JP2018044789A - Magnetic field detector - Google Patents

Magnetic field detector Download PDF

Info

Publication number
JP2018044789A
JP2018044789A JP2016177775A JP2016177775A JP2018044789A JP 2018044789 A JP2018044789 A JP 2018044789A JP 2016177775 A JP2016177775 A JP 2016177775A JP 2016177775 A JP2016177775 A JP 2016177775A JP 2018044789 A JP2018044789 A JP 2018044789A
Authority
JP
Japan
Prior art keywords
magnetic field
gmr
coil
bias magnetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016177775A
Other languages
Japanese (ja)
Other versions
JP6819164B2 (en
Inventor
雄二朗 冨田
Yujiro Tomita
雄二朗 冨田
二口 尚樹
Naoki Futakuchi
尚樹 二口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016177775A priority Critical patent/JP6819164B2/en
Publication of JP2018044789A publication Critical patent/JP2018044789A/en
Application granted granted Critical
Publication of JP6819164B2 publication Critical patent/JP6819164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic field detector with which it is possible to reduce a measurement error due to the temperature dependency of an electric resistance value of a GMR element while suppressing an increase in cost.SOLUTION: Provided is a magnetic field detector 1, equipped with a plurality of GMR elements 2 having a giant magnetoresistance effect and a magnetic field generation unit 3 for applying bias magnetic fields Bb1-Bb4 to the plurality of GMR elements 2, for detecting the strength of a magnetic field Bm to be detected that is in a direction orthogonal to the bias magnetic fields Bb1-Bb4 by a change in the electrical resistance of the GMR elements 2. The magnetic field generation unit 3 includes a coil 31 for generating the bias magnetic fields Bb1-Bb4 and a power supply 32 for supplying an excitation current to the coil 31, the strength of the bias magnetic fields Bb1-Bb4 declining due to a reduction in the excitation current when the temperatures of the GMR elements 2 rise and a change rate of electrical resistance to a change in the strength of the magnetic field Bm to be detected drops.SELECTED DRAWING: Figure 1

Description

本発明は、巨大磁気抵抗効果を有するGMR(Giant Magneto Resistive effect)素子を用いた磁界検出装置に関する。   The present invention relates to a magnetic field detection apparatus using a GMR (Giant Magneto Resistive effect) element having a giant magnetoresistance effect.

従来、GMR素子を用いた磁界検出装置が、例えば導体に流れる電流量の測定等の様々な用途に用いられている。このような磁界検出装置には、複数のGMR素子を備え、これら複数のGMR素子によってブリッジ回路が構成されたものがある(例えば、特許文献1,2参照)。   Conventionally, a magnetic field detection device using a GMR element is used for various applications such as measurement of the amount of current flowing through a conductor. Some of such magnetic field detection devices include a plurality of GMR elements, and a bridge circuit is configured by the plurality of GMR elements (see, for example, Patent Documents 1 and 2).

特許文献1に記載の磁界検出装置(電流検出装置)は、検出すべき磁界(被検出磁界)に対して直交する方向のバイアス磁界を発生させる平板状のバイアス磁石を備え、バイアス磁界と被検出磁界との合成磁界の向きが被検出磁界の強度によって変化することに伴う電気抵抗の変化により、被検出磁界の強度を検出する。   The magnetic field detection device (current detection device) described in Patent Document 1 includes a plate-like bias magnet that generates a bias magnetic field in a direction orthogonal to a magnetic field to be detected (detected magnetic field). The intensity of the magnetic field to be detected is detected based on the change in electrical resistance accompanying the change in the direction of the combined magnetic field with the magnetic field depending on the intensity of the magnetic field to be detected.

また、特許文献2に記載の磁界検出装置(磁気センサ)は、GMR素子の電気抵抗が温度に依存して変化することによる測定誤差を補償するため、素子の加熱及び冷却によって得られた温度依存特性補償用データ(素子の温度変化に対する抵抗値の変化の割合)に基づいて出力値を補正する制御回路部(LSI)を有している。GMR素子及び制御回路部(LSI領域)は、石英ガラス等から形成された基板上に積層して形成されている。   In addition, the magnetic field detection device (magnetic sensor) described in Patent Document 2 compensates for a measurement error caused by a change in the electrical resistance of the GMR element depending on the temperature, so that the temperature dependence obtained by heating and cooling the element. It has a control circuit unit (LSI) that corrects the output value based on characteristic compensation data (ratio of change in resistance value with respect to temperature change of the element). The GMR element and the control circuit portion (LSI region) are formed by being stacked on a substrate made of quartz glass or the like.

特開2016−99291号公報JP-A-2016-99291 国際公開第2004/051298号International Publication No. 2004/051298

特許文献2に記載された磁界検出装置のように、GMR素子の温度変化による誤差を補償する制御回路部を設ける場合には、そのコストが増大してしまう。   When a control circuit unit that compensates for an error due to a temperature change of the GMR element is provided as in the magnetic field detection device described in Patent Document 2, the cost increases.

そこで、本発明は、コストの増大を抑制しながら、GMR素子の電気抵抗値の温度依存性による測定誤差を低減することが可能な磁界検出装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a magnetic field detection apparatus capable of reducing a measurement error due to temperature dependency of an electrical resistance value of a GMR element while suppressing an increase in cost.

本発明は、上記課題を解決することを目的として、巨大磁気抵抗効果を有するGMR素子と、前記GMR素子にバイアス磁界を印加する磁界発生部とを備え、前記GMR素子の電気抵抗の変化によって前記バイアス磁界に直交する方向の被検出磁界の強度を検出する磁界検出装置であって、前記磁界発生部は、前記バイアス磁界を発生するコイルと、前記コイルに励磁電流を供給する電源とを有し、前記GMR素子の温度が上昇して前記被検出磁界の強度の変化に対する前記電気抵抗の変化率が低下したとき、前記励磁電流の減少によって前記バイアス磁界の強度が低下する、磁界検出装置を提供する。   In order to solve the above problems, the present invention includes a GMR element having a giant magnetoresistive effect, and a magnetic field generation unit that applies a bias magnetic field to the GMR element, and changes the electrical resistance of the GMR element to A magnetic field detection apparatus for detecting the intensity of a detected magnetic field in a direction orthogonal to a bias magnetic field, wherein the magnetic field generator includes a coil that generates the bias magnetic field and a power source that supplies an excitation current to the coil. When the temperature of the GMR element rises and the rate of change of the electrical resistance with respect to the change in the intensity of the detected magnetic field decreases, the magnetic field detection device reduces the intensity of the bias magnetic field due to the decrease in the excitation current To do.

