decrease and the resistance values of the magnetoresistive effect elements 14b and 14c increase. Thus, the balance of the bridge circuit 18 is lost in accordance with the magnitude of the current to be measured applied to the primary conductor 3, and this becomes the output of the bridge circuit 18 of the current detection device unit 7.

さらに、電流センサ1の動作について、補償導電線20を有する場合について説明する。補償導電線20を配置した電流検知デバイス部7とセンサ回路部9の概略構成を図9に示す。
一次導体3に印加される被測定電流の大きさに応じてブリッジ回路18の平衡が崩れる。このとき、センサ回路部9に設置された増幅回路部(例えばオペアンプ21)では、電流検知デバイス部7の接続エリア16c、16dから検出される出力電圧に基づいて、磁気抵抗効果素子14a〜14d近傍に発生する磁界を打ち消すような電流(制御電流)を補償導電線20に供給する。具体的には接続エリア16c、16dの出力電圧が0になるように、制御電流の大きさを調整する。補償導電線20は、その制御電流の大きさに応じて4つの磁気抵抗効果素子14a〜14d近傍に発生する磁界、すなわち一次導体3に印加される被測定電流の大きさに応じた磁界を相殺するような磁界を発生する。
したがって、一次導体3に印加される被測定電流の大きさに応じたブリッジ回路18の平衡の崩れを、センサ回路部9から供給される制御電流により修復することができる。ゆえに、センサ回路部9から供給した制御電流の大きさが、一次導体3に印加される被測定電流の大きさに相関のある値として検出することができる。
なお、一次導体3以外において発生した外部磁界(外乱磁界)は、磁気抵抗効果素子14a、14bと磁気抵抗効果素子14c、14d(ブリッジ回路18の左右の各ハーフブリッジ回路19)に同相の影響となるため相殺され、測定精度に影響を与えない。
Further, the operation of the current sensor 1 will be described in the case where the compensation conductive line 20 is provided. FIG. 9 shows a schematic configuration of the current detection device unit 7 and the sensor circuit unit 9 in which the compensation conductive wire 20 is arranged.
The balance of the bridge circuit 18 is lost depending on the magnitude of the current to be measured applied to the primary conductor 3. At this time, in the amplification circuit unit (for example, the operational amplifier 21) installed in the sensor circuit unit 9, the vicinity of the magnetoresistive effect elements 14a to 14d based on the output voltage detected from the connection areas 16c and 16d of the current detection device unit 7. A current (control current) that cancels out the magnetic field generated in the compensation conductive line 20 is supplied. Specifically, the magnitude of the control current is adjusted so that the output voltage of the connection areas 16c and 16d becomes zero. The compensation conductive line 20 cancels out the magnetic field generated in the vicinity of the four magnetoresistive elements 14a to 14d according to the magnitude of the control current, that is, the magnetic field according to the magnitude of the current to be measured applied to the primary conductor 3. Generate a magnetic field.
Therefore, the collapse of the balance of the bridge circuit 18 according to the magnitude of the current to be measured applied to the primary conductor 3 can be repaired by the control current supplied from the sensor circuit unit 9. Therefore, the magnitude of the control current supplied from the sensor circuit unit 9 can be detected as a value correlated with the magnitude of the current to be measured applied to the primary conductor 3.
The external magnetic field (disturbance magnetic field) generated outside the primary conductor 3 has an in-phase influence on the magnetoresistive effect elements 14a and 14b and the magnetoresistive effect elements 14c and 14d (the left and right half bridge circuits 19 of the bridge circuit 18). Therefore, it is offset and does not affect the measurement accuracy.

最後に一次導体3の詳細について、補足する。本実施の形態1に示した図では、一次導体3のU字底部5の両側である外周コーナー部分は、特に加工を施さず直角形状に構成されているが、被測定電流は一次導体3の内部において一次導体3の入出力端となる接続導体部6から最短距離で流れるため、外周部分の形状は特にどのようなものであっても問題とならず、加工工数の低減、および被測定電流印加時の発熱の低減つまりは放熱作用のために、未加工であることがむしろ望ましい。
また、本実施の形態においては、U字部4における一次導体3の断面形状はX方向に長軸を有する長方形としたが、U字部4における一次導体3の断面形状を面外方向(Z方向)に長軸を有する長方形としてもよい。その場合、図10に示すように、x軸方向(感磁方向)へ分解した磁界ベクトル13xとz方向へ分解した磁界ベクトル13zの大きさは、13x<13zの関係が成立し、それぞれの磁気抵抗効果素子14の感磁方向には低められた磁界が印加されることになる。一次導体3の断面形状は面外方向(Z方向)に長軸を有する長方形にすると、被測定電流が大電流であっても磁気抵抗効果素子14に印加される磁界が抑制され、出力の飽和などを気にすることなく、かつ電流センサとしての外形寸法を大型化することなく、大電流の計測が容易に行える。
Finally, the details of the primary conductor 3 will be supplemented. In the diagram shown in the first embodiment, the outer peripheral corner portions on both sides of the U-shaped bottom portion 5 of the primary conductor 3 are configured to have a right-angle shape without any particular processing, but the current to be measured is that of the primary conductor 3. Since it flows at the shortest distance from the connecting conductor portion 6 that becomes the input / output end of the primary conductor 3 in the inside, there is no problem even if the shape of the outer peripheral portion is not particularly limited. In order to reduce heat generation during application, that is, to dissipate heat, it is desirable that the material is not processed.
Further, in the present embodiment, the cross-sectional shape of the primary conductor 3 in the U-shaped portion 4 is a rectangle having a long axis in the X direction, but the cross-sectional shape of the primary conductor 3 in the U-shaped portion 4 is the out-of-plane direction (Z It is good also as a rectangle which has a long axis in (direction). In this case, as shown in FIG. 10, the magnitudes of the magnetic field vector 13x decomposed in the x-axis direction (magnetic sensing direction) and the magnetic field vector 13z decomposed in the z direction satisfy the relationship of 13x <13z. A lowered magnetic field is applied in the magnetic sensitive direction of the resistive element 14. If the cross-sectional shape of the primary conductor 3 is a rectangle having a long axis in the out-of-plane direction (Z direction), the magnetic field applied to the magnetoresistive effect element 14 is suppressed even when the current to be measured is large, and the output is saturated. It is possible to easily measure a large current without worrying about the above and without increasing the outer dimensions of the current sensor.

