JP2009020085A - Multiphase current detector - Google Patents

Multiphase current detector Download PDF

Info

Publication number
JP2009020085A
JP2009020085A JP2007210408A JP2007210408A JP2009020085A JP 2009020085 A JP2009020085 A JP 2009020085A JP 2007210408 A JP2007210408 A JP 2007210408A JP 2007210408 A JP2007210408 A JP 2007210408A JP 2009020085 A JP2009020085 A JP 2009020085A
Authority
JP
Japan
Prior art keywords
current
magnetic field
bridge circuit
detection device
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007210408A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shinchi
信幸 新地
Akira Okada
章 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2007210408A priority Critical patent/JP2009020085A/en
Publication of JP2009020085A publication Critical patent/JP2009020085A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detector capable of more correctly detecting multiphase current by considering multiple phase currents instead of the conventional current sensor having primary conductors of U-shape, each of left and right half bridge circuits of the bridge circuit is subjected to reverse directional magnetic fields having a merit for eliminating an effect of uniform external field while only considering a single phase measurement. <P>SOLUTION: The multiphase current detector is arranged such that respective U-shape parts are arranged parallelly in the same surface but the symmetric axes of the U-shape parts should not exist on a straight line. Therefore, at the time of detecting the multiphase current the influence of magnetic field generated by the other phase current are reduced and the effect for detecting the more correct current can be expected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、U字型形状部を有する複数の一次導体の近傍において、印加された多相の被測定電流を検出する、多相電流の検出装置に関するものである。  The present invention relates to a multiphase current detection device that detects an applied multiphase current to be measured in the vicinity of a plurality of primary conductors having a U-shaped portion.

従来の電流センサあるいは電流検出装置としては、複数の磁気抵抗効果素子からなるブリッジ回路を、U字型の一次導体近傍に配置したものがある(例えば、特許文献1参照)。  As a conventional current sensor or current detection device, there is one in which a bridge circuit composed of a plurality of magnetoresistive elements is arranged in the vicinity of a U-shaped primary conductor (see, for example, Patent Document 1).

また、多相電流の検出装置としては、表面実装型電流センサを、クランク状に2度直角に折り曲げた被検出電流路の中央部に配置したものがある(例えば、特許文献2参照)。  In addition, as a multiphase current detection device, there is a device in which a surface mount type current sensor is arranged at the center of a detected current path bent at a right angle in a crank shape twice (for example, see Patent Document 2).

特開平8−211138公報  Japanese Patent Laid-Open No. 8-21138 特開2005−233692公報  JP-A-2005-233692

上記特許文献1に開示されている電流センサあるいは電流検出装置の一次導体は、左右対称的なU字型構造で、磁気抵抗効果素子で構成するブリッジ回路の左右の各ハーフブリッジに逆方向磁界が印加され、一様な外部磁界を除去する利点がある。しかしながら単相の測定のみを想定しており、多相電流の検出を、他相電流の影響を低減し、より正確に行う構成は示していないという問題点があった。  The primary conductor of the current sensor or the current detection device disclosed in Patent Document 1 has a symmetrical U-shaped structure, and a reverse magnetic field is applied to each of the left and right half bridges of a bridge circuit formed of magnetoresistive elements. It has the advantage of being applied and removing a uniform external magnetic field. However, only a single-phase measurement is assumed, and there has been a problem that a configuration in which multiphase current detection is performed more accurately by reducing the influence of other phase currents is not shown.

また上記特許文献2では、表面実装型電流センサを用いて、多相電流を測定する場合、ある相の電流を検出する表面実装型電流センサが、他の相の電流により発生した磁束の影響を受けずにより正確に多相電流の検出ができる構成となっている。しかしながら、特許文献1に示される、磁気抵抗効果素子で構成するブリッジ回路の左右の各ハーフブリッジに逆方向磁界が印加されるU字型形状部を有する一次導体を用いた電流センサで多相検出を構成する場合、単純な配置では他相の影響が受けやすくなり、検出誤差が増大する問題点があった。  In Patent Document 2, when a multiphase current is measured using a surface-mount current sensor, the surface-mount current sensor that detects the current of a certain phase is affected by the magnetic flux generated by the current of another phase. In this configuration, the multiphase current can be detected more accurately. However, as shown in Patent Document 1, multiphase detection is performed by a current sensor using a primary conductor having a U-shaped portion in which a reverse magnetic field is applied to each of the left and right half bridges of a bridge circuit composed of magnetoresistive elements. In the case of the configuration, there is a problem that a simple arrangement is easily affected by other phases and detection errors increase.

この発明は上記のような課題を解決するためになされたもので、一様な外部磁界を除去すると共に、多相電流の検出時に他相電流の影響を低減し、より正確な電流を検出できる多相電流の検出装置を得ることを目的とする。  The present invention has been made to solve the above-described problems. In addition to removing a uniform external magnetic field, the influence of other-phase currents can be reduced when detecting a multi-phase current, and a more accurate current can be detected. It aims at obtaining the detection apparatus of a polyphase electric current.

この発明に係る多相電流の検出装置は、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置された電流検知デバイス部と、少なくとも1つのU字型形状部を有する一次導体をそれぞれ複数個備えて構成され、上記それぞれの電流検知デバイスがそれぞれのU字型形状部の近傍に、上記設置基板の中心線とU字型形状の対称軸が略一致するように配置され、それぞれのU字型形状部に隣接するU字型形状部の対称軸が同一直線上にないように、同一平面内に並列配置したものである。  In the multiphase current detection device according to the present invention, the first half-bridge circuit is arranged in one region separated from the center line of the installation board by four magnetoresistive elements on the installation board. And a plurality of primary conductors each having a second half bridge circuit disposed in the other region and a primary conductor having at least one U-shaped portion. In the vicinity of the U-shaped part, the center line of the installation board and the symmetry axis of the U-shaped part are substantially aligned, and the U-shaped part adjacent to each U-shaped part is symmetrical. They are arranged in parallel in the same plane so that the axes are not on the same straight line.

以上のように、この発明によれば、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置され、それぞれのハーフブリッジ回路に逆方向の磁界が印加される構造のため、一様な外部磁界を除去する効果がある。
また、それぞれの一次導体は、それぞれのU字型形状部に隣接するU字型形状部の対称軸が同一直線上にないように、同一平面内に並列配置したため、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、より正確な電流を検出する効果がある。
As described above, according to the present invention, the first half-bridge circuit is arranged in one region divided with respect to the center line of the installation board by four magnetoresistive elements on the installation board, Since the second half bridge circuit is arranged in the other region and a magnetic field in the opposite direction is applied to each half bridge circuit, there is an effect of removing a uniform external magnetic field.
In addition, each primary conductor is arranged in parallel in the same plane so that the symmetry axis of the U-shaped part adjacent to each U-shaped part is not on the same straight line. This has the effect of reducing the influence of the magnetic field generated by the phase current and detecting a more accurate current.

