WO2023209967A1 - Current sensor device, current sensor device array, and power converting device - Google Patents

Current sensor device, current sensor device array, and power converting device Download PDF

Info

Publication number
WO2023209967A1
WO2023209967A1 PCT/JP2022/019328 JP2022019328W WO2023209967A1 WO 2023209967 A1 WO2023209967 A1 WO 2023209967A1 JP 2022019328 W JP2022019328 W JP 2022019328W WO 2023209967 A1 WO2023209967 A1 WO 2023209967A1
Authority
WO
WIPO (PCT)
Prior art keywords
current sensor
magnetic
sensor device
axis direction
magnetic layer
Prior art date
Application number
PCT/JP2022/019328
Other languages
French (fr)
Japanese (ja)
Inventor
開斗 武島
宗樹 中田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/019328 priority Critical patent/WO2023209967A1/en
Priority to JP2022561564A priority patent/JPWO2023209967A1/ja
Publication of WO2023209967A1 publication Critical patent/WO2023209967A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present disclosure relates to a current sensor device, a current sensor device array, and a power conversion device.
  • an electric vehicle such as a hybrid vehicle (HV) includes a battery, a drive motor, and a power conversion device.
  • the power converter converts DC power of a battery into AC power for driving a drive motor.
  • Patent Document 1 describes a current sensor for measuring the current flowing between a power converter and a motor, including a bus bar serving as a current path, and a bus bar arranged in the thickness direction of the bus bar (A first shield plate and a second shield plate are arranged to sandwich them from each other in the Z-axis direction (hereinafter referred to as the Z-axis direction) to absorb external magnetic fields, and a magnetic detection element is arranged between the first shield plate and the bus bar.
  • a current sensor is disclosed.
  • the extending direction of the bus bar (hereinafter referred to as the Y-axis direction) is the same as the extending direction of each of the first magnetic shield plate and the second magnetic shield plate (hereinafter referred to as the X-axis direction).
  • the magnetic sensor detects the magnetic field component in the X-axis direction of the magnetic field generated by the current flowing through the bus bar.
  • the generated magnetic field is concentrated on the magnetic shield. Therefore, between the magnetic shield where the magnetic sensor is placed and the bus bar, as it approaches the magnetic shield in the Z-axis direction, the direction of the magnetic flux points in the Z-axis direction, and the intensity of the magnetic field component that can be detected by the magnetic sensor increases. Attenuate. As a result, the current sensor having the above configuration has a low signal/noise ratio (hereinafter referred to as S/N ratio).
  • the main object of the present disclosure is to provide a current sensor device and a current sensor device array that have a higher S/N ratio than the above-described current sensor, and a power conversion device that includes at least one of the current sensor device and the current sensor device array. It is in.
  • a current sensor device includes a first magnetic shield and a second magnetic shield arranged to sandwich a bus bar extending in a first direction and through which a current to be measured flows, and a gap between the bus bar and the first magnetic shield. and a magnetic sensor located in the magnetic sensor.
  • the first magnetic shield includes a laminate in which a first magnetic layer, a nonmagnetic layer, and a second magnetic layer are sequentially stacked in the second direction. The second magnetic layer is closer to the magnetic sensor than the first magnetic layer. Of the first magnetic layer and the second magnetic layer, only the second magnetic layer has a depletion portion that is magnetically depleted.
  • a current sensor device array includes a plurality of the above current sensor devices.
  • the plurality of current sensor devices are arranged in a third direction perpendicular to each of the first direction and the second direction.
  • a power conversion device includes a main conversion circuit that converts and outputs input power, and a control circuit that controls the main conversion circuit.
  • the control circuit includes at least one of the current sensor device and the current sensor device array, and controls the main conversion circuit based on the current value detected by the current sensor device or the current sensor device array.
  • a current sensor device and a current sensor device array that have a higher S/N ratio than the above-described current sensor, and a power conversion device that includes at least one of the current sensor device and the current sensor device array.
  • FIG. 1 is a perspective view of a current sensor device according to Embodiment 1.
  • FIG. FIG. 2 is a partial plan view of the current sensor device shown in FIG. 1; 2 is a sectional view taken along arrow III-III in FIG. 1.
  • FIG. FIG. 3 is a perspective view of a current sensor device according to a second embodiment.
  • FIG. 3 is a perspective view of a current sensor device according to a third embodiment.
  • FIG. 7 is a perspective view of a current sensor device array according to a fourth embodiment.
  • FIG. 7 is a perspective view showing a first modification of the current sensor device array according to the fourth embodiment.
  • FIG. 7 is a perspective view showing a second modification of the current sensor device array according to the fourth embodiment.
  • FIG. 3 is a block diagram of a power conversion device according to a fifth embodiment.
  • FIG. 7 is a perspective view of a power conversion device according to a fifth embodiment.
  • the magnetic field generated by the current to be measured by the current sensor device will be simply referred to as a magnetic field, and the other magnetic fields will be referred to as external magnetic fields.
  • Embodiment 1 ⁇ Configuration of current sensor device> As shown in FIGS. 1 to 3, current sensor device 100 according to the first embodiment is for measuring the current flowing through bus bar 30 in the Y-axis direction.
  • the current sensor device 100 includes a first magnetic shield 1, a second magnetic shield 2, and a magnetic sensor 3.
  • the first magnetic shield 1 and the second magnetic shield 2 are arranged to sandwich the bus bar 30 and the magnetic sensor 3 in the Z-axis direction.
  • the first magnetic shield 1 and the second magnetic shield 2 are provided to absorb external magnetic fields.
  • Bus bar 30 extends in the Y-axis direction.
  • the magnetic sensor 3 is arranged between the bus bar 30 and the first magnetic shield 1 in the Z-axis direction.
  • the first magnetic shield 1 includes a stacked body 10 in which a first magnetic layer 11, a nonmagnetic layer 12, and a second magnetic layer 13 are stacked in order in the Z-axis direction.
  • the first magnetic layer 11 has the upper surface of the first magnetic shield 1 .
  • the upper surface of the first magnetic shield 1 is a surface facing away from the bus bar 30 in the Z-axis direction.
  • the second magnetic layer 13 has a lower surface of the first magnetic shield 1 .
  • the lower surface of the first magnetic shield 1 is a surface facing the bus bar 30 side in the Z-axis direction.
  • the material constituting each of the first magnetic layer 11 and the second magnetic layer 13 may be any ferromagnetic material, but preferably a soft magnetic material.
  • the material constituting each of the first magnetic layer 11 and the second magnetic layer 13 is, for example, selected from the group consisting of iron (Fe), nickel (Ni), cobalt (Co), permalloy (Ni-Fe alloy), and ferrite. Contains at least one of the selected items.
  • the material constituting the non-magnetic layer 12 may be any non-magnetic material that does not exhibit ferromagnetism, and for example, at least one selected from the group consisting of aluminum (Al), copper (Cu), and epoxy resin. Including.
  • the nonmagnetic layer 12 has a surface joined to a surface of the first magnetic layer 11 located on the opposite side to the above-mentioned upper surface of the first magnetic shield 1, and a surface joined to the surface of the first magnetic layer 11 located on the opposite side to the above-mentioned lower surface of the first magnetic shield 1. It has a surface that is joined to the surface of the second magnetic layer 13.
  • the above-mentioned joining may be realized by any joining method, for example, joining by high-pressure press working, or joining by adhesive or solder.
  • the material constituting the nonmagnetic layer 12 is a nonmagnetic metal material such as aluminum (Al)
  • the stacked body of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 is By pressing, each of the first magnetic layer 11 and the second magnetic layer 13 and the nonmagnetic layer 12 can be directly bonded (different materials bonded).
  • the second magnetic layer 13 has a depletion portion 130 that is magnetically depleted and does not exhibit ferromagnetism. ing.
  • the depletion portion 130 is filled with air, for example. Note that the depletion portion 130 may be filled with a material forming the nonmagnetic layer 12.
  • the second magnetic layer 13 has a first portion 131 and a second portion 132 that are arranged to sandwich a depletion portion 130 in the X-axis direction.
  • the first portion 131 is, for example, separate from the second portion 132.
  • the length of the depletion portion 130 in the Y-axis direction is, for example, equal to the length of the first magnetic layer 11 in the Y-axis direction.
  • the length of the depletion portion 130 in the Z-axis direction is equal to the length (thickness) of the second magnetic layer 13 in the Z-axis direction.
  • the length of the depletion portion 130 in the X-axis direction is shorter than the length of each of the first portion 131 and the second portion 132 in the X-axis direction.
  • first portion 131 may be partially connected to the second portion 132.
  • the length of the depletion portion 130 in the Y-axis direction may be shorter than the length of the first magnetic layer 11 in the Y-axis direction.
  • the second magnetic layer 13 may have an annular shape surrounding the entire periphery of the depletion portion 130 when viewed from the Z-axis direction.
  • the length of the depletion portion 130 in the X-axis direction is shorter than the length of the bus bar 30 in the X-axis direction.
  • the center line C1 connecting the centers of the depletion portion 130 in the X-axis direction is, for example, a straight line.
  • the center line C1 overlaps with the center line of the first magnetic shield 1 in the X-axis direction.
  • each of the first magnetic layer 11, nonmagnetic layer 12, and second magnetic layer 13 has outer edge portions 11E, 12E, and 13E that overlap with each other. .
  • the end faces of each of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 extending along the Z-axis direction are continuous so as to form the same plane.
  • the lengths of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 in the X-axis direction are equal to each other.
  • the length of the second magnetic layer 13 in the X-axis direction is the sum of the lengths of the first portion 131, the depletion portion 130, and the second portion 132 in the X-axis direction.
  • the lengths of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 in the Y-axis direction are equal to each other.
  • the length of each of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 in the X-axis direction is It is longer than the length of each of the magnetic layers 13 in the Y-axis direction.
  • the first magnetic shield 1 when viewed from the Z-axis direction, has a longitudinal direction along the X-axis direction and a lateral direction along the Y-axis direction.
  • the length of the second magnetic shield 2 in the X-axis direction is longer than the length of the second magnetic shield 2 in the Y-axis direction.
  • the second magnetic shield 2 when viewed from the Z-axis direction, has a longitudinal direction along the X-axis direction and a lateral direction along the Y-axis direction.
  • the longitudinal direction of the second magnetic shield 2 is parallel to the longitudinal direction of the first magnetic shield 1.
  • the outer edge of the second magnetic shield 2 overlaps with the outer edge 1E of the first magnetic shield 1, for example, when viewed from the Z-axis direction.
  • the length of the second magnetic shield 2 in the X-axis direction is, for example, equal to the length of the first magnetic shield 1 in the X-axis direction.
  • the length of the second magnetic shield 2 in the Y-axis direction is, for example, equal to the length of the first magnetic shield 1 in the Y-axis direction.
  • the length of each of the first magnetic shield 1 and the second magnetic shield 2 in the X-axis direction is longer than the length (width) of the bus bar 30 in the X-axis direction.
  • the magnetic sensor 3 is provided to output a voltage output signal according to the strength (magnetic flux density) of the magnetic field component along the X-axis direction.
  • the magnetic sensor 3 may have any configuration as long as it has the above configuration, and is, for example, a Hall element or a magnetoresistive (MR) element.
  • the MR element uses, for example, an anisotropic magnetoresistive effect (AMR), a giant magnetoresistive effect (GMR), or a tunnel magnetoresistive effect (Tunnel magnetoresistive effect). Magnetic resistance such as Magneto Resistance Effect (TMR) This is an element that utilizes effects.
  • the magnetic sensor 3 has a magnetically sensitive portion 4.
  • the magnetically sensitive portion 4 is arranged such that, for example, the entirety thereof overlaps a part of the depletion portion 130.
  • the magnetically sensitive portion 4 is arranged so as to overlap the center line C1 of the depletion portion 130 when viewed from the Z-axis direction.
  • the center line passing through the center of the magnetically sensitive portion 4 in the X-axis direction is arranged to overlap with the center line C1 of the depletion portion 130 when viewed from the Z-axis direction. Note that it is sufficient that at least a portion of the magnetically sensitive portion 4 is arranged so as to overlap at least a portion of the depletion portion 130.
  • the length of the depletion portion 130 in the X-axis direction is equal to or longer than the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the X-axis direction.
  • the length of the depletion portion 130 in the X-axis direction is longer than, for example, the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the X-axis direction.
  • the length of the depletion portion 130 in the Y-axis direction is equal to or longer than the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the Y-axis direction.
  • the length of the depletion portion 130 in the Y-axis direction is longer than the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the Y-axis direction.
  • the center of the depletion portion 130 in the X-axis direction and the center of the magnetically sensitive portion 4 of the magnetic sensor 3 are arranged on a virtual straight line C2 extending along the Z-axis direction.
  • the virtual straight line C2 is perpendicular to the center line C1.
  • the bus bar 30 is arranged, for example, closer to the second magnetic shield 2 than at an intermediate position between the first magnetic shield 1 and the second magnetic shield 2 in the Z-axis direction.
  • the distance between the bus bar 30 and the first magnetic shield 1 in the Z-axis direction is longer than the distance between the bus bar 30 and the second magnetic shield 2 in the Z-axis direction, for example.
  • the material constituting the bus bar 30 may be any conductive material, and includes, for example, at least one of Al and Cu.
  • the magnetic sensing portion 4 of the magnetic sensor 3 is spaced from each of the first magnetic shield 1 and the bus bar 30 in the Z-axis direction.
  • the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the first magnetic shield 1 is, for example, the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the bus bar 30. shorter than the axial distance.
  • the magnetically sensitive portion 4 of the magnetic sensor 3 is arranged at an intermediate position between the first magnetic shield 1 and the second magnetic shield 2 in the Z-axis direction.
  • the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the first magnetic shield 1 is equal to or equal to the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the bus bar 30. It may be longer.
  • the magnetically sensitive portion 4 of the magnetic sensor 3 may be arranged closer to the first magnetic shield 1 than the intermediate position in the Z-axis direction. Further, the magnetically sensitive portion 4 of the magnetic sensor 3 may be arranged closer to the bus bar 30 than the intermediate position in the Z-axis direction.
  • a first magnetic shield 1, a second magnetic shield 2, and a magnetic sensor 3 are prepared.
  • the first magnetic shield 1 is constructed, for example, by forming an outer edge portion 1E on the laminate 10, and then removing a portion of the second magnetic layer 13 at a predetermined position with respect to the outer edge portion 1E to create a depletion portion 130. may be prepared by forming a.
  • the first magnetic shield 1 , the second magnetic shield 2 , and the magnetic sensor 3 are positioned with respect to the bus bar 30 . In this way, current sensor device 100 can be manufactured.
  • the first magnetic shield 1 includes a laminate in which the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 are laminated in order in the Z-axis direction, and the second magnetic The layer 13 is closer to the magnetic sensor 3 than the first magnetic layer 11, and of the first magnetic layer 11 and the second magnetic layer 13, only the second magnetic layer 13 is magnetically depleted near the magnetic sensor. It has a depletion part. Therefore, the magnetic flux passing through the first portion 131 of the second magnetic layer 13 is caused by the difference in magnetic permeability between the magnetic material forming the first portion 131 and the non-magnetic material (air) forming the depletion portion 130.
  • the magnetism leaks into the depletion portion 130 and is again concentrated in the second portion 132 of the second magnetic layer 13 . Therefore, in the current sensor device 100, the magnetic flux passing through the inside of the depletion part 130 and the region close to the depletion part 130 in the Z-axis direction is directed in the X-axis direction, so that the magnetic flux penetrating the magnetically sensitive part 4 of the magnetic sensor 3 is The magnetic flux passing between the first magnetic shield 1 and the bus bar 30 and the magnetic flux passing through each of the first portion 131 and the second portion 132 of the second magnetic layer 13 of the first magnetic shield 1 are superimposed. Become.
  • the magnetic flux passing through the first portion 131, the depletion portion 130, and the second portion 132 of the second magnetic layer 13 compensates for the attenuation of the intensity of the magnetic field component in the X-axis direction.
  • Ru the intensity change of the magnetic field component in the X-axis direction between the first magnetic shield 1 and the bus bar 30 of the current sensor device 100 becomes gentler than in the comparative example.