以上のように、この実施の形態1によれば、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置され、それぞれのハーフブリッジ回路に逆方向の磁界が印加される構造のため、一様な外部磁界を除去することができる効果がある。  As described above, according to the first embodiment, the first half-bridge circuit is arranged in one region divided with respect to the center line of the installation board by four magnetoresistive elements on the installation board. In addition, since the second half bridge circuit is arranged in the other region and a magnetic field in the opposite direction is applied to each half bridge circuit, there is an effect that a uniform external magnetic field can be removed.

また、磁気抵抗効果素子の面内に印加する磁界の方向が可変可能であり、それに伴い磁気抵抗効果素子の応答における不連続な誤差が低減するように調整可能なため、電流センサの出力ばらつき、出力誤差が減少する効果がある。  In addition, the direction of the magnetic field applied in the plane of the magnetoresistive effect element can be varied, and accordingly, it can be adjusted so as to reduce discontinuous errors in the response of the magnetoresistive effect element. This has the effect of reducing the output error.

また、センサ基板の内層面に導電性を有する電界シールド層を設置したため、一次導体や外部からの電界ノイズを除去あるいは低減でき、測定精度を向上する効果がある。  Further, since the electric field shield layer having conductivity is provided on the inner layer surface of the sensor substrate, it is possible to remove or reduce the electric field noise from the primary conductor and the outside, and to improve the measurement accuracy.

実施の形態2.
図11は、この発明の実施の形態2による電流センサの平面図を示すもので、図12は図11の一次導体のみを示す斜視図である。図において、一次導体3は、電気伝導性を有する金属にて作製され、実施の形態1と同様にU字部4、U字底部5、接続導体部6より構成され、新たにU字底部5に貫通孔22を設けたものである。
実施の形態2は、実施の形態1に示した一次導体3に貫通孔22を設置した構成であり、実施の形態1では、一次導体3に比べてセンサ基板2が小さい例にてセンサ基板2を回転移動して調整する手法を示したが、実施の形態2では、一次導体3に比べてセンサ基板2が大きい例にて一次導体3を回転移動して調整する手法を示すものである。なお、その他の構成や動作で重複する部分は省略する。
Embodiment 2. FIG.
11 is a plan view of a current sensor according to Embodiment 2 of the present invention, and FIG. 12 is a perspective view showing only the primary conductor of FIG. In the figure, the primary conductor 3 is made of a metal having electrical conductivity, and is composed of a U-shaped part 4, a U-shaped bottom part 5 and a connecting conductor part 6 in the same manner as in the first embodiment. Is provided with a through hole 22.
The second embodiment has a configuration in which the through hole 22 is provided in the primary conductor 3 shown in the first embodiment. In the first embodiment, the sensor substrate 2 is smaller than the primary conductor 3 in the example of the sensor substrate 2. In the second embodiment, a method for rotating and adjusting the primary conductor 3 in an example in which the sensor substrate 2 is larger than the primary conductor 3 is shown. In addition, the part which overlaps with another structure and operation | movement is abbreviate | omitted.

一次導体よりセンサ基板が小さい場合、実施の形態1に示すように、一次導体3にザグリ部8を設け、ザグリ部8が調整におけるガイドの機能を果たし、センサ基板2の回転移動を容易にしている。しかしながら、一次導体よりセンサ基板が大きい場合、一次導体のザグリ部はセンサ基板の回転移動におけるガイドとして機能しない。
本実施の形態においては、一次導体3にザグリ部を設けずに、一次導体3の対象軸上のU字底部5内に貫通孔22を設け、この貫通孔22を基点として一次導体3を回転移動する構造とした。磁気抵抗効果素子の応答における不連続な誤差を低減する調整方法としては、磁気抵抗効果素子の長軸方向に対して被測定磁界の方向を可変すればよいため、センサ基板に対して一次導体を回転移動させても、一次導体に対してセンサ基板を回転移動させた実施の形態1と同等の効果が得られる。
When the sensor substrate is smaller than the primary conductor, as shown in the first embodiment, the primary conductor 3 is provided with a counterbore portion 8, and the counterbore portion 8 serves as a guide for adjustment, facilitating the rotational movement of the sensor substrate 2. Yes. However, when the sensor substrate is larger than the primary conductor, the counterbore portion of the primary conductor does not function as a guide in the rotational movement of the sensor substrate.
In the present embodiment, a through hole 22 is provided in the U-shaped bottom portion 5 on the target axis of the primary conductor 3 without providing a counterbore portion in the primary conductor 3, and the primary conductor 3 is rotated with the through hole 22 as a base point. A moving structure was adopted. As an adjustment method for reducing the discontinuous error in the response of the magnetoresistive effect element, it is only necessary to change the direction of the magnetic field to be measured with respect to the major axis direction of the magnetoresistive effect element. Even if it is rotated, the same effect as that of the first embodiment in which the sensor substrate is rotated with respect to the primary conductor can be obtained.