実施の形態1.
図1は、この発明の実施の形態1による多相電流の検出装置1の斜視図を示すもので、図2は図1の1相分の電流センサ平面図、図3は図2におけるAA断面(XZ面)の一部を示す断面図である。図において、多相電流の検出装置1は3相交流電流において、それぞれの相電流を相毎に設置した電流センサにて検出する例であり、1相分の電流センサ2は、電流検知デバイス部7、センサ回路部8を有するセンサ基板3と、一次導体4により構成される。なお図において一次導体4は、簡単のため電流センサ部の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。
本実施の形態1では、各一次導体3は長手方向に向かって略垂直に曲げ加工が施されて1つのU字形状部6を形成し、U字形状部6内の一次導体に囲まれた空間部11に1つの電流検知デバイス部7を配置する。
まず、電流検知デバイス部7の構成について説明する。
図5は電流検知デバイス部7の平面図を示すもので、設置基板16上において、設置基板16の中心線10によって2つの領域に分けられ、それぞれの領域に磁気抵抗効果素子13a、13b、磁気抵抗効果素子13c、13dが線対称に等しく配置される。ここで、磁気抵抗効果素子13の感磁方向はX方向とする。4つの磁気抵抗効果素子13a〜13dは、設置基板16の中心線10に対して相互に平行方向に配置され、磁気抵抗効果素子13a、13dは、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有するように、また、磁気抵抗効果素子13b、13cは、互いに逆方向の磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有するように、図には省略したが、磁気抵抗効果素子上にはバーバーポール電極構造が形成されている。なお、4つの磁気抵抗効果素子13はそれぞれ1本で構成したが、クランク形状に複数の磁気抵抗効果素子を接続し、線路長を長く構成してもよい。また、中心線10上の中心点に対して点対称に構成してもよい。接続電流線14は、4つの磁気抵抗効果素子13間を接続することにより、ブリッジ回路17を構成するものであり、接続エリア15は、外部とブリッジ回路17の入出力用の端子部として用いる。
Embodiment 1 FIG.
1 is a perspective view of a multiphase current detection device 1 according to Embodiment 1 of the present invention. FIG. 2 is a plan view of a current sensor for one phase of FIG. 1, and FIG. It is sectional drawing which shows a part of (XZ surface). In the figure, a multiphase current detection device 1 is an example in which each phase current is detected by a current sensor installed for each phase in a three-phase alternating current, and a current sensor 2 for one phase includes a current detection device unit. 7, the sensor substrate 3 having the sensor circuit unit 8 and the primary conductor 4. In the figure, the primary conductor 4 is shown only in the vicinity of the current sensor unit for simplicity, but it is actually extended and connected to a power source, various devices, and the like.
In the first embodiment, each primary conductor 3 is bent substantially perpendicularly in the longitudinal direction to form one U-shaped portion 6 and is surrounded by the primary conductor in the U-shaped portion 6. One current detection device unit 7 is arranged in the space 11.
First, the configuration of the current detection device unit 7 will be described.
FIG. 5 shows a plan view of the current detection device unit 7, which is divided into two areas on the installation board 16 by the center line 10 of the installation board 16, and the magnetoresistive effect elements 13 a and 13 b, magnetic Resistive effect elements 13c and 13d are arranged equally in line symmetry. Here, the magnetosensitive direction of the magnetoresistive element 13 is the X direction. The four magnetoresistive effect elements 13a to 13d are arranged in parallel to each other with respect to the center line 10 of the installation substrate 16, and the magnetoresistive effect elements 13a and 13d have a resistance value corresponding to an increase in the magnetic field in the opposite direction. The magnetoresistive effect elements 13b and 13c have a magnetoresistive effect characteristic in which the resistance value decreases together with an increase in the magnetic field in the opposite direction. Although omitted in FIG. 2, a barber pole electrode structure is formed on the magnetoresistive element. The four magnetoresistive effect elements 13 are each configured as one, but a plurality of magnetoresistive effect elements may be connected in a crank shape to increase the line length. Further, it may be configured symmetrically with respect to the center point on the center line 10. The connection current line 14 forms a bridge circuit 17 by connecting the four magnetoresistive effect elements 13, and the connection area 15 is used as an input / output terminal portion of the bridge circuit 17.

図6はこの発明の実施の形態1による1相分の電流センサ2の電流検知デバイス部7を示す構成概略図であり、図6において、4つの磁気抵抗効果素子13間を接続電流線14で接続することにより、磁気抵抗効果素子13a、13bの直列接続からなるハーフブリッジ回路(第1のハーフブリッジ回路)18aと、磁気抵抗効果素子13c、13dの直列接続からなるハーフブリッジ回路(第2のハーフブリッジ回路)18bとの並列接続からなるブリッジ回路17を構成するものである。
接続エリア(第1の接続エリア)15aは、ブリッジ回路17の磁気抵抗効果素子13a、13c間の接続電流線14に接続され、もう一方の接続エリア(第2の接続エリア)15bは、ブリッジ回路17の磁気抵抗効果素子13b、13d間の接続電流線14に接続されており、接続エリア15a、15bからブリッジ回路17に電圧が供給されるものである。接続エリア(第3の接続エリア)15cは、ブリッジ回路17の磁気抵抗効果素子13a、13b間の接続電流線14に接続され、もう一方の接続エリア(第4の接続エリア)15dは、ブリッジ回路17の磁気抵抗効果素子13c、13d間の接続電流線14に接続されており、接続エリア15c、15dからブリッジ回路17の出力電圧が検出されるものである。
FIG. 6 is a schematic configuration diagram showing the current detection device unit 7 of the current sensor 2 for one phase according to the first embodiment of the present invention. In FIG. By connecting, a half bridge circuit (first half bridge circuit) 18a composed of series connection of magnetoresistive effect elements 13a, 13b and a half bridge circuit (second second circuit composed of series connection of magnetoresistive effect elements 13c, 13d) A bridge circuit 17 comprising a parallel connection with a half bridge circuit) 18b is configured.
The connection area (first connection area) 15a is connected to the connection current line 14 between the magnetoresistance effect elements 13a and 13c of the bridge circuit 17, and the other connection area (second connection area) 15b is the bridge circuit. 17 is connected to a connection current line 14 between the magnetoresistive effect elements 13b and 13d, and a voltage is supplied to the bridge circuit 17 from the connection areas 15a and 15b. The connection area (third connection area) 15c is connected to the connection current line 14 between the magnetoresistive effect elements 13a and 13b of the bridge circuit 17, and the other connection area (fourth connection area) 15d is the bridge circuit. 17 is connected to the connection current line 14 between the magnetoresistive effect elements 13c and 13d, and the output voltage of the bridge circuit 17 is detected from the connection areas 15c and 15d.

なお、図5および図6には示していないが、設置基板16上の4つの磁気抵抗効果素子13a〜13dの上方、または下方、またはその両方に絶縁層を介して補償導電線19を配置し、ブリッジ回路17の出力電圧に基づいて、それらの補償導電線19に4つの磁気抵抗効果素子13の近傍に発生する磁界を打ち消すような電流を供給する磁気補償型の構成としてもよい。  Although not shown in FIGS. 5 and 6, the compensation conductive line 19 is disposed above or below the four magnetoresistive elements 13 a to 13 d on the installation substrate 16, or both through an insulating layer. A magnetic compensation type configuration may be employed in which a current that cancels out the magnetic field generated in the vicinity of the four magnetoresistive effect elements 13 is supplied to the compensation conductive lines 19 based on the output voltage of the bridge circuit 17.

次に、1相分の電流センサ2の全体構成について説明する。
図1に示すように、被測定電流を印加する各一次導体4の一部には、長手方向に向かって略垂直に曲げ加工が施され、Z方向から見てU字の形状となるように1つのU字形状部6が形成される。なお本実施の形態1に示した図では、U字形状の底部の両脇部分が直角形状に構成されているが、電流検知デバイス部7に両側のU字部形成一次導体5から安定して逆方向の磁界が印加される構造であれば丸みを帯びた形状などでもよく、これに限るものではないが、安定して逆方向の磁界を印加するためにはU字形状が少なくとも電流検知デバイス部7の近傍において左右対称であることが望ましい。
図2に示すように、U字形状部6の対称軸、および電流検知デバイス部7の中心線10が略一致するようにセンサ基板3はU字形状部6の下面に設置されている。本実施の形態においては、センサ基板3をU字形状部6の下面に設置した例を示したが、設置位置は下面に限るものではない。
電流検知デバイス部7の設置位置(特にZ方向)は、磁気抵抗効果素子13に付与したい磁界、つまりは被測定電流の大きさに応じて決定するが、Z方向における1次導体4の中央となる位置(図3破線O)では感磁方向の付与磁界が0となるため、中央からずらして設置するのがよい。本実施の形態では、空間部11内に電流検知デバイス部7を設置した例を示したが、これに限るものではなく、空間部11外に置いてもよい。また、一次導体4の断面積は、印加する被側定電流値の大きさに応じて決定される。このような一次導体4は、例えば銅などの金属による直線状導体バー形状から、U字形状部6の曲げ加工等により作製される。
センサ基板3上には、電流検知デバイス部7とともにセンサ回路部8を配置する。センサ回路部8は、電流検知デバイス部7の接続エリア15a、15bにブリッジ回路17の電圧を供給すると共に、ブリッジ回路17の出力電圧を適度な増幅を施して出力するが、電流センサ2の外部への入出力には、外部端子9を利用する。
センサ基板3と1次導体4は、特に図示しないが接着剤や取付部材等を用いて固定する。取付部材は特に材料を限定しないが、非磁性で経時劣化の少ないものが望ましく、絶縁性や耐圧の効果を上げるために全体、あるいは一部を樹脂モールドしてもよい。
Next, the overall configuration of the current sensor 2 for one phase will be described.
As shown in FIG. 1, a part of each primary conductor 4 to which a current to be measured is applied is bent substantially perpendicularly in the longitudinal direction so as to have a U-shape when viewed from the Z direction. One U-shaped portion 6 is formed. In the figure shown in the first embodiment, both side portions of the U-shaped bottom are formed in a right-angle shape, but the current detection device unit 7 is stably provided with the U-shaped primary conductors 5 on both sides. As long as it has a structure to which a magnetic field in the reverse direction is applied, it may have a rounded shape or the like, but is not limited to this, but in order to stably apply a magnetic field in the reverse direction, the U-shape is at least a current detection device. In the vicinity of the part 7, it is desirable that it is bilaterally symmetric.
As shown in FIG. 2, the sensor substrate 3 is installed on the lower surface of the U-shaped part 6 so that the symmetry axis of the U-shaped part 6 and the center line 10 of the current detection device part 7 substantially coincide. In the present embodiment, an example in which the sensor substrate 3 is installed on the lower surface of the U-shaped portion 6 is shown, but the installation position is not limited to the lower surface.
The installation position (especially in the Z direction) of the current detection device unit 7 is determined according to the magnetic field desired to be applied to the magnetoresistive effect element 13, that is, the magnitude of the current to be measured. At this position (broken line O in FIG. 3), the applied magnetic field in the magnetosensitive direction becomes 0, so it is preferable to install it at a position shifted from the center. In the present embodiment, an example in which the current detection device unit 7 is installed in the space part 11 is shown, but the present invention is not limited to this, and the current detection device part 7 may be placed outside the space part 11. Further, the cross-sectional area of the primary conductor 4 is determined according to the magnitude of the applied constant current value. Such a primary conductor 4 is produced, for example, by bending the U-shaped portion 6 from a linear conductor bar shape made of metal such as copper.
On the sensor substrate 3, the sensor circuit unit 8 is arranged together with the current detection device unit 7. The sensor circuit unit 8 supplies the voltage of the bridge circuit 17 to the connection areas 15a and 15b of the current detection device unit 7 and outputs the output voltage of the bridge circuit 17 with appropriate amplification. An external terminal 9 is used for input / output to / from.
The sensor substrate 3 and the primary conductor 4 are fixed using an adhesive, a mounting member or the like, although not particularly shown. The mounting member is not particularly limited in material, but is preferably non-magnetic and less deteriorated with time, and may be entirely or partially resin-molded in order to increase the effect of insulation and pressure resistance.

次に、電流センサ2の動作について、図3、図4、図5により説明する。
一次導体4に被測定電流を印加すると、例えば第1のU字部形成一次導体5’には電流の方向に対して図3の破線に示すように左回転の磁界が、また第2のU字部形成一次導体5”には電流の方向に対して図3の破線に示すように右回転の磁界が、印加される被測定電流の大きさに応じて発生する。図には簡単のために各1次導体あたり2本の磁束線によって発生磁界を示した。その結果、電流検知デバイス部7を空間部11の下面近傍に設置した場合、電流検知デバイス部7の右側に位置する磁気抵抗効果素子13c、13dには、図4に示す磁界ベクトル12が印加され、磁気抵抗効果素子13c、13dの感磁方向(X方向)には分解ベクトル12aが加わることになる。つまり、電流検知デバイス部7のXY面における、図5に示した磁気抵抗効果素子13a、13bには、中心線10より紙面左側の向きに磁界が加わり、磁気抵抗効果素子13c、13dには、中心線10より紙面右側の向きに磁界が加わる。
Next, the operation of the current sensor 2 will be described with reference to FIGS. 3, 4, and 5.
When a current to be measured is applied to the primary conductor 4, for example, the first U-shaped primary conductor 5 ′ has a left-rotating magnetic field as shown by a broken line in FIG. As shown by the broken line in FIG. 3, a right-rotating magnetic field is generated in the character-forming primary conductor 5 ″ according to the magnitude of the current to be measured as shown by the broken line in FIG. The magnetic field generated by two magnetic flux lines for each primary conductor is shown in Fig. 5. As a result, when the current detection device unit 7 is installed near the lower surface of the space 11, the magnetoresistive element located on the right side of the current detection device unit 7 is shown. 4 is applied to the effect elements 13c and 13d, and the decomposition vector 12a is applied in the magnetosensitive direction (X direction) of the magnetoresistive effect elements 13c and 13d. As shown in FIG. 5 in the XY plane of the portion 7 A magnetic field is applied to the magnetoresistive elements 13a and 13b in the direction of the left side of the paper from the center line 10, and a magnetic field is applied to the magnetoresistive elements 13c and 13d in the direction of the right side of the paper from the center line 10.

なお、磁気抵抗効果素子13a、13dでは、共に磁界の増加に応じて抵抗値が増加すると共に、磁界の減少に応じて抵抗値が減少する磁気抵抗効果特性を有するように、また、磁気抵抗効果素子13b、13cでは、逆に磁界の増加に応じて抵抗値が減少すると共に、磁界の減少に応じて抵抗値が増加する磁気抵抗効果特性を有するように構成されている。
よって、一次導体4に流れる電流の増加に応じて磁気抵抗効果素子13a、13dの抵抗値が増加すると共に、磁気抵抗効果素子13b、13cの抵抗値が減少し、一次導体4に流れる電流の減少に応じて磁気抵抗効果素子13a、13dの抵抗値が減少すると共に、磁気抵抗効果素子13b、13cの抵抗値が増加する。このように、一次導体4に印加される被測定電流の大きさに応じてブリッジ回路17の平衡が崩れ、これが電流検知デバイス部7のブリッジ回路17の出力となる。
The magnetoresistive elements 13a and 13d both have a magnetoresistive effect characteristic in which the resistance value increases as the magnetic field increases and the resistance value decreases as the magnetic field decreases. In contrast, the elements 13b and 13c are configured to have a magnetoresistive effect characteristic in which the resistance value decreases as the magnetic field increases and the resistance value increases as the magnetic field decreases.
Therefore, as the current flowing through the primary conductor 4 increases, the resistance values of the magnetoresistive elements 13a and 13d increase, and the resistance values of the magnetoresistive elements 13b and 13c decrease, and the current flowing through the primary conductor 4 decreases. Accordingly, the resistance values of the magnetoresistive elements 13a and 13d decrease and the resistance values of the magnetoresistive elements 13b and 13c increase. In this way, the balance of the bridge circuit 17 is lost in accordance with the magnitude of the current to be measured applied to the primary conductor 4, and this becomes the output of the bridge circuit 17 of the current detection device unit 7.

さらに、電流センサ2の動作について、補償導電線19を有する場合について説明する。補償導電線19を配置した電流検知デバイス部7とセンサ回路部8の概略構成を図7に示す。
一次導体4に印加される被測定電流の大きさに応じてブリッジ回路17の平衡が崩れる。このとき、センサ回路部8に設置された増幅回路部(例えばオペアンプ20)では、電流検知デバイス部7の接続エリア15c、15dから検出される出力電圧に基づいて、磁気抵抗効果素子13a〜13d近傍に発生する磁界を打ち消すような電流(制御電流)を補償導電線19に供給する。具体的には接続エリア15c、15dの出力電圧が0になるように、制御電流の大きさを調整する。補償導電線19は、その制御電流の大きさに応じて4つの磁気抵抗効果素子13a〜13d近傍に発生する磁界、すなわち一次導体4に印加される被測定電流の大きさに応じた磁界を相殺するような磁界を発生する。
したがって、一次導体4に印加される被測定電流の大きさに応じたブリッジ回路17の平衡の崩れを、センサ回路部8から供給される制御電流により修復することができる。ゆえに、センサ回路部8から供給した制御電流の大きさが、一次導体4に印加される被測定電流の大きさに相関のある値として検出することができる。
なお、一次導体4以外において発生させた外部磁界(外乱磁界)は、磁気抵抗効果素子13a、13bと磁気抵抗効果素子13c、13d(ブリッジ回路17の左右の各ハーフブリッジ回路18)に同相の影響となるため相殺され、測定精度に影響を与えない。
Further, the operation of the current sensor 2 will be described in the case where the compensation conductive line 19 is provided. FIG. 7 shows a schematic configuration of the current detection device unit 7 and the sensor circuit unit 8 in which the compensation conductive wire 19 is arranged.
The balance of the bridge circuit 17 is lost depending on the magnitude of the current to be measured applied to the primary conductor 4. At this time, in the amplification circuit unit (for example, the operational amplifier 20) installed in the sensor circuit unit 8, based on the output voltage detected from the connection areas 15c and 15d of the current detection device unit 7, the vicinity of the magnetoresistive effect elements 13a to 13d A current (control current) that cancels the generated magnetic field is supplied to the compensation conductive line 19. Specifically, the magnitude of the control current is adjusted so that the output voltage of the connection areas 15c and 15d becomes zero. The compensating conductive line 19 cancels out the magnetic field generated in the vicinity of the four magnetoresistive elements 13a to 13d according to the magnitude of the control current, that is, the magnetic field according to the magnitude of the current to be measured applied to the primary conductor 4. Generate a magnetic field.
Therefore, the balance failure of the bridge circuit 17 according to the magnitude of the current to be measured applied to the primary conductor 4 can be repaired by the control current supplied from the sensor circuit unit 8. Therefore, the magnitude of the control current supplied from the sensor circuit unit 8 can be detected as a value correlated with the magnitude of the current to be measured applied to the primary conductor 4.
The external magnetic field (disturbance magnetic field) generated outside the primary conductor 4 has an in-phase influence on the magnetoresistive effect elements 13a and 13b and the magnetoresistive effect elements 13c and 13d (the left and right half bridge circuits 18 of the bridge circuit 17). Therefore, it is offset and does not affect the measurement accuracy.

次に各一次導体4a、4b、4cの設置構成について説明する。図8は、多相電流の検出装置1における各一次導体4a、4b、4cとセンサ基板3a、3b、3cの平面図を示すもので、図9は図8のBB断面(YZ面)を示す断面図、図10は各一次導体に発生する主な磁界の方向を示す図である。
各相に対応する3本の一次導体4a、4b、4cは、図8に示すように長手方向(X方向)が略平行となり、図9に示すようにXY平面内に並列配置され、かつ隣接するU字形状部の対称軸21が同一直線上にないように配置される。各一次導体4a、4b、4cに被測定電流が印加されたとき、発生する主な磁界の方向は、図10の矢印に示すようにXY平面において、全てX方向またはY方向となる。ここで、センサ基板3a、3b、3c上に設置された磁気抵抗効果素子(図には省略)の感磁方向はX方向であり、磁界検出部となるU字形状部6a、6b、6cのU字部形成一次導体にて挟まれた部分に一次導体から付与される磁界の方向は、検出部のX方向磁界22または検出部のY方向磁界23となり、感磁方向と直角方向であるY方向の磁界の影響は受けない。それ以外の非検出部において発生する非検出部の磁界方向24も、磁気抵抗効果素子の感磁方向と直角方向であるY方向となるため、磁気抵抗効果素子は磁界検出部以外で発生する磁界の影響も受けることはない。よって、隣接するU字形状部にて発生した検出部のX方向磁界22からの影響を低減するために、隣接するU字形状部の対称軸が同一直線上にないように対称軸を離間して各一次導体を設置すれば、他相の電流による誤差の低減が可能となる。
なお、本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。
Next, the installation configuration of each primary conductor 4a, 4b, 4c will be described. FIG. 8 is a plan view of the primary conductors 4a, 4b, and 4c and the sensor substrates 3a, 3b, and 3c in the multiphase current detection device 1, and FIG. 9 is a BB cross section (YZ plane) of FIG. FIG. 10 is a cross-sectional view, and FIG. 10 is a diagram showing the direction of main magnetic fields generated in each primary conductor.
The three primary conductors 4a, 4b, 4c corresponding to each phase are substantially parallel in the longitudinal direction (X direction) as shown in FIG. 8, arranged in parallel in the XY plane as shown in FIG. It arrange | positions so that the symmetry axis 21 of the U-shaped part to be may not be on the same straight line. When a current to be measured is applied to each primary conductor 4a, 4b, 4c, the direction of the main magnetic field generated is all in the X direction or Y direction on the XY plane as shown by the arrows in FIG. Here, the magnetosensitive effect elements (not shown in the figure) installed on the sensor substrates 3a, 3b, and 3c are in the X direction, and the U-shaped portions 6a, 6b, and 6c that serve as the magnetic field detection units. The direction of the magnetic field applied from the primary conductor to the portion sandwiched between the U-shaped primary conductors is the X-direction magnetic field 22 of the detection unit or the Y-direction magnetic field 23 of the detection unit, and Y is perpendicular to the magnetic sensing direction. Unaffected by the magnetic field in the direction. The magnetic field direction 24 of the non-detection part generated in the other non-detection part is also the Y direction perpendicular to the magnetic sensing direction of the magnetoresistive effect element, so that the magnetoresistive effect element generates a magnetic field generated outside the magnetic field detection part. Will not be affected. Therefore, in order to reduce the influence from the X-direction magnetic field 22 of the detection unit generated in the adjacent U-shaped part, the symmetrical axes are separated so that the symmetrical axes of the adjacent U-shaped parts are not on the same straight line. If each primary conductor is installed, the error due to the current of the other phase can be reduced.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases.

以上のように、この実施の形態1によれば、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置され、それぞれのハーフブリッジ回路に逆方向の磁界が印加される構造のため、一様な外部磁界を除去することができる。  As described above, according to the first embodiment, the first half-bridge circuit is arranged in one region divided with respect to the center line of the installation board by four magnetoresistive elements on the installation board. In addition, since the second half bridge circuit is arranged in the other region and a magnetic field in the opposite direction is applied to each half bridge circuit, a uniform external magnetic field can be removed.

また、他相の一次導体から磁界検出部となる磁気抵抗効果素子部に付与される感磁方向の磁界は、隣接するU字形状部の対称軸が同一直線上にないように対称軸を離間することで低減し、かつ他相の一次導体から付与される感磁方向の磁界以外に発生する磁界の方向は感磁方向から直角方向となる構成のため、他相の電流による磁界の影響を受けることがなく測定精度を高める効果がある。  In addition, the magnetic field in the magnetosensitive direction applied from the primary conductor of the other phase to the magnetoresistive effect element unit serving as the magnetic field detection unit is separated from the symmetry axis so that the symmetry axis of the adjacent U-shaped part is not on the same straight line. The direction of the magnetic field generated in addition to the magnetic-sensitive magnetic field applied from the primary conductor of the other phase is perpendicular to the magnetic sensitive direction. There is an effect to improve the measurement accuracy without receiving.

実施の形態2.
図11は、この発明の実施の形態2による多相電流の検出装置1における各一次導体4a、4b、4cとセンサ基板3a、3b、3cの平面図を示すもので、図12は図11のBB断面(YZ面)を示す断面図、図13は図11の対称軸21における断面(YZ面)を示す断面図である。本実施の形態2は、各一次導体4a、4b、4cのU字形状部の対称軸21が同一面内にあるように、かつ各一次導体4a、4b、4cが同一平面上にないように、各一次導体4a、4b、4cを設置したものである。
実施の形態2は、実施の形態1より各一次導体4a、4b、4cの配置構成を変更したものであり、その他の電流センサとしての構成で重複する部分は省略する。実施の形態1はXY面内において各一次導体4a、4b、4cのU字形状部をずらして設置したものであったが、実施の形態2はYZ面内において各一次導体4a、4b、4cのU字形状部をずらして設置したものである。
Embodiment 2. FIG.
FIG. 11 shows a plan view of the primary conductors 4a, 4b, 4c and the sensor boards 3a, 3b, 3c in the multiphase current detection apparatus 1 according to Embodiment 2 of the present invention. FIG. 13 is a cross-sectional view showing a cross section (YZ plane) along the axis of symmetry 21 in FIG. 11. In the second embodiment, the symmetry axes 21 of the U-shaped portions of the primary conductors 4a, 4b, and 4c are in the same plane, and the primary conductors 4a, 4b, and 4c are not on the same plane. The primary conductors 4a, 4b, and 4c are installed.
In the second embodiment, the arrangement configuration of the primary conductors 4a, 4b, and 4c is changed from that in the first embodiment, and the redundant portions are omitted in the configuration as other current sensors. In the first embodiment, the U-shaped portions of the primary conductors 4a, 4b, and 4c are shifted in the XY plane. In the second embodiment, the primary conductors 4a, 4b, and 4c are arranged in the YZ plane. The U-shaped part of is installed by shifting.

実施の形態2における多相電流の検出装置1の全体構成について説明する。
各相に対応する3本の一次導体4a、4b、4cは、図11に示すようにZ軸方向から見たXY平面図においては長手方向(X方向)が略平行となり、図12、図13に示すようにXY平面外にZ方向にずらして配置され、かつU字形状部の対称軸21が同一面内にあるように配置される。実施の形態1においては、センサ基板3a、3b、3cは、各一次導体4a、4b、4cの上面、下面いずれに設置しても構わなかったが、実施の形態2においては、図13に示すように、センサ基板3a、3cは一次導体4a、4cの下面、センサ基板3bは一次導体4bの上面に設置するのが望ましい。
各一次導体4a、4b、4cに被測定電流が印加されたとき、発生する主な磁界の方向は、XY平面において、全てX方向またはY方向となる。ここで、センサ基板3a、3b、3c上に設置された磁気抵抗効果素子(図には省略)の感磁方向はX方向であり、磁界検出部となるU字形状部6a、6b、6cのU字部形成一次導体にて挟まれた部分に一次導体から付与される磁界の方向は、X方向またはY方向となり、感磁方向と直角方向であるY方向の磁界の影響は受けない。それ以外の非検出部において発生する磁界方向も、磁気抵抗効果素子の感磁方向と直角方向であるY方向となるため、磁気抵抗効果素子は磁界検出部以外で発生する磁界の影響も受けることはない。よって、隣接するU字形状部にて発生したX方向磁界からの影響を低減するために、YZ面においてU字形状部が隣接しないようにZ方向に各一次導体を離間して設置し、かつセンサ基板を隣接するU字形状部から離間して設置すれば、他相の電流による誤差の低減が可能となる。
なお、本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。
The overall configuration of multiphase current detection apparatus 1 in the second embodiment will be described.
As shown in FIG. 11, the three primary conductors 4a, 4b, and 4c corresponding to each phase are substantially parallel in the longitudinal direction (X direction) in the XY plan view viewed from the Z-axis direction. As shown in FIG. 3, the U-shaped portion is arranged so that the symmetry axis 21 is shifted from the XY plane in the Z direction and is in the same plane. In the first embodiment, the sensor substrates 3a, 3b, and 3c may be installed on either the upper surface or the lower surface of the primary conductors 4a, 4b, and 4c. In the second embodiment, the sensor substrates 3a, 3b, and 3c are shown in FIG. Thus, it is desirable that the sensor substrates 3a and 3c be installed on the lower surface of the primary conductors 4a and 4c, and the sensor substrate 3b be installed on the upper surface of the primary conductor 4b.
When a current to be measured is applied to each primary conductor 4a, 4b, 4c, the direction of the main magnetic field generated is all in the X direction or the Y direction on the XY plane. Here, the magnetosensitive effect elements (not shown in the figure) installed on the sensor substrates 3a, 3b, and 3c are in the X direction, and the U-shaped portions 6a, 6b, and 6c that serve as the magnetic field detection units. The direction of the magnetic field applied from the primary conductor to the portion sandwiched by the U-shaped primary conductor is the X direction or the Y direction, and is not affected by the magnetic field in the Y direction, which is perpendicular to the magnetic sensing direction. The direction of the magnetic field generated in the other non-detection parts is also the Y direction perpendicular to the magnetosensitive effect direction of the magnetoresistive effect element, so that the magnetoresistive effect element is also affected by the magnetic field generated outside the magnetic field detection part. There is no. Therefore, in order to reduce the influence from the X-direction magnetic field generated in the adjacent U-shaped part, the primary conductors are spaced apart in the Z direction so that the U-shaped part is not adjacent in the YZ plane, and If the sensor substrate is installed apart from the adjacent U-shaped portion, it is possible to reduce errors due to currents in other phases.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases.

以上のように、この実施の形態2によれば、他相の一次導体から磁界検出部となる磁気抵抗効果素子部に付与される感磁方向の磁界は、YZ面においてU字形状部が隣接しないようにZ方向に各一次導体を離間し、かつセンサ基板を隣接するU字形状部から離間して設置することで低減し、かつ他相の一次導体から付与される感磁方向の磁界以外に発生する磁界の方向は感磁方向から直角方向となる構成のため、他相の電流による磁界の影響を受けることがなく測定精度を高める効果がある。  As described above, according to the second embodiment, the magnetic field in the magnetosensitive direction applied from the primary conductor of the other phase to the magnetoresistive effect element portion serving as the magnetic field detecting portion is adjacent to the U-shaped portion on the YZ plane. Other than the magnetic field in the magnetosensitive direction applied from the primary conductor of the other phase, and the primary conductors are separated from each other in the Z direction and the sensor substrate is placed away from the adjacent U-shaped portion. Since the direction of the generated magnetic field is a direction perpendicular to the magnetic sensing direction, there is an effect of improving the measurement accuracy without being affected by the magnetic field due to the current of the other phase.

また、電流センサを設置するためのスペースが、X軸方向において制限され、実施の形態1の構成が困難な場合、本構成により、他相の電流による磁界の影響を受けることがなく測定精度を高める効果を維持したまま設置が可能となる効果がある。  In addition, when the space for installing the current sensor is limited in the X-axis direction and the configuration of the first embodiment is difficult, this configuration can improve the measurement accuracy without being affected by the magnetic field due to the current of the other phase. There is an effect that can be installed while maintaining the effect of increasing.

実施の形態3.
図14は、この発明の実施の形態3による多相電流の検出装置1における各一次導体4a、4b、4cとセンサ基板3の平面図を示すもので、図15は図14の対称軸21における断面(YZ面)を示す断面図である。本実施の形態3は、各一次導体4a、4b、4cのU字形状部の対称軸21が同一平面外にあるように、かつ各一次導体4a、4b、4cが同一平面上にないように、各一次導体4a、4b、4cを設置したものである。
実施の形態3は、実施の形態1より各一次導体4a、4b、4cの配置構成を変更したものであり、その他の電流センサとしての構成で重複する部分は省略する。実施の形態1はXY面内において各一次導体4a、4b、4cのU字形状部をずらして設置したものであったが、実施の形態3はさらにYZ面内において一次導体4bをZ方向にずらして設置したものである。
Embodiment 3 FIG.
FIG. 14 shows a plan view of the primary conductors 4a, 4b, 4c and the sensor substrate 3 in the multiphase current detection apparatus 1 according to Embodiment 3 of the present invention, and FIG. It is sectional drawing which shows a cross section (YZ surface). In the third embodiment, the symmetry axis 21 of the U-shaped portion of each primary conductor 4a, 4b, 4c is out of the same plane, and each primary conductor 4a, 4b, 4c is not in the same plane. The primary conductors 4a, 4b, and 4c are installed.
In the third embodiment, the arrangement configuration of the primary conductors 4a, 4b, and 4c is changed from that in the first embodiment, and the redundant portions are omitted in the configuration as other current sensors. In the first embodiment, the U-shaped portions of the primary conductors 4a, 4b, and 4c are shifted in the XY plane. However, in the third embodiment, the primary conductor 4b is further moved in the Z direction in the YZ plane. It was installed by shifting.

実施の形態3における多相電流の検出装置1の全体構成について説明する。
各相に対応する3本の一次導体4a、4b、4cは、図14に示すようにZ軸方向から見たXY平面図においては長手方向(X方向)が略平行となり、図15に示すようにXY平面外にZ方向にずらして配置され、かつU字形状部の対称軸21が同一面内にないように配置される。実施の形態2においては、図13に示したように、センサ基板3a、3cは一次導体4a、4cの下面、センサ基板3bは一次導体4bの上面と各センサ基板を離間して設置するのが望まかったが、実施の形態3においては、センサ基板3は、一次導体4a、4cの上面、一次導体4bの下面に設置とすることで、1枚のセンサ基板3に収める構成が望ましい。
各一次導体4a、4b、4cに被測定電流が印加されたとき、発生する主な磁界の方向は、XY平面において、全てX方向またはY方向となる。ここで、センサ基板3上に設置された磁気抵抗効果素子(図には省略)の感磁方向はX方向であり、磁界検出部となるU字形状部6a、6b、6cのU字部形成一次導体にて挟まれた部分に一次導体から付与される磁界の方向は、X方向またはY方向となり、感磁方向と直角方向であるY方向の磁界の影響は受けない。それ以外の非検出部において発生する磁界方向も、磁気抵抗効果素子の感磁方向と直角方向であるY方向となるため、磁気抵抗効果素子は磁界検出部以外で発生する磁界の影響も受けることはない。よって、隣接するU字形状部にて発生したX方向磁界からの影響を低減するために、隣接するU字形状部の対称軸が同一直線上にないように対称軸を離間して各一次導体を設置すれば、他相の電流による誤差の低減が可能となる。
なお、本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。
The overall configuration of multiphase current detection apparatus 1 in the third embodiment will be described.
As shown in FIG. 15, the three primary conductors 4a, 4b, and 4c corresponding to each phase are substantially parallel in the longitudinal direction (X direction) in the XY plan view as seen from the Z-axis direction as shown in FIG. Are arranged so as to be shifted in the Z direction outside the XY plane, and arranged so that the symmetry axis 21 of the U-shaped portion is not in the same plane. In the second embodiment, as shown in FIG. 13, the sensor boards 3a and 3c are installed with the lower surfaces of the primary conductors 4a and 4c, and the sensor board 3b is installed with the upper surface of the primary conductor 4b and each sensor board spaced apart. Although desired, in the third embodiment, it is desirable that the sensor substrate 3 be installed on the upper surface of the primary conductors 4a and 4c and the lower surface of the primary conductor 4b so that the sensor substrate 3 is accommodated on one sensor substrate 3.
When a current to be measured is applied to each primary conductor 4a, 4b, 4c, the direction of the main magnetic field generated is all in the X direction or the Y direction on the XY plane. Here, the magnetosensitive effect element (not shown in the figure) installed on the sensor substrate 3 is in the X direction, and the U-shaped portions 6a, 6b, and 6c forming the magnetic field detecting portions are formed. The direction of the magnetic field applied from the primary conductor to the portion sandwiched between the primary conductors is the X direction or the Y direction, and is not affected by the magnetic field in the Y direction that is perpendicular to the magnetic sensing direction. The direction of the magnetic field generated in the other non-detection parts is also the Y direction perpendicular to the magnetosensitive effect direction of the magnetoresistive effect element, so that the magnetoresistive effect element is also affected by the magnetic field generated outside the magnetic field detection part. There is no. Therefore, in order to reduce the influence from the X-direction magnetic field generated in the adjacent U-shaped part, the primary conductors are separated from each other so that the symmetrical axes of the adjacent U-shaped parts are not on the same straight line. If this is installed, it is possible to reduce errors caused by currents in other phases.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases.

以上のように、この実施の形態3によれば、他相の一次導体から磁界検出部となる磁気抵抗効果素子部に付与される感磁方向の磁界は、隣接するU字形状部の対称軸が同一直線上にないように対称軸を離間することで低減し、かつ他相の一次導体から付与される感磁方向の磁界以外に発生する磁界の方向は感磁方向から直角方向となる構成のため、他相の電流による磁界の影響を受けることがなく測定精度を高める効果がある。  As described above, according to the third embodiment, the magnetic field in the magnetosensitive direction applied from the primary conductor of the other phase to the magnetoresistive effect element unit serving as the magnetic field detection unit is the symmetry axis of the adjacent U-shaped unit. Is reduced by separating the symmetry axes so that they are not on the same straight line, and the direction of the magnetic field generated in addition to the magnetic field in the magnetic direction applied from the primary conductor of the other phase is perpendicular to the magnetic direction. Therefore, the measurement accuracy is improved without being affected by the magnetic field due to the current of the other phase.

また、1枚のセンサ基板に複数の電流検知デバイス部を設置できる構成のためセンサ基板が1枚となるだけでなく、電流検知デバイス部の位置決めも容易となり、低コスト化となる効果がある。  In addition, since a plurality of current detection device units can be installed on one sensor substrate, not only one sensor substrate is provided, but also the current detection device unit can be easily positioned, resulting in cost reduction.

この発明の実施形態1による多相電流の検出装置の斜視図である。1 is a perspective view of a multiphase current detection device according to Embodiment 1 of the present invention. FIG. この発明の実施形態1による電流センサの平面図である。It is a top view of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの断面図である。It is sectional drawing of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの電流検知デバイス部近傍の磁界ベクトルと分解ベクトルを示す図である。It is a figure which shows the magnetic field vector and decomposition | disassembly vector of the current detection device part vicinity of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの電流検知デバイス部を示す平面図である。It is a top view which shows the current detection device part of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの電流検知デバイス部を示す構成概略図である。It is a structure schematic diagram which shows the current detection device part of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による補償導電線を配置した構成図である。It is a block diagram which has arrange | positioned the compensation electrically conductive line by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の一次導体近傍に発生する磁界の方向を示す図である。It is a figure which shows the direction of the magnetic field which generate | occur | produces in the primary conductor vicinity of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態2による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の別の断面図である。It is another sectional drawing of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態3による多相電流の検出装置の平面図である。It is a top view of the detection apparatus of the multiphase current by Embodiment 3 of this invention. この発明の実施形態3による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 多相電流の検出装置、2 電流センサ、3 センサ基板、4 一次導体、5 U字部形成一次導体、6 U字形状部、7 電流検知デバイス部、8 センサ回路部、9 外部端子、10 中心線、11 空間部、12 磁界ベクトル、13 磁気抵抗効果素子、14 接続電流線、15 接続エリア、16 設置基板、17 ブリッジ回路、18 ハーフブリッジ回路、19 補償導電線、20 オペアンプ、21 対称軸、22 検出部のX方向磁界、23 検出部のY方向磁界、24 非検出部の磁界方向DESCRIPTION OF SYMBOLS 1 Detection apparatus of multiphase current, 2 Current sensor, 3 Sensor board, 4 Primary conductor, 5 U-shaped formation primary conductor, 6 U-shaped part, 7 Current detection device part, 8 Sensor circuit part, 9 External terminal, 10 Center line, 11 space part, 12 magnetic field vector, 13 magnetoresistive effect element, 14 connection current line, 15 connection area, 16 installation board, 17 bridge circuit, 18 half bridge circuit, 19 compensation conductive line, 20 operational amplifier, 21 symmetry axis , 22 X-direction magnetic field of the detection unit, 23 Y-direction magnetic field of the detection unit, 24 Magnetic field direction of the non-detection unit

Claims (4)

