JP2009222696A - Multiphase current detector - Google Patents

Multiphase current detector Download PDF

Info

Publication number
JP2009222696A
JP2009222696A JP2008106205A JP2008106205A JP2009222696A JP 2009222696 A JP2009222696 A JP 2009222696A JP 2008106205 A JP2008106205 A JP 2008106205A JP 2008106205 A JP2008106205 A JP 2008106205A JP 2009222696 A JP2009222696 A JP 2009222696A
Authority
JP
Japan
Prior art keywords
shaped
current
detection device
magnetic field
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008106205A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shinchi
信幸 新地
Akira Okada
章 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohshin Electric Corp
Original Assignee
Kohshin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohshin Electric Corp filed Critical Kohshin Electric Corp
Priority to JP2008106205A priority Critical patent/JP2009222696A/en
Publication of JP2009222696A publication Critical patent/JP2009222696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: a conventional current sensor having primary conductors formed in a U-shaped configuration has the advantage of removing a uniform external field being applied a reverse direction magnetic field to each of left and right half bridge circuits of a bridge circuit, but it is targeted only for a single phase measurement, and it is not configured to detect multiphase currents more accurately by decreasing the influence of other phase currents. <P>SOLUTION: A part, which becomes a non U-shaped part, of the primary conductor located out of a U-shaped part extends toward the out of plane direction of the U-shaped part, and the symmetric axes of the U-shaped parts adjacent to respective U-shaped parts are arranged in parallel in the same plane so as not to exist on the same straight line. Therefore, when detecting the multiphase currents, the influence of magnetic fields generated by the other phase currents is decreased, and the effect of detecting the more accurate currents can be expected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、U字形成部を有した複数の一次導体により多相が形成され、各U字形成部の近傍において各相に印加された被測定電流を検出する、多相電流の検出装置に関するものである。  The present invention relates to a multi-phase current detection device for detecting a current to be measured applied to each phase in the vicinity of each U-shaped forming portion in which a multi-phase is formed by a plurality of primary conductors having U-shaped forming portions. Is.

従来の電流センサあるいは電流検出装置としては、複数の磁気抵抗効果素子で形成されるブリッジ回路を、U字型の一次導体近傍に配置したものがある(例えば、特許文献1参照)。  As a conventional current sensor or current detection device, there is one in which a bridge circuit formed of a plurality of magnetoresistive elements is arranged in the vicinity of a U-shaped primary conductor (see, for example, Patent Document 1).

また、多相電流の検出装置としては、各表面実装型電流センサを、クランク状に2度直角に折り曲げた各被検出電流路の中央部に配置し、各被検出電流路を整列したものがある(例えば、特許文献2参照)。  Also, as a multiphase current detection device, each surface mount type current sensor is arranged in the center of each detected current path bent at a right angle in a crank shape twice, and each detected current path is aligned. Yes (see, for example, Patent Document 2).

さらにまた、別の多相電流の検出装置としては、クランク状に折り曲げられた折り曲げ部を有する各被測定導体の折り曲げ部近傍に、各磁電変換素子を配置し、折り曲げ部が重複しないように各被測定導体を略平行に配置したものがある(例えば、特許文献3の図6参照)。  Furthermore, as another multiphase current detection device, each magnetoelectric conversion element is arranged in the vicinity of a bent portion of each conductor to be measured having a bent portion bent in a crank shape so that the bent portions do not overlap each other. There is one in which conductors to be measured are arranged substantially in parallel (see, for example, FIG. 6 of Patent Document 3).

特開平8−211138公報  Japanese Patent Laid-Open No. 8-21138 特開2005−233692公報  JP-A-2005-233692 特開2001−74783公報  JP 2001-74783 A

上記特許文献1に開示されている電流センサあるいは電流検出装置の一次導体は、左右対称的なU字型構造で、磁気抵抗効果素子で構成するブリッジ回路の左右の各ハーフブリッジに逆方向磁界が印加され、一様な外部磁界を除去する利点がある。しかしながら単相のみの測定を想定しており、他相電流の影響を低減し、より正確に多相電流の検出を行う構成は示していないという問題点があった。  The primary conductor of the current sensor or the current detection device disclosed in Patent Document 1 has a symmetrical U-shaped structure, and a reverse magnetic field is applied to each of the left and right half bridges of a bridge circuit formed of magnetoresistive elements. It has the advantage of being applied and removing a uniform external magnetic field. However, the measurement of only a single phase is assumed, and there is a problem that the configuration for reducing the influence of the other-phase current and detecting the multi-phase current more accurately is not shown.

また上記特許文献2では、表面実装型電流センサを用いて、多相電流を測定する場合、ある相の電流を検出する表面実装型電流センサが、他の相の電流により発生した磁界の影響を基本的には受けずに多相電流の検出ができる構成となっている。しかしながら、厳密には他相の被検出電流路からの漏れ磁界が表面実装型電流センサの感磁方向に印加される構成のため、各相を接近して小型に設置する場合、検出誤差が発生する問題点があった。さらに特許文献1に示されるような、磁気抵抗効果素子で構成するブリッジ回路の左右の各ハーフブリッジに逆方向磁界が印加されるU字型形状部を有する一次導体を用いた電流センサで構成されておらず、一様な外部磁界を除去する構成となっていないことから、外部磁界による検出誤差が増大する問題点があった。  In Patent Document 2, when a multiphase current is measured using a surface-mount current sensor, the surface-mount current sensor that detects a current of a certain phase is affected by a magnetic field generated by the current of another phase. Basically, it is configured to detect a multiphase current without receiving it. However, strictly speaking, the leakage magnetic field from the detected current path of the other phase is applied in the direction of the magnetic sensing of the surface mount type current sensor, so detection errors occur when each phase is placed close together. There was a problem to do. Furthermore, as shown in Patent Document 1, it is composed of a current sensor using a primary conductor having a U-shaped portion in which a reverse magnetic field is applied to the left and right half bridges of a bridge circuit composed of magnetoresistive elements. However, there is a problem that the detection error due to the external magnetic field increases because the uniform external magnetic field is not removed.

また上記特許文献3では、クランク状に折り曲げられた折り曲げ部を有する各被測定導体の折り曲げ部近傍に、各磁電変換素子を配置し、折り曲げ部が重複しないように各被測定導体を略平行に配置しているため、他の相の電流により発生した磁界の影響を受けずに多相電流の検出ができる構成となっている。しかしながら、同一基板上に各磁電変換素子を設置したとしても、基板は大型化し、それに伴い検出装置も大型化するという問題点があった。さらに特許文献1に示されるような、磁気抵抗効果素子で構成するブリッジ回路の左右の各ハーフブリッジに逆方向磁界が印加されるU字型形状部を有する一次導体を用いた電流センサで構成されておらず、一様な外部磁界を除去する構成となっていないことから、外部磁界による検出誤差が増大する問題点があった。  Further, in Patent Document 3, each magnetoelectric conversion element is arranged in the vicinity of a bent portion of each measured conductor having a bent portion bent in a crank shape, and the measured conductors are substantially parallel so that the bent portions do not overlap. Due to the arrangement, the multiphase current can be detected without being affected by the magnetic field generated by the current of the other phase. However, even if each magnetoelectric conversion element is installed on the same substrate, there is a problem that the substrate becomes larger and the detection device becomes larger accordingly. Furthermore, as shown in Patent Document 1, it is composed of a current sensor using a primary conductor having a U-shaped portion in which a reverse magnetic field is applied to the left and right half bridges of a bridge circuit composed of magnetoresistive elements. In addition, there is a problem that detection errors due to the external magnetic field increase because the uniform external magnetic field is not removed.

この発明は上記のような課題を解決するためになされたもので、一様な外部磁界を除去すると共に、多相電流の検出時に他相電流の影響を低減し、より正確な電流を検出でき、かつ小型で、低コストな多相電流の検出装置を得ることを目的とする。  The present invention has been made to solve the above-described problems. In addition to removing a uniform external magnetic field, the influence of other-phase currents can be reduced when detecting multi-phase currents, and more accurate currents can be detected. Another object of the present invention is to obtain a small-sized and low-cost multiphase current detection device.

この発明に係る多相電流の検出装置は、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置された電流検知デバイス部と、少なくとも1つのU字形成部を有する一次導体をそれぞれ複数個備えて構成され、上記それぞれの電流検知デバイスがそれぞれのU字形成部の近傍に、上記設置基板の中心線とU字形成部の対称軸が略一致するように配置され、非U字形成部となるU字形成部外の一次導体がU字形成部の面外方向へ伸長し、それぞれのU字形成部の対称軸が同一直線上にないように、同一平面内に並列配置したものである。  In the multiphase current detection device according to the present invention, the first half-bridge circuit is arranged in one region separated from the center line of the installation board by four magnetoresistive elements on the installation board. Each of the current detection device portion having the second half bridge circuit disposed in the other region and a plurality of primary conductors having at least one U-shaped formation portion. In the vicinity of the U-shaped portion, the center line of the installation board and the symmetry axis of the U-shaped portion are substantially aligned, and the primary conductor outside the U-shaped portion, which is a non-U-shaped portion, is U-shaped. It extends in the out-of-plane direction, and is arranged in parallel in the same plane so that the symmetry axes of the respective U-shaped forming portions are not on the same straight line.