この発明の実施の形態2による、磁気抵抗効果素子の応答における不連続な誤差を低減する調整方法について説明する。U字部4を有する一次導体3の一点鎖線で示した対称軸、および電流検知デバイス部7の中心線11が略一致するように、貫通孔22を利用してセンサ基板2に一次導体3を設置する。設置方法は、例えば貫通孔22を用いたネジ止めやピン止めでよく、一次導体を一時的に保持し、かつ貫通孔22を基点として一次導体3が回転移動できれば設置手段は問わない。その状態で磁気抵抗応答曲線を取得する。取得の方法は、実施の形態1と同様のため省略する。得られた電流センサ出力の絶対値に差異が生じていれば、不連続な誤差が確認できたといえる。そのときは、一次導体3を、一次導体3に設けた貫通孔22を基点として回転させ、上述の測定を繰り返し、被測定電流の方向を逆転して得られた電流センサ出力の絶対値に差異が生じない一次導体3の設置位置が得られたところで測定を止め、一次導体3を固定する。このような調整を実施することで、磁気抵抗効果素子の応答における不連続な誤差を確実に低減することが可能となる。
なお不連続な誤差が顕著に確認できる被測定電流値が既知であれば、被測定電流値を可変せず、ある一定の値に固定して調整してもよく、その結果、調整工程が簡素化される効果が得られる。
また、一次導体3の回転角は数度程度であるため、センサ基板2から一次導体3が逸脱することはなく、電流センサとしての寸法が拡大することはない。
An adjustment method for reducing discontinuous errors in the response of the magnetoresistive effect element according to the second embodiment of the present invention will be described. The primary conductor 3 is attached to the sensor substrate 2 using the through-hole 22 so that the axis of symmetry indicated by the one-dot chain line of the primary conductor 3 having the U-shaped portion 4 and the center line 11 of the current detection device portion 7 substantially coincide. Install. The installation method may be, for example, screwing or pinning using the through hole 22, and any installation means may be used as long as the primary conductor is temporarily held and the primary conductor 3 can be rotated and moved with the through hole 22 as a base point. In this state, a magnetoresistive response curve is acquired. Since the acquisition method is the same as that in the first embodiment, a description thereof will be omitted. If there is a difference in the absolute value of the obtained current sensor output, it can be said that a discontinuous error has been confirmed. In that case, the primary conductor 3 is rotated with the through hole 22 provided in the primary conductor 3 as a base point, the above measurement is repeated, and the absolute value of the current sensor output obtained by reversing the direction of the current to be measured is different. The measurement is stopped when the installation position of the primary conductor 3 is obtained, and the primary conductor 3 is fixed. By performing such adjustment, it becomes possible to reliably reduce discontinuous errors in the response of the magnetoresistive effect element.
Note that if the measured current value for which a discontinuous error can be remarkably confirmed is known, the measured current value may be fixed and adjusted to a certain value without changing it, and as a result, the adjustment process is simplified. The effect is realized.
Further, since the rotation angle of the primary conductor 3 is about several degrees, the primary conductor 3 does not deviate from the sensor substrate 2 and the size of the current sensor does not increase.

以上のように本実施の形態2によれば、一次導体3に比べてセンサ基板2が大きい場合も、一次導体3を回転移動することで磁気抵抗効果素子の面内に印加する磁界の方向が可変可能であり、それに伴い磁気抵抗効果素子の応答における不連続な誤差が低減するように調整可能なため、電流センサの出力ばらつき、出力誤差が減少する効果がある。  As described above, according to the second embodiment, even when the sensor substrate 2 is larger than the primary conductor 3, the direction of the magnetic field applied in the plane of the magnetoresistive effect element by rotating the primary conductor 3 is changed. Since it is variable and can be adjusted so as to reduce the discontinuous error in the response of the magnetoresistive effect element, the output variation of the current sensor and the output error are reduced.

実施の形態3.
図13は、この発明の実施の形態2による電流センサの平面図を示すもので、図14は図13の一次導体のみを示す斜視図である。図において、一次導体3は、電気伝導性を有する金属にて作製され、実施の形態1と同様にU字部4、U字底部5、接続導体部6より構成され、ザグリ部8の形状を円弧状から長方形に変更したものである。また、新たにセンサ基板2上にバイアス磁界発生部23を設けたものである。
実施の形態3は、実施の形態1に示したセンサ基板2にバイアス磁界発生部23を設置した構成であり、実施の形態1では一次導体3に比べてセンサ基板2が小さい例にてセンサ基板2を回転移動して調整する手法を示したが、実施の形態3では実施の形態1と同じく一次導体3に比べてセンサ基板2が小さい例にて、一次導体3を直線的に移動して調整する手法を示すものである。なお、その他の構成や動作で重複する部分は省略する。
Embodiment 3 FIG.
13 is a plan view of a current sensor according to Embodiment 2 of the present invention, and FIG. 14 is a perspective view showing only the primary conductor of FIG. In the figure, the primary conductor 3 is made of a metal having electrical conductivity, and is composed of a U-shaped portion 4, a U-shaped bottom portion 5, and a connecting conductor portion 6 in the same manner as in the first embodiment. The arc shape is changed to a rectangle. In addition, a bias magnetic field generator 23 is newly provided on the sensor substrate 2.
The third embodiment has a configuration in which the bias magnetic field generator 23 is installed on the sensor substrate 2 shown in the first embodiment. In the first embodiment, the sensor substrate 2 is smaller than the primary conductor 3 in the example. In the third embodiment, the sensor board 2 is smaller than the primary conductor 3 as in the first embodiment, and the primary conductor 3 is moved linearly in the third embodiment. It shows the method of adjustment. In addition, the part which overlaps with another structure and operation | movement is abbreviate | omitted.