  • the S/N ratio of such current sensor device 100 is higher than that of a conventional current sensor.
  • the first magnetic shield 1 since the first magnetic shield 1 includes a laminate in which the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 are laminated in order in the Z-axis direction, the second magnetic layer 13
  • the first magnetic layer 11, which is magnetically separated from the first magnetic layer 11, can absorb an external magnetic field. Therefore, the S/N ratio of the current sensor device 100 is higher than that of a current sensor device including the first magnetic shield made of only the second magnetic layer 13.
  • the depletion portion 130 is arranged so as to overlap the magnetically sensitive portion 4 of the magnetic sensor 3 when viewed from the Z-axis direction, the depletion portion 130 is arranged so as not to overlap the magnetically sensitive portion 4 of the magnetic sensor 3.
  • the attenuation of the strength of the magnetic field component in the X-axis direction can be compensated for more effectively than when the magnetic field component is disposed in the X-axis direction. Therefore, the S/N ratio of the current sensor device 100 is higher than that of a current sensor device in which the depletion portion 130 is arranged so as not to overlap the magnetic sensing portion of the magnetic sensor 3.
  • the S/N ratio of the current sensor device 100 is higher than that of a current sensor device in which the depletion portion 130 is arranged so as not to overlap the magnetic sensing portion of the magnetic sensor 3.
  • the length (width) of the depletion portion 130 is longer than the length (width) of the magnetically sensitive portion 4 in the X-axis direction. Even if the relative position of the magnetically sensitive part 4 in the X-axis direction with respect to the depletion part 130 changes due to manufacturing errors, the S/N ratio will change due to the change in the relative position compared to the case where it is the same or shorter. Less affected by quantity.
  • each of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 has outer edge portions 11E, 12E, and 13E (outer edge portion 1E) that overlap with each other. ing.
  • Such outer edge portions 11E, 12E, and 13E may be formed at the same time by processing the laminate 10.
  • depletion portions 130 may be formed at predetermined positions relative to outer edges 11E, 12E, and 13E. Therefore, in the current sensor device 100, the relative position of the depletion portion 130 with respect to the outer edge portions 11E, 12E, and 13E is unlikely to change due to manufacturing errors or the like.
  • the current sensor device 101 according to the second embodiment has basically the same configuration as the current sensor device 100 according to the first embodiment, and has the same effects, but the second magnetic shield
  • the current sensor device 2 is different from the current sensor device 100 in that the current sensor device 2 has a pair of opposing portions 22 that are arranged to face each other with a bus bar 30 in between in the X-axis direction.
  • the differences between current sensor device 101 and current sensor device 100 will be mainly explained.
  • the second magnetic shield 2 is disposed on the opposite side of the first magnetic shield 1 in the Z-axis direction with respect to the bus bar 30, and has an extension portion 21 extending along the X-axis direction. It further has.
  • the extending portion 21 is provided, for example, so as to overlap the first magnetic shield 1 when viewed from the Z-axis direction.
  • One end and the other end of the extending portion 21 in the X-axis direction are arranged outside the bus bar 30 in the X-axis direction.
  • One of the pair of opposing portions 22 protrudes from one end of the extending portion 21 in the X-axis direction toward the first magnetic shield 1 side in the Z-axis direction.
  • the other of the pair of opposing portions 22 protrudes from the other end of the extension portion 21 in the X-axis direction toward the first magnetic shield 1 side in the Z-axis direction.
  • the second magnetic shield 2 is provided so as to surround the bus bar 30 on three sides when viewed from the Y-axis direction.
  • the outer shape of the second magnetic shield 2 is approximately U-shaped when viewed from the Y-axis direction.
  • each of the pair of opposing portions 22 in the X-axis direction is shorter than the length of each of the first portion 131 and second portion 132 of the second magnetic layer 13 in the X-axis direction.
  • Each end portion (hereinafter referred to as an upper end portion) of the pair of opposing portions 22 located on the first magnetic shield 1 side in the Z-axis direction is connected to each of the first portion 131 and the second portion 132 of the second magnetic layer 13. It is arranged so as to overlap in the Z-axis direction with a portion located outside of the center in the X-axis direction.
  • the length of the pair of opposing portions 22 in the Y-axis direction is, for example, equal to the length of the extending portion 21 in the Y-axis direction.
  • each of the pair of opposing portions 22 protrudes toward the first magnetic shield 1 side relative to the bus bar 30 in the Z-axis direction, for example.
  • the upper end portions of each of the pair of opposing portions 22 are arranged to sandwich the magnetic sensor 3, for example, in the X-axis direction.
  • the magnetic flux passing through the second magnetic shield 2 side with respect to the bus bar 30 also passes through the pair of opposing portions 22, and passes through the first magnetic shield 2 side with respect to the bus bar 30. Guided to the 1st side. Therefore, the magnetic flux penetrating the magnetically sensitive portion of the magnetic sensor 3 of the current sensor device 101 is guided toward the first magnetic shield 1 side with respect to the bus bar 30 by the pair of opposing portions 22, in addition to what has been explained regarding the current sensor device 100. Includes magnetic flux.
  • the strength of the magnetic field component along the X-axis direction between the first magnetic shield 1 of the current sensor device 101 and the bus bar 30 is larger than the intensity of the magnetic field component along the X-axis direction between the first magnetic shield 1 and the bus bar 30 of the current sensor device 101, and the magnetic flux that penetrates the magnetically sensitive portion of the magnetic sensor 3 of the current sensor device 101 is The density becomes higher than the magnetic flux density that penetrates the magnetically sensitive portion of the magnetic sensor 3 of the current sensor device 100. As a result, the S/N ratio of current sensor device 101 can be further increased than that of current sensor device 100.
  • the current sensor device 102 according to the third embodiment has basically the same configuration as the current sensor device 100 according to the first embodiment, and has the same effect, but the first magnetic shield
  • the current sensor device 100 differs from the current sensor device 100 in that it further includes a substrate 5 disposed between the magnetic sensor 1 and the magnetic sensor 3.
  • the differences between the current sensor device 102 and the current sensor device 100 will be mainly explained.
  • the substrate 5 has a first surface 5A on which the first magnetic shield 1 is mounted, and a second surface 5B located on the opposite side of the first surface 5A and on which the magnetic sensor 3 is mounted.
  • the method of mounting each of the first magnetic shield 1 and the magnetic sensor 3 is not particularly limited.
  • Each of the first magnetic shield 1 and the magnetic sensor 3 may be mounted on the substrate 5 using an adhesive or solder, or may be fitted into a through hole or a recess formed in the substrate 5 in advance. Good too.
  • the material constituting the substrate 5 may be any non-magnetic material, including, for example, epoxy resin.
  • the first magnetic shield 1 and the magnetic sensor 3 can be prepared as being mounted on the substrate 5, so it is assumed that the first magnetic shield 1 and the magnetic sensor 3 are separate members independent of each other. Compared to the case where the depletion portion 130 of the first magnetic shield 1 and the magnetically sensitive portion 4 of the magnetic sensor 3 are prepared and positioned as such, fluctuations in the relative positions of the depletion portion 130 of the first magnetic shield 1 and the magnetic sensing portion 4 of the magnetic sensor 3 can be suppressed.
  • a mounting area for the first magnetic shield 1 or the magnetic sensor 3 is printed by silk printing or the like, or a counterbore is formed in the mounting area. It's okay. In this way, displacement in the relative positions of the first magnetic shield 1 and the magnetic sensor 3 can be suppressed.
  • the attenuation of the strength of the magnetic field component in the X-axis direction can be compensated for as described above, but the degree of this effect depends on the relative position between the magnetic sensor 3 and the first magnetic shield 1. Increase or decrease depending on If the relative positional deviation between the first magnetic shield 1 and the magnetic sensor 3 is suppressed, variations in the above effects can be suppressed.
  • the current sensor device according to the third embodiment may have the same configuration as the current sensor device 101 according to the second embodiment, except for including the substrate 5.
  • the current sensor device array according to the fourth embodiment includes a plurality of current sensor devices according to the first embodiment.
  • each current sensor device is the current sensor device 100 according to the first embodiment, the current sensor device 101 according to the second embodiment, or the current sensor device according to the third embodiment. It has the same configuration as 102.
  • each current sensor device is provided to measure, for example, one alternating current in a multiphase alternating current.
  • the current sensor device array 110 shown in FIG. 6 includes three current sensor devices 100a, 100b, and 100c.
  • Each current sensor device 100a, 100b, 100c is provided to measure, for example, one phase of three-phase alternating current.
  • Single-phase alternating current flows through each of the bus bar 30a of the current sensor device 100a, the bus bar 30b of the current sensor device 100b, and the bus bar 30c of the current sensor device 100c.
  • the magnetic sensor 3a of the current sensor device 100a detects the magnetic field generated by the single-phase alternating current flowing through the bus bar 30a
  • the magnetic sensor 3b of the current sensor device 100b detects the magnetic field generated by the single-phase alternating current flowing through the bus bar 30b.
  • the sensors 3c each detect the magnetic field generated by the single-phase alternating current flowing through the bus bar 30c.
  • the current sensor devices 100a, 100b, and 100c are arranged, for example, in line in the X-axis direction. Note that the direction in which the current sensor devices 100a, 100b, and 100c are arranged is not particularly limited, and may be along the Z-axis direction, for example.
  • each of the current sensor devices 100a, 100b, and 100c has the same configuration as the current sensor device 100 according to the first embodiment.
  • Each current sensor device 100a, 100b, 100c includes a first magnetic shield 1 having a depletion portion 130. Therefore, the current sensor device array 110 provides the same effects as the current sensor device 100.
  • each current sensor device may be provided to measure single-layer alternating current flowing independently of each other.
  • each current sensor device in the current sensor device array is arranged side by side in the X-axis direction.
  • the first magnetic shield 1 has a plurality of depletion portions 130a, 130b, and 130c formed at intervals in the X-axis direction. Furthermore, the first magnetic shield 1 has a third portion 131a, a fourth portion 134, a fifth portion 135, and a sixth portion 132c.
  • the third portion 131a, the depletion portion 130a, and the fourth portion 134 have the same configuration as the first portion 131, the depletion portion 130, and the second portion 132 in the current sensor device 100.
  • the relationship between each of the third portion 131a and the fourth portion 134 and the depletion portion 130a is equivalent to the relationship between each of the first portion 131 and the second portion 132 and the depletion portion 130 in the current sensor device 100.
  • the fourth portion 134, the depletion portion 130b, and the fifth portion 135 have the same configuration as the first portion 131, the depletion portion 130, and the second portion 132 in the current sensor device 100.
  • the relationship between each of the fourth portion 134 and the fifth portion 135 and the depletion portion 130b is equivalent to the relationship between each of the first portion 131 and the second portion 132 and the depletion portion 130 in the current sensor device 100.
  • the fourth portion 134 corresponds to a member in which the second portion 132a for the depletion portion 130a and the first portion 131b for the depletion portion 130b shown in FIG. 6 are integrated.
  • the fifth portion 135, the depletion portion 130c, and the sixth portion 132c have the same configuration as the first portion 131, the depletion portion 130, and the second portion 132 in the current sensor device 100. That is, the relationship between each of the fifth portion 135 and the sixth portion 132c and the depletion portion 130c is equivalent to the relationship between each of the first portion 131 and the second portion 132 and the depletion portion 130 in the current sensor device 100. From a different perspective, the fifth portion 135 corresponds to a member in which the second portion 132b for the depletion portion 130c and the first portion 131c for the depletion portion 130c shown in FIG. 6 are integrated.
  • the current sensor device array 111 shown in FIG. 7 includes one each of the first magnetic shield 1 and the second magnetic shield 2, the current sensor device array 111 shown in FIG. Compared to the sensor device array 110, the number of parts and manufacturing steps can be reduced.
  • each current sensor device of the current sensor device array according to the fourth embodiment has the same configuration as the current sensor device 102 according to the third embodiment, and each current sensor device 102a , 102b, 102c may be configured as the same member.
  • the current sensor device array 112 shown in FIG. 8 includes one substrate 5, the number of parts and manufacturing steps can be reduced compared to a current sensor device array including a plurality of substrates 5.
  • each first magnetic shield 1 or magnetic sensor 3 may be printed on each of the first surface 5A and the second surface 5B of the substrate 5, or the mounting area may be printed on each of the first magnetic shield 1 or the magnetic sensor 3.
  • a counterbore may be formed. In this way, the relative positional deviation between each first magnetic shield 1 and each magnetic sensor 3 can be suppressed.
  • the attenuation of the strength of the magnetic field component in the X-axis direction can be compensated for as described above, but the degree of this effect depends on the relative position between the magnetic sensor 3 and the first magnetic shield 1. Increase or decrease depending on If the relative positional deviation between the first magnetic shield 1 and the magnetic sensor 3 is suppressed, variations in the above effects can be suppressed.
  • a power conversion device 200 according to the fifth embodiment is a power conversion device in which at least one of the current sensor devices according to the first to third embodiments and the current sensor device array according to the fourth embodiment is applied.
  • Power conversion device 200 according to Embodiment 5 includes a main conversion circuit that converts and outputs input power, and a control circuit that controls the main conversion circuit. The control circuit controls the main conversion circuit based on the current value detected by the current sensor device according to the first to third embodiments or the current sensor device array according to the fourth embodiment.
  • Embodiment 5 is not limited to a specific power conversion device, a case will be described below as Embodiment 5 in which the present disclosure is applied to a three-phase inverter.
  • FIG. 9 is a block diagram showing the configuration of a power conversion system to which the power conversion device according to Embodiment 5 is applied.
  • the power conversion system shown in FIG. 9 is composed of a power source 300, a power conversion device 200, and a load 400.
  • Power supply 300 is a DC power supply and supplies DC power to power conversion device 200.
  • the power source 300 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. Good too.
  • the power supply 300 may be configured with a DC/DC converter that converts DC power output from a DC system into predetermined power.
  • the power conversion device 200 is a three-phase inverter connected between a power source 300 and a load 400, converts DC power supplied from the power source 300 into AC power, and supplies AC power to the load 400.
  • the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201.
  • the main conversion circuit 201 includes a bus bar 30a, a bus bar 30b, and a bus bar 30c. Currents of each phase flow in the Y-axis direction through each of the bus bars 30a, 30b, and 30c.
  • the load 400 is a three-phase electric motor driven by AC power supplied from the power converter 200.
  • the load 400 is not limited to a specific application, but is a motor installed in various electrical devices, and is used, for example, as a motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
  • Power conversion device 200 includes at least one of the current sensor devices according to Embodiments 1 to 3 and the current sensor device array according to Embodiments 4 and 5, which have a higher S/N ratio than conventional current sensor devices. Therefore, the control circuit can control the main conversion circuit based on highly accurate measurement results obtained by the current sensor device. As a result, the conversion accuracy of power conversion device 200 is higher than that of a power conversion device including a conventional current sensor device.
  • the power conversion device 200 shown in FIG. 10 includes the current sensor device array 112 shown in FIG. 8. On the substrate 5, active elements and passive elements constituting a control circuit are mounted. In such a power conversion device 200, the current sensor device array 112 is formed integrally with the control circuit, so it can be made smaller compared to a case where the current sensor array is formed separately from the control circuit.
  • Embodiments 1-5 disclosed this time should be considered to be illustrative in all respects and not restrictive. Unless there is a contradiction, at least two of the embodiments 1 to 5 disclosed herein may be combined.
  • the scope of the present disclosure is indicated by the claims rather than the above description, and is intended to include meanings equivalent to the claims and all changes within the range.