設置基板上に配置され、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有する第1および第4の磁気抵抗効果素子と、
上記設置基板上に配置され、互いに逆方向の上記磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有する第2および第3の磁気抵抗効果素子と、
上記設置基板上に配置され、上記第1から第4の磁気抵抗効果素子を接続することにより、上記第1および第2の磁気抵抗効果素子による第1のハーフブリッジ回路、および上記第3および第4の磁気抵抗効果素子による第2のハーフブリッジ回路からなるブリッジ回路を構成する接続電流線とを備え、
上記設置基板の中心線に対して分けられた一方の領域に上記第1のハーフブリッジ回路が配置されると共に、他方の領域に上記第2のハーフブリッジ回路が配置された電流検知デバイスと、少なくとも1つのU字型形状を有する一次導体をそれぞれ複数個備え、
上記設置基板のそれぞれの中心線とU字型形状のそれぞれの対称軸が略一致するように、それぞれのU字型形状部近傍に上記電流検知デバイスが配置されるとともに、それぞれのU字型形状部が同一平面内に並列配置され、かつ隣接するU字型形状部の対称軸が同一直線上にないことを特徴とする多相電流の検出装置。
First and fourth magnetoresistive elements disposed on an installation substrate and having a magnetoresistive effect characteristic in which a resistance value increases together with an increase in a magnetic field opposite to each other;
Second and third magnetoresistive elements arranged on the installation substrate and having magnetoresistive effect characteristics in which the resistance value decreases together with the increase of the magnetic field in the opposite direction;
The first half bridge circuit by the first and second magnetoresistive effect elements, and the third and second magnetoresistive effect elements are arranged on the installation substrate and connected to the first to fourth magnetoresistive effect elements. A connection current line constituting a bridge circuit composed of a second half-bridge circuit by four magnetoresistive elements,
A current detection device in which the first half-bridge circuit is arranged in one region divided with respect to the center line of the installation board and the second half-bridge circuit is arranged in the other region; A plurality of primary conductors each having a single U-shape,
The current detection devices are arranged in the vicinity of the U-shaped portions so that the center lines of the installation boards and the symmetry axes of the U-shaped shapes substantially coincide with each other. A multiphase current detection device, wherein the parts are arranged in parallel in the same plane, and the symmetry axes of adjacent U-shaped parts are not on the same straight line.
上記それぞれのU字型形状部が同一平面外に並列配置され、かつU字型形状部の対称軸が同一平面内にあることを特徴とする多相電流の検出装置。  An apparatus for detecting a multiphase current, wherein the U-shaped portions are arranged in parallel outside the same plane, and the symmetry axis of the U-shaped portion is in the same plane. 上記それぞれのU字型形状部が同一平面外に並列配置され、かつ隣接するU字型形状部の対称軸が同一平面外にあることを特徴とする多相電流の検出装置。  An apparatus for detecting a multiphase current, wherein the U-shaped portions are arranged in parallel outside the same plane, and the symmetry axes of adjacent U-shaped portions are out of the same plane. 上記電流検知デバイスはセンサ回路部とともにセンサ基板に設置され、上記センサ基板はU字型形状を形成して上記一次導体に囲まれた空間内の少なくとも一箇所に、上記設置基板の中心線とU字型形状の対称軸が略一致するように配置されたことを特徴とする請求項1から3に記載の多相電流の検出装置。  The current detection device is installed on a sensor board together with a sensor circuit unit, and the sensor board forms a U-shape and is located at least at one place in a space surrounded by the primary conductor and the center line of the installation board and U The multiphase current detection device according to claim 1, wherein the symmetry axes of the letter-shaped shapes are arranged so as to substantially coincide with each other.
JP2007210408A 2007-07-13 2007-07-13 Multiphase current detector Pending JP2009020085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210408A JP2009020085A (en) 2007-07-13 2007-07-13 Multiphase current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007210408A JP2009020085A (en) 2007-07-13 2007-07-13 Multiphase current detector

Publications (1)

Publication Number Publication Date
JP2009020085A true JP2009020085A (en) 2009-01-29

Family

ID=40359838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210408A Pending JP2009020085A (en) 2007-07-13 2007-07-13 Multiphase current detector

Country Status (1)

Country Link
JP (1) JP2009020085A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175474A (en) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd Current detecting apparatus
WO2011111526A1 (en) * 2010-03-09 2011-09-15 アイシン・エィ・ダブリュ株式会社 Current detection device
JP2013142604A (en) * 2012-01-11 2013-07-22 Alps Green Devices Co Ltd Current sensor
CN109387681A (en) * 2018-12-28 2019-02-26 无锡思泰迪半导体有限公司 Binary channels current sensor structure based on magnetic field detection
CN110221112A (en) * 2019-06-04 2019-09-10 苏州汇川技术有限公司 Circuit board and power electronic equipment
JP2021043091A (en) * 2019-09-12 2021-03-18 アイシン精機株式会社 Current sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175474A (en) * 2009-01-30 2010-08-12 Aisin Aw Co Ltd Current detecting apparatus
US8427133B2 (en) 2009-01-30 2013-04-23 Aisin Aw Co., Ltd. Current detection apparatus
WO2011111526A1 (en) * 2010-03-09 2011-09-15 アイシン・エィ・ダブリュ株式会社 Current detection device
JP2011185788A (en) * 2010-03-09 2011-09-22 Aisin Aw Co Ltd Current detector
CN102713645A (en) * 2010-03-09 2012-10-03 爱信艾达株式会社 Current detection device
US8421450B2 (en) 2010-03-09 2013-04-16 Aisin Aw Co., Ltd. Current detection device
CN102713645B (en) * 2010-03-09 2014-10-29 爱信艾达株式会社 Current detection device
JP2013142604A (en) * 2012-01-11 2013-07-22 Alps Green Devices Co Ltd Current sensor
CN109387681A (en) * 2018-12-28 2019-02-26 无锡思泰迪半导体有限公司 Binary channels current sensor structure based on magnetic field detection
CN110221112A (en) * 2019-06-04 2019-09-10 苏州汇川技术有限公司 Circuit board and power electronic equipment
JP2021043091A (en) * 2019-09-12 2021-03-18 アイシン精機株式会社 Current sensor
JP7314732B2 (en) 2019-09-12 2023-07-26 株式会社アイシン current sensor

Similar Documents

Publication Publication Date Title
JP5385996B2 (en) Current measuring device
JP6149885B2 (en) Current sensor
JP4893506B2 (en) Current sensor
JP2008039734A (en) Current sensor
JP4394076B2 (en) Current sensor
US10877075B2 (en) Current sensor
JP4839393B2 (en) Current detector
JP5234459B2 (en) Current sensor
JP2009505056A (en) Three-phase current sensor
JP2020537141A (en) Current sensor assembly
JP2009020085A (en) Multiphase current detector
JP5641276B2 (en) Current sensor
JP2008216230A (en) Current sensor
JP2015137892A (en) Current detection structure
JP2021043091A (en) Current sensor
JP4766477B2 (en) Current detection device and power conversion device including the same
JP2009168790A (en) Current sensor
JP5630633B2 (en) Multiphase current detector
JP4873348B2 (en) Current sensor and current detection device
JP2019100922A (en) Current sensor
JP2009271044A (en) Current sensor
JP5057245B2 (en) Current sensor
JP2016200438A (en) Current sensor
JP2009222696A (en) Multiphase current detector
JP2010256316A (en) Current sensor