本発明に係る磁界検出装置によれば、コストの増大を抑制しながら、GMR素子の電気抵抗値の温度依存性による測定誤差を低減することが可能となる。   According to the magnetic field detection apparatus of the present invention, it is possible to reduce a measurement error due to the temperature dependence of the electrical resistance value of the GMR element while suppressing an increase in cost.

本発明の実施の形態に係る磁界検出装置の構成を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the structure of the magnetic field detection apparatus which concerns on embodiment of this invention. 図1のA−A線における磁界検出装置の断面図である。It is sectional drawing of the magnetic field detection apparatus in the AA of FIG. 第1乃至第4のGMR素子によって構成されたブリッジ回路の動作を説明するために示す説明図である。It is explanatory drawing shown in order to demonstrate operation | movement of the bridge circuit comprised by the 1st thru | or 4th GMR element. (a)は、バイアス磁界が温度にかかわらず一定であるとした場合の常温時と高温時における被検出磁界の強度と出力電圧との関係を示すグラフである。(b)は、センサチップの飽和電圧が温度に関わらず一定であるとした場合の常温時及び高温時における被検出磁界の強度と出力電圧との関係を示すグラフである。(c)は、被検出磁界の強度と出力電圧との関係を示すグラフである。(A) is a graph which shows the relationship between the intensity | strength of the to-be-detected magnetic field at the time of normal temperature and high temperature, and an output voltage when a bias magnetic field is constant irrespective of temperature. (B) is a graph showing the relationship between the intensity of the detected magnetic field and the output voltage at normal temperature and at high temperature when the saturation voltage of the sensor chip is assumed to be constant regardless of temperature. (C) is a graph showing the relationship between the intensity of the detected magnetic field and the output voltage. 実施の形態の変形例に係る磁界検出装置の構成を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the structure of the magnetic field detection apparatus which concerns on the modification of embodiment.

[実施の形態]
以下、本発明の実施の形態について、図面を参照して説明する。
[Embodiment]
Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る磁界検出装置の構成を模式的に示す概略構成図である。図2は、図1のA−A線における磁界検出装置の断面図である。   FIG. 1 is a schematic configuration diagram schematically showing a configuration of a magnetic field detection apparatus according to an embodiment of the present invention. 2 is a cross-sectional view of the magnetic field detection apparatus taken along line AA in FIG.

この磁界検出装置1は、巨大磁気抵抗効果を有する複数のGMR素子2と、GMR素子2にバイアス磁界を印加する磁界発生部3と、複数のGMR素子2及び磁界発生部3のコイル31を封止する封止材4とを備えている。図1では、封止材4の外縁を示し、その内部の構造を図示している。また、図1では、GMR素子2の裏側におけるコイル31を破線で示している。封止材4は、電気絶縁性を有し、例えばエポキシ樹脂等の樹脂材料からなる。   This magnetic field detection device 1 seals a plurality of GMR elements 2 having a giant magnetoresistive effect, a magnetic field generator 3 that applies a bias magnetic field to the GMR elements 2, and a plurality of GMR elements 2 and coils 31 of the magnetic field generator 3. And a sealing material 4 to be stopped. In FIG. 1, the outer edge of the sealing material 4 is shown and the internal structure is illustrated. In FIG. 1, the coil 31 on the back side of the GMR element 2 is indicated by a broken line. The sealing material 4 has electrical insulation and is made of a resin material such as an epoxy resin.

複数のGMR素子2及びコイル31は、封止材4によって封止されて一体化され、単一のセンサチップ10を構成している。磁界検出装置1は、センサチップ10が例えばバスバー等の導電路の近傍に配置され、導電路に電流が流れることにより発生する磁界を検出するために用いられる。   The plurality of GMR elements 2 and the coil 31 are sealed and integrated by a sealing material 4 to constitute a single sensor chip 10. The magnetic field detection device 1 is used to detect a magnetic field generated when a sensor chip 10 is disposed in the vicinity of a conductive path such as a bus bar and a current flows through the conductive path.

磁界発生部3は、バイアス磁界を発生するコイル31と、コイル31に励磁電流を供給する電源32とを有している。コイル31は、線状の導電体が螺旋状に形成され、電源32から供給される励磁電流によってバイアス磁界を発生させる。図2では、このバイアス磁界を破線で示している。電源32は、励磁電流の大きさにかかわらず一定の電圧を出力する定電圧源である。   The magnetic field generation unit 3 includes a coil 31 that generates a bias magnetic field and a power supply 32 that supplies an excitation current to the coil 31. The coil 31 is formed of a linear conductor in a spiral shape, and generates a bias magnetic field by an excitation current supplied from a power supply 32. In FIG. 2, this bias magnetic field is indicated by a broken line. The power supply 32 is a constant voltage source that outputs a constant voltage regardless of the magnitude of the excitation current.

コイル31は、導電体が直線状に形成された第1及び第2の直線部31a,31bと、導電体が半円状に形成された第1及び第2の円弧部31c,31dとを有している。第1の直線部31aと第2の直線部31bとは互いに平行であり、第1及び第2の円弧部31c,31dは、第1の直線部31aと第2の直線部31bとの間に形成されている。本実施の形態では、導電体がコイル31の中心部310の周囲を平面状に6周している。すなわち、コイル31の巻数は6である。導電体の材質としては、例えば銅(Cu)やアルミニウム(Al)、銀(Ag)、あるいは合金(CuAl)等を用いることができる。   The coil 31 includes first and second linear portions 31a and 31b in which a conductor is formed in a linear shape, and first and second arc portions 31c and 31d in which a conductor is formed in a semicircular shape. doing. The first straight line portion 31a and the second straight line portion 31b are parallel to each other, and the first and second arc portions 31c and 31d are located between the first straight line portion 31a and the second straight line portion 31b. Is formed. In the present embodiment, the conductor makes six rounds around the central portion 310 of the coil 31 in a planar shape. That is, the number of turns of the coil 31 is six. As a material of the conductor, for example, copper (Cu), aluminum (Al), silver (Ag), alloy (CuAl), or the like can be used.