Abstract

This current sensor device (100) comprises: a first magnetic shield (1) and a second magnetic shield (2) that are disposed so as to sandwich a busbar (30) that extends in a Y-axis direction and through which an electric current to be measured flows; and a magnetic sensor (3) that is disposed between the busbar (30) and the first magnetic shield (1). The first magnetic shield (1) includes a laminate (10) formed by stacking a first magnetic layer (11), a non-magnetic layer (12), and a second magnetic layer (13) in order in a Z-axis direction. The second magnetic layer (13) is closer to the magnetic sensor (3) than the first magnetic layer (11). Among the first magnetic layer (11) and the second magnetic layer (13), only the second magnetic layer (13) has a depletion portion (130) that is magnetically depleted.

Description

電流センサ装置、電流センサ装置アレイ、及び電力変換装置Current sensor device, current sensor device array, and power conversion device
 本開示は、電流センサ装置、電流センサ装置アレイ、及び電力変換装置に関する。 The present disclosure relates to a current sensor device, a current sensor device array, and a power conversion device.
 例えばハイブリッド自動車(HV)等の電動車両は、バッテリ、駆動モータ、及び電力変換装置とを備えている。電力変換装置は、バッテリの直流電力を、駆動モータを駆動するための交流電力に変換する。 For example, an electric vehicle such as a hybrid vehicle (HV) includes a battery, a drive motor, and a power conversion device. The power converter converts DC power of a battery into AC power for driving a drive motor.
 特開2019-109126号公報(特許文献1)には、電力変換装置とモータとの間を流れる電流を測定するための電流センサとして、電流路となるバスバと、バスバをバスバの厚さ方向(以下、Z軸方向とよぶ)から挟むように配置されており外部磁界を吸収するための第1シールド板及び第2シールド板と、第1シールド板とバスバとの間に配置された磁気検出素子とを備える電流センサが開示されている。 Japanese Unexamined Patent Application Publication No. 2019-109126 (Patent Document 1) describes a current sensor for measuring the current flowing between a power converter and a motor, including a bus bar serving as a current path, and a bus bar arranged in the thickness direction of the bus bar ( A first shield plate and a second shield plate are arranged to sandwich them from each other in the Z-axis direction (hereinafter referred to as the Z-axis direction) to absorb external magnetic fields, and a magnetic detection element is arranged between the first shield plate and the bus bar. A current sensor is disclosed.
 特許文献1に記載の電流センサでは、バスバの延在方向(以下、Y軸方向とよぶ)が、第1磁気シールド板及び第2磁気シールド板の各々の延在方向(以下、X軸方向とよぶ)と直交し、磁気センサはバスバを流れる電流により生じる磁界のうちX軸方向の磁界成分を検出する。 In the current sensor described in Patent Document 1, the extending direction of the bus bar (hereinafter referred to as the Y-axis direction) is the same as the extending direction of each of the first magnetic shield plate and the second magnetic shield plate (hereinafter referred to as the X-axis direction). The magnetic sensor detects the magnetic field component in the X-axis direction of the magnetic field generated by the current flowing through the bus bar.
特開2019-109126号公報JP 2019-109126 Publication
 しかしながら、上記構成では、発生した磁界が磁気シールドに集磁される。そのため、磁気センサが配置されている磁気シールドとバスバとの間では、Z軸方向において磁気シールドに近づくにつれ、磁束の方向はZ軸方向を向き、磁気センサが検出し得る上記磁界成分の強度は減衰する。その結果、上記構成を備える上記電流センサでは、信号/ノイズ比(以下、S/N比とよぶ)が低くなる。 However, in the above configuration, the generated magnetic field is concentrated on the magnetic shield. Therefore, between the magnetic shield where the magnetic sensor is placed and the bus bar, as it approaches the magnetic shield in the Z-axis direction, the direction of the magnetic flux points in the Z-axis direction, and the intensity of the magnetic field component that can be detected by the magnetic sensor increases. Attenuate. As a result, the current sensor having the above configuration has a low signal/noise ratio (hereinafter referred to as S/N ratio).
 本開示の主たる目的は、上記電流センサと比べてS/N比が高い電流センサ装置及び電流センサ装置アレイ、並びに電流センサ装置及び電流センサ装置アレイの少なくともいずれかを備える電力変換装置を提供することにある。 The main object of the present disclosure is to provide a current sensor device and a current sensor device array that have a higher S/N ratio than the above-described current sensor, and a power conversion device that includes at least one of the current sensor device and the current sensor device array. It is in.
 本開示に係る電流センサ装置は、第1方向に延び測定対象である電流が流れるバスバを挟むように配置されている第1磁気シールド及び第2磁気シールドと、バスバと第1磁気シールドとの間に配置されている磁気センサとを備える。第1磁気シールドは、第1磁性層と、非磁性層と、第2磁性層とが第2方向に順に積層した積層体を含む。第2磁性層は、第1磁性層よりも磁気センサに近い。第1磁性層及び第2磁性層のうち第2磁性層のみが、磁気的に空乏である空乏部分を有している。 A current sensor device according to the present disclosure includes a first magnetic shield and a second magnetic shield arranged to sandwich a bus bar extending in a first direction and through which a current to be measured flows, and a gap between the bus bar and the first magnetic shield. and a magnetic sensor located in the magnetic sensor. The first magnetic shield includes a laminate in which a first magnetic layer, a nonmagnetic layer, and a second magnetic layer are sequentially stacked in the second direction. The second magnetic layer is closer to the magnetic sensor than the first magnetic layer. Of the first magnetic layer and the second magnetic layer, only the second magnetic layer has a depletion portion that is magnetically depleted.
 本開示に係る電流センサ装置アレイは、上記電流センサ装置を複数備える。複数の電流センサ装置は、第1方向及び第2方向の各々と直交する第3方向に並んで配置されている。 A current sensor device array according to the present disclosure includes a plurality of the above current sensor devices. The plurality of current sensor devices are arranged in a third direction perpendicular to each of the first direction and the second direction.
 本開示に係る電力変換装置は、入力される電力を変換して出力する主変換回路と、主変換回路を制御する制御回路とを備える。制御回路は、上記電流センサ装置及び上記電流センサ装置アレイの少なくともいずれかを含み、電流センサ装置又は電流センサ装置アレイにて検出された電流値に基づいて主変換回路を制御する。 A power conversion device according to the present disclosure includes a main conversion circuit that converts and outputs input power, and a control circuit that controls the main conversion circuit. The control circuit includes at least one of the current sensor device and the current sensor device array, and controls the main conversion circuit based on the current value detected by the current sensor device or the current sensor device array.
 本開示によれば、上記電流センサと比べてS/N比が高い電流センサ装置及び電流センサ装置アレイ、並びに電流センサ装置及び電流センサ装置アレイの少なくともいずれかを備える電力変換装置を提供できる。 According to the present disclosure, it is possible to provide a current sensor device and a current sensor device array that have a higher S/N ratio than the above-described current sensor, and a power conversion device that includes at least one of the current sensor device and the current sensor device array.
実施の形態1に係る電流センサ装置の斜視図である。1 is a perspective view of a current sensor device according to Embodiment 1. FIG. 図1に示される電流センサ装置の部分平面図である。FIG. 2 is a partial plan view of the current sensor device shown in FIG. 1; 図1中の矢印III-IIIから視た断面図である。2 is a sectional view taken along arrow III-III in FIG. 1. FIG. 実施の形態2に係る電流センサ装置の斜視図である。FIG. 3 is a perspective view of a current sensor device according to a second embodiment. 実施の形態3に係る電流センサ装置の斜視図である。FIG. 3 is a perspective view of a current sensor device according to a third embodiment. 実施の形態4に係る電流センサ装置アレイの斜視図である。FIG. 7 is a perspective view of a current sensor device array according to a fourth embodiment. 実施の形態4に係る電流センサ装置アレイの第1変形例を示す斜視図である。FIG. 7 is a perspective view showing a first modification of the current sensor device array according to the fourth embodiment. 実施の形態4に係る電流センサ装置アレイの第2変形例を示す斜視図である。FIG. 7 is a perspective view showing a second modification of the current sensor device array according to the fourth embodiment. 実施の形態5に係る電力変換装置のブロック図である。FIG. 3 is a block diagram of a power conversion device according to a fifth embodiment. 実施の形態5に係る電力変換装置の斜視図である。FIG. 7 is a perspective view of a power conversion device according to a fifth embodiment.
 以下、図面を参照して、本開示の実施の形態について説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。また、説明の便宜上、互いに直交するX軸方向(第3方向)、Y軸方向(第1方向)、及びZ軸方向(第2方向)が導入される。各図面に示される寸法は、本開示の各実施の形態に係る電流センサ装置の構成に基づいて最適化された一例である。本開示に係る電流センサ装置を構成する各部の寸法は、各図に示される寸法に限られるものではなく、各実施の形態に係る電流センサ装置の構成に応じて任意に設定され得る。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference numerals and their descriptions will not be repeated. Further, for convenience of explanation, an X-axis direction (third direction), a Y-axis direction (first direction), and a Z-axis direction (second direction) that are orthogonal to each other are introduced. The dimensions shown in each drawing are examples optimized based on the configuration of the current sensor device according to each embodiment of the present disclosure. The dimensions of each part constituting the current sensor device according to the present disclosure are not limited to the dimensions shown in each figure, and can be arbitrarily set according to the configuration of the current sensor device according to each embodiment.
 以下では、電流センサ装置が測定対象とする電流により発生した磁界を単に磁界とよび、それ以外の磁界を外部磁界とよぶ。 Hereinafter, the magnetic field generated by the current to be measured by the current sensor device will be simply referred to as a magnetic field, and the other magnetic fields will be referred to as external magnetic fields.
 実施の形態1.
 <電流センサ装置の構成>
 図1~図3に示されるように、実施の形態1に係る電流センサ装置100は、バスバ30をY軸方向に流れる電流を測定するためのものである。電流センサ装置100は、第1磁気シールド1、第2磁気シールド2、及び磁気センサ3を備える。
Embodiment 1.
<Configuration of current sensor device>
As shown in FIGS. 1 to 3, current sensor device 100 according to the first embodiment is for measuring the current flowing through bus bar 30 in the Y-axis direction. The current sensor device 100 includes a first magnetic shield 1, a second magnetic shield 2, and a magnetic sensor 3.
 図1~図3に示されるように、第1磁気シールド1及び第2磁気シールド2は、Z軸方向においてバスバ30及び磁気センサ3を挟むように配置されている。第1磁気シールド1及び第2磁気シールド2は、外部磁界を吸収するように設けられている。バスバ30は、Y軸方向に延びている。磁気センサ3は、Z軸方向においてバスバ30と第1磁気シールド1との間に配置されている。 As shown in FIGS. 1 to 3, the first magnetic shield 1 and the second magnetic shield 2 are arranged to sandwich the bus bar 30 and the magnetic sensor 3 in the Z-axis direction. The first magnetic shield 1 and the second magnetic shield 2 are provided to absorb external magnetic fields. Bus bar 30 extends in the Y-axis direction. The magnetic sensor 3 is arranged between the bus bar 30 and the first magnetic shield 1 in the Z-axis direction.
 図1に示されるように、第1磁気シールド1は、第1磁性層11、非磁性層12、及び第2磁性層13がZ軸方向に順に積層している積層体10を含む。第1磁性層11は、第1磁気シールド1の上面を有している。第1磁気シールド1の上面は、Z軸方向においてバスバ30とは反対側を向いている面である。第2磁性層13は、第1磁気シールド1の下面を有している。第1磁気シールド1の下面は、Z軸方向においてバスバ30側を向いている面である。 As shown in FIG. 1, the first magnetic shield 1 includes a stacked body 10 in which a first magnetic layer 11, a nonmagnetic layer 12, and a second magnetic layer 13 are stacked in order in the Z-axis direction. The first magnetic layer 11 has the upper surface of the first magnetic shield 1 . The upper surface of the first magnetic shield 1 is a surface facing away from the bus bar 30 in the Z-axis direction. The second magnetic layer 13 has a lower surface of the first magnetic shield 1 . The lower surface of the first magnetic shield 1 is a surface facing the bus bar 30 side in the Z-axis direction.
 第1磁性層11及び第2磁性層13の各々を構成する材料は、任意の強磁性材料であればよいが、好ましくは軟磁性材料である。第1磁性層11及び第2磁性層13の各々を構成する材料は、例えば、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、パーマロイ(Ni-Fe合金)、及びフェライトからなる群から選択される少なくともいずれかを含む。非磁性層12を構成する材料は、強磁性を示さない任意の非磁性材料であればよいが、例えば、アルミニウム(Al)、銅(Cu)、及びエポキシ樹脂からなる群から選択される少なくともいずれかを含む。 The material constituting each of the first magnetic layer 11 and the second magnetic layer 13 may be any ferromagnetic material, but preferably a soft magnetic material. The material constituting each of the first magnetic layer 11 and the second magnetic layer 13 is, for example, selected from the group consisting of iron (Fe), nickel (Ni), cobalt (Co), permalloy (Ni-Fe alloy), and ferrite. Contains at least one of the selected items. The material constituting the non-magnetic layer 12 may be any non-magnetic material that does not exhibit ferromagnetism, and for example, at least one selected from the group consisting of aluminum (Al), copper (Cu), and epoxy resin. Including.
 非磁性層12は、第1磁気シールド1の上記上面とは反対側に位置する第1磁性層11の面と接合されている面と、第1磁気シールド1の上記下面とは反対側に位置する第2磁性層13の面と接合されている面とを有している。上記接合は、任意の接合方法により実現されていればよいが、例えば高圧プレス加工による接合、又は接着剤もしくははんだによる接合である。例えば、非磁性層12を構成する材料がアルミニウム(Al)などの非磁性金属材料である場合、第1磁性層11、非磁性層12、及び第2磁性層13の積層体が当該積層方向にプレスされることにより、第1磁性層11と及び第2磁性層13の各々と非磁性層12とは直接接合(異種材料接合)し得る。 The nonmagnetic layer 12 has a surface joined to a surface of the first magnetic layer 11 located on the opposite side to the above-mentioned upper surface of the first magnetic shield 1, and a surface joined to the surface of the first magnetic layer 11 located on the opposite side to the above-mentioned lower surface of the first magnetic shield 1. It has a surface that is joined to the surface of the second magnetic layer 13. The above-mentioned joining may be realized by any joining method, for example, joining by high-pressure press working, or joining by adhesive or solder. For example, when the material constituting the nonmagnetic layer 12 is a nonmagnetic metal material such as aluminum (Al), the stacked body of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 is By pressing, each of the first magnetic layer 11 and the second magnetic layer 13 and the nonmagnetic layer 12 can be directly bonded (different materials bonded).
 なお、上記のようにプレス加工による接合方法は、磁気コア及び磁気シールドの製造方法において一般的である。 Note that, as described above, the joining method by press working is common in the manufacturing method of magnetic cores and magnetic shields.
 図1に示されるように、積層体10の第1磁性層11及び第2磁性層13のうち第2磁性層13のみが、磁気的に空乏であり強磁性を示さない空乏部分130を有している。空乏部分130は、例えば空気によって満たされている。なお、空乏部分130は、非磁性層12を構成する材料によって満たされていてもよい。 As shown in FIG. 1, of the first magnetic layer 11 and the second magnetic layer 13 of the multilayer body 10, only the second magnetic layer 13 has a depletion portion 130 that is magnetically depleted and does not exhibit ferromagnetism. ing. The depletion portion 130 is filled with air, for example. Note that the depletion portion 130 may be filled with a material forming the nonmagnetic layer 12.
 図1及び図2に示されるように、第2磁性層13は、X軸方向において空乏部分130を挟むように配置されている第1部分131と第2部分132とを有している。第1部分131は、例えば第2部分132とは別体である。空乏部分130のY軸方向の長さは、例えば第1磁性層11のY軸方向の長さと等しい。空乏部分130のZ軸方向の長さは、第2磁性層13のZ軸方向の長さ(厚み)と等しい。空乏部分130のX軸方向の長さは、第1部分131及び第2部分132の各々のX軸方向の長さよりも短い。 As shown in FIGS. 1 and 2, the second magnetic layer 13 has a first portion 131 and a second portion 132 that are arranged to sandwich a depletion portion 130 in the X-axis direction. The first portion 131 is, for example, separate from the second portion 132. The length of the depletion portion 130 in the Y-axis direction is, for example, equal to the length of the first magnetic layer 11 in the Y-axis direction. The length of the depletion portion 130 in the Z-axis direction is equal to the length (thickness) of the second magnetic layer 13 in the Z-axis direction. The length of the depletion portion 130 in the X-axis direction is shorter than the length of each of the first portion 131 and the second portion 132 in the X-axis direction.
 なお、第1部分131は、第2部分132と一部接続されていてもよい。空乏部分130のY軸方向の長さは、第1磁性層11のY軸方向の長さよりも短くてもよい。Z軸方向から視て、第2磁性層13は、空乏部分130の全周囲を囲む環状形状を有していてもよい。 Note that the first portion 131 may be partially connected to the second portion 132. The length of the depletion portion 130 in the Y-axis direction may be shorter than the length of the first magnetic layer 11 in the Y-axis direction. The second magnetic layer 13 may have an annular shape surrounding the entire periphery of the depletion portion 130 when viewed from the Z-axis direction.