以上のように、この発明によれば、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置され、それぞれのハーフブリッジ回路に逆方向の磁界が印加される構造のため、一様な外部磁界を除去する効果がある。
また、それぞれの一次導体は、それぞれのU字形状部の対称軸が同一直線上にないように、同一平面内に並列配置したため、多相電流の検出時に他相の電流により発生する磁界の影響を低減し、より正確な電流を検出する効果がある。
さらにまた、U字形成部とともに一次導体を形成する非U字形成部が、U字形成部の面外方向へ伸長する構造としたため、少なくとも1枚の小型なセンサ基板で多相に対応でき、装置が小型となり、製造工程の簡略化ならびに低コスト化の効果がある。
As described above, according to the present invention, the first half-bridge circuit is arranged in one region divided with respect to the center line of the installation board by four magnetoresistive elements on the installation board, Since the second half bridge circuit is arranged in the other region and a magnetic field in the opposite direction is applied to each half bridge circuit, there is an effect of removing a uniform external magnetic field.
In addition, since each primary conductor is arranged in parallel in the same plane so that the symmetry axis of each U-shaped portion is not on the same straight line, the influence of the magnetic field generated by the current of the other phase when detecting the multiphase current And more accurate current detection.
Furthermore, since the non-U-shaped forming portion that forms the primary conductor together with the U-shaped forming portion has a structure that extends in the out-of-plane direction of the U-shaped forming portion, it can support multiple phases with at least one small sensor substrate, The apparatus is reduced in size, and the manufacturing process is simplified and the cost is reduced.

実施の形態1.
図1は、この発明の実施の形態1による多相電流の検出装置1の斜視図を示すもので、図2は図1の1相分の電流センサ平面図(XY面)、図3は図2におけるAA断面(XZ面)の一部を示す断面図である。図に示した多相電流の検出装置1は、例えば3相交流電流において、それぞれの相電流を相毎に設置した電流センサにて検出する例であり、1相分の電流センサ2は、電流検知デバイス部7、センサ回路部8を有するセンサ基板3と、一次導体4により構成され、さらに一次導体4はU字形成部5と非U字形成部6から構成される。なお図において、一次導体4の非U字形成部6は、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。
本実施の形態1では、各一次導体4はU字形成部5の面内に対し略垂直方向となるZ方向に曲げ加工等が施されて非U字形成部6を形成し、U字形成部5の近傍となるデバイス設置部11に1つの電流検知デバイス部7を配置する。
まず、電流検知デバイス部7の構成について説明する。
図5は電流検知デバイス部7の平面図を示すもので、設置基板16上において、設置基板16の中心線10によって2つの領域に分けられ、それぞれの領域に磁気抵抗効果素子13a、13b、磁気抵抗効果素子13c、13dが線対称に等しく配置される。ここで、磁気抵抗効果素子13の感磁方向はX方向とする。4つの磁気抵抗効果素子13a〜13dは、設置基板16の中心線10に対して相互に平行方向に配置され、磁気抵抗効果素子13a、13dは、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有するように、また、磁気抵抗効果素子13b、13cは、互いに逆方向の磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有するように、図には省略したが、磁気抵抗効果素子上にはバーバーポール電極構造が形成されている。なお、4つの磁気抵抗効果素子13はそれぞれ1本で構成したが、クランク形状に複数の磁気抵抗効果素子を接続し、線路長を長く構成してもよい。また、中心線10上の中心点に対して点対称に構成してもよい。接続電流線14は、4つの磁気抵抗効果素子13間を接続することにより、ブリッジ回路17を構成するものであり、接続エリア15は、外部とブリッジ回路17の入出力用の端子部として用いる。
Embodiment 1 FIG.
1 is a perspective view of a multiphase current detection apparatus 1 according to Embodiment 1 of the present invention. FIG. 2 is a plan view (XY plane) of a current sensor for one phase of FIG. 1, and FIG. 2 is a cross-sectional view showing a part of an AA cross section (XZ plane) in FIG. The multiphase current detection device 1 shown in the figure is an example in which each phase current is detected by a current sensor installed for each phase in, for example, a three-phase AC current. The sensor substrate 3 having the detection device unit 7 and the sensor circuit unit 8 and the primary conductor 4 are configured, and the primary conductor 4 is configured by a U-shaped forming unit 5 and a non-U-shaped forming unit 6. In the figure, the non-U-shaped portion 6 of the primary conductor 4 is shown only in the vicinity of the current sensor 2 for simplicity, but is actually extended and connected to a power source, various devices, and the like.
In the first embodiment, each primary conductor 4 is bent in the Z direction which is substantially perpendicular to the plane of the U-shaped portion 5 to form a non-U-shaped portion 6, thereby forming a U-shape. One current detection device unit 7 is arranged in the device installation unit 11 in the vicinity of the unit 5.
First, the configuration of the current detection device unit 7 will be described.
FIG. 5 shows a plan view of the current detection device unit 7, which is divided into two areas on the installation board 16 by the center line 10 of the installation board 16, and the magnetoresistive effect elements 13 a and 13 b, magnetic Resistive effect elements 13c and 13d are arranged equally in line symmetry. Here, the magnetosensitive direction of the magnetoresistive element 13 is the X direction. The four magnetoresistive effect elements 13a to 13d are arranged in parallel to each other with respect to the center line 10 of the installation substrate 16, and the magnetoresistive effect elements 13a and 13d have a resistance value corresponding to an increase in the magnetic field in the opposite direction. The magnetoresistive effect elements 13b and 13c have a magnetoresistive effect characteristic in which the resistance value decreases together with an increase in the magnetic field in the opposite direction. Although omitted in FIG. 2, a barber pole electrode structure is formed on the magnetoresistive element. The four magnetoresistive effect elements 13 are each configured as one, but a plurality of magnetoresistive effect elements may be connected in a crank shape to increase the line length. Further, it may be configured symmetrically with respect to the center point on the center line 10. The connection current line 14 forms a bridge circuit 17 by connecting the four magnetoresistive effect elements 13, and the connection area 15 is used as an input / output terminal portion of the bridge circuit 17.

図6はこの発明の実施の形態1による1相分の電流センサ2の電流検知デバイス部7を示す構成概略図であり、図6において、4つの磁気抵抗効果素子13間を接続電流線14で接続することにより、磁気抵抗効果素子13a、13bの直列接続からなるハーフブリッジ回路(第1のハーフブリッジ回路)18aと、磁気抵抗効果素子13c、13dの直列接続からなるハーフブリッジ回路(第2のハーフブリッジ回路)18bとの並列接続からなるブリッジ回路17を構成するものである。
接続エリア(第1の接続エリア)15aは、ブリッジ回路17の磁気抵抗効果素子13a、13c間の接続電流線14に接続され、もう一方の接続エリア(第2の接続エリア)15bは、ブリッジ回路17の磁気抵抗効果素子13b、13d間の接続電流線14に接続されており、接続エリア15a、15bからブリッジ回路17に電圧が供給されるものである。接続エリア(第3の接続エリア)15cは、ブリッジ回路17の磁気抵抗効果素子13a、13b間の接続電流線14に接続され、もう一方の接続エリア(第4の接続エリア)15dは、ブリッジ回路17の磁気抵抗効果素子13c、13d間の接続電流線14に接続されており、接続エリア15c、15dからブリッジ回路17の出力電圧が検出されるものである。
FIG. 6 is a schematic configuration diagram showing the current detection device unit 7 of the current sensor 2 for one phase according to the first embodiment of the present invention. In FIG. By connecting, a half bridge circuit (first half bridge circuit) 18a composed of series connection of magnetoresistive effect elements 13a, 13b and a half bridge circuit (second second circuit composed of series connection of magnetoresistive effect elements 13c, 13d) A bridge circuit 17 comprising a parallel connection with a half bridge circuit) 18b is configured.
The connection area (first connection area) 15a is connected to the connection current line 14 between the magnetoresistance effect elements 13a and 13c of the bridge circuit 17, and the other connection area (second connection area) 15b is the bridge circuit. 17 is connected to a connection current line 14 between the magnetoresistive effect elements 13b and 13d, and a voltage is supplied to the bridge circuit 17 from the connection areas 15a and 15b. The connection area (third connection area) 15c is connected to the connection current line 14 between the magnetoresistive effect elements 13a and 13b of the bridge circuit 17, and the other connection area (fourth connection area) 15d is the bridge circuit. 17 is connected to the connection current line 14 between the magnetoresistive effect elements 13c and 13d, and the output voltage of the bridge circuit 17 is detected from the connection areas 15c and 15d.

なお、図5および図6には示していないが、設置基板16上の4つの磁気抵抗効果素子13a〜13dの上方、または下方、またはその両方に絶縁層を介して補償導電線19を配置し、ブリッジ回路17の出力電圧に基づいて、それらの補償導電線19に4つの磁気抵抗効果素子13の近傍に発生する磁界を打ち消すような電流を供給する磁気補償型の構成としてもよい。  Although not shown in FIGS. 5 and 6, the compensation conductive line 19 is disposed above or below the four magnetoresistive elements 13 a to 13 d on the installation substrate 16, or both through an insulating layer. A magnetic compensation type configuration may be employed in which a current that cancels out the magnetic field generated in the vicinity of the four magnetoresistive effect elements 13 is supplied to the compensation conductive lines 19 based on the output voltage of the bridge circuit 17.

次に、1相分の電流センサ2の全体構成について説明する。
図1に示すように、被測定電流を印加する各一次導体4の一部には、Z方向から見てU字の形状となるように1つのU字形成部5が形成される。なお本実施の形態1に示した図では、U字形状の底部の両脇部分が直角形状に構成されているが、電流検知デバイス部7にU字形成部5の両側から安定して逆方向の磁界が印加される構造であれば丸みを帯びた形状などでもよく、これに限るものではないが、安定して逆方向の磁界を印加するためにはU字形状が少なくとも電流検知デバイス部7の近傍において左右対称であることが望ましい。
図2に示すように、U字形成部5の対称軸、および電流検知デバイス部7の中心線10が略一致するようにセンサ基板3はU字形成部5の上方側に設置されている。本実施の形態においては、センサ基板3をU字形成部5の上方側に設置した例を示したが、設置位置は上方側に限るものではなく、下方側、つまり図1における手前側に設置してもよい。ただし1枚のセンサ基板にて多相検出に対応するためには、設置位置をいずれか一方の側に固定するのが望ましい。
電流検知デバイス部7の設置位置(特にZ方向)は、磁気抵抗効果素子13に付与したい磁界、つまりは被測定電流の大きさに応じて決定するが、Z方向における1次導体4のU字形成部5の中央となる位置(図3破線O)では感磁方向の付与磁界が0となるため、中央からずらして設置するのがよい。本実施の形態では、電流検知デバイス部7はセンサ基板3を介してU字形成部5の上方に設置された例を示したがこれに限るものではなく、例えばセンサ基板3の下面側に設置し、1次導体4のU字形成部5に囲まれた内部に置いてもよい。また、特に一次導体4におけるU字形成部5の断面積は、印加する被測定電流値の大きさに応じて決定される。このような一次導体4は、例えば銅などの金属による直線状導体バー形状からの曲げ加工や鋳造等により作製される。
センサ基板3上には、電流検知デバイス部7とともにセンサ回路部8を配置する。センサ回路部8は、電流検知デバイス部7の接続エリア15a、15bにブリッジ回路17の電圧を供給すると共に、ブリッジ回路17の出力電圧を適度な増幅を施して出力するが、電流センサ2の外部への入出力には、外部端子9を利用する。これら全てを1枚のセンサ基板3で完結することで、製造工程の簡略化ならびに低コスト化、小型化が実現する。
センサ基板3と1次導体4は、特に図示しないが接着剤や取付部材等を用いて固定する。取付部材は特に材料を限定しないが、非磁性で経時劣化の少ないものが望ましく、絶縁性や耐圧の効果を上げるために全体、あるいは一部を樹脂モールドしてもよい。
Next, the overall configuration of the current sensor 2 for one phase will be described.
As shown in FIG. 1, one U-shaped forming portion 5 is formed on a part of each primary conductor 4 to which a current to be measured is applied so as to have a U-shape when viewed from the Z direction. In the figure shown in the first embodiment, both side portions of the U-shaped bottom are formed in a right-angle shape, but the current detection device unit 7 is stably reversed from both sides of the U-shaped forming unit 5. However, the shape is not limited to this, and is not limited to this. In order to stably apply a magnetic field in the reverse direction, the U-shape is at least the current detection device unit 7. It is desirable that the image is symmetrical in the vicinity of.
As shown in FIG. 2, the sensor substrate 3 is installed on the upper side of the U-shaped forming part 5 so that the symmetry axis of the U-shaped forming part 5 and the center line 10 of the current detection device part 7 substantially coincide. In the present embodiment, an example in which the sensor substrate 3 is installed on the upper side of the U-shaped forming portion 5 has been shown. However, the installation position is not limited to the upper side, but is installed on the lower side, that is, the front side in FIG. May be. However, in order to support multiphase detection with one sensor substrate, it is desirable to fix the installation position on either side.
The installation position (especially in the Z direction) of the current detection device unit 7 is determined according to the magnetic field to be applied to the magnetoresistive effect element 13, that is, the magnitude of the current to be measured, but the U-shape of the primary conductor 4 in the Z direction. Since the applied magnetic field in the magnetosensitive direction is 0 at the center position of the forming portion 5 (broken line O in FIG. 3), it is preferable to displace it from the center. In the present embodiment, the example in which the current detection device unit 7 is installed above the U-shaped forming unit 5 via the sensor substrate 3 is shown, but the present invention is not limited to this. In addition, it may be placed inside the primary conductor 4 surrounded by the U-shaped portion 5. In particular, the cross-sectional area of the U-shaped portion 5 in the primary conductor 4 is determined according to the magnitude of the measured current value to be applied. Such a primary conductor 4 is produced, for example, by bending or casting from a linear conductor bar shape using a metal such as copper.
On the sensor substrate 3, the sensor circuit unit 8 is arranged together with the current detection device unit 7. The sensor circuit unit 8 supplies the voltage of the bridge circuit 17 to the connection areas 15a and 15b of the current detection device unit 7 and outputs the output voltage of the bridge circuit 17 with appropriate amplification. An external terminal 9 is used for input / output to / from. By completing all of these with a single sensor substrate 3, the manufacturing process can be simplified, and the cost and size can be reduced.
The sensor substrate 3 and the primary conductor 4 are fixed using an adhesive, a mounting member or the like, although not particularly shown. The mounting member is not particularly limited in material, but is preferably non-magnetic and less deteriorated with time, and may be entirely or partially resin-molded in order to increase the effect of insulation and pressure resistance.

次に、電流センサ2の動作について、図3、図4、図5により説明する。
一次導体4に被測定電流を印加すると、例えば第1のU字形成部5aaには電流の方向に対して図3の破線に示すように右回転の磁界が、また第2のU字形成部5abには電流の方向に対して図3の破線に示すように左回転の磁界が、印加される被測定電流の大きさに応じて発生する。図には簡単のために各1次導体あたり1本の磁束線によって発生磁界を示した。その結果、電流検知デバイス部7を図3に示すU字形成部の上方側に設置した場合、電流検知デバイス部7の右側に位置する磁気抵抗効果素子13c、13dには、図4に示す磁界ベクトル12が印加され、磁気抵抗効果素子13c、13dの感磁方向(X軸方向)には分解ベクトル12aが加わることになる。つまり、電流検知デバイス部7のXY面における、図5に示した磁気抵抗効果素子13a、13bには、中心線10より紙面左側の向きに磁界が加わり、磁気抵抗効果素子13c、13dには、中心線10より紙面右側の向きに磁界が加わる。
Next, the operation of the current sensor 2 will be described with reference to FIGS. 3, 4, and 5.
When a current to be measured is applied to the primary conductor 4, for example, the first U-shaped portion 5aa has a right-rotating magnetic field as shown by a broken line in FIG. In 5ab, a left-rotating magnetic field is generated according to the magnitude of the current to be measured as shown by the broken line in FIG. For the sake of simplicity, the generated magnetic field is shown by one magnetic flux line for each primary conductor. As a result, when the current detection device portion 7 is installed on the upper side of the U-shaped portion shown in FIG. 3, the magnetoresistive effect elements 13c and 13d located on the right side of the current detection device portion 7 have a magnetic field shown in FIG. The vector 12 is applied, and the decomposition vector 12a is added in the magnetosensitive direction (X-axis direction) of the magnetoresistive effect elements 13c and 13d. That is, a magnetic field is applied to the magnetoresistive effect elements 13a and 13b shown in FIG. 5 on the XY plane of the current detection device unit 7 in the direction of the left side of the drawing with respect to the center line 10, and the magnetoresistive effect elements 13c and 13d have A magnetic field is applied in the direction of the right side of the drawing from the center line 10.

なお、磁気抵抗効果素子13a、13dでは、共に磁界の増加に応じて抵抗値が増加すると共に、磁界の減少に応じて抵抗値が減少する磁気抵抗効果特性を有するように、また、磁気抵抗効果素子13b、13cでは、逆に磁界の増加に応じて抵抗値が減少すると共に、磁界の減少に応じて抵抗値が増加する磁気抵抗効果特性を有するように構成されている。
よって、一次導体4に流れる電流の増加に応じて磁気抵抗効果素子13a、13dの抵抗値が増加すると共に、磁気抵抗効果素子13b、13cの抵抗値が減少し、一次導体4に流れる電流の減少に応じて磁気抵抗効果素子13a、13dの抵抗値が減少すると共に、磁気抵抗効果素子13b、13cの抵抗値が増加する。このように、一次導体4に印加される被測定電流の大きさに応じてブリッジ回路17の平衡が崩れ、これが電流検知デバイス部7のブリッジ回路17の出力となる。
The magnetoresistive elements 13a and 13d both have a magnetoresistive effect characteristic in which the resistance value increases as the magnetic field increases and the resistance value decreases as the magnetic field decreases. In contrast, the elements 13b and 13c are configured to have a magnetoresistive effect characteristic in which the resistance value decreases as the magnetic field increases and the resistance value increases as the magnetic field decreases.
Therefore, as the current flowing through the primary conductor 4 increases, the resistance values of the magnetoresistive elements 13a and 13d increase, and the resistance values of the magnetoresistive elements 13b and 13c decrease, and the current flowing through the primary conductor 4 decreases. Accordingly, the resistance values of the magnetoresistive elements 13a and 13d decrease and the resistance values of the magnetoresistive elements 13b and 13c increase. In this way, the balance of the bridge circuit 17 is lost in accordance with the magnitude of the current to be measured applied to the primary conductor 4, and this becomes the output of the bridge circuit 17 of the current detection device unit 7.

