WO2016017490A1 - Magnetic switch - Google Patents

Magnetic switch Download PDF

Info

Publication number
WO2016017490A1
WO2016017490A1 PCT/JP2015/070783 JP2015070783W WO2016017490A1 WO 2016017490 A1 WO2016017490 A1 WO 2016017490A1 JP 2015070783 W JP2015070783 W JP 2015070783W WO 2016017490 A1 WO2016017490 A1 WO 2016017490A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetic
layer
change
measured
Prior art date
Application number
PCT/JP2015/070783
Other languages
French (fr)
Japanese (ja)
Inventor
井出 洋介
斎藤 正路
直樹 坂詰
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2016017490A1 publication Critical patent/WO2016017490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic switch that uses a magnetoresistive effect element that detects a magnetic field to be measured, and switches an output depending on whether or not the magnetic field to be measured reaches a threshold value.
  • Patent Document 1 describes a current sensor using a magnetoresistive effect element.
  • the magnetoresistive effect element used in this current sensor is a GMR element (giant magnetoresistive effect element) having a spin valve structure in which a fixed magnetic layer, a nonmagnetic layer, and a free magnetic layer are stacked. Due to the applied bias magnetic field, the magnetization direction of the free magnetic layer is aligned in a direction perpendicular to the Pin direction of the pinned magnetic layer.
  • GMR element giant magnetoresistive effect element
  • the current sensor described in Patent Document 1 includes a magnetoresistive effect element that forms a bridge circuit.
  • a pair of magnetoresistive effect elements connected in series and installed on the same chip have opposite bias magnetic fields. It has become. Accordingly, it is described that fluctuations in the output of the pair of magnetoresistive elements can be offset and the linearity of the sensor output can be improved.
  • a pair of magnetoresistive effect elements connected in series and located on the same chip have the bias magnetic fields opposite to each other, similar to the one described in Patent Document 1. ing.
  • the magnetoresistive effect element uses an exchange bias instead of a hard bias.
  • the magnetoresistive effect element using the GMR effect described in Patent Document 1 and Patent Document 2 has a spin valve structure, and when a measured magnetic field is applied, a nonmagnetic layer such as a Cu layer and a ferromagnetic layer A resistance value change ( ⁇ R) depending on spin scattering occurs at the interface with the free magnetic layer or the pinned magnetic layer which is a layer.
  • this magnetoresistive element has a problem that the rate of change in resistance ( ⁇ R / R) decreases as the environmental temperature in use increases. That is, when the temperature rises, the lattice vibration of atoms constituting the GMR film increases, so that electron scattering independent of electron spin increases. Therefore, the fixed resistance component (R) increases, and as a result, the rate of change in resistance ( ⁇ R / R) decreases with increasing temperature.
  • Patent Document 1 and Patent Document 2 no consideration is given to the change in the resistance change rate of the magnetoresistive element when the temperature changes.
  • the present invention solves the above-described conventional problems, and an object of the present invention is to provide a magnetic switch that can suppress a fluctuation in detection output of a magnetoresistive effect element due to a temperature change and obtain a stable switch output. It is said.
  • the present invention comprises a magnetoresistive effect element whose resistance value changes according to the strength of a magnetic field to be measured, and a comparison unit that generates a switch output by comparing a detection output based on the change in the resistance value and a threshold value.
  • the magnetoresistive effect element has a pinned magnetic layer, a nonmagnetic material layer, and a free magnetic layer, and an antiferromagnetic layer is superimposed on the free magnetic layer and acts from the antiferromagnetic layer to the free magnetic layer.
  • the magnetization direction of the free magnetic layer is set to intersect the direction of the fixed magnetization of the fixed magnetic layer
  • the magnetoresistive effect element has a variation characteristic of a rate of change in resistance with respect to a change in temperature so that a change in the detection output due to a change in temperature is not more than a predetermined ratio within a range in which the measured magnetic field rises to a predetermined reference value.
  • a fluctuation characteristic of the exchange coupling magnetic field with respect to a temperature change, and the threshold value is set to be equal to or less than the reference value.
  • the plurality of change lines intersect and thereafter the difference in the detection output increases.
  • the two fluctuation characteristics are set, and the intersection of the change lines can be set as the reference value.
  • the threshold value matches the reference value.
  • the distance between the source of the magnetic field to be measured and the magnetoresistive element is set according to the threshold value.
  • the magnetic switch of the present invention is a magnet in which the source of the magnetic field to be measured moves opposite to the magnetoresistive element.
  • the source of the magnetic field to be measured is a current path facing the magnetoresistive effect element, and the magnetic field to be measured changes according to the amount of current flowing through the current path.
  • the magnetic switch of the present invention is configured such that the detection output from the magnetoresistive effect element that detects the magnetic field to be measured is compared with a threshold value, and the switch output changes when the detection output exceeds the threshold value. Yes.
  • an exchange coupling magnetic field is applied as a bias magnetic field from the antiferromagnetic layer to the free magnetic layer. Since the exchange coupling magnetic field using the antiferromagnetic layer decreases as the temperature increases, the detection sensitivity increases accordingly. Therefore, by combining the change characteristic of the resistance change rate due to the temperature rise of the magnetoresistive effect element and the change characteristic of the detection sensitivity due to the temperature rise, the temperature change is within a range where the measured magnetic field increases to a predetermined reference value.
  • the threshold value for obtaining the switch output is set to a value corresponding to the magnetic field strength equal to or less than the reference value, or a value corresponding to the magnetic field strength matching the reference value, so that the switch having less influence due to the temperature change. Output will be obtained.
  • FIG. 3 is an enlarged sectional view of a magnetoresistive effect element showing a section taken along line III-III in FIG.
  • (A) is a diagram schematically showing the temperature characteristics of the resistance change rate
  • (B) is a diagram schematically showing the temperature characteristics of the exchange coupling magnetic field
  • the block diagram which shows the structure of the switching device of the magnet movement type containing a magnetic switch, Configuration diagram of a current detection device including a magnetic switch,
  • Example 1 the diagram which shows the relationship between the intensity
  • Example 2 the diagram which shows the relationship between the intensity
  • Example 3 the diagram which shows the relationship between the intensity
  • FIG. 1 shows a magnetic switch 1 according to an embodiment of the present invention.
  • the magnetic switch 1 has a bridge circuit 2.
  • the bridge circuit 2 includes two first magnetoresistive elements 10a and two second magnetoresistive elements 10b.
  • the first magnetoresistive element 10a and the second magnetoresistive element 10b are connected in series to form a series circuit, and the two series circuits are connected in parallel to form a full bridge circuit.
  • a power supply voltage of 5 V is applied to the power supply terminal 3 common to the two series circuits, and the ground terminal 4 common to the two series circuits is set to the installation potential.
  • the order of series connection of the first magnetoresistive effect element 10a and the second magnetoresistive effect element 10b is opposite to each other.
  • the S direction is the sensitivity axis direction, and the resistance value changes according to the strength of the magnetic field in the S direction.
  • the resistance values of the first magnetoresistive effect element 10a and the second magnetoresistive effect element 10b change with opposite characteristics.
  • the potential of the midpoint 5a of the left series circuit constituting the full bridge circuit 2 and the potential of the midpoint 5b of the right series circuit are obtained by the differential amplifier 6, and the potential of the midpoint 5a and the potential of the midpoint 5b are Is obtained as the detection output (detection output voltage) Vs.
  • the detection output Vs obtained from the differential amplifier 6 is compared with the threshold voltage Vr set in the threshold setting unit 8.
  • the switch output changes when the detection output Vs exceeds the threshold voltage Vr or coincides with the threshold voltage Vr, and this switch output is given to the processing circuit 9.
  • the processing circuit 9 performs a predetermined processing operation when a switch output is given.
  • FIG. 2 is a plan view of the first magnetoresistive element 10a.
  • the first magnetoresistive effect element 10 a has a stripe-shaped element portion 12.
  • a plurality of element parts 12 are formed in parallel, the right end part of the adjacent element parts 12 shown in the figure is connected via the conductive part 13, and the right end part of the adjacent element part 12 shown in the figure is connected via the conductive part 13.
  • the conductive portions 13 are alternately connected to the right end portion and the left end portion of the element portion 12 in the drawing, and the element portion 12 is connected in a so-called meander shape.
  • the upper left conductive portion 13 is electrically connected to the connection terminal 14a
  • the lower right conductive portion 13 is electrically connected to the connection terminal 14b.
  • each element portion 12 has a structure in which a plurality of metal layers are laminated.
  • the element portion 12 is a GMR element having a spin valve structure, and is formed on the surface of the substrate 29. From the surface of the substrate 29, the seed layer 20, the fixed magnetic layer 21, the nonmagnetic material layer (nonmagnetic conductive layer) 22, and the free magnetism.
  • the layer 23, the antiferromagnetic layer 24, and the protective layer 25 are stacked in this order. These layers are formed by, for example, a sputtering process.
  • the seed layer 20 is made of NiFeCr alloy (nickel / iron / chrome alloy) or Cr.
  • the pinned magnetic layer 21 has a self-pinning structure including a first magnetic layer 21a and a second magnetic layer 21c, and a nonmagnetic intermediate layer 21b positioned between the first magnetic layer 21a and the second magnetic layer 21c. ing.
  • the fixed magnetization direction of the first magnetic layer 21a and the fixed magnetization direction of the second magnetic layer 21c are antiparallel due to the RKKY interaction.
  • the fixed magnetization direction of the second magnetic layer 21 c is the fixed magnetization direction P of the fixed magnetic layer 21.
  • the direction in which the fixed magnetization direction P extends is the sensitivity axis direction S.
  • Both the first magnetic layer 21a and the second magnetic layer 21c are formed of an FeCo alloy (iron-cobalt alloy), but the first magnetic layer 21a has a higher Fe content than the second magnetic layer 21c. Magnetic force is set high.
  • the second magnetic layer 21c in contact with the nonmagnetic material layer 22 is a layer that contributes to the spin valve type GMR effect, and the second magnetic layer 21c has a mean free path of conduction electrons having up spins and conduction electrons having down spins.
  • the composition is determined so that the difference is larger than that of the first magnetic layer 21a.
  • the difference in the amount of magnetization (saturation magnetization Ms ⁇ film thickness t) is substantially zero between the first magnetic layer 21a and the second magnetic layer 21c.
  • the nonmagnetic intermediate layer 21b is formed of Ru (ruthenium) or the like.
  • the nonmagnetic material layer 22 is made of Cu (copper) or the like.
  • the free magnetic layer 23 is formed by laminating a first ferromagnetic layer 23a and a second ferromagnetic layer 23b.
  • the first ferromagnetic layer 23a and the second ferromagnetic layer 23b are formed of a NiFe alloy (nickel / iron alloy), a CoFe alloy (cobalt / iron alloy), or the like.