 図2に示されるように、空乏部分130のX軸方向の長さは、バスバ30のX軸方向の長さよりも短い。 As shown in FIG. 2, the length of the depletion portion 130 in the X-axis direction is shorter than the length of the bus bar 30 in the X-axis direction.
 図2に示されるように、空乏部分130のX軸方向の中心を結ぶ中心線C1は、例えば直線である。Z軸方向から視て、中心線C1は、第1磁気シールド1のX軸方向の中心線と重なる。 As shown in FIG. 2, the center line C1 connecting the centers of the depletion portion 130 in the X-axis direction is, for example, a straight line. When viewed from the Z-axis direction, the center line C1 overlaps with the center line of the first magnetic shield 1 in the X-axis direction.
 図2に示されるように、Z軸方向から視て、第1磁性層11、非磁性層12、及び第2磁性層13の各々は、互いに重なる外縁部11E,12E,13Eを有している。言い換えると、第1磁性層11、非磁性層12、及び第2磁性層13の各々のZ軸方向に沿って延びる各端面は、同一平面を成すように連なっている。第1磁性層11、非磁性層12、及び第2磁性層13の各々のX軸方向の長さは互いに等しい。第2磁性層13のX軸方向の長さは、第1部分131、空乏部分130、及び第2部分132のX軸方向の長さの和である。第1磁性層11、非磁性層12、及び第2磁性層13の各々のY軸方向の長さは互いに等しい。 As shown in FIG. 2, when viewed from the Z-axis direction, each of the first magnetic layer 11, nonmagnetic layer 12, and second magnetic layer 13 has outer edge portions 11E, 12E, and 13E that overlap with each other. . In other words, the end faces of each of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 extending along the Z-axis direction are continuous so as to form the same plane. The lengths of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 in the X-axis direction are equal to each other. The length of the second magnetic layer 13 in the X-axis direction is the sum of the lengths of the first portion 131, the depletion portion 130, and the second portion 132 in the X-axis direction. The lengths of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 in the Y-axis direction are equal to each other.
 図2に示されるように、第1磁性層11、非磁性層12、及び第2磁性層13の各々のX軸方向の長さは、第1磁性層11、非磁性層12、及び第2磁性層13の各々のY軸方向の長さよりも長い。言い換えると、Z軸方向から視て、第1磁気シールド1は、X軸方向に沿っている長手方向と、Y軸方向に沿っている短手方向とを有している。 As shown in FIG. 2, the length of each of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 in the X-axis direction is It is longer than the length of each of the magnetic layers 13 in the Y-axis direction. In other words, when viewed from the Z-axis direction, the first magnetic shield 1 has a longitudinal direction along the X-axis direction and a lateral direction along the Y-axis direction.
 図2に示されるように、第2磁気シールド2のX軸方向の長さは、第2磁気シールド2のY軸方向の長さよりも長い。言い換えると、Z軸方向から視て、第2磁気シールド2は、X軸方向に沿っている長手方向と、Y軸方向に沿っている短手方向とを有している。好ましくは、第2磁気シールド2の長手方向は、第1磁気シールド1の長手方向と平行である。 As shown in FIG. 2, the length of the second magnetic shield 2 in the X-axis direction is longer than the length of the second magnetic shield 2 in the Y-axis direction. In other words, when viewed from the Z-axis direction, the second magnetic shield 2 has a longitudinal direction along the X-axis direction and a lateral direction along the Y-axis direction. Preferably, the longitudinal direction of the second magnetic shield 2 is parallel to the longitudinal direction of the first magnetic shield 1.
 図2に示されるように、Z軸方向から視て、第2磁気シールド2の外縁部は、例えば第1磁気シールド1の外縁部1Eと重なっている。第2磁気シールド2のX軸方向の長さは、例えば第1磁気シールド1のX軸方向の長さと等しい。第2磁気シールド2のY軸方向の長さは、例えば第1磁気シールド1のY軸方向の長さと等しい。 As shown in FIG. 2, the outer edge of the second magnetic shield 2 overlaps with the outer edge 1E of the first magnetic shield 1, for example, when viewed from the Z-axis direction. The length of the second magnetic shield 2 in the X-axis direction is, for example, equal to the length of the first magnetic shield 1 in the X-axis direction. The length of the second magnetic shield 2 in the Y-axis direction is, for example, equal to the length of the first magnetic shield 1 in the Y-axis direction.
 好ましくは、第1磁気シールド1及び第2磁気シールド2の各々のX軸方向の長さは、バスバ30のX軸方向の長さ(幅)よりも長い。 Preferably, the length of each of the first magnetic shield 1 and the second magnetic shield 2 in the X-axis direction is longer than the length (width) of the bus bar 30 in the X-axis direction.
 磁気センサ3は、X軸方向に沿った磁界成分の強度(磁束密度)に応じた電圧の出力信号を出力するように設けられている。磁気センサ3は、当該構成を有する限りにおいて任意の構成を備えていればよいが、例えばホール素子又は磁気抵抗効果(Magneto Resistive:MR)素子である。MR素子は、例えば異方向性磁気抵抗効果(Anisotropic Magneto Resistive effect:AMR)、巨大磁気抵抗効果(Giant Magneto Resistive effect:GMR)、又はトンネル磁気抵抗効果(Tunnel Magneto Resistance Effect:TMR)等の磁気抵抗効果を利用した素子である。 The magnetic sensor 3 is provided to output a voltage output signal according to the strength (magnetic flux density) of the magnetic field component along the X-axis direction. The magnetic sensor 3 may have any configuration as long as it has the above configuration, and is, for example, a Hall element or a magnetoresistive (MR) element. The MR element uses, for example, an anisotropic magnetoresistive effect (AMR), a giant magnetoresistive effect (GMR), or a tunnel magnetoresistive effect (Tunnel magnetoresistive effect). Magnetic resistance such as Magneto Resistance Effect (TMR) This is an element that utilizes effects.
 磁気センサ3は、感磁部分4を有している。Z軸方向から視て、図2に示されるように、感磁部分4は、例えばその全体が空乏部分130の一部と重なるように配置されている。好ましくは、Z軸方向から視て、感磁部分4は、空乏部分130の中心線C1と重なるように配置されている。より好ましくは、Z軸方向から視て、感磁部分4のX軸方向の中心を通る中心線は、空乏部分130の中心線C1と重なるように配置されている。なお、感磁部分4の少なくとも一部が、空乏部分130の少なくとも一部と重なるように配置されていればよい。 The magnetic sensor 3 has a magnetically sensitive portion 4. As seen from the Z-axis direction, as shown in FIG. 2, the magnetically sensitive portion 4 is arranged such that, for example, the entirety thereof overlaps a part of the depletion portion 130. Preferably, the magnetically sensitive portion 4 is arranged so as to overlap the center line C1 of the depletion portion 130 when viewed from the Z-axis direction. More preferably, the center line passing through the center of the magnetically sensitive portion 4 in the X-axis direction is arranged to overlap with the center line C1 of the depletion portion 130 when viewed from the Z-axis direction. Note that it is sufficient that at least a portion of the magnetically sensitive portion 4 is arranged so as to overlap at least a portion of the depletion portion 130.
 図2に示されるように、空乏部分130のX軸方向の長さは、磁気センサ3の感磁部分4のX軸方向の長さと同等またはそれよりも長い。好ましくは、空乏部分130のX軸方向の長さは、例えば磁気センサ3の感磁部分4のX軸方向の長さよりも長い。 As shown in FIG. 2, the length of the depletion portion 130 in the X-axis direction is equal to or longer than the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the X-axis direction. Preferably, the length of the depletion portion 130 in the X-axis direction is longer than, for example, the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the X-axis direction.
 図2に示されるように、空乏部分130のY軸方向の長さは、磁気センサ3の感磁部分4のY軸方向の長さと同等あるいはそれよりも長い。好ましくは、空乏部分130のY軸方向の長さは、磁気センサ3の感磁部分4のY軸方向の長さよりも長い。 As shown in FIG. 2, the length of the depletion portion 130 in the Y-axis direction is equal to or longer than the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the Y-axis direction. Preferably, the length of the depletion portion 130 in the Y-axis direction is longer than the length of the magnetically sensitive portion 4 of the magnetic sensor 3 in the Y-axis direction.
 図3に示されるように、空乏部分130のX軸方向の中心と、磁気センサ3の感磁部分4の中心とは、Z軸方向に沿って延びる仮想直線C2上に配置される。仮想直線C2は、上記中心線C1と直交する。 As shown in FIG. 3, the center of the depletion portion 130 in the X-axis direction and the center of the magnetically sensitive portion 4 of the magnetic sensor 3 are arranged on a virtual straight line C2 extending along the Z-axis direction. The virtual straight line C2 is perpendicular to the center line C1.
 図3に示されるように、バスバ30は、例えば、Z軸方向において第1磁気シールド1と第2磁気シールド2との間の中間位置よりも第2磁気シールド2の近くに配置される。Z軸方向におけるバスバ30と第1磁気シールド1との間の距離は、例えばZ軸方向におけるバスバ30と第2磁気シールド2との間の距離よりも長い。バスバ30を構成する材料は、任意の導電性材料であればよいが、例えばAl及びCuの少なくともいずれかを含む。 As shown in FIG. 3, the bus bar 30 is arranged, for example, closer to the second magnetic shield 2 than at an intermediate position between the first magnetic shield 1 and the second magnetic shield 2 in the Z-axis direction. The distance between the bus bar 30 and the first magnetic shield 1 in the Z-axis direction is longer than the distance between the bus bar 30 and the second magnetic shield 2 in the Z-axis direction, for example. The material constituting the bus bar 30 may be any conductive material, and includes, for example, at least one of Al and Cu.
 図3に示されるように、磁気センサ3の感磁部分4は、Z軸方向において第1磁気シールド1及びバスバ30の各々と間隔を空けて配置されている。図3に示されるように、磁気センサ3の感磁部分4と第1磁気シールド1との間のZ軸方向の距離は、例えば磁気センサ3の感磁部分4とバスバ30との間のZ軸方向の距離よりも短い。好ましくは、磁気センサ3の感磁部分4は、Z軸方向において第1磁気シールド1と第2磁気シールド2との間の中間位置に配置されている。なお、磁気センサ3の感磁部分4と第1磁気シールド1との間のZ軸方向の距離は、磁気センサ3の感磁部分4とバスバ30との間のZ軸方向の距離と同等またはそれよりも長くてもよい。磁気センサ3の感磁部分4は、Z軸方向において上記中間位置よりも第1磁気シールド1側に配置されていてもよい。また、磁気センサ3の感磁部分4は、Z軸方向において上記中間位置よりもバスバ30側に配置されていてもよい。 As shown in FIG. 3, the magnetic sensing portion 4 of the magnetic sensor 3 is spaced from each of the first magnetic shield 1 and the bus bar 30 in the Z-axis direction. As shown in FIG. 3, the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the first magnetic shield 1 is, for example, the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the bus bar 30. shorter than the axial distance. Preferably, the magnetically sensitive portion 4 of the magnetic sensor 3 is arranged at an intermediate position between the first magnetic shield 1 and the second magnetic shield 2 in the Z-axis direction. Note that the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the first magnetic shield 1 is equal to or equal to the distance in the Z-axis direction between the magnetically sensitive portion 4 of the magnetic sensor 3 and the bus bar 30. It may be longer. The magnetically sensitive portion 4 of the magnetic sensor 3 may be arranged closer to the first magnetic shield 1 than the intermediate position in the Z-axis direction. Further, the magnetically sensitive portion 4 of the magnetic sensor 3 may be arranged closer to the bus bar 30 than the intermediate position in the Z-axis direction.
 <電流センサ装置の製造方法>
 以下、電流センサ装置100の製造方法の一例を説明する。第1に、第1磁気シールド1、第2磁気シールド2、及び磁気センサ3が準備される。第1磁気シールド1は、例えば、積層体10に外縁部1Eを形成し、その後、外縁部1Eに対して予め定められた位置にある第2磁性層13の一部を除去して空乏部分130を形成することにより、準備され得る。第2に、第1磁気シールド1,第2磁気シールド2、及び磁気センサ3を、バスバ30に対して位置決めする。このようにして、電流センサ装置100は製造され得る。
<Method for manufacturing current sensor device>
An example of a method for manufacturing the current sensor device 100 will be described below. First, a first magnetic shield 1, a second magnetic shield 2, and a magnetic sensor 3 are prepared. The first magnetic shield 1 is constructed, for example, by forming an outer edge portion 1E on the laminate 10, and then removing a portion of the second magnetic layer 13 at a predetermined position with respect to the outer edge portion 1E to create a depletion portion 130. may be prepared by forming a. Second, the first magnetic shield 1 , the second magnetic shield 2 , and the magnetic sensor 3 are positioned with respect to the bus bar 30 . In this way, current sensor device 100 can be manufactured.
 <電流センサ装置の効果>
 以下では、電流センサ装置100の効果を、比較例との対比に基づいて説明する。上記特許文献1に記載の電流センサを、比較例とする。当該比較例では、磁気シールドとバスバとの間に発生する磁束の方向は、Z軸方向において磁気シールドに近づくにつれてZ軸方向を向く。そのため、Z軸方向における磁気センサの位置が磁気シールドに近づくほど、当該磁気センサが検出し得るX軸方向の磁界成分の強度は減衰し、S/N比が低くなる。
<Effects of current sensor device>
Below, the effects of the current sensor device 100 will be explained based on comparison with a comparative example. The current sensor described in Patent Document 1 is taken as a comparative example. In the comparative example, the direction of the magnetic flux generated between the magnetic shield and the bus bar is directed toward the Z-axis as it approaches the magnetic shield in the Z-axis direction. Therefore, as the position of the magnetic sensor in the Z-axis direction approaches the magnetic shield, the intensity of the magnetic field component in the X-axis direction that can be detected by the magnetic sensor is attenuated, and the S/N ratio becomes lower.
 これに対し、電流センサ装置100では、第1磁気シールド1が、第1磁性層11、非磁性層12、及び第2磁性層13がZ軸方向に順に積層した積層体を含み、第2磁性層は13が第1磁性層11よりも磁気センサ3に近く、かつ第1磁性層11及び第2磁性層13のうち第2磁性層13のみが、磁気センサの近傍に磁気的に空乏である空乏部分を有している。そのため、第2磁性層13の第1部分131を通過する磁束は、第1部分131を構成する磁性体と空乏部分130を構成する非磁性体(空気)との間での透磁率の差に起因して、空乏部分130に漏れ出し、再び第2磁性層13の第2部分132に集磁される。そのため、電流センサ装置100では、空乏部分130の内部及びZ軸方向において空乏部分130に近い領域を通過する磁束はX軸方向を向くため、磁気センサ3の感磁部分4を貫く磁束は、第1磁気シールド1とバスバ30との間を通過する磁束と、第1磁気シールド1の第2磁性層13の第1部分131及び第2部分132の各々を通過する磁束とを重ね合わせたものとなる。その結果、電流センサ装置100では、第2磁性層13の第1部分131、空乏部分130、及び第2部分132を通過する磁束により、上述したX軸方向の磁界成分の強度の減衰が補償される。言い換えると、電流センサ装置100の第1磁気シールド1とバスバ30との間においてX軸方向の磁界成分の強度変化は、比較例と比べて、緩やかになる。このような電流センサ装置100のS/N比は、従来の電流センサと比べて、高くなる。また、このような電流センサ装置100では、第1磁気シールド1、第2磁気シールド2、及びバスバ30に対する磁気センサ3のZ軸方向の相対位置が製造誤差などによって変動したとしても、S/N比は当該相対位置の変動量の影響を受けにくい。つまり、電流センサ装置100のロバスト性は、従来の電流センサと比べて、高い。 On the other hand, in the current sensor device 100, the first magnetic shield 1 includes a laminate in which the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 are laminated in order in the Z-axis direction, and the second magnetic The layer 13 is closer to the magnetic sensor 3 than the first magnetic layer 11, and of the first magnetic layer 11 and the second magnetic layer 13, only the second magnetic layer 13 is magnetically depleted near the magnetic sensor. It has a depletion part. Therefore, the magnetic flux passing through the first portion 131 of the second magnetic layer 13 is caused by the difference in magnetic permeability between the magnetic material forming the first portion 131 and the non-magnetic material (air) forming the depletion portion 130. As a result, the magnetism leaks into the depletion portion 130 and is again concentrated in the second portion 132 of the second magnetic layer 13 . Therefore, in the current sensor device 100, the magnetic flux passing through the inside of the depletion part 130 and the region close to the depletion part 130 in the Z-axis direction is directed in the X-axis direction, so that the magnetic flux penetrating the magnetically sensitive part 4 of the magnetic sensor 3 is The magnetic flux passing between the first magnetic shield 1 and the bus bar 30 and the magnetic flux passing through each of the first portion 131 and the second portion 132 of the second magnetic layer 13 of the first magnetic shield 1 are superimposed. Become. As a result, in the current sensor device 100, the magnetic flux passing through the first portion 131, the depletion portion 130, and the second portion 132 of the second magnetic layer 13 compensates for the attenuation of the intensity of the magnetic field component in the X-axis direction. Ru. In other words, the intensity change of the magnetic field component in the X-axis direction between the first magnetic shield 1 and the bus bar 30 of the current sensor device 100 becomes gentler than in the comparative example. The S/N ratio of such current sensor device 100 is higher than that of a conventional current sensor. In addition, in such a current sensor device 100, even if the relative position of the magnetic sensor 3 in the Z-axis direction with respect to the first magnetic shield 1, the second magnetic shield 2, and the bus bar 30 changes due to manufacturing errors, the S/N The ratio is not easily affected by the amount of variation in the relative position. In other words, the robustness of the current sensor device 100 is higher than that of conventional current sensors.
