WO2017215601A1 - 动力控制方法、装置及车辆、计算机存储介质 - Google Patents

动力控制方法、装置及车辆、计算机存储介质 Download PDF

Info

Publication number
WO2017215601A1
WO2017215601A1 PCT/CN2017/088138 CN2017088138W WO2017215601A1 WO 2017215601 A1 WO2017215601 A1 WO 2017215601A1 CN 2017088138 W CN2017088138 W CN 2017088138W WO 2017215601 A1 WO2017215601 A1 WO 2017215601A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power
acceleration
speed
driving
Prior art date
Application number
PCT/CN2017/088138
Other languages
English (en)
French (fr)
Inventor
李星乐
林骥
楼谊
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610415235.6A external-priority patent/CN106080879B/zh
Priority claimed from CN201710302273.5A external-priority patent/CN107161257A/zh
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Priority to DK17812712.2T priority Critical patent/DK3470317T3/da
Priority to EP17812712.2A priority patent/EP3470317B1/en
Priority to US16/301,516 priority patent/US11040756B2/en
Priority to ES17812712T priority patent/ES2865873T3/es
Publication of WO2017215601A1 publication Critical patent/WO2017215601A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • B60K31/04Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles
    • B62K3/002Bicycles without a seat, i.e. the rider operating the vehicle in a standing position, e.g. non-motorized scooters; non-motorized scooters with skis or runners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/22Microcars, e.g. golf cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to vehicle technology, and in particular, to a power control method and apparatus, and a vehicle and a computer storage medium.
  • Electric scooters are widely used due to their small size, low energy consumption, ability to relieve road traffic pressure, and high entertainment.
  • Electric scooters are equipped with throttle to control the power output and adjust the speed of the electric scooter. Due to the limited size of the electric scooter itself, on the one hand, the throttle not only increases the overall cost and installation difficulty of the electric scooter, on the other hand, During the riding process, the riding skill of the riding user is required to be high, and the throttle must be controlled at all times to maintain the normal running speed. Since the throttle control is often quite sensitive, it is difficult for the user to operate accurately, and there is a safety hazard.
  • an embodiment of the present invention provides a power control method and apparatus, and a vehicle and a computer storage medium, which can support a user's movement on an electric scooter in a convenient manner. Force to control.
  • the vehicle is controlled to travel based on the generated first compensation power.
  • a power control method is applied to a vehicle, the vehicle includes a driving wheel and a hub motor mounted on the driving wheel, and the hub motor is provided with a plurality of Hall sensors; the method includes :
  • Reading a light sliding friction coefficient ⁇ the light sliding friction coefficient ⁇ is less than the inertial friction coefficient n of the vehicle;
  • the motor assisted coasting mode is activated to obtain the instantaneous maximum coasting speed VSmax of the rotor;
  • a first detecting module configured to detect a first driving state of the vehicle
  • a determination module configured to determine that the vehicle is obtained according to a first driving state of the vehicle An assist from the outside of the vehicle; determining a second driving state of the vehicle due to the external assist;
  • Generating a module configured to control the vehicle to generate a first compensation power for dynamically compensating for travel of the vehicle according to the second driving state;
  • a control module configured to control vehicle travel based on the generated first compensation power.
  • a power control device is applied to a vehicle, the vehicle includes a driving wheel and a hub motor mounted on the driving wheel, and the hub motor is provided with a plurality of Hall sensors for detecting The rotor speed of the hub motor; the device comprises:
  • control parameter reading module configured to read a light sliding friction coefficient ⁇ , the light sliding friction coefficient ⁇ is smaller than an inertial friction coefficient n of the vehicle;
  • the calculation and control module is configured to generate a rotor acceleration of the hub motor by the rotor rotational speed calculation, and monitor a change of the rotor acceleration to generate an abrupt change value, and when an acceleration sudden value greater than a preset threshold is detected, start
  • a vehicle provided by an embodiment of the present invention includes: a vehicle body, a power drive assembly, a sensor, and a controller, wherein the power drive assembly is coupled to the vehicle body for driving the vehicle under the control of the controller travel;
  • the sensor is configured to detect a first driving state of the vehicle
  • the controller is configured to obtain a first driving state of the vehicle; determining, according to the first driving state of the vehicle, that the vehicle obtains an assist from the outside of the vehicle; determining that the vehicle has the external assisting force a second driving state; controlling, according to the second driving state, the first compensating power for the vehicle to dynamically compensate for running of the vehicle; controlling the vehicle to travel based on the generated first compensating power.
  • a vehicle includes a driving wheel, an electric energy device, and a hub motor mounted on the driving wheel, the hub motor is provided with a plurality of Hall sensors, and the electric energy device supplies the operation of the hub motor Electric power, wherein the vehicle further includes the power control device described above.
  • the computer storage medium provided by the embodiment of the present invention stores a computer program configured to execute the power control method.
  • detecting a first driving state of the vehicle determining, according to the first driving state of the vehicle, obtaining the assisting force from the outside of the vehicle; determining that the vehicle is assisted by the external driving And having a second driving state; controlling, according to the second driving state, the vehicle to generate a first compensation power for performing power compensation on the running of the vehicle; and controlling the vehicle to travel based on the generated first compensation power.
  • the driving of the vehicle can be controlled without the accelerator only by the external assistance of the vehicle, and the vehicle cost caused by the throttle is reduced, and at the same time, the user can flexibly control the driving of the vehicle through the pedal, and the control manner Simple and safe, it greatly increases the fun of vehicle use.
  • the vehicle uses the Hall sensor originally installed on the hub motor to monitor the sudden change of the acceleration of the driving wheel of the vehicle, and can achieve the same effect of using the acceleration sensor to monitor the motion state, and does not need to use
  • An additional acceleration sensor is added to reduce the weight of the vehicle and reduce the production cost of the vehicle.
  • FIG. 1 is a schematic flow chart 1 of a power control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic view 1 of a scooter according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a speed change when a vehicle obtains an external assist force according to an embodiment of the present invention
  • FIG. 4 is a speed change diagram of a vehicle corresponding to four different strengths according to an embodiment of the present invention.
  • FIG. 5 is a second schematic flowchart of a power control method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart 3 of a power control method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart 4 of a power control method according to an embodiment of the present invention.
  • FIG. 8 is a first schematic structural diagram of a power control device according to an embodiment of the present invention.
  • FIG. 9 is a first schematic structural view of a vehicle according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart 5 of a power control method according to an embodiment of the present invention.
  • FIG. 11 is a second structural diagram of a power control device according to an embodiment of the present invention.
  • FIG. 12 is a schematic view showing the position of a Hall sensor according to an embodiment of the present invention.
  • Figure 13 is a second schematic view of a scooter according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart 1 of a power control method according to an embodiment of the present invention. As shown in FIG. 1 , the power control method includes the following steps:
  • Step 101 Detect a first driving state of the vehicle.
  • the vehicle in the embodiment of the present invention refers to a trackless vehicle, such as a two-wheeled scooter, a three-wheeled scooter, a four-wheeled scooter, and the like. Users can drive or ride a vehicle at any venue.
  • the vehicle does not need to be provided with a throttle, which saves the cost caused by the throttle.
  • the vehicle can also be equipped with a throttle. It is worth noting that if the throttle is provided, the implementation of the technical solution of the embodiment of the present invention is not affected.
  • the vehicle includes a vehicle body and a power drive assembly, a controller (not shown), wherein the power drive assembly is coupled to the vehicle body for driving under the control of the controller.
  • the vehicle travels.
  • the power drive assembly is in the form of a rear wheel drive.
  • the power drive assembly can also be in the form of a front wheel drive.
  • the power drive assembly consists of at least a drive wheel (i.e., a wheel), a motor mounted to the drive wheel, and a motor having a sensor that detects the position of the power take-off rotor.
  • the vehicle has two working modes, namely: a non-motor assisted coasting mode and a motor assisted sliding mode.
  • the first driving state of the vehicle is detected when the motor assisted coasting mode is not activated, wherein the first driving state of the vehicle may be characterized by a first acceleration of the vehicle, wherein the first acceleration comprises at least one of: The acceleration of the vehicle travel, the rotational acceleration of the power output rotor of the vehicle.
  • the position of the power output rotor is detected by the sensor in the drive wheel, and the rotational speed and the rotational acceleration of the power output rotor are calculated according to the position of the power output rotor, and then the calculated position is obtained.
  • the rotational acceleration is used to characterize the current first driving state of the vehicle.
  • the parameters for characterizing the first driving state of the vehicle are not limited to the above, and may be, for example, the speed of the vehicle, the damping parameter, and the like, which are not limited in the embodiment of the present invention.
  • Step 102 Determine, according to the first driving state of the vehicle, that the vehicle obtains an assist force from the outside of the vehicle.
  • detecting a first acceleration of the vehicle comparing a first acceleration of the vehicle with a preset acceleration threshold, and determining that the vehicle is obtained when the first acceleration is greater than the acceleration threshold The external force of the vehicle.
  • the sensitivity of starting the motor assisted coasting mode is the highest.
  • the first acceleration is greater than 0, it is determined that the vehicle obtains the assist from the outside of the vehicle.
  • Step 103 Determine a second driving state that the vehicle has due to the external assisting force; according to the second driving state, control the vehicle to generate power for driving the vehicle The first compensation power for compensation.
  • the vehicle obtains a larger assist force from the outside of the vehicle; conversely, if the a1-F is smaller, the vehicle The smaller the assist from the outside of the vehicle is obtained.
  • the reasons for the help include, but are not limited to:
  • the speed of the vehicle changes. As shown in FIG. 3, at time t1-t2, the vehicle obtains external power, and the speed increases from 0 to V1; at t3-t4 At the moment, the vehicle gains external assistance and the speed increases from V1 to V2.
  • the second running state of the vehicle due to the external assist means the traveling speed of the vehicle during the period of obtaining the external power, wherein the traveling speed includes at least one of the following types:
  • the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power is the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power.
  • the motor assisted coasting mode needs to be activated, and the vehicle is dynamically compensated for the running of the vehicle.
  • the vehicle When power compensation is performed on the running of the vehicle by the motor, it is necessary to first control the vehicle to generate a first compensation motion for power compensation of the running of the vehicle according to the second driving state. force.
  • the second driving state of the vehicle can be represented by the traveling speed of the vehicle during the period of obtaining the external power.
  • the first compensating power may be to maintain the running speed of the vehicle and maintain the driving at Vend, that is, at a constant speed.
  • the first compensating power can also maintain the vehicle to decelerate at a particular negative acceleration.
  • the first compensation power has two types, namely: positive compensation power and negative compensation power, wherein the positive compensation power maintains the vehicle to perform constant speed driving (need to overcome resistance) or accelerate driving, and the negative compensation power maintains the vehicle. Slow down.
  • the external assistance of the vehicle has the same or opposite to the direction of travel of the vehicle.
  • positive power and reverse power wherein the direction of the first acceleration corresponding to the positive power is the same as the direction of travel of the vehicle (for example, the pedal assists the acceleration), and the direction of the first acceleration corresponding to the reverse assist is opposite to the direction in which the vehicle travels (for example, the pedal brake).
  • the parameters used to describe the first driving state of the vehicle in the embodiment of the present invention are not limited to the above, and may be an acceleration such as a vehicle, etc., which is not limited in the embodiment of the present invention.
  • Step 104 Control the vehicle to travel based on the generated first compensation power.
  • FIG. 4 illustrates The speed of the vehicle changes when four different strengths are used to drive the vehicle.
  • the initial speed can be maintained by the first compensating power, or the vehicle can be maintained by the first compensating power. This initial speed starts with deceleration.
  • FIG. 5 is a second schematic flowchart of a power control method according to an embodiment of the present invention. As shown in FIG. 5, the power control method includes the following steps:
  • Step 501 Detect a first driving state of the vehicle.
  • the vehicle in the embodiment of the present invention refers to a trackless vehicle, such as a two-wheeled scooter, a three-wheeled scooter, a four-wheeled scooter, and the like. Users can drive or ride a vehicle at any venue.
  • the vehicle does not need to be provided with a throttle, which saves the cost caused by the throttle.
  • the vehicle can also be equipped with a throttle. It is worth noting that if the throttle is provided, the implementation of the technical solution of the embodiment of the present invention is not affected.
  • the vehicle includes a vehicle body and a power drive assembly, a controller (not shown), wherein the power drive assembly is coupled to the vehicle body for driving under the control of the controller.
  • the vehicle travels.
  • the power drive assembly is in the form of a rear wheel drive.
  • the power drive assembly can also be in the form of a front wheel drive.
  • the power drive assembly consists of at least a drive wheel (i.e., a wheel), a motor mounted to the drive wheel, and a motor having a sensor that detects the position of the power take-off rotor.
  • the vehicle has two working modes, namely: a non-motor assisted coasting mode and a motor assisted sliding mode.
  • the first driving state of the vehicle is detected when the motor assisted coasting mode is not activated, wherein the first driving state of the vehicle may be characterized by a first acceleration of the vehicle, wherein the first acceleration comprises at least one of: The acceleration of the vehicle travel, the rotational acceleration of the power output rotor of the vehicle.
  • the position of the power output rotor is detected by the sensor in the drive wheel, and the rotational speed and the rotational acceleration of the power output rotor are calculated according to the position of the power output rotor.
  • Step 502 Determine, according to the first driving state of the vehicle, that the vehicle obtains an assist force from the outside of the vehicle.
  • detecting a first acceleration of the vehicle comparing a first acceleration of the vehicle with a preset acceleration threshold, and determining that the vehicle is obtained when the first acceleration is greater than the acceleration threshold The external force of the vehicle.
  • the sensitivity of starting the motor assisted coasting mode is the highest.
  • the first acceleration is greater than 0, it is determined that the vehicle obtains the assist from the outside of the vehicle.
  • Step 503 determining a second driving state that the vehicle has due to the external assisting force; controlling, according to the second driving state, the first compensating power for generating power compensation for driving of the vehicle .
  • the vehicle obtains a larger assist force from the outside of the vehicle; conversely, if the a1-F is smaller, the vehicle The smaller the assist from the outside of the vehicle is obtained.
  • the reasons for the help include, but are not limited to:
  • the speed of the vehicle changes. As shown in FIG. 3, at time t1-t2, the vehicle obtains external power, and the speed increases from 0 to V1; at t3-t4 At the moment, the vehicle gains external assistance and the speed increases from V1 to V2.
  • the second running state of the vehicle due to the external assist means the traveling speed of the vehicle during the period of obtaining the external power, wherein the traveling speed includes at least one of the following types:
  • the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power is the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power.
  • the motor assisted coasting mode needs to be activated, and the vehicle is dynamically compensated for the running of the vehicle.
  • the vehicle When the vehicle is powered by the motor, it is necessary to first control the vehicle to generate a first compensation power for power compensation of the running of the vehicle according to the second driving state.
  • the second driving state of the vehicle can be represented by the traveling speed of the vehicle during the period of obtaining the external power.
  • the first compensating power may be to maintain the running speed of the vehicle and maintain the driving at Vend, that is, at a constant speed.
  • Step 504 The uniform speed is based on the generated first compensation power, and the speed of the uniform speed is the traveling speed that is obtained during the period of obtaining the external assist.
  • FIG. 4 illustrates the speed change of the vehicle when the driving force of the four different strengths is driven.
  • the speed of the vehicle reaches a maximum value, which is the initial speed at which the power is compensated by the first compensating power, and the initial speed can be maintained by the first compensating power.
  • the scooter shown in Fig. 2 in a static state, the user stands on the scooter pedal with one foot and the other pedal on the ground, and the car body will slide down at the initial speed of the moment when the foot leaves the ground.
  • the scooter is determined to obtain the assist from the outside according to the first driving state of the detected scooter; secondly, the speed of the scooter is determined at the moment when the foot leaves the ground (ie, the second In the end, the scooter is controlled to generate a first compensating force to maintain the scooter to travel at a constant speed according to the speed, thereby achieving seamless integration of the motor power. If the user's foot is slammed again during the taxiing process, the vehicle body will travel at a constant speed at a new speed at which the foot leaves the ground.
  • Step 505 Perform deceleration running when it is detected that the deceleration driving condition is satisfied.
  • the deceleration driving condition comprises at least one of the following:
  • the timing of constant speed travels for a predetermined period of time
  • the mileage traveling at a constant speed reaches the predetermined mileage
  • the deceleration driving in order to protect the safety of the user, it is necessary to control the vehicle to perform deceleration driving under certain circumstances. For example, when the timing of the uniform driving reaches the predetermined time or the mileage of the uniform driving reaches the predetermined mileage, the deceleration driving is performed, and at this time, it can be avoided. A traffic hazard that occurs when users are not focused. For example, when the deceleration running command is received, the deceleration traveling is performed. Here, the deceleration running command is also referred to as a braking command. As shown in FIG. 2, the rear side of the vehicle has a braking member. When the user depresses the braking member, the user can The controller triggers a brake command. In addition, the brake components can also be used as a fender for the vehicle, fully extending the function of the components.
  • the power of the motor when the user steps on the brake member, the power of the motor is turned off, and the vehicle decelerates under the action of ground resistance. In another embodiment, when the user steps on the brake member, the motor continues to rotate, but the motor is decelerated to control the vehicle to slow down.
  • FIG. 6 is a schematic flowchart 3 of a power control method according to an embodiment of the present invention. As shown in FIG. 6, the power control method includes the following steps:
  • Step 601 Detect a first driving state of the vehicle.
  • the vehicle in the embodiment of the present invention refers to a trackless vehicle, such as a two-wheeled scooter, a three-wheeled scooter, a four-wheeled scooter, and the like. Users can drive or ride a vehicle at any venue.
  • the vehicle does not need to be provided with a throttle, which saves the cost caused by the throttle.
  • the vehicle can also be equipped with a throttle. It is worth noting that if the throttle is provided, the implementation of the technical solution of the embodiment of the present invention is not affected.
  • the vehicle includes a vehicle body and a power drive assembly, a controller (not shown), wherein the power drive assembly is coupled to the vehicle body for driving under the control of the controller.
  • the vehicle travels.
  • the power drive assembly is in the form of a rear wheel drive, of course, power
  • the drive assembly can also be in the form of a front wheel drive.
  • the power drive assembly consists of at least a drive wheel (i.e., a wheel), a motor mounted to the drive wheel, and a motor having a sensor that detects the position of the power take-off rotor.
  • the vehicle has two working modes, namely: a non-motor assisted coasting mode and a motor assisted sliding mode.
  • the first driving state of the vehicle is detected when the motor assisted coasting mode is not activated, wherein the first driving state of the vehicle may be characterized by a first acceleration of the vehicle, wherein the first acceleration comprises at least one of: The acceleration of the vehicle travel, the rotational acceleration of the power output rotor of the vehicle.
  • the position of the power output rotor is detected by the sensor in the drive wheel, and the rotational speed and the rotational acceleration of the power output rotor are calculated according to the position of the power output rotor.
  • Step 602 Determine that the vehicle obtains an assist force from the outside of the vehicle according to the first driving state of the vehicle.
  • detecting a first acceleration of the vehicle comparing a first acceleration of the vehicle with a preset acceleration threshold, and determining that the vehicle is obtained when the first acceleration is greater than the acceleration threshold The external force of the vehicle.
  • the sensitivity of starting the motor assisted coasting mode is the highest.
  • the first acceleration is greater than 0, it is determined that the vehicle obtains the assist from the outside of the vehicle.
  • Step 603 Determine a second driving state that the vehicle has due to the external driving force; according to the second driving state, control the vehicle to generate power for driving the vehicle The first compensation power for compensation.
  • the vehicle obtains a larger assist force from the outside of the vehicle; conversely, if the a1-F is smaller, the vehicle The smaller the assist from the outside of the vehicle is obtained.
  • the reasons for the help include, but are not limited to:
  • the speed of the vehicle changes. As shown in FIG. 3, at time t1-t2, the vehicle obtains external power, and the speed increases from 0 to V1; at t3-t4 At the moment, the vehicle gains external assistance and the speed increases from V1 to V2.
  • the second running state of the vehicle due to the external assist means the traveling speed of the vehicle during the period of obtaining the external power, wherein the traveling speed includes at least one of the following types:
  • the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power is the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power.
  • the motor assisted coasting mode needs to be activated, and the vehicle is dynamically compensated for the running of the vehicle.
  • the vehicle When power compensation is performed on the running of the vehicle by the motor, it is necessary to first control the vehicle to generate a first compensation motion for power compensation of the running of the vehicle according to the second driving state. force.
  • the second driving state of the vehicle can be represented by the traveling speed of the vehicle during the period of obtaining the external power.
  • the first compensating power can also maintain the vehicle to decelerate according to a specific deceleration.
  • Step 604 Perform deceleration running based on the generated first compensation power, and control the vehicle to stop generating power when decelerating to meet the power stop condition.
  • the initial speed of the deceleration traveling is the traveling speed that is obtained during the period of obtaining the external assist, and the manner of decelerating traveling includes the uniform deceleration traveling and the non-uniform deceleration driving.
  • FIG. 4 illustrates the speed change of the vehicle when the driving force of the four different strengths is driven.
  • the speed of the vehicle reaches a maximum value, which is the initial speed at which the power is compensated by the first compensating power, and the vehicle can be maintained at the initial speed by the first compensating power to start the deceleration.
  • the power stop condition includes at least one of the following:
  • the time of travel reaches the predetermined time
  • FIG. 7 is a schematic flowchart diagram of a power control method according to an embodiment of the present invention. As shown in FIG. 7, the power control method includes the following steps:
  • Step 701 Analyze the sensor data to determine that the vehicle is in a manned state.
  • Step 702 In the initial state, detecting an acceleration change of the vehicle.
  • Step 703 When the vehicle acceleration is greater than the preset acceleration threshold, the motor assisted coasting mode is activated.
  • Step 704 Assist the vehicle through the motor, gliding at a fixed speed or slowing down the taxi.
  • Step 705 Determine whether to brake, if yes, go to step 706, otherwise, go to step 704.
  • Step 706 The motor stops the power and coasts by inertia.
  • Step 707 During the taxiing process, the acceleration change of the vehicle is continuously monitored.
  • Step 708 Determine whether the vehicle is in an accelerated state. If yes, go to step 709. Otherwise, go to step 710.
  • Step 709 Update the vehicle speed, and perform step 704.
  • Step 710 Determine whether to start the motor assisted coasting mode. If yes, go to step 704. Otherwise, go to step 706.
  • FIG. 8 is a first schematic structural diagram of a power control apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the first detecting module 801 is configured to detect a first driving state of the vehicle
  • the determining module 802 is configured to determine, according to the first driving state of the vehicle, that the vehicle obtains a boosting force from the outside of the vehicle; and determine a second driving state that the vehicle has due to the external assisting force;
  • a generating module 803 configured to control the vehicle to generate a first compensation power for dynamically compensating for running of the vehicle according to the second driving state;
  • the control module 804 is configured to control vehicle travel based on the generated first compensation power.
  • the determining module 802 is further configured to:
  • Detecting a first acceleration of the vehicle comparing a first acceleration of the vehicle with a preset acceleration threshold, and determining that the vehicle obtains a boost from an exterior of the vehicle when the first acceleration is greater than the acceleration threshold ;
  • the first acceleration comprises at least one of: an acceleration of the vehicle running, a rotational acceleration of a power output rotor of the vehicle.
  • control module 804 is further configured to: based on the generated first supplement The regenerative power travels at a constant speed, and the speed at which the constant speed travels is the traveling speed that is obtained during the period in which the external assist is obtained.
  • the device further includes:
  • the second detecting module 805 is configured to perform deceleration driving when detecting that the deceleration driving condition is satisfied;
  • the deceleration driving condition comprises at least one of the following:
  • the timing of constant speed travels for a predetermined period of time
  • the mileage traveling at a constant speed reaches the predetermined mileage
  • control module 804 is further configured to: perform deceleration driving based on the generated first compensation power, and control the vehicle to stop generating power when decelerating to meet the power stop condition;
  • the initial speed of the deceleration running is the traveling speed that is obtained during the obtaining of the external assisting force
  • the manner of decelerating driving includes the uniform deceleration driving and the non-uniform deceleration driving
  • the power stop condition includes at least one of the following:
  • the time of travel reaches the predetermined time
  • the traveling speed includes at least one of the following types:
  • the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power is the average rotational speed of the power output rotor of the motor of the vehicle during the period of obtaining the external power.
  • the device further includes:
  • the parsing module 806 is configured to detect the sensor data before detecting the first driving state of the vehicle The vehicle is in a manned state.
  • FIG. 9 is a first schematic structural diagram of a vehicle according to an embodiment of the present invention.
  • the vehicle includes a vehicle body 91, a power driving assembly 92, a sensor 93, and a controller 94.
  • the power driving assembly 92 is illustrated. Connected to the vehicle body 91 for driving the vehicle to travel under the control of the controller 94;
  • the sensor 93 is configured to detect a first driving state of the vehicle
  • the controller 94 is configured to obtain a first driving state of the vehicle; determining, according to the first driving state of the vehicle, that the vehicle obtains an assist force from outside the vehicle; determining that the vehicle is assisted by the external power Having a second driving state; controlling, according to the second driving state, the vehicle to generate a first compensation power for power compensation of the running of the vehicle; controlling the vehicle to travel based on the generated first compensation power.
  • the vehicle refers to a trackless vehicle, such as a two-wheeled scooter, a three-wheeled scooter, a four-wheeled scooter, and the like. Users can drive or ride a vehicle at any venue.
  • the vehicle does not need to be provided with a throttle, which saves the cost caused by the throttle.
  • the vehicle can also be equipped with a throttle. It is worth noting that if the throttle is provided, the implementation of the technical solution of the embodiment of the present invention is not affected.
  • the power drive assembly is in the form of a rear wheel drive.
  • the power drive assembly may also be in the form of a front wheel drive.
  • the power drive assembly consists of at least a drive wheel (i.e., a wheel), a motor mounted to the drive wheel, and a motor 93 that detects the position of the power take-off rotor.
  • the sensor may be a Hall sensor, a photoelectric encoder, a potentiometer, or the like.
  • the vehicle may also include any other components such as brakes, headlights, handlebars, saddles, car dials, and the like.
  • the controller 94 of the embodiment of the present invention can perform any of the steps of the power control method described above.
  • FIG. 10 is a schematic flow chart 5 of a power control method according to an embodiment of the present invention.
  • the present example is applied to a vehicle.
  • a vehicle is used as a scooter as an example.
  • the scooter includes a driving wheel and is installed in the vehicle.
  • the hub motor of the drive wheel is provided with a plurality of Hall sensors.
  • the motion control method of the scooter includes:
  • Step 1001 Read the light sliding friction coefficient ⁇ , which is smaller than the inertial friction coefficient n of the scooter on a general road surface.
  • the light sliding friction coefficient ⁇ can be a preset value and stored by the system, and can simulate a plane of any friction coefficient.
  • the pre-stored light sliding friction coefficient ⁇ can be pre-stored in the flash chip, and the value can be on the ice surface.
  • the light sliding friction coefficient ⁇ can also be a value input by the user. For example, when the value entered by the user is 0, a uniform speed can be achieved.
  • Step 1002 Detect the rotor speed of the hub motor through the plurality of Hall sensors.
  • the rotor is a magnetic material, which causes a change in the magnetic field around it when rotating.
  • a Hall potential difference V is generated, and the Hall potential difference V
  • the size changes regularly according to the change of the magnetic field, so that the position information of the hub motor can be obtained by monitoring the change of the Hall potential difference V, and the rotational speed of the rotor is obtained by performing differential operation on the position information and corresponding filtering.
  • Step 1003 Generate a rotor acceleration of the hub motor by the rotor speed calculation.
  • Step 1004 Monitor an abrupt change in acceleration of the rotor acceleration.
  • Step 1005 When the sudden change value of the acceleration greater than the threshold set by the program is detected, the motor assisted coasting mode is started to obtain the instantaneous maximum coasting speed VSmax of the rotor.
  • the program-set threshold is a constant greater than zero obtained by the program based on the state analysis of the previous scooter acceleration motion, or a constant used in advance in the program.
  • the assisted taxi time of the mode is the time of the mode.
  • Step 1007 When the brake trigger switch of the scooter is detected to be triggered or the acceleration value of the deceleration motion of the scooter is suddenly increased, the motor assisted coasting mode is exited.
  • the Hall sensor is uniformly disposed on the outer circumference of the rotor of the hub motor of the scooter, and the number is three or more. Since the hub motor is a three-phase motor, at least three of the claimed Hall sensors can accurately measure the position. The rotational speed of the rotor, when the number of the Hall sensors is greater than three, can make the monitoring result more accurate.
  • the scooter has a first Hall sensor 31, a second Hall sensor 32, and a third Hall sensor 33, and the angle between each other and the rotor is 120°, and passes through the Hall.
  • the analysis of the acceleration function can monitor the sudden change in the acceleration of the drive wheel of the scooter.
  • the method of the invention uses the hub motor to monitor the sudden change of the acceleration of the driving wheel of the scooter with the Hall sensor, and can achieve the same effect of using the acceleration sensor for the motion state monitoring, and does not need to additionally add an acceleration sensor, thereby reducing the effect.
  • the weight of the scooter reduces the production cost of the scooter.
  • the motion control method of the scooter further includes: when it is detected that the brake trigger switch of the scooter is triggered or the acceleration value of the deceleration motion of the scooter is suddenly increased, the electric mechanism is started.
  • the braking coefficient a is greater than the inertia friction coefficient n.
  • the preset threshold The value is a preset value of the system, and the sudden value of the acceleration is less than the threshold. It can be presumed that the user has taken the braking measure, and enters the motor braking mode while exiting the motor assisted coasting mode, so that the scooter can stop at a faster speed. Come down.
  • the motor braking mode can be achieved by motor-assisted tensioning of the brake pads to prevent the wheels from continuing to rotate.
  • FIG. 11 is a schematic structural diagram of a power control device according to an embodiment of the present invention.
  • the vehicle includes a driving wheel and a hub motor mounted on the driving wheel, and the hub motor is provided with a plurality of Hall sensors.
  • the device For detecting the rotor speed of the hub motor, as shown in FIG. 11, the device includes:
  • the control parameter reading module 1101 is configured to read the light-slip friction coefficient ⁇ , which is smaller than the inertial friction coefficient n of the vehicle on a general road surface.
  • the light sliding friction coefficient ⁇ can be a value preset and stored by the system, and can simulate a plane of any friction coefficient.
  • the pre-stored light sliding friction coefficient ⁇ can be pre-stored in the flash chip, and the numerical value can be ice surface.
  • the calculation and control module 1102 generates a rotor acceleration of the hub motor by the rotor rotational speed calculation, and monitors a change in the rotor acceleration to generate an abrupt change value, and when the acceleration sudden value greater than 0 is detected, the motor is started.
  • the rotor is a magnetic material, which causes a change in the magnetic field around it when rotating.
  • the Hall sensor When the Hall sensor is placed in a magnetic field and a current is applied, a Hall potential difference V is generated, and the Hall potential difference V The size changes regularly according to the change of the magnetic field, so that the wheel hub can be obtained by monitoring the change of the Hall potential difference V.
  • the rotor speed of the motor Further, the calculation and control module 1102 is further configured to exit the motor assisted coasting mode when it is detected that the brake trigger switch of the vehicle is triggered or the acceleration value of the deceleration motion of the vehicle is suddenly increased.
  • the method of the invention uses the hub motor to monitor the sudden change of the acceleration of the driving wheel of the vehicle with the Hall sensor, and can achieve the same effect of using the acceleration sensor for the motion state monitoring, and the vehicle is lightened without additional acceleration sensors.
  • the weight reduces the production cost of the vehicle.
  • the preset threshold is a preset value of the system, and the sudden value of the acceleration is less than the threshold. It can be presumed that the user takes a braking measure, and enters the motor braking mode while exiting the motor assisted coasting mode, thereby enabling the vehicle to be more Stop at a fast speed.
  • the motor braking mode can be achieved by motor-assisted tensioning of the brake pads to prevent the wheels from continuing to rotate.
  • the vehicle is a scooter
  • the Hall sensor is evenly disposed on the outer circumference of the rotor of the hub motor of the scooter in a number of three or more, since the hub motor is a three-phase motor, Therefore, at least three of the claimed Hall sensors can accurately measure the rotational speed of the rotor.
  • the number of the Hall sensors is greater than three, the accuracy of the monitoring result can be made higher.
  • the scooter has a first Hall sensor 31, a second Hall sensor 32, and a third Hall sensor 33, and the angle between each other and the rotor is 120°, and passes through the Hall.
  • the device further includes: a control parameter input module 1103, configured to input the light sliding friction coefficient ⁇ ; a storage module 1104, configured to store the light sliding friction coefficient ⁇ , the inertial friction coefficient n, and the braking coefficient a. the maximum coasting speed VSmax, the maximum braking speed VBmax, the assisting coasting time Ts, and the braking time Tb.
  • the storage module may be a flash chip.
  • FIG. 13 is a second schematic view of a scooter according to an embodiment of the present invention.
  • a driving wheel 1, an electric energy device 2 and an in-wheel motor 3 mounted on the driving wheel are provided.
  • the scooter includes a motion control system for a scooter as described in the second embodiment.
  • the scooter of the present invention uses a hub motor to directly monitor the sudden change of the acceleration of the driving wheel of the scooter, and can achieve the same effect of using the acceleration sensor for motion state monitoring, and does not need to additionally add an acceleration sensor to reduce The weight of the scooter reduces the production cost of the scooter.
  • the scooter will be monitored for acceleration acceleration greater than the programmed threshold 0.
  • the Hall sensor for monitoring the sudden change in the acceleration of the drive wheel of the scooter is uniformly disposed on the outer circumference of the rotor of the hub motor of the scooter in three Or more than three, since the hub motor is a three-phase motor, at least three of the claimed Hall sensors can accurately measure the rotational speed of the rotor. When the number of the Hall sensors is greater than three, the monitoring result can be made. Higher precision.
  • the scooter has a first Hall sensor 31, a second Hall sensor 32, and a third Hall sensor 33, and the angle between each other and the rotor is 120°, and passes through the Hall.
  • the acceleration of the phase is 0.
  • Embodiments of the Invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program is stored, the computer program configured to execute the power control method of the embodiment of the present invention.
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or modules, and may be electrical, mechanical or other forms. of.
  • the modules described above as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place or distributed to multiple network modules; Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one second processing module, or each module may be separately used as one module, or two or more modules may be integrated into one module;
  • the above integrated modules can be implemented in the form of hardware or in the form of hardware plus software function modules.
  • the technical solution of the embodiment of the invention can control the running of the vehicle without the accelerator only by the external assistance of the vehicle, thereby reducing the vehicle cost caused by the throttle, and at the same time, the user can pass the foot
  • the ⁇ mode is flexible to control the driving of the vehicle, and the control method is simple and safe, and the utility model greatly increases the interest of the vehicle.
  • the vehicle uses the Hall sensor, which is originally equipped with a Hall sensor, to monitor the sudden change in the acceleration of the drive wheel of the vehicle, and achieves the same effect of using the acceleration sensor for motion state monitoring, and does not require an additional acceleration sensor to reduce the vehicle's
  • the weight reduces the production cost of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种动力控制方法、装置及车辆、计算机存储介质,所述方法至少包括:检测车辆的第一行驶状态;根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;基于所产生的第一补偿动力控制车辆行驶。

Description

动力控制方法、装置及车辆、计算机存储介质
相关申请的交叉引用
本申请基于以下中国专利申请提出:申请号为201610415235.6、申请日为2016年06月13日的中国专利申请,以及申请号为201710302273.5、申请日为2017年05月02日的中国专利申请,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及车辆技术,尤其涉及一种动力控制方法、装置及车辆、计算机存储介质。
背景技术
电动滑板车因体积小、能耗低、能够缓解道路交通压力、以及娱乐性高的特点得到广泛应用。
相关技术提供的电动滑板车至少存在以下问题:
电动滑板车都设置有油门以控制动力输出,调节电动滑板车行驶的速度,由于电动滑板车本身体积有限,一方面,油门不仅增加了电动滑板车整体的成本和安装难度,另一方面,在骑行过程中对骑行用户的操作技能要求较高,必须时刻控制油门以维持正常的行驶速度,由于油门的控制往往是相当灵敏的,对于用户来说难以精准操作,存在安全隐患。
发明内容
为解决上述技术问题,本发明实施例提供了一种动力控制方法、装置及车辆、计算机存储介质,能够以便捷的方式支持用户对电动滑板车的动 力进行控制。
本发明实施例提供的动力控制方法,包括:
检测车辆的第一行驶状态;
根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;
确定所述车辆因所述外部的助力而具有的第二行驶状态;
根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;
基于所产生的第一补偿动力控制车辆行驶。
本发明另一实施例提供的动力控制方法,应用于车辆,所述车辆包括驱动轮及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器;所述方法包括:
读取轻滑行摩擦系数μ,所述轻滑行摩擦系数μ小于所述车辆的惯性摩擦系数n;
通过所述霍尔传感器侦测所述轮毂电机的转子转速;
通过所述转子转速演算生成所述轮毂电机的转子加速度;
监测所述转子加速度的变化以生成加速度突变值;
当监测到大于预设阈值的加速度突变值时,启动电机助力滑行模式,获取所述转子的瞬时的最大滑行转速VSmax;
驱动所述轮毂电机的所述转子以轻滑行转速Vs(t)做匀减速运动,所述轻滑行转速Vs(t)=VSmax-μ×Ts,所述Ts为所述电机助力滑行模式所进行的助力滑行时间。
本发明实施例提供的动力控制装置,包括:
第一检测模块,配置为检测车辆的第一行驶状态;
判定模块,配置为根据所述车辆的第一行驶状态,判定所述车辆获得 来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;
产生模块,配置为根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;
控制模块,配置为基于所产生的第一补偿动力控制车辆行驶。
本发明另一实施例提供的动力控制装置,应用于车辆,所述车辆包括驱动轮及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器,用以侦测所述轮毂电机的转子转速;所述装置包括:
控制参数读取模块,配置为读取轻滑行摩擦系数μ,所述轻滑行摩擦系数μ小于所述车辆的惯性摩擦系数n;
演算与控制模块,配置为通过所述转子转速演算生成所述轮毂电机的转子加速度,并监测所述转子加速度的变化以生成加速度突变值,当监测到大于预设阈值的加速度突变值时,启动电机助力滑行模式,获取所述转子的瞬时的最大滑行转速VSmax,驱动所述轮毂电机的所述转子以轻滑行转速Vs(t)做匀减速运动,所述轻滑行转速Vs(t)=VSmax-μ×Ts,所述Ts为所述电机助力滑行模式所进行的助力滑行时间。
本发明实施例提供的车辆,包括:车体、动力驱动组件、传感器、控制器,其中,所述动力驱动组件与所述车体连接,用于在所述控制器的控制下驱动所述车辆行驶;
所述传感器,配置为检测车辆的第一行驶状态;
所述控制器,配置为获得车辆的第一行驶状态;根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;基于所产生的第一补偿动力控制车辆行驶。
本发明另一实施例提供的车辆包括驱动轮、电能装置及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器,所述电能装置供应所述轮毂电机的运转电力,其中,所述车辆还包括上述所述的动力控制装置。
本发明实施例提供的计算机存储介质存储有计算机程序,该计算机程序配置为执行上述动力控制方法。
本发明实施例的技术方案中,检测车辆的第一行驶状态;根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;基于所产生的第一补偿动力控制车辆行驶。采用本发明实施例的技术方案,无需油门仅通过车辆外部的助力便可以控制车辆的行驶,减少了因油门而造成的车辆成本,同时,用户可以通过脚蹬方式灵活操控车辆的行驶,操控方式简单易行且安全可靠,大大增加了车辆使用的趣味性。
本发明实施例的技术方案中,车辆使用轮毂电机本来就装有的霍尔传感器对车辆的所述驱动轮的加速度突变值进行监测,能达到利用加速度传感器进行运动状态监测同样的效果,而且不用额外增设加速度传感器,减轻了车辆的重量,降低了车辆的生产成本。
附图说明
图1为本发明实施例的动力控制方法的流程示意图一;
图2为本发明实施例的滑板车的示意图一;
图3为本发明实施例的车辆获得外部的助力时的速度变化示意图;
图4为本发明实施例的四种不同力度的助力对应的车辆的速度变化图;
图5为本发明实施例的动力控制方法的流程示意图二;
图6为本发明实施例的动力控制方法的流程示意图三;
图7为本发明实施例的动力控制方法的流程示意图四;
图8为本发明实施例的动力控制装置的结构组成示意图一;
图9为本发明实施例的车辆的结构组成示意图一;
图10为本发明实施例的动力控制方法的流程示意图五;
图11为本发明实施例的动力控制装置的结构组成示意图二;
图12为本发明实施例的霍尔传感器的位置示意图;
图13为本发明实施例的滑板车的示意图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图1为本发明实施例的动力控制方法的流程示意图一,如图1所示,所述动力控制方法包括以下步骤:
步骤101:检测车辆的第一行驶状态。
本发明实施例中的车辆是指一种无轨交通工具,例如:两轮滑板车、三轮滑板车、四轮滑板车等等。用户可以在任意场地驾驶或骑行车辆。
本发明实施例中,车辆无需设置油门,节省了因油门而产生的成本。当然,考虑到与现有车辆的兼容性,车辆也可以设置油门,值得注意的是,如果设置油门,并不影响本发明实施例技术方案的实施。
如图2所示,车辆包括车体和动力驱动组件,控制器(图中未示出),其中,所述动力驱动组件与所述车体连接,用于在所述控制器的控制下驱动所述车辆行驶。在图2中,动力驱动组件为后轮驱动形式,当然,动力驱动组件也可以为前轮驱动形式。动力驱动组件至少由以下组件组成:驱动轮(也即车轮)、装设于所述驱动轮的电机,所述电机内装有可检测动力输出转子位置的传感器。
本发明实施例中,车辆具有两种工作模式,分别为:非电机助力滑行模式和电机助力滑行模式。
在没有启动电机助力滑行模式时,检测得到车辆的第一行驶状态,其中,车辆的第一行驶状态可以通过车辆的第一加速度来表征,其中,所述第一加速度包括以下至少之一:所述车辆行驶的加速度、所述车辆的动力输出转子的转动加速度。
以第一加速度为动力输出转子的转动加速度为例,通过驱动轮内的传感器检测动力输出转子的位置,根据动力输出转子的位置计算得到动力输出转子的转动速度以及转动加速度,那么计算得到的所述转动加速度即用于表征车辆当前的第一行驶状态。实际应用中,用于表征车辆的第一行驶状态的参数也不仅限于以上所举,也可以是诸如车辆的速度、阻尼参数等等,本发明实施例不做限制。
步骤102:根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力。
在一实施方式中,检测获得所述车辆的第一加速度,比较所述车辆的第一加速度与预设的加速度阈值,当所述第一加速度大于所述加速度阈值时,确定所述车辆获得来自所述车辆外部的助力。
这里,预设的加速度阈值越小,则启动电机助力滑行模式的灵敏度越高,可以根据用户的体验感受为不同用户设置个性化的加速度阈值。
以加速度阈值为0为例,这时,启动电机助力滑行模式的灵敏度最高,当第一加速度大于0时,则确定车辆获得来自所述车辆外部的助力。
以加速度阈值为F(F>0)为例,这时,当第一加速度大于F时,则确定车辆获得来自所述车辆外部的助力。
步骤103:确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力 补偿的第一补偿动力。
本发明实施例中,假设第一加速度为a1,加速度阈值为F,则如果a1-F越大,则车辆获得来自所述车辆外部的助力越大;反之,如果a1-F越小,则车辆获得来自所述车辆外部的助力越小。
这里,助力的产生原因包括但不局限于为:
1)用户一只脚踩踏在车辆的车体上,另一只脚蹬地而获得对车辆的助力。
2)通过外部的弹力装置施加在车辆上,从而使得车辆获得助力。
3)车辆在下坡时,由于自身重力的作用而获得助力。
本发明实施例中,当车辆获得外部的助力时,车辆的速度会发生变化,如图3所示,在t1-t2时刻,车辆获得外部的助力,速度从0增加至V1;在t3-t4时刻,车辆获得外部的助力,速度从V1增加至V2。
这里,车辆因外部的助力而具有的第二行驶状态是指:获得外部的动力的期间所述车辆所具有的行驶速度,其中,所述行驶速度包括以下类型至少之一:
获得所述外部的动力的期间所述车辆具有的最大速度;
获得所述外部的动力的期间所述车辆具有的平均速度;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的最大转速;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的平均转速。
本发明实施例中,当车辆外部的助力消失的那刻起,需要启动电机助力滑行模式,通过电机对车辆的行驶进行动力补偿。
在通过电机对车辆的行驶进行动力补偿时,需要首先根据第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动 力。其中,车辆的第二行驶状态可以通过所述车辆在获得外部的动力期间所具有的行驶速度来表示。以行驶速度为Vend为例,第一补偿动力可以是维持车辆的行驶速度使用保持在Vend,也即定速行驶。第一补偿动力还可以维持车辆按照特定的负加速度进行减速行驶。
本发明实施例中,第一补偿动力具有两种类型,分别为:正补偿动力和负补偿动力,其中,正补偿动力维持车辆进行匀速行驶(需要克服阻力)或者加速行驶,负补偿动力维持车辆减速行驶。
此外,车辆外部的助力因与车辆行驶方向的相同或相反也具有两种类型,分别为:正向助力和反向助力,其中,正向助力对应的第一加速度的方向与车辆行驶方向相同(例如脚蹬地助力加速),反向助力对应的第一加速度的方向与车辆行驶方向相反(例如脚蹬地刹车)。
当然,本发明实施例用于表征车辆的第一行驶状态的参数也不仅限于以上所举,也可以是诸如车辆的加速度等等,本发明实施例不做限制。
步骤104:基于所产生的第一补偿动力控制车辆行驶。
本发明实施例中,以车辆外部的助力与车辆行驶方向的相同为例,如图4所示,不同力度的助力对车辆进行驱动时,所产生的第二行驶状态不同,图4示意出了四种不同力度的助力对车辆进行驱动时,车辆的速度变化状况。当助力消失的那刻,车辆的速度达到最大值,这个速度作为以第一补偿动力进行动力补偿的初速度,可以通过第一补偿动力维持这个初速度,也可以通过第一补偿动力维持车辆以这个初速度为起始进行减速行驶。
图5为本发明实施例的动力控制方法的流程示意图二,如图5所示,所述动力控制方法包括以下步骤:
步骤501:检测车辆的第一行驶状态。
本发明实施例中的车辆是指一种无轨交通工具,例如:两轮滑板车、三轮滑板车、四轮滑板车等等。用户可以在任意场地驾驶或骑行车辆。
本发明实施例中,车辆无需设置油门,节省了因油门而产生的成本。当然,考虑到与现有车辆的兼容性,车辆也可以设置油门,值得注意的是,如果设置油门,并不影响本发明实施例技术方案的实施。
如图2所示,车辆包括车体和动力驱动组件,控制器(图中未示出),其中,所述动力驱动组件与所述车体连接,用于在所述控制器的控制下驱动所述车辆行驶。在图2中,动力驱动组件为后轮驱动形式,当然,动力驱动组件也可以为前轮驱动形式。动力驱动组件至少由以下组件组成:驱动轮(也即车轮)、装设于所述驱动轮的电机,所述电机内装有可检测动力输出转子位置的传感器。
本发明实施例中,车辆具有两种工作模式,分别为:非电机助力滑行模式和电机助力滑行模式。
在没有启动电机助力滑行模式时,检测得到车辆的第一行驶状态,其中,车辆的第一行驶状态可以通过车辆的第一加速度来表征,其中,所述第一加速度包括以下至少之一:所述车辆行驶的加速度、所述车辆的动力输出转子的转动加速度。
以第一加速度为动力输出转子的转动加速度为例,通过驱动轮内的传感器检测动力输出转子的位置,根据动力输出转子的位置计算得到动力输出转子的转动速度以及转动加速度。
步骤502:根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力。
在一实施方式中,检测获得所述车辆的第一加速度,比较所述车辆的第一加速度与预设的加速度阈值,当所述第一加速度大于所述加速度阈值时,确定所述车辆获得来自所述车辆外部的助力。
这里,预设的加速度阈值越小,则启动电机助力滑行模式的灵敏度越高,可以根据用户的体验感受为不同用户设置个性化的加速度阈值。
以加速度阈值为0为例,这时,启动电机助力滑行模式的灵敏度最高,当第一加速度大于0时,则确定车辆获得来自所述车辆外部的助力。
以加速度阈值为F(F>0)为例,这时,当第一加速度大于F时,则确定车辆获得来自所述车辆外部的助力。
步骤503:确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力。
本发明实施例中,假设第一加速度为a1,加速度阈值为F,则如果a1-F越大,则车辆获得来自所述车辆外部的助力越大;反之,如果a1-F越小,则车辆获得来自所述车辆外部的助力越小。
这里,助力的产生原因包括但不局限于为:
1)用户一只脚踩踏在车辆的车体上,另一只脚蹬地而获得对车辆的助力。
2)通过外部的弹力装置施加在车辆上,从而使得车辆获得助力。
3)车辆在下坡时,由于自身重力的作用而获得助力。
本发明实施例中,当车辆获得外部的助力时,车辆的速度会发生变化,如图3所示,在t1-t2时刻,车辆获得外部的助力,速度从0增加至V1;在t3-t4时刻,车辆获得外部的助力,速度从V1增加至V2。
这里,车辆因外部的助力而具有的第二行驶状态是指:获得外部的动力的期间所述车辆所具有的行驶速度,其中,所述行驶速度包括以下类型至少之一:
获得所述外部的动力的期间所述车辆具有的最大速度;
获得所述外部的动力的期间所述车辆具有的平均速度;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的最大转速;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的平均转速。
本发明实施例中,当车辆外部的助力消失的那刻起,需要启动电机助力滑行模式,通过电机对车辆的行驶进行动力补偿。
在通过电机对车辆的行驶进行动力补偿时,需要首先根据第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力。其中,车辆的第二行驶状态可以通过所述车辆在获得外部的动力期间所具有的行驶速度来表示。以行驶速度为Vend为例,第一补偿动力可以是维持车辆的行驶速度使用保持在Vend,也即定速行驶。
步骤504:基于所产生的第一补偿动力匀速行驶,匀速行驶的速度为在获得所述外部的助力的期间所具有的行驶速度。
如图4所示,不同力度的助力对车辆进行驱动时,所产生的第二行驶状态不同,图4示意出了四种不同力度的助力对车辆进行驱动时,车辆的速度变化状况。当助力消失的那刻,车辆的速度达到最大值,这个速度作为以第一补偿动力进行动力补偿的初速度,可以通过第一补偿动力维持这个初速度。
以图2所示的滑板车为例,静止状态下,用户一只脚站立在滑板车踏板上,另一只脚蹬地面,车体将会保持脚离开地面那一瞬间的初速度滑行下去。在蹬地面的这个过程中,首先,根据检测得到的滑板车的第一行驶状态确定滑板车获得来自外部的助力;其次,在脚离开地面那一瞬间,确定滑板车的速度(也即第二行驶状态);最后,控制滑板车产生第一补偿力维持滑板车按照该速度进行定速行驶,从而实现了电机动力无缝衔接介入。在滑行过程中如果用户脚部再次蹬地,则车体又会以脚离开地面的新速度进行定速行驶。
步骤505:检测到满足减速行驶条件时进行减速行驶。
其中,所述减速行驶条件包括以下至少之一:
匀速行驶的计时到达预定时长;
匀速行驶的里程到达预定里程;
接收到减速行驶指令。
本发明实施例中,为了保障用户的安全,需要在特定情况下控制车辆进行减速行驶,例如:匀速行驶的计时到达预定时长或匀速行驶的里程到达预定里程时,进行减速行驶,此时可以避免用户因注意力不集中而发生的交通隐患。再例如,接收到减速行驶指令时,进行减速行驶,这里,减速行驶指令也称为刹车指令,如图2所示,车辆的后侧具有刹车部件,当用户踩下刹车部件时,即可向控制器触发刹车指令。此外,刹车部件还可以充当车辆的挡泥板使用,充分扩展了部件的使用功能。
在一实施方式中,当用户踩下刹车部件时,切断电机的动力,车辆在地面阻力的作用下减速行驶。在另一实施方式中,当用户踩下刹车部件时,电机继续转动,但是电机的是减速转动,以控制车辆减速行驶。
图6为本发明实施例的动力控制方法的流程示意图三,如图6所示,所述动力控制方法包括以下步骤:
步骤601:检测车辆的第一行驶状态。
本发明实施例中的车辆是指一种无轨交通工具,例如:两轮滑板车、三轮滑板车、四轮滑板车等等。用户可以在任意场地驾驶或骑行车辆。
本发明实施例中,车辆无需设置油门,节省了因油门而产生的成本。当然,考虑到与现有车辆的兼容性,车辆也可以设置油门,值得注意的是,如果设置油门,并不影响本发明实施例技术方案的实施。
如图2所示,车辆包括车体和动力驱动组件,控制器(图中未示出),其中,所述动力驱动组件与所述车体连接,用于在所述控制器的控制下驱动所述车辆行驶。在图2中,动力驱动组件为后轮驱动形式,当然,动力 驱动组件也可以为前轮驱动形式。动力驱动组件至少由以下组件组成:驱动轮(也即车轮)、装设于所述驱动轮的电机,所述电机内装有可检测动力输出转子位置的传感器。
本发明实施例中,车辆具有两种工作模式,分别为:非电机助力滑行模式和电机助力滑行模式。
在没有启动电机助力滑行模式时,检测得到车辆的第一行驶状态,其中,车辆的第一行驶状态可以通过车辆的第一加速度来表征,其中,所述第一加速度包括以下至少之一:所述车辆行驶的加速度、所述车辆的动力输出转子的转动加速度。
以第一加速度为动力输出转子的转动加速度为例,通过驱动轮内的传感器检测动力输出转子的位置,根据动力输出转子的位置计算得到动力输出转子的转动速度以及转动加速度。
步骤602:根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力。
在一实施方式中,检测获得所述车辆的第一加速度,比较所述车辆的第一加速度与预设的加速度阈值,当所述第一加速度大于所述加速度阈值时,确定所述车辆获得来自所述车辆外部的助力。
这里,预设的加速度阈值越小,则启动电机助力滑行模式的灵敏度越高,可以根据用户的体验感受为不同用户设置个性化的加速度阈值。
以加速度阈值为0为例,这时,启动电机助力滑行模式的灵敏度最高,当第一加速度大于0时,则确定车辆获得来自所述车辆外部的助力。
以加速度阈值为F(F>0)为例,这时,当第一加速度大于F时,则确定车辆获得来自所述车辆外部的助力。
步骤603:确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力 补偿的第一补偿动力。
本发明实施例中,假设第一加速度为a1,加速度阈值为F,则如果a1-F越大,则车辆获得来自所述车辆外部的助力越大;反之,如果a1-F越小,则车辆获得来自所述车辆外部的助力越小。
这里,助力的产生原因包括但不局限于为:
1)用户一只脚踩踏在车辆的车体上,另一只脚蹬地而获得对车辆的助力。
2)通过外部的弹力装置施加在车辆上,从而使得车辆获得助力。
3)车辆在下坡时,由于自身重力的作用而获得助力。
本发明实施例中,当车辆获得外部的助力时,车辆的速度会发生变化,如图3所示,在t1-t2时刻,车辆获得外部的助力,速度从0增加至V1;在t3-t4时刻,车辆获得外部的助力,速度从V1增加至V2。
这里,车辆因外部的助力而具有的第二行驶状态是指:获得外部的动力的期间所述车辆所具有的行驶速度,其中,所述行驶速度包括以下类型至少之一:
获得所述外部的动力的期间所述车辆具有的最大速度;
获得所述外部的动力的期间所述车辆具有的平均速度;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的最大转速;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的平均转速。
本发明实施例中,当车辆外部的助力消失的那刻起,需要启动电机助力滑行模式,通过电机对车辆的行驶进行动力补偿。
在通过电机对车辆的行驶进行动力补偿时,需要首先根据第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动 力。其中,车辆的第二行驶状态可以通过所述车辆在获得外部的动力期间所具有的行驶速度来表示。以行驶速度为Vend为例,第一补偿动力还可以维持车辆按照特定的减速度进行减速行驶。
步骤604:基于所产生的第一补偿动力进行减速行驶,并在减速行驶至满足动力停止条件时控制所述车辆停止产生动力。
其中,减速行驶的初始速度为在获得所述外部的助力期间所具有的行驶速度,减速行驶的方式包括匀减速行驶和非匀减速行驶。
以匀减速行驶为例,V1为减速行驶的初始速度(对应的时刻为T1),a为减速度,则t时刻的速度为:V(t)=V1-a×(t-T1)。
如图4所示,不同力度的助力对车辆进行驱动时,所产生的第二行驶状态不同,图4示意出了四种不同力度的助力对车辆进行驱动时,车辆的速度变化状况。当助力消失的那刻,车辆的速度达到最大值,这个速度作为以第一补偿动力进行动力补偿的初速度,可以通过第一补偿动力维持车辆以这个初速度为起始进行减速行驶。
本发明实施例中,所述动力停止条件包括以下至少之一:
行驶的计时到达预定时长;
行驶的里程到达预定里程。
本发明实施例中,为了节省车辆的电力,需要在特定情况下控制车辆停止产生动力,例如:行驶的计时到达预定时长或行驶的里程到达预定里程时,此时,车辆的速度已经很小,可以停止产生动力以节省车辆的电力。
图7为本发明实施例的动力控制方法的流程示意图四,如图7所示,所述动力控制方法包括以下步骤:
步骤701:解析传感数据确定车辆处于载人状态。
步骤702:初始状态下,检测车辆的加速度变化。
步骤703:车辆加速度大于预设加速度阈值时,启动电机助力滑行模式。
步骤704:通过电机助力车辆,定速滑行或减速滑行。
步骤705:判断是否刹车,是时,执行步骤706,否时,执行步骤704。
步骤706:电机停止动力,通过惯性减速滑行。
步骤707:滑行过程中,继续监测车辆的加速度变化。
步骤708:判断车辆是否处于加速状态,是时,执行步骤709,否时,执行步骤710。
步骤709:更新车辆速度,执行步骤704。
步骤710:判断是否启动电机助力滑行模式,是时,执行步骤704,否时,执行步骤706。
图8为本发明实施例的动力控制装置的结构组成示意图一,如图8所示,所述装置包括:
第一检测模块801,配置为检测车辆的第一行驶状态;
判定模块802,配置为根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;
产生模块803,配置为根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;
控制模块804,配置为基于所产生的第一补偿动力控制车辆行驶。
本发明实施例中,所述判定模块802,还配置为:
检测获得所述车辆的第一加速度,比较所述车辆的第一加速度与预设的加速度阈值,当所述第一加速度大于所述加速度阈值时,确定所述车辆获得来自所述车辆外部的助力;
其中,所述第一加速度包括以下至少之一:所述车辆行驶的加速度、所述车辆的动力输出转子的转动加速度。
本发明实施例中,所述控制模块804,还配置为:基于所产生的第一补 偿动力匀速行驶,匀速行驶的速度为在获得所述外部的助力的期间所具有的行驶速度。
本发明实施例中,所述装置还包括:
第二检测模块805,配置为检测到满足减速行驶条件时进行减速行驶;
其中,所述减速行驶条件包括以下至少之一:
匀速行驶的计时到达预定时长;
匀速行驶的里程到达预定里程;
接收到减速行驶指令。
本发明实施例中,所述控制模块804,还配置为:基于所产生的第一补偿动力进行减速行驶,并在减速行驶至满足动力停止条件时控制所述车辆停止产生动力;
其中,减速行驶的初始速度为在获得所述外部的助力期间所具有的行驶速度,减速行驶的方式包括匀减速行驶和非匀减速行驶;
所述动力停止条件包括以下至少之一:
行驶的计时到达预定时长;
行驶的里程到达预定里程。
本发明实施例中,所述行驶速度包括以下类型至少之一:
获得所述外部的动力的期间所述车辆具有的最大速度;
获得所述外部的动力的期间所述车辆具有的平均速度;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的最大转速;
获得所述外部的动力的期间所述车辆的电机的动力输出转子的平均转速。
本发明实施例中,所述装置还包括:
解析模块806,配置为检测车辆的第一行驶状态之前,解析传感数据确 定所述车辆处于载人状态。
本领域技术人员应当理解,图8所示的动力控制装置中的各模块的实现功能可参照前述动力控制方法的相关描述而理解。
图9为本发明实施例的车辆的结构组成示意图一,如图9所示,所述车辆包括:车体91、动力驱动组件92、传感器93、控制器94,其中,所述动力驱动组件92与所述车体91连接,用于在所述控制器94的控制下驱动所述车辆行驶;
所述传感器93,配置为检测车辆的第一行驶状态;
所述控制器94,配置为获得车辆的第一行驶状态;根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;基于所产生的第一补偿动力控制车辆行驶。
本发明实施例中,车辆是指一种无轨交通工具,例如:两轮滑板车、三轮滑板车、四轮滑板车等等。用户可以在任意场地驾驶或骑行车辆。
本发明实施例中,车辆无需设置油门,节省了因油门而产生的成本。当然,考虑到与现有车辆的兼容性,车辆也可以设置油门,值得注意的是,如果设置油门,并不影响本发明实施例技术方案的实施。
以车辆为两轮滑板车为例,如图2所示,动力驱动组件为后轮驱动形式,当然,动力驱动组件也可以为前轮驱动形式。动力驱动组件至少由以下组件组成:驱动轮(也即车轮)、装设于所述驱动轮的电机,所述电机内装有可检测动力输出转子位置的传感器93。这里,传感器可以是霍尔传感器、光电编码器、电位器等。
此外,所述车辆还可以包括任意其他组件,例如刹车、前灯、车把、车座、车表盘等等。
本发明实施例的控制器94可以执行上述动力控制方法的任意步骤。
图10为本发明实施例的动力控制方法的流程示意图五,本示例应用于车辆,以下示例中,以车辆为滑板车为例进行说明,其中,所述滑板车包括驱动轮及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器,如图10所示,所述滑板车的运动控制方法包括:
步骤1001:读取轻滑行摩擦系数μ,所述轻滑行摩擦系数μ小于所述滑板车在一般路面的惯性摩擦系数n。
所述轻滑行摩擦系数μ可以为系统预设并存储的数值,可以模仿任意摩擦系数的平面,例如所述预先存储的轻滑行摩擦系数μ可以预先存储在flash芯片内,数值可以为冰面上、玻璃面上、水泥路面上等的摩擦系数的值,从而可以模拟在冰面上、玻璃面上、水泥路面上等的运动状态;所述轻滑行摩擦系数μ也可以为用户输入的数值,例如,当用户输入的数值为0时,即可实现匀速滑行。
步骤1002:通过所述多个霍尔传感器侦测所述轮毂电机的转子转速。
其中,所述转子为磁性材料,在转动时会引起其周围磁场的改变,当把霍尔传感器置于磁场中,并通以电流,就会产生霍尔电势差V,所述霍尔电势差V的大小根据磁场的改变而有规律得变化,从而通过监测霍尔电势差V的变化即可获得述轮毂电机的位置信息,通过对位置信息做微分运算,并经过相应的滤波得到转子的转速。
步骤1003:通过所述转子转速演算生成所述轮毂电机的转子加速度。
步骤1004:监测所述转子加速度的加速度突变值。
步骤1005:当监测到大于程序设定的阈值的所述加速度突变值时,启动电机助力滑行模式,获取所述转子的瞬时的最大滑行转速VSmax。
所述程序设定的阈值为程序根据之前滑板车加速运动时的状态分析获得的一个大于零的常数,或者为用于预先在程序中设定的常数。
步骤1006:驱动所述轮毂电机的所述转子以轻滑行转速Vs(t)做匀减速运动,所述轻滑行转速Vs(t)=VSmax-μ×Ts,所述Ts为所述电机助力滑行模式所进行的助力滑行时间。
步骤1007:当监测到滑板车的刹车触发开关被触发或者监测到滑板车的减速运动的加速度值突然变大时,退出所述电机助力滑行模式。
所述霍尔传感器均匀地设置在滑板车的轮毂电机的转子的外周,数量为三个或三个以上,由于轮毂电机为三相电机,所以至少有三个所诉霍尔传感器才能准确地测定所述转子的转速,当所述霍尔传感器的数量大于三个时,可以使监测的结果精度更高。例如图12所示,所述滑板车具有第一霍尔传感器31、第二霍尔传感器32、第三霍尔传感器33,相互之间与转子连线的夹角均为120°,通过霍尔传感器对转子的速度进行监测,得到速度V和时间t之间的速度函数V=f(t),通过对速度函数求导演算可得到转子的加速度函数A=f′(t),进而通过对加速度函数的分析,即可监测到滑板车的所述驱动轮的加速度突变值。本发明方法使用轮毂电机本来就装有霍尔传感器对滑板车的所述驱动轮的加速度突变值进行监测,能达到利用加速度传感器进行运动状态监测同样的效果,而且不用额外增设加速度传感器,减轻了滑板车的重量,降低了滑板车的生产成本。
在本发明实施例的一个方面,所述滑板车的运动控制方法还包括:当监测到滑板车的刹车触发开关被触发或者监测到滑板车的减速运动的加速度值突然变大时,启动电机制动模式,获取所述转子的、瞬时的最大制动转速VBmax,驱动所述轮毂电机的所述转子以制动转速Vb(t)做制动减速运动,所述制动转速Vb(t)=VBmax-a×Tb,所述Tb为所述电机制动模式所进行的制动时间,所述a为制动系数,所述制动系数a大于所述轻滑行摩擦系数μ。
更进一步地,所述制动系数a大于所述惯性摩擦系数n。所述预设的阈 值为系统预先设定的数值,所述加速度突变值小于该阈值可推测用户采取了制动措施,在退出电机助力滑行模式的同时进入电机制动模式,能够使滑板车以更快的速度停下来。所述电机制动模式可以通过电机辅助拉紧刹车片以阻止车轮继续旋转来实现。
图11为本发明实施例的动力控制装置的结构组成示意图二,应用于车辆,所述车辆包括驱动轮及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器,用以侦测所述轮毂电机的转子转速,如图11所示,所述装置包括:
控制参数读取模块1101,配置为读取轻滑行摩擦系数μ,所述轻滑行摩擦系数μ小于所述车辆在一般路面的惯性摩擦系数n。所述轻滑行摩擦系数μ可以为系统预设并存储的数值,可以模仿任意摩擦系数的平面,例如所述预先存储的轻滑行摩擦系数μ可以预先存储在flash芯片内,数数值可以为冰面上、玻璃面上、水泥路面上等的摩擦系数的值,从而可以模拟在冰面上、玻璃面上、水泥路面上等的运动状态;所述轻滑行摩擦系数μ也可以为用户输入的数值,例如,当用户输入的数值为0时,即可实现匀速滑行。
演算与控制模块1102,通过所述转子转速演算生成所述轮毂电机的转子加速度,并监测所述转子加速度的变化以生成加速度突变值,当监测到大于0的所述加速度突变值时,启动电机助力滑行模式,获取所述转子的、瞬时的最大滑行转速VSmax,驱动所述轮毂电机的所述转子以轻滑行转速Vs(t)做匀减速运动,所述轻滑行转速Vs(t)=VSmax-μ×Ts,所述Ts为所述电机助力滑行模式所进行的助力滑行时间。其中,所述转子为磁性材料,在转动时会引起其周围磁场的改变,当把霍尔传感器置于磁场中,并通以电流,就会产生霍尔电势差V,所述霍尔电势差V的大小根据磁场的改变而有规律得变化,从而通过监测霍尔电势差V的变化即可获得述轮毂 电机的转子转速。更进一步地,所述演算与控制模块1102,还配置为当监测到车辆的刹车触发开关被触发或者监测到车辆的减速运动的加速度值突然变大时,退出所述电机助力滑行模式。本发明方法使用轮毂电机本来就装有霍尔传感器对车辆的所述驱动轮的加速度突变值进行监测,能达到利用加速度传感器进行运动状态监测同样的效果,而且不用额外增设加速度传感器,减轻了车辆的重量,降低了车辆的生产成本。
在本发明实施例的一个方面,所述演算与控制模块1102,还配置为当监测到车辆的刹车触发开关被触发或者监测到车辆的减速运动的加速度值突然变大更小于预设阈值时,启动电机制动模式,驱动所述轮毂电机的所述转子以制动转速Vb(t)做制动减速运动,所述制动转速Vb(t)=VBmax-a×Tb,所述Tb为所述电机制动模式所进行的制动时间,所述a为制动系数,所述制动系数a大于所述轻滑行摩擦系数μ。更进一步地,所述制动系数a大于所述惯性摩擦系数n。所述预设的阈值为系统预先设定的数值,所述加速度突变值小于该阈值可推测用户采取了制动措施,在退出电机助力滑行模式的同时进入电机制动模式,能够使车辆以更快的速度停下来。所述电机制动模式可以通过电机辅助拉紧刹车片以阻止车轮继续旋转来实现。
在本发明实施例的一个方面,车辆为滑板车,所述霍尔传感器均匀地设置在滑板车的轮毂电机的转子的外周,数量为三个或三个以上,由于轮毂电机为三相电机,所以至少有三个所诉霍尔传感器才能准确地测定所述转子的转速,当所述霍尔传感器的数量大于三个时,可以使监测的结果精度更高。例如图12所示,所述滑板车具有第一霍尔传感器31、第二霍尔传感器32、第三霍尔传感器33,相互之间与转子连线的夹角均为120°,通过霍尔传感器对转子的速度进行监测,得到速度V和时间t之间的速度函数V=f(t),通过对速度函数求导演算可得到转子的加速度函数A=f′(t),进而通过对加速度函数的分析,即可监测到滑板车的所述驱动轮的加速度突变 值。所述装置还包括:控制参数输入模块1103,用于输入所述轻滑行摩擦系数μ;存储模块1104,用于存储所述轻滑行摩擦系数μ、所述惯性摩擦系数n、所述制动系数a、所述最大滑行转速VSmax、所述最大制动转速VBmax、所述助力滑行时间Ts、所述制动时间Tb。可选地,所述存储模块可以是flash芯片。
图13为本发明实施例的滑板车的示意图二,如图13所示,包括一个驱动轮1,一个电能装置2及装设于所述驱动轮的一个轮毂电机3,所述轮毂电机设置有多个霍尔传感器,所述电能装置用于供应所述轮毂电机的运转电力。所述滑板车包含如第二实施例中所述的滑板车的运动控制系统。本发明滑板车使用轮毂电机本来就装有霍尔传感器对滑板车的所述驱动轮的加速度突变值进行监测,能达到利用加速度传感器进行运动状态监测同样的效果,而且不用额外增设加速度传感器,减轻了滑板车的重量,降低了滑板车的生产成本。
例如,用户使用本发明提供的滑板车,想体验在玻璃上滑行的感觉,即可使控制参数读取模块读取预先存储在flash芯片中的玻璃面上的摩擦系数为μ=0.05,同时,演算与控制模块开始对滑板车加速度的变化进行监测,当用户开始用脚蹬地给滑板车加速时,就会监测到滑板车做加速度大于程序设定的阈值0的加速运动,此时获取滑板车加速后的最大速度例如VSmax=8m/s,接着开启电机助力滑行模式,驱动轮毂电机使滑板车以初始速度为8m/s,加速度为-0.05m/s2做匀减速运动,其运动速度与时间t的关系为Vs(t)=8-0.05t。
继续进行监测,当监测到滑板车的刹车触发开关被触发或者监测到滑板车的减速运动的加速度值突然变大时,可推测用户在进行减速操作,此时退出电机助力滑行模式,使滑板车停下。当监测到滑板车的刹车触发开关被触发或者监测到滑板车的减速运动的加速度值突然变大时,还可以启 动制动模式,此时获取所述转子的、瞬时的最大制动转速例如VBmax=8m/s,驱动所述轮毂电机的所述转子以制动转速Vb(t)做制动减速运动,设定制动系数为-16m/s2,所述制动转速Vb(t)=8-16Tb,即通过0.5秒即可帮助滑板车快速停下来。
在本发明的一个方面,用于监测滑板车的所述驱动轮的加速度突变值的为霍尔传感器,所述霍尔传感器均匀地设置在滑板车的轮毂电机的转子的外周,数量为三个或三个以上,由于轮毂电机为三相电机,所以至少有三个所诉霍尔传感器才能准确地测定所述转子的转速,当所述霍尔传感器的数量大于三个时,可以使监测的结果精度更高。例如图12所示,所述滑板车具有第一霍尔传感器31、第二霍尔传感器32、第三霍尔传感器33,相互之间与转子连线的夹角均为120°,通过霍尔传感器对转子的速度进行监测,可以得到速度V和时间t之间的速度函数V=f(t),通过对速度函数求导演算可得到转子的加速度函数A=f′(t),进而通过对加速度函数的分析,即可监测到滑板车的所述驱动轮的加速度突变值。例如在上述匀减速滑行阶段可监测获得速度函数为Vs(t)=f(t)=8-0.05t,进而演算获得加速度函数为As(t)=f′(t)=-0.05,在匀速阶段的加速度突变值为0。
本发明实施例上述装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序配置为执行本发明实施例的动力控制方法。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的模块可以是、或也可以不是物理上分开的,作为模块显示的部件可以是、或也可以不是物理模块,即可以位于一个地方,也可以分布到多个网络模块上;可以根据实际的需要选择其中的部分或全部模块来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能模块可以全部集成在一个第二处理模块中,也可以是各模块分别单独作为一个模块,也可以两个或两个以上模块集成在一个模块中;上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
工业实用性
本发明实施例的技术方案,无需油门仅通过车辆外部的助力便可以控制车辆的行驶,减少了因油门而造成的车辆成本,同时,用户可以通过脚 蹬方式灵活操控车辆的行驶,操控方式简单易行且安全可靠,大大增加了车辆使用的趣味性。车辆使用轮毂电机本来就装有的霍尔传感器对车辆的所述驱动轮的加速度突变值进行监测,能达到利用加速度传感器进行运动状态监测同样的效果,而且不用额外增设加速度传感器,减轻了车辆的重量,降低了车辆的生产成本。

Claims (26)

  1. 一种动力控制方法,所述方法包括:
    检测车辆的第一行驶状态;
    根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;
    确定所述车辆因所述外部的助力而具有的第二行驶状态;
    根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;
    基于所产生的第一补偿动力控制车辆行驶。
  2. 根据权利要求1所述的方法,其中,所述根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力,包括:
    检测获得所述车辆的第一加速度,比较所述车辆的第一加速度与预设的加速度阈值,当所述第一加速度大于所述加速度阈值时,确定所述车辆获得来自所述车辆外部的助力;
    其中,所述第一加速度包括以下至少之一:所述车辆行驶的加速度、所述车辆的动力输出转子的转动加速度。
  3. 根据权利要求1所述的方法,其中,所述基于所产生的第一补偿动力控制车辆行驶,包括:
    基于所产生的第一补偿动力匀速行驶,匀速行驶的速度为在获得所述外部的助力的期间所具有的行驶速度。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    检测到满足减速行驶条件时进行减速行驶;
    其中,所述减速行驶条件包括以下至少之一:
    匀速行驶的计时到达预定时长;
    匀速行驶的里程到达预定里程;
    接收到减速行驶指令。
  5. 根据权利要求1所述的方法,其中,所述基于所产生的第一补偿动力控制车辆行驶,包括:
    基于所产生的第一补偿动力进行减速行驶,并在减速行驶至满足动力停止条件时控制所述车辆停止产生动力;
    其中,减速行驶的初始速度为在获得所述外部的助力期间所具有的行驶速度,减速行驶的方式包括匀减速行驶和非匀减速行驶;
    所述动力停止条件包括以下至少之一:
    行驶的计时到达预定时长;
    行驶的里程到达预定里程。
  6. 根据权利要求3至5任一项所述的方法,其中,所述行驶速度包括以下类型至少之一:
    获得所述外部的动力的期间所述车辆具有的最大速度;
    获得所述外部的动力的期间所述车辆具有的平均速度;
    获得所述外部的动力的期间所述车辆的电机的动力输出转子的最大转速;
    获得所述外部的动力的期间所述车辆的电机的动力输出转子的平均转速。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    检测车辆的第一行驶状态之前,解析传感数据确定所述车辆处于载人状态。
  8. 一种动力控制方法,应用于车辆,所述车辆包括驱动轮及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器;所述方法包括:
    读取轻滑行摩擦系数μ,所述轻滑行摩擦系数μ小于所述车辆的惯 性摩擦系数n;
    通过所述霍尔传感器侦测所述轮毂电机的转子转速;
    通过所述转子转速演算生成所述轮毂电机的转子加速度;
    监测所述转子加速度的变化以生成加速度突变值;
    当监测到大于预设阈值的加速度突变值时,启动电机助力滑行模式,获取所述转子的瞬时的最大滑行转速VSmax;
    驱动所述轮毂电机的所述转子以轻滑行转速Vs(t)做匀减速运动,所述轻滑行转速Vs(t)=VSmax-μ×Ts,所述Ts为所述电机助力滑行模式所进行的助力滑行时间。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    当监测到车辆的刹车触发开关被触发或者监测到车辆的减速运动的加速度突变值大于预设值时,退出所述电机助力滑行模式。
  10. 根据权利要求9所述的方法,其中,
    当监测到车辆的刹车触发开关被触发或者监测到车辆的减速运动的加速度突变值大于预设值时,启动电机制动模式,获取所述转子的瞬时的最大制动转速VBmax,驱动所述轮毂电机的所述转子以制动转速Vb(t)做制动减速运动,所述制动转速Vb(t)=VBmax-a×Tb,所述Tb为所述电机制动模式所进行的制动时间,所述a为制动系数,所述制动系数a大于所述轻滑行摩擦系数μ。
  11. 根据权利要求10所述的方法,其中,所述制动系数a大于所述惯性摩擦系数n。
  12. 根据权利要求8至11任一项所述的方法,其中,所述霍尔传感器的数量至少为3个,设置在所述车辆的所述轮毂电机的所述转子的外周。
  13. 一种动力控制装置,所述装置包括:
    第一检测模块,配置为检测车辆的第一行驶状态;
    判定模块,配置为根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;
    产生模块,配置为根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;
    控制模块,配置为基于所产生的第一补偿动力控制车辆行驶。
  14. 根据权利要求13所述的装置,其中,所述判定模块,还配置为:
    检测获得所述车辆的第一加速度,比较所述车辆的第一加速度与预设的加速度阈值,当所述第一加速度大于所述加速度阈值时,确定所述车辆获得来自所述车辆外部的助力;
    其中,所述第一加速度包括以下至少之一:所述车辆行驶的加速度、所述车辆的动力输出转子的转动加速度。
  15. 根据权利要求13所述的装置,其中,所述控制模块,还配置为:基于所产生的第一补偿动力匀速行驶,匀速行驶的速度为在获得所述外部的助力的期间所具有的行驶速度。
  16. 根据权利要求15所述的装置,其中,所述装置还包括:
    第二检测模块,配置为检测到满足减速行驶条件时进行减速行驶;
    其中,所述减速行驶条件包括以下至少之一:
    匀速行驶的计时到达预定时长;
    匀速行驶的里程到达预定里程;
    接收到减速行驶指令。
  17. 根据权利要求13所述的装置,其中,所述控制模块,还配置为:基于所产生的第一补偿动力进行减速行驶,并在减速行驶至满足动力停止条件时控制所述车辆停止产生动力;
    其中,减速行驶的初始速度为在获得所述外部的助力期间所具有的行驶速度,减速行驶的方式包括匀减速行驶和非匀减速行驶;
    所述动力停止条件包括以下至少之一:
    行驶的计时到达预定时长;
    行驶的里程到达预定里程。
  18. 根据权利要求15至17任一项所述的装置,其中,所述行驶速度包括以下类型至少之一:
    获得所述外部的动力的期间所述车辆具有的最大速度;
    获得所述外部的动力的期间所述车辆具有的平均速度;
    获得所述外部的动力的期间所述车辆的电机的动力输出转子的最大转速;
    获得所述外部的动力的期间所述车辆的电机的动力输出转子的平均转速。
  19. 根据权利要求13所述的装置,其中,所述装置还包括:
    解析模块,配置为检测车辆的第一行驶状态之前,解析传感数据确定所述车辆处于载人状态。
  20. 一种动力控制装置,应用于车辆,所述车辆包括驱动轮及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器,用以侦测所述轮毂电机的转子转速;所述装置包括:
    控制参数读取模块,配置为读取轻滑行摩擦系数μ,所述轻滑行摩擦系数μ小于所述车辆的惯性摩擦系数n;
    演算与控制模块,配置为通过所述转子转速演算生成所述轮毂电机的转子加速度,并监测所述转子加速度的变化以生成加速度突变值,当监测到大于预设阈值的加速度突变值时,启动电机助力滑行模式,获取所述转子的瞬时的最大滑行转速VSmax,驱动所述轮毂电机的所述转子 以轻滑行转速Vs(t)做匀减速运动,所述轻滑行转速Vs(t)=VSmax-μ×Ts,所述Ts为所述电机助力滑行模式所进行的助力滑行时间。
  21. 根据权利要求20所述的装置,其中,所述演算与控制模块,还配置为当监测到车辆的刹车触发开关被触发或者监测到车辆的加速度突变值大于预设值时,退出所述电机助力滑行模式。
  22. 根据权利要求21所述的装置,其中,所述演算与控制模块,还配置为当监测到车辆的刹车触发开关被触发或者监测到车辆的加速度突变值大于预设值时,启动电机制动模式,驱动所述轮毂电机的所述转子以制动转速Vb(t)做制动减速运动,所述制动转速Vb(t)=VBmax-a×Tb,所述Tb为所述电机制动模式所进行的制动时间,所述a为制动系数,所述制动系数a大于所述轻滑行摩擦系数μ。
  23. 根据权利要求22所述的装置,其中,所述霍尔传感器的数量至少为3个,设置在所述车辆的所述轮毂电机的所述转子的外周。
  24. 一种车辆,所述车辆包括:车体、动力驱动组件、传感器、控制器,其中,所述动力驱动组件与所述车体连接,用于在所述控制器的控制下驱动所述车辆行驶;
    所述传感器,配置为检测车辆的第一行驶状态;
    所述控制器,配置为获得车辆的第一行驶状态;根据所述车辆的第一行驶状态,判定所述车辆获得来自所述车辆外部的助力;确定所述车辆因所述外部的助力而具有的第二行驶状态;根据所述第二行驶状态,控制所述车辆产生用于对所述车辆的行驶进行动力补偿的第一补偿动力;基于所产生的第一补偿动力控制车辆行驶。
  25. 一种车辆,其中,包括驱动轮、电能装置及装设于所述驱动轮的轮毂电机,所述轮毂电机设置有多个霍尔传感器,所述电能装置供应所述轮毂电机的运转电力,其中,所述车辆更包括权利要求20至23任 一项所述的动力控制装置。
  26. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-7任一项所述的动力控制方法,或者该计算机可执行指令配置为执行权利要求8-12任一项所述的动力控制方法。
PCT/CN2017/088138 2016-06-13 2017-06-13 动力控制方法、装置及车辆、计算机存储介质 WO2017215601A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK17812712.2T DK3470317T3 (da) 2016-06-13 2017-06-13 Effektstyringsfremgangsmåde og -indretning, køretøj og computerlagringsmedium
EP17812712.2A EP3470317B1 (en) 2016-06-13 2017-06-13 Power control method and apparatus, vehicle and computer storage medium
US16/301,516 US11040756B2 (en) 2016-06-13 2017-06-13 Power control method and apparatus, vehicle and computer storage medium
ES17812712T ES2865873T3 (es) 2016-06-13 2017-06-13 Procedimiento y aparato de control de potencia, vehículo y soporte de almacenamiento informático

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610415235.6 2016-06-13
CN201610415235.6A CN106080879B (zh) 2016-06-13 2016-06-13 滑板车及滑板车的运动控制方法和系统
CN201710302273.5A CN107161257A (zh) 2017-05-02 2017-05-02 动力控制方法、装置及车辆
CN201710302273.5 2017-05-02

Publications (1)

Publication Number Publication Date
WO2017215601A1 true WO2017215601A1 (zh) 2017-12-21

Family

ID=60664220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088138 WO2017215601A1 (zh) 2016-06-13 2017-06-13 动力控制方法、装置及车辆、计算机存储介质

Country Status (5)

Country Link
US (1) US11040756B2 (zh)
EP (1) EP3470317B1 (zh)
DK (1) DK3470317T3 (zh)
ES (1) ES2865873T3 (zh)
WO (1) WO2017215601A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180334221A1 (en) * 2017-05-16 2018-11-22 Wen-Sung Lee Power generation device for bicycle
CN116512936B (zh) * 2023-06-14 2024-06-07 深圳深蕾科技股份有限公司 基于新能源汽车驱动器运行功率控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015091074A1 (fr) * 2013-12-18 2015-06-25 Decathlon Trottinette motorisee
WO2015128239A1 (fr) * 2014-02-28 2015-09-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Assistance au deplacement d'un objet roulant par un asservissement utilisant l'acceleration de l'objet roulant
CN204916031U (zh) * 2015-07-01 2015-12-30 浙江易力车业有限公司 滑板车的驱动轮总成及电动滑板车
CN105836007A (zh) * 2016-03-10 2016-08-10 江门市蔚博科技有限公司 一种多功能助力滑板车
CN205469633U (zh) * 2016-03-22 2016-08-17 俪新集团有限公司 助力电动滑板车
CN106080879A (zh) * 2016-06-13 2016-11-09 深圳坂云智行有限公司 滑板车及滑板车的运动控制方法和系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548477B2 (ja) * 2000-01-25 2004-07-28 鈴木 康之 電動軽車両の走行速度制御装置と、電動軽車両
JP2005335534A (ja) 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd 補助動力装置付き車両
JP2007001489A (ja) 2005-06-24 2007-01-11 Equos Research Co Ltd 車両
CN102745299B (zh) 2011-04-18 2014-07-02 久鼎金属实业股份有限公司 助力自行车的变速控制系统
CN103687783B (zh) 2011-07-22 2016-04-27 丰田自动车株式会社 倒立型移动体控制装置、其控制方法及程序
DE102011084754B4 (de) * 2011-10-19 2021-05-06 Bayerische Motoren Werke Aktiengesellschaft Elektromotorisch unterstützter, intuitiv durch Muskelkraft antreibbarer Tretroller und Verfahren zum Betreiben eines elektromotorisch unterstützten, durch Muskelkraft antreibbaren Tretrollers
EP2901408B1 (en) * 2012-09-25 2021-08-25 Scoot Rides, Inc. Systems and methods for regulating vehicle access
EP2777783A1 (de) 2013-03-13 2014-09-17 Ralf Violonchi Pedalloses Tretfahrzeug mit Trethilfe
DE102013225481B4 (de) * 2013-12-10 2020-07-09 Brake Force One Gmbh Verfahren zum Betreiben eines Fortbewegungsmittels
WO2016037139A1 (en) 2014-09-05 2016-03-10 Dynamic Labs, Llc Motorized vehicle
CN107107985B (zh) * 2014-11-18 2019-08-20 泽哈斯有限责任公司 用于控制脉冲型人力车辆的运动的系统
DE102015203641A1 (de) 2015-03-02 2016-09-08 Bayerische Motoren Werke Aktiengesellschaft Tretroller, Steuerungseinrichtung und Verfahren zur Steuerung
CN104875842B (zh) 2015-05-29 2017-10-10 纳恩博(北京)科技有限公司 个人滑行工具的体感电动滑行控制方法及其系统
CN204916027U (zh) 2015-05-29 2015-12-30 林骥 个人滑行工具的体感电动滑行控制装置
CN205160428U (zh) 2015-12-01 2016-04-13 杭州骑客智能科技有限公司 一种两轮平衡滑板车控制系统
CN105644670B (zh) 2015-12-23 2018-09-04 小米科技有限责任公司 滑板车的模式切换方法及装置
CN106155058A (zh) 2016-08-05 2016-11-23 广州大非机器人科技有限公司 电动滑板车及其行驶控制方法和行驶控制模块
CN106476974B (zh) 2016-10-21 2019-09-27 深圳乐行天下科技有限公司 一种助力推行方法、电动车及其控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015091074A1 (fr) * 2013-12-18 2015-06-25 Decathlon Trottinette motorisee
WO2015128239A1 (fr) * 2014-02-28 2015-09-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Assistance au deplacement d'un objet roulant par un asservissement utilisant l'acceleration de l'objet roulant
CN204916031U (zh) * 2015-07-01 2015-12-30 浙江易力车业有限公司 滑板车的驱动轮总成及电动滑板车
CN105836007A (zh) * 2016-03-10 2016-08-10 江门市蔚博科技有限公司 一种多功能助力滑板车
CN205469633U (zh) * 2016-03-22 2016-08-17 俪新集团有限公司 助力电动滑板车
CN106080879A (zh) * 2016-06-13 2016-11-09 深圳坂云智行有限公司 滑板车及滑板车的运动控制方法和系统

Also Published As

Publication number Publication date
US20190270493A1 (en) 2019-09-05
ES2865873T3 (es) 2021-10-18
US11040756B2 (en) 2021-06-22
EP3470317A4 (en) 2019-06-19
EP3470317A1 (en) 2019-04-17
EP3470317B1 (en) 2021-01-27
DK3470317T3 (da) 2021-02-22

Similar Documents

Publication Publication Date Title
CN106476974B (zh) 一种助力推行方法、电动车及其控制器
CN108860417B (zh) 平衡车溜车保护控制方法、装置、平衡车和存储介质
TW201527167A (zh) 馬達驅動式滑板車
CN105398522A (zh) 一种控制多压力识别的电动平衡车的方法及其系统
JP5450194B2 (ja) 電動補助自転車
CN110770100B (zh) 单辙车辆的紧急制动系统
CN109018170B (zh) 平衡车控制方法、装置、平衡车和存储介质
US10029582B2 (en) Method and device for operating a motor vehicle, motor vehicle
WO2017215601A1 (zh) 动力控制方法、装置及车辆、计算机存储介质
US20220219777A1 (en) Friction Coefficient Determination to Adjust Braking for Electronic Bicycles
JP2007221843A (ja) 路面傾斜角演算装置およびそれを備えた車両
JP2023116454A (ja) 二輪車両で自律制動を実行するための方法および装置
CN205769905U (zh) 一种跟随式电动滑板车的启停制动系统
WO2020008302A1 (ja) モータサイクルに用いられる運転支援システムの制御装置及び制御方法、及び、モータサイクルに用いられる運転支援システム
CN107161257A (zh) 动力控制方法、装置及车辆
CN108974219A (zh) 一种用于平衡车的机械式自刹车装置
KR101651372B1 (ko) 1인 기립식 외륜 전동차의 주행정지장치
CN104029783A (zh) 调整电动助力车的模式的方法及电动助力系统
JP5932385B2 (ja) 人力駆動車のブレーキ制御装置及び人力駆動車
JP6885844B2 (ja) ブレーキシステム
US20220161889A1 (en) Method and device for carrying out autonomous braking in a two-wheeled motor vehicle
CN106043528B (zh) 通用型子母式自行车动力改装套件
KR20220036425A (ko) 전기자전거의 관성 주행 제어 회로 및 방법
CN108791676A (zh) 一种电动助力装置和控制方法
CN113650713B (zh) 智能脚撑的辅助控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017812712

Country of ref document: EP

Effective date: 20190114