バイアス磁界発生部を電流検知デバイス部の近傍に設置することで、磁気抵抗効果素子を形成する磁性金属膜の内部磁化方向を容易軸方向に維持し、バルクハウゼンジャンプ、ヒステリシスの抑制にも期待できる。
実施の形態1または2のように、センサ基板2にバイアス磁界発生部23を設置しない場合、電流検知デバイス部7に印加される磁界は、1次導体3に流れる被測定電流に起因したもののみとなる。そのため、磁界の方向を変更するための手段は、電流検知デバイス部7を有したセンサ基板2、もしくは一次導体3の回転移動に限られていた。
しかしながら、センサ基板2にバイアス磁界発生部23を設置した場合、電流検知デバイス部7に印加される磁界は、1次導体3に流れる被測定電流に起因したものとバイアス磁界発生部23に起因したものの合成となる。そのため、磁界の方向を変更するための手段は、電流検知デバイス部7を有したセンサ基板2、もしくは一次導体3の回転移動に限られず、長方形で設けたザグリ部8に沿ったセンサ基板2の直線的な移動でも可能となり、センサ基板2を回転移動させた実施の形態1と同等の効果が得られる。
By installing the bias magnetic field generation unit in the vicinity of the current detection device unit, the internal magnetization direction of the magnetic metal film forming the magnetoresistive effect element can be maintained in the easy axis direction, and the Barkhausen jump and hysteresis can be suppressed. .
When the bias magnetic field generation unit 23 is not installed on the sensor substrate 2 as in the first or second embodiment, the magnetic field applied to the current detection device unit 7 is only due to the measured current flowing through the primary conductor 3. It becomes. Therefore, the means for changing the direction of the magnetic field has been limited to the rotational movement of the sensor substrate 2 having the current detection device unit 7 or the primary conductor 3.
However, when the bias magnetic field generation unit 23 is installed on the sensor substrate 2, the magnetic field applied to the current detection device unit 7 is caused by the measured current flowing through the primary conductor 3 and the bias magnetic field generation unit 23. It is a composition of things. Therefore, the means for changing the direction of the magnetic field is not limited to the rotational movement of the sensor substrate 2 having the current detection device unit 7 or the primary conductor 3, but the sensor substrate 2 along the counterbore portion 8 provided in a rectangular shape. A linear movement is also possible, and an effect equivalent to that of the first embodiment in which the sensor substrate 2 is rotated is obtained.

この発明の実施の形態3による、磁気抵抗効果素子の応答における不連続な誤差を低減する調整方法について説明する。U字部4を有する一次導体3の一点鎖線で示した対称軸、および電流検知デバイス部7の中心線11が略一致するように、センサ基板2をザグリ部8を介して設置する。その状態で磁気抵抗応答曲線を取得する。取得の方法は、実施の形態1と同様のため省略する。得られた電流センサ出力の絶対値に差異が生じていれば、不連続な誤差が確認できたといえる。そのときは、センサ基板2をザグリ部8に沿って、例えば本実施の形態ではX方向に直線的に移動し、上述の測定を繰り返し、被測定電流の方向を逆転して得られた電流センサ出力の絶対値に差異が生じないセンサ基板2の設置位置が得られたところで測定を止め、センサ基板2を固定する。このような調整を実施することで、磁気抵抗効果素子の応答における不連続な誤差を確実に低減することが可能となる。
なお不連続な誤差が顕著に確認できる被測定電流値が既知であれば、被測定電流値を可変せず、ある一定の値に固定して調整してもよく、その結果、調整工程が簡素化される効果が得られる。
また、センサ基板2の移動距離は一次導体との兼ね合いもあるが、概ね数mm程度以内であるため、一次導体3に設けたザグリ部8を逸脱することはなく、センサ基板2が数mm程度移動できる部分にだけザグリ部8を限定して設けてもよい。
An adjustment method for reducing discontinuous errors in the response of the magnetoresistive effect element according to the third embodiment of the present invention will be described. The sensor substrate 2 is installed via the counterbore part 8 so that the axis of symmetry indicated by the one-dot chain line of the primary conductor 3 having the U-shaped part 4 and the center line 11 of the current detection device part 7 substantially coincide. In this state, a magnetoresistive response curve is acquired. Since the acquisition method is the same as that in the first embodiment, a description thereof will be omitted. If there is a difference in the absolute value of the obtained current sensor output, it can be said that a discontinuous error has been confirmed. At that time, the current sensor obtained by moving the sensor substrate 2 along the counterbore part 8 linearly in the X direction, for example, in the present embodiment, repeating the above measurement, and reversing the direction of the current to be measured. The measurement is stopped when the installation position of the sensor substrate 2 that does not cause a difference in the absolute value of the output is obtained, and the sensor substrate 2 is fixed. By performing such adjustment, it becomes possible to reliably reduce discontinuous errors in the response of the magnetoresistive effect element.
Note that if the measured current value for which a discontinuous error can be remarkably confirmed is known, the measured current value may be fixed and adjusted to a certain value without changing it, and as a result, the adjustment process is simplified. The effect is realized.
In addition, the moving distance of the sensor substrate 2 may have a balance with the primary conductor, but is approximately within a few millimeters. Therefore, the sensor substrate 2 does not deviate from the counterbore portion 8 provided in the primary conductor 3 and the sensor substrate 2 is about a few millimeters. The counterbore part 8 may be limited and provided only in the movable part.

以上のように、本実施の形態3によれば、センサ基板を直線的に移動することで磁気抵抗効果素子の面内に印加する磁界の方向が可変可能であり、それに伴い磁気抵抗効果素子の応答における不連続な誤差が低減するように調整可能なため、電流センサの出力ばらつき、出力誤差が減少する効果がある。  As described above, according to the third embodiment, the direction of the magnetic field applied in the plane of the magnetoresistive effect element can be changed by linearly moving the sensor substrate. Since adjustment is possible so that discontinuous errors in the response are reduced, there is an effect of reducing output variations and output errors of the current sensor.

また、一次導体の直線的な移動のみで磁気抵抗効果素子に印加する磁界の方向を調整する手段を得られ、それに伴い磁気抵抗効果素子の応答における不連続な誤差を低減できるため、小型化、ならびに低コスト化の効果もある。  In addition, it is possible to obtain a means for adjusting the direction of the magnetic field applied to the magnetoresistive element only by linear movement of the primary conductor, and accordingly, the discontinuous error in the response of the magnetoresistive element can be reduced. In addition, there is an effect of cost reduction.

実施の形態4.
図15は、この発明の実施の形態4による電流センサの平面図を示すもので、図16は図15の中心線11における断面図である。図16は、簡単のために一部の構成のみを示した。図において、これまでの実施の形態に対して、一次導体3を設置するセンサ基板2の裏面側に新たに一次導体保持部24を設けたものである。
実施の形態4は、実施の形態2に示した一次導体3の貫通孔22を削除し、新たにバイアス磁界発生部23と一次導体保持部24を設置した構成であり、実施の形態3では、一次導体3に比べてセンサ基板2が小さい例にてセンサ基板2を直線的に移動して調整する手法を示したが、実施の形態4では、一次導体3に比べてセンサ基板2が大きい例にて一次導体3を直線的に移動して調整する手法を示すものである。なお、その他の構成や動作で重複する部分は省略する。
Embodiment 4 FIG.
15 is a plan view of a current sensor according to Embodiment 4 of the present invention, and FIG. 16 is a cross-sectional view taken along the center line 11 of FIG. FIG. 16 shows only a part of the configuration for simplicity. In the figure, a primary conductor holding portion 24 is newly provided on the back surface side of the sensor substrate 2 on which the primary conductor 3 is installed, compared to the embodiments described so far.
The fourth embodiment is a configuration in which the through hole 22 of the primary conductor 3 shown in the second embodiment is deleted, and a new bias magnetic field generation unit 23 and a primary conductor holding unit 24 are installed. In the third embodiment, Although the method of linearly moving and adjusting the sensor substrate 2 in an example in which the sensor substrate 2 is smaller than the primary conductor 3 has been described, in the fourth embodiment, the sensor substrate 2 is larger than the primary conductor 3 A method of adjusting the primary conductor 3 by linearly moving is shown. In addition, the part which overlaps with another structure and operation | movement is abbreviate | omitted.

一次導体よりセンサ基板が小さい場合、実施の形態3に示すように、一次導体3にザグリ部8を設け、ザグリ部8が調整におけるガイドの機能を果たし、センサ基板2の直線的な移動を容易にしている。しかしながら、一次導体よりセンサ基板が大きい場合、一次導体のザグリ部はセンサ基板の直線的な移動におけるガイドとして機能しない。
本実施の形態においては、一次導体3にザグリ部を設けずに、一次導体3を設置するセンサ基板2の裏面側に一次導体保持部24を設け、この一次導体保持部24をガイドとして一次導体3を直線的に移動する構造とした。磁気抵抗効果素子の応答における不連続な誤差を低減する調整方法としては、磁気抵抗効果素子の長軸方向に対して被測定磁界の方向を可変すればよいため、センサ基板に対して一次導体を直線的に移動させても、一次導体に対してセンサ基板を直線的に移動させた実施の形態3と同等の効果が得られる。
When the sensor substrate is smaller than the primary conductor, as shown in the third embodiment, the primary conductor 3 is provided with a counterbore portion 8, and the counterbore portion 8 serves as a guide for adjustment, and the sensor substrate 2 can be easily moved linearly. I have to. However, when the sensor substrate is larger than the primary conductor, the counterbore portion of the primary conductor does not function as a guide for linear movement of the sensor substrate.
In the present embodiment, the primary conductor 3 is not provided with the counterbore part, but the primary conductor holding part 24 is provided on the back surface side of the sensor substrate 2 on which the primary conductor 3 is installed, and the primary conductor holding part 24 is used as a guide. 3 was configured to move linearly. As an adjustment method for reducing the discontinuous error in the response of the magnetoresistive effect element, it is only necessary to change the direction of the magnetic field to be measured with respect to the major axis direction of the magnetoresistive effect element. Even if it is moved linearly, the same effect as in the third embodiment in which the sensor substrate is linearly moved with respect to the primary conductor can be obtained.

この発明の実施の形態4による、磁気抵抗効果素子の応答における不連続な誤差を低減する調整方法について説明する。U字部4を有する一次導体3の一点鎖線で示した対称軸、および電流検知デバイス部7の中心線11が略一致するように、一次導体保持部24を利用してセンサ基板2に一次導体3を設置する。一次導体保持部24は、一次導体3を一時的に保持し、かつガイドとして機能し、一次導体3が直線的に移動できれば、構成材料や設置手段は問わないが非磁性材であることが望ましい。その状態で磁気抵抗応答曲線を取得する。取得の方法は、実施の形態1と同様のため省略する。得られた電流センサ出力の絶対値に差異が生じていれば、不連続な誤差が確認できたといえる。そのときは、一次導体3を、一次導体保持部24をガイドとして直線的に移動させ、上述の測定を繰り返し、被測定電流の方向を逆転して得られた電流センサ出力の絶対値に差異が生じない一次導体3の設置位置が得られたところで測定を止め、一次導体3を固定する。このような調整を実施することで、磁気抵抗効果素子の応答における不連続な誤差を確実に低減することが可能となる。
なお不連続な誤差が顕著に確認できる被測定電流値が既知であれば、被測定電流値を可変せず、ある一定の値に固定して調整してもよく、その結果、調整工程が簡素化される効果が得られる。
また、センサ基板2の移動距離は一次導体との兼ね合いもあるが、概ね数mm程度以内であるため、センサ基板2から一次導体3が逸脱することはなく、電流センサとしての寸法が拡大することはない。
An adjustment method for reducing discontinuous errors in the response of the magnetoresistive effect element according to the fourth embodiment of the present invention will be described. The primary conductor is connected to the sensor substrate 2 using the primary conductor holding part 24 so that the axis of symmetry indicated by the one-dot chain line of the primary conductor 3 having the U-shaped part 4 and the center line 11 of the current detection device part 7 substantially coincide. 3 is installed. The primary conductor holding portion 24 temporarily holds the primary conductor 3 and functions as a guide. If the primary conductor 3 can move linearly, the constituent material and the installation means are not limited, but it is preferably a non-magnetic material. . In this state, a magnetoresistive response curve is acquired. Since the acquisition method is the same as that in the first embodiment, a description thereof will be omitted. If there is a difference in the absolute value of the obtained current sensor output, it can be said that a discontinuous error has been confirmed. In that case, the primary conductor 3 is linearly moved using the primary conductor holding portion 24 as a guide, the above measurement is repeated, and the absolute value of the current sensor output obtained by reversing the direction of the current to be measured is different. When the installation position of the primary conductor 3 that does not occur is obtained, the measurement is stopped and the primary conductor 3 is fixed. By performing such adjustment, it becomes possible to reliably reduce discontinuous errors in the response of the magnetoresistive effect element.
Note that if the measured current value for which a discontinuous error can be remarkably confirmed is known, the measured current value may be fixed and adjusted to a certain value without changing it, and as a result, the adjustment process is simplified. The effect is realized.
In addition, the movement distance of the sensor board 2 may be balanced with the primary conductor, but is approximately within a few mm, so that the primary conductor 3 does not deviate from the sensor board 2 and the dimensions of the current sensor are increased. There is no.

以上のように本実施の形態4によれば、一次導体3に比べてセンサ基板2が大きい場合も、一次導体3を直線的に移動することで磁気抵抗効果素子の面内に印加する磁界の方向が可変可能であり、それに伴い磁気抵抗効果素子の応答における不連続な誤差が低減するように調整可能なため、電流センサの出力ばらつき、出力誤差が減少する効果がある。  As described above, according to the fourth embodiment, even when the sensor substrate 2 is larger than the primary conductor 3, the magnetic field applied in the plane of the magnetoresistive effect element by moving the primary conductor 3 linearly. Since the direction can be varied and the adjustment can be made so as to reduce the discontinuous error in the response of the magnetoresistive effect element, the output variation of the current sensor and the output error are reduced.

また、一次導体の直線的な移動のみで磁気抵抗効果素子に印加する磁界の方向を調整する手段を得られ、それに伴い磁気抵抗効果素子の応答における不連続な誤差を低減できるため、小型化、ならびに低コスト化の効果もある。  In addition, it is possible to obtain a means for adjusting the direction of the magnetic field applied to the magnetoresistive element only by linear movement of the primary conductor, and accordingly, the discontinuous error in the response of the magnetoresistive element can be reduced. In addition, there is an effect of cost reduction.

1 電流センサ、2 センサ基板、3 一次導体、4 U字部、5 U字底部、6 接続導体部、7 電流検知デバイス部、8 ザグリ部、9 センサ回路部、10 外部端子、11 中心線、12 電界シールド層、13 磁界ベクトル、14 磁気抵抗効果素子、15 接続電流線、16 接続エリア、17 設置基板、18 ブリッジ回路、19 ハーフブリッジ回路、20 補償導電線、21 オペアンプ、22 貫通孔、23 バイアス磁界発生部、24 一次導体保持部1 current sensor, 2 sensor board, 3 primary conductor, 4 U-shaped part, 5 U-shaped bottom part, 6 connecting conductor part, 7 current detection device part, 8 counterbore part, 9 sensor circuit part, 10 external terminal, 11 center line, 12 electric field shield layer, 13 magnetic field vector, 14 magnetoresistive effect element, 15 connection current line, 16 connection area, 17 installation board, 18 bridge circuit, 19 half bridge circuit, 20 compensation conductive line, 21 operational amplifier, 22 through hole, 23 Bias magnetic field generator, 24 Primary conductor holder

Claims (8)