 さらに、電流センサ装置100では、第1磁気シールド1が第1磁性層11、非磁性層12、及び第2磁性層13がZ軸方向に順に積層した積層体を含むため、第2磁性層13と磁気的に切り離された第1磁性層11が外部磁界を吸収し得る。そのため、電流センサ装置100のS/N比は、第2磁性層13のみからなる第1磁気シールドを備える電流センサ装置と比べて、高くなる。 Furthermore, in the current sensor device 100, since the first magnetic shield 1 includes a laminate in which the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 are laminated in order in the Z-axis direction, the second magnetic layer 13 The first magnetic layer 11, which is magnetically separated from the first magnetic layer 11, can absorb an external magnetic field. Therefore, the S/N ratio of the current sensor device 100 is higher than that of a current sensor device including the first magnetic shield made of only the second magnetic layer 13.
 電流センサ装置100では、Z軸方向からみて、空乏部分130が磁気センサ3の感磁部分4と重なるように配置されているため、空乏部分130が磁気センサ3の感磁部分4と重ならないように配置されている場合と比べて、X軸方向の磁界成分の強度の減衰がより効果的に補償され得る。そのため、電流センサ装置100のS/N比は、空乏部分130が磁気センサ3の感磁部分と重ならないように配置されている電流センサ装置のS/N比と比べて、高い。 In the current sensor device 100, since the depletion portion 130 is arranged so as to overlap the magnetically sensitive portion 4 of the magnetic sensor 3 when viewed from the Z-axis direction, the depletion portion 130 is arranged so as not to overlap the magnetically sensitive portion 4 of the magnetic sensor 3. The attenuation of the strength of the magnetic field component in the X-axis direction can be compensated for more effectively than when the magnetic field component is disposed in the X-axis direction. Therefore, the S/N ratio of the current sensor device 100 is higher than that of a current sensor device in which the depletion portion 130 is arranged so as not to overlap the magnetic sensing portion of the magnetic sensor 3.
 特に、電流センサ装置100では、Y軸方向に直交する断面において、X軸方向における空乏部分130の中心及びX軸方向における感磁部分4の中心がZ軸方向に沿って延びる仮想直線C2(図3参照)上に配置されるため、空乏部分130の上記中心と感磁部分4の上記中心とが仮想直線C2(図3参照)上に配置されない場合と比べて、X軸方向の磁界成分の強度の減衰がより効果的に補償され得る。そのため、電流センサ装置100のS/N比は、空乏部分130が磁気センサ3の感磁部分と重ならないように配置されている電流センサ装置のS/N比と比べて、高い。 In particular, in the current sensor device 100, in a cross section orthogonal to the Y-axis direction, the center of the depletion portion 130 in the X-axis direction and the center of the magnetically sensitive portion 4 in the 3), so the magnetic field component in the X-axis direction is The intensity attenuation can be compensated more effectively. Therefore, the S/N ratio of the current sensor device 100 is higher than that of a current sensor device in which the depletion portion 130 is arranged so as not to overlap the magnetic sensing portion of the magnetic sensor 3.
 電流センサ装置100では、X軸方向において、空乏部分130の長さ(幅)が感磁部分4の長さ(幅)よりも長いため、空乏部分130の長さが感磁部分4の長さと同等あるいはそれよりも短い場合と比べて、空乏部分130に対して感磁部分4のX軸方向における相対的な位置が製造誤差などによって変動したとしても、S/N比は当該相対位置の変動量の影響を受けにくい。 In the current sensor device 100, the length (width) of the depletion portion 130 is longer than the length (width) of the magnetically sensitive portion 4 in the X-axis direction. Even if the relative position of the magnetically sensitive part 4 in the X-axis direction with respect to the depletion part 130 changes due to manufacturing errors, the S/N ratio will change due to the change in the relative position compared to the case where it is the same or shorter. Less affected by quantity.
 電流センサ装置100では、Z軸方向から視て、第1磁性層11、非磁性層12、及び第2磁性層13の各々が互いに重なる外縁部11E,12E,13E(外縁部1E)を有している。このような外縁部11E,12E,13Eは、積層体10に対する加工工程により、同時に形成され得る。さらに、空乏部分130が外縁部11E,12E,13Eに対して予め定められた位置に形成され得る。そのため、電流センサ装置100では、外縁部11E,12E,13Eに対する空乏部分130の相対的な位置が製造誤差などによって変動しにくい。 In the current sensor device 100, when viewed from the Z-axis direction, each of the first magnetic layer 11, the nonmagnetic layer 12, and the second magnetic layer 13 has outer edge portions 11E, 12E, and 13E (outer edge portion 1E) that overlap with each other. ing. Such outer edge portions 11E, 12E, and 13E may be formed at the same time by processing the laminate 10. Further, depletion portions 130 may be formed at predetermined positions relative to outer edges 11E, 12E, and 13E. Therefore, in the current sensor device 100, the relative position of the depletion portion 130 with respect to the outer edge portions 11E, 12E, and 13E is unlikely to change due to manufacturing errors or the like.
 実施の形態2.
 図4に示されるように、実施の形態2に係る電流センサ装置101は、実施の形態1に係る電流センサ装置100と基本的に同様の構成を備え同様の効果を奏するが、第2磁気シールド2がX軸方向においてバスバ30を挟んで対向配置されている一対の対向部分22を有している点で、電流センサ装置100とは異なる。以下では、電流センサ装置101が電流センサ装置100とは異なる点を主に説明する。
Embodiment 2.
As shown in FIG. 4, the current sensor device 101 according to the second embodiment has basically the same configuration as the current sensor device 100 according to the first embodiment, and has the same effects, but the second magnetic shield The current sensor device 2 is different from the current sensor device 100 in that the current sensor device 2 has a pair of opposing portions 22 that are arranged to face each other with a bus bar 30 in between in the X-axis direction. Below, the differences between current sensor device 101 and current sensor device 100 will be mainly explained.
 図4に示されるように、第2磁気シールド2は、バスバ30に対してZ軸方向において第1磁気シールド1とは反対側に配置されており、X軸方向に沿って延びる延在部分21をさらに有している。延在部分21は、例えばZ軸方向から視て第1磁気シールド1と重なるように設けられている。延在部分21のX軸方向の一端及び他端は、X軸方向においてバスバ30の外側に配置されている。一対の対向部分22の一方は、延在部分21のX軸方向の一端からZ軸方向において第1磁気シールド1側に向かって突出している。一対の対向部分22の他方は、延在部分21のX軸方向の他端からZ軸方向において第1磁気シールド1側に向かって突出している。 As shown in FIG. 4, the second magnetic shield 2 is disposed on the opposite side of the first magnetic shield 1 in the Z-axis direction with respect to the bus bar 30, and has an extension portion 21 extending along the X-axis direction. It further has. The extending portion 21 is provided, for example, so as to overlap the first magnetic shield 1 when viewed from the Z-axis direction. One end and the other end of the extending portion 21 in the X-axis direction are arranged outside the bus bar 30 in the X-axis direction. One of the pair of opposing portions 22 protrudes from one end of the extending portion 21 in the X-axis direction toward the first magnetic shield 1 side in the Z-axis direction. The other of the pair of opposing portions 22 protrudes from the other end of the extension portion 21 in the X-axis direction toward the first magnetic shield 1 side in the Z-axis direction.
 異なる観点から言えば、Y軸方向から視て、第2磁気シールド2は、バスバ30の三方を囲むように設けられている。Y軸方向から視て、第2磁気シールド2の外形状は、略U字状である。 From a different perspective, the second magnetic shield 2 is provided so as to surround the bus bar 30 on three sides when viewed from the Y-axis direction. The outer shape of the second magnetic shield 2 is approximately U-shaped when viewed from the Y-axis direction.
 一対の対向部分22の各々のX軸方向の長さは、第2磁性層13の第1部分131及び第2部分132の各々のX軸方向の長さよりも短い。Z軸方向において第1磁気シールド1側に位置する一対の対向部分22の各々の端部(以下、上端部とよぶ)は、第2磁性層13の第1部分131及び第2部分132の各々のX軸方向の中心よりも外側に位置する部分と、Z軸方向において重なるように配置されている。 The length of each of the pair of opposing portions 22 in the X-axis direction is shorter than the length of each of the first portion 131 and second portion 132 of the second magnetic layer 13 in the X-axis direction. Each end portion (hereinafter referred to as an upper end portion) of the pair of opposing portions 22 located on the first magnetic shield 1 side in the Z-axis direction is connected to each of the first portion 131 and the second portion 132 of the second magnetic layer 13. It is arranged so as to overlap in the Z-axis direction with a portion located outside of the center in the X-axis direction.
 一対の対向部分22のY軸方向の長さは、例えば延在部分21のY軸方向の長さと等しい。 The length of the pair of opposing portions 22 in the Y-axis direction is, for example, equal to the length of the extending portion 21 in the Y-axis direction.
 図4に示されるように、一対の対向部分22の各々は、例えばZ軸方向においてバスバ30よりも第1磁気シールド1側に向かって突出している。一対の対向部分22の各々の上端部は、例えばX軸方向において磁気センサ3を挟むように配置されている。 As shown in FIG. 4, each of the pair of opposing portions 22 protrudes toward the first magnetic shield 1 side relative to the bus bar 30 in the Z-axis direction, for example. The upper end portions of each of the pair of opposing portions 22 are arranged to sandwich the magnetic sensor 3, for example, in the X-axis direction.
 電流センサ装置101では、バスバ30を流れる電流により発生する磁界のうちバスバ30に対して第2磁気シールド2側を通る磁束も、一対の対向部分22を通り、バスバ30に対して第1磁気シールド1側に導かれる。そのため、電流センサ装置101の磁気センサ3の感磁部分を貫く磁束は、電流センサ装置100に関して説明したものに加え、一対の対向部分22によりバスバ30に対して第1磁気シールド1側に導かれた磁束を含む。電流センサ装置101及び電流センサ装置100の各バスバ30に流れる電流値が同一である場合、電流センサ装置101の第1磁気シールド1とバスバ30との間のX軸方向に沿った磁界成分の強度は、電流センサ装置101の第1磁気シールド1とバスバ30との間のX軸方向に沿った磁界成分の強度と比べて大きくなり、電流センサ装置101の磁気センサ3の感磁部分を貫く磁束密度は電流センサ装置100の磁気センサ3の感磁部分を貫く磁束密度よりも高くなる。その結果、電流センサ装置101のS/N比は、電流センサ装置100のS/N比よりもさらに高められ得る。 In the current sensor device 101, among the magnetic fields generated by the current flowing through the bus bar 30, the magnetic flux passing through the second magnetic shield 2 side with respect to the bus bar 30 also passes through the pair of opposing portions 22, and passes through the first magnetic shield 2 side with respect to the bus bar 30. Guided to the 1st side. Therefore, the magnetic flux penetrating the magnetically sensitive portion of the magnetic sensor 3 of the current sensor device 101 is guided toward the first magnetic shield 1 side with respect to the bus bar 30 by the pair of opposing portions 22, in addition to what has been explained regarding the current sensor device 100. Includes magnetic flux. When the current value flowing through each bus bar 30 of the current sensor device 101 and the current sensor device 100 is the same, the strength of the magnetic field component along the X-axis direction between the first magnetic shield 1 of the current sensor device 101 and the bus bar 30 is larger than the intensity of the magnetic field component along the X-axis direction between the first magnetic shield 1 and the bus bar 30 of the current sensor device 101, and the magnetic flux that penetrates the magnetically sensitive portion of the magnetic sensor 3 of the current sensor device 101 is The density becomes higher than the magnetic flux density that penetrates the magnetically sensitive portion of the magnetic sensor 3 of the current sensor device 100. As a result, the S/N ratio of current sensor device 101 can be further increased than that of current sensor device 100.
 実施の形態3.
 図5に示されるように、実施の形態3に係る電流センサ装置102は、実施の形態1に係る電流センサ装置100と基本的に同様の構成を備え同様の効果を奏するが、第1磁気シールド1と磁気センサ3との間に配置されている基板5をさらに備える点で、電流センサ装置100とは異なる。以下では、電流センサ装置102が電流センサ装置100とは異なる点を主に説明する。
Embodiment 3.
As shown in FIG. 5, the current sensor device 102 according to the third embodiment has basically the same configuration as the current sensor device 100 according to the first embodiment, and has the same effect, but the first magnetic shield The current sensor device 100 differs from the current sensor device 100 in that it further includes a substrate 5 disposed between the magnetic sensor 1 and the magnetic sensor 3. Below, the differences between the current sensor device 102 and the current sensor device 100 will be mainly explained.
 基板5は、第1磁気シールド1が実装されている第1面5Aと、第1面5Aとは反対側に位置しかつ磁気センサ3が実装されている第2面5Bとを有する。第1磁気シールド1及び磁気センサ3の各々の実装方法は、特に制限されない。第1磁気シールド1及び磁気センサ3の各々は、例えば接着剤又ははんだを用いて基板5に実装されていてもよいし、あるいは予め基板5に形成されている貫通孔又は凹部に嵌め込まれていてもよい。 The substrate 5 has a first surface 5A on which the first magnetic shield 1 is mounted, and a second surface 5B located on the opposite side of the first surface 5A and on which the magnetic sensor 3 is mounted. The method of mounting each of the first magnetic shield 1 and the magnetic sensor 3 is not particularly limited. Each of the first magnetic shield 1 and the magnetic sensor 3 may be mounted on the substrate 5 using an adhesive or solder, or may be fitted into a through hole or a recess formed in the substrate 5 in advance. Good too.
 基板5を構成する材料は、任意の非磁性材料であればよいが、例えばエポキシ樹脂を含む。 The material constituting the substrate 5 may be any non-magnetic material, including, for example, epoxy resin.
 電流センサ装置102の製造方法では、第1磁気シールド1と磁気センサ3とが基板5に実装されたものとして準備され得るため、仮に第1磁気シールド1と磁気センサ3とが互いに独立した別部材として準備されかつ位置決めされる場合と比べて、第1磁気シールド1の空乏部分130と磁気センサ3の感磁部分4との相対的な位置の変動が抑制され得る。 In the method for manufacturing the current sensor device 102, the first magnetic shield 1 and the magnetic sensor 3 can be prepared as being mounted on the substrate 5, so it is assumed that the first magnetic shield 1 and the magnetic sensor 3 are separate members independent of each other. Compared to the case where the depletion portion 130 of the first magnetic shield 1 and the magnetically sensitive portion 4 of the magnetic sensor 3 are prepared and positioned as such, fluctuations in the relative positions of the depletion portion 130 of the first magnetic shield 1 and the magnetic sensing portion 4 of the magnetic sensor 3 can be suppressed.
 基板5の第1面5A及び第2面5Bの各々には、例えば、第1磁気シールド1又は磁気センサ3の実装領域がシルク印刷等により印字されていたり、当該実装領域にザグリが形成されていてもよい。このようにすれば、第1磁気シールド1及び磁気センサ3の相対的な位置のズレが抑制され得る。特に、電流センサ装置101においても上述のようにX軸方向の磁界成分の強度の減衰が補償され得るが、この効果の程度は磁気センサ3と第1磁気シールド1との間の相対的な位置に応じて増減する。第1磁気シールド1及び磁気センサ3の相対的な位置のズレが抑制されていれば、上記効果のバラツキが抑制され得る。 On each of the first surface 5A and second surface 5B of the substrate 5, for example, a mounting area for the first magnetic shield 1 or the magnetic sensor 3 is printed by silk printing or the like, or a counterbore is formed in the mounting area. It's okay. In this way, displacement in the relative positions of the first magnetic shield 1 and the magnetic sensor 3 can be suppressed. In particular, in the current sensor device 101 as well, the attenuation of the strength of the magnetic field component in the X-axis direction can be compensated for as described above, but the degree of this effect depends on the relative position between the magnetic sensor 3 and the first magnetic shield 1. Increase or decrease depending on If the relative positional deviation between the first magnetic shield 1 and the magnetic sensor 3 is suppressed, variations in the above effects can be suppressed.
 なお、実施の形態3に係る電流センサ装置は、基板5を備える点を除き、実施の形態2に係る電流センサ装置101と同様の構成を備えていてもよい。 Note that the current sensor device according to the third embodiment may have the same configuration as the current sensor device 101 according to the second embodiment, except for including the substrate 5.
 実施の形態4.
 実施の形態4に係る電流センサ装置アレイは、実施の形態1に係る電流センサ装置を複数備える。実施の形態4に係る電流センサ装置アレイにおいて、各電流センサ装置は、実施の形態1に係る電流センサ装置100、実施の形態2に係る電流センサ装置101、又は実施の形態3に係る電流センサ装置102と同様の構成を備えている。実施の形態4に係る電流センサ装置アレイにおいて、各電流センサ装置は、例えば多相交流中の1つの交流の電流を測定するように設けられている。
Embodiment 4.
The current sensor device array according to the fourth embodiment includes a plurality of current sensor devices according to the first embodiment. In the current sensor device array according to the fourth embodiment, each current sensor device is the current sensor device 100 according to the first embodiment, the current sensor device 101 according to the second embodiment, or the current sensor device according to the third embodiment. It has the same configuration as 102. In the current sensor device array according to the fourth embodiment, each current sensor device is provided to measure, for example, one alternating current in a multiphase alternating current.
 図6に示される電流センサ装置アレイ110は、3つの電流センサ装置100a,100b,100cを備える。各電流センサ装置100a,100b,100cは、例えば3相交流中の1相の交流を測定するように設けられている。電流センサ装置100aのバスバ30a、電流センサ装置100bのバスバ30b、及び電流センサ装置100cのバスバ30cの各々には、単相交流が流れる。電流センサ装置100aの磁気センサ3aはバスバ30aを流れる単相交流により発生した磁界を、電流センサ装置100bの磁気センサ3bはバスバ30bを流れる単相交流により発生した磁界を、電流センサ装置100cの磁気センサ3cはバスバ30cを流れる単相交流により発生した磁界を、それぞれ検出する。各電流センサ装置100a,100b,100cは、例えばX軸方向に並んで配置されている。なお、各電流センサ装置100a,100b,100cの配列方向は、特に制限されるものではなく、例えばZ軸方向に沿っていてもよい。 The current sensor device array 110 shown in FIG. 6 includes three current sensor devices 100a, 100b, and 100c. Each current sensor device 100a, 100b, 100c is provided to measure, for example, one phase of three-phase alternating current. Single-phase alternating current flows through each of the bus bar 30a of the current sensor device 100a, the bus bar 30b of the current sensor device 100b, and the bus bar 30c of the current sensor device 100c. The magnetic sensor 3a of the current sensor device 100a detects the magnetic field generated by the single-phase alternating current flowing through the bus bar 30a, and the magnetic sensor 3b of the current sensor device 100b detects the magnetic field generated by the single-phase alternating current flowing through the bus bar 30b. The sensors 3c each detect the magnetic field generated by the single-phase alternating current flowing through the bus bar 30c. The current sensor devices 100a, 100b, and 100c are arranged, for example, in line in the X-axis direction. Note that the direction in which the current sensor devices 100a, 100b, and 100c are arranged is not particularly limited, and may be along the Z-axis direction, for example.
 電流センサ装置アレイ110では、各電流センサ装置100a,100b,100cの各々が実施の形態1に係る電流センサ装置100と同様の構成を備えている。各電流センサ装置100a,100b,100cの各々が空乏部分130を有する第1磁気シールド1を備えている。そのため、電流センサ装置アレイ110では、電流センサ装置100と同様の効果が奏される。 In the current sensor device array 110, each of the current sensor devices 100a, 100b, and 100c has the same configuration as the current sensor device 100 according to the first embodiment. Each current sensor device 100a, 100b, 100c includes a first magnetic shield 1 having a depletion portion 130. Therefore, the current sensor device array 110 provides the same effects as the current sensor device 100.
 実施の形態4に係る電流センサ装置アレイは、以下のように変形され得る。
 実施の形態4に係る電流センサ装置アレイにおいて、各電流センサ装置は、互いに独立して流れる単層交流を測定するように設けられていてもよい。
The current sensor device array according to the fourth embodiment can be modified as follows.
In the current sensor device array according to the fourth embodiment, each current sensor device may be provided to measure single-layer alternating current flowing independently of each other.
 図7に示されるように、実施の形態4に係る電流センサ装置アレイでは、各電流センサ装置の第1磁気シールド1及び第2磁気シールド2の少なくともいずれかが互いに同一の部材として構成されていてもよい。この場合、電流センサ装置アレイ中の各電流センサ装置は、X軸方向に並んで配置されている。 As shown in FIG. 7, in the current sensor device array according to the fourth embodiment, at least one of the first magnetic shield 1 and the second magnetic shield 2 of each current sensor device is configured as the same member. Good too. In this case, each current sensor device in the current sensor device array is arranged side by side in the X-axis direction.
 図7に示される電流センサ装置アレイ111において、第1磁気シールド1は、X軸方向に互いに間隔を空けて形成されている複数の空乏部分130a,130b,130cを有している。さらに、第1磁気シールド1は、第3部分131a、第4部分134、第5部分135、及び第6部分132cを有している。 In the current sensor device array 111 shown in FIG. 7, the first magnetic shield 1 has a plurality of depletion portions 130a, 130b, and 130c formed at intervals in the X-axis direction. Furthermore, the first magnetic shield 1 has a third portion 131a, a fourth portion 134, a fifth portion 135, and a sixth portion 132c.
 第3部分131a、空乏部分130a、及び第4部分134は、電流センサ装置100における第1部分131、空乏部分130、及び第2部分132と同様の構成を有している。第3部分131a及び第4部分134の各々と空乏部分130aとの関係は、電流センサ装置100における第1部分131及び第2部分132の各々と空乏部分130との関係と同等である。 The third portion 131a, the depletion portion 130a, and the fourth portion 134 have the same configuration as the first portion 131, the depletion portion 130, and the second portion 132 in the current sensor device 100. The relationship between each of the third portion 131a and the fourth portion 134 and the depletion portion 130a is equivalent to the relationship between each of the first portion 131 and the second portion 132 and the depletion portion 130 in the current sensor device 100.
 第4部分134、空乏部分130b、及び第5部分135は、電流センサ装置100における第1部分131、空乏部分130、及び第2部分132と同様の構成を有している。第4部分134及び第5部分135の各々と空乏部分130bとの関係は、電流センサ装置100における第1部分131及び第2部分132の各々と空乏部分130との関係と同等である。異なる観点から言えば、第4部分134は、図6に示される空乏部分130aに対する第2部分132aと空乏部分130bに対する第1部分131bとが一体化された部材に対応する。 The fourth portion 134, the depletion portion 130b, and the fifth portion 135 have the same configuration as the first portion 131, the depletion portion 130, and the second portion 132 in the current sensor device 100. The relationship between each of the fourth portion 134 and the fifth portion 135 and the depletion portion 130b is equivalent to the relationship between each of the first portion 131 and the second portion 132 and the depletion portion 130 in the current sensor device 100. From a different perspective, the fourth portion 134 corresponds to a member in which the second portion 132a for the depletion portion 130a and the first portion 131b for the depletion portion 130b shown in FIG. 6 are integrated.
 第5部分135、空乏部分130c、及び第6部分132cは、電流センサ装置100における第1部分131、空乏部分130、及び第2部分132と同様の構成を有している。つまり、第5部分135及び第6部分132cの各々と空乏部分130cとの関係は、電流センサ装置100における第1部分131及び第2部分132の各々と空乏部分130との関係と同等である。異なる観点から言えば、第5部分135は、図6に示される空乏部分130cに対する第2部分132bと空乏部分130cに対する第1部分131cとが一体化された部材に対応する。 The fifth portion 135, the depletion portion 130c, and the sixth portion 132c have the same configuration as the first portion 131, the depletion portion 130, and the second portion 132 in the current sensor device 100. That is, the relationship between each of the fifth portion 135 and the sixth portion 132c and the depletion portion 130c is equivalent to the relationship between each of the first portion 131 and the second portion 132 and the depletion portion 130 in the current sensor device 100. From a different perspective, the fifth portion 135 corresponds to a member in which the second portion 132b for the depletion portion 130c and the first portion 131c for the depletion portion 130c shown in FIG. 6 are integrated.
 図7に示される電流センサ装置アレイ111は、第1磁気シールド1及び第2磁気シールド2の各々を1つずつ備えるため、複数の第1磁気シールド1及び複数の第2磁気シールド2を備える電流センサ装置アレイ110と比べて、部品点数及び製造工数が削減され得る。 Since the current sensor device array 111 shown in FIG. 7 includes one each of the first magnetic shield 1 and the second magnetic shield 2, the current sensor device array 111 shown in FIG. Compared to the sensor device array 110, the number of parts and manufacturing steps can be reduced.
 図8に示されるように、実施の形態4に係る電流センサ装置アレイの各電流センサ装置は、実施の形態3に係る電流センサ装置102と同様の構成を備えており、かつ各電流センサ装置102a,102b,102cの各々の基板5が同一の部材として構成されていてもよい。 As shown in FIG. 8, each current sensor device of the current sensor device array according to the fourth embodiment has the same configuration as the current sensor device 102 according to the third embodiment, and each current sensor device 102a , 102b, 102c may be configured as the same member.
 図8に示される電流センサ装置アレイ112は、1つの基板5を備えるため、複数の基板5を備える電流センサ装置アレイと比べて、部品点数及び製造工数が削減され得る。 Since the current sensor device array 112 shown in FIG. 8 includes one substrate 5, the number of parts and manufacturing steps can be reduced compared to a current sensor device array including a plurality of substrates 5.
 さらに、図8に示される電流センサ装置アレイ112では、1つの基板5に対して複数の電流センサ装置102a,102b,102cの各々の第1磁気シールド1、第2磁気シールド2、及び磁気センサ3が実装され位置決めされるため、複数の電流センサ装置102a,102b,102cの各々の相対的な位置のズレが抑制され得る。 Furthermore, in the current sensor device array 112 shown in FIG. are mounted and positioned, it is possible to suppress relative displacement of each of the plurality of current sensor devices 102a, 102b, and 102c.
 電流センサ装置アレイ112においても、基板5の第1面5A及び第2面5Bの各々に、各第1磁気シールド1又は磁気センサ3の実装領域が印刷されていてもよいし、当該実装領域にザグリが形成されていてもよい。このようにすれば、各第1磁気シールド1と各磁気センサ3の相対的な位置のズレが抑制され得る。特に、電流センサ装置101においても上述のようにX軸方向の磁界成分の強度の減衰が補償され得るが、この効果の程度は磁気センサ3と第1磁気シールド1との間の相対的な位置に応じて増減する。第1磁気シールド1及び磁気センサ3の相対的な位置のズレが抑制されていれば、上記効果のバラツキが抑制され得る。 In the current sensor device array 112 as well, the mounting area of each first magnetic shield 1 or magnetic sensor 3 may be printed on each of the first surface 5A and the second surface 5B of the substrate 5, or the mounting area may be printed on each of the first magnetic shield 1 or the magnetic sensor 3. A counterbore may be formed. In this way, the relative positional deviation between each first magnetic shield 1 and each magnetic sensor 3 can be suppressed. In particular, in the current sensor device 101 as well, the attenuation of the strength of the magnetic field component in the X-axis direction can be compensated for as described above, but the degree of this effect depends on the relative position between the magnetic sensor 3 and the first magnetic shield 1. Increase or decrease depending on If the relative positional deviation between the first magnetic shield 1 and the magnetic sensor 3 is suppressed, variations in the above effects can be suppressed.
 実施の形態5.
 実施の形態5に係る電力変換装置200は、実施の形態1~3に係る電流センサ装置及び実施の形態4に係る電流センサ装置アレイの少なくともいずれかを電力変換装置に適用したものである。実施の形態5に係る電力変換装置200は、入力される電力を変換して出力する主変換回路と、主変換回路を制御する制御回路とを備える。制御回路は、実施の形態1~3に係る電流センサ装置又は実施の形態4に係る電流センサ装置アレイにて検出された電流値に基づいて主変換回路を制御する。
Embodiment 5.
A power conversion device 200 according to the fifth embodiment is a power conversion device in which at least one of the current sensor devices according to the first to third embodiments and the current sensor device array according to the fourth embodiment is applied. Power conversion device 200 according to Embodiment 5 includes a main conversion circuit that converts and outputs input power, and a control circuit that controls the main conversion circuit. The control circuit controls the main conversion circuit based on the current value detected by the current sensor device according to the first to third embodiments or the current sensor device array according to the fourth embodiment.
 なお、本開示は特定の電力変換装置に限定されるものではないが、以下では、実施の形態5として、三相のインバータに本開示を適用した場合について説明する。 Although the present disclosure is not limited to a specific power conversion device, a case will be described below as Embodiment 5 in which the present disclosure is applied to a three-phase inverter.
 図9は、実施の形態5に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 9 is a block diagram showing the configuration of a power conversion system to which the power conversion device according to Embodiment 5 is applied.
 図9に示される電力変換システムは、電源300、電力変換装置200、負荷400から構成される。電源300は、直流電源であり、電力変換装置200に直流電力を供給する。電源300は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源300を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 9 is composed of a power source 300, a power conversion device 200, and a load 400. Power supply 300 is a DC power supply and supplies DC power to power conversion device 200. The power source 300 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. Good too. Moreover, the power supply 300 may be configured with a DC/DC converter that converts DC power output from a DC system into predetermined power.
 電力変換装置200は、電源300と負荷400の間に接続された三相のインバータであり、電源300から供給された直流電力を交流電力に変換し、負荷400に交流電力を供給する。電力変換装置200は、図9に示されるように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201を制御する制御信号を主変換回路201に出力する制御回路202とを備えている。主変換回路201は、バスバ30a、バスバ30b、及びバスバ30cを含む。バスバ30a、バスバ30b、及びバスバ30cの各々には、各相の電流がY軸方向に流れる。 The power conversion device 200 is a three-phase inverter connected between a power source 300 and a load 400, converts DC power supplied from the power source 300 into AC power, and supplies AC power to the load 400. As shown in FIG. 9, the power conversion device 200 includes a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201. 202. The main conversion circuit 201 includes a bus bar 30a, a bus bar 30b, and a bus bar 30c. Currents of each phase flow in the Y-axis direction through each of the bus bars 30a, 30b, and 30c.
 負荷400は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷400は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 400 is a three-phase electric motor driven by AC power supplied from the power converter 200. Note that the load 400 is not limited to a specific application, but is a motor installed in various electrical devices, and is used, for example, as a motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
 電力変換装置200は、従来の電流センサ装置と比べてS/N比が高い実施の形態1~3に係る電流センサ装置及び実施の形態4,5に係る電流センサ装置アレイの少なくともいずれかを備えるため、電流センサ装置による精度の高い測定結果に基づいて制御回路が主変換回路を制御できる。その結果、電力変換装置200の変換精度は、従来の電流センサ装置を備える電力変換装置と比べて、高くなる。 Power conversion device 200 includes at least one of the current sensor devices according to Embodiments 1 to 3 and the current sensor device array according to Embodiments 4 and 5, which have a higher S/N ratio than conventional current sensor devices. Therefore, the control circuit can control the main conversion circuit based on highly accurate measurement results obtained by the current sensor device. As a result, the conversion accuracy of power conversion device 200 is higher than that of a power conversion device including a conventional current sensor device.
 図10に示される電力変換装置200は、図8に示される電流センサ装置アレイ112を備える。基板5には、制御回路を構成する能動素子及び受動素子が実装されている。このような電力変換装置200では、電流センサ装置アレイ112が制御回路と一体的に形成されるため、電流センサアレイが制御回路と別体として形成される場合と比べて、小型化され得る。 The power conversion device 200 shown in FIG. 10 includes the current sensor device array 112 shown in FIG. 8. On the substrate 5, active elements and passive elements constituting a control circuit are mounted. In such a power conversion device 200, the current sensor device array 112 is formed integrally with the control circuit, so it can be made smaller compared to a case where the current sensor array is formed separately from the control circuit.
 今回開示された実施の形態1-5はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1-5の少なくとも2つを組み合わせてもよい。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 Embodiments 1-5 disclosed this time should be considered to be illustrative in all respects and not restrictive. Unless there is a contradiction, at least two of the embodiments 1 to 5 disclosed herein may be combined. The scope of the present disclosure is indicated by the claims rather than the above description, and is intended to include meanings equivalent to the claims and all changes within the range.
 1 第1磁気シールド、1E,11E,12E,13E 外縁部、2 第2磁気シールド、3,3a,3b,3c 磁気センサ、4 感磁部分、5 基板、5A 第1面、5B 第2面、10 積層体、11 第1磁性層、12 非磁性層、13 第2磁性層、21 延在部分、22 対向部分、30,30a,30b,30c バスバ、100,100a,100b,100c,101,102,102B,102C,102a,102b,102c 電流センサ装置、110,111,112 電流センサ装置アレイ、130,130a,130b,130c 空乏部分、131,131b,131c 第1部分、131a 第3部分、132,132a,132b 第2部分、132c 第6部分、134 第4部分、135 第5部分、200 電力変換装置、201 主変換回路、202 制御回路、300 電源、400 負荷。 1 First magnetic shield, 1E, 11E, 12E, 13E outer edge, 2 Second magnetic shield, 3, 3a, 3b, 3c magnetic sensor, 4 Magnetically sensitive part, 5 Substrate, 5A first surface, 5B second surface, 10 Laminated body, 11 First magnetic layer, 12 Non-magnetic layer, 13 Second magnetic layer, 21 Extending portion, 22 Opposing portion, 30, 30a, 30b, 30c Bus bar, 100, 100a, 100b, 100c, 101, 102 , 102B, 102C, 102a, 102b, 102c Current sensor device, 110, 111, 112 Current sensor device array, 130, 130a, 130b, 130c Depletion part, 131, 131b, 131c First part, 131a Third part, 132, 132a, 132b second part, 132c sixth part, 134 fourth part, 135 fifth part, 200 power conversion device, 201 main conversion circuit, 202 control circuit, 300 power supply, 400 load.

Claims (11)

  1.  第1方向に延び測定対象である電流が流れるバスバを挟むように前記第1方向と直交する第2方向において配置されている第1磁気シールド及び第2磁気シールドと、
     前記バスバと前記第1磁気シールドとの間に配置されている磁気センサとを備え、
     前記第1磁気シールドは、第1磁性層と、非磁性層と、第2磁性層とが前記第2方向に順に積層した積層体を含み、
     前記第2磁性層は、前記第1磁性層よりも前記磁気センサに近く、
     前記第1磁性層及び前記第2磁性層のうち前記第2磁性層のみが、磁気的に空乏である空乏部分を有している、電流センサ装置。
    a first magnetic shield and a second magnetic shield arranged in a second direction orthogonal to the first direction so as to sandwich a bus bar extending in the first direction and through which a current to be measured flows;
    a magnetic sensor disposed between the bus bar and the first magnetic shield,
    The first magnetic shield includes a laminate in which a first magnetic layer, a nonmagnetic layer, and a second magnetic layer are laminated in order in the second direction,
    the second magnetic layer is closer to the magnetic sensor than the first magnetic layer;
    A current sensor device, wherein of the first magnetic layer and the second magnetic layer, only the second magnetic layer has a depletion portion that is magnetically depleted.
  2.  前記磁気センサは、感磁部分を有し、
     前記第2方向から視て、前記空乏部分は前記感磁部分と重なるように配置されている、請求項1に記載の電流センサ装置。
    The magnetic sensor has a magnetically sensitive portion,
    The current sensor device according to claim 1, wherein the depletion portion is arranged to overlap the magnetically sensitive portion when viewed from the second direction.
  3.  前記第1方向に直交する断面において、前記第1方向及び前記第2方向の各々と直交する第3方向における前記空乏部分の中心、並びに前記第3方向における前記感磁部分の中心は、前記第2方向に沿って延びる仮想直線上に配置される、請求項2に記載の電流センサ装置。 In a cross section perpendicular to the first direction, the center of the depletion part in a third direction perpendicular to each of the first direction and the second direction, and the center of the magnetically sensitive part in the third direction are The current sensor device according to claim 2, wherein the current sensor device is arranged on a virtual straight line extending in two directions.
  4.  前記第1方向及び前記第2方向の各々と直交する第3方向において、前記空乏部分の長さは、前記感磁部分の長さよりも長い、請求項2又は3に記載の電流センサ装置。 The current sensor device according to claim 2 or 3, wherein the length of the depletion portion is longer than the length of the magnetically sensitive portion in a third direction perpendicular to each of the first direction and the second direction.
  5.  前記第2方向から視て、前記第1磁性層、前記非磁性層、及び前記第2磁性層の各々は、互いに重なる外縁部を有している、請求項1~4のいずれか1項に記載の電流センサ装置。 5. The method according to claim 1, wherein each of the first magnetic layer, the non-magnetic layer, and the second magnetic layer has outer edge portions that overlap with each other when viewed from the second direction. Current sensor device as described.
  6.  前記第2磁気シールドは、前記第1方向及び前記第2方向の各々と直交する第3方向において前記バスバを挟んで対向配置されている一対の対向部分を有している、請求項1~5のいずれか1項に記載の電流センサ装置。 Claims 1 to 5, wherein the second magnetic shield has a pair of opposing portions that are arranged opposite to each other across the bus bar in a third direction perpendicular to each of the first direction and the second direction. The current sensor device according to any one of the above.
  7.  請求項1~6のいずれか1項に記載の電流センサ装置を複数備え、
     前記複数の電流センサ装置は、前記第1方向及び前記第2方向の各々と直交する第3方向に並んで配置されている、電流センサ装置アレイ。
    A plurality of current sensor devices according to any one of claims 1 to 6 are provided,
    The plurality of current sensor devices are a current sensor device array arranged in a third direction orthogonal to each of the first direction and the second direction.
  8.  前記複数の電流センサ装置の各々の前記第1磁気シールドは、互いに一体として設けられている、請求項7に記載の電流センサ装置アレイ。 The current sensor device array according to claim 7, wherein the first magnetic shields of each of the plurality of current sensor devices are provided integrally with each other.
  9.  前記複数の電流センサ装置の各々の前記第1磁気シールドと前記磁気センサとの間に配置されている基板をさらに備え、
     前記基板は、前記複数の電流センサ装置の各々の前記第1磁気シールドが実装されている第1面と、前記第1面とは反対側に位置しかつ前記複数の電流センサ装置の各々の前記磁気センサが実装されている第2面とを有する、請求項7又は8に記載の電流センサ装置アレイ。
    further comprising a substrate disposed between the first magnetic shield and the magnetic sensor of each of the plurality of current sensor devices,
    The substrate is located on a first surface on which the first magnetic shield of each of the plurality of current sensor devices is mounted, and is located on a side opposite to the first surface and has a first surface on which the first magnetic shield of each of the plurality of current sensor devices is mounted. The current sensor device array according to claim 7 or 8, further comprising a second surface on which a magnetic sensor is mounted.
  10.  入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御回路とを備え、
     前記主変換回路は、前記バスバを含み、
     前記制御回路は、請求項1~6のいずれか1項に記載の電流センサ装置及び請求項7~9のいずれか1項に記載の電流センサ装置アレイの少なくともいずれかを含み、前記電流センサ装置又は前記電流センサ装置アレイにて検出された前記バスバを流れる電流値に基づいて、前記主変換回路を制御する、電力変換装置。
    a main conversion circuit that converts input power and outputs it;
    and a control circuit that controls the main conversion circuit,
    The main conversion circuit includes the bus bar,
    The control circuit includes at least one of the current sensor device according to any one of claims 1 to 6 and the current sensor device array according to any one of claims 7 to 9, and the current sensor device Alternatively, a power conversion device that controls the main conversion circuit based on a current value flowing through the bus bar detected by the current sensor device array.
  11.  入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御回路とを備え、
     前記主変換回路は、前記バスバを含み、
     前記制御回路は、請求項9に記載の電流センサ装置アレイを含み、前記電流センサ装置又は前記電流センサ装置アレイにて検出された前記バスバを流れる電流値に基づいて、前記主変換回路を制御し、
     前記制御回路は、前記基板に実装されている、電力変換装置。
    a main conversion circuit that converts input power and outputs it;
    and a control circuit that controls the main conversion circuit,
    The main conversion circuit includes the bus bar,
    The control circuit includes a current sensor device array according to claim 9, and controls the main conversion circuit based on a current value flowing through the bus bar detected by the current sensor device or the current sensor device array. ,
    A power conversion device, wherein the control circuit is mounted on the board.
PCT/JP2022/019328 2022-04-28 2022-04-28 Current sensor device, current sensor device array, and power converting device WO2023209967A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/019328 WO2023209967A1 (en) 2022-04-28 2022-04-28 Current sensor device, current sensor device array, and power converting device
JP2022561564A JPWO2023209967A1 (en) 2022-04-28 2022-04-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019328 WO2023209967A1 (en) 2022-04-28 2022-04-28 Current sensor device, current sensor device array, and power converting device