  • An antiferromagnetic layer 24 is laminated in direct contact with the second ferromagnetic layer 23b of the free magnetic layer 23. Due to the antiferromagnetic coupling at the interface between the antiferromagnetic layer 24 and the second ferromagnetic layer 23b, the exchange coupling magnetic field Hex acts as a bias magnetic field on the free magnetic layer 23.
  • the magnetization direction F of the free magnetic layer 23 is aligned with the direction in which the bias magnetic field acts.
  • the second ferromagnetic layer 23b has a higher iron content than the first ferromagnetic layer 23b due to antiferromagnetic coupling with the antiferromagnetic layer 24.
  • the antiferromagnetic layer 24 is preferably formed of an IrMn alloy (iridium / manganese alloy) capable of exchange coupling without annealing in the magnetic field with the free magnetic layer 23.
  • IrMn alloy iridium / manganese alloy
  • PtMn platinum manganese alloy
  • annealing treatment is required for ordering of the film.
  • the fixed magnetization direction P of the fixed magnetic layer 21 has an angle of 90 degrees counterclockwise with respect to the magnetization direction F of the free magnetic layer 23 by the exchange coupling magnetic field. Is set.
  • the element structure of the second magnetoresistive effect element 10b is the same as that of the first magnetoresistive effect element 10a.
  • the fixed magnetization direction P and the magnetization direction F have the first magnetoresistance effect 10b. It is 180 degrees opposite to the effect element 10a.
  • the S direction is the sensitivity axis direction.
  • the magnetization direction F of the free magnetic layer 23 is rotated so as to be directed in the left direction in FIG.
  • the angle between the fixed magnetization direction P and the magnetization direction F is small, so that the resistance value decreases.
  • the fixed magnetization direction P and the magnetization direction F are reduced. As the angle increases, the resistance value increases.
  • the resistance value of the first magnetoresistance effect element 10a increases and the resistance value of the second magnetoresistance effect element 10b decreases.
  • the comparison unit 7 compares the detection output Vs with the threshold voltage Vr. When the detection output Vs exceeds the threshold voltage Vr or when the detection output Vs matches the threshold voltage Vr, the switch output is switched.
  • a positive threshold voltage + Vr and a negative threshold voltage ⁇ Vr are set, the strength of the magnetic field to be measured directed in the S1 direction is increased, and the detection output Vs is the first threshold voltage.
  • the threshold voltage + Vr is exceeded or coincides with the threshold voltage + Vr, the first switch output is obtained, the intensity of the magnetic field to be measured in the S2 direction is increased, and the detection output Vs is the first threshold voltage ⁇ .
  • the second switch output may be obtained when it becomes smaller than Vr or coincides with the threshold voltage ⁇ Vr.
  • the degree of change in the resistance value of the element portion 12 constituting the magnetoresistive effect elements 10a and 10b when the measured magnetic field changes is evaluated by the resistance change rate ( ⁇ R / R).
  • (R) is a fixed resistance component of the element section 12
  • ( ⁇ R) is a change component of the resistance value of the element section 12 caused by fluctuation of the measured magnetic field.
  • the element part 12 having a spin valve structure has temperature characteristics. That is, when the environmental temperature rises, the rate of change in resistance ( ⁇ R / R) decreases.
  • FIG. 4A is a diagram showing a decrease state of the rate of change in resistance ( ⁇ R / R) as the temperature (T) increases.
  • FIG. 4A schematically shows a change in the resistance change rate ( ⁇ R / R).
  • the resistance change rate ( ⁇ R / R) is relatively close to a linear function as the temperature rises. It will decline due to the relationship.
  • the spin valve type GMR element has a change in resistance value ( ⁇ R) depending on spin scattering at the interface between the nonmagnetic material layer 22 such as a Cu layer and the free magnetic layer 23 and the ferromagnetic layer of the pinned magnetic layer 21. Arise. However, when the temperature rises, the lattice vibration of atoms constituting the GMR film increases, so that the resistance increases without depending on the spin, the fixed resistance component (R) increases, and the resistance change rate ( ⁇ R / R) decreases.
  • FIG. 4B schematically shows the change of the exchange coupling magnetic field (Hex) with an increase in temperature, but the temperature characteristic of the exchange coupling magnetic field (Hex) shows a quadratic function change.
  • the spin valve type GMR effect deteriorates and the resistance change rate ( ⁇ R / R) decreases.
  • the bias magnetic field due to the exchange coupling magnetic field (Hex) with respect to the free magnetic layer 23 decreases, so that the magnetization direction F of the free magnetic layer 23 becomes easy to move when a measured magnetic field is applied. That is, as the temperature increases, the sensitivity of the free magnetic layer 23 to the external magnetic field increases. Therefore, in the embodiment of the present invention, by combining the temperature characteristic of the resistance change rate ( ⁇ R / R) and the temperature characteristic of the exchange coupling magnetic field (Hex), the external magnetic field is changed to a predetermined reference value. In the meantime, the detection output Vs is hardly affected by the temperature change.
  • the switch output is always accompanied by the same measured magnetic field strength without changing the threshold voltage Vr even if there is a large temperature change. Can be switched. Therefore, it is not necessary to change the threshold voltage Vr by providing a temperature compensation circuit including a temperature sensor or the like.
  • FIG. 5 shows a switching device 30 including the magnetic switch 1.
  • a magnet 31 is opposed to the magnetic switch 1, and the magnet 31 is moved in the F1-F2 direction by an external operation.
  • the magnetic field strength of the magnetic field B to be measured in the S ⁇ b> 1 direction becomes stronger than the magnetic switch 1.
  • the detection output Vs shown in FIG. 1 exceeds the threshold voltage Vr or coincides with the threshold voltage Vr, the comparison unit 7 switches the switch output.
  • a predetermined control process is performed in accordance with the change in the switch output.
  • FIG. 6 shows a current detection device 35 including the magnetic switch 1.
  • a current path (bus bar) 36 faces the magnetic switch 1.
  • the magnetic field strength of the magnetic field B to be measured in the S1 direction becomes stronger with respect to the magnetic switch 1.
  • the comparison unit 7 switches the switch output.
  • the temperature characteristics of the resistance change rate ( ⁇ R / R) and the exchange coupling magnetic field (Hex) in the element portion 12 of the magnetoresistive effect elements 10a and 10b are combined with the temperature characteristics, the detection output Vs is hardly affected by the temperature change until the external magnetic field reaches the predetermined reference value, and a stable detection output Vs can always be obtained. Therefore, even if the use environment temperature becomes high, the switch output can be obtained accurately using the fixed threshold voltage Vr.
  • a switch element 1 having a bridge circuit 2 shown in FIG. 1 was prepared.
  • the element part 12 of the magnetoresistive effect elements 10a and 10b has a meander shape, the width dimension of the element part 12 is 1 ⁇ m, and the length dimension of each stripe part of the element part 12 is 120 ⁇ m.
  • the first magnetic layer 21a is formed of Fe 60 Co 40
  • the second magnetic layer 21c is formed of Co 90 Fe 10
  • the nonmagnetic intermediate layer 21b is formed of Ru.
  • the first magnetic layer 21a was 1.9 nm thick
  • the second magnetic layer 21c was 2.4 nm thick
  • the nonmagnetic intermediate layer 21b was 0.36 nm thick.
  • the nonmagnetic material layer 22 is a Cu layer and has a thickness of 2.0 nm.
  • the first ferromagnetic layer 23a was formed of Co 90 Fe 10 and the second ferromagnetic layer 23b was formed of Co 70 Fe 30 .
  • the thickness of the first ferromagnetic layer 23a was a variable Xnm, and the thickness of the second ferromagnetic layer 23b was a fixed value of 1.0 nm.
  • the antiferromagnetic layer 24 is made of Ir 22 Mn 78 , and the protective layer 25 having a thickness of 5.0 nm is a Ta layer and has a thickness of 10.0 nm.
  • Example 1 In the element unit 12 of Example 1, the thickness of the first ferromagnetic layer 23a constituting the free layer 23 was set to 5.0 nm.
  • Example 2 In the element unit 12 of Example 2, the thickness of the first ferromagnetic layer 23a was set to 4.0 nm.
  • Example 3 In the element unit 12 of Example 3, the thickness of the first ferromagnetic layer 23a was set to 3.0 nm.
  • FIG. 7 shows the relationship between the change in the intensity of the magnetic field to be measured (mT) acting on the magnetic switch 1 and the voltage difference between the potential at the midpoint 5a and the potential at the midpoint 5b in the first embodiment. This potential difference is expressed as a ratio (%) to the power supply voltage Vdd.
  • FIG. 8 shows the change of the midpoint voltage difference (detected output Vs in FIG. 1) with respect to the intensity change of the magnetic field to be measured (mT) acting on the magnetic switch 1 in Example 2 in%.
  • FIG. 9 shows the change in the midpoint voltage difference (detected output Vs in FIG. 1) with respect to the intensity change of the magnetic field to be measured (mT) acting on the magnetic switch 1 in Example 3 in%.
  • FIG. 7, FIG. 8 and FIG. 9 show the results of experiments and actual measurements.
  • the exchange coupling magnetic field (Hex) applied as a bias magnetic field from the antiferromagnetic layer 24 to the free magnetic layer 23 decreases in contrast to the increase in the amount of magnetization (saturation magnetization Ms ⁇ film thickness t) of the free magnetic layer 23. To do.
  • the exchange coupling magnetic field (Hex) applied to the free magnetic layer 23 was set to 15.0 mT by setting the thickness of the first ferromagnetic layer 23a to 5.0 nm in Example 1.
  • the exchange coupling magnetic field (Hex) applied to the free magnetic layer 23 was 18.0 mT.
  • the exchange coupling magnetic field (Hex) applied to the free magnetic layer 23 was set to 22.0 mT by setting the thickness of the first ferromagnetic layer 23a to 3.0 nm.
  • the reference value K of the magnetic field to be measured is shown as the position of the vertical broken line.
  • the reference value K is around 16 mT
  • Example 2 shown in FIG. 8 the reference value K is around 24 mT
  • Example 3 shown in FIG. 9 the reference value K is around 27 mT. is there.
  • Example 1 in FIG. 7 there is almost no variation in detection output due to temperature change within a range where the measured magnetic field is less than or equal to the reference value K.
  • Example 3 in FIG. 9 the measured magnetic field is less than or equal to the reference value K.
  • the variation in detection output due to temperature change is very small, less than 10% or less than 5%.
  • the term “less than 10%” or “less than 5%” here is a value that does not take into account variations between elements when the measured magnetic field is about 0 to 30 mT.
  • the threshold voltage Vr set by the threshold setting unit 8 shown in FIG. 1 is set to one of the detection voltages corresponding to the measured magnetic field equal to or less than the reference value K shown in FIGS. By doing so, it is possible to obtain a switch output with very little variation due to temperature change.
  • the threshold voltage Vr is made to coincide with the reference value K shown in FIGS. 7 to 9, a switch output with little variation due to temperature change can be obtained. That is, even if the temperature changes, the switch output is switched when the measured magnetic field acting on the magnetic switch 1 has the same magnitude.
  • the magnet 31 and the magnetic switch 1 are arranged so that the measured magnetic field corresponding to the threshold voltage Vr acts on the magnetic switch 1 when the magnet 31 reaches a predetermined operation position. And the distance is set.
  • the current detection device 35 shown in FIG. 6 when a current I that should not flow any more flows in the current path 36, the current to be measured acts on the magnetic switch 1 corresponding to the threshold voltage Vr.
  • the distance between the path 36 and the magnetic switch 1 is set. With this setting, even if there is a temperature change in the usage environment, a switch output is obtained when a constant limit current always flows through the current path 36.
  • the processing circuit 9 shown in FIG. It is possible to perform processing such as shutting off the power to the unit.