さらに、電流センサ2の動作について、補償導電線19を有する場合について説明する。補償導電線19を配置した電流検知デバイス部7とセンサ回路部8の概略構成を図7に示す。
一次導体4に印加される被測定電流の大きさに応じてブリッジ回路17の平衡が崩れる。このとき、センサ回路部8に設置された増幅回路部(例えばオペアンプ20)では、電流検知デバイス部7の接続エリア15c、15dから検出される出力電圧に基づいて、磁気抵抗効果素子13a〜13d近傍に発生する磁界を打ち消すような電流(制御電流)を補償導電線19に供給する。具体的には接続エリア15c、15dの出力電圧が0になるように、制御電流の大きさを調整する。補償導電線19は、その制御電流の大きさに応じて4つの磁気抵抗効果素子13a〜13d近傍に発生する磁界、すなわち一次導体4に印加される被測定電流の大きさに応じた磁界を相殺するような磁界を発生する。
したがって、一次導体4に印加される被測定電流の大きさに応じたブリッジ回路17の平衡の崩れを、センサ回路部8から供給される制御電流により修復することができる。ゆえに、センサ回路部8から供給した制御電流の大きさが、一次導体4に印加される被測定電流の大きさに相関のある値として検出することができる。
なお、一次導体4以外において発生させた外部磁界(外乱磁界)は、磁気抵抗効果素子13a、13bと磁気抵抗効果素子13c、13d(ブリッジ回路17の左右の各ハーフブリッジ回路18)に同相の影響となるため相殺され、測定精度に影響を与えない。
Further, the operation of the current sensor 2 will be described in the case where the compensation conductive line 19 is provided. FIG. 7 shows a schematic configuration of the current detection device unit 7 and the sensor circuit unit 8 in which the compensation conductive wire 19 is arranged.
The balance of the bridge circuit 17 is lost depending on the magnitude of the current to be measured applied to the primary conductor 4. At this time, in the amplification circuit unit (for example, the operational amplifier 20) installed in the sensor circuit unit 8, based on the output voltage detected from the connection areas 15c and 15d of the current detection device unit 7, the vicinity of the magnetoresistive effect elements 13a to 13d A current (control current) that cancels the generated magnetic field is supplied to the compensation conductive line 19. Specifically, the magnitude of the control current is adjusted so that the output voltage of the connection areas 15c and 15d becomes zero. The compensating conductive line 19 cancels out the magnetic field generated in the vicinity of the four magnetoresistive elements 13a to 13d according to the magnitude of the control current, that is, the magnetic field according to the magnitude of the current to be measured applied to the primary conductor 4. Generate a magnetic field.
Therefore, the balance failure of the bridge circuit 17 according to the magnitude of the current to be measured applied to the primary conductor 4 can be repaired by the control current supplied from the sensor circuit unit 8. Therefore, the magnitude of the control current supplied from the sensor circuit unit 8 can be detected as a value correlated with the magnitude of the current to be measured applied to the primary conductor 4.
The external magnetic field (disturbance magnetic field) generated outside the primary conductor 4 has an in-phase influence on the magnetoresistive effect elements 13a and 13b and the magnetoresistive effect elements 13c and 13d (the left and right half bridge circuits 18 of the bridge circuit 17). Therefore, it is offset and does not affect the measurement accuracy.

次に各一次導体4a、4b、4cの設置構成について説明する。図8は、本実施の形態1における多相電流検出装置1の各一次導体4a、4b、4c平面図(XY面)を示すもので、U字形成部5a、5b、5cがXY平面内に並列配置され、かつ隣接するU字形成部の対称軸21が同一直線上にないように配置されている。図9は、本実施の形態1とは異なる多相電流検出装置の比較例であり、U字形成部5a、5b、5cがXY平面内に並列配置され、かつ隣接するU字形成部の対称軸21が同一直線上にあるように配置されている。図10は、本実施の形態1における多相電流検出装置1の変形例であり、U字形成部5a、5b、5cがXY平面内に配置され、かつ隣接するU字形成部の対称軸21が同一直線上にないように配置されている。図11は、本実施の形態1における多相電流検出装置1のさらに別の変形例であり、U字形成部5a、5b、5cがXY平面内に配置され、かつ各U字形成部の対称軸21が同一直線上にないように配置されている。
各一次導体4a、4b、4cに被測定電流が印加されたとき、U字形成部5a、5b、5cで発生し電流検知に関与する磁界はX方向磁界22であり、図8から図11の矢印に示すようにXY平面においてX方向となる。X方向磁界22は、センサ基板3上に設置された磁気抵抗効果素子(図には省略)の各ハーフブリッジ回路に逆方向となる感磁方向の磁界を印加する。これ以外の部位にて発生する磁界や外部磁界は、磁気抵抗効果素子の各ハーフブリッジ回路に一様な磁界として印加されるため、キャンセルされ、誤差として検出されることはない。しかしながら、磁気抵抗効果素子の各ハーフブリッジ回路に、逆方向となる感磁方向の磁界が外部磁界として印加された場合は、誤差として検出される。図9に示す設置構成では、隣接する他相にて発生したX方向磁界22による漏れ磁界が、磁気抵抗効果素子の各ハーフブリッジ回路に、逆方向となる感磁方向の磁界として作用するため、誤差として重畳されることになる。よって、図8または図10、図11のように、隣接する他相のU字形成部にて発生したX方向磁界22からの影響を低減するために、隣接するU字形成部の対称軸が同一直線上にないように対称軸を離間して各一次導体を設置すれば、他相の電流による誤差の低減が可能となる。示した構成例では、小型化には図8に示した構成が最も有利である。
なお、本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。また図8、図10、図11において、U字形成部5a、5b、5cをXY平面内に並列配置するものとしたが、XY平面外であっても構わない。
Next, the installation configuration of each primary conductor 4a, 4b, 4c will be described. FIG. 8 is a plan view (XY plane) of the primary conductors 4a, 4b, and 4c of the multiphase current detection device 1 according to the first embodiment, and the U-shaped forming portions 5a, 5b, and 5c are in the XY plane. They are arranged in parallel and arranged so that the symmetry axes 21 of the adjacent U-shaped forming portions are not on the same straight line. FIG. 9 is a comparative example of a multiphase current detection device different from the first embodiment, in which U-shaped forming portions 5a, 5b, and 5c are arranged in parallel in the XY plane, and the symmetry of adjacent U-shaped forming portions is symmetrical. It arrange | positions so that the axis | shaft 21 may exist on the same straight line. FIG. 10 shows a modification of the multiphase current detection device 1 according to the first embodiment, in which the U-shaped forming portions 5a, 5b, and 5c are arranged in the XY plane, and the symmetry axis 21 of the adjacent U-shaped forming portion. Are arranged on the same straight line. FIG. 11 shows still another modified example of the multiphase current detection device 1 according to the first embodiment, in which the U-shaped forming portions 5a, 5b, and 5c are arranged in the XY plane and the U-shaped forming portions are symmetrical. It arrange | positions so that the axis | shaft 21 may not be on the same straight line.
When a current to be measured is applied to each primary conductor 4a, 4b, 4c, the magnetic field generated in the U-shaped forming portions 5a, 5b, 5c and involved in current detection is the X-direction magnetic field 22, which is shown in FIGS. As indicated by the arrow, the direction is the X direction on the XY plane. The X-direction magnetic field 22 applies a magnetic field in the opposite direction to each half bridge circuit of a magnetoresistive effect element (not shown in the figure) installed on the sensor substrate 3. A magnetic field or an external magnetic field generated in a portion other than this is applied as a uniform magnetic field to each half-bridge circuit of the magnetoresistive effect element, so that it is canceled and is not detected as an error. However, when a magnetic field in the opposite direction is applied to each half bridge circuit of the magnetoresistive effect element as an external magnetic field, it is detected as an error. In the installation configuration shown in FIG. 9, the leakage magnetic field caused by the X-direction magnetic field 22 generated in the adjacent other phase acts on each half bridge circuit of the magnetoresistive effect element as a magnetic field in the opposite direction. It will be superimposed as an error. Therefore, as shown in FIG. 8, FIG. 10, and FIG. 11, in order to reduce the influence from the X-direction magnetic field 22 generated in the adjacent U-shaped forming portion of the other phase, the symmetry axis of the adjacent U-shaped forming portion is If the primary conductors are placed apart from each other so that they are not on the same straight line, errors due to currents in other phases can be reduced. In the configuration example shown, the configuration shown in FIG. 8 is most advantageous for downsizing.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases. 8, 10, and 11, the U-shaped portions 5 a, 5 b, and 5 c are arranged in parallel in the XY plane, but may be outside the XY plane.