設置基板上に配置され、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有する第1および第4の磁気抵抗効果素子と、
前記設置基板上に配置され、互いに逆方向の上記磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有する第2および第3の磁気抵抗効果素子と、
前記設置基板上に配置され、前記第1から第4の磁気抵抗効果素子を接続することにより、前記第1および第2の磁気抵抗効果素子による第1のハーフブリッジ回路、および前記第3および第4の磁気抵抗効果素子による第2のハーフブリッジ回路からなるブリッジ回路を構成する接続電流線とを備え、前記設置基板の中心線に対して分けられた一方の領域に前記第1のハーフブリッジ回路が配置されると共に、他方の領域に前記第2のハーフブリッジ回路が配置された電流検知デバイスと、少なくとも1つのU字型形状を有する一次導体とを備え、
前記電流検知デバイスの前記設置基板の中心線と前記一次導体のU字型形状の対称軸が略一致するように少なくとも一つの前記電流検知デバイスがU字型形状部の近傍に配置されるとともに、前記設置基板の中心線上に位置する前記設置基板の中心点を略中点として、前記一次導体に対して前記設置基板が回転可能であることを特徴とする電流センサ。
First and fourth magnetoresistive elements disposed on an installation substrate and having a magnetoresistive effect characteristic in which a resistance value increases together with an increase in a magnetic field opposite to each other;
Second and third magnetoresistive elements disposed on the installation substrate and having a magnetoresistive effect characteristic in which a resistance value decreases together with an increase in the magnetic field in the opposite direction;
A first half-bridge circuit formed by the first and second magnetoresistive elements is connected to the first to fourth magnetoresistive elements disposed on the installation substrate, and the third and third magnetoresistive elements are connected. And a connection current line constituting a bridge circuit composed of a second half-bridge circuit by the magnetoresistive effect element, and the first half-bridge circuit in one region divided with respect to the center line of the installation board And a current sensing device in which the second half-bridge circuit is arranged in the other region, and a primary conductor having at least one U-shape,
At least one of the current detection devices is disposed in the vicinity of the U-shaped portion so that the center line of the installation substrate of the current detection device and the U-shaped symmetry axis of the primary conductor substantially coincide with each other. A current sensor, wherein the installation board is rotatable with respect to the primary conductor, with a center point of the installation board located on a center line of the installation board as a substantially middle point.
少なくとも一つの前記一次導体は、U字型形状の対称軸上のU字型底部近傍に設けた貫通孔を基点として、前記電流検知デバイスに対して前記一次導体が回転可能であることを特徴とする請求項1に記載の電流センサ。The at least one primary conductor is capable of rotating the primary conductor with respect to the current detection device with a through hole provided in the vicinity of a U-shaped bottom portion on a U-shaped symmetrical axis as a base point. The current sensor according to claim 1. 少なくとも一つの前記電流検知デバイスは、センサ回路部とともにセンサ基板に設置され、前記センサ基板は前記一次導体のU字型形状部の近傍の少なくとも一箇所に、前記センサ基板に設置された前記電流検知デバイスの中心線と前記一次導体のU字型形状の対称軸が略一致するように配置されるとともに、前記電流検知デバイスの中心線上に位置する前記電流検知デバイスの中心点を略中点として、前記一次導体に対して前記電流検知デバイスもしくは前記センサ基板が回転可能であることを特徴とする請求項1または2に記載の電流センサ。At least one of the current detection devices is installed on a sensor substrate together with a sensor circuit unit, and the sensor substrate is installed on the sensor substrate in at least one location near the U-shaped portion of the primary conductor. The center line of the device and the U-shaped symmetry axis of the primary conductor are arranged so as to substantially coincide with each other, and the center point of the current detection device located on the center line of the current detection device is set as a substantially middle point. The current sensor according to claim 1, wherein the current detection device or the sensor substrate is rotatable with respect to the primary conductor. 少なくとも一つの前記一次導体は、U字型形状を成す前記一次導体の上面、もしくは下面、もしくはその両面に円弧状のザグリ部を備え、前記ザグリ部を介して前記センサ基板を連結したことを特徴とする請求項3に記載の電流センサ。At least one of the primary conductors has an arcuate counterbore on the upper surface, lower surface, or both surfaces of the U-shaped primary conductor, and the sensor substrate is connected via the counterbore. The current sensor according to claim 3. 設置基板上に配置され、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有する第1および第4の磁気抵抗効果素子と、
前記設置基板上に配置され、互いに逆方向の上記磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有する第2および第3の磁気抵抗効果素子と、
前記設置基板上に配置され、前記第1から第4の磁気抵抗効果素子を接続することにより、前記第1および第2の磁気抵抗効果素子による第1のハーフブリッジ回路、および前記第3および第4の磁気抵抗効果素子による第2のハーフブリッジ回路からなるブリッジ回路を構成する接続電流線とを備え、前記設置基板の中心線に対して分けられた一方の領域に前記第1のハーフブリッジ回路が配置されると共に、他方の領域に前記第2のハーフブリッジ回路が配置された電流検知デバイスと、少なくとも1つのU字型形状を有する一次導体と、少なくとも2つのバイアス磁界発生部を備え、
前記電流検知デバイスは複数の前記バイアス磁界発生部によって挟まれた領域内に、かつ前記電流検知デバイスの前記設置基板の中心線と前記一次導体のU字型形状の対称軸が略一致するように少なくとも一つの前記電流検知デバイスがU字型形状部の近傍に配置されるとともに、前記一次導体に対して前記電流検知デバイスが、U字型形状部の対称軸に対して直角方向に移動可能であることを特徴とする電流センサ。
First and fourth magnetoresistive elements disposed on an installation substrate and having a magnetoresistive effect characteristic in which a resistance value increases together with an increase in a magnetic field opposite to each other;
Second and third magnetoresistive elements disposed on the installation substrate and having a magnetoresistive effect characteristic in which a resistance value decreases together with an increase in the magnetic field in the opposite direction;
A first half-bridge circuit formed by the first and second magnetoresistive elements is connected to the first to fourth magnetoresistive elements disposed on the installation substrate, and the third and third magnetoresistive elements are connected. And a connection current line constituting a bridge circuit composed of a second half-bridge circuit by the magnetoresistive effect element, and the first half-bridge circuit in one region divided with respect to the center line of the installation board And a current sensing device in which the second half-bridge circuit is disposed in the other region, at least one primary conductor having a U-shape, and at least two bias magnetic field generators,
The current detection device is in a region sandwiched between the plurality of bias magnetic field generation units, and a center line of the installation substrate of the current detection device and a U-shaped symmetry axis of the primary conductor substantially coincide with each other. At least one of the current detection devices is disposed in the vicinity of the U-shaped portion, and the current detection device is movable in a direction perpendicular to the symmetry axis of the U-shaped portion with respect to the primary conductor. A current sensor characterized by being.
少なくとも一つの前記一次導体は、U字型形状部の対称軸に対して直角方向に移動可能であることを特徴とする請求項5に記載の電流センサ。The current sensor according to claim 5, wherein at least one of the primary conductors is movable in a direction perpendicular to the symmetry axis of the U-shaped portion. 少なくとも一つの前記電流検知デバイスは、センサ回路部および少なくとも2つの前記バイアス磁界発生部とともにセンサ基板に設置され、前記センサ基板は前記一次導体の前記U字型形状近傍の少なくとも一箇所に、前記センサ基板に設置された前記電流検知デバイスの中心線と前記U字型形状の対称軸が略一致するように配置されるとともに、前記一次導体に対して前記電流検知デバイスもしくは前記センサ基板が、U字型形状の対称軸の直角方向に移動可能であることを特徴とする請求項またはに記載の電流センサ。At least one of the current detection devices is installed on a sensor substrate together with a sensor circuit unit and at least two of the bias magnetic field generation units, and the sensor substrate is disposed at least at one location near the U-shaped shape of the primary conductor. A center line of the current detection device installed on the substrate is arranged so that the symmetry axis of the U-shape is substantially coincident, and the current detection device or the sensor substrate is U-shaped with respect to the primary conductor. current sensor according to claim 5 or 6, characterized in that the perpendicular axis of symmetry of the mold shape is movable. 少なくとも一つの前記一次導体は、U字型形状を成す前記一次導体の上面、もしくは下面、もしくはその両面に長方形状のザグリ部を備え、前記ザグリ部を介して前記センサ基板を連結したことを特徴とする請求項7に記載の電流センサ。At least one of the primary conductors is provided with a rectangular counterbore portion on the upper surface, the lower surface, or both surfaces of the U-shaped primary conductor, and the sensor substrate is connected via the counterbore portion. The current sensor according to claim 7.
JP2009174763A 2009-07-02 2009-07-02 Current sensor Active JP5641276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174763A JP5641276B2 (en) 2009-07-02 2009-07-02 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174763A JP5641276B2 (en) 2009-07-02 2009-07-02 Current sensor

Publications (2)

Publication Number Publication Date
JP2011013200A JP2011013200A (en) 2011-01-20
JP5641276B2 true JP5641276B2 (en) 2014-12-17

Family

ID=43592238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174763A Active JP5641276B2 (en) 2009-07-02 2009-07-02 Current sensor

Country Status (1)

Country Link
JP (1) JP5641276B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012759A1 (en) * 2012-06-27 2014-01-02 Sensitec Gmbh Arrangement for current measurement
JP5957706B2 (en) * 2012-09-28 2016-07-27 アルプス・グリーンデバイス株式会社 Current sensor
JP2015210158A (en) * 2014-04-25 2015-11-24 株式会社デンソー Current sensor
JP6544338B2 (en) * 2016-11-01 2019-07-17 トヨタ自動車株式会社 Current sensor
CN216560728U (en) * 2018-11-01 2022-05-17 株式会社村田制作所 Current sensor
WO2020090296A1 (en) * 2018-11-01 2020-05-07 株式会社村田製作所 Current sensor
US11493537B2 (en) * 2019-08-08 2022-11-08 Sensitec Gmbh Magnetic field-based current sensor for frequency-compensated measurement of alternating currents
WO2021039264A1 (en) * 2019-08-26 2021-03-04 株式会社村田製作所 Electrical current sensor
CN116868064A (en) * 2021-03-30 2023-10-10 舍弗勒技术股份两合公司 Current sensor and current sensing system for vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059851A (en) * 1999-08-20 2001-03-06 Yazaki Corp Apparatus and method for detection of current
DE10107811A1 (en) * 2001-02-20 2002-09-19 Bosch Gmbh Robert Device, ammeter and motor vehicle
JP4224483B2 (en) * 2005-10-14 2009-02-12 Tdk株式会社 Current sensor
JP4394076B2 (en) * 2006-01-12 2010-01-06 三菱電機株式会社 Current sensor
JP4893506B2 (en) * 2007-06-04 2012-03-07 甲神電機株式会社 Current sensor

Also Published As

Publication number Publication date
JP2011013200A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5641276B2 (en) Current sensor
JP5482736B2 (en) Current sensor
JP4394076B2 (en) Current sensor
JP2011080970A (en) Detection device of multiphase current
JP4893506B2 (en) Current sensor
JP5888402B2 (en) Magnetic sensor element
JP2014512003A (en) Single-chip push-pull bridge type magnetic field sensor
JP5234459B2 (en) Current sensor
JP2016001118A (en) Current detection device, magnetic field detection device, and method thereof
US10495671B2 (en) Current detection device
JP4853807B2 (en) Current sensing device
JP2008216230A (en) Current sensor
JP6228663B2 (en) Current detector
JP2010256316A (en) Current sensor
JP2009271044A (en) Current sensor
JP2009168790A (en) Current sensor
JP5057245B2 (en) Current sensor
JP5187598B2 (en) Current detection circuit
JP5458319B2 (en) Current sensor
JP2018044789A (en) Magnetic field detector
JP5556603B2 (en) Magnetic isolator
JP4873348B2 (en) Current sensor and current detection device
JP2009222696A (en) Multiphase current detector
JP5793682B2 (en) Power measuring device
JP5796804B2 (en) How to install the current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5641276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250