Abstract

[Problem] To provide a magnetic switch for which it is difficult for switch output switching timing to vary even when there is temperature variation. [Solution] A magnetic switch has a magneto-resistance effect element, an antiferromagnetic layer is disposed on a free magnetic layer of the magneto-resistance effect element, and an exchange coupling magnetic field is applied as a bias magnetic field from the antiferromagnetic layer to the free magnetic layer. The characteristics of the variation of the exchange coupling magnetic field caused by temperature variation are made to match the characteristics of the variation of a spin valve magnetoresistance layered device caused by temperature variation. This makes it possible to suppress variation in detection output caused by temperature variation if a magnetic field to be measured is below a reference value. As a result, if a threshold value is set at or below a standard value, it is possible to obtain unvaried switch output even if there is temperature variation.

Description

磁気スイッチMagnetic switch
 本発明は、被測定磁界を検知する磁気抵抗効果素子を使用して、被測定磁界がしきい値に至ったか否かによって出力が切り換わる磁気スイッチに関する。 The present invention relates to a magnetic switch that uses a magnetoresistive effect element that detects a magnetic field to be measured, and switches an output depending on whether or not the magnetic field to be measured reaches a threshold value.
 特許文献1には、磁気抵抗効果素子を使用した電流センサが記載されている。この電流センサに使用されている磁気抵抗効果素子は、固定磁性層と非磁性層とフリー磁性層とが積層されたスピンバルブ構造のGMR素子(巨大磁気抵抗効果素子)であり、ハードバイアス層から与えられるバイアス磁界によって、フリー磁性層の磁化の向きが、固定磁性層のPin方向と直交する向きに揃えられている。 Patent Document 1 describes a current sensor using a magnetoresistive effect element. The magnetoresistive effect element used in this current sensor is a GMR element (giant magnetoresistive effect element) having a spin valve structure in which a fixed magnetic layer, a nonmagnetic layer, and a free magnetic layer are stacked. Due to the applied bias magnetic field, the magnetization direction of the free magnetic layer is aligned in a direction perpendicular to the Pin direction of the pinned magnetic layer.
 特許文献1に記載の電流センサは、磁気抵抗効果素子でブリッジ回路が構成されているが、直列に接続されて同一チップ上に設置された一対の磁気抵抗効果素子は、バイアス磁界が互いに逆向きとなっている。これにより、一対の磁気抵抗効果素子の出力の変動を相殺し、センサ出力の直線性を向上させることができる、と説明されている。 The current sensor described in Patent Document 1 includes a magnetoresistive effect element that forms a bridge circuit. However, a pair of magnetoresistive effect elements connected in series and installed on the same chip have opposite bias magnetic fields. It has become. Accordingly, it is described that fluctuations in the output of the pair of magnetoresistive elements can be offset and the linearity of the sensor output can be improved.
 特許文献2に記載された電流センサは、前記特許文献1の記載のものと同様に、直列に接続されて同一チップ上に位置する一対の磁気抵抗効果素子は、バイアス磁界が互いに逆向きとなっている。そして、磁気抵抗効果素子では、ハードバイアスに代えたエクスチェンジバイアスを使用することが記載されている。 In the current sensor described in Patent Document 2, a pair of magnetoresistive effect elements connected in series and located on the same chip have the bias magnetic fields opposite to each other, similar to the one described in Patent Document 1. ing. The magnetoresistive effect element uses an exchange bias instead of a hard bias.
WO2012/172946A1WO2012 / 172946A1 特開2014-063893号公報JP 2014-063893 A
 特許文献1と特許文献2に記載されているGMR効果を利用した磁気抵抗効果素子は、スピンバルブ構造であり、被測定磁界が与えられたときに、Cu層などの非磁性層と、強磁性層であるフリー磁性層または固定磁性層との界面でのスピン散乱に依存した抵抗値変化(ΔR)が生じる。 The magnetoresistive effect element using the GMR effect described in Patent Document 1 and Patent Document 2 has a spin valve structure, and when a measured magnetic field is applied, a nonmagnetic layer such as a Cu layer and a ferromagnetic layer A resistance value change (ΔR) depending on spin scattering occurs at the interface with the free magnetic layer or the pinned magnetic layer which is a layer.
 しかし、この磁気抵抗効果素子は、使用されている環境温度が上昇すると抵抗変化率(ΔR/R)が低下する問題がある。すなわち、温度が上昇すると、GMR膜を構成する原子の格子振動が大きくなるため、電子のスピンに依らない電子散乱が増加する。そのため、固定抵抗成分(R)が上昇し、その結果として、温度上昇と共に抵抗変化率(ΔR/R)が低下する。 However, this magnetoresistive element has a problem that the rate of change in resistance (ΔR / R) decreases as the environmental temperature in use increases. That is, when the temperature rises, the lattice vibration of atoms constituting the GMR film increases, so that electron scattering independent of electron spin increases. Therefore, the fixed resistance component (R) increases, and as a result, the rate of change in resistance (ΔR / R) decreases with increasing temperature.
 そのため、磁気抵抗効果素子を用いた電流センサなどが高温の環境下で使用されると、抵抗変化率の低下により検知出力が変動することになり、これを補正するために温度センサを使用した温度補償回路を設けることが必要になって、回路構成が複雑になる。また、温度センサの感度にばらつきがあると、正確な温度補償ができなくなる。 For this reason, when a current sensor using a magnetoresistive element is used in a high temperature environment, the detection output fluctuates due to a decrease in the rate of change in resistance, and the temperature at which the temperature sensor is used to correct this. It becomes necessary to provide a compensation circuit, and the circuit configuration becomes complicated. In addition, if the sensitivity of the temperature sensor varies, accurate temperature compensation cannot be performed.
 ところが、特許文献1と特許文献2では、温度が変化したときの磁気抵抗効果素子の抵抗変化率の変動については全く考慮されていない。 However, in Patent Document 1 and Patent Document 2, no consideration is given to the change in the resistance change rate of the magnetoresistive element when the temperature changes.
 本発明は上記従来の課題を解決するものであり、温度変化に起因する磁気抵抗効果素子の検知出力の変動を抑制できるようにして、安定したスイッチ出力が得られる磁気スイッチを提供することを目的としている。 The present invention solves the above-described conventional problems, and an object of the present invention is to provide a magnetic switch that can suppress a fluctuation in detection output of a magnetoresistive effect element due to a temperature change and obtain a stable switch output. It is said.
 本発明は、被測定磁界の強度に応じて抵抗値が変化する磁気抵抗効果素子と、前記抵抗値の変化に基づく検知出力としきい値とを比較してスイッチ出力を生成する比較部と、が設けられた磁気スイッチにおいて、
 前記磁気抵抗効果素子は、固定磁性層と非磁性材料層とフリー磁性層とを有し、前記フリー磁性層に反強磁性層が重ねられて、前記反強磁性層からフリー磁性層へ作用する交換結合磁界によって、フリー磁性層の磁化の向きが前記固定磁性層の固定磁化の向きと交差するように設定されており、
 前記磁気抵抗効果素子は、前記被測定磁界が所定の基準値まで上昇する範囲内で、温度変化による前記検知出力の変動が所定の比率以下となるように、温度変化に対する抵抗変化率の変動特性と、温度変化に対する交換結合磁界の変動特性とが設定されており、前記しきい値が、前記基準値以下に設定されていることを特徴とするものである。
The present invention comprises a magnetoresistive effect element whose resistance value changes according to the strength of a magnetic field to be measured, and a comparison unit that generates a switch output by comparing a detection output based on the change in the resistance value and a threshold value. In the magnetic switch provided,
The magnetoresistive effect element has a pinned magnetic layer, a nonmagnetic material layer, and a free magnetic layer, and an antiferromagnetic layer is superimposed on the free magnetic layer and acts from the antiferromagnetic layer to the free magnetic layer. By the exchange coupling magnetic field, the magnetization direction of the free magnetic layer is set to intersect the direction of the fixed magnetization of the fixed magnetic layer,
The magnetoresistive effect element has a variation characteristic of a rate of change in resistance with respect to a change in temperature so that a change in the detection output due to a change in temperature is not more than a predetermined ratio within a range in which the measured magnetic field rises to a predetermined reference value. And a fluctuation characteristic of the exchange coupling magnetic field with respect to a temperature change, and the threshold value is set to be equal to or less than the reference value.
 本発明の磁気スイッチは、被測定磁界の強度に対する検知出力の変化を示す変化線を、異なる環境温度毎に複数得たときに、複数の前記変化線が交差しその後に検知出力の差が拡大するように、前記2つの変動特性が設定されており、前記変化線の交差点が前記基準値に設定されるものとして構成できる。 In the magnetic switch of the present invention, when a plurality of change lines indicating changes in the detection output with respect to the strength of the magnetic field to be measured are obtained at different environmental temperatures, the plurality of change lines intersect and thereafter the difference in the detection output increases. As described above, the two fluctuation characteristics are set, and the intersection of the change lines can be set as the reference value.
 本発明では、前記しきい値を前記基準値に一致させることが好ましい。
 本発明の磁気スイッチは、被測定磁界の発生源と前記磁気抵抗効果素子との距離を、前記しきい値に合わせて設定するものである。
In the present invention, it is preferable that the threshold value matches the reference value.
In the magnetic switch of the present invention, the distance between the source of the magnetic field to be measured and the magnetoresistive element is set according to the threshold value.
 本発明の磁気スイッチは、被測定磁界の発生源が、前記磁気抵抗効果素子に対向して移動する磁石である。あるいは、被測定磁界の発生源が前記磁気抵抗効果素子に対向する電流路であり、前記電流路に流れる電流量に応じて前記被測定磁界が変化する。 The magnetic switch of the present invention is a magnet in which the source of the magnetic field to be measured moves opposite to the magnetoresistive element. Alternatively, the source of the magnetic field to be measured is a current path facing the magnetoresistive effect element, and the magnetic field to be measured changes according to the amount of current flowing through the current path.
 本発明の磁気スイッチは、被測定磁界を検知する磁気抵抗効果素子からの検知出力をしきい値と比較し、検知出力がしきい値を超えたときにスイッチ出力が変化するように構成されている。磁気抵抗効果素子は、反強磁性層からフリー磁性層へ交換結合磁界がバイアス磁界として与えられる。反強磁性層を使用した交換結合磁界は、温度上昇と共に低下するため、その分だけ検出感度が上昇することになる。そこで、磁気抵抗効果素子の温度上昇による抵抗変化率の変化特性と、温度上昇による検出感度の変化特性とを合わせ込むことで、被測定磁界が所定の基準値まで大きくなる範囲内で、温度変化による検知出力の変動を低減させることができるようになる。そして、スイッチ出力を得るためのしきい値を、前記基準値以下の磁界強度に相当する値とし、または基準値に一致する磁界強度に相当する値とすることで、温度変化による影響の少ないスイッチ出力が得られるようになる。 The magnetic switch of the present invention is configured such that the detection output from the magnetoresistive effect element that detects the magnetic field to be measured is compared with a threshold value, and the switch output changes when the detection output exceeds the threshold value. Yes. In the magnetoresistive effect element, an exchange coupling magnetic field is applied as a bias magnetic field from the antiferromagnetic layer to the free magnetic layer. Since the exchange coupling magnetic field using the antiferromagnetic layer decreases as the temperature increases, the detection sensitivity increases accordingly. Therefore, by combining the change characteristic of the resistance change rate due to the temperature rise of the magnetoresistive effect element and the change characteristic of the detection sensitivity due to the temperature rise, the temperature change is within a range where the measured magnetic field increases to a predetermined reference value. It is possible to reduce fluctuations in the detection output due to. The threshold value for obtaining the switch output is set to a value corresponding to the magnetic field strength equal to or less than the reference value, or a value corresponding to the magnetic field strength matching the reference value, so that the switch having less influence due to the temperature change. Output will be obtained.