GMR素子2は、それ自体は周知のものであり、磁化方向が固定された固定層201と、固定層の磁化方向に直交する方向に印加されるバイアス磁界と被検出磁界とによって磁化方向が変化する自由層202と、固定層201と自由層202との間に介在する非磁性の中間層203とが積層されている。磁界検出装置1は、GMR素子2の電気抵抗の変化によって、バイアス磁界に直交する方向の被検出磁界の強度を検出する。   The GMR element 2 is known per se, and the magnetization direction is changed by a fixed layer 201 whose magnetization direction is fixed, a bias magnetic field applied in a direction orthogonal to the magnetization direction of the fixed layer, and a detected magnetic field. And a nonmagnetic intermediate layer 203 interposed between the fixed layer 201 and the free layer 202 are laminated. The magnetic field detection device 1 detects the strength of the detected magnetic field in the direction orthogonal to the bias magnetic field by the change in the electrical resistance of the GMR element 2.

本実施の形態では、磁界検出装置1が、電気的特性が共通する4つのGMR素子2を有し、これらのGMR素子2によってブリッジ回路20が構成されている。以下、これら4つのGMR素子2をそれぞれ第1乃至第4のGMR素子21〜24とする。   In the present embodiment, the magnetic field detection device 1 has four GMR elements 2 having common electrical characteristics, and a bridge circuit 20 is configured by these GMR elements 2. Hereinafter, these four GMR elements 2 are referred to as first to fourth GMR elements 21 to 24, respectively.

第1のGMR素子21と第2のGMR素子22とは、配線51によって直列に接続されてハーフブリッジ回路を構成している。また、第3のGMR素子23と第4のGMR素子24とは、配線52によって直列に接続されてハーフブリッジ回路を構成している。第1のGMR素子21と第3のGMR素子23とは、配線53によって接続されている。また、第2のGMR素子22と第4のGMR素子24とは、配線54によって接続されている。   The first GMR element 21 and the second GMR element 22 are connected in series by a wiring 51 to constitute a half bridge circuit. The third GMR element 23 and the fourth GMR element 24 are connected in series by a wiring 52 to constitute a half bridge circuit. The first GMR element 21 and the third GMR element 23 are connected by a wiring 53. The second GMR element 22 and the fourth GMR element 24 are connected by a wiring 54.

第1のGMR素子21及び第2のGMR素子22は、第1の直線部31aと重なるように配置されている。第3のGMR素子23及び第4のGMR素子24は、第2の直線部31bと重なるように配置されている。図2に示すように、第1の直線部31aに流れる電流の向きと第2の直線部31bに流れる電流の向きとは互いに逆向きになるので、第1のGMR素子21及び第2のGMR素子22に作用するバイアス磁界の方向と、第3のGMR素子23及び第4のGMR素子24に作用するバイアス磁界の方向きとは、互いに反対方向である。   The first GMR element 21 and the second GMR element 22 are arranged so as to overlap the first straight line portion 31a. The third GMR element 23 and the fourth GMR element 24 are arranged so as to overlap the second straight line portion 31b. As shown in FIG. 2, since the direction of the current flowing through the first straight line portion 31a and the direction of the current flowing through the second straight line portion 31b are opposite to each other, the first GMR element 21 and the second GMR The direction of the bias magnetic field acting on the element 22 and the direction of the bias magnetic field acting on the third GMR element 23 and the fourth GMR element 24 are opposite to each other.

センサチップ10は、電源端子101と、グランド端子102と、第1及び第2の出力端子103,104と、コイル31に励磁電流を供給するための第1及び第2の給電端子105,106とを有し、これら各端子が封止材4の外部に露出している。電源端子101には配線53が接続され、グランド端子102には配線54が接続されている。また第1の出力端子103には配線51が接続され、第2の出力端子104には配線52が接続されている。第1の給電端子105にはコイル31の一端が接続され、第2の給電端子106にはコイル31の他端が接続される。   The sensor chip 10 includes a power supply terminal 101, a ground terminal 102, first and second output terminals 103 and 104, and first and second power supply terminals 105 and 106 for supplying an excitation current to the coil 31. These terminals are exposed to the outside of the sealing material 4. A wiring 53 is connected to the power supply terminal 101, and a wiring 54 is connected to the ground terminal 102. A wiring 51 is connected to the first output terminal 103, and a wiring 52 is connected to the second output terminal 104. One end of the coil 31 is connected to the first power supply terminal 105, and the other end of the coil 31 is connected to the second power supply terminal 106.

電源端子101とグランド端子102との間には、ブリッジ回路20を動作させる直流電圧が印加される。第1の給電端子105には、電源32の+端子が接続され、第2の給電端子106には、電源32の−端子が接続されている。   A DC voltage for operating the bridge circuit 20 is applied between the power supply terminal 101 and the ground terminal 102. The first power supply terminal 105 is connected to the positive terminal of the power supply 32, and the second power supply terminal 106 is connected to the negative terminal of the power supply 32.

図3は、第1乃至第4のGMR素子21〜24によって構成されたブリッジ回路20の動作を説明するために示す説明図である。   FIG. 3 is an explanatory diagram shown for explaining the operation of the bridge circuit 20 constituted by the first to fourth GMR elements 21 to 24.

図3では、第1乃至第4のGMR素子21〜24における被検出磁界を符号Bmで示し、第1乃至第4のGMR素子21〜24のそれぞれの固定層201の磁化方向を符号Mp1〜Mp4で示している。また、第1乃至第4のGMR素子21〜24に作用するバイアス磁界を符号Bb1〜Bb4で示し、被検出磁界Bmとバイアス磁界Bb1〜Bb4との合成磁界を符号B1〜B4でそれぞれ示している。   In FIG. 3, the detected magnetic fields in the first to fourth GMR elements 21 to 24 are denoted by reference numeral Bm, and the magnetization directions of the fixed layers 201 of the first to fourth GMR elements 21 to 24 are denoted by reference numerals Mp1 to Mp4. Is shown. Bias magnetic fields acting on the first to fourth GMR elements 21 to 24 are denoted by reference numerals Bb1 to Bb4, and a combined magnetic field of the detected magnetic field Bm and the bias magnetic fields Bb1 to Bb4 is denoted by reference numerals B1 to B4, respectively. .

被検出磁界Bmの印加方向は、第1乃至第4のGMR素子21〜24の固定層201の磁化方向Mp1〜Mp4と平行で、バイアス磁界Bb1〜Bb4に直交する方向である。第1乃至第4のGMR素子21〜24は、バイアス磁界Bb1〜Bb4及び被検出磁界Bmに対して直交する方向にコイル31と並んで配置されている。   The application direction of the detected magnetic field Bm is parallel to the magnetization directions Mp1 to Mp4 of the fixed layer 201 of the first to fourth GMR elements 21 to 24 and orthogonal to the bias magnetic fields Bb1 to Bb4. The first to fourth GMR elements 21 to 24 are arranged side by side with the coil 31 in a direction orthogonal to the bias magnetic fields Bb1 to Bb4 and the detected magnetic field Bm.

第1及び第4のGMR素子21,24の固定層201の磁化方向Mp1,Mp4は、第2及び第3のGMR素子32,33の固定層201の磁化方向Mp2,Mp3と逆向きである。図3に示す例では、被検出磁界Bmの向きが、第1及び第4のGMR素子21,24の固定層201の磁化方向Mp1,Mp4と同じであり、第2及び第3のGMR素子32,23の固定層201の磁化方向Mp2,Mp3とは逆向きである。   The magnetization directions Mp1 and Mp4 of the fixed layer 201 of the first and fourth GMR elements 21 and 24 are opposite to the magnetization directions Mp2 and Mp3 of the fixed layer 201 of the second and third GMR elements 32 and 33. In the example shown in FIG. 3, the direction of the detected magnetic field Bm is the same as the magnetization directions Mp1 and Mp4 of the fixed layer 201 of the first and fourth GMR elements 21 and 24, and the second and third GMR elements 32 , 23 are opposite to the magnetization directions Mp2, Mp3 of the fixed layer 201.

第1のGMR素子21に作用するバイアス磁界Bb1と第2のGMR素子22に作用するバイアス磁界Bb2とは、向き及び大きさが同じである。第3のGMR素子23に作用するバイアス磁界Bb3と第4のGMR素子24に作用するバイアス磁界Bb4とは、向き及び大きさが同じである。また、バイアス磁界Bb1,Bp4とバイアス磁界Bb2,Bp3とは、大きさが同じで逆向きである。   The bias magnetic field Bb1 acting on the first GMR element 21 and the bias magnetic field Bb2 acting on the second GMR element 22 have the same direction and magnitude. The bias magnetic field Bb3 acting on the third GMR element 23 and the bias magnetic field Bb4 acting on the fourth GMR element 24 have the same direction and magnitude. The bias magnetic fields Bb1 and Bp4 and the bias magnetic fields Bb2 and Bp3 are the same in magnitude and opposite to each other.

第1乃至第4のGMR素子21〜24に作用するバイアス磁界Bb1〜Bb4と被検出磁界Bmとの合成磁界B1〜B4の強度は、バイアス磁界Bb1〜Bb4の強度の二乗値と被検出磁界Bmの強度の二乗値との平方根により得られる。   The intensity of the combined magnetic fields B1 to B4 of the bias magnetic fields Bb1 to Bb4 acting on the first to fourth GMR elements 21 to 24 and the detected magnetic field Bm is the square value of the intensity of the bias magnetic fields Bb1 to Bb4 and the detected magnetic field Bm. It is obtained by the square root of the square value of the intensity.

また、図3では、第1乃至第4のGMR素子21〜24のそれぞれの固定層201の磁化方向Mp1〜Mp4に対する自由層202の磁化方向(合成磁界B1〜B2の方向)の角度を、それぞれθ〜θで示している。これらの角度θ〜θが小さくなると、固定層201、中間層203、及び自由層202の積層方向の電流密度分布が広くなり、電気抵抗値が小さくなる。逆に、角度θ〜θが大きくなると、固定層201、中間層203、及び自由層202の積層方向の電流密度分布が狭くなり、電気抵抗値が大きくなる。 Further, in FIG. 3, the angles of the magnetization directions of the free layer 202 (the directions of the combined magnetic fields B1 to B2) with respect to the magnetization directions Mp1 to Mp4 of the fixed layers 201 of the first to fourth GMR elements 21 to 24, respectively. This is indicated by θ 1 to θ 4 . When these angles θ 1 to θ 4 are decreased, the current density distribution in the stacking direction of the fixed layer 201, the intermediate layer 203, and the free layer 202 is increased, and the electric resistance value is decreased. Conversely, when the angles θ 1 to θ 4 are increased, the current density distribution in the stacking direction of the fixed layer 201, the intermediate layer 203, and the free layer 202 is narrowed, and the electrical resistance value is increased.

図3の図示例において被検出磁界Bmが大きくなると、θ,θが小さくなって第1及び第4のGMR素子21,24の電気抵抗が小さくなると共に、θ,θが大きくなって第2及び第3のGMR素子22,23の電気抵抗が大きくなる。これにより、センサチップ10の出力電圧である配線51と配線52との電位差が、被検出磁界Bmの大きさ及び向きに応じて変化する。 In the illustrated example of FIG. 3, when the detected magnetic field Bm increases, θ 1 and θ 4 decrease, the electrical resistance of the first and fourth GMR elements 21 and 24 decreases, and θ 2 and θ 3 increase. Thus, the electrical resistance of the second and third GMR elements 22 and 23 is increased. As a result, the potential difference between the wiring 51 and the wiring 52, which is the output voltage of the sensor chip 10, changes according to the magnitude and direction of the detected magnetic field Bm.

ところで、第1乃至第4のGMR素子21〜24の感度(被検出磁界Bmの強度の変化に対する電気抵抗の変化の割合)は、被検出磁界Bmの強度(磁束密度)が比較的小さい場合は略一定であり、被検出磁界Bmの強度の増減に伴ってセンサチップ10の出力電圧が線形に変化する。一方、被検出磁界Bmの強度が高くなると、センサチップ10の出力電圧が飽和して略一定の値となる。   By the way, the sensitivity of the first to fourth GMR elements 21 to 24 (the ratio of the change in electrical resistance to the change in the intensity of the detected magnetic field Bm) is the case where the intensity (magnetic flux density) of the detected magnetic field Bm is relatively small. The output voltage of the sensor chip 10 changes linearly as the strength of the detected magnetic field Bm increases or decreases. On the other hand, when the intensity of the detected magnetic field Bm increases, the output voltage of the sensor chip 10 is saturated and becomes a substantially constant value.

また、一般的に、GMR素子は温度が高くなるほど感度及び飽和出力が低下する。このため、センサチップ10の出力電圧は、被検出磁界Bm及びバイアス磁界Bb1〜Bb4の強度が一定であっても、センサチップ10の温度が高くなるほど小さくなる。   In general, the sensitivity and saturation output of the GMR element decrease as the temperature increases. For this reason, the output voltage of the sensor chip 10 decreases as the temperature of the sensor chip 10 increases even if the detected magnetic field Bm and the bias magnetic fields Bb1 to Bb4 have constant intensities.

センサチップ10の出力電圧が飽和したときの飽和出力をVsat、温度係数をKsat、センサチップ10の温度が基準温度のときの飽和出力をVsat0、センサチップ10の温度の基準温度との差をT(T=センサチップ10の実温度−基準温度)とすると、飽和出力Vsatは、次の近似式(1)で表すことができる。

Figure 2018044789
ここで、温度係数Ksatは負値である。 The saturated output when the output voltage of the sensor chip 10 is saturated is Vsat, the temperature coefficient is Ksat, the saturated output when the temperature of the sensor chip 10 is the reference temperature, Vsat0, and the difference between the temperature of the sensor chip 10 and the reference temperature is T Assuming that T = actual temperature of sensor chip 10−reference temperature, the saturation output Vsat can be expressed by the following approximate expression (1).
Figure 2018044789
Here, the temperature coefficient Ksat is a negative value.

図4(a)は、バイアス磁界Bb1〜Bb4が一定であるとした場合の、常温時(例えば25℃)と高温時(例えば150℃)における被検出磁界Bmの強度とセンサチップ10の出力電圧との関係を示すグラフである。図4(a)に示すように、高温時には、常温時に比較してセンサチップ10の出力電圧が低くなり、飽和電圧も低くなる。このような温度変化に伴う第1乃至第4のGMR素子21〜24の感度の変化によるセンサチップ10の出力電圧の変動は測定誤差となる。なお、図4(a)では、説明の明確化のため、温度の変化によるセンサチップ10の出力電圧の変動を誇張して示している。以下に述べる図4(b)及び(c)についても同様である。   FIG. 4A shows the intensity of the detected magnetic field Bm and the output voltage of the sensor chip 10 at normal temperature (for example, 25 ° C.) and high temperature (for example, 150 ° C.) when the bias magnetic fields Bb1 to Bb4 are constant. It is a graph which shows the relationship. As shown in FIG. 4A, the output voltage of the sensor chip 10 is lower and the saturation voltage is lower at high temperatures than at normal temperatures. Variation in the output voltage of the sensor chip 10 due to the change in sensitivity of the first to fourth GMR elements 21 to 24 accompanying such a temperature change becomes a measurement error. Note that, in FIG. 4A, fluctuations in the output voltage of the sensor chip 10 due to changes in temperature are exaggerated for clarity of explanation. The same applies to FIGS. 4B and 4C described below.

本実施の形態では、この測定誤差を抑制するため、センサチップ10の温度(具体的には第1乃至第4のGMR素子21〜24の温度)が上昇して被検出磁界Bmの強度の変化に対する第1乃至第4のGMR素子21〜24の電気抵抗の変化率が低下したとき、バイアス磁界Bb1〜Bb4の強度が低下するように、磁界検出装置1が構成されている。   In this embodiment, in order to suppress this measurement error, the temperature of the sensor chip 10 (specifically, the temperature of the first to fourth GMR elements 21 to 24) rises and the intensity of the detected magnetic field Bm changes. The magnetic field detection device 1 is configured so that the strength of the bias magnetic fields Bb1 to Bb4 decreases when the rate of change in electrical resistance of the first to fourth GMR elements 21 to 24 decreases.

ここで、温度上昇時にバイアス磁界Bb1〜Bb4の強度が低下することによって測定誤差が抑制される原理を図3を参照して説明する。前述のように第1乃至第4のGMR素子21〜24の電気抵抗は、固定層201の磁化方向Mp1〜Mp4に対する自由層202の磁化方向の角度θ〜θに応じて変化し、角度θ〜θは、バイアス磁界Bb1〜Bb4の強度と被検出磁界Bmの強度との相対的な関係によって変化する。このため、バイアス磁界Bb1〜Bb4の強度が低下すれば、被検出磁界Bmの強度に応じて角度θ〜θが変化しやすくなり、見かけ上、第1乃至第4のGMR素子21〜24の被検出磁界Bmに対する感度が高くなる。そして、温度上昇による感度の低下と、バイアス磁界Bb1〜Bb4の強度低下による感度の上昇とが相殺され、センサチップ10の測定誤差が抑制される。 Here, the principle that the measurement error is suppressed when the strength of the bias magnetic fields Bb1 to Bb4 decreases when the temperature rises will be described with reference to FIG. As described above, the electrical resistances of the first to fourth GMR elements 21 to 24 change according to the angles θ 1 to θ 4 of the magnetization direction of the free layer 202 with respect to the magnetization directions Mp 1 to Mp 4 of the fixed layer 201, and the angle θ 1 to θ 4 vary depending on the relative relationship between the intensity of the bias magnetic fields Bb1 to Bb4 and the intensity of the detected magnetic field Bm. Therefore, if the intensity of the bias magnetic fields Bb1 to Bb4 is reduced, the angles θ 1 to θ 4 are likely to change according to the intensity of the detected magnetic field Bm, and apparently the first to fourth GMR elements 21 to 24 are apparent. The sensitivity to the detected magnetic field Bm increases. And the fall of the sensitivity by temperature rise and the raise of the sensitivity by the strength fall of bias magnetic field Bb1-Bb4 are offset, and the measurement error of the sensor chip 10 is suppressed.

本実施の形態では、電源32が定電圧源であるので、温度上昇によってコイル31の抵抗値(直流抵抗値)が大きくなると、コイル31に流れる励磁電流が小さくなる。このため、バイアス磁界Bb1〜Bb4の強度が低下する。   In the present embodiment, since the power source 32 is a constant voltage source, when the resistance value (DC resistance value) of the coil 31 increases due to temperature rise, the exciting current flowing through the coil 31 decreases. For this reason, the intensity | strength of bias magnetic field Bb1-Bb4 falls.

コイル31の抵抗値をR、温度係数をα、基準温度におけるコイル31の抵抗値をR0、コイル31の温度の基準温度との温度差をTとすると、コイル31の抵抗値Rは、次式(2)により表すことができる。

Figure 2018044789
Assuming that the resistance value of the coil 31 is R, the temperature coefficient is α, the resistance value of the coil 31 at the reference temperature is R0, and the temperature difference between the coil 31 and the reference temperature is T, the resistance value R of the coil 31 is It can be represented by (2).
Figure 2018044789

また、電源32の出力電圧をVb、コイル31の巻数をn、コイル31と第1乃至第4のGMR素子21〜24の自由層202との距離をrとすると、バイアス磁界Bb1〜Bb4の強度Bbは、次式(3)により表すことができる。

Figure 2018044789
Further, assuming that the output voltage of the power supply 32 is Vb, the number of turns of the coil 31 is n, and the distance between the coil 31 and the free layer 202 of the first to fourth GMR elements 21 to 24 is r, the intensity of the bias magnetic fields Bb1 to Bb4. Bb can be expressed by the following formula (3).
Figure 2018044789

この式(3)に上記の式(2)を適用すると次式(4)が得られる。

Figure 2018044789
When the above equation (2) is applied to this equation (3), the following equation (4) is obtained.
Figure 2018044789

ここで、基準温度におけるバイアス磁界Bb1〜Bb4の強度Bb0とすると、この強度Bb0は次式(5)によって表される。

Figure 2018044789
Here, assuming that the intensity Bb0 of the bias magnetic fields Bb1 to Bb4 at the reference temperature, the intensity Bb0 is expressed by the following equation (5).
Figure 2018044789

この式(5)を上記の式(4)に適用すると次式(6)が得られる。

Figure 2018044789
すなわち、バイアス磁界Bb1〜Bb4の強度Bbは、温度差Tの変数として表すことができる。 When this equation (5) is applied to the above equation (4), the following equation (6) is obtained.
Figure 2018044789
That is, the intensity Bb of the bias magnetic fields Bb1 to Bb4 can be expressed as a variable of the temperature difference T.

図4(b)は、仮にセンサチップ10の飽和電圧が温度に関わらず一定であるとした場合の、常温時(例えば25℃)及び高温時(例えば70℃)における被検出磁界Bmの強度とセンサチップ10の出力電圧との関係を示すグラフである。図4(b)に示すように、温度上昇によってバイアス磁界Bb1〜Bb4の強度が低下することにより、図4(a)に示すグラフとは反対に、高温時において常温時よりもセンサチップ10の出力電圧が高くなる。   FIG. 4B shows the intensity of the detected magnetic field Bm at normal temperature (for example, 25 ° C.) and high temperature (for example, 70 ° C.), assuming that the saturation voltage of the sensor chip 10 is constant regardless of temperature. 4 is a graph showing a relationship with an output voltage of the sensor chip 10. As shown in FIG. 4B, the strength of the bias magnetic fields Bb1 to Bb4 decreases due to the temperature rise, so that the sensor chip 10 has a higher temperature at a higher temperature than at a normal temperature, contrary to the graph shown in FIG. The output voltage increases.

図4(c)は、本実施の形態に係る被検出磁界Bmの強度とセンサチップ10の出力電圧との関係を示すグラフである。図4(c)に示すように、本実施の形態では、第1乃至第4のGMR素子21〜24の温度上昇による感度の低下と、コイル31の温度上昇によるバイアス磁界Bb1〜Bb4の強度低下による感度の上昇とが相殺され、センサチップ10の測定誤差が抑制される。   FIG. 4C is a graph showing the relationship between the intensity of the detected magnetic field Bm and the output voltage of the sensor chip 10 according to the present embodiment. As shown in FIG. 4C, in this embodiment, the sensitivity decreases due to the temperature increase of the first to fourth GMR elements 21 to 24, and the strength of the bias magnetic fields Bb1 to Bb4 decreases due to the temperature increase of the coil 31. This offsets the increase in sensitivity due to the above, and the measurement error of the sensor chip 10 is suppressed.

なお、磁界検出装置1は、第1乃至第4のGMR素子21〜24の温度上昇による感度の低下と、コイル31の温度上昇によるバイアス磁界Bb1〜Bb4の強度低下による感度の上昇とが精度よく相殺されるように、コイル31の巻数n、コイル31と自由層202との距離r、コイル31の温度係数α、基準温度におけるコイル31の抵抗値R0、及び電源32の出力電圧Vbが調整されている。これらのバイアス磁界Bb1〜Bb4の強度に関わる要素のうち、特に電源32の出力電圧Vbは調整が容易である。   The magnetic field detection device 1 is accurate in that the sensitivity decreases due to the temperature increase of the first to fourth GMR elements 21 to 24 and the sensitivity increases due to the intensity decrease of the bias magnetic fields Bb1 to Bb4 due to the temperature increase of the coil 31. The number n of turns of the coil 31, the distance r between the coil 31 and the free layer 202, the temperature coefficient α of the coil 31, the resistance value R 0 of the coil 31 at the reference temperature, and the output voltage Vb of the power source 32 are adjusted so as to cancel each other. ing. Of the elements related to the intensity of these bias magnetic fields Bb1 to Bb4, the output voltage Vb of the power supply 32 is particularly easy to adjust.

(変形例)
図5は、実施の形態の変形例に係る磁界検出装置1Aの構成を模式的に示す概略構成図である。この変形例は、磁界発生部3が温度の上昇によって電気抵抗が増大する感熱素子33を備えた構成が、図1等を参照して説明した実施の形態と異なる。感熱素子33は、コイル31と直列に接続され、図5の図示例では、感熱素子33が電源32の−(マイナス)端子と第2の給電端子106との間に接続されている。この構成によれば、温度上昇時に感熱素子33によってもコイル31に流れる励磁電流が小さくなる。このため、コイル31の温度上昇に伴う電気抵抗の増大のみによっては、温度上昇時にバイアス磁界Bb1〜Bb4の強度が十分に低下しない場合でも、第1乃至第4のGMR素子21〜24の温度上昇による感度の低下と、コイル31の温度上昇によるバイアス磁界Bb1〜Bb4の強度低下による感度の上昇とを精度よく相殺させることが可能となる。
(Modification)
FIG. 5 is a schematic configuration diagram schematically illustrating a configuration of a magnetic field detection device 1A according to a modification of the embodiment. This modification is different from the embodiment described with reference to FIG. 1 and the like in that the magnetic field generation unit 3 includes a thermal element 33 whose electric resistance increases as the temperature rises. The thermal element 33 is connected in series with the coil 31. In the illustrated example of FIG. 5, the thermal element 33 is connected between the − (minus) terminal of the power supply 32 and the second power supply terminal 106. According to this configuration, the exciting current flowing through the coil 31 is also reduced by the thermal element 33 when the temperature rises. For this reason, even if the strength of the bias magnetic fields Bb1 to Bb4 is not sufficiently reduced at the time of temperature rise only by the increase in electrical resistance accompanying the temperature rise of the coil 31, the temperature rise of the first to fourth GMR elements 21 to 24 is increased. It is possible to accurately offset the decrease in sensitivity due to the above and the increase in sensitivity due to the decrease in the intensity of the bias magnetic fields Bb1 to Bb4 due to the temperature increase of the coil 31.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiment)
Next, the technical idea grasped from the embodiment described above will be described with reference to the reference numerals in the embodiment. However, each reference numeral in the following description does not limit the constituent elements in the claims to members or the like specifically shown in the embodiment.

[1]巨大磁気抵抗効果を有するGMR素子(2)と、前記GMR素子(2)にバイアス磁界(Bb1〜Bb4)を印加する磁界発生部(3)とを備え、前記GMR素子(2)の電気抵抗の変化によって前記バイアス磁界(Bb1〜Bb4)に直交する方向の被検出磁界の強度を検出する磁界検出装置(1)であって、前記磁界発生部(3)は、前記バイアス磁界(Bb1〜Bb4)を発生するコイル(31)と、前記コイル(31)に励磁電流を供給する電源(32)とを有し、前記GMR素子(2)の温度が上昇して前記被検出磁界の強度の変化に対する前記電気抵抗の変化率が低下したとき、前記励磁電流の減少によって前記バイアス磁界(Bb1〜Bb4)の強度が低下する、磁界検出装置(1)。 [1] A GMR element (2) having a giant magnetoresistive effect, and a magnetic field generation unit (3) for applying a bias magnetic field (Bb1 to Bb4) to the GMR element (2). A magnetic field detection device (1) for detecting the intensity of a detected magnetic field in a direction orthogonal to the bias magnetic field (Bb1 to Bb4) by a change in electrical resistance, wherein the magnetic field generation unit (3) includes the bias magnetic field (Bb1). To Bb4) and a power source (32) for supplying an exciting current to the coil (31), and the temperature of the GMR element (2) rises to increase the intensity of the detected magnetic field. The magnetic field detector (1), wherein when the rate of change of the electrical resistance with respect to the change of the current decreases, the intensity of the bias magnetic field (Bb1 to Bb4) decreases due to the decrease of the excitation current.

[2]前記電源(32)は、一定の電圧を出力する定電圧源である、前記[1]に記載の磁界検出装置(1)。 [2] The magnetic field detection device (1) according to [1], wherein the power source (32) is a constant voltage source that outputs a constant voltage.

[3]第1乃至第4の前記GMR素子(21〜24)を備え、前記第1乃至第4の前記GMR素子(21〜24)によってブリッジ回路(20)が構成されると共に、前記第1乃至第4の前記GMR素子(21〜24)が、前記バイアス磁界(Bb1〜Bb4)及び前記被検出磁界に対して直交する方向に前記コイル(31)と並んで配置された、前記[1]又は[2]に記載の磁界検出装置(1)。 [3] First to fourth GMR elements (21 to 24) are provided, and the first to fourth GMR elements (21 to 24) constitute a bridge circuit (20), and the first [1], wherein the fourth to fourth GMR elements (21 to 24) are arranged side by side with the coil (31) in a direction perpendicular to the bias magnetic fields (Bb1 to Bb4) and the detected magnetic field. Or the magnetic field detection apparatus (1) as described in [2].

[4]前記磁界発生部(3)は、温度の上昇によって電気抵抗が増大する感熱素子(33)を有し、前記コイル(31)と前記感熱素子(33)とが直列に接続されている、前記[1]乃至[3]の何れか1つに記載の磁界検出装置(1A)。 [4] The magnetic field generator (3) has a thermal element (33) whose electrical resistance increases with an increase in temperature, and the coil (31) and the thermal element (33) are connected in series. The magnetic field detection device (1A) according to any one of [1] to [3].

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

1,1A…磁界検出装置
2…GMR素子
20…ブリッジ回路
21〜24…第1乃至第4のGMR素子
3…磁界発生部
31…コイル
32…電源
33…感熱素子
Bb1〜Bb4…バイアス磁界
Bm…被検出磁界
DESCRIPTION OF SYMBOLS 1,1A ... Magnetic field detection apparatus 2 ... GMR element 20 ... Bridge circuit 21-24 ... 1st thru | or 4th GMR element 3 ... Magnetic field generation part 31 ... Coil 32 ... Power source 33 ... Thermal element Bb1-Bb4 ... Bias magnetic field Bm ... Detected magnetic field

Claims (4)

巨大磁気抵抗効果を有するGMR素子と、前記GMR素子にバイアス磁界を印加する磁界発生部とを備え、前記GMR素子の電気抵抗の変化によって前記バイアス磁界に直交する方向の被検出磁界の強度を検出する磁界検出装置であって、
前記磁界発生部は、前記バイアス磁界を発生するコイルと、前記コイルに励磁電流を供給する電源とを有し、
前記GMR素子の温度が上昇して前記被検出磁界の強度の変化に対する前記電気抵抗の変化率が低下したとき、前記励磁電流の減少によって前記バイアス磁界の強度が低下する、
磁界検出装置。
A GMR element having a giant magnetoresistive effect and a magnetic field generator for applying a bias magnetic field to the GMR element, and detecting the strength of the detected magnetic field in a direction perpendicular to the bias magnetic field by a change in electrical resistance of the GMR element A magnetic field detection device
The magnetic field generation unit includes a coil that generates the bias magnetic field, and a power source that supplies an excitation current to the coil.
When the temperature of the GMR element rises and the rate of change of the electrical resistance with respect to the change in the intensity of the detected magnetic field decreases, the intensity of the bias magnetic field decreases due to the decrease in the excitation current.
Magnetic field detection device.
前記電源は、一定の電圧を出力する定電圧源である、
請求項1に記載の磁界検出装置。
The power source is a constant voltage source that outputs a constant voltage.
The magnetic field detection apparatus according to claim 1.
第1乃至第4の前記GMR素子を備え、前記第1乃至第4の前記GMR素子によってブリッジ回路が構成されると共に、前記第1乃至第4の前記GMR素子が、前記バイアス磁界及び前記被検出磁界に対して直交する方向に前記コイルと並んで配置された、
請求項1又は2に記載の磁界検出装置。
First to fourth GMR elements are provided, a bridge circuit is constituted by the first to fourth GMR elements, and the first to fourth GMR elements include the bias magnetic field and the detection target. Arranged alongside the coil in a direction perpendicular to the magnetic field,
The magnetic field detection apparatus according to claim 1 or 2.
前記磁界発生部は、温度の上昇によって電気抵抗が増大する感熱素子を有し、前記コイルと前記感熱素子とが直列に接続されている、
請求項1乃至3の何れか1項に記載の磁界検出装置。
The magnetic field generator has a thermal element whose electrical resistance increases with a rise in temperature, and the coil and the thermal element are connected in series.
The magnetic field detection apparatus according to any one of claims 1 to 3.
JP2016177775A 2016-09-12 2016-09-12 Magnetic field detector Active JP6819164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177775A JP6819164B2 (en) 2016-09-12 2016-09-12 Magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177775A JP6819164B2 (en) 2016-09-12 2016-09-12 Magnetic field detector

Publications (2)

Publication Number Publication Date
JP2018044789A true JP2018044789A (en) 2018-03-22
JP6819164B2 JP6819164B2 (en) 2021-01-27

Family

ID=61692468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177775A Active JP6819164B2 (en) 2016-09-12 2016-09-12 Magnetic field detector

Country Status (1)

Country Link
JP (1) JP6819164B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061528A (en) * 2018-08-02 2018-12-21 华中科技大学 A kind of three axial plane Magnetic Sensors based on giant magnetoresistance effect
JP2019174196A (en) * 2018-03-27 2019-10-10 Tdk株式会社 Magnetic sensor and magnetic sensor system
WO2024009983A1 (en) * 2022-07-06 2024-01-11 パナソニックIpマネジメント株式会社 Position detection system and magnetic sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100568U (en) * 1975-02-10 1976-08-12
JPH1026639A (en) * 1996-07-11 1998-01-27 Hitachi Ltd Current sensor and electric device housing current sensor
US20030057938A1 (en) * 2001-08-27 2003-03-27 International Rectifier Corporation Magnetoresistive magnetic field sensors and motor control devices using same
WO2014208105A1 (en) * 2013-06-28 2014-12-31 公立大学法人大阪市立大学 Magnetic sensor element with temperature correction, and magnetic sensor and power measuring device using same
WO2016017490A1 (en) * 2014-07-31 2016-02-04 アルプス電気株式会社 Magnetic switch
WO2016080470A1 (en) * 2014-11-18 2016-05-26 日立金属株式会社 Magnetic sensor, manufacturing method thereof, and the current detector using same
JP2016099291A (en) * 2014-11-25 2016-05-30 日立金属株式会社 Current detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100568U (en) * 1975-02-10 1976-08-12
JPH1026639A (en) * 1996-07-11 1998-01-27 Hitachi Ltd Current sensor and electric device housing current sensor
US20030057938A1 (en) * 2001-08-27 2003-03-27 International Rectifier Corporation Magnetoresistive magnetic field sensors and motor control devices using same
WO2014208105A1 (en) * 2013-06-28 2014-12-31 公立大学法人大阪市立大学 Magnetic sensor element with temperature correction, and magnetic sensor and power measuring device using same
WO2016017490A1 (en) * 2014-07-31 2016-02-04 アルプス電気株式会社 Magnetic switch
WO2016080470A1 (en) * 2014-11-18 2016-05-26 日立金属株式会社 Magnetic sensor, manufacturing method thereof, and the current detector using same
JP2016099291A (en) * 2014-11-25 2016-05-30 日立金属株式会社 Current detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174196A (en) * 2018-03-27 2019-10-10 Tdk株式会社 Magnetic sensor and magnetic sensor system
US11320285B2 (en) 2018-03-27 2022-05-03 Tdk Corporation Magnetic sensor with yoke and shield
CN109061528A (en) * 2018-08-02 2018-12-21 华中科技大学 A kind of three axial plane Magnetic Sensors based on giant magnetoresistance effect
CN109061528B (en) * 2018-08-02 2020-08-18 华中科技大学 Three-axis planar magnetic sensor based on giant magneto-impedance effect
WO2024009983A1 (en) * 2022-07-06 2024-01-11 パナソニックIpマネジメント株式会社 Position detection system and magnetic sensor

Also Published As

Publication number Publication date
JP6819164B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6651956B2 (en) Current sensor
EP2284555A1 (en) Magnetic sensor including a bridge circuit
US9069032B2 (en) Magnetic balance type current sensor
WO2018185964A1 (en) Current sensor
US20140353785A1 (en) Low-consumption, amr-type, integrated magnetoresistor
JP5888402B2 (en) Magnetic sensor element
JP5641276B2 (en) Current sensor
JP2015137892A (en) Current detection structure
JP2020537141A (en) Current sensor assembly
JP5234459B2 (en) Current sensor
US20180143226A1 (en) Current sensor
JP2019100923A (en) Current sensor
JP2016001118A (en) Current detection device, magnetic field detection device, and method thereof
JP5924695B2 (en) Magnetic field detection device, current detection device, semiconductor integrated circuit, and magnetic field detection method
JP6819164B2 (en) Magnetic field detector
WO2014208105A1 (en) Magnetic sensor element with temperature correction, and magnetic sensor and power measuring device using same
WO2011141969A1 (en) Magnetic field angle measurement device and rotation angle measurement apparatus using same
JP2013242301A (en) Current sensor
WO2017119092A1 (en) Current detection device and correction factor calculation method
JP5794777B2 (en) Semiconductor device
WO2013153949A1 (en) Magnetic field measurement device and magnetic field measurement method
JP2009020085A (en) Multiphase current detector
CN111693911A (en) Magnetic sensor device
JP2009271044A (en) Current sensor
CN109328307B (en) Magnetic sensor and current sensor provided with same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6819164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350