以上のように、この実施の形態1によれば、設置基板上に4つの磁気抵抗効果素子で、設置基板の中心線に対して分けられた一方の領域に第1のハーフブリッジ回路が配置されると共に、他方の領域に第2のハーフブリッジ回路が配置され、それぞれのハーフブリッジ回路に逆方向の磁界が感磁方向に印加される構造のため、一様な外部磁界を除去することができる。  As described above, according to the first embodiment, the first half-bridge circuit is arranged in one region divided with respect to the center line of the installation board by four magnetoresistive elements on the installation board. In addition, the second half-bridge circuit is arranged in the other region, and a magnetic field in the opposite direction is applied to each half-bridge circuit in the magnetosensitive direction, so that a uniform external magnetic field can be removed. .

また、他相の一次導体から、磁界検出部となる磁気抵抗効果素子部の各ハーフブリッジ回路に逆方向となる感磁方向の磁界が印加されないように、隣接するU字形成部の対称軸が同一直線上にないように対称軸を離間する構成のため、他相の電流による磁界の影響を誤差として重畳することがなく、測定精度を高める効果がある。  In addition, the symmetrical axis of the adjacent U-shaped forming portion is set so that the magnetic field in the opposite direction is not applied from the primary conductor of the other phase to each half-bridge circuit of the magnetoresistive effect element portion serving as the magnetic field detecting portion. Since the symmetrical axes are separated so as not to be on the same straight line, the effect of the magnetic field due to the current of the other phase is not superimposed as an error, and the measurement accuracy is improved.

さらにまた、一次導体のU字形成部を横並びで設置できる構成のため、小型なセンサ基板1枚で多相に対応でき、且つ1枚のセンサ基板上に全ての電流検知デバイス部、センサ回路部が構成できるため、製造工程の簡略化ならびに低コスト化、小型化の効果がある。  Furthermore, since the U-shaped forming portions of the primary conductor can be installed side by side, a single small sensor substrate can support multiple phases, and all current detection device portions and sensor circuit portions can be provided on a single sensor substrate. Therefore, the manufacturing process can be simplified, the cost can be reduced, and the size can be reduced.

実施の形態2.
図12は、この発明の実施の形態2における多相電流検出装置1の各一次導体4a、4b、4cとセンサ基板3の平面図(XY面)を示すもので、図13は図12の側面図(YZ面)である。本実施の形態2は、各一次導体4a、4b、4cのU字形成部5a、5b、5cの対称軸21が同一面内にあり、かつ各一次導体に対して隣接するU字形成部5が同一平面上になく、Z方向で重ならないように各一次導体4a、4b、4cを設置したものである。
実施の形態2は、実施の形態1より各一次導体4a、4b、4c、およびセンサ基板3の配置構成を変更したものであり、その他の電流センサとしての構成で重複する部分は省略する。実施の形態1はXY面内において各一次導体4a、4b、4cのU字形成部5a、5b、5cを並列して設置したものであったが、実施の形態2は各一次導体4a、4b、4cのU字形成部5a、5b、5cの対称軸21が同一面内にあり、かつXY面外に各一次導体4a、4b、4cのU字形成部5a、5b、5cをずらして設置したものである。
Embodiment 2. FIG.
FIG. 12 is a plan view (XY plane) of the primary conductors 4a, 4b, 4c and the sensor substrate 3 of the multiphase current detection apparatus 1 according to Embodiment 2 of the present invention. FIG. 13 is a side view of FIG. It is a figure (YZ surface). In the second embodiment, the U-shaped portions 5a, 5b, and 5c of the primary conductors 4a, 4b, and 4c are in the same plane, and the U-shaped portions 5 that are adjacent to the primary conductors. Are not on the same plane, and the primary conductors 4a, 4b, and 4c are installed so as not to overlap in the Z direction.
In the second embodiment, the arrangement of the primary conductors 4a, 4b, 4c and the sensor substrate 3 is changed from that of the first embodiment, and the overlapping parts are omitted in the configuration as other current sensors. In the first embodiment, the U-shaped portions 5a, 5b, and 5c of the primary conductors 4a, 4b, and 4c are installed in parallel in the XY plane. However, in the second embodiment, the primary conductors 4a and 4b are arranged in parallel. 4c U-shaped forming portions 5a, 5b, 5c have a symmetry axis 21 in the same plane, and the U-shaped forming portions 5a, 5b, 5c of the primary conductors 4a, 4b, 4c are shifted and installed outside the XY plane. It is a thing.

実施の形態2における多相電流の検出装置1の全体構成について説明する。
各相に対応する3本の一次導体4a、4b、4cのU字形成部5a、5b、5cは、図12に示すようにZ軸方向から見たXY平面図において各対称軸21が一致するよう並列して設置するとともに、図13に示すようにYZ側面図においてXY平面外のZ方向にずらして配置され、U字形成部の対称軸21は同一面内にあるように構成される。実施の形態1においては、センサ基板3は、各U字形成部5a、5b、5cの上面、あるいは下面いずれに設置しても構わなかったが、実施の形態2においては、図13に示すように、センサ基板3はU字形成部5a、5cの下面、U字形成部5bの上面となる位置に設置するのが望ましく、このように設置することで、1枚の小型な基板で多相に対応することが可能となる。
各一次導体4a、4b、4cに被測定電流が印加されたとき、U字形成部5a、5b、5cで発生し電流検知に関与する磁界はX方向磁界22であり、図12の矢印に示すようにXY平面においてX方向となる。X方向磁界22は、センサ基板3上に設置された磁気抵抗効果素子(図には省略)の各ハーフブリッジ回路に逆方向となる感磁方向の磁界を印加する。これ以外の部位にて発生する磁界や外部磁界は、磁気抵抗効果素子の各ハーフブリッジ回路に一様な磁界として印加されるため、キャンセルされ、誤差として検出されることはない。しかしながら、磁気抵抗効果素子の各ハーフブリッジ回路に、逆方向となる感磁方向の磁界が外部磁界として印加された場合は、誤差として検出される。図9に示す設置構成では、隣接する他相にて発生したX方向磁界22による漏れ磁界が、磁気抵抗効果素子の各ハーフブリッジ回路に、逆方向となる感磁方向の磁界として作用するため、誤差として重畳された。隣接する他相のU字形成部にて発生したX方向磁界22からの影響を低減するために、図12、図13に示したように、隣接するU字形成部の対称軸が同一平面内にあり、かつ隣接するU字形成部が同一平面内になく、Z方向で重ならないように各一次導体を設置すれば、他相の電流による誤差の低減が可能となる。
なお、本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。また、本実施の形態においては、U字形成部5bをZ方向の負側にずらした例を示したが、正側にずらして設置しても構わない。その際のセンサ基板3はU字形成部5a、5cの上面、U字形成部5bの下面となる位置に設置するのが望ましい。
The overall configuration of multiphase current detection apparatus 1 in the second embodiment will be described.
The U-shaped forming portions 5a, 5b, and 5c of the three primary conductors 4a, 4b, and 4c corresponding to each phase have the same symmetry axes 21 in the XY plan view as seen from the Z-axis direction as shown in FIG. As shown in FIG. 13, the Y-axis side view is arranged so as to be shifted in the Z direction outside the XY plane, and the symmetry axis 21 of the U-shaped portion is configured to be in the same plane. In the first embodiment, the sensor substrate 3 may be installed on either the upper surface or the lower surface of each U-shaped forming portion 5a, 5b, 5c, but in the second embodiment, as shown in FIG. In addition, it is desirable to install the sensor substrate 3 at a position which is the lower surface of the U-shaped forming portions 5a and 5c and the upper surface of the U-shaped forming portion 5b. It becomes possible to cope with.
When a current to be measured is applied to each primary conductor 4a, 4b, 4c, the magnetic field generated in the U-shaped forming portions 5a, 5b, 5c and involved in current detection is the X-direction magnetic field 22, and is indicated by an arrow in FIG. Thus, the X direction is in the XY plane. The X-direction magnetic field 22 applies a magnetic field in the opposite direction to each half bridge circuit of a magnetoresistive effect element (not shown in the figure) installed on the sensor substrate 3. A magnetic field or an external magnetic field generated in a portion other than this is applied as a uniform magnetic field to each half-bridge circuit of the magnetoresistive effect element, so that it is canceled and is not detected as an error. However, when a magnetic field in the opposite direction is applied to each half bridge circuit of the magnetoresistive effect element as an external magnetic field, it is detected as an error. In the installation configuration shown in FIG. 9, the leakage magnetic field caused by the X-direction magnetic field 22 generated in the adjacent other phase acts on each half bridge circuit of the magnetoresistive effect element as a magnetic field in the opposite direction. Overlaid as an error. In order to reduce the influence from the X-direction magnetic field 22 generated in the adjacent U-shaped portion of the other phase, as shown in FIGS. 12 and 13, the symmetry axis of the adjacent U-shaped portion is in the same plane. If the primary conductors are installed so that adjacent U-shaped portions are not in the same plane and do not overlap in the Z direction, errors due to currents in other phases can be reduced.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases. Moreover, in this Embodiment, although the example which shifted the U-shaped formation part 5b to the negative side of the Z direction was shown, you may shift and install in the positive side. In that case, it is desirable that the sensor substrate 3 is installed at a position that becomes the upper surface of the U-shaped portions 5a and 5c and the lower surface of the U-shaped portion 5b.

以上のように、この実施の形態2によれば、他相の一次導体から磁界検出部となる磁気抵抗効果素子の各ハーフブリッジ回路に逆方向となる感磁方向の磁界が印加されないように、隣接するU字形成部の対称軸が同一平面内にあり、かつ隣接するU字形成部が同一平面内になく、Z方向で重ならないように各一次導体を設置する構成のため、他相の電流による磁界の影響を誤差として重畳することがなく、測定精度を高める効果がある。  As described above, according to the second embodiment, the magnetic field in the opposite direction is not applied from the primary conductor of the other phase to each half bridge circuit of the magnetoresistive effect element serving as the magnetic field detector. Due to the configuration in which the primary conductors are installed so that the symmetry axes of the adjacent U-shaped portions are in the same plane and the adjacent U-shaped portions are not in the same plane and do not overlap in the Z direction, The effect of the magnetic field due to the current is not superimposed as an error, and the measurement accuracy is improved.

また、一次導体のU字形成部を縦並びで設置できる構成のため、小型なセンサ基板1枚で多相に対応でき、かつ1枚のセンサ基板上に全ての電流検知デバイス部、センサ回路部を構成できるため、製造工程の簡略化ならびに低コスト化、小型化の効果がある。  In addition, because the U-shaped forming portions of the primary conductor can be installed vertically, it is possible to handle multiple phases with a single small sensor substrate, and all current detection device portions and sensor circuit portions on one sensor substrate. Therefore, the manufacturing process can be simplified, the cost can be reduced, and the size can be reduced.

実施の形態3.
図14は、この発明の実施の形態1による多相電流の検出装置1の斜視図を示すもので、図15は図14の1相分の電流センサの一部を示す断面図(XZ面)、図16は図15における電流検知デバイス部7片側(右側)近傍の磁界ベクトルと分解ベクトルの一例を示す図である。図に示した多相電流の検出装置1は、例えば3相交流電流において、それぞれの相電流を相毎に設置した電流センサにて検出する例であり、1相分の電流センサ2は、電流検知デバイス部7、センサ回路部8を有するセンサ基板3と、一次導体4により構成され、さらに一次導体4はU字形成部5と非U字形成部6から構成される。なお図において、一次導体4の非U字形成部6は、簡単のため電流センサ2の近傍のみを示したが、実際は延長され電源や各種装置等に接続されるものとする。
本実施の形態3では、各一次導体4はU字形成部5の面内に対し略垂直方向となるZ方向に曲げ加工等が施され、隣接相にてU字形成部5に流れる電流の方向が逆方向となるように伸長する非U字形成部6を形成し、U字形成部5の近傍となるデバイス設置部11に1つの電流検知デバイス部7を配置したものである。
実施の形態3は、実施の形態1より各一次導体4a、4b、4cにおける非U字形成部6の伸長方向が隣接相にてU字形成部5に流れる電流の方向が逆方向となるように変更したものであり、その他の電流センサとしての構成で重複する部分は省略する。
実施の形態1は、隣接相おいてU字形成部5に流れる電流の方向が同方向となるように、非U字形成部6を伸長したものであったが、実施の形態3は、隣接相においてU字形成部5に流れる電流の方向が、逆方向となるように、非U字形成部6を伸長したものである。ただし、各一次導体4に印加する相電流の入力端は、Z軸方向の正側(6aa、6bb、6ca)、あるいは負側(6ab、6ba、6cb)に統一するものとし、相間での混在はないものとする。
Embodiment 3 FIG.
FIG. 14 is a perspective view of the multiphase current detection apparatus 1 according to Embodiment 1 of the present invention, and FIG. 15 is a cross-sectional view (XZ plane) showing a part of the current sensor for one phase of FIG. 16 is a diagram showing an example of a magnetic field vector and a decomposition vector near one side (right side) of the current detection device unit 7 in FIG. The multiphase current detection device 1 shown in the figure is an example in which each phase current is detected by a current sensor installed for each phase in, for example, a three-phase AC current. The sensor substrate 3 having the detection device unit 7 and the sensor circuit unit 8 and the primary conductor 4 are configured, and the primary conductor 4 is configured by a U-shaped forming unit 5 and a non-U-shaped forming unit 6. In the figure, the non-U-shaped portion 6 of the primary conductor 4 is shown only in the vicinity of the current sensor 2 for simplicity, but is actually extended and connected to a power source, various devices, and the like.
In the third embodiment, each primary conductor 4 is bent in the Z direction, which is substantially perpendicular to the surface of the U-shaped portion 5, and the current flowing through the U-shaped portion 5 in the adjacent phase is measured. A non-U-shaped forming part 6 is formed so as to extend in the opposite direction, and one current detection device part 7 is arranged in a device setting part 11 in the vicinity of the U-shaped forming part 5.
In the third embodiment, the extension direction of the non-U-shaped portion 6 in each primary conductor 4a, 4b, 4c is opposite to that of the first embodiment in the direction of the current flowing in the U-shaped portion 5 in the adjacent phase. The redundant part is omitted in the configuration as the other current sensor.
In the first embodiment, the non-U-shaped forming portion 6 is extended so that the direction of the current flowing through the U-shaped forming portion 5 in the adjacent phase is the same direction. The non-U-shaped forming part 6 is extended so that the direction of the current flowing through the U-shaped forming part 5 in the phase is opposite. However, the input terminal of the phase current applied to each primary conductor 4 shall be unified to the positive side (6aa, 6bb, 6ca) or the negative side (6ab, 6ba, 6cb) in the Z-axis direction, and mixed between the phases. Shall not.

実施の形態3における電流センサ2の動作について、図15、図16により説明する。なお、電流検知デバイス部7の平面図は図5を用いる。
各一次導体4に被測定電流を印加すると、例えば第1のU字形成部5aaには電流の方向に対して図15の一方の破線に示すように右回転の磁界が、また第2のU字形成部5abには電流の方向に対して図15のもう一方の破線に示すように左回転の磁界が、印加される被測定電流の大きさに応じて発生する。図には簡単のために各U字形成部あたり1本の磁束線によって発生磁界を示した。その結果、電流検知デバイス部7を図15に示すU字部上方側に設置した場合、電流検知デバイス部7の右側に位置する磁気抵抗効果素子(図5:13c、13d)には、図16に示す磁界ベクトル12が印加され、それらの磁気抵抗効果素子の感磁方向(X軸方向)には分解ベクトル12aが加わることになる。つまり、電流検知デバイス部7のXY面における、図5に示した磁気抵抗効果素子13a、13bには、中心線10より紙面左側の向きに磁界が加わり、磁気抵抗効果素子13c、13dには、中心線10より紙面右側の向きに磁界が加わる。
実施の形態3における発生磁界の特徴は、横方向、つまりX方向に長軸を有する楕円形となることである。これは隣接する他相のU字形成部に流れる電流の方向によって決まるものであり、実施の形態3のようにそれぞれのU字形成部に逆方向の電流が流れる場合は、相間で互いに引き合うように磁束線が形成されるため、図15に示した横方向に伸長した楕円形となる。
一方、実施の形態1における発生磁界は、図3に示したように縦方向、つまりY方向に長軸を有する楕円形であったが、これは相間で反発するように磁束線が形成されるために生じたものである。
この結果、実施の形態1と実施の形態3において、印加された磁界ベクトル12の大きさが同等であっても、方向が異なるため、磁気抵抗効果素子の感磁方向(X軸方向)に加わる分解ベクトル12aの大きさが異なることになる。よって、センサ基板、電流検知デバイス部や一次導体の位置関係、および印加する被測定電流値等を変えることなく、磁気抵抗効果素子の感磁方向に加わる磁界が増加し、感磁方向ではないZ軸方向の磁界を低減することによって、SNの改善が可能となる。
なお、本実施の形態においては、三相交流の電流検出例について示したが、三相に限らず、さらに複数相、複数の一次導体を設置してもよい。
The operation of the current sensor 2 in the third embodiment will be described with reference to FIGS. Note that FIG. 5 is used as a plan view of the current detection device unit 7.
When a current to be measured is applied to each primary conductor 4, for example, the first U-shaped portion 5aa has a right-rotating magnetic field as shown by one broken line in FIG. As shown by the other broken line in FIG. 15, a left-rotating magnetic field is generated in the character forming portion 5ab in accordance with the magnitude of the current to be measured. For the sake of simplicity, the generated magnetic field is shown by one magnetic flux line for each U-shaped portion. As a result, when the current detection device unit 7 is installed on the upper side of the U-shaped portion shown in FIG. 15, the magnetoresistive effect element (FIG. 5: 13c, 13d) located on the right side of the current detection device unit 7 has FIG. The resolving vector 12a is applied in the magnetosensitive direction (X-axis direction) of these magnetoresistive elements. That is, a magnetic field is applied to the magnetoresistive effect elements 13a and 13b shown in FIG. 5 on the XY plane of the current detection device unit 7 in the direction of the left side of the drawing with respect to the center line 10, and the magnetoresistive effect elements 13c and 13d have A magnetic field is applied in the direction of the right side of the drawing from the center line 10.
The feature of the generated magnetic field in the third embodiment is that it becomes an ellipse having a major axis in the lateral direction, that is, the X direction. This is determined by the direction of the current flowing in the U-shaped forming portions of the adjacent other phases, and when a current in the reverse direction flows in each U-shaped forming portion as in the third embodiment, the phases attract each other. Since the magnetic flux lines are formed in the shape, the elliptical shape extending in the lateral direction shown in FIG. 15 is formed.
On the other hand, the magnetic field generated in the first embodiment is an ellipse having a major axis in the vertical direction, that is, the Y direction as shown in FIG. 3, but this forms magnetic flux lines so as to repel each other. Because of this.
As a result, in the first embodiment and the third embodiment, even if the applied magnetic field vector 12 is the same size, the direction is different, so that it is applied in the magnetosensitive direction (X-axis direction) of the magnetoresistive effect element. The size of the decomposition vector 12a is different. Therefore, the magnetic field applied to the magnetosensitive direction of the magnetoresistive element increases without changing the positional relationship between the sensor substrate, the current detection device unit and the primary conductor, and the measured current value to be applied. The SN can be improved by reducing the axial magnetic field.
In the present embodiment, an example of detecting the current of a three-phase alternating current has been described. However, the present invention is not limited to three phases, and a plurality of primary conductors may be installed in a plurality of phases.

以上のように、この実施の形態3によれば、隣接相においてU字形成部5に流れる電流の方向が、逆方向となるように、非U字形成部6を伸長した構成のため、センサ基板、電流検知デバイス部や一次導体の位置関係、および印加する被測定電流値等を変えることなく、容易に磁気抵抗効果素子の感磁方向に加わる磁界が増加でき、SNを改善する効果がある。  As described above, according to the third embodiment, since the non-U-shaped portion 6 is extended so that the direction of the current flowing through the U-shaped portion 5 in the adjacent phase is opposite, the sensor The magnetic field applied in the magnetosensitive direction of the magnetoresistive effect element can be easily increased without changing the positional relationship between the substrate, the current detection device section and the primary conductor, and the measured current value to be applied, thereby improving the SN. .

実施の形態4.
図17は、この発明の実施の形態4による多相電流の検出装置1の斜視図を示すもので、図には主たる構成要素のセンサ基板3と、U字形成部5と非U字形成部6から構成される一次導体4のみを示した。なお図において、一次導体4の非U字形成部6は、簡単のためセンサ基板3の近傍のみを示したが、実際は電源や各種装置に接続される等の処理が施されるものとする。
本実施の形態4では、U字形成部5の面内に対し略垂直でかつ同方向となるZ方向に曲げ加工等を施すことで、各一次導体4の非U字形成部6を形成したものであり、その他の電流センサとしての構成で重複する部分は省略する。実施の形態1における各一次導体4の非U字形成部6は、U字形成部5の面内に対し略垂直でかつ逆方向となるZ方向に曲げ加工等が施されたものであったが、実施の形態4の非U字形成部6は、U字形成部5の面内に対し略垂直でかつ同方向となるZ方向に曲げ加工等が施されたものである。
Embodiment 4 FIG.
FIG. 17 shows a perspective view of a multiphase current detection apparatus 1 according to Embodiment 4 of the present invention. In the figure, the sensor board 3 of the main components, a U-shaped part 5 and a non-U-shaped part are shown. Only the primary conductor 4 composed of 6 is shown. In the figure, the non-U-shaped portion 6 of the primary conductor 4 is shown only in the vicinity of the sensor substrate 3 for simplicity, but it is assumed that processing such as connection to a power source and various devices is actually performed.
In the fourth embodiment, the non-U-shaped portions 6 of the respective primary conductors 4 are formed by bending or the like in the Z direction that is substantially perpendicular to the in-plane of the U-shaped portion 5 and the same direction. Therefore, the overlapping parts in the configuration as other current sensors are omitted. The non-U-shaped forming portion 6 of each primary conductor 4 in Embodiment 1 was subjected to bending or the like in the Z direction that is substantially perpendicular to the in-plane of the U-shaped forming portion 5 and in the opposite direction. However, the non-U-shaped forming portion 6 of the fourth embodiment is subjected to bending or the like in the Z direction that is substantially perpendicular to the in-plane of the U-shaped forming portion 5.

実施の形態4における多相電流の検出装置1の全体構成について説明する。実施の形態1から3において、一次導体4は全て一方向(ここではZ方向)に伸長する構成であり、その途中に電流センサ2が挿入される配置であった。一方、本実施の形態4は、一次導体4の入出力端が一方向に伸長せず、同一側にまとめて配置される場合の、多相電流の検出装置1における一次導体4の構成例を示したものである。
電流センサを設置する各種装置等においては、例えば端子台の端子部分に直接電流センサの設置を要求される場合もあり、実施の形態1から3のような一方向に伸長する一次導体を有した電流センサ構成では、小型化に向かないケースがあった。本実施の形態によれば、入出力端が片側にまとめて配置されても小型で性能を低下させることなく、多相電流の検出装置を構成することが可能となる。
なお本実施の形態においては、センサ基板3をU字形成部5の上方側に設置した例を示したが、設置位置は上方側に限るものではなく、下方側、つまり図17における手前側に設置してもよい。ただし1枚のセンサ基板にて多相検出に対応するためには、設置位置をいずれか一方の側に固定するのが望ましい。
The overall configuration of multiphase current detection apparatus 1 according to Embodiment 4 will be described. In the first to third embodiments, the primary conductors 4 are all configured to extend in one direction (here, the Z direction), and the current sensor 2 is inserted in the middle thereof. On the other hand, the fourth embodiment is a configuration example of the primary conductor 4 in the multiphase current detection device 1 when the input / output ends of the primary conductor 4 do not extend in one direction and are arranged together on the same side. It is shown.
In various devices in which a current sensor is installed, for example, it may be required to directly install a current sensor at a terminal portion of a terminal block, and has a primary conductor extending in one direction as in the first to third embodiments. There were cases where the current sensor configuration was not suitable for miniaturization. According to the present embodiment, it is possible to configure a multiphase current detection device without reducing the performance even if the input / output terminals are collectively arranged on one side.
In the present embodiment, an example in which the sensor substrate 3 is installed on the upper side of the U-shaped forming portion 5 is shown, but the installation position is not limited to the upper side, but on the lower side, that is, on the near side in FIG. May be installed. However, in order to support multiphase detection with one sensor substrate, it is desirable to fix the installation position on either side.

以上のように、この実施の形態4によれば、各非U字形成部6は、U字形成部5の面内に対し略垂直でかつ同方向となるZ方向に曲げ加工等を施した構成のため、一次導体4の入出力端を同一側にまとめて設置することを要求された場合も、測定精度を劣化することなく、小型なまま対応できる効果がある。  As described above, according to the fourth embodiment, each non-U-shaped forming portion 6 is subjected to bending or the like in the Z direction which is substantially perpendicular to the U-shaped forming portion 5 and in the same direction. Due to the configuration, even when it is required to install the input and output ends of the primary conductor 4 together on the same side, there is an effect that the measurement accuracy can be kept small without degrading the measurement accuracy.

この発明の実施形態1による多相電流の検出装置の斜視図である。1 is a perspective view of a multiphase current detection device according to Embodiment 1 of the present invention. FIG. この発明の実施形態1による電流センサの平面図である。It is a top view of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの断面図である。It is sectional drawing of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの図3に示す電流検知デバイス部片側(右側)近傍の磁界ベクトルと分解ベクトルを示す図である。It is a figure which shows the magnetic field vector and decomposition | disassembly vector of the current detection device part one side (right side) vicinity shown in FIG. 3 of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの電流検知デバイス部を示す平面図である。It is a top view which shows the current detection device part of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による電流センサの電流検知デバイス部を示す構成概略図である。It is a structure schematic diagram which shows the current detection device part of the current sensor by Embodiment 1 of this invention. この発明の実施形態1による補償導電線を配置した構成図である。It is a block diagram which has arrange | positioned the compensation electrically conductive line by Embodiment 1 of this invention. この発明の実施形態1による多相電流の検出装置の各一次導体平面図である。It is each primary conductor top view of the detection apparatus of the multiphase current by Embodiment 1 of this invention. この発明の実施形態1とは異なる多相電流の検出装置の各一次導体平面図である。It is each primary conductor top view of the detection apparatus of the multiphase current different from Embodiment 1 of this invention. この発明の実施形態1による他の多相電流の検出装置の各一次導体平面図である。It is each primary conductor top view of the detection apparatus of the other multiphase current by Embodiment 1 of this invention. この発明の実施形態1によるさらに他の多相電流の検出装置の各一次導体平面図である。It is each primary conductor top view of the detection apparatus of the further another polyphase current by Embodiment 1 of this invention. この発明の実施形態2による多相電流の検出装置の平面図であるIt is a top view of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態2による多相電流の検出装置の断面図である。It is sectional drawing of the detection apparatus of the multiphase current by Embodiment 2 of this invention. この発明の実施形態3による多相電流の検出装置の斜視図である。It is a perspective view of the detection apparatus of the multiphase current by Embodiment 3 of this invention. この発明の実施形態3による電流センサの断面図である。It is sectional drawing of the current sensor by Embodiment 3 of this invention. この発明の実施形態3による電流センサの図15に示す電流検知デバイス部片側(右側)近傍の磁界ベクトルと分解ベクトルを示す図である。It is a figure which shows the magnetic field vector and decomposition | disassembly vector of the electric current sensor by Embodiment 3 of this invention near the electric current detection device part one side (right side) shown in FIG. この発明の実施形態4による多相電流の検出装置の斜視図である。It is a perspective view of the detection apparatus of the multiphase current by Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 多相電流の検出装置、2 電流センサ、3 センサ基板、4 一次導体、5 U字形成部、6 非U字形成部、7 電流検知デバイス部、8 センサ回路部、9 外部端子、10 中心線、11 デバイス設置部、12 磁界ベクトル、13 磁気抵抗効果素子、14 接続電流線、15 接続エリア、16 設置基板、17 ブリッジ回路、18 ハーフブリッジ回路、19 補償導電線、20 オペアンプ、21 対称軸、22 X方向磁界DESCRIPTION OF SYMBOLS 1 Detection apparatus of multiphase current, 2 Current sensor, 3 Sensor board, 4 Primary conductor, 5 U-shaped formation part, 6 Non-U-shaped formation part, 7 Current detection device part, 8 Sensor circuit part, 9 External terminal, 10 center Line, 11 Device installation part, 12 Magnetic field vector, 13 Magnetoresistive element, 14 Connection current line, 15 Connection area, 16 Installation board, 17 Bridge circuit, 18 Half bridge circuit, 19 Compensation conductive line, 20 Operational amplifier, 21 Axis of symmetry , 22 X direction magnetic field