本発明の実施の形態の磁気スイッチを示すブロック図、The block diagram which shows the magnetic switch of embodiment of this invention, 磁気スイッチを構成する磁気抵抗効果素子の構造を示す平面図、A plan view showing a structure of a magnetoresistive effect element constituting a magnetic switch, 図2のIII-III線での断面を示す磁気抵抗効果素子の拡大断面図、FIG. 3 is an enlarged sectional view of a magnetoresistive effect element showing a section taken along line III-III in FIG. (A)は抵抗変化率の温度特性を模式的に示す線図、(B)は交換結合磁界の温度特性を模式的に示す線図、(A) is a diagram schematically showing the temperature characteristics of the resistance change rate, (B) is a diagram schematically showing the temperature characteristics of the exchange coupling magnetic field, 磁気スイッチを含む磁石移動式のスイッチング装置の構造を示す構成図、The block diagram which shows the structure of the switching device of the magnet movement type containing a magnetic switch, 磁気スイッチを含む電流検知装置の構成図、Configuration diagram of a current detection device including a magnetic switch, 実施例1において、磁気スイッチに作用する被測定磁界の強度変化と、中点電圧差との関係を示す線図、In Example 1, the diagram which shows the relationship between the intensity | strength change of the to-be-measured magnetic field which acts on a magnetic switch, and a midpoint voltage difference, 実施例2において、磁気スイッチに作用する被測定磁界の強度変化と、中点電圧差との関係を示す線図、In Example 2, the diagram which shows the relationship between the intensity | strength change of the to-be-measured magnetic field which acts on a magnetic switch, and a midpoint voltage difference, 実施例3において、磁気スイッチに作用する被測定磁界の強度変化と、中点電圧差との関係を示す線図、In Example 3, the diagram which shows the relationship between the intensity | strength change of the to-be-measured magnetic field which acts on a magnetic switch, and a midpoint voltage difference,
 図1は本発明の実施の形態の磁気スイッチ1を示している。
 磁気スイッチ1は、ブリッジ回路2を有している。ブリッジ回路2は、2つの第1の磁気抵抗効果素子10aと、2つの第2の磁気抵抗効果素子10bとを有している。第1の磁気抵抗効果素子10aと第2の磁気抵抗効果素子10bとが直列に接続されて直列回路が形成され、2つの直列回路が並列に接続されてフルブリッジ回路が構成されている。2つの直列回路に共通の電源端子3に、例えば5Vの電源電圧が与えられ、2つの直列回路に共通の接地端子4が設置電位に設定されている。2つの直列回路では、第1の磁気抵抗効果素子10aと第2の磁気抵抗効果素子10bの直列接続の順番が、互いに逆に構成されている。
FIG. 1 shows a magnetic switch 1 according to an embodiment of the present invention.
The magnetic switch 1 has a bridge circuit 2. The bridge circuit 2 includes two first magnetoresistive elements 10a and two second magnetoresistive elements 10b. The first magnetoresistive element 10a and the second magnetoresistive element 10b are connected in series to form a series circuit, and the two series circuits are connected in parallel to form a full bridge circuit. For example, a power supply voltage of 5 V is applied to the power supply terminal 3 common to the two series circuits, and the ground terminal 4 common to the two series circuits is set to the installation potential. In the two series circuits, the order of series connection of the first magnetoresistive effect element 10a and the second magnetoresistive effect element 10b is opposite to each other.
 第1の磁気抵抗効果素子10aと第2の磁気抵抗効果素子10bは、S方向が感度軸方向であり、S方向の磁界の強度に応じて抵抗値が変化する。S方向のいずれか一方への磁界強度が変化すると、第1の磁気抵抗効果素子10aと第2の磁気抵抗効果素子10bでは、抵抗値が逆特性で変化する。 In the first magnetoresistance effect element 10a and the second magnetoresistance effect element 10b, the S direction is the sensitivity axis direction, and the resistance value changes according to the strength of the magnetic field in the S direction. When the magnetic field strength in any one of the S directions changes, the resistance values of the first magnetoresistive effect element 10a and the second magnetoresistive effect element 10b change with opposite characteristics.
 フルブリッジ回路2を構成する左側の直列回路の中点5aの電位と、右側の直列回路の中点5bの電位は差動増幅器6が得られ、中点5aの電位と中点5bの電位との差動出力が検知出力(検知出力電圧)Vsとして得られる。 The potential of the midpoint 5a of the left series circuit constituting the full bridge circuit 2 and the potential of the midpoint 5b of the right series circuit are obtained by the differential amplifier 6, and the potential of the midpoint 5a and the potential of the midpoint 5b are Is obtained as the detection output (detection output voltage) Vs.
 比較部7では、差動増幅器6から得られた検知出力Vsが、しきい値設定部8で設定されたしきい値電圧Vrと比較される。比較部7では、検知出力Vsがしきい値電圧Vrを超えたとき、またはしきい値電圧Vrに一致したときにスイッチ出力が変化し、このスイッチ出力が処理回路9に与えられる。処理回路9はスイッチ出力が与えられたときに、所定の処理動作を行う。 In the comparison unit 7, the detection output Vs obtained from the differential amplifier 6 is compared with the threshold voltage Vr set in the threshold setting unit 8. In the comparison unit 7, the switch output changes when the detection output Vs exceeds the threshold voltage Vr or coincides with the threshold voltage Vr, and this switch output is given to the processing circuit 9. The processing circuit 9 performs a predetermined processing operation when a switch output is given.
 図2は、第1の磁気抵抗効果素子10aの平面図である。
 第1の磁気抵抗効果素子10aは、ストライプ形状の素子部12を有している。素子部12は複数本が平行に形成されており、隣り合う素子部12の図示右端部が導電部13を介して接続され、隣り合う素子部12の図示右端部が導電部13を介して接続されている。素子部12の図示右端部と図示左端部では、導電部13が互い違いに接続されており、素子部12はいわゆるミアンダ形状に連結されている。第1の磁気抵抗効果素子10aの、図示左上部の導電部13は接続端子14aに導通され、図示右下部の導電部13は接続端子14bに導通されている。
FIG. 2 is a plan view of the first magnetoresistive element 10a.
The first magnetoresistive effect element 10 a has a stripe-shaped element portion 12. A plurality of element parts 12 are formed in parallel, the right end part of the adjacent element parts 12 shown in the figure is connected via the conductive part 13, and the right end part of the adjacent element part 12 shown in the figure is connected via the conductive part 13. Has been. The conductive portions 13 are alternately connected to the right end portion and the left end portion of the element portion 12 in the drawing, and the element portion 12 is connected in a so-called meander shape. In the first magnetoresistive effect element 10a, the upper left conductive portion 13 is electrically connected to the connection terminal 14a, and the lower right conductive portion 13 is electrically connected to the connection terminal 14b.
 図3の断面図に示すように、各素子部12は複数の金属層が積層された構造である。
 素子部12はスピンバルブ構造のGMR素子であり、基板29の表面に形成され、基板29の表面から、シード層20、固定磁性層21、非磁性材料層(非磁性導電層)22、フリー磁性層23、反強磁性層24、および保護層25の順に積層されて成膜されている。これらの層は例えばスパッタ工程で成膜される。
As shown in the sectional view of FIG. 3, each element portion 12 has a structure in which a plurality of metal layers are laminated.
The element portion 12 is a GMR element having a spin valve structure, and is formed on the surface of the substrate 29. From the surface of the substrate 29, the seed layer 20, the fixed magnetic layer 21, the nonmagnetic material layer (nonmagnetic conductive layer) 22, and the free magnetism. The layer 23, the antiferromagnetic layer 24, and the protective layer 25 are stacked in this order. These layers are formed by, for example, a sputtering process.
 シード層20は、NiFeCr合金(ニッケル・鉄・クローム合金)あるいはCrなどで形成されている。固定磁性層21は、第1磁性層21aならびに第2磁性層21cと、第1磁性層21aと第2磁性層21cと間に位置する非磁性中間層21bとで構成されたセルフピン止め構造となっている。第1磁性層21aの固定磁化方向と、第2磁性層21cの固定磁化方向とは、RKKY的相互作用により反平行となっている。第2磁性層21cの固定磁化方向が、固定磁性層21の固定磁化方向Pである。この固定磁化方向Pが延びる方向が感度軸方向Sである。 The seed layer 20 is made of NiFeCr alloy (nickel / iron / chrome alloy) or Cr. The pinned magnetic layer 21 has a self-pinning structure including a first magnetic layer 21a and a second magnetic layer 21c, and a nonmagnetic intermediate layer 21b positioned between the first magnetic layer 21a and the second magnetic layer 21c. ing. The fixed magnetization direction of the first magnetic layer 21a and the fixed magnetization direction of the second magnetic layer 21c are antiparallel due to the RKKY interaction. The fixed magnetization direction of the second magnetic layer 21 c is the fixed magnetization direction P of the fixed magnetic layer 21. The direction in which the fixed magnetization direction P extends is the sensitivity axis direction S.
 第1磁性層21aと第2磁性層21cは、共にFeCo合金(鉄・コバルト合金)で形成されるが、第1磁性層21aの方が第2磁性層21cよりもFeの含有量が多く保磁力が高く設定されている。非磁性材料層22に接する第2磁性層21cはスピンバルブ型のGMR効果に寄与する層であり、第2磁性層21cは、アップスピンを持つ伝導電子とダウンスピンを持つ伝導電子の平均自由行程差が、第1磁性層21aよりも大きくなるように、その組成が決められている。また、第1磁性層21aと第2磁性層21cとでは、磁化量(飽和磁化Ms・膜厚t)の差が実質的にゼロである。非磁性中間層21bはRu(ルテニウム)などで形成されている。
 非磁性材料層22は、Cu(銅)などである。
Both the first magnetic layer 21a and the second magnetic layer 21c are formed of an FeCo alloy (iron-cobalt alloy), but the first magnetic layer 21a has a higher Fe content than the second magnetic layer 21c. Magnetic force is set high. The second magnetic layer 21c in contact with the nonmagnetic material layer 22 is a layer that contributes to the spin valve type GMR effect, and the second magnetic layer 21c has a mean free path of conduction electrons having up spins and conduction electrons having down spins. The composition is determined so that the difference is larger than that of the first magnetic layer 21a. In addition, the difference in the amount of magnetization (saturation magnetization Ms · film thickness t) is substantially zero between the first magnetic layer 21a and the second magnetic layer 21c. The nonmagnetic intermediate layer 21b is formed of Ru (ruthenium) or the like.
The nonmagnetic material layer 22 is made of Cu (copper) or the like.
 フリー磁性層23は第1強磁性層23aと第2強磁性層23bとが積層されて構成されている。第1強磁性層23aと第2強磁性層23bはNiFe合金(ニッケル・鉄合金)やCoFe合金(コバルト・鉄合金)などで形成されている。フリー磁性層23の第2強磁性層23bには、反強磁性層24が直接に接触して積層されている。反強磁性層24と第2強磁性層23bとの界面での反強磁性結合によって、フリー磁性層23に交換結合磁界Hexがバイアス磁界として作用する。その結果、フリー磁性層23の磁化方向Fはバイアス磁界の作用方向へ揃えられる。第2強磁性層23bは反強磁性層24との反強磁性結合のために、第1強磁性層23bよりも鉄の含有量が多くなっている。 The free magnetic layer 23 is formed by laminating a first ferromagnetic layer 23a and a second ferromagnetic layer 23b. The first ferromagnetic layer 23a and the second ferromagnetic layer 23b are formed of a NiFe alloy (nickel / iron alloy), a CoFe alloy (cobalt / iron alloy), or the like. An antiferromagnetic layer 24 is laminated in direct contact with the second ferromagnetic layer 23b of the free magnetic layer 23. Due to the antiferromagnetic coupling at the interface between the antiferromagnetic layer 24 and the second ferromagnetic layer 23b, the exchange coupling magnetic field Hex acts as a bias magnetic field on the free magnetic layer 23. As a result, the magnetization direction F of the free magnetic layer 23 is aligned with the direction in which the bias magnetic field acts. The second ferromagnetic layer 23b has a higher iron content than the first ferromagnetic layer 23b due to antiferromagnetic coupling with the antiferromagnetic layer 24.
 反強磁性層24は、フリー磁性層23との間で磁場中でのアニール処理を行なわなくても交換結合が可能なIrMn合金(イリジウム・マンガン合金)で形成されることが好ましい。なお、反強磁性層24としてPtMn(白金・マンガン合金)などを使用することが可能であるが、この場合には、膜の規則化のためにアニール処理が必要になる。 The antiferromagnetic layer 24 is preferably formed of an IrMn alloy (iridium / manganese alloy) capable of exchange coupling without annealing in the magnetic field with the free magnetic layer 23. In addition, although it is possible to use PtMn (platinum manganese alloy) etc. as the antiferromagnetic layer 24, in this case, annealing treatment is required for ordering of the film.
 図2に示す第1の磁気抵抗効果素子10aでは、固定磁性層21の固定磁化方向Pが、フリー磁性層23の交換結合磁界による磁化方向Fに対して反時計回りに90度の角度を有して設定されている。第2の磁気抵抗効果素子10bの素子構造は、第1の磁気抵抗効果素子10aと同じであるが、図1に示すように、固定磁化方向Pと磁化方向Fとが、第1の磁気抵抗効果素子10aと180度逆向きである。 In the first magnetoresistance effect element 10a shown in FIG. 2, the fixed magnetization direction P of the fixed magnetic layer 21 has an angle of 90 degrees counterclockwise with respect to the magnetization direction F of the free magnetic layer 23 by the exchange coupling magnetic field. Is set. The element structure of the second magnetoresistive effect element 10b is the same as that of the first magnetoresistive effect element 10a. However, as shown in FIG. 1, the fixed magnetization direction P and the magnetization direction F have the first magnetoresistance effect 10b. It is 180 degrees opposite to the effect element 10a.