Publications (1)

Publication Number Publication Date
WO2023209967A1 true WO2023209967A1 (en) 2023-11-02

Family

ID=88518173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019328 WO2023209967A1 (en) 2022-04-28 2022-04-28 Current sensor device, current sensor device array, and power converting device

Country Status (2)

Country Link
JP (1) JPWO2023209967A1 (en)
WO (1) WO2023209967A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151743A (en) * 2006-12-20 2008-07-03 Yazaki Corp Current sensor and method for forming the same
JP2013113630A (en) * 2011-11-25 2013-06-10 Yazaki Corp Current detector
JP2014202480A (en) * 2013-04-01 2014-10-27 株式会社デンソー Magnetic shield body for current sensor
KR101497836B1 (en) * 2013-10-22 2015-03-02 대성전기공업 주식회사 Current sensing unit
JP2015049184A (en) * 2013-09-03 2015-03-16 Tdk株式会社 Inverter device
JP2016173334A (en) * 2015-03-18 2016-09-29 トヨタ自動車株式会社 Current sensor
JP2017187301A (en) * 2016-04-01 2017-10-12 日立金属株式会社 Current sensor
WO2017217267A1 (en) * 2016-06-15 2017-12-21 株式会社デンソー Electric current sensor
WO2018092404A1 (en) * 2016-11-17 2018-05-24 株式会社デンソー Current sensor device
WO2019117171A1 (en) * 2017-12-13 2019-06-20 アルプスアルパイン株式会社 Current sensor and current sensor case manufacturing method
JP2019109126A (en) * 2017-12-18 2019-07-04 日立金属株式会社 Current sensor
JP2021076468A (en) * 2019-11-08 2021-05-20 Tdk株式会社 Current sensor
JP2021139799A (en) * 2020-03-06 2021-09-16 株式会社クボタ Current sensor
JP2021162416A (en) * 2020-03-31 2021-10-11 株式会社デンソー Current detector

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151743A (en) * 2006-12-20 2008-07-03 Yazaki Corp Current sensor and method for forming the same
JP2013113630A (en) * 2011-11-25 2013-06-10 Yazaki Corp Current detector
JP2014202480A (en) * 2013-04-01 2014-10-27 株式会社デンソー Magnetic shield body for current sensor
JP2015049184A (en) * 2013-09-03 2015-03-16 Tdk株式会社 Inverter device
KR101497836B1 (en) * 2013-10-22 2015-03-02 대성전기공업 주식회사 Current sensing unit
JP2016173334A (en) * 2015-03-18 2016-09-29 トヨタ自動車株式会社 Current sensor
JP2017187301A (en) * 2016-04-01 2017-10-12 日立金属株式会社 Current sensor
WO2017217267A1 (en) * 2016-06-15 2017-12-21 株式会社デンソー Electric current sensor
WO2018092404A1 (en) * 2016-11-17 2018-05-24 株式会社デンソー Current sensor device
WO2019117171A1 (en) * 2017-12-13 2019-06-20 アルプスアルパイン株式会社 Current sensor and current sensor case manufacturing method
JP2019109126A (en) * 2017-12-18 2019-07-04 日立金属株式会社 Current sensor
JP2021076468A (en) * 2019-11-08 2021-05-20 Tdk株式会社 Current sensor
JP2021139799A (en) * 2020-03-06 2021-09-16 株式会社クボタ Current sensor
JP2021162416A (en) * 2020-03-31 2021-10-11 株式会社デンソー Current detector

Also Published As

Publication number Publication date
JPWO2023209967A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
JP6350785B2 (en) Inverter device
US10948522B2 (en) Current sensor and current sensor unit
US10746821B2 (en) Current sensor
US20130169267A1 (en) Current sensor
WO2013176271A1 (en) Current sensor
EP2977777B1 (en) Magnetic sensor
WO2013080557A1 (en) Current sensor
US20130057273A1 (en) Current sensor
US9678177B2 (en) Magnetic sensor device for suppressing magnetic saturation
WO2018110108A1 (en) Electric current sensor
JP6504260B2 (en) Current sensor and power converter including the same
JP7070532B2 (en) Magnetic sensor
JP2002082136A (en) Current sensor
WO2023209967A1 (en) Current sensor device, current sensor device array, and power converting device
CN111693911A (en) Magnetic sensor device
JP7215451B2 (en) CURRENT SENSOR AND MANUFACTURING METHOD THEREOF, ELECTRICAL CONTROL DEVICE, AND CURRENT SENSOR DESIGN METHOD
JP7367657B2 (en) Current sensor and electrical control device
US11543469B2 (en) Current sensor, and electric control apparatus including the current sensor
EP4297112A1 (en) Magnetic sensor
WO2012035906A1 (en) Current sensor
EP4060360A1 (en) Magnetic sensor
JP2019007935A (en) Current sensor
US20230160928A1 (en) Magnetic sensor and current sensor
WO2024034168A1 (en) Magnetic sensor
JP2002082135A (en) Current sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022561564

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940241

Country of ref document: EP

Kind code of ref document: A1