Claims (8)

設置基板上に配置され、互いに逆方向の磁界の増加に応じて抵抗値が共に増加する磁気抵抗効果特性を有する第1および第4の磁気抵抗効果素子と、
上記設置基板上に配置され、互いに逆方向の上記磁界の増加に応じて抵抗値が共に減少する磁気抵抗効果特性を有する第2および第3の磁気抵抗効果素子と、
上記設置基板上に配置され、上記第1から第4の磁気抵抗効果素子を接続することにより、上記第1および第2の磁気抵抗効果素子による第1のハーフブリッジ回路、および上記第3および第4の磁気抵抗効果素子による第2のハーフブリッジ回路からなるブリッジ回路を構成する接続電流線とを備え、
上記設置基板の中心線に対して分けられた一方の領域に上記第1のハーフブリッジ回路が配置されると共に、他方の領域に上記第2のハーフブリッジ回路が配置された電流検知デバイスと、少なくとも1つのU字形成部を有する一次導体をそれぞれ複数個備え、
上記設置基板のそれぞれの中心線とU字形成部のそれぞれの対称軸が略一致するように、それぞれのU字形成部近傍に上記電流検知デバイスが配置されるとともに、一次導体の非U字形成部がU字形成部の面外方向へ伸長し、それぞれのU字形成部が同一平面内に並列配置され、かつ隣接するU字形成部の対称軸が同一直線上にないことを特徴とする多相電流の検出装置。
First and fourth magnetoresistive elements disposed on an installation substrate and having a magnetoresistive effect characteristic in which a resistance value increases together with an increase in a magnetic field opposite to each other;
Second and third magnetoresistive elements arranged on the installation substrate and having magnetoresistive effect characteristics in which the resistance value decreases together with the increase of the magnetic field in the opposite direction;
The first half bridge circuit by the first and second magnetoresistive effect elements, and the third and second magnetoresistive effect elements are arranged on the installation substrate and connected to the first to fourth magnetoresistive effect elements. A connection current line constituting a bridge circuit composed of a second half-bridge circuit by four magnetoresistive elements,
A current detection device in which the first half-bridge circuit is arranged in one region divided with respect to the center line of the installation board and the second half-bridge circuit is arranged in the other region; A plurality of primary conductors each having a single U-shaped portion;
The current detection device is arranged in the vicinity of each U-shaped portion so that the center line of each of the installation boards and each symmetry axis of the U-shaped portion substantially coincide with each other, and the non-U-shaped primary conductor is formed. The parts extend in the out-of-plane direction of the U-shaped part, the U-shaped parts are arranged in parallel in the same plane, and the symmetry axes of adjacent U-shaped parts are not on the same straight line. Multiphase current detector.
上記隣接するU字形成部が同一平面外に並列配置され、かつU字形成部の対称軸が同一平面内にあることを特徴とする多相電流の検出装置。  An apparatus for detecting a multiphase current, wherein the adjacent U-shaped forming portions are arranged in parallel outside the same plane, and the symmetry axis of the U-shaped forming portion is in the same plane. 上記隣接するU字形成部が同一平面外に並列配置され、かつ隣接するU字形成部の対称軸が同一平面外にあることを特徴とする多相電流の検出装置。  An apparatus for detecting a multiphase current, wherein the adjacent U-shaped portions are arranged in parallel outside the same plane, and the symmetry axis of the adjacent U-shaped portions is outside the same plane. 上記電流検知デバイスはセンサ回路部とともにセンサ基板に設置され、上記センサ基板はU字型形状を形成する上記一次導体に囲まれた領域内の少なくとも一箇所に、上記設置基板の中心線とU字形成部の対称軸が略一致するように配置されたことを特徴とする請求項1から3に記載の多相電流の検出装置。  The current detection device is installed on a sensor board together with a sensor circuit unit, and the sensor board is arranged at least at one location within a region surrounded by the primary conductor forming a U-shape and a U-shape with the center line of the installation board. The multiphase current detection device according to claim 1, wherein the symmetry axes of the forming portions are arranged to substantially coincide with each other. 上記一次導体において、U字形成部の面外方向へ伸長する非U字形成部の伸長方向が、各相において同方向であることを特徴とする請求項1から4に記載の多相電流の検出装置。  5. The multi-phase current according to claim 1, wherein in the primary conductor, a non-U-shaped portion extending in an out-of-plane direction of the U-shaped portion is in the same direction in each phase. Detection device. 上記一次導体において、U字形成部の面外方向へ伸長する非U字形成部の伸長方向が、各相において逆方向であることを特徴とする請求項1から4に記載の多相電流の検出装置。  5. The multiphase current according to claim 1, wherein in the primary conductor, the extending direction of the non-U-shaped forming portion extending in the out-of-plane direction of the U-shaped forming portion is opposite in each phase. Detection device. U字形成部に流れる被測定電流の方向が、隣接相に対して同方向であることを特徴とする請求項1から6に記載の多相電流の検出装置。  The multiphase current detection device according to claim 1, wherein the direction of the current to be measured flowing in the U-shaped forming portion is the same direction with respect to the adjacent phase. U字形成部に流れる被測定電流の方向が、隣接相に対して逆方向であることを特徴とする請求項1から6に記載の多相電流の検出装置。  The multiphase current detection device according to claim 1, wherein the direction of the current to be measured flowing in the U-shaped forming portion is opposite to the adjacent phase.
JP2008106205A 2008-03-17 2008-03-17 Multiphase current detector Pending JP2009222696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106205A JP2009222696A (en) 2008-03-17 2008-03-17 Multiphase current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106205A JP2009222696A (en) 2008-03-17 2008-03-17 Multiphase current detector

Publications (1)

Publication Number Publication Date
JP2009222696A true JP2009222696A (en) 2009-10-01

Family

ID=41239623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106205A Pending JP2009222696A (en) 2008-03-17 2008-03-17 Multiphase current detector

Country Status (1)

Country Link
JP (1) JP2009222696A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220952A (en) * 2010-04-14 2011-11-04 Toshiba Toko Meter Systems Co Ltd Current detection device and watt-hour meter using the same
WO2017212678A1 (en) * 2016-06-09 2017-12-14 株式会社村田製作所 Current sensor and current sensor module
CN110221112A (en) * 2019-06-04 2019-09-10 苏州汇川技术有限公司 Circuit board and power electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220952A (en) * 2010-04-14 2011-11-04 Toshiba Toko Meter Systems Co Ltd Current detection device and watt-hour meter using the same
WO2017212678A1 (en) * 2016-06-09 2017-12-14 株式会社村田製作所 Current sensor and current sensor module
JPWO2017212678A1 (en) * 2016-06-09 2018-11-22 株式会社村田製作所 Current sensor and current sensor module
US10955443B2 (en) 2016-06-09 2021-03-23 Murata Manufacturing Co., Ltd. Current sensor and current sensor module
CN110221112A (en) * 2019-06-04 2019-09-10 苏州汇川技术有限公司 Circuit board and power electronic equipment

Similar Documents

Publication Publication Date Title
JP5385996B2 (en) Current measuring device
JP5489145B1 (en) Current sensor
JP4833111B2 (en) Current detector
JP4893506B2 (en) Current sensor
JP2008039734A (en) Current sensor
JP2011080970A (en) Detection device of multiphase current
JP2020537141A (en) Current sensor assembly
JP5234459B2 (en) Current sensor
JP5641276B2 (en) Current sensor
JP2008216230A (en) Current sensor
JP2010266290A (en) Current detector
JP4853807B2 (en) Current sensing device
JP2005321206A (en) Current detection device
JP2009020085A (en) Multiphase current detector
JP2010014686A (en) Current detection device, its installation method, and current sensor
WO2014203862A2 (en) Current sensor
JP5630633B2 (en) Multiphase current detector
JP4766477B2 (en) Current detection device and power conversion device including the same
JP2008128915A (en) Amperometric device and semiconductor module equipped with amperometric function
JP2009168790A (en) Current sensor
JP2009222696A (en) Multiphase current detector
JP2009271044A (en) Current sensor
JP2010256316A (en) Current sensor
JP4873348B2 (en) Current sensor and current detection device
JP5057245B2 (en) Current sensor