JPH1026639A - Current sensor and electric device housing current sensor - Google Patents

Current sensor and electric device housing current sensor

Info

Publication number
JPH1026639A
JPH1026639A JP8181868A JP18186896A JPH1026639A JP H1026639 A JPH1026639 A JP H1026639A JP 8181868 A JP8181868 A JP 8181868A JP 18186896 A JP18186896 A JP 18186896A JP H1026639 A JPH1026639 A JP H1026639A
Authority
JP
Japan
Prior art keywords
current
magnetic
bar
magnetoresistive element
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8181868A
Other languages
Japanese (ja)
Inventor
正 ▲高▼橋
Tadashi Takahashi
Toshihiko Matsuda
敏彦 松田
Yasuo Morooka
泰男 諸岡
Masahiko Watanabe
正彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8181868A priority Critical patent/JPH1026639A/en
Publication of JPH1026639A publication Critical patent/JPH1026639A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Abstract

PROBLEM TO BE SOLVED: To obtain the current sensor, which is compact and can detect all of AC, DC and pulsating current, by providing magnetic circuits in close proximity with a current bar, and arranging a magnetoresistance effect element at the gaps provided in the magnetic circuits. SOLUTION: A magnetism sensing part 1 is constituted of an insulating substrate, a magnetoresistance effect element and a bias conductor. In a detecting unit, magnetic circuits 81 and 82 and magnetic gaps 83 and 85 are added to the arrangement of the magnetism sensing part 1, an insulating spacer 6 and a current bar 2. These parts are fixed with insulating resin 6-1. The magnetic field generated in the current bar 2 flows in the magnetic circuits in inverse proportion to the dimensions of the magnetic gaps 83 and 85. Therefore, even if the structure of the magnetism sensing part 1 is same, the magnitude of the current to be detected can be dealt by adequately selecting the size of the gap. When the detecting unit having the magnetic circuits is used in this way, the currents from the minute current to the large current can be detected only by changing the magnetic circuits for dividing the magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電流センサ及びこれ
を内蔵した電気機器に係わり、特に、電気機器を小型に
できる磁気抵抗効果素子を用いた電流センサ及びこれを
用いた電気機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current sensor and an electric device incorporating the same, and more particularly, to a current sensor using a magnetoresistive element capable of reducing the size of the electric device and an electric device using the same.

【0002】[0002]

【従来の技術】近年FFB(ヒューズ フリー ブレー
カ)の電子化に伴いFFBを流れる電流を検出するため
にFFB内蔵の電流センサが必要になってきた。従来、
FFB内蔵電流センサとしては、電流トランスを用いた
CT方式が主であった。電流トランスは鉄心と2つのコ
イルで構成されており、トランスの一次コイルに電流を
流して二次コイルから電流比例した電圧を取り出してい
た。この値によりFFBの遮断等を制御していた。
2. Description of the Related Art In recent years, with the digitization of FFB (fuse-free breaker), a current sensor with a built-in FFB has been required to detect a current flowing through the FFB. Conventionally,
As a current sensor with a built-in FFB, a CT method using a current transformer has been mainly used. The current transformer has an iron core and two coils, and a current is applied to the primary coil of the transformer to extract a voltage proportional to the current from the secondary coil. The cutoff of FFB and the like are controlled by this value.

【0003】また、モータなどの電力応用機器の電流セ
ンサとしてCT方式が用いられているか、装置の小型
化,高性能化の観点から限界があった。
[0003] Further, the CT method is used as a current sensor for power application equipment such as a motor, or there is a limit from the viewpoint of miniaturization and high performance of the apparatus.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では
(1)トランスの一次コイルに全電流を流すため、トラ
ンスを小型化するのは難しかった。(2)トランスを使
用するため、交流しか検出できなかった。
In the above prior art, it is difficult to reduce the size of the transformer because (1) the entire current flows through the primary coil of the transformer. (2) Since a transformer was used, only alternating current could be detected.

【0005】本発明の目的は、FFBやモータなど電気
機器に内蔵できる小型で、交流及び直流,脈流電流を全
て検出できる電流センサ及びこれを内蔵した電気機器を
提供することにある。
An object of the present invention is to provide a small-sized current sensor which can be incorporated in an electric device such as an FFB or a motor and which can detect all of AC, DC and pulsating currents, and an electric device incorporating the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するに
は、電流センサとして小型化が可能で、交流及び直流,
脈流電流を全て検出できる磁気抵抗効果素子を用いるこ
とが好適である。
In order to achieve the above object, it is possible to reduce the size of the current sensor, and to use AC, DC,
It is preferable to use a magnetoresistance effect element capable of detecting all pulsating currents.

【0007】ただし、電気機器に内蔵可能な磁気抵抗効
果素子を用いた電流センサを実現するには、さらに次の
ような課題を解決する必要がある。(1)磁気抵抗効果
素子を磁気飽和させず、検出電流範囲で安定に動作可能
なこと、(2)外部あるいは検出対象以外の電流路から
の磁気ノイズの影響を受けないこと、等である。
However, in order to realize a current sensor using a magnetoresistive element that can be built in an electric device, it is necessary to further solve the following problems. (1) The device can operate stably in the detection current range without magnetically saturating the magnetoresistive effect element, and (2) It is not affected by magnetic noise from outside or a current path other than the detection target.

【0008】このような課題は、電流バーに絶縁体を介
して磁気抵抗効果素子を対向配置し、電流バーに流れる
電流が作る磁界による磁気抵抗効果素子の抵抗変化から
電流バーに流れる電流を検出する電流センサにおいて、
電流バーに近接して磁気回路を設け、磁気回路に設けた
ギャップ部に磁気抵抗効果素子を配置することによって
達成される。
Such a problem is caused by arranging a magnetoresistive element opposite to a current bar via an insulator, and detecting a current flowing through the current bar from a change in resistance of the magnetoresistive element caused by a magnetic field generated by the current flowing through the current bar. Current sensor
This is achieved by providing a magnetic circuit near the current bar and arranging a magnetoresistive element in a gap provided in the magnetic circuit.

【0009】さらに、上記電流センサにおいて、磁気抵
抗効果素子と電流バーの間に磁気抵抗効果素子にバイア
ス磁界を印加するバイアス導体を設け、バイアス導体を
流れる電流が磁気抵抗効果素子の位置に作る磁界と電流
バーを流れる電流が磁気抵抗効果素子の位置に作る磁界
の和が一定になるように制御し、その制御量より電流バ
ーを流れる電流を検出することによって達成される。
In the above current sensor, a bias conductor for applying a bias magnetic field to the magnetoresistive element is provided between the magnetoresistive element and the current bar, and a current flowing through the bias conductor is generated at a position of the magnetoresistive element. And the current flowing through the current bar is controlled so that the sum of the magnetic fields generated at the position of the magnetoresistive element becomes constant, and the current flowing through the current bar is detected from the control amount.

【0010】さらに、上記電流センサにおいて、磁気抵
抗効果素子の近くに磁性体を配置して磁気シールドを行
うことによって達成される。
Further, in the above-mentioned current sensor, it is achieved by arranging a magnetic body near the magnetoresistive effect element and performing magnetic shielding.