 スピンバルブ構造の素子部12を有する第1の磁気抵抗効果素子10aと第2の磁気抵抗効果素子10bは、S方向が感度軸方向である。S1方向に向く被測定磁界が与えられると、フリー磁性層23の磁化方向Fが図1において図示左方向へ向くように回転させられる。第1の磁気抵抗効果素子10aでは、固定磁化方向Pと磁化方向Fとの角度が小さくなるために抵抗値が低下し、第2の磁気抵抗効果素子10bでは、固定磁化方向Pと磁化方向Fとの角度が大きくなるために抵抗値が増加する。逆に、S2方向に向く被測定磁界が与えられると、第1の磁気抵抗効果素子10aの抵抗値が増加し、第2の磁気抵抗効果素子10bの抵抗値が低下する。 In the first magnetoresistive effect element 10a and the second magnetoresistive effect element 10b having the element part 12 having the spin valve structure, the S direction is the sensitivity axis direction. When a magnetic field to be measured directed in the S1 direction is applied, the magnetization direction F of the free magnetic layer 23 is rotated so as to be directed in the left direction in FIG. In the first magnetoresistive effect element 10a, the angle between the fixed magnetization direction P and the magnetization direction F is small, so that the resistance value decreases. In the second magnetoresistive effect element 10b, the fixed magnetization direction P and the magnetization direction F are reduced. As the angle increases, the resistance value increases. Conversely, when a magnetic field to be measured directed in the S2 direction is applied, the resistance value of the first magnetoresistance effect element 10a increases and the resistance value of the second magnetoresistance effect element 10b decreases.
 S1方向の磁界強度が高くなると、中点5aの電位が低くなり、中点5bの電位が高くなる。よって差動増幅器6からの検知出力Vsが大きくなる。比較部7では、検知出力Vsとしきい値電圧Vrとが比較され、検知出力Vsがしきい値電圧Vrを超えると、または検知出力Vsがしきい値電圧Vrに一致するとスイッチ出力が切り換わる。 When the magnetic field strength in the S1 direction increases, the potential at the midpoint 5a decreases and the potential at the midpoint 5b increases. Therefore, the detection output Vs from the differential amplifier 6 increases. The comparison unit 7 compares the detection output Vs with the threshold voltage Vr. When the detection output Vs exceeds the threshold voltage Vr or when the detection output Vs matches the threshold voltage Vr, the switch output is switched.
 なお、比較部7では、プラス側のしきい値電圧+Vrとマイナス側のしきい値電圧-Vrが設定され、S1方向に向く被測定磁界の強度が強くなり、検知出力Vsが第1のしきい値電圧+Vrを超え、またはしきい値電圧+Vrと一致すると第1のスイッチ出力が得られ、S2方向に向く被測定磁界の強度が強なり、検知出力Vsが第1のしきい値電圧-Vrよりも小さくなり、またはしきい値電圧-Vrと一致すると第2のスイッチ出力が得られるようにしてもよい。 In the comparison unit 7, a positive threshold voltage + Vr and a negative threshold voltage −Vr are set, the strength of the magnetic field to be measured directed in the S1 direction is increased, and the detection output Vs is the first threshold voltage. When the threshold voltage + Vr is exceeded or coincides with the threshold voltage + Vr, the first switch output is obtained, the intensity of the magnetic field to be measured in the S2 direction is increased, and the detection output Vs is the first threshold voltage −. The second switch output may be obtained when it becomes smaller than Vr or coincides with the threshold voltage −Vr.
 被測定磁界が変化したときの磁気抵抗効果素子10a,10bを構成する素子部12の抵抗値の変化の度合いは、抵抗変化率(ΔR/R)で評価される。(R)は素子部12の固定抵抗成分であり、(ΔR)は、被測定磁界の変動によって生じる素子部12の抵抗値の変化成分である。 The degree of change in the resistance value of the element portion 12 constituting the magnetoresistive effect elements 10a and 10b when the measured magnetic field changes is evaluated by the resistance change rate (ΔR / R). (R) is a fixed resistance component of the element section 12, and (ΔR) is a change component of the resistance value of the element section 12 caused by fluctuation of the measured magnetic field.
 スピンバルブ構造の素子部12は、温度特性を有している。すなわち、環境温度が上昇すると、抵抗変化率(ΔR/R)が低下する。図4(A)は温度(T)が上昇するのに伴う抵抗変化率(ΔR/R)の低下状態が線図で示されている。図4(A)は、抵抗変化率(ΔR/R)の変化を模式的に示したものであるが、抵抗変化率(ΔR/R)は、温度上昇に伴って、比較的一次関数に近い関係で低下していく。 The element part 12 having a spin valve structure has temperature characteristics. That is, when the environmental temperature rises, the rate of change in resistance (ΔR / R) decreases. FIG. 4A is a diagram showing a decrease state of the rate of change in resistance (ΔR / R) as the temperature (T) increases. FIG. 4A schematically shows a change in the resistance change rate (ΔR / R). The resistance change rate (ΔR / R) is relatively close to a linear function as the temperature rises. It will decline due to the relationship.
 スピンバルブ型のGMR素子は、Cu層などの非磁性材料層22と、フリー磁性層23ならびに固定磁性層21の強磁性層との界面でのスピン散乱に依存して抵抗値変化(ΔR)が生じる。しかし、温度が上昇すると、GMR膜を構成する原子の格子振動が大きくなるため、スピンに依存せずに抵抗が増加し、固定抵抗成分(R)が大きくなって、温度上昇と共に抵抗変化率(ΔR/R)が低下する。 The spin valve type GMR element has a change in resistance value (ΔR) depending on spin scattering at the interface between the nonmagnetic material layer 22 such as a Cu layer and the free magnetic layer 23 and the ferromagnetic layer of the pinned magnetic layer 21. Arise. However, when the temperature rises, the lattice vibration of atoms constituting the GMR film increases, so that the resistance increases without depending on the spin, the fixed resistance component (R) increases, and the resistance change rate ( ΔR / R) decreases.
 一方で、反強磁性層24からフリー磁性層23に作用する交換結合磁界(Hex)は、温度の上昇と共に低下することが知られている。その理由は、温度が上昇すると、反強磁性材料の温度がネール温度(反強磁性を消失する温度)に近づくにつれてHexが小さくなるからである。図4(B)は、温度の上昇に伴う交換結合磁界(Hex)の変化を模式的に示しているが、交換結合磁界(Hex)の温度特性は二次関数的な変化を示す。 On the other hand, it is known that the exchange coupling magnetic field (Hex) acting on the free magnetic layer 23 from the antiferromagnetic layer 24 decreases as the temperature increases. The reason is that as the temperature rises, Hex decreases as the temperature of the antiferromagnetic material approaches the Neel temperature (the temperature at which antiferromagnetism disappears). FIG. 4B schematically shows the change of the exchange coupling magnetic field (Hex) with an increase in temperature, but the temperature characteristic of the exchange coupling magnetic field (Hex) shows a quadratic function change.
 図4(A)に示すように、温度が上昇するとスピンバルブ型のGMR効果が劣化して、抵抗変化率(ΔR/R)が低下していく。一方で、温度が上昇すると、フリー磁性層23に対する交換結合磁界(Hex)によるバイアス磁界が低下するため、被測定磁界が与えられたときにフリー磁性層23の磁化方向Fが動きやすくなる。すなわち、温度が上昇するのに伴って、フリー磁性層23の外部磁界に対する感度が上がっていることになる。そこで、本発明の実施の形態では、抵抗変化率(ΔR/R)の温度特性と、交換結合磁界(Hex)の温度特性とを合わせ込むことにより、外部磁界が所定の基準値となるまでの間に、検知出力Vsが温度変化の影響をほとんど受けないように構成した。 As shown in FIG. 4A, when the temperature rises, the spin valve type GMR effect deteriorates and the resistance change rate (ΔR / R) decreases. On the other hand, when the temperature rises, the bias magnetic field due to the exchange coupling magnetic field (Hex) with respect to the free magnetic layer 23 decreases, so that the magnetization direction F of the free magnetic layer 23 becomes easy to move when a measured magnetic field is applied. That is, as the temperature increases, the sensitivity of the free magnetic layer 23 to the external magnetic field increases. Therefore, in the embodiment of the present invention, by combining the temperature characteristic of the resistance change rate (ΔR / R) and the temperature characteristic of the exchange coupling magnetic field (Hex), the external magnetic field is changed to a predetermined reference value. In the meantime, the detection output Vs is hardly affected by the temperature change.
 検知出力Vsが温度変化の影響をほとんど受けない状態を実現できると、大きな温度変化が有っても、しきい値電圧Vrを変更させることなく、常に同じ被測定磁界の強度に伴ってスイッチ出力を切換えることができる。したがって、温度センサなどを備えた温度補償回路を設けてしきい値電圧Vrを変化させることが不要になる。 If it is possible to realize a state in which the detection output Vs is hardly affected by the temperature change, the switch output is always accompanied by the same measured magnetic field strength without changing the threshold voltage Vr even if there is a large temperature change. Can be switched. Therefore, it is not necessary to change the threshold voltage Vr by providing a temperature compensation circuit including a temperature sensor or the like.
 図5には、前記磁気スイッチ1を備えたスイッチング装置30が示されている。このスイッチング装置30は、磁気スイッチ1に磁石31が対向しており、外部操作により磁石31がF1-F2方向へ移動させられる。磁石31が磁気スイッチ1に接近すると、磁気スイッチ1に対してS1方向への被測定磁界Bの磁界強度が強くなる。図1に示す検知出力Vsがしきい値電圧Vrを超え、またはしきい値電圧Vrに一致すると、比較部7においてスイッチ出力が切換えられる。処理回路9では、スイッチ出力の変化に応じて所定の制御処理が行われる。 FIG. 5 shows a switching device 30 including the magnetic switch 1. In the switching device 30, a magnet 31 is opposed to the magnetic switch 1, and the magnet 31 is moved in the F1-F2 direction by an external operation. When the magnet 31 approaches the magnetic switch 1, the magnetic field strength of the magnetic field B to be measured in the S <b> 1 direction becomes stronger than the magnetic switch 1. When the detection output Vs shown in FIG. 1 exceeds the threshold voltage Vr or coincides with the threshold voltage Vr, the comparison unit 7 switches the switch output. In the processing circuit 9, a predetermined control process is performed in accordance with the change in the switch output.
 図6には、前記磁気スイッチ1を備えた電流検知装置35が示されている。この電流検知装置35は、磁気スイッチ1に電流路(バスバー)36が対向している。電流路36に流れる電流Iが増加すると、磁気スイッチ1に対してS1方向への被測定磁界Bの磁界強度が強くなる。図1に示す検知出力Vsがしきい値電圧Vrを超え、またはしきい値電圧Vrに一致すると、比較部7においてスイッチ出力が切換えられる。 FIG. 6 shows a current detection device 35 including the magnetic switch 1. In the current detection device 35, a current path (bus bar) 36 faces the magnetic switch 1. When the current I flowing through the current path 36 increases, the magnetic field strength of the magnetic field B to be measured in the S1 direction becomes stronger with respect to the magnetic switch 1. When the detection output Vs shown in FIG. 1 exceeds the threshold voltage Vr or coincides with the threshold voltage Vr, the comparison unit 7 switches the switch output.
 図5に示すスイッチング装置30と図6に示す電流検知装置35では、磁気抵抗効果素子10a,10bの素子部12において、抵抗変化率(ΔR/R)の温度特性と、交換結合磁界(Hex)の温度特性とを合わせ込むことにより、外部磁界が所定の基準値となるまでの間に、検知出力Vsが温度変化による影響をほとんど受けず、常に安定した検知出力Vsを得ることができる。そのため、使用環境温度が高くなっても、固定されたしきい値電圧Vrを使用して、スイッチ出力を正確に得ることができるようになる。 In the switching device 30 shown in FIG. 5 and the current detection device 35 shown in FIG. 6, the temperature characteristics of the resistance change rate (ΔR / R) and the exchange coupling magnetic field (Hex) in the element portion 12 of the magnetoresistive effect elements 10a and 10b. By combining with the temperature characteristics, the detection output Vs is hardly affected by the temperature change until the external magnetic field reaches the predetermined reference value, and a stable detection output Vs can always be obtained. Therefore, even if the use environment temperature becomes high, the switch output can be obtained accurately using the fixed threshold voltage Vr.
 実施例として、図1に示すブリッジ回路2を備えたスイッチ素子1を作成した。磁気抵抗効果素子10a,10bの素子部12はミアンダ形状であり、素子部12の幅寸法を1μmとし、素子部12の各ストライプ部の長さ寸法を120μmとした。 As an example, a switch element 1 having a bridge circuit 2 shown in FIG. 1 was prepared. The element part 12 of the magnetoresistive effect elements 10a and 10b has a meander shape, the width dimension of the element part 12 is 1 μm, and the length dimension of each stripe part of the element part 12 is 120 μm.
 素子部12の積層構造は、シード層をNi48Fe12Cr40で成膜し、膜厚を4.2nmとした。 Laminated structure of the element portion 12, a seed layer deposited by Ni 48 Fe 12 Cr 40, was 4.2nm thickness.
 固定磁性層21は、第1磁性層21aをFe60Co40で形成し、第2磁性層21cをCo90Fe10で成膜し、非磁性中間層21bをRuで成膜した。第1磁性層21aは厚さを1.9nmとし、第2磁性層21cは厚さを2.4nmとし、非磁性中間層21bを厚さ0.36nmとした。
 非磁性材料層22は、Cu層であり、厚さを2.0nmとした。
