WO2017217133A1 - 薄膜太陽電池モジュール及びその製造方法 - Google Patents

薄膜太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2017217133A1
WO2017217133A1 PCT/JP2017/017332 JP2017017332W WO2017217133A1 WO 2017217133 A1 WO2017217133 A1 WO 2017217133A1 JP 2017017332 W JP2017017332 W JP 2017017332W WO 2017217133 A1 WO2017217133 A1 WO 2017217133A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
film solar
thin film
silicone rubber
cell module
Prior art date
Application number
PCT/JP2017/017332
Other languages
English (en)
French (fr)
Inventor
寛人 大和田
智欣 降籏
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2017217133A1 publication Critical patent/WO2017217133A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film solar cell module excellent in long-term reliability and flame retardancy and a method for producing the same.
  • the thin film solar cell module is an integrated structure in which a thin film solar cell is formed by forming a transparent conductive film on a transparent substrate such as glass, laminating a semiconductor layer that contributes to power generation, and forming an electrode on the back surface.
  • the sealing material is applied to the element back electrode side, and the back surface protective material (back sheet) is applied to the backmost surface.
  • an ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) is used as a sealing material.
  • EVA ethylene-vinyl acetate copolymer
  • the back sheet on the back surface has a water vapor transmission rate (JIS Z0208: 1976, condition B (40 ° C., 90% RH)) of 0.01 to 0.1 g in order to prevent water vapor from entering the thin film solar cell module.
  • Silluminated PET (polyethylene terephthalate) film of about (m 2 ⁇ 24 h) or a sheet in which an aluminum foil is laminated with a PET film is used.
  • Thin-film solar cell modules have been studied to increase the water vapor barrier property, assuming that when a small amount of moisture enters the inside, the components constituting the thin-film solar cell are decomposed and power generation cannot be maintained.
  • JP 2003-142717 A, JP 2009-277789 A, JP 2008-305945 A (patent documents 1, 2, 3)).
  • Patent Document 2 describes that “silicone has water vapor permeability and long-term reliability cannot be improved with respect to a thin film solar cell”.
  • Patent Document 4 covers a solar cell module with silicone gel and encloses the outer periphery with a water vapor-impermeable rubber-based thermoplastic sealing material and seals it. A method is disclosed.
  • the above-mentioned improvements are all for improving the water vapor barrier property with respect to the thin film solar cell, and are intended to improve or strengthen the frame sealing method, and the structure of the thin film solar cell module becomes complicated. .
  • EVA used as a sealing material when exposed outdoors, hydrolyzes and generates acetic acid when water vapor enters. The acetic acid may cause corrosion of the solar cell module and lead to a decrease in the power generation capacity of the battery itself. Furthermore, since EVA is a flammable resin, reduction of combustibility is a problem. Especially when used for residential roofs, the light-transmitting substrate on the light-receiving surface side, such as glass, is cracked by a flame caused by sparks, and the solar cell module continues to burn by igniting a sealing material such as EVA. A phenomenon occurs.
  • the backsheet is mainly made of PET, so combustion cannot be stopped, combustion holes are created in the backsheet, and glass or cell fragments fall to the bottom. There is.
  • Patent Document 5 Japanese Patent Laid-Open No. 9-27633 (Patent Document 5).
  • the method of adding chlorine or red phosphorus in Patent Document 5 to the sealing material is not preferable because dioxins may be generated during combustion.
  • This invention is made
  • An object is to provide a manufacturing method.
  • the present inventors applied silicone rubber to the sealing material disposed on the back surface of the thin film solar cell module, and further combined with a back sheet having a predetermined water vapor transmission rate. Has been found to be effective in improving long-term reliability, and further studies have been made to make the present invention.
  • this invention provides the following thin film solar cell module and its manufacturing method.
  • the silicone rubber sealing layer is (A) The following average composition formula (I) R 1 a SiO (4-a) / 2 (I) (In the formula, R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group, and a is a positive number of 1.95 to 2.05.) 100 parts by mass of an organopolysiloxane having a degree of polymerization represented by (B) 20 to 150 parts by mass of reinforcing silica having a specific surface area of 50 m 2 / g or more, (C) Curing agent The thin film solar cell module according to any one of [1] to [3], which is a cured product of a silicone rubber composition containing an effective amount for curing the component (A).
  • the silicone rubber sealing layer further includes a flame retardant imparting material.
  • An unvulcanized silicone rubber composition sheet is disposed so as to cover the thin film solar cell on the back surface side of the thin film solar cell provided on the back surface of the translucent substrate serving as the light receiving surface, After a back sheet having a water vapor transmission rate (JIS Z0208: 1976, condition B (40 ° C., 90% RH)) of 1.5 g / (m 2 ⁇ 24 h) or more is disposed on the silicone rubber composition sheet, the above-described lamination is performed.
  • the manufacturing method of the thin film solar cell module which heats pressing the silicone rubber composition sheet and back sheet which are cured, hardens the said silicone rubber composition sheet, and seals a thin film photovoltaic cell.
  • the silicone rubber sealing layer for sealing the thin-film solar battery cell and the back sheet having a predetermined water vapor transmission rate is sealed.
  • a long-term reliability and flame retardancy are improved, and a thin film solar cell module suitable for a spark test or the like can be provided as a roofing material.
  • this solar cell module does not change significantly in the solar cell module manufacturing process, can be easily manufactured using a vacuum laminator, and can provide a manufacturing process.
  • FIG. 6 is a cross-sectional view showing a configuration of a solar cell module of Example 2.
  • FIG. 5 is a cross-sectional view showing a configuration of a solar cell module of Comparative Example 1.
  • FIG. 1 is a cross-sectional view showing the configuration of an embodiment of a thin-film solar cell module according to the present invention.
  • the thin film solar cell module 10 includes a silicone rubber seal covering the thin film solar cell 2 on the back surface side of the thin film solar cell 2 provided on the back surface of the translucent substrate 1 serving as a light receiving surface.
  • the back sheet 4 having a stop layer 3 and a water vapor transmission rate (JIS Z0208: 1976, condition B (40 ° C., 90% RH)) of 1.5 g / (m 2 ⁇ 24 h) or more is laminated and disposed. To do.
  • the translucent substrate 1 is a transparent member on the side on which sunlight is incident, and requires a member having long-term reliability performance in outdoor use including transparency, weather resistance, and impact resistance.
  • transparent glass is mentioned as an example of the translucent substrate 1, blue plate glass or white plate tempered glass is preferable, and white plate tempered glass having a thickness of about 3 to 5 mm is particularly preferable.
  • the thin film solar cell 2 may be a conventionally known thin film type solar cell, and examples thereof include the following.
  • the metal electrode layer is a Mo vapor deposition film formed by a DC magnetron sputtering method.
  • the photoelectric conversion layer is composed of a p-type light absorption layer made of a chalcopyrite compound semiconductor of CIGS (Copper-Indium-Gallium-Selenide) or CIS (Copper-Indium-Selenide), and CdS formed thereon. and an n-type high resistance buffer layer.
  • the p-type light absorption layer may be formed by a three-stage vapor deposition method, and the n-type high resistance buffer layer may be formed by a solution growth method.
  • the light transmissive electrode layer is a ZnO-based transparent conductive film window layer and is formed by sputtering.
  • the CIGS chalcopyrite-based semiconductor layer can be a compound thin film solar cell including a compound semiconductor layer in which a constituent element is partially replaced by a chalcogen semiconductor layer composed of Cd, Zn, Te, S, Se, or the like. .
  • a thin-film solar cell in which the photoelectric conversion layer is made of an amorphous silicon layer, a microcrystalline thin-film silicon layer, or a thin film layer containing germanium may be used.
  • a thin-film silicon solar cell having a configuration in which an electrode layer, a thin-film silicon semiconductor layer, a transparent electrode layer, and a lead-out electrode layer are sequentially formed on the back surface of the translucent substrate 1 may be used.
  • the thickness of the thin-film solar battery cell 2 is, for example, 0.5 to 2.0 ⁇ m.
  • the silicone rubber sealing layer 3 is disposed so as to cover the thin film solar cell 2, and a silicone rubber that adheres well to the translucent substrate 1, the thin film solar cell 2, and the back sheet 4 is preferable.
  • the thickness of the silicone rubber sealing layer 3 is preferably 0.3 to 3 mm, more preferably 0.1 to 1 mm.
  • the water vapor transmission rate (JIS Z0208: 1976, Condition B (40 ° C., 90% RH)) of the silicone rubber sealing layer 3 is preferably 100 g / (m 2 ⁇ 24 h) or more, preferably 100 to 200 g / (M 2 ⁇ 24h) is more preferable, and 110 to 160 g / (m 2 ⁇ 24h) is particularly preferable.
  • the water vapor transmission rate refers to a value measured by using the method described in JIS Z0208: 1976 using Condition B (40 ° C., 90% RH).
  • the silicone rubber sealing layer 3 is preferably a cured product of a silicone composition containing the following components (A) to (C).
  • (D) a flame retardancy imparting material may be further blended.
  • R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group, usually having 1 to 12, particularly those having 1 to 8 carbon atoms, specifically, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and octyl group, and cycloalkyl groups such as cyclopentyl group and cyclohexyl group.
  • An alkenyl group such as a vinyl group, an allyl group and a propenyl group, an aryl group such as a cycloalkenyl group, a phenyl group and a tolyl group, an aralkyl group such as a benzyl group and a 2-phenylethyl group, or one of hydrogen atoms of these groups And a group in which part or all are substituted with a halogen atom or a cyano group, and a methyl group, a vinyl group, a phenyl group, and a trifluoropropyl group are preferable, Butyl group, a vinyl group is preferable.
  • the main chain of the organopolysiloxane is composed of repeating dimethylsiloxane units, or a part of the dimethylpolysiloxane structure composed of repeating dimethylsiloxane units constituting the main chain is phenyl group, vinyl group, A diphenylsiloxane unit having a 3,3,3-trifluoropropyl group, a methylphenylsiloxane unit, a methylvinylsiloxane unit, a methyl-3,3,3-trifluoropropylsiloxane unit, or the like is suitable. .
  • the organopolysiloxane preferably has two or more aliphatic unsaturated groups such as alkenyl groups and cycloalkenyl groups in one molecule, and particularly preferably a vinyl group.
  • the aliphatic unsaturated group may be bonded to a silicon atom at the molecular chain end, or may be bonded to a silicon atom in the middle of the molecular chain, or both. It is preferably bonded to the silicon atom.
  • A is a positive number of 1.95 to 2.05, preferably 1.98 to 2.02, more preferably 1.99 to 2.01.
  • the organopolysiloxane of component (A) is blocked with a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group, or a trivinylsiloxy group.
  • a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group, or a trivinylsiloxy group.
  • Preferred examples can be given.
  • Particularly preferred are methyl vinyl polysiloxane, methyl phenyl vinyl polysiloxane, methyl trifluoropropyl vinyl polysiloxane and the like.
  • Such an organopolysiloxane can be obtained by, for example, hydrolyzing and condensing one or more organohalogenosilanes, or by converting a cyclic polysiloxane (siloxane trimer, tetramer, etc.) to alkaline or acidic. It can obtain by ring-opening polymerization using the catalyst of.
  • These are basically linear diorganopolysiloxanes, but the component (A) may be a mixture of two or more different molecular weights (degree of polymerization) and molecular structures.
  • the degree of polymerization of the organopolysiloxane is 100 or more, preferably 100 to 100,000, particularly preferably 3,000 to 20,000. This degree of polymerization can be measured as a weight average degree of polymerization in terms of polystyrene by gel permeation chromatography (GPC) analysis.
  • GPC gel permeation chromatography
  • the reinforcing silica having a BET specific surface area of 50 m 2 / g or more as the component (B) is added to obtain a composition having excellent mechanical strength before and after curing.
  • the BET specific surface area is preferably more than 200 m 2 / g, more preferably 250 m 2 / g or more.
  • the upper limit is not particularly limited, but is usually 500 m 2 / g or less.
  • the reinforcing silica as the component (B) examples include fumed silica (dry silica or fumed silica), precipitated silica (wet silica), and the like. Further, those whose surfaces have been subjected to a hydrophobic treatment with chlorosilane, alkoxysilane, hexamethyldisilazane, or the like are also preferably used. In particular, the treatment with hexamethyldisilazane is preferable because of high transparency. In order to improve transparency, it is preferable to use fumed silica as reinforcing silica. Reinforcing silica may be used alone or in combination of two or more.
  • component (B) As the reinforcing silica of component (B), commercially available products can be used.
  • Aerosil series such as Aerosil 130, Aerosil 200, Aerosil 300, Aerosil R-812, Aerosil R-972, Aerosil R-974 (Japan)
  • Aerosil Co., Ltd. Cabosil MS-5, MS-7 (Cabot Co., Ltd.), Leorosil QS-102, 103, MT-10 (Tokuyama Co., Ltd.), etc.
  • Untreated or surface such as fumed silica (that is, hydrophilic or hydrophobic), Toxeal US-F (manufactured by Tokuyama Corporation), NIPSIL-SS, NIPSIL-LP (manufactured by Nippon Silica Industry Co., Ltd.) Examples include hydrophobized precipitated silica.
  • the blending amount of the reinforcing silica of the component (B) is 20 to 150 parts by weight, preferably 30 to 90 parts by weight, more preferably 50 to 50 parts by weight with respect to 100 parts by weight of the organopolysiloxane of the component (A). 90 parts by mass.
  • the blending amount of the component (B) is 20 parts by mass or more, a reinforcing effect before and after curing is easily obtained, and transparency after curing of the silicone sealing material does not decrease.
  • it is 150 parts by mass or less, the silica is well dispersed in the silicone sealing material, and at the same time, the processability into a sheet is good.
  • the flame retardant imparting component (D) is included, the lower limit of the component (B) can be 5 parts by mass.
  • the curing agent for component (C) is not particularly limited as long as it can cure component (A), but (a) addition reaction (hydrosilylation reaction) type curing agent widely known as a curing agent for silicone compositions. That is, a combination of an organohydrogenpolysiloxane (crosslinking agent) and a hydrosilylation reaction catalyst, or (b) an organic peroxide is preferable.
  • the organohydrogenpolysiloxane as a crosslinking agent in the above contains hydrogen atoms (SiH groups) bonded to at least two silicon atoms in one molecule.
  • Specific examples include a methyl group, an ethyl group, Alkyl groups such as propyl group, butyl group, pentyl group and hexyl group, unsubstituted monovalent hydrocarbon groups such as cyclohexyl group, cyclohexenyl group and phenyl group, 3,3,3-trifluoropropyl group, cyanomethyl group, etc.
  • a substituted monovalent hydrocarbon group such as a substituted alkyl group in which at least a part of hydrogen atoms of the monovalent hydrocarbon group is substituted with a halogen atom or a cyano group, b is 0.7 to 2.1, c Is 0.01 to 1.0, and b + c is 0.8 to 3.0, preferably b is 0.8 to 2.0, c is 0.2 to 1.0, and b + c is 1.0 to 2.
  • a conventionally known organohydrogenpolysiloxane represented by the formula is applicable. Further, the molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures.
  • the number of silicon atoms in one molecule is preferably 2 to 300, particularly about 4 to 200, which is liquid at room temperature.
  • the hydrogen atom (SiH group) bonded to the silicon atom may be at the end of the molecular chain, at the side chain, or both, and at least two (usually 2 to 300) per molecule.
  • those containing 3 or more (for example, 3 to 200), more preferably about 4 to 150 are used.
  • organohydrogenpolysiloxane examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, methylhydrogencyclopolysiloxane, and methylhydrogen.
  • Siloxane / dimethylsiloxane cyclic copolymer tris (dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, trimethylsiloxy group-capped methylhydrogenpolysiloxane, both ends trimethylsiloxy group-capped dimethylsiloxane methyl Hydrogensiloxane copolymer, dimethylhydrogensiloxy group-capped dimethylpolysiloxane at both ends, dimethylhydrogensiloxy group-capped dimethylsiloxane methylhydride at both ends Gensiloxane copolymer, trimethylsiloxy group-capped methylhydrogensiloxane / diphenylsiloxane copolymer, trimethylsiloxy group-capped methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, cyclic methylhydrogenpolysilox
  • the compounding amount of the organohydrogenpolysiloxane is 0.1 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.3 to 100 parts by mass of the organopolysiloxane of the component (A). It is preferable that the amount be ⁇ 10 parts by mass.
  • the organohydrogenpolysiloxane has a molar ratio of hydrogen atoms bonded to silicon atoms in the component (C) (that is, SiH groups) to alkenyl groups bonded to silicon atoms in the component (A) is 0.5. It is preferable to add in an amount of -5 mol / mol, preferably 0.8-4 mol / mol, more preferably 1-3 mol / mol.
  • hydrosilylation reaction catalyst used in the crosslinking reaction of the above (a) addition reaction hydrosilylation reaction
  • known catalysts can be applied, for example, platinum black, platinum chloride, chloroplatinic acid, platinum chloride.
  • platinum black platinum black
  • platinum chloride chloroplatinic acid
  • platinum chloride examples thereof include a reaction product of an acid and a monohydric alcohol, a complex of chloroplatinic acid and an olefin, a platinum-based catalyst such as platinum bisacetoacetate, a palladium-based catalyst, and a rhodium-based catalyst.
  • the compounding quantity of this hydrosilylation reaction catalyst can be made into a catalytic amount, and it is usually converted into platinum group metal mass, and is based on the total mass of the components (A) and (B) and the organohydrogenpolysiloxane. It is preferably 1 to 1,000 ppm, and more preferably 5 to 100 ppm. If it is less than 1 ppm, the addition reaction may not proceed sufficiently and the curing may be insufficient, and it is uneconomical to add more than 1,000 ppm.
  • an addition reaction control agent may be used for the purpose of adjusting the curing rate or pot life.
  • Specific examples include ethynylcyclohexanol and tetramethyltetravinylcyclotetrasiloxane.
  • examples of (b) organic peroxides include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-bis (2,5-t-butylperoxy) hexane, di-t-butylperoxide, t-butylperbenzoate, 1,6-hexanediol-bis-t-butylperoxycarbonate, etc. Is mentioned.
  • the amount of (b) organic peroxide added is preferably 0.1 to 15 parts by mass, particularly preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of component (A). If the addition amount is 0.1 parts by mass or more, the crosslinking reaction proceeds sufficiently, and it is difficult to cause a decrease in hardness or insufficient strength, and if it is within 15 parts by mass, it is preferable in terms of cost, and many decomposition products of the curing agent are generated. Therefore, it is difficult to increase discoloration of the sheet.
  • the flame retardant imparting material of component (D) known materials can be used, and triazoles such as platinum compounds, carbon black, fumed titanium oxide, bengara (Fe 2 O and Fe 3 O 4 ), benzotriazole and the like. A compound can be blended.
  • This flame retardant material may be used alone or in combination of two or more. It is also possible to improve flame retardancy by relatively filling crystalline silica or aluminum oxide powder to relatively reduce the amount of siloxane component. By these methods, flame retardancy can be imparted without selecting chlorine or red phosphorus that may generate dioxins during combustion.
  • the amount of component (D) to be added is not particularly limited, but is 0.001 to 0.5 parts by mass, and more preferably 0.002 to 0.05 parts by mass with respect to 100 parts by mass in total of components (A) to (C). Part.
  • the silicone rubber composition used in the present invention can be obtained by kneading predetermined amounts of the above-described components with a two-roll, kneader, Banbury mixer or the like.
  • the plasticity before curing of the silicone rubber composition thus prepared is 150 to 1,000, preferably 200 to 800, more preferably 250 to 600.
  • the plasticity can be measured according to JIS K6249: 2003.
  • the molding method is not particularly limited, and extrusion molding, calendar molding, and the like are used.
  • the thickness of the silicone rubber composition sheet is preferably 0.05 to 3 mm, particularly preferably 0.1 to 1 mm.
  • the silicone rubber composition can be cured by heating at 120 to 150 ° C. for 20 to 60 minutes.
  • the back sheet 4 protects the back surface of the solar cell module 10 and has a water vapor transmission rate (JIS Z0208: 1976, condition B (40 ° C., 90% RH)) of 1.5 g / (m 2 ⁇ 24 h) or more. belongs to.
  • the water vapor transmission rate is preferably 2.0 g / (m 2 ⁇ 24 h) or more, and more preferably 10 g / (m 2 ⁇ 24 h) or more.
  • the upper limit of the water vapor transmission rate of the back sheet 4 is not particularly limited as long as other characteristics required for the back sheet 4 are satisfied.
  • the back sheet 4 there are insulation characteristics between the power generation part and the ground in the module.
  • heat resistance, weather resistance, moisture resistance, voltage resistance, ultraviolet resistance, and adhesion to the silicone rubber sealing layer 3 are required to withstand a long-term use environment.
  • the function of further improving the conversion efficiency, such as increasing the sunlight incident on the solar cell module can be provided by efficiently reflecting the sunlight leaking from the upper part of the thin film solar cell module.
  • the back sheet 4 is preferably composed of a laminated film in which the water vapor transmission rate is adjusted by combining a fluororesin film and a PET film.
  • a fluororesin film for example, “PVF (polyvinyl fluoride) / adhesive / PET (polyethylene terephthalate) / adhesion”.
  • laminated films such as “agent / PVF” and “PVF / adhesive / PET”.
  • position when applying this laminated film to a module, it is good to arrange
  • the thickness of the back sheet 4 is not particularly limited as long as the back surface of the solar cell module 10 can be protected and the predetermined water vapor permeability can be secured.
  • the back surface side of the thin film solar cell 2 is sealed with a predetermined water vapor permeability made of a combination of the silicone rubber sealing layer 3 and the back sheet 4. For this reason, moisture is discharged without staying inside the module, and the solar cell module has excellent long-term reliability. Moreover, it is excellent also in a flame retardance.
  • an unvulcanized silicone rubber composition sheet is applied to the back surface side of a thin film solar cell provided on the back surface of a translucent substrate serving as a light receiving surface. It arrange
  • the laminated silicone rubber composition sheet and the back sheet are heated while being pressed to cure the silicone rubber composition sheet, thereby sealing the thin film solar cell to form the thin film solar battery module. To get.
  • each material used here may be what was demonstrated in the said thin film solar cell module 10.
  • FIG. 2 First, as shown in FIG. 2, the thing which provided the thin film photovoltaic cell 2 except the outer-periphery edge part of the surface on the single side
  • substrate 1 is prepared.
  • the silicone rubber composition sheet 3a is cured and the silicone rubber sealing layer 3 and is fixed to and integrated with the translucent substrate 1, the back sheet 4, and the thin-film solar battery cell 2.
  • the thin film solar cell module 10 of this invention is obtained.
  • the thin-film solar cell module 10 formed in this way is not shown, but an aluminum or hard resin frame is fitted and fixed to the outer peripheral end portion.
  • the outer peripheral edge of the thin-film solar cell module 10 may be sealed with a butyl rubber material or the like. However, when water vapor permeation and discharge are taken into consideration, the outer peripheral edge is not sealed with butyl rubber or the like but surrounded by a frame. It is preferable to use only. Further, a terminal box for taking out electrodes is attached to the back surface (back surface) side of the thin-film solar cell module 10 to obtain a completed shape.
  • the part of the unit of a compounding quantity is a mass part.
  • a weight average molecular weight and a weight average polymerization degree are the polystyrene conversion values in a gel permeation chromatography (GPC) analysis.
  • silicone rubber composition used in this example will be described.
  • ⁇ Preparation of silicone rubber composition for sealing material and production of silicone rubber composition sheet 100 parts of an organopolysiloxane comprising 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units and 0.125 mol% of dimethylvinylsiloxane units and having an average degree of polymerization of about 6,000, BET specific surface area 70 parts of 300 m 2 / g silica (trade name Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.), 16 parts of hexamethyldisilazane as a dispersant and 4 parts of water were added, and the mixture was kneaded with a kneader at 170 ° C.
  • a compound was prepared by heat treatment for 2 hours.
  • 0.5 parts / 2 of C-25A (platinum catalyst) / C-25B (organohydrogenpolysiloxane) are used as addition crosslinking curing agents.
  • 0.0 parts were uniformly mixed with two rolls, and then the unvulcanized silicone rubber composition sheet 3a was formed on the back sheet 4 with a calender roll so that the thickness after curing was 0.5 mm.
  • a three-layer structure film (trade name: Tedlar TPT, manufactured by DuPont) made of PVF film-PET film-PVF film and having a thickness of about 300 ⁇ m was used.
  • the water vapor transmission rate of this three-layer structure film was 2.0 g / (m 2 ⁇ 24 h).
  • the water vapor permeability of the cured silicone rubber composition sheet 3a was 150 g / (m 2 ⁇ 24 h).
  • the thin film solar cell module was produced in the following procedures. First, what formed the multi-junction thin film silicon solar cell (thin film solar cell 2) laminated
  • a vacuum laminator device to obtain a thin-film solar cell module 10 having a length ⁇ width size of about 1,200 mm ⁇ 1,000 mm (FIG. 1). .
  • the frame installation of the module outer peripheral part was not performed.
  • a thin film solar cell module was produced using a silicone rubber composition to which a flame retarder was added.
  • ⁇ Preparation of flame retardant silicone rubber composition and production of silicone rubber composition sheet 100 parts of an organopolysiloxane comprising 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units and 0.125 mol% of dimethylvinylsiloxane units and having an average degree of polymerization of about 6,000, BET specific surface area 30 parts of 200 m 2 / g silica (trade name Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.), 4 parts of hexamethyldisilazane as a dispersant and 1.2 parts of water were added, and the mixture was kneaded with a kneader at 170 ° C.
  • a compound was prepared by heating for 2 hours. 100 parts of the above compound are 50 parts of crystalline silica (Crystallite VX-S, manufactured by Tatsumori) with an average particle diameter of 4 ⁇ m, and titanium oxide CR-60 (Ishihara Sangyo Co., Ltd.) with an average particle diameter of 0.2 ⁇ m. 3 parts and 0.015 part of benzotriazole were mixed to obtain a flame retardant compound. For 100 parts of this compound, 0.5 parts / 2 of C-25A (platinum catalyst) / C-25B (organohydrogenpolysiloxane) (both manufactured by Shin-Etsu Chemical Co., Ltd.) are added as addition crosslinking curing agents.
  • C-25A platinum catalyst
  • C-25B organohydrogenpolysiloxane
  • the thin film solar cell module was produced in the following procedures.
  • the same as in Example 1 was prepared by forming a multi-junction thin-film silicon solar cell (thin-film solar cell 2) laminated on a blue plate glass to be a light-transmitting substrate 1 on the light-receiving surface side (FIG. 2). ).
  • a laminate of the silicone rubber composition sheet 3a ′ / back sheet 4 prepared as described above is formed on the back surface of the thin film solar cell 2 so that the silicone rubber composition sheet 3a ′ covers the thin film solar cell 2.
  • the temporary laminate was heated and pressed at 140 ° C.
  • a vacuum laminator device to obtain a thin-film solar cell module 20 having a length ⁇ width size of about 1,200 mm ⁇ 1,000 mm (FIG. 4). .
  • the frame installation of the module outer peripheral part was not performed.
  • Example 1 a thin-film solar cell module was fabricated by the following procedure using EVA instead of silicone rubber.
  • the same as in Example 1 was prepared by forming a multi-junction thin-film silicon solar cell (thin-film solar cell 2) laminated on a blue plate glass to be a light-transmitting substrate 1 on the light-receiving surface side (FIG. 2). ).
  • the EVA sheet 9 was disposed on the back surface of the thin-film solar battery 2 so as to cover the thin-film solar battery 2, and the back sheet 4 same as that of Example 1 was further placed thereon.
  • EVA sheet 9 an EVA sheet for solar cells having a thickness of 0.45 mm (trade name: Ultra Pearl PV, fast cure type, Sanvic Co., Ltd.) was used.
  • the temporary laminate was heated and pressed at 140 ° C. under vacuum using a vacuum laminator device to obtain a thin film solar cell module 90 having a length ⁇ width size of about 1,200 mm ⁇ 1,000 mm (FIG. 5).
  • the frame installation of the module outer peripheral part was not performed.
  • the obtained thin film solar cell module was subjected to a high temperature and high humidity test and a spark test.
  • High temperature and high humidity test The initial output of the thin film solar cell module immediately after the production was measured, and then it was put into a high temperature and high humidity test (85 ° C., 85% RH). Next, a high temperature and high humidity test was conducted for 2,000 hours. At that time, the sample is taken out every 500 hours of exposure, that is, the total exposure time of 500, 1,000, 1,500, and 2,000 hours, and the output is measured. Asked for output.
  • the burner temperature was set to 900 ⁇ 50 ° C. at a position 60 mm from the upper end of the burner, and the brand was exposed to a flame for 240 seconds.
  • the thin film solar cell module produced as described above was installed at an inclination angle of 30 ° so that the light-receiving surface side translucent substrate 1 was on top. Two brands were placed on the upper surface designated part of the thin-film solar cell module test body as defined in Article 63 of the Building Standard Law. The test was continued until the brand combustion completely disappeared, and the state of the thin film solar cell module specimen after the combustion was observed.
  • Table 1 shows the results of the above high-temperature and high-humidity test and spark test.
  • the thin-film solar cell modules 10 and 20 to which the silicone rubber sealing layer 3 and the flame retardant imparting material-added silicone rubber sealing layer 3 ′ according to Examples 1 and 2 are applied are subjected to a high temperature and high humidity test.
  • the output retention rate was high, and good results were shown.
  • the output of the thin-film solar cell module 90 to which the EVA layer 9 was applied as the sealing material in Comparative Example 1 was significantly reduced in 1,500 hours in the high temperature and high humidity test. Therefore, the measurement for 2,000 hours is not performed.
  • Example 2 in which the flame retardant imparting material-added silicone rubber sealing layer 3 ′ was applied, the burnt area on the back surface was as small as 40 ⁇ 40 mm or less, which was a particularly good result.
  • Comparative Example 1 in which the EVA layer 9 was applied as a sealing material, the EVA ignited and the combustion was accelerated. As a result, combustion penetration occurred and the brand dropped on the back surface. Moreover, the through-hole was 250 * 250 mm, and it failed.
  • the back surface side of the thin-film solar battery has a predetermined water vapor permeability composed of a combination of a silicone rubber sealing layer and a back sheet having a predetermined water vapor permeability. Since it is sealed with what it has, it is possible to provide a thin film solar cell module that exhibits a high output retention rate in a high-temperature and high-humidity test. In addition, it is possible to provide a thin film solar cell module that is suitable for passing a single flame test. In particular, a thin film solar cell module provided with a flame retardant silicone rubber sealing layer exhibits a more effective flame retardant effect in a spark test.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

長期信頼性及び難燃性に優れる薄膜太陽電池モジュールを提供する。 受光面となる透光性基板1の裏面上に設けられた薄膜太陽電池セル2の裏面側に、薄膜太陽電池セル2を覆うシリコーンゴム封止層3、水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上であるバックシート4が積層配置された薄膜太陽電池モジュール10である。

Description

薄膜太陽電池モジュール及びその製造方法
 本発明は、長期信頼性及び難燃性に優れた薄膜太陽電池モジュール及びその製造方法に関するものである。
 太陽電池の低価格化を目的として、薄膜太陽電池モジュールが注目されている。薄膜太陽電池モジュールは、ガラス等の透光性基板に透明導電膜を形成し、発電に寄与する半導体層を積層形成し、更に背面に電極を形成して薄膜太陽電池セルが形成された一体構造の素子背面電極側に封止材を適用し、並びに最背面に裏面保護材(バックシート)を適用した構成となっている。
 この形態の薄膜太陽電池モジュールは、封止材としてエチレン-酢酸ビニル共重合体(以下、EVAと称する)が使用されている。また、最背面のバックシートは、薄膜太陽電池モジュール内部への水蒸気侵入を防ぐため、水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が0.01~0.1g/(m2・24h)程度のシリカ蒸着PET(ポリエチレンテレフタレート)フィルムもしくはアルミ箔をPETフィルムの積層したシートを使用する。
 薄膜太陽電池モジュールは、内部に少量の水分が侵入した場合、薄膜太陽電池を構成する成分が分解することにより、発電が維持できないとして、水蒸気バリア性を高める検討が数多くなされている(例えば、特開2003-142717号公報、特開2009-277891号公報、特開2008-305945号公報(特許文献1、2、3))。中でも、特許文献2では、『シリコーンは水蒸気透過性があり、薄膜太陽電池に対して長期信頼性の改善が見込めない』との記載がある。
 この欠点を補うために、特開2015-012114号公報(特許文献4)では、太陽電池モジュールをシリコーンゲルで覆い、その外周部を水蒸気不透過性のゴム系熱可塑性シーリング材で囲んで封止する方法が開示されている。
 薄膜太陽電池に対して、上述の改善はいずれも水蒸気バリア性を高めるためのもので、フレームのシール方法の改善や強化等を目的としており、薄膜太陽電池モジュールの構造としては複雑なものとなる。
 また、封止材として使用されるEVAは、屋外に暴露された場合、水蒸気が侵入することで加水分解し酢酸を発生する。その酢酸が太陽電池モジュールの腐食などを引き起こし、電池そのものの発電能力の低下につながることがある。更に、EVAは可燃性樹脂であることから、燃焼性の低減が課題である。特に住宅屋根に使用される場合は、飛び火による火炎で、受光面側の光透過性基板、例えばガラスなどは割れが生じ、EVA等の封止材に引火することで、太陽電池モジュールが燃え続ける現象が生じる。
 また、太陽電池モジュールが燃え続けた場合、バックシートは主にPETを主剤としているため、燃焼を止めることができず、バックシートに燃焼穴が生じ、ガラスやセルの破片が下部に落下することがある。
 太陽電池モジュールを住宅の屋根上に設置する場合、防火に関する法規制に基づく試験に合格することが必要となり、上記飛び火による火炎で、太陽電池モジュールが延焼により貫通し、燃焼物やガラス、発電素子の破片等が下部に落下することは、当試験の合格に達しない場合がある。
 このような問題を改善するための策として、太陽電池のセル裏面側封止材に塩素系や赤りん系の難燃材を添加する方法がある(特開平9-27633号公報(特許文献5))。
 しかしながら、特許文献5にある塩素系や赤りんを封止材に添加する方法は、燃焼時にダイオキシン類が発生することがあり、好ましくない。
特開2003-142717号公報 特開2009-277891号公報 特開2008-305945号公報 特開2015-012114号公報 特開平9-27633号公報
 本発明は、上記事情に鑑みなされたもので、長期信頼性及び難燃性に優れる薄膜太陽電池モジュール、並びに該薄膜太陽電池モジュールを、太陽電池モジュール製造工程を従来からほぼ変更することなく製造する製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため検討を行った結果、薄膜太陽電池モジュールの背面に配設する封止材にシリコーンゴムを適用し、更に所定の水蒸気透過率を有するバックシートと組み合わせることが長期信頼性改善に有効であることを知見し、更に鋭意検討を行い本発明をなしたものである。
 即ち、本発明は、下記の薄膜太陽電池モジュール及びその製造方法を提供する。
〔1〕 受光面となる透光性基板の裏面上に設けられた薄膜太陽電池セルの裏面側に、薄膜太陽電池セルを覆うシリコーンゴム封止層、水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上であるバックシートが積層配置された薄膜太陽電池モジュール。
〔2〕 シリコーンゴム封止層の水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が100g/(m2・24h)以上である〔1〕記載の薄膜太陽電池モジュール。
〔3〕 上記シリコーンゴム封止層の厚さが0.05~3mmである〔1〕又は〔2〕記載の薄膜太陽電池モジュール。
〔4〕 上記シリコーンゴム封止層が、
(A)下記平均組成式(I)
 R1 aSiO(4-a)/2     (I)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
で表される重合度が100以上のオルガノポリシロキサン 100質量部、
(B)比表面積が50m2/g以上の補強性シリカ 20~150質量部、
(C)硬化剤 (A)成分を硬化させる有効量
を含むシリコーンゴム組成物の硬化物である〔1〕~〔3〕のいずれかに記載の薄膜太陽電池モジュール。
〔5〕 上記バックシートは、フッ素樹脂フィルムとポリエチレンテレフタレートフィルムの積層フィルムからなる〔1〕~〔4〕のいずれかに記載の薄膜太陽電池モジュール。
〔6〕 上記シリコーンゴム封止層は、更に難燃性付与材を含む〔1〕~〔5〕のいずれかに記載の薄膜太陽電池モジュール。
〔7〕 受光面となる透光性基板の裏面上に設けられた薄膜太陽電池セルの裏面側に、未加硫状態のシリコーンゴム組成物シートを薄膜太陽電池セルを覆うように配置し、該シリコーンゴム組成物シート上に水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上であるバックシートを配置した後、上記積層したシリコーンゴム組成物シート及びバックシートを押圧しながら加熱して上記シリコーンゴム組成物シートを硬化させて薄膜太陽電池セルを封止する薄膜太陽電池モジュールの製造方法。
 本発明によれば、薄膜太陽電池セルを封止するシリコーンゴム封止層と所定の水蒸気透過率を有するバックシートとを組み合わせて太陽電池モジュールの裏面側を封止することにより、太陽電池モジュールの長期信頼性並びに難燃性が向上し、屋根材として飛び火試験等に適合する薄膜太陽電池モジュールを提供できる。また、この太陽電池モジュールは、太陽電池モジュール製造工程において大幅な変更がなく、真空ラミネーターを用いて容易に作製でき、製造工程を提供することができる。
本発明に係る太陽電池モジュールの一実施形態の構成を示す断面図である。 透光性基板の主面上に薄膜太陽電池を形成した状態を示す断面図である。 透光性基板の薄膜太陽電池形成面上に未加硫状態のシリコーンゴムシート及びバックシートを積層した状態を示す断面図である。 実施例2の太陽電池モジュールの構成を示す断面図である。 比較例1の太陽電池モジュールの構成を示す断面図である。
[薄膜太陽電池モジュール]
 以下に、本発明に係る薄膜太陽電池モジュールについて説明する。
 図1は、本発明に係る薄膜太陽電池モジュールの一実施の形態における構成を示す断面図である。
 図1に示すように、薄膜太陽電池モジュール10は、受光面となる透光性基板1の裏面上に設けられた薄膜太陽電池セル2の裏面側に、薄膜太陽電池セル2を覆うシリコーンゴム封止層3、水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上であるバックシート4が積層配置されたことを特徴とするものである。
 ここで、透光性基板1は、太陽光を入射させる側となる透明部材であり、透明性、耐候性、耐衝撃性をはじめとして屋外使用において長期の信頼性能を有する部材が必要である。例えば、透光性基板1の例として透明ガラスが挙げられ、青板ガラスや白板強化ガラスが好ましく、特に厚さ3~5mm程度の白板強化ガラスが好ましい。
 薄膜太陽電池セル2は、従来公知の薄膜タイプの太陽電池セルでよく、例えば以下のものが挙げられる。
(カルコパイライト系化合物薄膜太陽電池)
 金属電極層は、DCマグネトロンスパッタ法により形成されるMo蒸着膜である。
 光電変換層は、CIGS(Copper-Indium-Gallium-Selenide)系やCIS(Copper-Indium-Selenide)系のカルコパイライト系化合物半導体からなるp型光吸収層と、その上に形成されるCdSからなるn型高抵抗バッファ層とを有する。p型光吸収層は三段階蒸着法により形成し、n型高抵抗バッファ層は溶液成長法により形成するとよい。
 光透過性電極層は、ZnO系透明導電膜窓層であり、スパッタ法で形成される。
 CIGSカルコパイライト系の半導体層は、その構成元素をCd,Zn,Te,S,Seなどで構成されるカルコゲン半導体層で一部を置き換えた化合物半導体層を含む化合物薄膜太陽電池とすることができる。
 以上の薄膜太陽電池セルのほかに、光電変換層がアモルファスシリコン層からなるもの、微結晶型薄膜シリコン層からなるもの又はゲルマニウムを含む薄膜層からなるものである薄膜太陽電池セルであってもよい。例えば、透光性基板1の裏面上に電極層、薄膜シリコン半導体層、透明電極層、引き出し電極層が順次形成された構成の薄膜シリコン太陽電池セルとしてもよい。
 薄膜太陽電池セル2の厚さは、例えば0.5~2.0μmである。
 シリコーンゴム封止層3は、薄膜太陽電池セル2を覆うように配置されるものであり、透光性基板1、薄膜太陽電池セル2及びバックシート4とよく密着するシリコーンゴムが好ましい。
 また、シリコーンゴム封止層3の厚さは0.3~3mmが好ましく、0.1~1mmがより好ましい。
 更に、シリコーンゴム封止層3の水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))は、100g/(m2・24h)以上であることが好ましく、100~200g/(m2・24h)であることがより好ましく、110~160g/(m2・24h)であることが特に好ましい。
 なお、本発明において、水蒸気透過率とは、JIS Z0208:1976に記載の方法で、条件B(40℃、90%RH)を用いて測定した値を指す。
 また、シリコーンゴム封止層3は、下記(A)~(C)成分を含むシリコーン組成物の硬化物であることが好ましい。
(A)下記平均組成式(I)
 R1 aSiO(4-a)/2     (I)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
で表される重合度が100以上のオルガノポリシロキサン 100質量部、
(B)比表面積が50m2/g以上の補強性シリカ 20~150質量部、
(C)硬化剤 (A)成分を硬化させる有効量
 なお、シリコーンゴム封止層3の難燃性を向上させる目的で、更に(D)難燃性付与材を配合してもよい。
 シリコーンゴム組成物について更に詳述すると、上記(A)成分において平均組成式(I)中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、通常、炭素数1~12、特に炭素数1~8のものが好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基等のアルケニル基、シクロアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、或いはこれらの基の水素原子の一部又は全部をハロゲン原子又はシアノ基等で置換した基が挙げられ、メチル基、ビニル基、フェニル基、トリフルオロプロピル基が好ましく、特にメチル基、ビニル基が好ましい。
 具体的には、該オルガノポリシロキサンの主鎖がジメチルシロキサン単位の繰り返しからなるもの、又はこの主鎖を構成するジメチルシロキサン単位の繰り返しからなるジメチルポリシロキサン構造の一部にフェニル基、ビニル基、3,3,3-トリフルオロプロピル基等を有するジフェニルシロキサン単位、メチルフェニルシロキサン単位、メチルビニルシロキサン単位、メチル-3,3,3-トリフルオロプロピルシロキサン単位等を導入したもの等が好適である。
 特に、オルガノポリシロキサンは、1分子中に2個以上のアルケニル基、シクロアルケニル基等の脂肪族不飽和基を有するものが好ましく、特にビニル基であることが好ましい。この場合、全R1中0.01~20モル%、特に0.02~10モル%が脂肪族不飽和基であることが好ましい。なお、この脂肪族不飽和基は、分子鎖末端でケイ素原子に結合していても、分子鎖の途中のケイ素原子に結合していても、その両方であってもよいが、少なくとも分子鎖末端のケイ素原子に結合していることが好ましい。また、aは1.95~2.05、好ましくは1.98~2.02、より好ましくは1.99~2.01の正数である。
 (A)成分のオルガノポリシロキサンは、分子鎖末端がトリメチルシロキシ基、ジメチルフェニルシロキシ基、ジメチルヒドロキシシロキシ基、ジメチルビニルシロキシ基、メチルジビニルシロキシ基、トリビニルシロキシ基等のトリオルガノシロキシ基で封鎖されたものを好ましく挙げることができる。特に好ましいものとしては、メチルビニルポリシロキサン、メチルフェニルビニルポリシロキサン、メチルトリフルオロプロピルビニルポリシロキサン等を挙げることができる。
 このようなオルガノポリシロキサンは、例えばオルガノハロゲノシランの1種又は2種以上を(共)加水分解縮合することにより、或いは環状ポリシロキサン(シロキサンの3量体、4量体等)をアルカリ性又は酸性の触媒を用いて開環重合することによって得ることができる。これらは基本的に直鎖状のジオルガノポリシロキサンであるが、(A)成分としては、分子量(重合度)や分子構造の異なる2種又は3種以上の混合物であってもよい。
 なお、上記オルガノポリシロキサンの重合度は100以上、好ましくは100~100,000、特に好ましくは3,000~20,000である。なお、この重合度は、ゲルパーミエーションクロマトグラフィ(GPC)分析によるポリスチレン換算の重量平均重合度として測定することができる。
 [測定条件]
 展開溶媒:トルエン
 流量:1mL/min
 検出器:示差屈折率検出器(RI)
 カラム:LF-805L×2本(Shodex社製)
 カラム温度:25℃
 試料注入量:30μL(濃度0.2質量%のトルエン溶液)
 (B)成分のBET比表面積50m2/g以上の補強性シリカは、硬化前後の機械的強度の優れた組成物を得るために添加されるものである。この場合、シリコーン封止材料の透明性向上のためには、BET比表面積が200m2/gを超えることが好ましく、より好ましくは250m2/g以上である。BET比表面積が200m2/g以上だと、硬化物の透明性が高くなりやすい。なお、その上限は特に制限されないが、通常500m2/g以下である。
 このような(B)成分の補強性シリカとしては、煙霧質シリカ(乾式シリカ又はヒュームドシリカ)、沈降シリカ(湿式シリカ)等が挙げられる。また、これらの表面をクロロシラン、アルコキシシラン、ヘキサメチルジシラザン等で疎水化処理したものも好適に用いられる。特にヘキサメチルジシラザンによる処理が、透明性が高くなり、好ましい。透明性を高めるには、補強性シリカとして煙霧質シリカの使用が好ましい。補強性シリカは、1種単独で使用しても2種以上を併用してもよい。
 (B)成分の補強性シリカとしては、市販品を用いることができ、例えば、アエロジル130、アエロジル200、アエロジル300、アエロジルR-812、アエロジルR-972、アエロジルR-974などのアエロジルシリーズ(日本アエロジル(株)製)、Cabosil MS-5、MS-7(キャボット社製)、レオロシールQS-102、103、MT-10((株)トクヤマ製)等の表面未処理又は表面疎水化処理された(即ち、親水性又は疎水性の)ヒュームドシリカや、トクシールUS-F((株)トクヤマ製)、NIPSIL-SS、NIPSIL-LP(日本シリカ工業(株)製)等の表面未処理又は表面疎水化処理された沈降シリカ等が挙げられる。
 (B)成分の補強性シリカの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して20~150質量部であり、好ましくは30~90質量部であり、更に好ましくは50~90質量部である。(B)成分の配合量が20質量部以上であると硬化前後の補強効果が得られ易く、またシリコーン封止材料の硬化後の透明性が低下しない。150質量部以下であると、シリコーン封止材料中へのシリカの分散が良好であると同時にシート状への加工性もよい。但し、(D)成分の難燃性付与材を含む場合、(B)成分の下限は5質量部とし得る。
 (C)成分の硬化剤としては、(A)成分を硬化させ得るものであれば特に限定されないが、広くシリコーン組成物の硬化剤として公知の(a)付加反応(ヒドロシリル化反応)型硬化剤、即ちオルガノハイドロジェンポリシロキサン(架橋剤)とヒドロシリル化反応触媒との組み合わせ、又は(b)有機過酸化物が好ましい。
 上記(a)付加反応(ヒドロシリル化反応)における架橋剤としてのオルガノハイドロジェンポリシロキサンは、1分子中に少なくとも2個のケイ素原子と結合した水素原子(SiH基)を含有するもので、下記平均組成式(II)
 R2 bcSiO(4-b-c)/2     (II)
(式中、R2は炭素数1~6の非置換又は置換の1価炭化水素基で、好ましくは脂肪族不飽和結合を有さないものである。具体例としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基、シクロヘキシル基、シクロヘキセニル基、フェニル基等の非置換の1価炭化水素基、3,3,3-トリフルオロプロピル基、シアノメチル基等の上記1価炭化水素基の水素原子の少なくとも一部がハロゲン原子やシアノ基で置換された置換アルキル基等の置換の1価炭化水素基である。bは0.7~2.1、cは0.01~1.0、かつb+cは0.8~3.0、好ましくはbが0.8~2.0、cが0.2~1.0、かつb+cが1.0~2.5を満足する正数である。)
で示される従来から公知のオルガノハイドロジェンポリシロキサンが適用可能である。また、オルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網目状のいずれの構造であってもよい。この場合、1分子中のケイ素原子の数(又は重合度)は2~300個、特に4~200個程度の室温で液状のものが好適に用いられる。なお、ケイ素原子に結合する水素原子(SiH基)は分子鎖末端にあっても側鎖にあっても、その両方にあってもよく、1分子中に少なくとも2個(通常2~300個)、好ましくは3個以上(例えば3~200個)、より好ましくは4~150個程度含有するものが使用される。
 このオルガノハイドロジェンポリシロキサンとして、具体的には、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、環状メチルハイドロジェンポリシロキサン、環状メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、環状メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体等や、上記各例示化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基やフェニル基等のアリール基で置換されたものなどが挙げられる。
 このオルガノハイドロジェンポリシロキサンの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~30質量部、より好ましくは0.1~10質量部、更に好ましくは0.3~10質量部とすることが好ましい。
 また、このオルガノハイドロジェンポリシロキサンは、(A)成分中のケイ素原子に結合したアルケニル基に対する(C)成分中のケイ素原子に結合した水素原子(即ち、SiH基)のモル比が0.5~5モル/モル、好ましくは0.8~4モル/モル、より好ましくは1~3モル/モルとなる量で配合することが好ましい。
 また、上記(a)付加反応(ヒドロシリル化反応)の架橋反応に使用されるヒドロシリル化反応触媒は、公知のものが適用可能で、例えば、白金黒、塩化第二白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒等が挙げられる。なお、このヒドロシリル化反応触媒の配合量は触媒量とすることができ、通常、白金族金属質量に換算して、(A)、(B)成分とオルガノハイドロジェンポリシロキサンの合計質量に対し、1~1,000ppmが好ましく、更には5~100ppmの範囲が好ましい。1ppm未満であると付加反応が十分に進まず硬化不十分となるおそれがあり、1,000ppmを超える量を添加するのは不経済である。
 また、上記の反応触媒のほかに、硬化速度或いはポットライフを調整する目的で、付加反応制御剤を使用してもよい。具体的にはエチニルシクロヘキサノールやテトラメチルテトラビニルシクロテトラシロキサン等が挙げられる。
 一方、(b)有機過酸化物としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
 この(b)有機過酸化物の添加量は、(A)成分100質量部に対して0.1~15質量部、特に0.2~10質量部が好ましい。添加量が0.1質量部以上であると架橋反応が十分に進行し、硬度低下や強度不足が生じにくく、15質量部以内であるとコスト的に好ましく、硬化剤の分解物が多く発生せず、シートの変色を増大し難い。
 (D)成分の難燃性付与材は、公知のものを使用することができ、白金化合物、カーボンブラック、フュームド酸化チタン、ベンガラ(Fe2OやFe34)、ベンゾトリアゾール等のトリアゾール系化合物を配合することができる。この難燃性付与材は1種でも良く、2種以上を用いてもよい。また、結晶性シリカや酸化アルミニウム粉末を高充填してシロキサン成分量を相対的に低下することによっても難燃性を向上させることが可能である。これらの手法により、燃焼時にダイオキシン類を発生させる可能性がある塩素系や赤りんを選択することなく、難燃性を付与することができる。
 (D)成分の添加量は、特に限定されないが(A)~(C)成分の合計100質量部に対して0.001~0.5質量部、より好ましくは0.002~0.05質量部とすることが好ましい。
 本発明で用いるシリコーンゴム組成物は、上述した成分の所定量を2本ロール、ニーダー、バンバリーミキサー等で混練りすることによって得ることができる。
 このように調製されたシリコーンゴム組成物の硬化前の可塑度は、150~1,000、好ましくは200~800、より好ましくは250~600となる。可塑度が150より大きいと未硬化シートの形状維持が容易であり、タックが強くなりすぎず使い易い。また、1,000以下であるとまとまりがよく、シート化工程が容易となる。なお、可塑度はJIS K6249:2003に準じて測定できる。
 本発明で用いる未加硫状態のシリコーンゴム組成物をシート状に成形する場合、成形方法としては、特に限定されないが、押し出し成形、カレンダー成形等が用いられる。この際、シリコーンゴム組成物シートの厚さは0.05~3mm、特に0.1~1mmであることが好ましい。
 なお、上記シリコーンゴム組成物の硬化は、120~150℃において20~60分加熱することによって行うことができる。
 バックシート4は、太陽電池モジュール10の裏面を保護するものであり、水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上のものである。この水蒸気透過率は、2.0g/(m2・24h)以上であることが好ましく、10g/(m2・24h)以上であることがより好ましい。なお、バックシート4の水蒸気透過率の上限には該バックシート4に求められるその他の特性を満たせば特に制限はない。
 また、バックシート4に求められるその他の特性としては、モジュールにおける発電部分とアース間の絶縁特性が挙げられる。また、長期使用環境に耐えるため、耐熱性、耐候性、耐湿性、耐電圧性、耐紫外線性、シリコーンゴム封止層3との接着性が要求される。更に、薄膜太陽電池モジュールの上部から漏れてくる太陽光を効率よく反射させることにより、太陽電池モジュールに入射する太陽光を増大させるといった、更に変換効率を向上させる機能を付与できればより好ましい。
 また、バックシート4は、フッ素樹脂フィルムとPETフィルムとを組み合わせて水蒸気透過率を調整した積層フィルムからなることが好ましく、例えば「PVF(ポリフッ化ビニル)/接着剤/PET(ポリエチレンテレフタレート)/接着剤/PVF」や「PVF/接着剤/PET」などの積層フィルムが挙げられる。なお、この積層フィルムをモジュールに適用するとき、積層フィルムを構成するPVFフィルムが薄膜太陽電池モジュールの外面となるように配置するとよい。
 バックシート4の厚さは、太陽電池モジュール10の裏面を保護でき、上記所定の水蒸気透過率が確保できれば特に限定されない。
 以上の構成の薄膜太陽電池モジュール10によれば、薄膜太陽電池セル2の裏面側が、シリコーンゴム封止層3及びバックシート4の組み合わせからなる所定の水蒸気透過性を有するもので封止されていることから、モジュール内部に水分が滞留することなく、排出されるようになり、太陽電池モジュールとして長期信頼性に優れたものとなる。また、難燃性にも優れる。
[薄膜太陽電池モジュールの製造方法]
 次に、本発明に係る薄膜太陽電池モジュールの製造方法について説明する。
 本発明の薄膜太陽電池モジュールの製造方法は、受光面となる透光性基板の裏面上に設けられた薄膜太陽電池セルの裏面側に、未加硫状態のシリコーンゴム組成物シートを薄膜太陽電池セルを覆うように配置し、該シリコーンゴム組成物シート上に水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上であるバックシートを配置した後、上記積層したシリコーンゴム組成物シート及びバックシートを押圧しながら加熱して上記シリコーンゴム組成物シートを硬化させて薄膜太陽電池セルを封止して上記薄膜太陽電池モジュールを得るものである。
 具体的には、次のように行うとよい。なお、ここで用いる各材料は上記薄膜太陽電池モジュール10において説明したものでよい。
(i)薄膜太陽電池セルの準備(図2)
 まず、図2に示すように、透光性基板1の片面にその面の外周縁部分を除いて薄膜太陽電池セル2を設けたものを準備する。
(ii)シリコーンゴム組成物シート3a及びバックシート4の準備
 次に、未加硫状態のシリコーンゴム組成物シート3a及びバックシート4を準備する。即ち、上述したシリコーンゴム組成物をカレンダーロール成形してバックシート4に密着するようにシート状に成形することを行う。
(iii)パネル積層(図3)
 次に、図3に示すように、バックシート4のシリコーンゴム組成物シート3a配置面を透光性基板1の薄膜太陽電池セル2形成面に対向させ、シリコーンゴム組成物シート3aが薄膜太陽電池セル2を覆うように配置する。この配置は、後述する真空ラミネータ装置内で行なうとよい。
(iv)真空ラミネート
 次に、図3に示すような透光性基板1とバックシート4の間に薄膜太陽電池セル2及びシリコーンゴム組成物シート3aを仮積層した状態のものについて、真空ラミネート装置(不図示)を用いてこの仮積層体を真空下(減圧下)で加熱しながら押圧して薄膜太陽電池セル2を封止する真空ラミネート処理を施す。
 このとき、この仮積層体を例えば好ましくは100~150℃、より好ましくは120~150℃に加熱しながら、20~60分間押圧すると、シリコーンゴム組成物シート3aが硬化してシリコーンゴム封止層3となり、透光性基板1、バックシート4及び薄膜太陽電池セル2に固着し一体化される。これにより、本発明の薄膜太陽電池モジュール10が得られる。
 このようにして形成された薄膜太陽電池モジュール10は、図示はしていないが、その外周端部にアルミニウム製又は硬質樹脂製のフレームを嵌め込んで固定する。なお、薄膜太陽電池モジュール10の外周縁部をブチルゴム材等で封止してもよいが、水蒸気透過、排出を考慮した場合、その外周縁部を特にブチルゴム等で封止せずに、フレームで囲むだけにした方が好ましい。また、薄膜太陽電池モジュール10の裏面(背面)側に電極取り出しの端子ボックスを取り付けて完成形となる。
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、配合量の単位の部は質量部である。また、重量平均分子量、重量平均重合度は、ゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算値である。
[実施例1]
 まず、本実施例で用いるシリコーンゴム組成物について説明する。
<封止材用シリコーンゴム組成物の調製及びシリコーンゴム組成物シートの作製>
 ジメチルシロキサン単位99.85モル%、メチルビニルシロキサン単位0.025モル%、ジメチルビニルシロキサン単位0.125モル%からなり、平均重合度が約6,000であるオルガノポリシロキサン100部、BET比表面積300m2/gのシリカ(商品名アエロジル300、日本アエロジル(株)製)70部、分散剤としてヘキサメチルジシラザン16部、水4部を添加し、ニーダーにて混練りし、170℃にて2時間加熱処理してコンパウンドを調製した。
 上記コンパウンドを100部に対し、付加架橋硬化剤としてC-25A(白金触媒)/C-25B(オルガノハイドロジェンポリシロキサン)(共に、信越化学工業(株)製)をそれぞれ0.5部/2.0部を、2本ロールで均一混合した後、カレンダーロールにより未加硫状態のシリコーンゴム組成物シート3aを硬化後の厚さが0.5mmとなるようにバックシート4上に形成した。
 なお、バックシート4として、PVFフィルム-PETフィルム-PVFフィルムからなる厚さ約300μmの3層構造フィルム(商品名:TedlarTPT、DuPont社製)を用いた。この3層構造フィルムの水蒸気透過率は、2.0g/(m2・24h)であった。また、上記シリコーンゴム組成物シート3aを硬化させたものの水蒸気透過率は、150g/(m2・24h)であった。
 次に、以下の手順で薄膜太陽電池モジュールを作製した。
 まず、受光面側の透光性基板1となる青板ガラスに積層形成された多接合型薄膜シリコン太陽電池(薄膜太陽電池セル2)を形成したものを用意した(図2)。
 次いで、薄膜太陽電池セル2の裏面に、上記のように作製したシリコーンゴム組成物シート3a/バックシート4の積層体を該シリコーンゴム組成物シート3aが薄膜太陽電池セル2を覆うように配置して載置した(図3)。
 次いで、この仮積層体について真空ラミネータ装置を用いて真空下、140℃で加熱押圧して、縦×横サイズが約1,200mm×1,000mmの薄膜太陽電池モジュール10を得た(図1)。なお、モジュール外周部のフレーム設置は行わなかった。
[実施例2]
 本実施例では、難燃性付与材を添加したシリコーンゴム組成物を用いて薄膜太陽電池モジュールを作製した。
<難燃性付与シリコーンゴム組成物の調製及びシリコーンゴム組成物シートの作製>
 ジメチルシロキサン単位99.85モル%、メチルビニルシロキサン単位0.025モル%、ジメチルビニルシロキサン単位0.125モル%からなり、平均重合度が約6,000であるオルガノポリシロキサン100部、BET比表面積200m2/gのシリカ(商品名アエロジル200、日本アエロジル(株)製)30部、分散剤としてヘキサメチルジシラザン4部、水1.2部を添加し、ニーダーにて混練りし、170℃にて2時間加熱処理してコンパウンドを調製した。
 上記コンパウンド100部に平均粒子径4μmの結晶性シリカ(クリスタライトVX-S(株)龍森製)を50部、平均粒子径0.2μmの酸化チタンCR-60(石原産業(株)製)を3部、ベンゾトリアゾール0.015部を混合し、難燃性付与コンパウンドを得た。
 このコンパウンドを100部に対し、付加架橋硬化剤としてC-25A(白金触媒)/C-25B(オルガノハイドロジェンポリシロキサン)(共に、信越化学工業(株)製)をそれぞれ0.5部/2.0部を、2本ロールで均一混合した後、カレンダーロールにより未加硫状態の難燃性付与材添加シリコーンゴム組成物シート3a’を硬化後の厚さが0.5mmとなるようにバックシート4上に形成した。
 なお、バックシート4は実施例1と同じものを使用した。また、上記シリコーンゴム組成物シート3a’を硬化させたものの水蒸気透過率は、150g/(m2・24h)であった。
 次に、以下の手順で薄膜太陽電池モジュールを作製した。
 まず、実施例1と同じ、受光面側の透光性基板1となる青板ガラスに積層形成された多接合型薄膜シリコン太陽電池(薄膜太陽電池セル2)を形成したものを用意した(図2)。
 次いで、薄膜太陽電池セル2の裏面に、上記のように作製したシリコーンゴム組成物シート3a’/バックシート4の積層体を該シリコーンゴム組成物シート3a’が薄膜太陽電池セル2を覆うように配置して載置した(図3)。
 次いで、この仮積層体について真空ラミネータ装置を用いて真空下、140℃で加熱押圧して、縦×横サイズが約1,200mm×1,000mmの薄膜太陽電池モジュール20を得た(図4)。なお、モジュール外周部のフレーム設置は行わなかった。
[比較例1]
 本比較例では、シリコーンゴムの代わりにEVAを用いて以下の手順で薄膜太陽電池モジュールを作製した。
 まず、実施例1と同じ、受光面側の透光性基板1となる青板ガラスに積層形成された多接合型薄膜シリコン太陽電池(薄膜太陽電池セル2)を形成したものを用意した(図2)。
 次いで、薄膜太陽電池セル2の裏面に、EVAシート9を薄膜太陽電池セル2を覆うように配置し、更にその上に実施例1と同じバックシート4を載置した。なお、EVAシート9として、厚さ0.45mmの太陽電池用EVAシート(商品名:Ultra Pearl PV、ファストキュアタイプ、サンビック株式会社)を用いた。
 次いで、この仮積層体について真空ラミネータ装置を用いて真空下、140℃で加熱押圧して、縦×横サイズが約1,200mm×1,000mmの薄膜太陽電池モジュール90を得た(図5)。なお、モジュール外周部のフレーム設置は行わなかった。
 得られた薄膜太陽電池モジュールについて、高温高湿試験及び飛び火試験を行った。
[高温高湿試験]
 作製した直後の薄膜太陽電池モジュールについて初期出力を測定した後、高温高湿試験(85℃、85%RH)に投入した。次いで、高温高湿試験を2,000時間行った。その際、暴露時間500時間ごとに、即ち通算暴露時間500、1,000、1,500、2,000時間に、サンプルを取り出してその出力を測定し、初期出力を100%とした場合の相対出力を求めた。
[飛び火試験]
 建築基準法第63条に基づき屋根の飛び火性能試験を実施した。
 本試験は、薄膜太陽電池モジュールを屋根葺き材と見立てた試験体に,実際の屋根勾配を再現するための傾斜角度と屋根表面の自然風を想定した気流を与え、飛び火によって飛来する火種を模した着火されたブランド(木材クリブ)2個を表面に順次設置して燃焼性状を観察するものである。
 試験条件は以下のように設定した。
 ブランド(火種)は、大きさ80mm×80mm×60mm、重さ155gの木製ブランドを1試験体(1つの薄膜太陽電池モジュール試験体)あたり2個用意し、温度23±2℃、相対湿度50±5%で24時間以上予め養生させた。
 送風は、吹き出し口高さ250mm、幅1,000mm以上、かつ、吹き出しノズルの長さが1,200mm以上確保した。
 バーナー温度はバーナー上端より60mmの位置で900±50℃になるように設置し、ブランドは、240秒間火炎に曝した。
 上記のようにして作製した薄膜太陽電池モジュールを受光面側透光性基板1が上になるように傾斜角30°に設置した。
 ブランドは、建築基準法第63条に規定された通り、薄膜太陽電池モジュール試験体の上面指定箇所に2個載置した。ブランドの燃焼が完全に消えるまで試験を続行し、燃焼後の薄膜太陽電池モジュール試験体の状態を観察した。
 以上の高温高湿試験及び飛び火試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1、2であるシリコーンゴム封止層3並びに難燃性付与材添加シリコーンゴム封止層3’を適用した薄膜太陽電池モジュール10、20は、高温高湿試験にて出力維持率が高く、良好な結果を示した。一方、比較例1である封止材としてEVA層9を適用した薄膜太陽電池モジュール90は、高温高湿試験にて1,500時間で出力が大幅に低下した。従って、2,000時間の測定は行っていない。
 また、建築基準法第63条飛び火試験において、実施例1、2では薄膜太陽電池モジュールの貫通はなく、合格となった。また、難燃性付与材添加シリコーンゴム封止層3’を適用した実施例2では、裏面焦げ面積も縦横40×40mm以下と小さく、特に良好な結果であった。一方、封止材としてEVA層9を適用した比較例1では、EVAに引火し、かつ燃焼が加速した結果、燃焼貫通が発生し、ブランドが裏面に落下した。また、貫通孔が250×250mmであり、不合格となった。
 以上の結果より、本発明に係る薄膜太陽電池モジュールによれば、薄膜太陽電池セルの裏面側が、シリコーンゴム封止層及び所定の水蒸気透過率を有するバックシートの組み合わせからなる所定の水蒸気透過性を有するもので封止されていることから、高温高湿試験において高い出力維持率を発現する薄膜太陽電池モジュールを提供することが可能である。また、飛び火試験にモジュール単体で合格に適合する薄膜太陽電池モジュールを提供することが可能である。特に、難燃性シリコーンゴム封止層を配設した薄膜太陽電池モジュールは、飛び火試験において、更に有効な難燃効果を発現する。
 なお、これまで本発明を実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
1 透光性基板
2 薄膜太陽電池セル
3 シリコーンゴム封止層
3’ 難燃性付与材添加シリコーンゴム封止層
3a シリコーンゴム組成物シート
3a’ 難燃性付与材添加シリコーンゴム組成物シート
4 バックシート
9 EVA層(シート)
10、20、90 太陽電池モジュール

Claims (7)

  1.  受光面となる透光性基板の裏面上に設けられた薄膜太陽電池セルの裏面側に、薄膜太陽電池セルを覆うシリコーンゴム封止層、水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上であるバックシートが積層配置された薄膜太陽電池モジュール。
  2.  シリコーンゴム封止層の水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が100g/(m2・24h)以上である請求項1記載の薄膜太陽電池モジュール。
  3.  上記シリコーンゴム封止層の厚さが0.05~3mmである請求項1又は2記載の薄膜太陽電池モジュール。
  4.  上記シリコーンゴム封止層が、
    (A)下記平均組成式(I)
     R1 aSiO(4-a)/2     (I)
    (式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
    で表される重合度が100以上のオルガノポリシロキサン 100質量部、
    (B)比表面積が50m2/g以上の補強性シリカ 20~150質量部、
    (C)硬化剤 (A)成分を硬化させる有効量
    を含むシリコーンゴム組成物の硬化物である請求項1~3のいずれか1項記載の薄膜太陽電池モジュール。
  5.  上記バックシートは、フッ素樹脂フィルムとポリエチレンテレフタレートフィルムの積層フィルムからなる請求項1~4のいずれか1項記載の薄膜太陽電池モジュール。
  6.  上記シリコーンゴム封止層は、更に難燃性付与材を含む請求項1~5のいずれか1項記載の薄膜太陽電池モジュール。
  7.  受光面となる透光性基板の裏面上に設けられた薄膜太陽電池セルの裏面側に、未加硫状態のシリコーンゴム組成物シートを薄膜太陽電池セルを覆うように配置し、該シリコーンゴム組成物シート上に水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が1.5g/(m2・24h)以上であるバックシートを配置した後、上記積層したシリコーンゴム組成物シート及びバックシートを押圧しながら加熱して上記シリコーンゴム組成物シートを硬化させて薄膜太陽電池セルを封止する薄膜太陽電池モジュールの製造方法。
PCT/JP2017/017332 2016-06-14 2017-05-08 薄膜太陽電池モジュール及びその製造方法 WO2017217133A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016117767 2016-06-14
JP2016-117767 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017217133A1 true WO2017217133A1 (ja) 2017-12-21

Family

ID=60663077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017332 WO2017217133A1 (ja) 2016-06-14 2017-05-08 薄膜太陽電池モジュール及びその製造方法

Country Status (2)

Country Link
TW (1) TW201810700A (ja)
WO (1) WO2017217133A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927633A (ja) * 1995-05-08 1997-01-28 Bridgestone Corp 太陽電池用封止材膜及び太陽電池モジュール
JP2008305945A (ja) * 2007-06-07 2008-12-18 Kaneka Corp 薄膜太陽電池用基板とその製造方法および薄膜太陽電池の製造方法
JP2015012114A (ja) * 2013-06-28 2015-01-19 信越化学工業株式会社 太陽電池モジュール及びその製造方法
JP2015201521A (ja) * 2014-04-07 2015-11-12 信越化学工業株式会社 太陽電池用シリコーン封止材料及び太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927633A (ja) * 1995-05-08 1997-01-28 Bridgestone Corp 太陽電池用封止材膜及び太陽電池モジュール
JP2008305945A (ja) * 2007-06-07 2008-12-18 Kaneka Corp 薄膜太陽電池用基板とその製造方法および薄膜太陽電池の製造方法
JP2015012114A (ja) * 2013-06-28 2015-01-19 信越化学工業株式会社 太陽電池モジュール及びその製造方法
JP2015201521A (ja) * 2014-04-07 2015-11-12 信越化学工業株式会社 太陽電池用シリコーン封止材料及び太陽電池モジュール

Also Published As

Publication number Publication date
TW201810700A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
JP6217328B2 (ja) 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール
KR20120085681A (ko) 광전지 모듈
JP5761648B2 (ja) 光電池モジュール
KR101133061B1 (ko) 광전지용 시트
JP5920031B2 (ja) 太陽電池モジュール及びその製造方法
JP2015201521A (ja) 太陽電池用シリコーン封止材料及び太陽電池モジュール
US20130125973A1 (en) Solar cell module and light control sheet for solar cell module
JP6784186B2 (ja) 太陽電池モジュールの製造方法
KR101064584B1 (ko) 광전지용 시트
JP2011077089A (ja) 太陽電池用裏面側封止材及び太陽電池モジュール
WO2017217133A1 (ja) 薄膜太陽電池モジュール及びその製造方法
JP2017163064A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JPH10321888A (ja) 太陽電池モジュール用保護シート
JPH10321887A (ja) 太陽電池モジュール用保護シート
TWI677107B (zh) 太陽電池模組及太陽電池模組之製造方法
JP6589701B2 (ja) 難燃性太陽電池モジュールの製造方法
JP6540560B2 (ja) 太陽電池モジュールの製造方法
JP2019110327A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
KR101413892B1 (ko) 광전지 모듈
JP2012169472A (ja) 太陽電池モジュール用封止材シートおよび太陽電池モジュール
JP2018082073A (ja) 太陽電池モジュールの製造方法
JP2013191783A (ja) 太陽電池封止材用樹脂組成物、太陽電池黒色封止材および太陽電池モジュール
WO2019082927A1 (ja) 太陽電池モジュール
JP2017191813A (ja) 太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP