WO2017216943A1 - 変状進展判定装置及び変状進展判定方法 - Google Patents
変状進展判定装置及び変状進展判定方法 Download PDFInfo
- Publication number
- WO2017216943A1 WO2017216943A1 PCT/JP2016/068037 JP2016068037W WO2017216943A1 WO 2017216943 A1 WO2017216943 A1 WO 2017216943A1 JP 2016068037 W JP2016068037 W JP 2016068037W WO 2017216943 A1 WO2017216943 A1 WO 2017216943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deformation
- search
- progress
- detection
- search area
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
Definitions
- the present invention relates to a deformation progress determining apparatus and a deformation progress determining method for determining a progress change using measurement data of an object.
- deformations such as cracks and precipitation of free lime occur on the concrete surface.
- These deformations include a deformation that does not progress immediately after construction and a deformation that develops due to aging. If the progressing deformation is left unattended, the functionality and durability of the structure will decrease, leading to peeling of the concrete, etc., so it is necessary to detect it early and take measures. For this reason, conventionally, as a method of detecting a progressing deformation, there is a method of capturing a structure at regular intervals and detecting a progressing deformation from the captured image. For example, in Patent Document 1, based on an image of a structure, data relating to the same structure is accumulated at regular intervals, and the progress of deformation is compared by comparing data corresponding to different shooting times. There is a way to monitor.
- the present invention has been made to solve the above-described problems, and provides an apparatus capable of determining the progress of deformation even when there is an error in the detection position when detecting the deformation of an object. With the goal.
- the deformation progress determination device is detected by a deformation detection unit in a search area within a detection target area where a deformation detection unit detects a deformation, and a deformation detection unit that detects the deformation of an object.
- a search that associates the identification information of the search area that has been determined to be present by the abnormality existence / non-existence determination section and the identification information of the abnormality that exists in the search area.
- a search table storage unit that stores the table at each detection time of the change detected by the change detection unit, and determines the progress of the change based on the identification information of the search area stored at each detection time different in the search table storage unit
- a progress determination unit is provided.
- the deformation progress determination method includes a deformation detection step for detecting a deformation of an object, and a deformation detection in a search area obtained by dividing the detection target area for detecting the deformation in the deformation detection step.
- the presence / absence determination step for determining the presence / absence of the abnormality detected in the step, the identification information of the search area determined to have the abnormality in the abnormality presence / absence determination step, and the identification of the abnormality existing in the search area
- Search table storing step for storing a search table corresponding to information for each detection time of the deformation detected in the deformation detection step, and identification information of the search area stored for each different detection time in the search table storage step
- a progress determination step for determining the progress of deformation based on the above.
- the deformation existing in the search area obtained by dividing the detection target area for detecting the deformation is regarded as the same deformation and the shape information is compared. Since the progress is determined, even if there is an error in the position information for detecting the deformation of the object, the progress of the deformation can be determined as long as the deviation of the detected position due to this error is within the search area.
- FIG. 1 It is the conceptual diagram which showed the search area
- FIG. 2 It is the conceptual diagram which showed the search area
- FIG. It is a conceptual diagram of the search table which the search table memory
- FIG. It is a flowchart which shows operation
- FIG. It is a conceptual diagram which shows the detection object area
- FIG. It is the conceptual diagram which showed the search area
- Embodiment 1 FIG. In the present embodiment, a case will be described in which measurement data at different measurement times is input to the deformation progress determination apparatus 1 to determine the progress of a crack, which is a deformation detected from the measurement data, and output as a progress determination result. .
- the measurement data the measurement data at time 1 is input first, and then the measurement data at time 2 is input.
- FIG. 1 is a configuration diagram illustrating a configuration of the deformation progress determination apparatus 1 according to the present embodiment.
- the deformation progress determination device 1 includes a deformation detection unit 2 that detects a deformation of an object from measurement data, deformation identification information detected by the deformation detection unit 2, and shape information indicating the shape of the deformation.
- the change presence / absence determination unit 4 for determining the presence / absence of a change, the identification information of the search area determined to have a change by the change presence / absence determination unit 4, and the identification information of the change existing in the search area are associated with each other.
- a search table storage unit 5 that stores the search table at each detection time of the change detected by the change detection unit 2, and changes according to the identification information of the search area stored at different detection times in the search table storage unit 5. Based on the shape information stored in the state information table storage unit. Exhibition consists determining progress determining unit 6 which the.
- Image data is input to the deformation progress determination device 1 as measurement data of the object.
- the object is an object whose deformation progresses due to deterioration over time, such as a concrete structure such as a tunnel or a bridge.
- the deformation is a crack that appears on the surface of the object.
- the measurement data is image data obtained by photographing the surface of the object with a camera, and it is sufficient that the deformation detection unit 2 can recognize a crack that is a deformation of the surface of the object.
- the image data as measurement data input to the deformation progress determination apparatus 1 includes an image of a detection target region that is a target for detecting deformation.
- the deformation progress determination device 1 detects the deformation from the input measurement data, and determines the progress by comparing the position and shape with the deformation detected from the measurement data having different measurement times.
- the detection target areas of the measurement data having different measurement times are overlapped, the position information needs to roughly match, but does not need to match exactly.
- the detection target areas of measurement data with different times may be matched with each other by acquiring measurement data with different measurement times in the same positional relationship with the target, or measurement after acquisition of measurement data.
- the detection target area in the data may be specified to match the position information.
- the deformation detection unit 2 detects the deformation of the object when the measurement data is input. Specifically, the deformation detection unit 2 receives image data obtained by photographing a concrete surface as an object as measurement data. The deformation detection unit 2 performs crack detection processing on the detection target region 100 that is a target for detecting deformation from the input image data, and detects the deformation.
- FIG. 2 is a conceptual diagram of the detection target region 100 generated from the image data by the deformation detection unit 2 of the deformation progress determination apparatus 1 according to the first embodiment. The deformation detection unit 2 detects the crack 101 from the detection target region 100.
- the deformation detection unit 2 Each time the deformation detection unit 2 detects one deformation, the deformation detection unit 2 notifies the deformation information table storage unit 3 of deformation identification information described later and shape information indicating the deformation shape. Until the undetected deformation disappears, the deformation in the detection target region 100 is detected.
- the split crack is broken so as to be a crack having no intersection.
- the crack is divided into two and each is detected as one crack 101, 102.
- FIG. 3 for ease of explanation, a case will be described in which only the crack 101 is detected in the detection target region 100 shown in FIG.
- the deformation information table storage unit 3 stores a deformation information table in which the deformation identification information detected by the deformation detection unit 2 is associated with the shape information indicating the deformed shape.
- the deformed identification information is information for identifying each individual crack, and one crack ID is assigned each time one crack is detected. For example, a crack ID “101” is assigned to the crack 101 detected in FIG. 2, and when a crack is detected thereafter, crack IDs “102”, “103”,.
- the shape information is information indicating the shape of the deformation detected by the deformation detection unit 2, and in this embodiment, the position coordinates of the detected start point and end point of the crack, and information on the size of the width of the crack It is.
- the starting point of the crack is the coordinate closer to the origin among the two ends of the crack, and the other end is defined as the end point of the crack.
- the size of the crack width is defined by representing the size of the portion having the largest crack width.
- the expression format of the shape information is not limited to the above example, and any information indicating the deformed shape may be used. For example, point cloud data representing the deformed shape may be used, or the size of the deformed information may be determined according to a certain rule.
- FIG. 4 is a conceptual diagram of the deformation information table 120 stored in the deformation information table storage unit 3 of the deformation progress determination apparatus 1 according to the first embodiment.
- the shape information corresponding to the crack ID “101” is that the coordinates of the start point are 0.06 m in the x-axis direction, 0.24 m in the y-axis direction, and the coordinates of the end point are 0.25 m in the x-axis direction. It shows that the y-axis direction is 0.41 m and the crack width is 2 mm.
- the abnormality presence / absence determination unit 4 determines the presence / absence of the abnormality detected by the abnormality detection unit 2 in a plurality of search regions within the detection target area where the abnormality detection unit 2 detects the abnormality.
- the search area is an area within the detection target area, and is the same search area for detection target areas of measurement data having different measurement times.
- the deformation presence / absence determination unit 4 divides the detection target region into a calculation grid with a 10 cm square as one square as shown in FIG.
- the size of the calculation grid is set by the user based on, for example, an error in the position information of the target detection areas having different measurement times.
- a search area ID which is identification information of the search area, is assigned to a search area 110 having a grid of 9 squares composed of continuous vertical 3 cells and horizontal 3 cells.
- the search area ID is assigned so that it can be simply calculated from the coordinates replaced with calculation grids such as “00”, “01”... Shown in FIG.
- the search area ID of the search area 110 is “0001”. It should be noted that the search area only needs to have a plurality of areas that do not overlap completely within the detection target area, and is not limited to the above-described division into calculation grids or 9 squares composed of continuous 3 vertical and 3 horizontal grids.
- the search region is determined by the above-described method, when a 10 cm error is predicted in the position information of the detection target region for each measurement, the size of one grid is set to 10 cm so that it is not too rough.
- a search area that is not too fine can be created. That is, the search area may be a size within the error of the position information of the detection target area having a different measurement time from the area where the deformation exists.
- the deformation presence / absence determination unit 4 determines the presence / absence of deformation in each search region using the coordinates of the start point of the shape information stored in the deformation information table 120. If the search area does not include the coordinates of the start point of the shape information stored in the deformation information table, it is determined that there is no deformation. When the search area includes the coordinates of the start point of the shape information stored in the deformation information table, it is determined that the deformation exists. For example, in FIG. 6, the search area ID “0001” includes the coordinates of the start point of the crack 101, and thus it is determined that a deformation exists. On the other hand, in FIG.
- the search area ID “0202” does not include the coordinates of the start point of the crack 101, and therefore it is determined that there is no deformation.
- the deformation presence / absence determination unit 4 notifies the search table storage unit 5 of the search area ID that has been determined to have a deformation and the crack ID of the crack that exists in the search area.
- the search table storage unit 5 displays a search table in which the identification information of the search area determined to be present by the abnormality existence determination unit 4 and the identification information of the abnormality present in the search area are associated with the abnormality detection unit. 2 is stored for each detection time of the deformation detected. Specifically, when the change presence / absence determination unit 4 receives a notification that there is a change in the search area 110, the search table storage unit 5 receives the search area ID that is identification information of the search area 110 and the search area 110. A search table 130 as shown in FIG. 8 is created using the deformed crack ID existing in FIG. The search table 130 is created and stored for each change detection time detected by the change detection unit 2.
- the deformation detection time detected by the deformation detection unit 2 may be created by dividing the search table for each measurement data measurement time. However, the deformation detection unit 2 detects one deformation. A configuration may be adopted in which a search table is created for each time, that is, for each deformation.
- the search table storage unit 5 stores the change detected by the change detection unit 2 in the search table in which the identification information of the search area that has been determined to have a change is associated with the change identification information that exists in the search area.
- the search information that is superposed on the search region that has been determined to be deformed, the identification information of the search region that is adjacent to the search region, and the search that has been determined by the deformity presence / absence determining unit 4 You may memorize
- the progress determination unit 6 generates a search key as a search candidate from the search area identification information at different detection times in the search table storage unit 5 and stores the search key corresponding to the search key in the deformation information table storage unit 3.
- the progress of deformation is determined based on the shape information. Specifically, the detection target area at time 2 is divided into calculation grids by using a 10 cm square, which is the same calculation grid as the detection target area at time 1, as one cell.
- a search area ID having a crack starting point in the center grid is used as a search key in a search area consisting of a grid of 9 squares composed of 3 vertical grids and 3 horizontal grids.
- the progress determination unit 6 searches the search table ID matching the search key from the search table 130 at time 1 which is a different measurement time stored in the search table storage unit 5. If there is no matching search area ID, a crack that did not exist at the time of measurement at time 1 is detected, so it is determined that “there is progress”. In addition, although the same crack exists but the crack has progressed, the coordinates of the starting point of the crack may change, and there may be no search region ID that matches the search key in the search table. As a result, the search area ID cannot be detected, and it is determined that “there is progress”.
- the progress determination unit 6 compares the shape information of these cracks to determine whether or not the crack has progressed. judge. That is, the progress determination unit 6 uses the deformation information table stored in the deformation information table storage unit 3 and the coordinates of the start point and end point, which are the shape information of the crack ID corresponding to the search area ID, and the length of the width. Judgment is matched. If the shape information matches, the crack has not progressed. Therefore, the progress determination result is output as “no progress”, and if the shape information does not match, the crack is progressing and “progress” is output.
- the shape information for determining the progress the coordinates of the start point and end point of the crack and the length of the width are used, but it is only necessary to be able to determine the progress of the deformation from the information on the shape such as the size and shape.
- the progress of the crack may be determined using only the coordinates of the start point and the end point.
- the deformation progress determination device 1 determines the progress of deformation based on two or more measurement data at different times. Therefore, the operation will be described separately when the measurement data at time 1 is input and when the measurement data at time 2 is input.
- FIG. 9 is a flowchart illustrating an operation when measurement data at time 1 is input to the deformation progress determination apparatus 1 according to the first embodiment.
- step S001 image data is input to the deformation detection unit 2 as measurement data at time 1 of the object.
- the process proceeds to step S002.
- the deformation detection unit 2 detects the deformation of the object from the measurement data input in step S001.
- the deformation detection unit 2 determines the detection target region 100 from the input image data. Based on the image data representing the photographed image, the photographed image is restored, and a detection target region 100 is generated as a target region for detecting deformation in the image. In this case, a predetermined range in the image may be automatically set as the detection target region 100 or may be designated by the user.
- the crack 101 that is deformed is detected from the detection target region 100, the deformed identification information and the shape information indicating the deformed shape are notified to the deformed information table storage unit 3, and the process proceeds to step S003.
- the deformation detection unit 2 ends the operation when all the deformations of the detection target region 100 have been detected.
- the deformation information table storage unit 3 stores a deformation information table in which the deformation identification information detected by the deformation detection unit 2 is associated with shape information indicating the deformed shape.
- the deformation information table storage unit 3 is notified in step S002 that the deformation detection unit 2 has detected the crack 101, the crack ID that is identification information of the detected crack 101 and the shape information of the crack 101 are displayed. Is stored in the deformation information table 120 shown in FIG.
- the modification information table storage unit 3 outputs the modification information table 120 to the modification existence determination unit 4.
- step S004 the abnormality presence / absence determination unit 4 determines the presence / absence of the abnormality detected by the abnormality detection unit 2 in a plurality of search regions within the detection target area where the abnormality detection unit 2 detects the abnormality. To do. If it is determined that there is an abnormality in the search area, the process proceeds to step S005. If it is determined that there is no abnormality, the process returns to step S002.
- the deformation presence / absence determination unit 4 divides a 10 cm square into a calculation grid as one square. Then, a search area ID, which is identification information of the search area, is assigned to a search area 110 using a grid of 9 squares composed of continuous vertical 3 squares and horizontal 3 squares.
- the change presence / absence determination unit 4 receives the change information table 120 from the change information table storage unit 3. Then, using the coordinates of the start point of the shape information stored in the deformation information table 120, the presence / absence of deformation in each search area 110 is determined. When the search area 110 includes the coordinates of the start point of the shape information stored in the deformation information table 120, it is determined that there is a deformation, and that there is a deformation in the search area. By sending the determined search area ID and the crack ID of the crack existing in the search area, the search table storage unit 5 is notified, and the process proceeds to step S005.
- step S005 the search table storage unit 5 associates the identification information of the search area determined by the abnormality existence determination unit 4 with the abnormality identification information existing in the search area in FIG.
- the search table as shown in FIG. 5 is stored for each detection time of the change detected by the change detection unit 2.
- the search table storage unit 5 receives a notification from the change presence / absence determination unit 4 that there is a change in the search area 110
- the search table storage unit 5 displays the identification information of the search area 110 and the change information of the change existing in the search area 110.
- a corresponding search table 130 is created.
- the search table storage unit 5 returns to step S002.
- step S002 When all deformations are detected, it is determined in step S002 that no deformation is detected, and the operation ends. The above is the operation when the measurement data at time 1 is input.
- FIG. 10 is a flowchart illustrating an operation when measurement data at time 2 is input to the deformation progress determination apparatus 1 according to the first embodiment.
- step S101 image data is input as measurement data at time 2 to the deformation detection unit 2 as measurement data of the object in the same manner as in step S001.
- the image data at time 2 is taken with the same positional relationship with respect to the image data at time 1 and the object, and is taken so as to have substantially the same position information as the detection target region 100 of the image data at time 1. It is.
- step S102 the deformation detection unit 2 detects the deformation of the object from the measurement data input in step S101 as in step S002.
- the deformation detection unit 2 determines a detection target region 200 having substantially the same position information as the detection target region 100 from the input image data.
- FIG. 11 is a conceptual diagram of a detection target region 200 in which the deformation detection unit 2 of the deformation progress determination apparatus 1 according to the first embodiment detects a crack.
- the crack 201 in the detection target region 200 is the same crack as the crack 101 measured at different times.
- the crack 101 shown by a dotted line in FIG. 11 is the same because the detection target area 100 and the detection target area 200 are simply overlapped using the position information, and the detection target area has an error in position coordinates for each measurement.
- the deformation detection unit 2 detects a crack 201 that is deformed from the detection target area 200 and notifies the deformation information table storage unit 3 of it. The deformation detection unit 2 ends the operation when all the deformations have been detected from the detection target region 100.
- step S103 the deformation information table storage unit 3 causes the deformation identification information detected by the deformation detection unit 2 to correspond to the shape information indicating the deformed shape in the same manner as in step S003.
- FIG. 12 is a conceptual diagram of the deformation information table 220 created by the deformation information table storage unit 3 of the deformation progress determination apparatus 1 according to the first embodiment.
- the deformation information table storage unit 3 outputs the deformation information table 220 to the progress determination unit 6.
- step S104 to step S108 the progress determination unit 6 generates a search key serving as a search candidate from the identification information of the search area at different detection times in the search table storage unit 5, and changes information corresponding to the search key.
- the progress of deformation is determined based on the shape information stored in the table storage unit 3.
- step S ⁇ b> 104 progress determination unit 6 creates search key 240.
- the search key is used to determine a candidate search area ID when detecting the same deformation as the deformation detected at time 2 from the search area ID stored in the search table at different measurement times. There may be one or more search area IDs as search keys.
- the progress determination unit 6 divides the detection target area 200 in which the deformation detection unit 2 detects the deformation into a calculation grid using a 10 cm square that is the same calculation grid as the detection target area 100 as one square.
- a search area ID having a start point of the crack 201 in the center grid among search areas composed of a grid of 9 squares composed of continuous 3 vertical and 3 horizontal grids is set as a search key 240.
- FIG. 13 is a conceptual diagram of the search key 240 created by the progress determination unit 6 of the deformation progress determination apparatus 1 according to the first embodiment.
- the crack 201 has the search grid ID “0001” with the starting point of the crack 201 in the center grid.
- the progress determination unit 6 creates a search key 240 that associates the search area ID “0001” of the crack 201 with the crack ID “201”.
- the progress determination part 6 will progress to step S105, if the search key 240 is produced.
- step S104 the operation in which the progress determination unit 6 creates the search key in step S104 is performed for the image data at time 2 when the image data at time 1 is input, and the search key is selected from the created search table. You may decide. In that case, after step S103, the deformed presence / absence determination unit 4 and the search table storage unit 5 perform steps such as step S004 and step S005, create a search table, and place the search table in the center of the search area.
- a search key is created for a search area ID having a deformation. All search area IDs stored in the search table may be used as search keys.
- step S ⁇ b> 105 the progress determination unit 6 searches for a search area ID that matches the search key 240 created in step S ⁇ b> 104 from the search table having a detection time different from the time 2 stored in the search table storage unit 5. If there is no matching search area, the process proceeds to step S106. If there is a matching search area ID, the process proceeds to step S107.
- the search area ID “0001” of the search key 240 has a search area ID “0001” that matches the search table 130 at time 1 stored in the search table storage unit 5. Therefore, the process proceeds to step S107.
- the search table 130 and the search key 240 are displayed if the crack shift due to the error is within the search area. Can be used to estimate the same crack. That is, the fact that the same search area ID exists in two search tables at different detection times means that cracks also exist in the search areas at different times, so even if the position of the crack is somewhat shifted, Those cracks can be estimated to be the same crack, and the progress of the crack can be determined by comparing the cracks that are considered to be the same based on this estimation.
- step S107 the progress determination unit 6 determines whether or not the shape information of the deformation information table stored in the deformation information table storage unit 3 corresponds to the matching search area ID.
- the crack ID corresponding to the search area ID includes a crack ID corresponding to the search table and a crack ID corresponding to the search key.
- the progress determination unit 6 first compares the coordinates of the start points of the respective crack IDs, and calculates an error in the coordinates of the start points.
- the progress determination unit 6 corrects the coordinates of the start point and end point of one crack ID using an error in the coordinates of the start point, and corrects the coordinates of the end point and width after correction of each crack ID. Judgment is matched. If they do not match, the process proceeds to step S106, and if they match, the process proceeds to step S108.
- the crack ID corresponding to the search area ID “0001” matching the search table 130 is “101”, and the crack ID corresponding to the search area ID “0001” of the search key 240 is “201”.
- the progress determination unit 6 determines whether or not the shape information of the crack ID “101” and the crack ID “201” matches in the deformation information tables 120 and 220 from the deformation information table storage unit 3.
- FIG. 15 is an explanatory diagram of the deformation information table before and after correction in which the crack IDs “101” and “201” are extracted.
- the starting point of the crack ID “101” differs from the starting point of the crack ID “201” by a minus 0.1 m coordinate in the x-axis direction.
- the progress determination unit 6 corrects the starting point and ending point of the crack ID “101” by 0.1 m in the x-axis direction.
- the progress determination unit 6 compares the coordinates and widths of the end points of the crack IDs “101” and “201” from the corrected shape information.
- the shape information of the crack IDs “101” and “201” matches the length of the width but does not match the coordinates of the end points, so the process proceeds to step S106.
- the determination as to whether the shape information matches is not limited to the case where the coordinates of the end point and the length of the width match completely, but a threshold value may be provided to determine that they match if they fall within a certain range. . Further, it is not always necessary to use the coordinates and widths of the start point and end point in determining whether the shape information matches, as long as the progress of deformation can be determined by comparison.
- step S106 the progress determination unit 6 determines that the deformation has progressed. , Output the progress judgment result. The progress determination part 6 will return to step S102, if a progress determination result is output.
- step S108 the progress determination unit 6 determines that there is no progress in the deformation and outputs a progress determination result. The progress determination part 6 will return to step S102, if a progress determination result is output.
- the progress determination result may be not only the presence / absence of progress but also a deformed image determined to have progress or information indicating the magnitude of the difference in the compared shape information.
- the deformation progress determination apparatus 1 when searching for the same deformation, the deformation existing in the search area obtained by dividing the detection target area for detecting the deformation into a plurality of areas. Since the shape information is compared and the progress of the deformation is determined with the same deformation, even if there is an error in the position information for detecting the deformation of the target object, the detection position shift due to this error is the range of the search area. If it is within, the progress of deformation can be determined. Furthermore, since the progress of the deformation is determined based on the identification information of the search area, the calculation processing load is reduced as compared to detecting the presence / absence of the target deformation in the predetermined area. In addition, since the search key is generated in the progress determination unit 6, the same deformation can be efficiently detected from the search table.
- the deformation to be determined by the deformation progress determination device is not limited to a crack.
- the present invention is applicable even if the deformation changes.
- the deformation is not only detected from the two-dimensional image information, but the deformation can be detected by the deformation detection process and the size and shape of the deformation can be recognized. This can be applied to the case of deformation detection using the obtained three-dimensional data.
- the search table storage unit 5 includes a plurality of cracks in one search area ID.
- a search table may be created corresponding to the crack ID.
- the search region ID corresponding to a plurality of crack IDs is extracted from the search table as one candidate for the same deformation by the progress determination unit 6 for one deformed search key.
- the deformation it is determined whether or not the deformation has progressed using the measurement data at time 1 and time 2.
- the speed at which the deformation progresses as the measurement time elapses is known.
- FIG. 16 is a configuration diagram in the case of realization by hardware.
- the deformation detection unit 2, the deformation information table storage unit 3, the deformation presence / absence determination unit 4, the search table storage unit 5, and the progress determination unit 6 are configured by a processor 10 that is an arithmetic device.
- the deformation information table and the search table are stored in the storage device 20 as necessary.
- a network interface is used as an interface, it is also possible to store a deformation information table and a search table in an external database and retrieve them from the database at the time of execution.
- the measurement data input to the deformation progress determination device 1 and the output of the progress determination result are input / output via an interface 30 which is a communication interface such as Ethernet (registered trademark) or a device interface such as USB.
- the measurement data is stored in an external database.
- the deformation progress determination apparatus 1 of the present invention can also be realized as software that operates on general-purpose hardware such as a personal computer or a server.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
この同一の変状を特定するために、構造物の基準点から撮影箇所までの距離を測定して変状の位置情報を記録し、このようにして得た正確な位置情報によって同一の変状を特定して進展を判定する必要があった。また、対象物に対して同じような位置関係で撮影することにより撮影領域内の変状の位置が同じとなるようにしても、完全に同じ撮影領域となるよう撮影することは難しく誤差が生じる。この誤差を修正する方法もあるが、同一の変状を特定できる程度まで誤差を修正するためには計算処理の負荷が高くなってしまう。 本発明によれば、同一の変状を探索する際、変状を検出する検出対象領域を複数に分割した探索領域に存在する変状を同一の変状として形状情報を比較して変状の進展を判定するので、対象物の変状を検出する位置情報に誤差があっても、この誤差による検出位置のずれが探索領域の範囲内であれば同一の変状を特定できる。
Description
本発明は、対象物の測定データを用いて進展がある変状を判定する変状進展判定装置及び変状進展判定方法に関する。
トンネルや橋梁などのコンクリートを用いた構造物は、ひび割れや遊離石灰の析出などの変状がコンクリート表面に生じる。これらの変状には、施工直後に生じる進展しない変状と、経年劣化により進展する変状がある。進展する変状を放置すると、構造物の機能性や耐久性が低下し、コンクリートの剥離などにつながるため、早期に発見して措置を取る必要がある。このため、従来、進展する変状を検出する方法として、一定期間ごとに構造物を撮影し、撮影した画像から進展がある変状を検出する方法がある。例えば、特許文献1には、構造物を撮影した画像をもとに、一定期間ごとに同一の構造物に関するデータを蓄積し、異なる撮影時刻に対応したデータを比較することにより変状の進展を監視する方法がある。
変状の進展を監視するために撮影時刻の異なるデータから同一の変状を特定して比較する必要がある。特許文献1では、構造物の基準点から撮影箇所までの距離を測定し、変状の形状と共に変状の位置情報を記録し、同一の変状を特定していたため、正確な位置情報が必要であった。特許文献1のような正確な位置情報を測定せずに対象物に対して同じような位置関係で撮影することにより、撮影領域から変状の位置情報を得て同一の変状を一致させる方法もある。しかし、変状の進展を検出するための計測は期間を置いて行われるため、同じ撮影領域となるよう対象物を撮影することは難しく、変状の位置情報に誤差が生じるため同一の変状を特定して進展を判定することができなかった。
本発明は、上述のような問題点を解決するためになされたものであり、対象物の変状を検出する際の検出位置に誤差があっても変状の進展を判定できる装置を得ることを目的とする。
本発明に関わる変状進展判定装置は、対象物の変状を検出する変状検出部、変状検出部が変状を検出する検出対象領域内の探索領域において変状検出部にて検出された変状の存否を判定する変状存否判定部、変状存否判定部で変状が存在すると判定した探索領域の識別情報と、探索領域に存在する変状の識別情報とを対応させた探索テーブルを変状検出部が検出した変状の検出時刻毎に記憶する探索テーブル記憶部、探索テーブル記憶部に異なる検出時刻毎に記憶された探索領域の識別情報に基づき変状の進展を判定する進展判定部を備えたものである。
本発明に関わる変状進展判定方法は、対象物の変状を検出する変状検出ステップ、変状検出ステップにて前記変状を検出する検出対象領域を複数に分割した探索領域において変状検出ステップにて検出された前記変状の存否を判定する変状存否判定ステップ、変状存否判定ステップにて変状が存在すると判定した探索領域の識別情報と、探索領域に存在する変状の識別情報とを対応させた探索テーブルを変状検出ステップにて検出した変状の検出時刻毎に記憶する探索テーブル記憶ステップ、探索テーブル記憶ステップにて異なる検出時刻毎に記憶された探索領域の識別情報に基づき変状の進展を判定する進展判定ステップを備えたものである。
本発明に関わる変状進展判定方法は、対象物の変状を検出する変状検出ステップ、変状検出ステップにて前記変状を検出する検出対象領域を複数に分割した探索領域において変状検出ステップにて検出された前記変状の存否を判定する変状存否判定ステップ、変状存否判定ステップにて変状が存在すると判定した探索領域の識別情報と、探索領域に存在する変状の識別情報とを対応させた探索テーブルを変状検出ステップにて検出した変状の検出時刻毎に記憶する探索テーブル記憶ステップ、探索テーブル記憶ステップにて異なる検出時刻毎に記憶された探索領域の識別情報に基づき変状の進展を判定する進展判定ステップを備えたものである。
本発明によれば、同一の変状を探索する際、変状を検出する検出対象領域を複数に分割した探索領域に存在する変状を同一の変状として形状情報を比較して変状の進展を判定するので、対象物の変状を検出する位置情報に誤差があっても、この誤差による検出位置のずれが探索領域の範囲内であれば変状の進展を判定することができる。
実施の形態1.
本実施の形態では、異なる測定時刻の測定データを変状進展判定装置1に入力し、測定データから検出される変状であるひび割れの進展を判定し、進展判定結果として出力する場合について説明する。測定データは、最初に時刻1の測定データが入力され、次に時刻2の測定データが入力されるものとする。
本実施の形態では、異なる測定時刻の測定データを変状進展判定装置1に入力し、測定データから検出される変状であるひび割れの進展を判定し、進展判定結果として出力する場合について説明する。測定データは、最初に時刻1の測定データが入力され、次に時刻2の測定データが入力されるものとする。
図1は、本実施の形態に係る変状進展判定装置1の構成を示す構成図である。変状進展判定装置1は、測定データから対象物の変状を検出する変状検出部2、変状検出部2に検出された変状の識別情報と変状の形状を示す形状情報とを対応させた変状情報テーブルを記憶する変状情報テーブル記憶部3、変状検出部2が変状を検出する検出対象領域を複数に分割した探索領域において変状検出部2にて検出された変状の存否を判定する変状存否判定部4、変状存否判定部4で変状が存在すると判定した探索領域の識別情報と、探索領域に存在する変状の識別情報とを対応させた探索テーブルを変状検出部2が検出した変状の検出時刻毎に記憶する探索テーブル記憶部5、探索テーブル記憶部5に異なる検出時刻毎に記憶された探索領域の識別情報に対応して変状情報テーブル記憶部に記憶された形状情報に基づき変状の進展を判定する進展判定部6とから構成される。
変状進展判定装置1には、対象物の測定データとして画像データが入力される。
対象物は、経年劣化により変状が進展するものが対象であり、例えばトンネルや架橋などのコンクリート構造物である。変状は、対象物の表面に現れるひび割れである。
対象物は、経年劣化により変状が進展するものが対象であり、例えばトンネルや架橋などのコンクリート構造物である。変状は、対象物の表面に現れるひび割れである。
測定データは、対象物の表面をカメラで撮影した画像データであり、変状検出部2が対象物の表面の変状であるひび割れが認識できるものであればよい。変状進展判定装置1に入力される測定データとしての画像データには、変状を検出する対象である検出対象領域の画像が含まれている。また、変状進展判定装置1は、入力された測定データから変状を検出し、測定時刻の異なる測定データから検出した変状との位置及び形状を比較することにより進展を判定する。また、測定時刻が異なる測定データの検出対象領域を重ね合わせた場合に、位置情報が大体一致する必要があるが、正確に一致している必要はない。時刻の異なる測定データの検出対象領域は、対象物に対して同じような位置関係で測定時刻の異なる測定データを取得することにより位置情報を一致させてもいいし、測定データを取得した後に測定データ内の検出対象領域を指定して位置情報を一致させてもよい。
変状検出部2は、測定データが入力されると対象物の変状を検出する。
具体的には、変状検出部2は、測定データとして対象物であるコンクリート表面を撮影した画像データが入力される。変状検出部2は入力された画像データから変状を検出する対象である検出対象領域100に対してひび割れ検出処理を行い、変状を検出する。図2は、本実施の形態1の変状進展判定装置1の変状検出部2が画像データから生成した検出対象領域100の概念図を示す。変状検出部2は、検出対象領域100からひび割れ101を検出する。変状検出部2は、変状を一つ検出するごとに、後述する変状の識別情報と変状の形状を示す形状情報とを変状情報テーブル記憶部3に通知し、検出対象領域100から未検出の変状がなくなるまで検出対象領域100内の変状の検出を行う。
具体的には、変状検出部2は、測定データとして対象物であるコンクリート表面を撮影した画像データが入力される。変状検出部2は入力された画像データから変状を検出する対象である検出対象領域100に対してひび割れ検出処理を行い、変状を検出する。図2は、本実施の形態1の変状進展判定装置1の変状検出部2が画像データから生成した検出対象領域100の概念図を示す。変状検出部2は、検出対象領域100からひび割れ101を検出する。変状検出部2は、変状を一つ検出するごとに、後述する変状の識別情報と変状の形状を示す形状情報とを変状情報テーブル記憶部3に通知し、検出対象領域100から未検出の変状がなくなるまで検出対象領域100内の変状の検出を行う。
また、図3に示すように検出対象領域100内に分岐したひび割れが存在する場合がある。この場合には、交点を持たないひび割れとなるよう分岐したひび割れを分解する。例えば図3においてはひび割れを2つに分け、それぞれを1つのひび割れ101、102として検出する。本実施の形態では説明を容易にするため、図2に示す検出対象領域100においてひび割れ101のみが検出された場合について説明する。
変状情報テーブル記憶部3は、変状検出部2に検出された変状の識別情報と変状の形状を示す形状情報とを対応させた変状情報テーブルを記憶する。
変状の識別情報は、1つ1つのひび割れをそれぞれ識別するための情報であり、1つのひび割れが検出される毎に1つのひびIDが付与される。例えば図2において検出されるひび割れ101には、ひびID「101」が付与され、その後ひび割れが検出されると順にひびIDが「102」、「103」・・・と付与される。
形状情報は、変状検出部2によって検出された変状の形状を示す情報であり、この実施の形態では、検出したひび割れの開始点および終了点の位置座標、ひび割れの幅の大きさの情報である。ここで、ひび割れの開始点とはひび割れの両端のうち原点に近い方の座標であり、他端をひび割れの終了点と定義する。図2においては、検出対象領域100に存在するひび割れ101の両端のうち、検出対象領域100の左下を原点Oとした場合、原点Oに近い左下の端が開始点、もう一方の端である右上が終了点となる。また、ひび割れの幅の大きさについては、ひび割れの幅が最も大きい部分の大きさで代表させて定義する。
なお、形状情報の表現形式は、上記の例に限らず、変状の形状を示す情報であればよく、例えば変状の形状を表す点群データでもよいし、一定のルールによって変状の大きさをベクトルで表した情報でもよい。
図4は、実施の形態1に係る変状進展判定装置1の変状情報テーブル記憶部3が記憶する変状情報テーブル120の概念図である。図4において、ひびID「101」に対応した形状情報は、開始点の座標はx軸方向が0.06m、y軸方向が0.24m、終了点の座標はx軸方向が0.25m、y軸方向が0.41m、ひびの幅2mmであることを示している。
変状の識別情報は、1つ1つのひび割れをそれぞれ識別するための情報であり、1つのひび割れが検出される毎に1つのひびIDが付与される。例えば図2において検出されるひび割れ101には、ひびID「101」が付与され、その後ひび割れが検出されると順にひびIDが「102」、「103」・・・と付与される。
形状情報は、変状検出部2によって検出された変状の形状を示す情報であり、この実施の形態では、検出したひび割れの開始点および終了点の位置座標、ひび割れの幅の大きさの情報である。ここで、ひび割れの開始点とはひび割れの両端のうち原点に近い方の座標であり、他端をひび割れの終了点と定義する。図2においては、検出対象領域100に存在するひび割れ101の両端のうち、検出対象領域100の左下を原点Oとした場合、原点Oに近い左下の端が開始点、もう一方の端である右上が終了点となる。また、ひび割れの幅の大きさについては、ひび割れの幅が最も大きい部分の大きさで代表させて定義する。
なお、形状情報の表現形式は、上記の例に限らず、変状の形状を示す情報であればよく、例えば変状の形状を表す点群データでもよいし、一定のルールによって変状の大きさをベクトルで表した情報でもよい。
図4は、実施の形態1に係る変状進展判定装置1の変状情報テーブル記憶部3が記憶する変状情報テーブル120の概念図である。図4において、ひびID「101」に対応した形状情報は、開始点の座標はx軸方向が0.06m、y軸方向が0.24m、終了点の座標はx軸方向が0.25m、y軸方向が0.41m、ひびの幅2mmであることを示している。
変状存否判定部4は、変状検出部2が変状を検出する検出対象領域内の複数の探索領域において変状検出部2にて検出された変状の存否を判定する。
探索領域は、検出対象領域内の領域であり、測定時刻の異なる測定データの検出対象領域に対して同じ探索領域となるものである。
探索領域は、検出対象領域内の領域であり、測定時刻の異なる測定データの検出対象領域に対して同じ探索領域となるものである。
具体的には、変状存否判定部4は、図5に示すように検出対象領域を10cmの正方形を1マスとして計算格子に分割する。計算格子の大きさは、例えば測定時刻の異なる対象検出領域の位置情報の誤差によりユーザが設定する。そして、図6に示すように連続する縦3マス、横3マスから成る9マスの格子を探索領域110として探索領域の識別情報である探索領域IDを付与する。探索領域IDは、図5に「00」、「01」・・・と示したような計算格子に置き換えた座標から単純に計算できるよう割り付ける。例えば原点に対して探索領域11の左下の格子の座標についてx軸座標値、y軸座標値のそれぞれ上位N桁の数値を組み合わせたものを探索領域IDとする。図6において、探索領域110の探索領域IDは「0001」となる。
なお、探索領域は検出対象領域内に完全に重ならないものが複数あればよく、上述したような計算格子への分割や連続する縦3マス、横3マスから成る9マスに限るものではない。上述した方法で探索領域を決定する場合は、1回の測定ごとに検出対象領域の位置情報に10cmの誤差が予測される場合、1つの格子の大きさを10cmとすることにより、粗すぎず細かすぎない探索領域が作成できる。すなわち、探索領域は、変状が存在する領域から測定時刻の異なる検出対象領域の位置情報の誤差内の大きさとするとよい。
なお、探索領域は検出対象領域内に完全に重ならないものが複数あればよく、上述したような計算格子への分割や連続する縦3マス、横3マスから成る9マスに限るものではない。上述した方法で探索領域を決定する場合は、1回の測定ごとに検出対象領域の位置情報に10cmの誤差が予測される場合、1つの格子の大きさを10cmとすることにより、粗すぎず細かすぎない探索領域が作成できる。すなわち、探索領域は、変状が存在する領域から測定時刻の異なる検出対象領域の位置情報の誤差内の大きさとするとよい。
変状存否判定部4は、変状情報テーブル120に記憶された形状情報の開始点の座標を用いてそれぞれの探索領域における変状の存否を判定する。探索領域が変状情報テーブルに記憶された形状情報の開始点の座標を含まない場合は変状が存在しないと判定する。探索領域が変状情報テーブルに記憶された形状情報の開始点の座標を含む場合は変状が存在すると判定する。
例えば、図6において探索領域ID「0001」はひび割れ101の開始点の座標を含むため、変状が存在すると判定される。一方、図7において探索領域ID「0202」はひび割れ101の開始点の座標を含まないため、変状が存在しないと判定される。変状存否判定部4は、変状が存在すると判定した場合は、変状が存在すると判定した探索領域IDと、探索領域に存在するひび割れのひびIDとを探索テーブル記憶部5に通知する。
例えば、図6において探索領域ID「0001」はひび割れ101の開始点の座標を含むため、変状が存在すると判定される。一方、図7において探索領域ID「0202」はひび割れ101の開始点の座標を含まないため、変状が存在しないと判定される。変状存否判定部4は、変状が存在すると判定した場合は、変状が存在すると判定した探索領域IDと、探索領域に存在するひび割れのひびIDとを探索テーブル記憶部5に通知する。
探索テーブル記憶部5は、変状存否判定部4で変状が存在すると判定した探索領域の識別情報と、探索領域に存在する変状の識別情報とを対応させた探索テーブルを変状検出部2が検出した変状の検出時刻毎に記憶する。
具体的には、探索テーブル記憶部5は、変状存否判定部4が探索領域110に変状が存在すると通知を受けると、その探索領域110の識別情報である探索領域IDとその探索領域110に存在する変状のひびIDを用いて、図8に示すような探索テーブル130を作成する。探索テーブル130は、変状検出部2が検出した変状の検出時刻毎に作成され、記憶される。変状検出部2が検出した変状の検出時刻は、測定データを測定した時刻毎に探索テーブルを分けて作成するものであればよいが、変状検出部2が変状を1つ検出した時刻毎、つまり変状一つずつについて探索テーブルを作成するような構成としてもよい。
具体的には、探索テーブル記憶部5は、変状存否判定部4が探索領域110に変状が存在すると通知を受けると、その探索領域110の識別情報である探索領域IDとその探索領域110に存在する変状のひびIDを用いて、図8に示すような探索テーブル130を作成する。探索テーブル130は、変状検出部2が検出した変状の検出時刻毎に作成され、記憶される。変状検出部2が検出した変状の検出時刻は、測定データを測定した時刻毎に探索テーブルを分けて作成するものであればよいが、変状検出部2が変状を1つ検出した時刻毎、つまり変状一つずつについて探索テーブルを作成するような構成としてもよい。
なお、探索テーブル記憶部5は、変状が存在すると判定した探索領域の識別情報と、探索領域に存在する変状の識別情報とを対応させた探索テーブルを変状検出部2が検出した変状の検出時刻毎に記憶する他に、変状が存在すると判定した探索領域と重畳する探索領域や隣り合う探索領域の識別情報と、変状存否判定部4で変状が存在すると判定した探索領域に存在する変状の識別情報とを対応させた探索テーブルを記憶してもよい。
進展判定部6は、探索テーブル記憶部5に異なる検出時刻毎に探索領域の識別情報から探索候補となる探索キーを生成し、探索キーに対応して変状情報テーブル記憶部3に記憶された形状情報に基づき変状の進展を判定する。
具体的には、時刻2の検出対象領域を時刻1の検出対象領域と同じ計算格子である10cmの正方形を1マスとして計算格子に分割する。そして、連続する縦3マス、横3マスから成る9マスの格子から成る探索領域のうち、中央の格子にひび割れの開始点がある探索領域IDを探索キーとする。進展判定部6は、探索キーと一致する探索領域IDを探索テーブル記憶部5に記憶された異なる測定時刻である時刻1の探索テーブル130から探索する。一致する探索領域IDが存在しない場合は、時刻1の測定時には存在しなかったひび割れが検出されたこととなるため、「進展あり」と判断する。また、同一のひび割れが存在するがひび割れが進展したことにより、ひび割れの開始点の座標が変わり、探索テーブルに探索キーと一致する探索領域IDが存在しない場合もあるが、その場合もひびが進展したことにより探索領域IDが検出できないので「進展あり」と判断する。一致する探索領域IDが存在する場合は、その探索領域内のひび割れは同一のひび割れであると推定できるので、進展判定部6はこれらのひび割れの形状情報を比較してそのひび割れの進展の有無を判定する。すなわち、進展判定部6は変状情報テーブル記憶部3に記憶された変状情報テーブルを用いてその探索領域IDと対応するひびIDの形状情報である開始点と終了点の座標及び幅の長さが一致するかを判定する。形状情報が一致する場合はひび割れが進展していないこととなるので「進展なし」、形状情報が一致しない場合はひび割れが進展しているとして「進展あり」として進展判定結果を出力する。
具体的には、時刻2の検出対象領域を時刻1の検出対象領域と同じ計算格子である10cmの正方形を1マスとして計算格子に分割する。そして、連続する縦3マス、横3マスから成る9マスの格子から成る探索領域のうち、中央の格子にひび割れの開始点がある探索領域IDを探索キーとする。進展判定部6は、探索キーと一致する探索領域IDを探索テーブル記憶部5に記憶された異なる測定時刻である時刻1の探索テーブル130から探索する。一致する探索領域IDが存在しない場合は、時刻1の測定時には存在しなかったひび割れが検出されたこととなるため、「進展あり」と判断する。また、同一のひび割れが存在するがひび割れが進展したことにより、ひび割れの開始点の座標が変わり、探索テーブルに探索キーと一致する探索領域IDが存在しない場合もあるが、その場合もひびが進展したことにより探索領域IDが検出できないので「進展あり」と判断する。一致する探索領域IDが存在する場合は、その探索領域内のひび割れは同一のひび割れであると推定できるので、進展判定部6はこれらのひび割れの形状情報を比較してそのひび割れの進展の有無を判定する。すなわち、進展判定部6は変状情報テーブル記憶部3に記憶された変状情報テーブルを用いてその探索領域IDと対応するひびIDの形状情報である開始点と終了点の座標及び幅の長さが一致するかを判定する。形状情報が一致する場合はひび割れが進展していないこととなるので「進展なし」、形状情報が一致しない場合はひび割れが進展しているとして「進展あり」として進展判定結果を出力する。
なお、進展を判定する形状情報として、ひび割れの開始点と終了点の座標及び幅の長さを用いたが、大きさや形などの形状に関する情報から変状の進展を判断できればよく、例えばひび割れの開始点と終了点の座標のみを用いてひび割れの進展を判定してもよい。
次に、実施の形態1の変状進展判定装置1の動作について説明する。
変状進展判定装置1は、2つ以上の異なる時刻の測定データによって変状の進展を判定する。よって、時刻1の測定データを入力した時と時刻2の測定データを入力した時とで動作を分けて説明する。
変状進展判定装置1は、2つ以上の異なる時刻の測定データによって変状の進展を判定する。よって、時刻1の測定データを入力した時と時刻2の測定データを入力した時とで動作を分けて説明する。
まず、時刻1の測定データが入力された場合の動作について説明する。図9は、実施の形態1に係る変状進展判定装置1に時刻1の測定データが入力された場合の動作を示すフローチャートである。
ステップS001にて、変状検出部2に対象物の時刻1の測定データとして画像データが入力される。画像データが入力されると、ステップS002へ進む。
ステップS002にて、変状検出部2は、ステップS001にて入力された測定データから対象物の変状を検出する。
まず、変状検出部2は、入力された画像データから検出対象領域100を決定する。撮影された画像を表わす画像データに基づいて、撮影された画像を復元し、この画像のうち変状を検出する対象領域を検出対象領域100を生成する。これは画像中の決められた範囲を自動的に検出対象領域100としてもよいし、ユーザによって指定されてもよい。検出対象領域100から変状であるひび割れ101を検出し、変状の識別情報と変状の形状を示す形状情報とを変状情報テーブル記憶部3に通知し、ステップS003へ進む。変状検出部2は、検出対象領域100の変状が全て検出済みの場合は動作を終了する。
まず、変状検出部2は、入力された画像データから検出対象領域100を決定する。撮影された画像を表わす画像データに基づいて、撮影された画像を復元し、この画像のうち変状を検出する対象領域を検出対象領域100を生成する。これは画像中の決められた範囲を自動的に検出対象領域100としてもよいし、ユーザによって指定されてもよい。検出対象領域100から変状であるひび割れ101を検出し、変状の識別情報と変状の形状を示す形状情報とを変状情報テーブル記憶部3に通知し、ステップS003へ進む。変状検出部2は、検出対象領域100の変状が全て検出済みの場合は動作を終了する。
ステップS003にて、変状情報テーブル記憶部3は、変状検出部2に検出された変状の識別情報と変状の形状を示す形状情報とを対応させた変状情報テーブルを記憶する。
変状情報テーブル記憶部3は、ステップS002によって変状検出部2がひび割れ101を検出したことを通知されると、検出されたひび割れ101の識別情報であるひびIDとそのひび割れ101の形状情報とを対応させた図4に示す変状情報テーブル120を記憶する。変状情報テーブル記憶部3は、変状情報テーブル120を変状存否判定部4に出力する。
変状情報テーブル記憶部3は、ステップS002によって変状検出部2がひび割れ101を検出したことを通知されると、検出されたひび割れ101の識別情報であるひびIDとそのひび割れ101の形状情報とを対応させた図4に示す変状情報テーブル120を記憶する。変状情報テーブル記憶部3は、変状情報テーブル120を変状存否判定部4に出力する。
ステップS004にて、変状存否判定部4は、変状検出部2が変状を検出する検出対象領域内の複数の探索領域において変状検出部2にて検出された変状の存否を判定する。探索領域において変状が存在すると判断した場合はステップS005に進み、存在しないと判定した場合はステップS002へ戻る。
変状存否判定部4は、10cmの正方形を1マスとして計算格子に分割する。そして、連続する縦3マス、横3マスから成る9マスの格子を探索領域110として探索領域の識別情報である探索領域IDを付与する。変状存否判定部4は、変状情報テーブル記憶部3から変状情報テーブル120を受け取る。そして、変状情報テーブル120に記憶された形状情報の開始点の座標を用いてそれぞれの探索領域110における変状の存否を判定する。探索領域110が変状情報テーブル120に記憶された形状情報の開始点の座標を含む場合は、変状が存在すると判定し、その探索領域に変状が存在することを、変状が存在すると判定した探索領域IDと探索領域に存在するひび割れのひびIDを送ることで探索テーブル記憶部5に通知し、ステップS005に進む。
変状存否判定部4は、10cmの正方形を1マスとして計算格子に分割する。そして、連続する縦3マス、横3マスから成る9マスの格子を探索領域110として探索領域の識別情報である探索領域IDを付与する。変状存否判定部4は、変状情報テーブル記憶部3から変状情報テーブル120を受け取る。そして、変状情報テーブル120に記憶された形状情報の開始点の座標を用いてそれぞれの探索領域110における変状の存否を判定する。探索領域110が変状情報テーブル120に記憶された形状情報の開始点の座標を含む場合は、変状が存在すると判定し、その探索領域に変状が存在することを、変状が存在すると判定した探索領域IDと探索領域に存在するひび割れのひびIDを送ることで探索テーブル記憶部5に通知し、ステップS005に進む。
ステップS005にて、探索テーブル記憶部5は、変状存否判定部4で変状が存在すると判定した探索領域の識別情報と、探索領域に存在する変状の識別情報とを対応させた図8に示すような探索テーブルを変状検出部2が検出した変状の検出時刻毎に記憶する。
探索テーブル記憶部5は、変状存否判定部4から探索領域110に変状が存在すると通知を受けると、その探索領域110の識別情報とその探索領域110に存在する変状の変状情報を対応させた探索テーブル130を作成する。探索テーブル記憶部5は、探索テーブル130を作成するとステップS002へ戻る。
全ての変状が検出されると、ステップS002にて変状を検出しないと判断され、動作が終了する。
以上が時刻1の測定データを入力した場合の動作である。
探索テーブル記憶部5は、変状存否判定部4から探索領域110に変状が存在すると通知を受けると、その探索領域110の識別情報とその探索領域110に存在する変状の変状情報を対応させた探索テーブル130を作成する。探索テーブル記憶部5は、探索テーブル130を作成するとステップS002へ戻る。
全ての変状が検出されると、ステップS002にて変状を検出しないと判断され、動作が終了する。
以上が時刻1の測定データを入力した場合の動作である。
次に、時刻2の測定データが入力された場合の動作について説明する。図10は、実施の形態1に係る変状進展判定装置1に時刻2の測定データが入力された場合の動作を示すフローチャートである。
ステップS101にて、ステップS001と同様にして変状検出部2に対象物の測定データとして時刻2の測定データとして画像データが入力される。時刻2の画像データは、時刻1の画像データと対象物に対して同じような位置関係で撮影され、時刻1の画像データの検出対象領域100とほぼ同じ位置情報を有するように撮影されたものである。
次に、ステップS102にて、変状検出部2は、ステップS002と同様にステップS101にて入力された測定データから対象物の変状を検出する。
変状検出部2は、入力された画像データから検出対象領域100とほぼ同じ位置情報を有する検出対象領域200を決定する。図11は、実施の形態1に係る変状進展判定装置1の変状検出部2がひび割れを検出する検出対象領域200の概念図を示す。検出対象領域200内にあるひび割れ201は、異なる時刻に測定されているがひび割れ101と同一のひび割れである。図11に点線で示したひび割れ101は、位置情報を用いて検出対象領域100と検出対象領域200を単純に重ね合わせた場合、検出対象領域は測定ごとに位置座標に誤差が生じるため、同一のひび割れに対して位置情報のずれが生じていることを表している。
変状検出部2は、検出対象領域200から変状であるひび割れ201を検出し、変状情報テーブル記憶部3に通知する。変状検出部2は、検出対象領域100から変状が全て検出済みである場合は動作を終了する。
変状検出部2は、入力された画像データから検出対象領域100とほぼ同じ位置情報を有する検出対象領域200を決定する。図11は、実施の形態1に係る変状進展判定装置1の変状検出部2がひび割れを検出する検出対象領域200の概念図を示す。検出対象領域200内にあるひび割れ201は、異なる時刻に測定されているがひび割れ101と同一のひび割れである。図11に点線で示したひび割れ101は、位置情報を用いて検出対象領域100と検出対象領域200を単純に重ね合わせた場合、検出対象領域は測定ごとに位置座標に誤差が生じるため、同一のひび割れに対して位置情報のずれが生じていることを表している。
変状検出部2は、検出対象領域200から変状であるひび割れ201を検出し、変状情報テーブル記憶部3に通知する。変状検出部2は、検出対象領域100から変状が全て検出済みである場合は動作を終了する。
ステップS103にて、変状情報テーブル記憶部3は、ステップS003と同様にして変状検出部2に検出された変状の識別情報と変状の形状を示す形状情報とを対応させた変状情報テーブルを記憶する。図12は、実施の形態1に係る変状進展判定装置1の変状情報テーブル記憶部3が作成する変状情報テーブル220の概念図である。変状情報テーブル記憶部3は、変状情報テーブル220を進展判定部6に出力する。
ステップS104からステップS108にて、進展判定部6は、探索テーブル記憶部5に異なる検出時刻毎に探索領域の識別情報から探索候補となる探索キーを生成し、探索キーに対応して変状情報テーブル記憶部3に記憶された形状情報に基づき変状の進展を判定する。
ステップS104にて、進展判定部6は、探索キー240を作成する。
探索キーは、異なる測定時刻の探索テーブルに記憶された探索領域IDから時刻2において検出された変状と同一の変状を検出する際に、候補となる探索領域IDを決定するものである。探索キーとなる探索領域IDは1つでも良いし、複数あってもよい。
進展判定部6は、変状検出部2が変状を検出する検出対象領域200を検出対象領域100と同じ計算格子である10cmの正方形を1マスとして計算格子に分割する。そして、連続する縦3マス、横3マスから成る9マスの格子から成る探索領域のうち中央の格子にひび割れ201の開始点がある探索領域IDを探索キー240とする。図13は、実施の形態1に係る変状進展判定装置1の進展判定部6が作成した探索キー240の概念図である。ひび割れ201は、探索領域ID「0001」にひび割れ201の開始点が中央の格子にある。進展判定部6は、図14に示すように、ひび割れ201の探索領域ID「0001」とひびID「201」とを対応させた探索キー240を作成する。
進展判定部6は、探索キー240を作成するとステップS105に進む。
探索キーは、異なる測定時刻の探索テーブルに記憶された探索領域IDから時刻2において検出された変状と同一の変状を検出する際に、候補となる探索領域IDを決定するものである。探索キーとなる探索領域IDは1つでも良いし、複数あってもよい。
進展判定部6は、変状検出部2が変状を検出する検出対象領域200を検出対象領域100と同じ計算格子である10cmの正方形を1マスとして計算格子に分割する。そして、連続する縦3マス、横3マスから成る9マスの格子から成る探索領域のうち中央の格子にひび割れ201の開始点がある探索領域IDを探索キー240とする。図13は、実施の形態1に係る変状進展判定装置1の進展判定部6が作成した探索キー240の概念図である。ひび割れ201は、探索領域ID「0001」にひび割れ201の開始点が中央の格子にある。進展判定部6は、図14に示すように、ひび割れ201の探索領域ID「0001」とひびID「201」とを対応させた探索キー240を作成する。
進展判定部6は、探索キー240を作成するとステップS105に進む。
なお、ステップS104にて進展判定部6が探索キーを作成する動作は、時刻1の画像データを入力した場合の動作を時刻2の画像データについても行い、作成した探索テーブルの中から探索キーを決定してもよい。その場合は、ステップS103の後、変状存否判定部4、探索テーブル記憶部5によりステップS004、ステップS005のようなステップを経て、探索テーブルを作成し、探索テーブルの中から探索領域の中央に変状がある探索領域IDを探索キーを作成する。探索テーブルに記憶された探索領域ID全てを探索キーとしてもよい。
ステップS105にて、進展判定部6は、ステップS104で作成した探索キー240と一致する探索領域IDを探索テーブル記憶部5に記憶された時刻2と異なる検出時刻の探索テーブルから探索する。一致する探索領域が存在しない場合はステップS106へ進む。一致する探索領域IDが存在する場合はステップS107へ進む。
探索キー240の探索領域ID「0001」は、探索テーブル記憶部5に記憶された時刻1の探索テーブル130に一致する探索領域ID「0001」が存在する。よって、ステップS107へ進む。
この動作により、測定時刻の異なる測定データの検出対象領域100、200の位置情報に誤差があっても、その誤差によるひび割れのずれが探索領域の範囲内であれば探索テーブル130及び探索キー240を用いて同一のひび割れを推定することができる。すなわち、異なる検出時刻の2つの探索テーブルにおいて同じ探索領域IDが存在するということは、その探索領域に異なる時刻においてもひび割れが存在しているということなので、多少ひび割れの位置がずれていても、それらのひびは同一のひび割れであると推定できるものであり、この推定に基づいて同一と思われるひび割れ同士を比較することで、ひび割れの進展を判定することができる。
一方、進展があるひび割れの場合はひび割れの開始点の位置が移動していることがあり、先に存在していた探索領域を超えて別の探索領域に移動してしまっている場合がある。このため、同一のひび割れであっても上記方法で同一のひび割れであると特定することができない場合がある。このような場合は、ひび割れが進展したことにより検出できないこととなるので、「進展あり」と判断することとする。
探索キー240の探索領域ID「0001」は、探索テーブル記憶部5に記憶された時刻1の探索テーブル130に一致する探索領域ID「0001」が存在する。よって、ステップS107へ進む。
この動作により、測定時刻の異なる測定データの検出対象領域100、200の位置情報に誤差があっても、その誤差によるひび割れのずれが探索領域の範囲内であれば探索テーブル130及び探索キー240を用いて同一のひび割れを推定することができる。すなわち、異なる検出時刻の2つの探索テーブルにおいて同じ探索領域IDが存在するということは、その探索領域に異なる時刻においてもひび割れが存在しているということなので、多少ひび割れの位置がずれていても、それらのひびは同一のひび割れであると推定できるものであり、この推定に基づいて同一と思われるひび割れ同士を比較することで、ひび割れの進展を判定することができる。
一方、進展があるひび割れの場合はひび割れの開始点の位置が移動していることがあり、先に存在していた探索領域を超えて別の探索領域に移動してしまっている場合がある。このため、同一のひび割れであっても上記方法で同一のひび割れであると特定することができない場合がある。このような場合は、ひび割れが進展したことにより検出できないこととなるので、「進展あり」と判断することとする。
ステップS107にて、進展判定部6は、一致する探索領域IDに対応して変状情報テーブル記憶部3に記憶された変状情報テーブルの形状情報が一致するかを判定する。
探索領域IDに対応するひびIDは、探索テーブルに対応するひびIDと探索キーに対応するひびIDが存在する。進展判定部6は、まず、それぞれのひびIDの開始点の座標を比較し、開始点の座標の誤差を計算する。次に、進展判定部6は、開始点の座標の誤差を用いて一方のひびIDの開始点及び終了点の座標を補正し、それぞれのひびIDの補正後の終了点の座標と幅の長さが一致するかを判定する。一致しない場合はステップS106へ進み、一致する場合はステップS108に進む。
探索領域IDに対応するひびIDは、探索テーブルに対応するひびIDと探索キーに対応するひびIDが存在する。進展判定部6は、まず、それぞれのひびIDの開始点の座標を比較し、開始点の座標の誤差を計算する。次に、進展判定部6は、開始点の座標の誤差を用いて一方のひびIDの開始点及び終了点の座標を補正し、それぞれのひびIDの補正後の終了点の座標と幅の長さが一致するかを判定する。一致しない場合はステップS106へ進み、一致する場合はステップS108に進む。
探索テーブル130に一致する探索領域ID「0001」に対応するひびIDは「101」であり、探索キー240の探索領域ID「0001」に対応するひびIDは「201」である。進展判定部6は、変状情報テーブル記憶部3から変状情報テーブル120、220においてひびID「101」とひびID「201」の形状情報が一致するかを判定する。図15は、ひびID「101」及び「201」を抽出した補正前と補正後の変状情報テーブルの説明図である。ひびID「101」の開始点はひびID「201」の開始点よりも、x軸方向にマイナス0.1m座標が異なる。進展判定部6は、ひびID「101」の開始点及び終了点をx軸方向にプラス0.1m補正する。進展判定部6は、補正後の形状情報からひびID「101」と「201」の終了点の座標及び幅を比較する。ひびID「101」と「201」の形状情報は、幅の長さは一致するが、終了点の座標は一致しないのでステップS106へ進む。
なお、形状情報が一致するかの判定は、終了点の座標と幅の長さが完全に一致する場合に限らず、閾値を設け一定の範囲に収まる場合は一致すると判定するようにしてもよい。また、形状情報が一致するかの判定には、必ずしも開始点及び終了点の座標、幅を用いる必要はなく、比較することにより変状の進展を判定できるものであればよい。
なお、形状情報が一致するかの判定は、終了点の座標と幅の長さが完全に一致する場合に限らず、閾値を設け一定の範囲に収まる場合は一致すると判定するようにしてもよい。また、形状情報が一致するかの判定には、必ずしも開始点及び終了点の座標、幅を用いる必要はなく、比較することにより変状の進展を判定できるものであればよい。
ステップS105にて探索キーと一致する探索領域IDが存在しない場合、ステップS107にて変状情報が一致しないと判定された場合、ステップS106にて、進展判定部6は変状に進展があるとして、進展判定結果を出力する。進展判定部6は、進展判定結果を出力すると、ステップS102へ戻る。
ステップS107にて変状情報が一致しないと判定された場合、ステップS108にて、進展判定部6は変状に進展がないとして、進展判定結果を出力する。進展判定部6は、進展判定結果を出力すると、ステップS102へ戻る。
ステップS107にて変状情報が一致しないと判定された場合、ステップS108にて、進展判定部6は変状に進展がないとして、進展判定結果を出力する。進展判定部6は、進展判定結果を出力すると、ステップS102へ戻る。
変状進展判定装置1から得られた進展判定結果を用いることにより、ユーザは進展のある変状を知ることができる。進展判定結果は、進展の有無だけでなく、進展があると判定された変状の画像や、比較した形状情報の違いの大きさを示す情報をでも良い。
以上のように、実施の形態1に係る変状進展判定装置1によれば、同一の変状を探索する際、変状を検出する検出対象領域を複数に分割した探索領域に存在する変状を同一の変状として形状情報を比較して変状の進展を判定するので、対象物の変状を検出する位置情報に誤差があっても、この誤差による検出位置のずれが探索領域の範囲内であれば変状の進展を判定することができる。さらに、探索領域の識別情報に基づき変状の進展を判定するようにしたので、所定の領域内において対象となる変状の存否を検出するよりも計算処理の負荷が低減される。また、進展判定部6において探索キーを生成したので、効率的に探索テーブルから同一の変状を検出することができる。
なお、本実施の形態では、ひび割れの変状を検出する場合について説明したが、変状進展判定装置が進展判定対象とする変状はひび割れに限らず、例えば、遊離石灰の析出など進展により形状が変化する変状であっても本発明は適用可能である。さらには、変状を2次元の画像情報から検出するのみでなく、変状検出処理によって変状を検出し、その変状の大きさや形状が認識できるものであればよく、例えばレーザ測定によって得られた3次元データを用いた変状検出の場合に適用できる。
なお、本実施の形態では、検出対象領域に1つのひび割れが検出される場合について説明したが、検出対象領域から複数のひび割れが検出され、探索テーブル記憶部5にて1つの探索領域IDに複数のひびIDが対応して探索テーブルが作成される場合がある。その場合は、進展判定部6にて1つの変状の探索キーに対して探索テーブルから複数のひびIDに対応する探索領域IDが同一の変状の候補として抽出されることとなる。1つの探索領域IDに対して複数のひびIDが対応する場合は、全てのひびIDに対して変状情報テーブルの変状情報が一致するかを判定する。一致するものがない場合は「進展あり」と判定する。一致するものがある場合は「進展なし」と判定する。変状情報が一致するひびIDが存在する場合は、次のひび割れの進展を判定する際に既に同一のひび割れであると判定されたひびIDについては処理を行う必要がないので、そのひびIDは探索テーブルから除外するように設定してもよい。
なお、本実施の形態では、時刻1及び時刻2の測定データを用いて変状の進展があるかを判定した。しかし、時刻の異なる複数の測定データを用いた場合には、測定時刻が経過するにつれて変状が進展する速度がわかる。
上記実施の形態は、図16に示すハードウェア構成において実現される。図16は、ハードウェアで実現する場合の構成図である。変状検出部2、変状情報テーブル記憶部3、変状存否判定部4、探索テーブル記憶部5、進展判定部6は、演算装置であるプロセッサ10で構成される。変状情報テーブル、探索テーブルは必要に応じて記憶装置20に記憶される。インタフェースとしてネットワークインタフェースを使用する場合は、変状情報テーブルや探索テーブルを外部のデータベースに記憶しておき、実行時にデータベースから取り出すことも可能である。変状進展判定装置1への測定データの入力及び進展判定結果の出力は、Ethernet(登録商標)などの通信インタフェースやUSBのようなデバイスインタフェースであるインタフェース30により入出力する。測定データは、外部データベースに記憶されている。
本発明の変状進展判定装置1は、パソコンやサーバなどの汎用なハードウェアで動作するソフトウェアとして実現することもできる。
本発明の変状進展判定装置1は、パソコンやサーバなどの汎用なハードウェアで動作するソフトウェアとして実現することもできる。
1. 変状進展判定装置
2. 変状検出部
3. 変状情報テーブル記憶部
4. 変状存否判定部
5. 探索テーブル記憶部
6. 進展判定部
100.200. 変状検出領域
101.102. ひび割れ
110. 探索領域
120.220. 形状情報テーブル
130. 探索テーブル
240. 探索キー
10. プロセッサ
20. 記憶装置
30. インタフェース
40. 外部データベース
2. 変状検出部
3. 変状情報テーブル記憶部
4. 変状存否判定部
5. 探索テーブル記憶部
6. 進展判定部
100.200. 変状検出領域
101.102. ひび割れ
110. 探索領域
120.220. 形状情報テーブル
130. 探索テーブル
240. 探索キー
10. プロセッサ
20. 記憶装置
30. インタフェース
40. 外部データベース
Claims (6)
- 対象物の変状を検出する変状検出部、
前記変状検出部が前記変状を検出する検出対象領域内の探索領域において前記変状検出部にて検出された前記変状の存否を判定する変状存否判定部、
前記変状存否判定部で前記変状が存在すると判定した前記探索領域の識別情報と、前記探索領域に存在する前記変状の識別情報とを対応させた探索テーブルを前記変状検出部が検出した前記変状の検出時刻毎に記憶する探索テーブル記憶部、
前記探索テーブル記憶部に異なる検出時刻毎に記憶された前記探索領域の識別情報に基づき変状の進展を判定する進展判定部
を備えた変状進展判定装置。 - 前記進展判定部は、
前記探索テーブル記憶部に異なる検出時刻毎に前記探索領域の識別情報から探索候補となる探索キーを生成し、前記探索キーに基づき変状の進展を判定することを特徴とする請求項1に記載の変状進展判定装置。 - 前記探索テーブル記憶部は、
前記変状存否判定部で前記変状が存在すると判定した前記探索領域、および前記変状が存在すると判定した前記探索領域と重畳する探索領域の識別情報と、前記変状存否判定部で前記変状が存在すると判定した前記探索領域に存在する前記変状の識別情報とを対応させた探索テーブルを記憶することを特徴とする請求項1及び請求項2のいずれかに記載の変状進展判定装置。 - 前記探索テーブル記憶部は、
前記変状存否判定部で前記変状が存在すると判定した前記探索領域、および前記変状が存在すると判定した前記探索領域と隣り合う探索領域の識別情報と、前記変状存否判定部で前記変状が存在すると判定した前記探索領域に存在する前記変状の識別情報とを対応させた探索テーブルを記憶することを特徴とする請求項1及び請求項2のいずれかに記載の変状進展判定装置。 - 前記変状進展判定装置は、
前記変状検出部に検出された前記変状の識別情報と前記変状の形状を示す形状情報とを対応させた変状情報テーブルを記憶する変状情報テーブル記憶部を有し、
前記進展判定部は、
前記探索テーブル記憶部に異なる検出時刻毎に記憶された前記探索領域の識別情報に対応して前記変状情報テーブル記憶部に記憶された前記形状情報に基づき変状の進展を判定する請求項1から請求項4のいずれかに記載の変状進展判定装置。 - 対象物の変状を検出する変状検出ステップ、
前記変状検出ステップにて前記変状を検出する検出対象領域の探索領域において前記変状検出ステップにて検出された前記変状の存否を判定する変状存否判定ステップ、
前記変状存否判定ステップにて前記変状が存在すると判定した前記探索領域の識別情報と、前記探索領域に存在する前記変状の識別情報とを対応させた探索テーブルを前記変状検出ステップにて検出した前記変状の検出時刻毎に記憶する探索テーブル記憶ステップ、
前記探索テーブル記憶ステップにて異なる検出時刻毎に記憶された前記探索領域の識別情報に基づき変状の進展を判定する進展判定ステップ
を備えた変状進展判定方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/068037 WO2017216943A1 (ja) | 2016-06-17 | 2016-06-17 | 変状進展判定装置及び変状進展判定方法 |
JP2018501376A JP6365799B2 (ja) | 2016-06-17 | 2016-06-17 | 変状進展判定装置及び変状進展判定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/068037 WO2017216943A1 (ja) | 2016-06-17 | 2016-06-17 | 変状進展判定装置及び変状進展判定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017216943A1 true WO2017216943A1 (ja) | 2017-12-21 |
Family
ID=60663196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068037 WO2017216943A1 (ja) | 2016-06-17 | 2016-06-17 | 変状進展判定装置及び変状進展判定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6365799B2 (ja) |
WO (1) | WO2017216943A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6749528B1 (ja) * | 2020-01-31 | 2020-09-02 | 三菱電機株式会社 | 変状管理装置、変状管理方法、および変状管理プログラム |
WO2020177165A1 (zh) * | 2019-03-01 | 2020-09-10 | 威海华菱光电股份有限公司 | 裂缝变化监测装置及裂缝变化监测方法 |
JP7564671B2 (ja) | 2020-09-29 | 2024-10-09 | キヤノン株式会社 | 情報処理装置、制御方法、及び、プログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6788291B1 (ja) * | 2019-06-03 | 2020-11-25 | 株式会社イクシス | 点検支援システム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06116914A (ja) * | 1992-10-09 | 1994-04-26 | Nippon Doro Kodan | 塗膜劣化診断方法及び装置 |
JP2002162260A (ja) * | 2000-09-13 | 2002-06-07 | Tohoku Paul Kk | 建造物における外観劣化の記録方法、及びこれを用いた外観劣化の経年変化記録システム |
JP2002288269A (ja) * | 2001-03-27 | 2002-10-04 | Sekisui House Ltd | 集合住宅の不具合情報管理システム |
JP2009235696A (ja) * | 2008-03-26 | 2009-10-15 | Compensation Seminary Co Ltd | 建物の経年変化を調査するためのシステム、方法、及びコンピュータ・プログラム |
JP2015111111A (ja) * | 2013-10-29 | 2015-06-18 | 株式会社イクシスリサーチ | 劣化診断支援システム、データベース、データベース作成装置および劣化診断支援方法 |
JP2015138467A (ja) * | 2014-01-23 | 2015-07-30 | デ・ファクト・スタンダード合同会社 | コンクリート構造物維持管理システム |
JP2016050887A (ja) * | 2014-09-01 | 2016-04-11 | 関西工事測量株式会社 | クラック計測システム |
-
2016
- 2016-06-17 WO PCT/JP2016/068037 patent/WO2017216943A1/ja active Application Filing
- 2016-06-17 JP JP2018501376A patent/JP6365799B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06116914A (ja) * | 1992-10-09 | 1994-04-26 | Nippon Doro Kodan | 塗膜劣化診断方法及び装置 |
JP2002162260A (ja) * | 2000-09-13 | 2002-06-07 | Tohoku Paul Kk | 建造物における外観劣化の記録方法、及びこれを用いた外観劣化の経年変化記録システム |
JP2002288269A (ja) * | 2001-03-27 | 2002-10-04 | Sekisui House Ltd | 集合住宅の不具合情報管理システム |
JP2009235696A (ja) * | 2008-03-26 | 2009-10-15 | Compensation Seminary Co Ltd | 建物の経年変化を調査するためのシステム、方法、及びコンピュータ・プログラム |
JP2015111111A (ja) * | 2013-10-29 | 2015-06-18 | 株式会社イクシスリサーチ | 劣化診断支援システム、データベース、データベース作成装置および劣化診断支援方法 |
JP2015138467A (ja) * | 2014-01-23 | 2015-07-30 | デ・ファクト・スタンダード合同会社 | コンクリート構造物維持管理システム |
JP2016050887A (ja) * | 2014-09-01 | 2016-04-11 | 関西工事測量株式会社 | クラック計測システム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020177165A1 (zh) * | 2019-03-01 | 2020-09-10 | 威海华菱光电股份有限公司 | 裂缝变化监测装置及裂缝变化监测方法 |
JP6749528B1 (ja) * | 2020-01-31 | 2020-09-02 | 三菱電機株式会社 | 変状管理装置、変状管理方法、および変状管理プログラム |
WO2021152855A1 (ja) * | 2020-01-31 | 2021-08-05 | 三菱電機株式会社 | 変状管理装置、変状管理方法、および変状管理プログラム |
JP7564671B2 (ja) | 2020-09-29 | 2024-10-09 | キヤノン株式会社 | 情報処理装置、制御方法、及び、プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6365799B2 (ja) | 2018-08-01 |
JPWO2017216943A1 (ja) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6365799B2 (ja) | 変状進展判定装置及び変状進展判定方法 | |
EP2416113B1 (en) | Position and orientation measurement apparatus and position and orientation measurement method | |
JP5832341B2 (ja) | 動画処理装置、動画処理方法および動画処理用のプログラム | |
JP2016157357A (ja) | 作業者品質管理方法及び作業者品質管理装置 | |
JP6496497B2 (ja) | 配筋検査システム、配筋検査用のプログラム、及び配筋検査方法 | |
WO2006022184A1 (ja) | カメラキャリブレーション装置及びカメラキャリブレーション方法 | |
CN108038139B (zh) | 地图构建方法、装置和机器人定位方法、装置、计算机设备和存储介质 | |
JP6494418B2 (ja) | 画像解析装置、画像解析方法、およびプログラム | |
JP2017091009A (ja) | 異常作業検出システムおよび異常作業検出方法 | |
JP2016031564A5 (ja) | ||
WO2017056804A1 (ja) | 点検結果検索装置及び方法 | |
KR102586815B1 (ko) | 구조물 균열 측정 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체 | |
JP2020172784A (ja) | 山岳トンネルコンクリート厚測定方法および測定装置 | |
JP2010238008A (ja) | 映像特徴抽出装置、及びプログラム | |
CN110779467B (zh) | 阴影相位误差补偿方法及装置 | |
JP2007316950A (ja) | 画像処理方法及び装置及びプログラム | |
JP2020071739A (ja) | 画像処理装置 | |
JP5445336B2 (ja) | 置き去り又は持ち去り判定装置及び同判定方法 | |
JP2018197692A (ja) | 損傷状況処理システム | |
JP2019066292A (ja) | 映像表示システム | |
JP2020201946A (ja) | 計数装置及び計数方法 | |
KR101475742B1 (ko) | 사진 계측 장치 및 방법 | |
JP6526488B2 (ja) | 3次元モデル生成装置、構成部材判定方法、およびプログラム | |
JP7433623B2 (ja) | 構造物画像管理システム | |
JP7399632B2 (ja) | 撮影処理装置、及び撮影処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018501376 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16905498 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16905498 Country of ref document: EP Kind code of ref document: A1 |