In the pinned magnetic layer 21, the first magnetic layer 21a is formed of Fe 60 Co 40 , the second magnetic layer 21c is formed of Co 90 Fe 10 , and the nonmagnetic intermediate layer 21b is formed of Ru. The first magnetic layer 21a was 1.9 nm thick, the second magnetic layer 21c was 2.4 nm thick, and the nonmagnetic intermediate layer 21b was 0.36 nm thick.
The nonmagnetic material layer 22 is a Cu layer and has a thickness of 2.0 nm.
 フリー層23は、第1強磁性層23aをCo90Fe10で成膜し、第2強磁性層23bをCo70Fe30で成膜した。第1強磁性層23aの厚さを変数のXnmとし、第2強磁性層23bの厚さは固定値の1.0nmとした。 In the free layer 23, the first ferromagnetic layer 23a was formed of Co 90 Fe 10 and the second ferromagnetic layer 23b was formed of Co 70 Fe 30 . The thickness of the first ferromagnetic layer 23a was a variable Xnm, and the thickness of the second ferromagnetic layer 23b was a fixed value of 1.0 nm.
 反強磁性層24はIr22Mn78で形成し、厚さを5.0nmとした保護層25はTa層で厚さを10.0nmとした。 The antiferromagnetic layer 24 is made of Ir 22 Mn 78 , and the protective layer 25 having a thickness of 5.0 nm is a Ta layer and has a thickness of 10.0 nm.
(実施例1)
 実施例1の素子部12では、フリー層23を構成する第1強磁性層23aの厚さを5.0nmとした。
(Example 1)
In the element unit 12 of Example 1, the thickness of the first ferromagnetic layer 23a constituting the free layer 23 was set to 5.0 nm.
(実施例2)
 実施例2の素子部12は、第1強磁性層23aの厚さを4.0nmとした。
(Example 2)
In the element unit 12 of Example 2, the thickness of the first ferromagnetic layer 23a was set to 4.0 nm.
(実施例3)
 実施例3の素子部12は、第1強磁性層23aの厚さを3.0nmとした。
(Example 3)
In the element unit 12 of Example 3, the thickness of the first ferromagnetic layer 23a was set to 3.0 nm.
 図7は、実施例1において、磁気スイッチ1に作用する被測定磁界(mT)の強度変化と、中点5aの電位と中点5bの電位との電圧差との関係を示している。この電位差は、電源電圧Vddに対する比率(%)で表している。図8は、実施例2において、磁気スイッチ1に作用する被測定磁界(mT)の強度変化に対する、中点電圧差(図1における検知出力Vs)の変化を%で表している。図9は、実施例3において、磁気スイッチ1に作用する被測定磁界(mT)の強度変化に対する中点電圧差(図1における検知出力Vs)の変化を%で表している。 FIG. 7 shows the relationship between the change in the intensity of the magnetic field to be measured (mT) acting on the magnetic switch 1 and the voltage difference between the potential at the midpoint 5a and the potential at the midpoint 5b in the first embodiment. This potential difference is expressed as a ratio (%) to the power supply voltage Vdd. FIG. 8 shows the change of the midpoint voltage difference (detected output Vs in FIG. 1) with respect to the intensity change of the magnetic field to be measured (mT) acting on the magnetic switch 1 in Example 2 in%. FIG. 9 shows the change in the midpoint voltage difference (detected output Vs in FIG. 1) with respect to the intensity change of the magnetic field to be measured (mT) acting on the magnetic switch 1 in Example 3 in%.
 図7、図8、図9では、いずれの実施例においても、磁気スイッチ1の使用環境が室温(25℃)のときのデータ(変化線)と、85℃のときのデータと、150℃のときのデータが示されている。 7, 8, and 9, in any of the examples, data (change line) when the use environment of the magnetic switch 1 is room temperature (25 ° C.), data when 85 ° C., and 150 ° C. When the data is shown.
 図7と図8ならびに図9は、実験して実測した結果である。反強磁性層24からフリー磁性層23にバイアス磁界として与えられる交換結合磁界(Hex)は、フリー磁性層23の磁化量(飽和磁化Ms・膜厚t)が増加すると、これとは逆に低下する。 FIG. 7, FIG. 8 and FIG. 9 show the results of experiments and actual measurements. The exchange coupling magnetic field (Hex) applied as a bias magnetic field from the antiferromagnetic layer 24 to the free magnetic layer 23 decreases in contrast to the increase in the amount of magnetization (saturation magnetization Ms · film thickness t) of the free magnetic layer 23. To do.
 この実験では、実施例1で、第1強磁性層23aの厚さを5.0nmとしたことで、フリー磁性層23に与えられる交換結合磁界(Hex)を15.0mTとした。実施例2では、第1強磁性層23aの厚さを4.0nmとしたことで、フリー磁性層23に与えられる交換結合磁界(Hex)を18.0mTとした。実施例3では、第1強磁性層23aの厚さを3.0nmとしたことで、フリー磁性層23に与えられる交換結合磁界(Hex)を22.0mTとした。 In this experiment, the exchange coupling magnetic field (Hex) applied to the free magnetic layer 23 was set to 15.0 mT by setting the thickness of the first ferromagnetic layer 23a to 5.0 nm in Example 1. In Example 2, since the thickness of the first ferromagnetic layer 23a was 4.0 nm, the exchange coupling magnetic field (Hex) applied to the free magnetic layer 23 was 18.0 mT. In Example 3, the exchange coupling magnetic field (Hex) applied to the free magnetic layer 23 was set to 22.0 mT by setting the thickness of the first ferromagnetic layer 23a to 3.0 nm.
 図7ないし図9の実測結果から、温度変化による抵抗変化率(ΔR/R)の変動特性と、温度変化による交換結合磁界(Hex)の変動特性とを合わせ込むことにより、磁気スイッチ1に及ぶ被測定磁界が、0(mT)から所定の基準値Kまで上昇する範囲内において、25℃、85℃、150℃のそれぞれの温度で得た中点電圧差(検知出力Vs)の変化の差をきわめて小さくできることが解る。 From the actual measurement results of FIG. 7 to FIG. 9, the fluctuation characteristics of the resistance change rate (ΔR / R) due to temperature change and the fluctuation characteristics of the exchange coupling magnetic field (Hex) due to temperature change are combined to reach the magnetic switch 1. Difference in change in midpoint voltage difference (detection output Vs) obtained at each temperature of 25 ° C., 85 ° C., and 150 ° C. within a range in which the measured magnetic field rises from 0 (mT) to a predetermined reference value K It can be seen that can be made extremely small.
 図7ないし図9では、被測定磁界の基準値Kが縦向きの破線の位置として示されている。図7の実施例1では、基準値Kが16mT付近であり、図8に示す実施例2は基準値Kが24mT付近であり、図9に示す実施例3は、基準値Kが27mT付近である。 7 to 9, the reference value K of the magnetic field to be measured is shown as the position of the vertical broken line. In Example 1 of FIG. 7, the reference value K is around 16 mT, in Example 2 shown in FIG. 8, the reference value K is around 24 mT, and in Example 3 shown in FIG. 9, the reference value K is around 27 mT. is there.
 図7ないし図9に示すように、被測定磁界がある大きさに至ると、25℃の検知出力の変化線と、85℃の検知出力の変化線と、150℃の検知出力の変化線とが一致する交差点が現れる。各図では、この交差点が得られる被測定磁界を基準値Kとしている。この基準値Kとなる被測定磁界が作用したときには、環境温度がほぼ150℃以下であれば、検知出力Vsがほぼ一致する。ただし、被測定磁界が基準値Kを超えると、温度変化による検知出力のばらつきが拡大していく。 As shown in FIGS. 7 to 9, when the magnetic field to be measured reaches a certain magnitude, a detection output change line at 25 ° C., a detection output change line at 85 ° C., and a change output line at 150 ° C. An intersection that matches will appear. In each figure, the measured magnetic field from which this intersection is obtained is used as a reference value K. When the magnetic field to be measured having the reference value K is applied, the detection outputs Vs substantially coincide with each other if the environmental temperature is approximately 150 ° C. or less. However, when the magnetic field to be measured exceeds the reference value K, the variation in the detection output due to temperature change increases.
 また、被測定磁界が基準値K以下の範囲内では、温度変化による検知出力のばらつきがきわめて小さい。図7の実施例1では、被測定磁界が基準値K以下の範囲内で、温度変化による検知出力のばらつきがほとんどなく、図9の実施例3でも、被測定磁界が基準値K以下となる範囲内で、温度変化による検知出力のばらつきがきわめて少なく10%未満あるいは5%未満である。ただし、ここでの10%または5%未満とは、被測定磁界が0~30mT程度のときの素子間のばらつきを計算の対象としない値である。 Also, when the measured magnetic field is within the reference value K or less, the variation in the detection output due to the temperature change is extremely small. In Example 1 in FIG. 7, there is almost no variation in detection output due to temperature change within a range where the measured magnetic field is less than or equal to the reference value K. In Example 3 in FIG. 9, the measured magnetic field is less than or equal to the reference value K. Within the range, the variation in detection output due to temperature change is very small, less than 10% or less than 5%. However, the term “less than 10%” or “less than 5%” here is a value that does not take into account variations between elements when the measured magnetic field is about 0 to 30 mT.
 図7と図8ならびに図9を比較から、交換結合磁界(Hex)が大きくなると、0(mT)から基準値Kまでの磁界強度の範囲が広がることが解る。ただし、図9から解るように交換結合磁界(Hex)が大きくなると、被測定磁界が基準値K以下の領域で、温度変化による検知出力のばらつきがやや大きくなり、前述のように、10%未満あるいは5%未満のばらつきが残る。これは、交換結合磁界(Hex)を大きくすると、図4(B)に示す交換結合磁界(Hex)の二次関数的な変化特性がやや支配的になるからであると予測できる。 From comparison of FIG. 7, FIG. 8, and FIG. 9, it can be seen that when the exchange coupling magnetic field (Hex) increases, the range of the magnetic field strength from 0 (mT) to the reference value K increases. However, as can be seen from FIG. 9, when the exchange coupling magnetic field (Hex) increases, the variation in the detection output due to the temperature change slightly increases in the region where the measured magnetic field is equal to or less than the reference value K, and is less than 10% as described above. Alternatively, a variation of less than 5% remains. It can be predicted that when the exchange coupling magnetic field (Hex) is increased, the quadratic change characteristic of the exchange coupling magnetic field (Hex) shown in FIG.
 そこで、図1に示すしきい値設定部8で設定されるしきい値電圧Vrを、図7ないし図9に示す基準値K以下の被測定磁界に対応する検知電圧のいずれかの値に設定することで、温度変化によるばらつきがきわめて少ないスイッチ出力を得ることができる。好ましくは、しきい値電圧Vrを、図7ないし図9に示す基準値Kに一致させておくと、温度変化によるばらつきがほとんどないスイッチ出力を得ることができる。すなわち、温度が変化しても、磁気スイッチ1に作用する被測定磁界が同じ大きさになったときに、スイッチ出力が切り換わるようになる。 Therefore, the threshold voltage Vr set by the threshold setting unit 8 shown in FIG. 1 is set to one of the detection voltages corresponding to the measured magnetic field equal to or less than the reference value K shown in FIGS. By doing so, it is possible to obtain a switch output with very little variation due to temperature change. Preferably, when the threshold voltage Vr is made to coincide with the reference value K shown in FIGS. 7 to 9, a switch output with little variation due to temperature change can be obtained. That is, even if the temperature changes, the switch output is switched when the measured magnetic field acting on the magnetic switch 1 has the same magnitude.
 また、図5に示すスイッチング装置30では、磁石31が所定の操作位置に至ったときに、磁気スイッチ1にしきい値電圧Vrに相当する被測定磁界が作用するように、磁石31と磁気スイッチ1との距離が設定される。 Further, in the switching device 30 shown in FIG. 5, the magnet 31 and the magnetic switch 1 are arranged so that the measured magnetic field corresponding to the threshold voltage Vr acts on the magnetic switch 1 when the magnet 31 reaches a predetermined operation position. And the distance is set.
 図6に示す電流検知装置35では、電流路36に、それ以上流れるべきではない電流Iが流れたときに、磁気スイッチ1にしきい値電圧Vrに相当する被測定磁界が作用するように、電流路36と磁気スイッチ1との距離が設定される。このように設定すると、使用環境の温度変化があったとしても、電流路36に常に一定の限界電流が流れたときに、スイッチ出力が得られ、図1に示す処理回路9によって、電流路36への通電を遮断するなどの処理ができるようになる。 In the current detection device 35 shown in FIG. 6, when a current I that should not flow any more flows in the current path 36, the current to be measured acts on the magnetic switch 1 corresponding to the threshold voltage Vr. The distance between the path 36 and the magnetic switch 1 is set. With this setting, even if there is a temperature change in the usage environment, a switch output is obtained when a constant limit current always flows through the current path 36. The processing circuit 9 shown in FIG. It is possible to perform processing such as shutting off the power to the unit.
1 磁気スイッチ
2 ブリッジ回路
6 差動増幅器
7 比較部
8 しきい値設定部
9 処理回路
10a 第1の磁気抵抗効果素子
10b 第2の磁気抵抗効果素子
12 素子部
21 固定磁性層
22 非磁性材料層
23 フリー磁性層
24 反強磁性層
30 スイッチング装置
31 磁石
35 電流検知装置
36 電流路
F 磁化方向
P 固定磁化方向
DESCRIPTION OF SYMBOLS 1 Magnetic switch 2 Bridge circuit 6 Differential amplifier 7 Comparison part 8 Threshold setting part 9 Processing circuit 10a 1st magnetoresistive effect element 10b 2nd magnetoresistive effect element 12 Element part 21 Fixed magnetic layer 22 Nonmagnetic material layer 23 Free magnetic layer 24 Antiferromagnetic layer 30 Switching device 31 Magnet 35 Current detection device 36 Current path F Magnetization direction P Fixed magnetization direction