【0011】[0011]

【発明の実施の形態】次に、本発明の一実施例を図1〜
図4により説明する。図1は本発明の一実施例を示す電
流センサにおける検出部1−1の断面図である。電流セ
ンサは電流が作る磁界を検出する磁気抵抗効果素子を備
えた検出部及び検出部の電気抵抗変化から電流に対応し
た信号を出力する電流センサ回路から成る。図2は図1
を上からみた平面図である。図1,図2のは電流セン
サの感磁部である。この感磁部は絶縁基板13と磁気
抵抗効果素子11,バイアス導体12から構成される。
14,15は絶縁部である。また、図2の11−1,1
1−2の磁気抵抗効果素子11の端子部であり、12−
1,12−2はバイアス導体12の端子部である。図2
の磁気抵抗効果素子11は図1に示すようにバイアス導
体12の絶縁基板13側に形成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 1 is a sectional view of a detection unit 1-1 in a current sensor according to one embodiment of the present invention. The current sensor includes a detection unit including a magnetoresistive element for detecting a magnetic field generated by the current, and a current sensor circuit that outputs a signal corresponding to the current from a change in electric resistance of the detection unit. FIG. 2 shows FIG.
FIG. 3 is a plan view of the device viewed from above. 1, 1 in FIG. 2 is a magnetic sensing part of the current sensor. The magnetic sensing part 1 includes an insulating substrate 13, a magnetoresistive element 11, and a bias conductor 12.
Reference numerals 14 and 15 are insulating portions. Also, 11-1 and 1 in FIG.
1-2 is a terminal portion of the magnetoresistive effect element 11;
1, 12-2 are terminal portions of the bias conductor 12. FIG.
The magnetoresistive effect element 11 is formed on the insulating substrate 13 side of the bias conductor 12 as shown in FIG.

【0012】感磁部は次のように形成される。まず、
ガラス等の平らな絶縁基板上13にNi−Fe等の強磁
性体を蒸着した後、エッチング等により図2のような細
長い短冊状に形成し、磁気抵抗効果素子11とする。次
にこの上に酸化シリコン等よりなる絶縁層14をスパッ
タリングなどにより設け、その上にアルミ等の導体を蒸
着、この蒸着膜をエッチング等によりパターニングし、
バイアス導体12を形成する。更にその上に酸化シリコ
ンなどの絶縁物をスパッタリングなどによりコーテング
する。電流センサはこの感磁部に絶縁スペーサ6を介
して電流バー(電流導体)2を配置した検出部1−1
構成する。
The magnetic sensing part 1 is formed as follows. First,
After evaporating a ferromagnetic material such as Ni—Fe on a flat insulating substrate 13 such as glass, it is formed into an elongated strip shape as shown in FIG. Next, an insulating layer 14 made of silicon oxide or the like is provided thereon by sputtering or the like, a conductor such as aluminum is deposited thereon, and the deposited film is patterned by etching or the like,
The bias conductor 12 is formed. Further, an insulator such as silicon oxide is coated thereon by sputtering or the like. The current sensor constitutes a detecting unit 1-1 in which a current bar (current conductor) 2 is arranged on the magnetic sensing unit 1 via an insulating spacer 6.

【0013】図3は電流センサ回路の構成図である。感
磁部の各端子に図示のように回路素子を接続する。磁
気抵抗効果素子11を定電流源31に接続し、定電流源
31の正極側の接続点から抵抗51を介してアンプ41
の正入力端子に接続する。更にアンプ41の正入力端子
を抵抗52を介して定電圧源35に接続する。アンプ4
1の出力をバイアス導体12及びアンプ42の正入力に
接続し、アンプ42の負入力を定電圧源35に接続して
アンプ42の出力を出力端子5に接続する。電流バー2
の端子21,22を電流を検出する対象、例えばFFB
の電流路に接続する。
FIG. 3 is a configuration diagram of the current sensor circuit. A circuit element is connected to each terminal of the magnetic sensing unit 1 as illustrated. The magneto-resistance effect element 11 is connected to a constant current source 31, and an amplifier 41 is connected via a resistor 51 from a connection point on the positive side of the constant current source 31.
Connect to the positive input terminal of Further, the positive input terminal of the amplifier 41 is connected to the constant voltage source 35 via the resistor 52. Amplifier 4
1 is connected to the bias conductor 12 and the positive input of the amplifier 42, the negative input of the amplifier 42 is connected to the constant voltage source 35, and the output of the amplifier 42 is connected to the output terminal 5. Current bar 2
Terminals 21 and 22 of which current is to be detected, for example, FFB
Connected to the current path.

【0014】図4は磁気抵抗効果素子の抵抗値の磁界B
に対する変化を示す磁気特性図である。強磁性体から成
る磁気抵抗効果素子11は長手方向に対して直角方向に
磁界Bを加えると図4に示すように電気抵抗が減少する
特性を持っている。この特性はB=0の軸に対して対称
であり、抵抗値は磁界の大きさに依存し、符号には依ら
ない。しかしながら、磁気抵抗効果素子11に図示のよ
うにバイアス磁界B0pを加えて動作点をB=0からB=
0pに移動すれば正負に磁界を検出でき、その結果電流
の正負も検出できる。電流バー2を流れる電流が零の
時、磁気抵抗効果素子11に作用するバイアス磁界がB
0になるように定電圧源35によってアンプ41の出力
にバイアスを与えてバイアス導体12の電流を与え、磁
界を発生させる。図3の回路構成で電流バー2に正の電
流が流れると電流に比例した正の磁界B1が磁気抵抗効
果素子11に加えられ、磁気抵抗効果素子11の抵抗が
減少する。この結果磁気抵抗効果素子11の端子電圧が
減少するので、出力端子5の出力値も減少し、バイアス
導体12を流れる電流は減少する。そこで、磁気抵抗効
果素子11に印加されるバイアス磁界がB2に減少する
ようになり、磁界B1とB2の合計が磁界B0pとなっ
て、磁気抵抗効果素子11の動作点は元のバイアス磁界
0pに落ちつく。アンプ42によってアンプ41の出力
から定電圧35によるバイアス電圧が差し引かれ、出力
端子5は定電圧35のバイアス電圧を除いて出力する。
また、電流バー2に負の電流が流れた場合は先ほどとは
逆に磁気抵抗効果素子11に印加される磁界が減少し、
抵抗が増加する。この結果磁気抵抗効果素子11の端子
電圧が増加するので、出力端子5の出力値も増加し、バ
イアス導体12を流れる電流は増加する。そこで、磁気
抵抗効果素子11に印加されるバイアス磁界が増加する
ようになり、結果的には磁気抵抗効果素子11の動作点
は元のバイアス磁界B0pに落ちつく。
FIG. 4 shows the magnetic field B of the resistance value of the magnetoresistive element.
FIG. 4 is a magnetic characteristic diagram showing a change with respect to FIG. The magnetoresistance effect element 11 made of a ferromagnetic material has a characteristic that when a magnetic field B is applied in a direction perpendicular to the longitudinal direction, the electric resistance decreases as shown in FIG. This characteristic is symmetric with respect to the axis of B = 0, and the resistance value depends on the magnitude of the magnetic field and does not depend on the sign. However, by applying a bias magnetic field B 0p to the magnetoresistive element 11 as shown in FIG.
Negative to find the magnetic field if moved to the B 0p, can be detected positive and negative resulting current. When the current flowing through the current bar 2 is zero, the bias magnetic field acting on the magnetoresistive element 11 is B
A bias is applied to the output of the amplifier 41 by the constant voltage source 35 so as to be 0, and a current is applied to the bias conductor 12 to generate a magnetic field. When a positive current flows through the current bar 2 in the circuit configuration of FIG. 3, a positive magnetic field B1 proportional to the current is applied to the magnetoresistive element 11, and the resistance of the magnetoresistive element 11 decreases. As a result, the terminal voltage of the magnetoresistive element 11 decreases, so that the output value of the output terminal 5 also decreases, and the current flowing through the bias conductor 12 decreases. Therefore, the bias magnetic field applied to the magnetoresistive element 11 decreases to B2, and the total of the magnetic fields B1 and B2 becomes the magnetic field B0p, and the operating point of the magnetoresistive element 11 is changed to the original bias magnetic field B0. Settle to 0p . The bias voltage by the constant voltage 35 is subtracted from the output of the amplifier 41 by the amplifier 42, and the output terminal 5 outputs the constant voltage 35 except for the bias voltage.
Also, when a negative current flows through the current bar 2, the magnetic field applied to the magnetoresistive element 11 decreases, contrary to the previous case,
Resistance increases. As a result, the terminal voltage of the magnetoresistive element 11 increases, so that the output value of the output terminal 5 also increases, and the current flowing through the bias conductor 12 increases. Therefore, now the bias magnetic field applied to the magnetoresistive element 11 is increased, consequently the operating point of the magnetoresistive element 11 is settled at the original bias magnetic field B 0p.

【0015】このように電流バー2を流れる電流に依存
せず磁気抵抗効果素子11の動作点がほぼ同じ磁界に保
たれるので、磁気抵抗効果素子は磁気飽和せず、検出範
囲で検出感度を一定に保つことができ、安定に動作させ
ることができる。そして、磁気抵抗効果素子11の磁気
特性のばらつきを押さえることができる。磁気抵抗効果
素子にバイアスを加えてそれを制御することで高い測定
感度を広い電流範囲で確保できる。また、センサにダイ
ナミックレンジを広くできる。さらに、本発明の電流セ
ンサで小型軽量であり、FFBの電流バーの上に簡単に
装着できる。
As described above, since the operating point of the magnetoresistive element 11 is maintained at substantially the same magnetic field irrespective of the current flowing through the current bar 2, the magnetoresistive element does not magnetically saturate, and the detection sensitivity is improved in the detection range. It can be kept constant and can be operated stably. In addition, it is possible to suppress variations in the magnetic characteristics of the magnetoresistive element 11. By applying a bias to the magnetoresistive element and controlling it, a high measurement sensitivity can be secured in a wide current range. Also, the dynamic range of the sensor can be widened. Furthermore, the current sensor of the present invention is small and lightweight, and can be easily mounted on the current bar of the FFB.

【0016】図5は電流センサを内蔵したFFBに関す
る実施例である。23はFFBの入力端子であり、入力
電流バー24を介してその先端に固定接点25を付けて
いる。27は可動電流バーであり、その先端に可動接点
26を固定接点25に対向して配置する。可動電流バー
27は支点100を中心に可動接点26側が移動し、可
動接点26と固定接点25が接触したり離れたりする。
可動電流バー27の一端と出力側の電流バー2の一端に
は柔軟な電線2−1を取り付けて可動電流バー27が動
き易いようにしてある。出力側の電流バー2の他端は出
力端子28として出力電線が接続できるようにしてあ
る。また、可動電流バー27は接点26と固定接点25
が接触すると第1のバネで押しつけ、第2のバネをチャ
ージする構造にしており、接点25,26の解放はトリ
ップコイル75を励磁することで、可動レバー73を下
に押し下げて第2のバネを解放して行う。再び接点を接
触させるにはレバー72を手で上方に上げることで行
う。1−2は図1,図3に示す電流検出ユニットであ
り、この電流検出ユニットで検出した電流値を元に制御
回路74で遮断するかどうかを判断し、もし遮断するな
らトリップコイルを励磁して可動接点26を固定接点2
5から引き離す。図5には1つの電流路しか示してない
が、単相交流や直流の場合は2組の電流路、3相交流の
場合は3つの電流路がそれぞれ設けられる。
FIG. 5 shows an embodiment relating to an FFB incorporating a current sensor. Reference numeral 23 denotes an input terminal of the FFB, to which a fixed contact 25 is attached at its tip via an input current bar 24. Reference numeral 27 denotes a movable current bar, at the tip of which a movable contact 26 is arranged facing the fixed contact 25. The movable current bar 27 moves on the movable contact 26 side around the fulcrum 100, and the movable contact 26 and the fixed contact 25 come into contact with or separate from each other.
A flexible electric wire 2-1 is attached to one end of the movable current bar 27 and one end of the current bar 2 on the output side so that the movable current bar 27 can be easily moved. The other end of the current bar 2 on the output side is connected to an output wire as an output terminal 28. In addition, the movable current bar 27 has a contact 26 and a fixed contact 25.
When the contact comes in contact with the first spring, the second spring is charged, and the contacts 25 and 26 are released by energizing the trip coil 75 to push down the movable lever 73 to thereby lower the second spring. Release and do. The contact can be brought into contact again by raising the lever 72 by hand. 1-2 is a current detecting unit shown in FIGS. 1 and 3, which determines whether or not to interrupt the control circuit 74 based on the current value detected by the current detecting unit. Movable contact 26 to fixed contact 2
Pull away from 5. Although only one current path is shown in FIG. 5, two sets of current paths are provided for single-phase AC or DC, and three current paths are provided for three-phase AC.

【0017】FFBには単相で2本の電流バーが、3相
では3本の電流バーがそれぞれ設けられる。このため、
検出対象とする電流バー以外からの磁界が問題となり、
その対策としてそれらの磁界を遮蔽する磁気シールド構
造が必要である。図6はこのようなシールド構造に関す
る実施例を示す。感磁部,絶縁スペーサ6,電流バー
2の配置は図1と同じでこれらが検出部1−1を構成し
ている。この検出部1−1の周囲に所定の間隔を設けて
円形状の磁性体9を配置する。この様な構成により、検
出対象である電流バー2以外からの外部磁界を磁性体9
で遮蔽し、感磁部に対する外部磁界の影響を阻止でき
る。検出部1−1と円形状の磁性体9の間に絶縁物6−
1を充填して検出部1−1を固定する。検出部1−1
円形状の磁性体9の間隔は狭い方が装置を小型にできる
が、狭すぎると磁性体9が電流バー2の磁界を短絡し、
感磁部に磁界が到達しなくなるので適当な大きさに間
隔を設定する必要がある。図6に示すような構造体を検
出ユニット1−2と呼ぶ。図7は検出ユニットの他の実
施例である。磁気シールドを磁性体91,92と2つの
部分に分割し組み立てやすくしたものである。図6,図
7の磁気シールド構造によると、FFB内の複数の電流
バーの電流をお互いの干渉なく正確に検出できる。
The FFB is provided with two current bars in a single phase and three current bars in a three phase. For this reason,
The magnetic field from other than the current bar to be detected becomes a problem,
As a countermeasure, a magnetic shield structure for shielding those magnetic fields is required. FIG. 6 shows an embodiment relating to such a shield structure. The arrangement of the magnetic sensing unit 1 , the insulating spacer 6, and the current bar 2 is the same as that of FIG. 1, and these constitute the detecting unit 1-1 . A circular magnetic body 9 is arranged around the detection unit 1-1 at a predetermined interval. With such a configuration, an external magnetic field other than the current bar 2 to be detected is applied to the magnetic body 9.
To prevent the influence of an external magnetic field on the magnetic sensing unit 1 . An insulator 6 is provided between the detection unit 1-1 and the circular magnetic body 9.
1 to fix the detection unit 1-1 . If the distance between the detecting unit 1-1 and the circular magnetic body 9 is small, the device can be made smaller. However, if it is too narrow, the magnetic body 9 short-circuits the magnetic field of the current bar 2,
Since the magnetic field does not reach the magnetic sensing part 1 , it is necessary to set the interval to an appropriate size. The structure as shown in FIG. 6 is referred to as a detection unit 1-2 . FIG. 7 shows another embodiment of the detection unit. The magnetic shield is divided into magnetic members 91 and 92 and two parts to facilitate assembly. According to the magnetic shield structure of FIGS. 6 and 7, the currents of the plurality of current bars in the FFB can be accurately detected without mutual interference.

【0018】図8は本発明の磁気回路の第1の実施例で
ある。磁気抵抗効果素子11は微小磁界に対する感度が
高いので、電流バー2の電流が大きいとバイアス電流の
値も大きくなり、ついにダイナミックレンジをオーバー
してしまう。これに対し、図8は電流バー2からの磁界
を磁気回路で振り分けて感磁部の磁界を分流させるこ
とで、大電流にも使用できるようにした検出ユニットの
構成を示す。検出部1−1における感磁部,絶縁スペ
ーサ6,電流バー2の配置は図1と同じである。本実施
例の検出ユニットは、検出部1−1に磁気回路81,8
2と磁気ギャップ83,85を追加したものである。こ
れらを絶縁性の樹脂6−1などにより固定し、検出ユニ
ット1−2を構成する。この様な構成にすると電流バー
2によって発生する磁界が磁気回路中を磁気ギャップ8
3,85の寸法に反比例して流れるので、感磁部の構
造が同じでも前記ギャップの寸法を適当に選ぶことで、
検出対象の電流の大きさに対応できる。ただし、図6に
於いて検出部1−1と円状の磁性体9の間隔を狭くする
ことで、上記と同じ効果を得ることもできる。本発明の
磁気回路を有する検出ユニットを用いると同じ感磁部の
構成で、磁界分流用磁気回路を変えるのみで微小電流か
ら大電流まで検出できる。
FIG. 8 shows a first embodiment of the magnetic circuit of the present invention. Since the magnetoresistive element 11 has high sensitivity to a minute magnetic field, if the current of the current bar 2 is large, the value of the bias current also becomes large, and the dynamic range is finally exceeded. In contrast, FIG. 8 by diverting a magnetic field sensitive portion 1 are distributed in the magnetic circuit a magnetic field from the current bar 2 shows the configuration of the detection unit to be able to be used for a large current. The arrangement of the magnetic sensing unit 1 , the insulating spacer 6, and the current bar 2 in the detecting unit 1-1 is the same as that in FIG. The detection unit according to the present embodiment includes a magnetic circuit 81, 8 in the detection unit 1-1.
2 and magnetic gaps 83 and 85 are added. These are fixed with an insulating resin 6-1 or the like to form a detection unit 1-2 . With this configuration, the magnetic field generated by the current bar 2 causes the magnetic gap 8 to flow through the magnetic circuit.
Since the flow is inversely proportional to the dimensions of 3,85, even if the structure of the magneto-sensitive part 1 is the same, by appropriately selecting the dimensions of the gap,
It can correspond to the magnitude of the current to be detected. However, the same effect as described above can be obtained by reducing the distance between the detection unit 1-1 and the circular magnetic body 9 in FIG. When the detection unit having the magnetic circuit of the present invention is used, it is possible to detect from a small current to a large current only by changing the magnetic circuit for shunting the magnetic field with the same configuration of the magnetic sensing unit.

【0019】図9は磁気回路を有する検出ユニットの他
の実施例である。図10は同じく磁気回路を有する検出
ユニットのさらに他の実施例である。図9と図10は外
部磁界及び検出対象以外の電流バー2による磁界の影響
を防止できる構成に関する実施例を示す。図9は図6の
構成に磁気回路81,82及び磁気ギャップ83,85
を追加したものであり、図10は図8の構成における感
磁部の近くのみを磁気シールドするための磁性体9を
追加した構成である。この様な構成により、図6と図8
で説明した2つの効果が同時に得られる。
FIG. 9 shows another embodiment of the detection unit having a magnetic circuit. FIG. 10 shows still another embodiment of the detection unit also having a magnetic circuit. 9 and 10 show an embodiment relating to a configuration capable of preventing the influence of the external magnetic field and the magnetic field due to the current bar 2 other than the detection target. FIG. 9 shows the configuration of FIG. 6 with the magnetic circuits 81 and 82 and the magnetic gaps 83 and 85.
FIG. 10 shows a configuration in which a magnetic body 9 for magnetically shielding only the vicinity of the magnetic sensing part 1 in the configuration of FIG. 8 is added. With such a configuration, FIGS.
The two effects described above can be obtained at the same time.

【0020】図11は磁界分流のための磁気回路を改良
した他の実施例である。電流バー2に近い方の磁気回路
のギャップ83を感磁部が配置される磁気回路のギャ
ップ85より狭くして電流バーの作る磁界が他に漏れに
くいようにした。本実施例では絶縁スペーサを6−1,
6−2と2つ使用して感磁部の位置合わせを容易にし
ている。動作は図10と同じである。
FIG. 11 shows another embodiment in which the magnetic circuit for shunting the magnetic field is improved. The gap 83 of the magnetic circuit closer to the current bar 2 is made narrower than the gap 85 of the magnetic circuit in which the magnetic sensing part 1 is arranged so that the magnetic field generated by the current bar is less likely to leak. In this embodiment, the insulating spacers are 6-1 and
6-2 are used to facilitate the alignment of the magnetic sensing part 1 . The operation is the same as in FIG.

【0021】図12は磁界分流を円筒磁気回路で実現し
た実施例である。電流バー2からの磁界は円筒磁気回路
81を介して円筒方向に導かれるが、エアギャップ83
よりエアギャップ85の方が広いので、エアギャップ8
3の磁界よりエアギャップ85の磁界の方が小さい。エ
アギャップ85に感磁部を配置しているので、電流バ
ー2の電流が大きなものでも対応できる。また、電流バ
ー2の外側に円筒磁気回路を電流バーに沿って連続して
配置し、各エアギャップ85の部分にスペーサ6と感磁
を設け、接着剤等で空間を充填した後所定の長さに
切断すれば大量生産しやすい。更に感磁部を円筒磁気
回路81の表面より若干内側に配置することにより、外
部磁気ノイズは磁気回路の表面に吸収されるので、感磁
をシールドできる。
FIG. 12 shows an embodiment in which the magnetic field shunt is realized by a cylindrical magnetic circuit. The magnetic field from the current bar 2 is guided in the cylindrical direction through the cylindrical magnetic circuit 81, but the air gap 83
Since the air gap 85 is wider than the air gap 85,
The magnetic field of the air gap 85 is smaller than the magnetic field of No. 3. Since the magnetic sensing part 1 is arranged in the air gap 85, even if the current of the current bar 2 is large, it can be handled. Further, a cylindrical magnetic circuit is continuously arranged outside the current bar 2 along the current bar, and the spacer 6 and the magnetic sensing portion 1 are provided in each air gap 85 portion. If cut to length, mass production is easy. Further, by arranging the magnetic sensing portion 1 slightly inside the surface of the cylindrical magnetic circuit 81, external magnetic noise is absorbed by the surface of the magnetic circuit, so that the magnetic sensing portion 1 can be shielded.

【0022】磁気抵抗効果素子11はNi−Feなどの
金属で形成され、高温まで使用できるが、温度により電
気抵抗値が変化する。次に温度特性の改良を提案する。
金属の抵抗値は温度に対して直線的に変化し、補償しや
すいが、今回のように小型が要求され、磁気抵抗効果素
子11の長さが1〜10mmで幅が5〜100ミクロンm
と非常に小さな場合、素子のすぐ近くの温度を測定して
補償する必要がある。図13〜図15は良好な温度補償
機能を有する電流センサの一実施例である。図13は検
出部1−1の断面図である。図14は図13を上からみ
た平面図である。図13,図14において、磁気抵抗効
果素子11の温度を正確に検出できるように、小間隔を
置いて温度検出用の金属導体16を磁気抵抗効果素子の
横に配置する。金属導体16は磁気抵抗効果を持たない
金属により形成され、蒸着,エッチングにより磁気抵抗
効果素子11とほぼ同じような短冊形状に作製される。
端子16−1,16−2により、金属導体16は回路に
接続される。
The magnetoresistive element 11 is made of a metal such as Ni--Fe and can be used up to a high temperature, but its electric resistance changes depending on the temperature. Next, improvement of temperature characteristics is proposed.
The resistance value of the metal changes linearly with the temperature and is easy to compensate, but as in this case, a small size is required, and the length of the magnetoresistive element 11 is 1 to 10 mm and the width is 5 to 100 μm.
If it is very small, it is necessary to compensate by measuring the temperature in the immediate vicinity of the device. 13 to 15 show an embodiment of a current sensor having a good temperature compensation function. FIG. 13 is a cross-sectional view of the detection unit 1-1 . FIG. 14 is a plan view of FIG. 13 as viewed from above. 13 and 14, a metal conductor 16 for temperature detection is arranged at a small interval beside the magnetoresistive element so that the temperature of the magnetoresistive element 11 can be accurately detected. The metal conductor 16 is formed of a metal having no magnetoresistive effect, and is formed into a strip shape substantially similar to the magnetoresistive effect element 11 by vapor deposition and etching.
The metal conductor 16 is connected to the circuit by the terminals 16-1 and 16-2.

【0023】図15は図13,図14の検出部を用いて
電流を検出する回路の構成図である。図13,図14に
示す構成の検出部1−1,感磁部を図15のように磁
気抵抗効果素子11と定電流源31を接続し、その接続
点から抵抗51を介してアンプ4の正入力に、アンプ4
の正入力は抵抗52を介して定電圧源35を接続する。
金属導体16は定電流源32を接続し、その接続点から
抵抗53を介してアンプ41の正入力に接続し、アンプ
41の出力はバイアス導体12に接続する。金属導体1
6は定電流源32に接続し、その接続点から抵抗53を
介してアンプ41の負入力に接続し、アンプ41の負入
力と出力間には抵抗54を接続する。アンプ41の出力
はアンプ42の正入力に接続し、アンプ42の負入力は
定電圧源35に接続し、アンプ42の出力は出力端子5
に接続する。電流バー2の端子21,22はFFBの電
流路に接続される。
FIG. 15 is a block diagram of a circuit for detecting a current by using the detection units shown in FIGS. As shown in FIG. 15, the detecting unit 1-1 and the magneto-sensitive unit 1 having the configurations shown in FIGS. 13 and 14 are connected to the magnetoresistive element 11 and the constant current source 31 as shown in FIG. Amplifier 4 to the positive input of
Is connected to a constant voltage source 35 via a resistor 52.
The metal conductor 16 is connected to the constant current source 32, and is connected from the connection point to the positive input of the amplifier 41 via the resistor 53, and the output of the amplifier 41 is connected to the bias conductor 12. Metal conductor 1
Reference numeral 6 denotes a connection to the constant current source 32, and a connection point thereof is connected to a negative input of the amplifier 41 via a resistor 53, and a resistor 54 is connected between the negative input and the output of the amplifier 41. The output of the amplifier 41 is connected to the positive input of the amplifier 42, the negative input of the amplifier 42 is connected to the constant voltage source 35, and the output of the amplifier 42 is connected to the output terminal 5
Connect to The terminals 21 and 22 of the current bar 2 are connected to the current path of the FFB.

【0024】電流バー2の電流が零の時にバイアス磁界
はB0になるように定電圧源35によってアンプ42の
出力にバイアスを与えてバイアス導体12にバイアス電
流を与える。電流バー2の正の電流を流すと電流に比例
した正の磁界が磁気抵抗効果素子11に加えられ、磁気
抵抗効果素子11の抵抗が減少する。この結果磁気抵抗
効果素子11の端子電圧も減少するので、バイアス導体
12の電流も減少し、磁気抵抗効果素子11のバイアス
磁界が減少する。この結果電流バーによる磁界とバイア
ス磁界の減少分が相殺されて合計磁界はB0pとなって、
磁気抵抗効果素子11の動作点は元のバイアス磁界B0p
に落ちつく。このときアンプ41の負入力には金属導体
16からの出力が入るが、金属導体16は磁気抵抗効果
を持たないので温度が一定なら抵抗値は一定であり、上
記の制御には変化を与えない。しかし、温度変化に対し
ては磁気抵抗効果素子11の温度が高くなれば、隣接し
て配置された金属導体16の温度も高くなり、両者の電
気抵抗が高くなり、アンプ41の正負入力の電圧が同時
に増加するので、相殺されてアンプ41の出力にはその
変化が現れず、温度補償ができる。温度が低下した場合
も同様にアンプ41の正負入力の電圧が同時に減少する
ので、相殺されてアンプ41の出力には温度変化による
影響が生じない。また、電流バー2に負の電流を流した
場合は先ほどとは逆に磁気抵抗効果素子11の磁界が減
少し、抵抗が増加するが、バイアス導体12の電流も増
加して電流バー2による磁界減少とバイアス導体12に
よる磁界増加分が相殺されて合計磁界は元のB0pに落ち
つく。出力端子5は定電圧35のバイアス電圧を除いて
出力するため、アンプ42によってアンプ41の出力か
ら定電圧35のバイアス電圧を差し引いて出力するの
で、出力端子5には電流バー2の電流に比例した値が得
られる。以上のように温度変化に対して温度特性を補償
できる。磁気抵抗効果素子11と金属導体16の温度係
数が異なる場合でも、アンプ等のゲインを調整して合わ
せることができる。本実施例の電流センサは高温でも使
用でき、温度補償用の金属導体を蒸着,エッチングによ
り磁気抵抗効果素子のごく近傍に作るので、正確な温度
補償が可能である。
The bias voltage is applied to the output of the amplifier 42 by the constant voltage source 35 so that the bias magnetic field becomes B0 when the current of the current bar 2 is zero. When a positive current flows through the current bar 2, a positive magnetic field proportional to the current is applied to the magnetoresistive element 11, and the resistance of the magnetoresistive element 11 decreases. As a result, the terminal voltage of the magnetoresistive element 11 also decreases, so that the current of the bias conductor 12 also decreases, and the bias magnetic field of the magnetoresistive element 11 decreases. As a result, the decrease in the magnetic field due to the current bar and the decrease in the bias magnetic field are offset, and the total magnetic field becomes B 0p ,
The operating point of the magnetoresistive element 11 is based on the original bias magnetic field B 0p
Calm down. At this time, the output from the metal conductor 16 enters the negative input of the amplifier 41, but since the metal conductor 16 has no magnetoresistance effect, the resistance value is constant if the temperature is constant, and the above control is not changed. . However, when the temperature of the magnetoresistive element 11 increases with respect to the temperature change, the temperature of the metal conductor 16 arranged adjacently also increases, the electrical resistance of both increases, and the voltage of the positive and negative inputs of the amplifier 41 increases. Increase at the same time, the offset is canceled and the output of the amplifier 41 does not change, and the temperature can be compensated. Similarly, when the temperature decreases, the voltages of the positive and negative inputs of the amplifier 41 also decrease at the same time, so that the output of the amplifier 41 is not affected by the temperature change. When a negative current is applied to the current bar 2, the magnetic field of the magnetoresistive element 11 decreases and the resistance increases, but the current of the bias conductor 12 also increases and the magnetic field generated by the current bar 2 increases. total magnetic field offset field increment by decreasing the bias conductor 12 is settled at the original B 0p. Since the output terminal 5 outputs the bias voltage except for the bias voltage of the constant voltage 35, the amplifier 42 subtracts the bias voltage of the constant voltage 35 from the output of the amplifier 41 and outputs the result. The obtained value is obtained. As described above, the temperature characteristics can be compensated for the temperature change. Even when the temperature coefficient of the magnetoresistive element 11 is different from that of the metal conductor 16, the gain of the amplifier or the like can be adjusted and matched. The current sensor of this embodiment can be used even at a high temperature and a metal conductor for temperature compensation is formed very close to the magnetoresistive element by vapor deposition and etching, so that accurate temperature compensation is possible.

【0025】以上では、本発明の電流センサをFFBに
適用した場合を述べた。
The case where the current sensor of the present invention is applied to the FFB has been described above.

【0026】本発明の電流センサはモータや電源装置な
ど電流検出が必要な電気機器に対しても適用可能であ
る。
The current sensor of the present invention can be applied to electric equipment such as a motor or a power supply which needs current detection.

【0027】[0027]

【発明の効果】本発明によれば小型で、構成が簡単な、
ノイズや温度の影響を受けにくい、精度の高い、かつ信
頼性の高い機器内蔵電流センサを実現できる。
According to the present invention, a compact and simple structure is provided.
It is possible to realize a highly accurate and highly reliable device built-in current sensor that is not easily affected by noise and temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す電流センサ部の断面図
である。
FIG. 1 is a sectional view of a current sensor unit according to an embodiment of the present invention.

【図2】図1を上からみた平面図である。FIG. 2 is a plan view of FIG. 1 as viewed from above.

【図3】本発明の電流センサ回路構成図である。FIG. 3 is a configuration diagram of a current sensor circuit of the present invention.

【図4】磁気抵抗効果素子の磁界に対する抵抗の変化を
示す磁気特性図である。
FIG. 4 is a magnetic characteristic diagram showing a change in resistance of a magnetoresistive element with respect to a magnetic field.

【図5】本発明のFFBに電流センサを内蔵した実施例
である。
FIG. 5 is an embodiment in which a current sensor is built in the FFB of the present invention.

【図6】本発明のシールドの実施例である。FIG. 6 is an embodiment of the shield of the present invention.

【図7】本発明のシールドの他の実施例である。FIG. 7 is another embodiment of the shield of the present invention.

【図8】本発明の磁気回路の第1の実施例である。FIG. 8 is a first embodiment of the magnetic circuit of the present invention.

【図9】本発明の磁気回路の第2の実施例である。FIG. 9 is a second embodiment of the magnetic circuit of the present invention.

【図10】本発明の磁気回路の第3の実施例である。FIG. 10 is a third embodiment of the magnetic circuit of the present invention.

【図11】磁界分流の磁気回路を改良した他の実施例で
ある。
FIG. 11 shows another embodiment in which the magnetic circuit of the magnetic field shunt is improved.

【図12】磁界分流を円筒磁気の回路で構成した実施例
である。
FIG. 12 is an embodiment in which the magnetic field shunt is constituted by a cylindrical magnetic circuit.

【図13】本発明の他の一実施例を示す電流センサ部の
断面図である。
FIG. 13 is a sectional view of a current sensor unit according to another embodiment of the present invention.

【図14】図13を上からみた平面図である。FIG. 14 is a plan view of FIG. 13 as viewed from above.

【図15】本発明の他の回路構成図である。FIG. 15 is another circuit configuration diagram of the present invention.

【符号の説明】 …感磁部、1−1…検出部、1−2…電流検出ユニッ
ト、2…電流バー、6…スペーサ、9…磁性体、11…
磁気抵抗効果素子、12…バイアス導体、13…絶縁基
板、16…金属導体、31,32…定電流源、35…定
電圧源、41,42…アンプ、81…磁気回路、85…
磁気ギャップ。
[Explanation of Signs] 1 ... magnetic sensing part, 1-1 ... detecting part, 1-2 ... current detecting unit, 2 ... current bar, 6 ... spacer, 9 ... magnetic body, 11 ...
Magnetoresistive element, 12 bias conductor, 13 insulating substrate, 16 metal conductor, 31 and 32 constant current source, 35 constant voltage source, 41 and 42 amplifier, 81 magnetic circuit, 85
Magnetic gap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 正彦 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masahiko Watanabe 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】電流バーに絶縁体を介して磁気抵抗効果素
子を対向配置し、前記電流バーに流れる電流が作る磁界
による前記磁気抵抗効果素子の抵抗変化から前記電流バ
ーに流れる電流を検出する電流センサにおいて、 前記電流バーに近接して磁気回路を設け、前記磁気回路
に設けたギャップ部に前記磁気抵抗効果素子を配置した
ことを特徴とする電流センサ。
1. A magneto-resistive element is disposed opposite to a current bar via an insulator, and a current flowing through the current bar is detected from a change in resistance of the magneto-resistive element due to a magnetic field generated by the current flowing through the current bar. In the current sensor, a magnetic circuit is provided near the current bar, and the magnetoresistive element is disposed in a gap provided in the magnetic circuit.
【請求項2】請求項1において、前記磁気抵抗効果素子
と前記電流バーの間に前記磁気抵抗効果素子にバイアス
磁界を印加するバイアス導体を設け、前記バイアス導体
を流れる電流が前記磁気抵抗効果素子の位置に作る磁界
と前記電流バーを流れる電流が前記磁気抵抗効果素子の
位置に作る磁界の和が一定になるように制御し、その制
御量より前記電流バーを流れる電流を検出する電流セン
サ。
2. The magnetoresistance effect element according to claim 1, further comprising: a bias conductor for applying a bias magnetic field to said magnetoresistance effect element between said magnetoresistance effect element and said current bar. A current sensor for controlling the sum of the magnetic field formed at the position of the current bar and the magnetic field formed at the position of the magnetoresistive element by the current flowing through the current bar to be constant, and detecting the current flowing through the current bar based on the control amount.
【請求項3】請求項1において、前記磁気回路に第一の
ギャップ部と前記第一のギャップ部よりギャップ幅の大
きな第二のギャップ部を設け、前記第二のギャップ部に
前記磁気抵抗効果素子を配置したことを特徴とする電流
センサ。
3. The magnetic circuit according to claim 1, wherein a first gap portion and a second gap portion having a larger gap width than the first gap portion are provided in the magnetic circuit, and the magnetoresistive effect is provided in the second gap portion. A current sensor, wherein an element is arranged.
【請求項4】請求項1において、前記磁気抵抗効果素子
に近接して金属導体を配置し、金属導体の温度による抵
抗値変化を検出し、これに基づいて前記磁気抵抗効果素
子の抵抗値の温度変化を補正して出力値の温度補償を行
うことを特徴とする電流センサ。
4. A magnetoresistive element according to claim 1, wherein a metal conductor is arranged in proximity to said magnetoresistive element, and a change in resistance value of said metal conductor due to temperature is detected. A current sensor for correcting a temperature change and performing temperature compensation of an output value.
【請求項5】請求項1において、前記磁気回路は金属磁
性体又はフェライト系材料で形成されることを特徴とす
る電流センサ。
5. The current sensor according to claim 1, wherein the magnetic circuit is formed of a metal magnetic material or a ferrite material.
【請求項6】請求項1において、前記磁気抵抗効果素子
に対し、少なくとも前記電流バーと反対側に磁気シール
ドを配置したことを特徴とする電流センサ。
6. The current sensor according to claim 1, wherein a magnetic shield is arranged at least on a side opposite to the current bar with respect to the magnetoresistive element.
【請求項7】請求項1において、前記電流バー,前記磁
気抵抗効果素子及び前記磁気回路を包むように磁気シー
ルドを配置したことを特徴とする電流センサ。
7. The current sensor according to claim 1, wherein a magnetic shield is arranged so as to surround the current bar, the magnetoresistive element, and the magnetic circuit.
【請求項8】請求項6または7において、前記磁気シー
ルドは金属磁性体又はフェライト系の材料で形成される
ことを特徴とする電流センサ。
8. The current sensor according to claim 6, wherein the magnetic shield is formed of a metal magnetic material or a ferrite-based material.
【請求項9】一方向に延びた電流バーを包むよう、前記
電流バーとの間に隙間を設けて筒状の磁性体を配置し、
前記筒状の磁性体には、前記電流バーの長手方向にそれ
ぞれ所定のギャップ幅を有する複数のギャップ部を相互
に間隔をあけて形成し、各ギャップ部には磁気抵抗効果
素子を配置し、前記電流バー,前記筒状の磁性体及び複
数の磁気抵抗効果素子を一体的に固定した後、これを隣
合った磁気抵抗効果素子の間で切断して各電流センサに
切り離すことを特徴とする電流センサの製造方法。
9. A cylindrical magnetic body is arranged so as to enclose a current bar extending in one direction with a gap provided between the current bar and the current bar.
In the cylindrical magnetic body, a plurality of gap portions each having a predetermined gap width in the longitudinal direction of the current bar are formed at intervals from each other, and a magnetoresistive element is arranged in each gap portion, After the current bar, the cylindrical magnetic body, and the plurality of magnetoresistive elements are integrally fixed, the current bar is cut between adjacent magnetoresistive elements and separated into respective current sensors. Manufacturing method of current sensor.
【請求項10】FFB内の電流バーを流れる電流を、請
求項1〜請求項7に記載の電流センサで検出し、検出し
た電流値により、電流遮断を制御することを特徴とする
FFB装置。
10. An FFB device, wherein a current flowing through a current bar in the FFB is detected by the current sensor according to any one of claims 1 to 7, and a current interruption is controlled by the detected current value.
【請求項11】機器内の電流バーに絶縁体を介して磁気
抵抗効果素子とバイアス導体及び金属導体を対向配置
し、前記バイアス導体に流す電流を制御して前記磁気抵
抗効果素子の動作点を安定化し、電流バーに流れる電流
が作る磁界を前記磁気抵抗効果素子の抵抗変化として検
出し、更に金属導体の温度による抵抗変化を検出して前
記磁気抵抗効果素子の抵抗変化を補正し、この値によ
り、機器を制御することを特徴とする機器内蔵電流セン
サ。
11. A magnetoresistive element, a bias conductor and a metal conductor are disposed opposite to each other on a current bar in an apparatus via an insulator, and a current flowing through the bias conductor is controlled to set an operating point of the magnetoresistive element. Stabilize and detect the magnetic field created by the current flowing through the current bar as a change in resistance of the magnetoresistive element, and further detect the change in resistance of the metal conductor due to temperature to correct the change in resistance of the magnetoresistive element. A device built-in current sensor characterized by controlling a device.
【請求項12】請求項1〜請求項7に記載の電流センサ
によりモータのコイルを流れる電流を検出し、検出した
電流値により、モータを制御することを特徴とするモー
タ制御装置。
12. A motor control device, wherein a current flowing through a coil of a motor is detected by the current sensor according to claim 1, and the motor is controlled by the detected current value.
【請求項13】請求項1〜請求項7に記載の電流センサ
によりモータのコイルを流れる電流を検出し、検出した
電流値を出力する出力端子を備えたモータ装置。
13. A motor device comprising an output terminal for detecting a current flowing through a coil of a motor by the current sensor according to claim 1 and outputting the detected current value.
JP8181868A 1996-07-11 1996-07-11 Current sensor and electric device housing current sensor Pending JPH1026639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8181868A JPH1026639A (en) 1996-07-11 1996-07-11 Current sensor and electric device housing current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8181868A JPH1026639A (en) 1996-07-11 1996-07-11 Current sensor and electric device housing current sensor

Publications (1)

Publication Number Publication Date
JPH1026639A true JPH1026639A (en) 1998-01-27

Family

ID=16108257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8181868A Pending JPH1026639A (en) 1996-07-11 1996-07-11 Current sensor and electric device housing current sensor

Country Status (1)

Country Link
JP (1) JPH1026639A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055997A (en) * 1998-08-05 2000-02-25 Tdk Corp Magnetic sensor device and current sensor device
EP1068541A1 (en) * 1998-03-04 2001-01-17 Nonvolatile Electronics, Incorporated Magnetic digital signal coupler
JP2001050987A (en) * 1999-08-10 2001-02-23 Advantest Corp Apparatus and method for measurement of current
WO2001033242A1 (en) * 1999-10-29 2001-05-10 Honeywell Inc. A thin magnetoresistive current sensor system
US6411078B1 (en) 1999-01-21 2002-06-25 Tdk Corporation Current sensor apparatus
JP2003234439A (en) * 2002-02-07 2003-08-22 Sony Chem Corp Insulative resin composite
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor
JP2005114727A (en) * 2003-10-09 2005-04-28 Hewlett-Packard Development Co Lp Combined dual-purpose magnetic reluctance sensor and measuring method for current and temperature thereby
JP2006514283A (en) * 2003-02-11 2006-04-27 アレグロ・マイクロシステムズ・インコーポレーテッド Integrated sensor
EP1754979A1 (en) 1998-03-04 2007-02-21 Nonvolatile Electronics, Incorporated Magnetic digital signal coupler
US7557562B2 (en) 2004-09-17 2009-07-07 Nve Corporation Inverted magnetic isolator
USRE42126E1 (en) 1999-07-02 2011-02-08 The Procter & Gamble Company Delivery system for oral care compositions comprising organosiloxane resins using a removable backing strip
JP2013200301A (en) * 2012-02-24 2013-10-03 Mitsubishi Electric Corp Current sensor
JP2015029393A (en) * 2013-07-30 2015-02-12 株式会社デンソー Vehicular rotating electrical machine
JPWO2013161773A1 (en) * 2012-04-23 2015-12-24 日立金属株式会社 Magnetic sensor device
JP2018044789A (en) * 2016-09-12 2018-03-22 日立金属株式会社 Magnetic field detector

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754979A1 (en) 1998-03-04 2007-02-21 Nonvolatile Electronics, Incorporated Magnetic digital signal coupler
EP1068541A1 (en) * 1998-03-04 2001-01-17 Nonvolatile Electronics, Incorporated Magnetic digital signal coupler
EP1068541A4 (en) * 1998-03-04 2001-04-18 Nonvolatile Electronics Inc Magnetic digital signal coupler
US6300617B1 (en) 1998-03-04 2001-10-09 Nonvolatile Electronics, Incorporated Magnetic digital signal coupler having selected/reversal directions of magnetization
JP2000055997A (en) * 1998-08-05 2000-02-25 Tdk Corp Magnetic sensor device and current sensor device
US6411078B1 (en) 1999-01-21 2002-06-25 Tdk Corporation Current sensor apparatus
USRE42126E1 (en) 1999-07-02 2011-02-08 The Procter & Gamble Company Delivery system for oral care compositions comprising organosiloxane resins using a removable backing strip
JP2001050987A (en) * 1999-08-10 2001-02-23 Advantest Corp Apparatus and method for measurement of current
WO2001033242A1 (en) * 1999-10-29 2001-05-10 Honeywell Inc. A thin magnetoresistive current sensor system
JP2003234439A (en) * 2002-02-07 2003-08-22 Sony Chem Corp Insulative resin composite
JP2003315376A (en) * 2002-04-18 2003-11-06 Aichi Micro Intelligent Corp Current sensor
JP2006514283A (en) * 2003-02-11 2006-04-27 アレグロ・マイクロシステムズ・インコーポレーテッド Integrated sensor
JP2005114727A (en) * 2003-10-09 2005-04-28 Hewlett-Packard Development Co Lp Combined dual-purpose magnetic reluctance sensor and measuring method for current and temperature thereby
US7557562B2 (en) 2004-09-17 2009-07-07 Nve Corporation Inverted magnetic isolator
US7952345B2 (en) 2004-09-17 2011-05-31 Nve Corporation Inverted magnetic isolator
US8884606B2 (en) 2004-09-17 2014-11-11 Nve Corporation Inverted magnetic isolator
JP2013200301A (en) * 2012-02-24 2013-10-03 Mitsubishi Electric Corp Current sensor
JPWO2013161773A1 (en) * 2012-04-23 2015-12-24 日立金属株式会社 Magnetic sensor device
JP2015029393A (en) * 2013-07-30 2015-02-12 株式会社デンソー Vehicular rotating electrical machine
JP2018044789A (en) * 2016-09-12 2018-03-22 日立金属株式会社 Magnetic field detector

Similar Documents

Publication Publication Date Title
JPH1026639A (en) Current sensor and electric device housing current sensor
US8269492B2 (en) Magnetic balance type current sensor
US8754642B2 (en) Magnetic balance type current sensor
US6984989B2 (en) Current sensor and overload current protective device therewith
US7642768B1 (en) Current sensor having field screening arrangement including electrical conductors sandwiching magnetic permeability layer
US4309655A (en) Measuring transformer
USRE31613E (en) Measuring transformer
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
JPH0792199A (en) Current sensor
JP2008215970A (en) Bus bar integrated current sensor
US4947108A (en) Electric current sensing device
US20130063135A1 (en) Magnetic-field-angle measurement device and rotational-angle measurement apparatus using same
JP2009180608A (en) Ic chip type current sensor
KR101191437B1 (en) 2 channel current sensor
US5587652A (en) Alternating current sensor based on parallel-plate geometry and having a shunt for self-powering
WO2014203862A2 (en) Current sensor
US9146260B2 (en) Magnetic balance type current sensor
Borole et al. Design, fabrication, and characterization of giant magnetoresistance (GMR) based open-loop current sensor with U-shaped current carrying conductor
CN110837066B (en) Magnetic field sensing device
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JPH0293373A (en) Current detector
JPH01105178A (en) Current detector
JP3144051B2 (en) Current detector
WO2012060069A1 (en) Current sensor
CN117289008B (en) 150kV tunneling giant magneto-resistance direct current sensor