Claims (6)

  1.  被測定磁界の強度に応じて抵抗値が変化する磁気抵抗効果素子と、前記抵抗値の変化に基づく検知出力としきい値とを比較してスイッチ出力を生成する比較部と、が設けられた磁気スイッチにおいて、
     前記磁気抵抗効果素子は、固定磁性層と非磁性材料層とフリー磁性層とを有し、前記フリー磁性層に反強磁性層が重ねられて、前記反強磁性層からフリー磁性層へ作用する交換結合磁界によって、フリー磁性層の磁化の向きが前記固定磁性層の固定磁化の向きと交差するように設定されており、
     前記磁気抵抗効果素子は、前記被測定磁界が所定の基準値まで上昇する範囲内で、温度変化による前記検知出力の変動が所定の比率以下となるように、温度変化に対する抵抗変化率の変動特性と、温度変化に対する交換結合磁界の変動特性とが設定されており、
     前記しきい値が、前記基準値以下に設定されていることを特徴とする磁気スイッチ。
    A magnetoresistive element having a resistance value that changes according to the strength of the magnetic field to be measured, and a comparator that compares the detection output based on the change in the resistance value with a threshold value to generate a switch output. In the switch
    The magnetoresistive effect element has a pinned magnetic layer, a nonmagnetic material layer, and a free magnetic layer, and an antiferromagnetic layer is superimposed on the free magnetic layer and acts from the antiferromagnetic layer to the free magnetic layer. By the exchange coupling magnetic field, the magnetization direction of the free magnetic layer is set to intersect the direction of the fixed magnetization of the fixed magnetic layer,
    The magnetoresistive effect element has a variation characteristic of a rate of change in resistance with respect to a change in temperature so that a change in the detection output due to a change in temperature is not more than a predetermined ratio within a range in which the measured magnetic field rises to a predetermined reference value. And the fluctuation characteristics of the exchange coupling magnetic field with respect to temperature change are set.
    The magnetic switch, wherein the threshold value is set to be equal to or less than the reference value.
  2.  被測定磁界の強度に対する検知出力の変化を示す変化線を、異なる環境温度毎に複数得たときに、複数の前記変化線が交差しその後に検知出力の差が拡大するように、前記2つの変動特性が設定されており、前記変化線の交差点が前記基準値に設定される請求項1記載の磁気スイッチ。 When the plurality of change lines indicating the change in the detection output with respect to the strength of the magnetic field to be measured are obtained for each of different environmental temperatures, the two change lines intersect so that the difference in the detection output is increased thereafter. The magnetic switch according to claim 1, wherein a fluctuation characteristic is set, and an intersection of the change lines is set to the reference value.
  3.  前記しきい値を前記基準値に一致させる請求項1または2記載の磁気スイッチ。 The magnetic switch according to claim 1 or 2, wherein the threshold value is matched with the reference value.
  4.  被測定磁界の発生源と前記磁気抵抗効果素子との距離を、前記しきい値に合わせて設定する請求項1または2記載の磁気スイッチ。 3. A magnetic switch according to claim 1, wherein a distance between a generation source of the magnetic field to be measured and the magnetoresistive element is set in accordance with the threshold value.
  5.  被測定磁界の発生源が、前記磁気抵抗効果素子に対向して移動する磁石である請求項1ないし4のいずれかに記載の磁気スイッチ。 5. The magnetic switch according to claim 1, wherein a source of the magnetic field to be measured is a magnet that moves to face the magnetoresistive element.
  6.  被測定磁界の発生源が前記磁気抵抗効果素子に対向する電流路であり、前記電流路に流れる電流量に応じて前記被測定磁界が変化する請求項1ないし4のいずれかに記載の磁気スイッチ。 5. The magnetic switch according to claim 1, wherein a source of the magnetic field to be measured is a current path facing the magnetoresistive element, and the magnetic field to be measured changes according to an amount of current flowing through the current path. .
PCT/JP2015/070783 2014-07-31 2015-07-22 Magnetic switch WO2016017490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156278 2014-07-31
JP2014156278 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017490A1 true WO2016017490A1 (en) 2016-02-04

Family

ID=55217391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070783 WO2016017490A1 (en) 2014-07-31 2015-07-22 Magnetic switch

Country Status (1)

Country Link
WO (1) WO2016017490A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044789A (en) * 2016-09-12 2018-03-22 日立金属株式会社 Magnetic field detector
JP2019082445A (en) * 2017-10-31 2019-05-30 Tdk株式会社 Magnetic sensor and position detector
US10627255B2 (en) 2017-03-24 2020-04-21 Tdk Corporation Position detection device
CN111615636A (en) * 2018-01-17 2020-09-01 阿尔卑斯阿尔派株式会社 Magnetic detection device and method for manufacturing the same
JP2021117755A (en) * 2020-01-27 2021-08-10 日本放送協会 Content distribution device, terminal, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060256A (en) * 2001-08-13 2003-02-28 Alps Electric Co Ltd Magnetic switch and magnetic sensor
JP2007220367A (en) * 2006-02-14 2007-08-30 Alps Electric Co Ltd Magnetic switch
JP2012185044A (en) * 2011-03-07 2012-09-27 Alps Electric Co Ltd Magnetic sensor and manufacturing method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060256A (en) * 2001-08-13 2003-02-28 Alps Electric Co Ltd Magnetic switch and magnetic sensor
JP2007220367A (en) * 2006-02-14 2007-08-30 Alps Electric Co Ltd Magnetic switch
JP2012185044A (en) * 2011-03-07 2012-09-27 Alps Electric Co Ltd Magnetic sensor and manufacturing method for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044789A (en) * 2016-09-12 2018-03-22 日立金属株式会社 Magnetic field detector
US10627255B2 (en) 2017-03-24 2020-04-21 Tdk Corporation Position detection device
JP2019082445A (en) * 2017-10-31 2019-05-30 Tdk株式会社 Magnetic sensor and position detector
US10712178B2 (en) 2017-10-31 2020-07-14 Tdk Corporation Position detection device for detecting position of an object moving in a predetermined direction, and a magnetic sensor for use with the position detection device
US11204263B2 (en) 2017-10-31 2021-12-21 Tdk Corporation Position detection device for detecting position of an object moving in a predetermined direction, and a magnetic sensor for use with the position detection device
CN111615636A (en) * 2018-01-17 2020-09-01 阿尔卑斯阿尔派株式会社 Magnetic detection device and method for manufacturing the same
CN111615636B (en) * 2018-01-17 2022-07-08 阿尔卑斯阿尔派株式会社 Magnetic detection device and method for manufacturing the same
JP2021117755A (en) * 2020-01-27 2021-08-10 日本放送協会 Content distribution device, terminal, and program

Similar Documents

Publication Publication Date Title
US7394240B2 (en) Current sensor
US8487612B2 (en) Current sensor
US8593134B2 (en) Current sensor
JP6233863B2 (en) Magnetic sensor, magnetic sensor manufacturing method, and current sensor
WO2016017490A1 (en) Magnetic switch
JP5888402B2 (en) Magnetic sensor element
JP6842741B2 (en) Magnetic sensor
WO2012090631A1 (en) Electromagnetic proportional current sensor
JP2017072375A (en) Magnetic sensor
JP5540299B2 (en) Current sensor
WO2018029883A1 (en) Exchange-coupling film, and magneto-resistive element and magnetic detection device using same
JP2020067365A (en) Magnetic sensor
WO2015190155A1 (en) Current sensor
JP6697144B2 (en) Magnetic sensor
JP2012119613A (en) Magnetic detection element and magnetic sensor using the same
JP6776120B2 (en) Magnetic detector, manufacturing method of magnetic detector, and current detector using magnetic detector
JP2013036862A (en) Magnetic detector and manufacturing method therefor
JP6525314B2 (en) Magnetic field detector
JP5540326B2 (en) Current sensor
JP5869405B2 (en) Magnetic detection element and magnetic sensor using the same
WO2014119345A1 (en) Giant magnetoresistive element and current sensor using same
WO2018037634A1 (en) Magnetic sensor and current sensor
WO2011111457A1 (en) Magnetism sensor and magnetic-balance current sensor provided therewith
WO2015125699A1 (en) Magnetic sensor
WO2015029514A1 (en) Magnetic field detector including magnetoresistance effect element, and current detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP