WO2017215359A1 - 实桥焊缝扫描仪及其扫描方法 - Google Patents

实桥焊缝扫描仪及其扫描方法 Download PDF

Info

Publication number
WO2017215359A1
WO2017215359A1 PCT/CN2017/082558 CN2017082558W WO2017215359A1 WO 2017215359 A1 WO2017215359 A1 WO 2017215359A1 CN 2017082558 W CN2017082558 W CN 2017082558W WO 2017215359 A1 WO2017215359 A1 WO 2017215359A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanner
weld
probe
scanning
magnet
Prior art date
Application number
PCT/CN2017/082558
Other languages
English (en)
French (fr)
Inventor
傅中秋
吉伯海
王秋东
袁周致远
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Priority to US16/309,174 priority Critical patent/US10788432B2/en
Priority to AU2017284540A priority patent/AU2017284540B2/en
Publication of WO2017215359A1 publication Critical patent/WO2017215359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/87Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/103Scanning by mechanical motion of stage

Definitions

  • the invention relates to a non-destructive testing device, in particular to a real bridge welding seam scanner and a scanning method thereof.
  • Orthotropic steel bridge deck has the advantages of light weight, high torsional stiffness, high bearing capacity and short construction period. It has been widely used in bridges with large span cables.
  • the steel box girder has a complicated structure, and it is easy to generate large welding residual stress during the welding process.
  • the defects of the structure itself and the influence of the construction quality may inevitably cause damage during the service.
  • steel box girder gradually produces various diseases, among which fatigue is one of the representative diseases.
  • the generation of fatigue cracks not only adversely affects the stress of the structure, but also causes damage to the pavement layer when the crack is cracked.
  • the rainwater entering the steel box gir along the crack will further cause problems such as corrosion of the box girder. Therefore, fatigue cracks for steel box beams should be discovered as soon as possible and repaired as soon as possible.
  • the inspection work for the joint welds of the key parts of the steel box girder is large.
  • the inspection of domestic steel box girder welds is mostly carried out in a phased manner.
  • the inspection personnel mainly inspect the appearance of the weld by visual inspection, and the efficiency is low and the inspection quality is not high.
  • Ultrasonic testing is applied to real bridge weld inspection. Although the accuracy has been improved to a certain extent, the cost is high and the ultrasonic bridge inspection technology is not yet mature. It is mostly used for factory and laboratory testing.
  • the present invention provides a real bridge weld scanner and a scanning method thereof.
  • a magnet is disposed at a bottom of the scanner case, and a sliding slot is coupled between the scanning portion and the walking portion, and the sliding slot is parallel to a traveling direction of the traveling device.
  • the laser range finder can adjust the forward direction of the weld scanner parallel to the weld Seam, at this time, the weld scanner will not shift the original set route during the work, and the position of the weld scanner can be realized. Precise control.
  • the magnet is a man-made permanent magnet, and the attraction between the magnet and the inner wall of the steel box beam allows the weld scanner to scan the top weld of the box beam without falling.
  • the scanner housing is internally provided with a power supply and a control device.
  • the power supply can reasonably distribute the voltage required by the normal working chamber of each part of the weld scanner.
  • the control device can use the original inverter to accurately control the rotation speed of the probe motor and the scanner drive motor, thereby realizing the moving speed of the probe and the forward speed of the scanner. Precise control.
  • control device is coupled to the wireless transceiver.
  • the Bluetooth signal receiving and transmitting device the signal collected to the integrated circuit board is wirelessly transmitted to the client through the Bluetooth transmitter, thereby realizing real-time control of the scanning process.
  • the scanning portion includes a probe slider, a bendable metal tube, and a probe that are sequentially connected, and the probe slider has a gear that meshes with a rack inside the scanner chassis chute.
  • the sliding of the probe slider in the chute can be driven by the rotation of the probe motor, thereby realizing the scanning of the remaining weld.
  • the adjustment of the probe position before scanning can be achieved by bending the bendable metal tube to improve the accuracy of the scanning detection.
  • the probe comprises a fixed sleeve, a magnet, a magnetoresistive sensor and a camera
  • the magnet is mounted in a fixed sleeve
  • the magnetic resistance sensor is mounted on an end of the magnet
  • the camera is fixedly mounted on the sleeve On the outer wall.
  • the wheel of the walking portion is wrapped with a rubber pad to achieve smoothness of the weld seam scanner during advancement, and to avoid adverse effects of bumps on scanning accuracy.
  • the scanner case wall is provided with a wire through hole, and the scanner case and the probe slider have a USB interface, and the USB cable connecting the scanner case and the probe slider can smoothly realize the connection between the two.
  • the invention simultaneously proposes a scanning method of the above-mentioned real bridge weld scanner, which comprises the following steps:
  • the weld scanner scans along the weld direction and collects the signals from the various components to the control device;
  • the control device controls the walking part and the scanning part, and sends a signal to the client;
  • the client analyzes and processes the signal, and further obtains the coordinate and macroscopic image of the suspected defect position according to the initially set coordinate position, and realizes the control of the forward speed of the weld scanner by controlling the welding machine of the weld seam scanner.
  • the movement speed can be slowed down at the defect position, or the sliding portion can be reciprocated by the chute, so that the weld scanner can scan the position of the suspected defect more carefully when the magnetic field change is detected.
  • the real bridge weld scanner of the present invention the probe slider, the motor, the bendable metal tube, the magnet fixing sleeve, and the camera fixing sleeve are fixed together, and the interaction between the transmission gear and the rack is adopted.
  • the sliding of the probe slider in the chute can be achieved.
  • the artificial magnet is embedded in the artificial magnet of the scanner case, and the influence of gravity on the scanner is balanced by the gravitational force between the artificial magnet and the top plate or the inner wall member of the steel box beam, so that the weld scanner is on the top plate or the inner wall member of the steel box girder. Walking.
  • the USB interface can transmit information such as images, magnetoresistance sensor signals, and motor rotation rate to the scanner chassis while providing power for the camera, magnetic resistance sensor, and probe motor to achieve real-time control of the probe operation.
  • the laser range finder can emit a laser beam through the laser emitting hole. If the laser receiving hole can receive the emitted laser light, it indicates that the scanner case is parallel to the direction of the weld, thereby achieving precise control of the direction of travel of the scanner.
  • the circuit board in the scanner chassis can summarize the signals transmitted from the USB interface, and uniformly transmit the speed signal of the scanner driving motor to the Bluetooth signal receiving device connected to the outside by the Bluetooth signal receiving and transmitting device on the circuit board.
  • the computer end processes the received signal through the supporting program to obtain information such as the change of the magnetic field, the image, the real-time coordinates of the weld scanner, and the like, so as to realize efficient scanning of the real bridge weld.
  • F magnetic is the gravitational force of the artificial magnet and the steel box beam member; the G scanner is the gravity of the scanner itself; C is a positive number.
  • the present invention scans the scanning portion while the walking portion welds advance along the weld seam, and performs a more detailed scanning of the suspected defect position when a change in the magnetic field is detected. It realizes the functions of accurate detection and positioning of weld defects of steel box girder, real-time shooting of macroscopic phenomena of defects, coordinate position of scanner, etc. It solves the problem of long time, low efficiency and high manual detection of welds of steel box girder at the present stage. Cost and other issues have improved the efficiency and quality of real bridge weld inspection, effectively reducing the cost of inspection.
  • Figure 1 is a front view of the device
  • Figure 3 is a cross-sectional view showing the position of the circuit board of the device
  • Figure 4 is a schematic view showing the cooperation of the probe motor and the rack of the device
  • Figure 5 is a cross-sectional view showing the chute rack of the device
  • Figure 6 is a cross-sectional view showing the internal structure of the probe slider of the device.
  • Figure 7 is a cross-sectional view showing the internal structure of the magnet fixing sleeve and the camera fixing sleeve of the device;
  • Figure 8 is a schematic view showing the implementation of the device
  • Figure 9 is a schematic view showing the movement of the probe portion of the device.
  • Figure 10 is a schematic diagram of coordinate setting of the device
  • FIG. 11 is a schematic diagram showing a principle of a change of a magnetic resistance sensor signal of the device
  • scanner case 1 probe slider 2, probe slider circuit board placement hole 2a, probe slider line hole 2b, 2c, probe motor 3, transmission gear 3a, bendable metal tube 4, magnet fixed sleeve 5, magnet mounting hole 5a, camera fixing sleeve 6, camera mounting hole 6a, rack 7, chute 8, laser range finder 9, laser emitting hole 9a, laser receiving hole 9b, scanner wheel 10, rubber jacket 10a First artificial magnet 11, second artificial magnet 16, artificial magnet insertion hole 11a, fixed baffle 12, rotating rod 13, fixed pin 14, circular hole 15, magnetic resistance sensor 17, wire through hole 18, first USB The interface 19, the second USB interface 20, the power switch 21, the power interface 22, the circuit board 23, the Bluetooth signal receiving and transmitting device 24, and the probe line hole 25.
  • the top plate and the U-rib joint weld of one compartment of the steel box girder are scanned.
  • the real bridge weld scanner includes a scanner case 1 .
  • probe slider 2 probe slider circuit board placement hole 2a, probe slider line hole 2b, 2c, probe motor 3, transmission gear 3a, bendable metal tube 4, magnet fixing sleeve 5, magnet mounting hole 5a, Camera fixing sleeve 6, camera mounting hole 6a, rack 7, chute 8, laser range finder 9, laser emitting hole 9a, laser receiving hole 9b, scanner wheel 10, rubber outer casing 10a, first artificial magnet 11, The second artificial magnet 16, the artificial magnet embedded in the hole 11a, the fixed baffle 12, the rotating rod 13, the fixed pin 14, the circular hole 15, the magnetic resistance sensor 17, the wire passing hole 18, the first USB interface 19, the second USB interface 20, a power switch 21, a power interface 22, a circuit board 23, a Bluetooth signal receiving and transmitting device 24, and a probe line hole 25.
  • the artificial magnet 11 can be embedded in the bottom of the scanner case 1 to realize the scanner by the attraction between the artificial magnet and the inner wall of the steel box beam. Smooth walking on the top and inner wall of the steel box girder.
  • the probe slider 2 can achieve sliding in the chute 8 by the interaction of the probe motor 3 with the rack 7.
  • the fixed baffle 12 can fix the probe slider 2 through the rotating rod 13 and the fixed plug 14 to prevent it from falling out of the chute 8.
  • the laser range finder 9 can check the position of the scanner housing 1 to ensure that its forward direction is parallel to the weld.
  • Position A is the starting point for the scanner to advance, and the coordinates in the temporary coordinate system are set to A (0, 0). Since the bendable metal tube 4 of the scanning portion can be bent, the position of the magnetoresistive sensor 17 can be adjusted according to actual needs. After the adjustment is completed, the distance between the magnetic resistance sensor probe and the coordinate origin (ie, the laser range finder) is measured as d 1 , and d 1 is input into the client program to obtain the coordinates (d 1 , 0) of the scanning start point.
  • the external power source is connected to the scanner through the power interface 22.
  • the power switch 21 of the weld scanner is turned on. If the power supply is normal, the weld scanner sends the power supply normal signal s g to the client through the Bluetooth signal receiving and transmitting device 24. The client judges the received Bluetooth signal and displays the result:
  • the weld seam scanner scans in the direction of the weld bead, that is, the direction of the vector i, and collects the signals of the respective components to the circuit board 23, and transmits them through the Bluetooth signal receiving and transmitting device 24. To the client.
  • the signal collected by the circuit board includes: a power supply signal s g , a magnetic resistance sensor signal s c , a scanner driving motor speed s x1 , a probe motor speed s x2 , a camera taking picture signal s t , wherein the power supply signal s g , magnetic resistance
  • c is the speed of the scanner drive motor, which can be controlled by the inverter on the circuit board 23
  • t is the advance time of the weld scanner
  • is the conversion coefficient, which represents the scanner drive motor drive gear rotates one turn under the scanner The distance traveled depends on the specific parameters of the scanner drive motor drive gear.
  • the client program processes the received signal. If the magnetic resistance sensor detects a change in the magnetic field, the client program sends a command. At this time, the circuit board in the scanner chassis recognizes the command and executes the command, and executes the command. The rear camera performs a shooting operation and sends the obtained picture signal s t to the client. The client program processes the received signal s t to obtain a macro image of the suspected defect area.
  • the scan probe can scan the remaining welds by moving left and right.
  • the client program can automatically determine if the scanner has reached the end of the weld:
  • L is the length of the steel box girder compartment (ie the full length of the weld); D is the length of the weld seam scanner.
  • s x2 1 means that the probe motor starts working at this time, and the rotation speed information is fed back to the client program.
  • the length of the rack 8 is l c , and the client program can automatically control the distance that the probe slider 2 moves to the left and right, namely:
  • t 1 is the time when the probe motor 2 rotates;
  • is the conversion coefficient, indicating the distance the probe motor 2 rotates one revolution of the probe slider;
  • the client program can be used to save the data during the scanning process for subsequent comparative analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种实桥焊缝扫描仪及其扫描方法,包括安装在扫描仪机箱(1)上的行走部分和扫描部分,扫描仪机箱(1)首端和尾端均设有激光测距仪(9),扫描仪机箱(1)的底部设有磁铁(11),扫描部分包括依次连接的探头滑块(2)、可折弯金属管(4)和探头,探头滑块(2)上具有齿轮(3a),该齿轮(3a)与扫描仪机箱滑槽(8)内部的齿条(7)相啮合。该方法是在行走部分沿焊缝前进的同时进行扫描,当检测到磁场变化时,对疑似缺陷位置进行更加细致的扫描。该扫描仪可对钢箱梁焊缝缺陷进行精确探测、定位,对缺陷宏观现象实时拍摄,并将扫描仪位置坐标化,提高了实桥焊缝检测的效率与质量,有效降低了检测成本。

Description

实桥焊缝扫描仪及其扫描方法 技术领域
本发明涉及一种无损检测的器材,具体涉及一种实桥焊缝扫描仪及其扫描方法。
背景技术
正交异性钢桥面板具有自重轻、抗扭刚度大、承载力高、施工周期短等优点,在大跨径缆索体系桥梁中得到了广泛运用。但钢箱梁构造复杂,在焊接过程中易产生较大的焊接残余应力,加上结构本身可能存在的缺陷及施工质量的影响,在服役过程中难免会产生损伤。随着桥梁服役年限的增加及交通流量的增长,钢箱梁逐渐产生各种病害,其中疲劳是具有代表性的病害之一。疲劳裂纹的产生不仅会对结构的受力产生不利影响,当裂纹裂透时还会引起桥面铺装层的损伤,雨水顺着裂纹进入钢箱梁内还会进一步引起箱梁锈蚀等问题。因此针对钢箱梁疲劳裂纹应尽早发现,尽早修复。
由于钢箱梁构造复杂,焊缝较多,对于钢箱梁重点部位连接焊缝的检查工作量大。目前国内钢箱梁焊缝的检查大多采用分阶段进行的方式,主要由检察人员通过目视对焊缝外观进行检查,效率较低且检查质量不高。超声波检测应用于实桥焊缝检测虽然精度得到一定程度的提升,但成本较高且超声波实桥检测技术尚未成熟,多用于工厂、实验室检测。
可见,设计一种成本低、效率高、精度好的实桥焊缝检测装置,已成为亟待解决的技术问题。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种实桥焊缝扫描仪及其扫描方法。
技术方案:为解决上述技术问题,本发明提供的实桥焊缝扫描仪包括安装在扫描仪机箱上的行走部分和扫描部分,所述扫描仪机箱首端和尾端均设有激光测距仪,所述扫描仪机箱的底部设有磁铁,所述扫描部分与行走部分之间联接有滑槽,该滑槽与行走装置的行走方向平行。在焊缝长度较长的情况下(如钢箱梁顶板与U肋焊缝,长度为一个仓的长度,为3~4m),通过激光测距仪可调整焊缝扫描仪前进方向平行于焊缝,此时焊缝扫描仪在工作过程中不会出现偏移原设定路线的情况,可实现对焊缝扫描仪前进位置 的精确控制。
作为优选,所述磁铁是人造永磁体,磁铁与钢箱梁内壁间的吸引力可实现焊缝扫描仪对箱梁顶部焊缝的扫描而不致掉落。
作为优选,所述扫描仪机箱内部设有电源与控制装置。电源可以合理分配焊缝扫描仪各部件正常工作室所需的电压,控制装置可采用变频器原件来精准控制探头马达与扫描仪驱动马达的转速,从而实现对探头移动速度、扫描仪前进速度的精确控制。
作为优选,所述控制装置与无线收发装置相连接。比如蓝牙信号接收发射装置,汇集到集成电路板的信号通过蓝牙发射器以无线的方式传送给客户端,从而实现对扫描过程的实时控制。
作为优选,所述扫描部分包括依次连接的探头滑块、可折弯金属管和探头,所述探头滑块上具有齿轮,所述齿轮与扫描仪机箱滑槽内部的齿条相啮合。当扫描仪前进道焊缝端部而无法行驶时,可通过探头马达的转动带动探头滑块在滑槽内的滑动,从而实现对剩余焊缝的扫描工作。可通过弯曲可弯折金属管实现在扫描前对探头位置的调整,提高扫描检测的精度。
作为优选,所述探头包括固定套筒、磁铁、磁致阻传感器和摄像头,所述磁铁安装在固定套筒内,所述磁致阻传感器安装在磁铁的端,所述摄像头固定安装在套筒外壁上。当扫描到焊缝缺陷时磁铁形成的磁场会发生变化,而磁致阻传感器会感应到这种变化并将变化信号传递给电路板,最终传递给客户端当磁致阻传感器检测到磁场变化时摄像头可立即对相应位置进行拍摄,从而可获得疑似缺陷部位的宏观图像。
作为优选,所述行走部分的车轮包裹有橡胶垫,实现焊缝扫描仪在前进过程中的平稳,避免颠簸对扫描精度的不利影响。所述扫描仪机箱壁设有一个导线通过孔,所述扫描仪机箱与探头滑块上具有USB接口,连接扫描仪机箱与探头滑块的USB连接线可顺利地实现对两者的连接。扫描仪机箱滑槽端部设有一个可拆卸的固定挡板,通过旋杆与固定插销实现与扫描仪机箱之间的连接,不用时可以先取下挡板,进而将扫描部分取出。
本发明同时提出上述实桥焊缝扫描仪的扫描方法,包括以下步骤:
焊缝扫描仪沿焊缝方向进行扫描,并将各部件的信号汇集到控制装置;
控制装置对行走部分及扫描部分进行控制,并将信号发送到客户端;
客户端对信号进行分析处理,根据初始设定的坐标位置可进一步获得疑似缺陷位置的坐标、宏观图像,且通过对焊缝扫描仪变频器的控制实现对焊缝扫描仪前进速度的控 制,可以在缺陷位置减慢行走速度,或利用滑槽使扫描部分往复运动,使焊缝扫描仪在检测到磁场变化时可对疑似缺陷位置进行更加细致的扫描。
使用时,本发明的实桥焊缝扫描仪,探头滑块、马达、可弯折金属管、磁铁固定套管、摄像头固定套管固接在一起,通过传动齿轮与齿条之间的相互作用可实现探头滑块在滑槽内的滑动。人造磁铁嵌入扫描仪机箱的人造磁铁嵌入孔内,利用人造磁铁与钢箱梁顶板或内壁构件之间的引力平衡重力对扫描仪的影响,实现焊缝扫描仪在钢箱梁顶板或内壁构件上的行走。USB接口在为摄像头、磁致阻传感器、探头马达提供工作所需电力的同时还可将图像、磁致阻传感器信号、马达转动速率等信息传递给扫描仪机箱,实现对探头工作的实时控制。激光测距仪可通过激光发射孔发射一束激光,若激光接收孔能够接收到发射出的激光,则表明扫描仪机箱与焊缝方向平行,从而实现对扫描仪行进方向的精准控制。扫描仪机箱内的电路板可将USB接口传输过来的信号进行汇总,并将扫描仪驱动马达的转速信号统一通过电路板上的蓝牙信号接收发射装置发射给外界连接在电脑上的蓝牙信号接收装置,电脑端则通过配套程序对接收到的信号进行处理,获得磁场变化情况、图像、焊缝扫描仪实时坐标等信息,实现对实桥焊缝的高效扫描。
在扫描仪机箱底部的人造磁铁,磁铁与钢箱梁内壁间的吸引力可实现焊缝扫描仪对箱梁顶部焊缝的扫描而不致掉落,如下式所述:
F=G扫描仪+C
其中F为人造磁铁与钢箱梁构件的引力;G扫描仪为扫描仪本身的重力;C为正数。
有益效果:本发明在行走部分焊缝沿焊缝前进的同时,由扫描部分进行扫描,当检测到磁场变化时,对疑似缺陷位置进行更加细致的扫描。实现了对钢箱梁焊缝缺陷的精确探测、定位、对缺陷宏观现象的实时拍摄、扫描仪位置坐标化等功能,解决了现阶段钢箱梁焊缝人工检测的耗时长、效率低、高成本等问题,提高了实桥焊缝检测的效率与质量,有效降低了检测成本。
除了上面所述的本发明解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的优点外,本发明的实桥焊缝扫描仪及其扫描方法所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的优点,将结合附图做出进一步详细的说明。
附图说明
图1为本装置的前视外观示意图;
图2为本装置的后视外观示意图;
图3为本装置的电路板位置剖视图;
图4为本装置的探头马达与齿条协同工作示意图;
图5为本装置的滑槽齿条情况剖视图;
图6为本装置的探头滑块内部结构剖视图;
图7为本装置的磁铁固定套筒、摄像头固定套筒的内部结构剖视图;
图8为本装置的实施示意图;
图9为本装置的探头部分移动工作示意图;
图10为本装置的坐标设置示意图;
图11为本装置的磁致阻传感器信号变化原理示意图;
图中:扫描仪机箱1,探头滑块2,探头滑块电路板放置孔2a,探头滑块线路孔2b、2c,探头马达3,传动齿轮3a,可弯折金属管4,磁铁固定套管5,磁铁安装孔5a,摄像头固定套管6,摄像头安装孔6a,齿条7,滑槽8,激光测距仪9,激光发射孔9a,激光接收孔9b,扫描仪车轮10,橡胶外套10a,第一人造磁铁11,第二人造磁铁16,人造磁铁嵌入孔11a,固定挡板12,旋杆13,固定插销14,圆孔15,磁致阻传感器17,导线通过孔18,第一USB接口19,第二USB接口20,电源开关21,电源接口22,电路板23,蓝牙信号接收发射装置24,探头线路孔25。
具体实施方式
实施例:
以对钢箱梁一个舱室的顶板与U肋连接焊缝进行扫描为例,如图1、图2、图5、图6和图7所示,该实桥焊缝扫描仪包括扫描仪机箱1,探头滑块2,探头滑块电路板放置孔2a,探头滑块线路孔2b、2c,探头马达3,传动齿轮3a,可弯折金属管4,磁铁固定套管5,磁铁安装孔5a,摄像头固定套管6,摄像头安装孔6a,齿条7,滑槽8,激光测距仪9,激光发射孔9a,激光接收孔9b,扫描仪车轮10,橡胶外套10a,第一人造磁铁11,第二人造磁铁16,人造磁铁嵌入孔11a,固定挡板12,旋杆13,固定插销14,圆孔15,磁致阻传感器17,导线通过孔18,第一USB接口19,第二USB接口20,电源开关21,电源接口22,电路板23,蓝牙信号接收发射装置24,探头线路孔25。人造磁铁11可嵌入扫描仪机箱1的底部,通过人造磁铁与钢箱梁内壁间的引力实现扫描仪 在钢箱梁顶部及内壁的顺利行走。探头滑块2可通过探头马达3与齿条7的相互作用实现在滑槽8内的滑动。固定挡板12可通过旋杆13与固定插销14实现对探头滑块2的固定,防止其掉落出滑槽8。激光测距仪9可校核扫描仪机箱1的位置,确保其前进方向与焊缝平行。
如图1、图2、图8、图9、图10所示,将焊缝扫描仪各部件进行安装,并将靠近磁致阻传感器的激光测距仪9顶到钢箱梁内壁,其对应的位置A即作为扫描仪前进的起点位置,在临时坐标系中的坐标设为A(0,0)。由于扫描部分的可弯折金属管4可以弯折,因此可根据实际需要调整磁致阻传感器17的位置。调整完毕后测得磁致阻传感器探头与坐标原点(即激光测距仪)间的距离为d1,将d1输入客户端程序内,即可得到扫描起点的坐标(d1,0)。外接电源通过电源接口22与扫描仪连接。打开焊缝扫描仪的电源开关21,若供电正常,则焊缝扫描仪会将供电正常信号sg通过蓝牙信号接收发射装置24发送给客户端。客户端通过对收到的蓝牙信号进行判断,并显示结果:
Figure PCTCN2017082558-appb-000001
如图3、图8、图11所示,焊缝扫描仪沿焊缝方向,即向量i的方向进行扫描,并将各部件的信号汇集到电路板23,并通过蓝牙信号接收发射装置24发送给客户端。电路板汇集的信号包括:供电信号sg、磁致阻传感器信号sc、扫描仪驱动马达转速sx1、探头马达转速sx2、摄像头拍摄图片信号st,其中供电信号sg、磁致阻传感器信号sc、扫描仪驱动马达转速sx1、探头马达转速sx2组成一个信号矩阵A={sg,sc,sx1,sx2},并客户端将A与一个单位矩阵
Figure PCTCN2017082558-appb-000002
进行乘运算A·B,获得接收到的信号数字矩阵C={a,b,c,d},从而客户端可对C矩阵内的信息进行处理。如:
(1)获取疑似缺陷F位置的坐标
客户端程序对接收到的磁致阻传感器信号sc进行处理,若信号sc有变化,则b=1,则由式x=d1+c·t·α可计算得到扫描仪行驶的距离,从而得到缺陷位置的坐标为(d1+c·t·α,0)。其中c为扫描仪驱动马达的转速,可通过电路板23上的变频器进行控制;t为焊缝扫描仪前进的时间;α为转换系数,代表扫描仪驱动马达传动齿轮转动一圈下扫描仪前进的距离,具体视扫描仪驱动马达传动齿轮的具体参数而定。
(2)获取疑似缺陷位置的宏观照片
客户端程序对接收到的信号进行处理,若此时磁致阻传感器检测到磁场变化,则由客户端程序发送指令,此时扫描仪机箱内的电路板对指令进行识别并执行指令,执行指令后摄像头即进行一次拍摄操作,并将获得的图片信号st发送给客户端。客户端程序对接收到的信号st进行处理即可得到疑似缺陷区域的宏观图像。
如图4、图8、图9所示,当焊缝扫描仪走到焊缝尽头时,由于扫描仪机箱本身具有一定的尺寸,此时扫描探头可通过左右移动完成对剩余焊缝的扫描。客户端程序可自动判断扫描仪是否到达焊缝的尽头:
Figure PCTCN2017082558-appb-000003
其中L为钢箱梁舱室的长度(即焊缝全长);D为焊缝扫描仪的长度。客户端并将判断结果发送给扫描仪机箱,扫描仪机箱根据接收到的信号sstop来控制焊缝扫描仪的运动状态,其中sstop=1表示停止,sstop=0表示前进。sx2=1表示此时探头马达开始工作,并将转速信息反馈给客户端程序。设齿条8的长度为lc,客户端程序可自动控制探头滑块2左右移动的距离,即:
Figure PCTCN2017082558-appb-000004
其中d为信号矩阵C={a,b,c,d}中的值;t1为探头马达2转动的时间;β为转换系数,表示探头马达2转动一圈探头滑块移动的距离;λ为剩余焊缝长度与齿条长度间的比值,可按下式取值,其中n为激光测距仪的长度,m为磁致阻传感器中心到坐标原点的距离:
Figure PCTCN2017082558-appb-000005
扫描结束后关闭焊缝扫描机电源,将固定插销14拔出,去除扫描探头部分,收好USB数据线及电源线,保存好焊缝扫描仪;也可以将焊缝扫描仪放到下一个扫描的起点继续进行扫描工作。此时可利用客户端程序对此次扫描过程中的数据进行保存,以便于后续的对比分析。

Claims (8)

  1. 一种实桥焊缝扫描仪,包括安装在扫描仪机箱上的行走部分和扫描部分,其特征在于:所述扫描仪机箱首端和尾端均设有激光测距仪,所述扫描仪机箱的底部设有磁铁,所述扫描部分与行走部分之间联接有滑槽。
  2. 根据权利要求1所述的实桥焊缝扫描仪,其特征在于:所述磁铁是人造永磁体。
  3. 根据权利要求1所述的实桥焊缝扫描仪及其扫描方法,其特征在于:所述扫描仪机箱内部设有电源与控制装置。
  4. 根据权利要求3所述的实桥焊缝扫描仪,其特征在于:所述控制装置与无线收发装置相连接。
  5. 根据权利要求1所述的实桥焊缝扫描仪,其特征在于:所述扫描部分包括依连接的探头滑块、可折弯金属管和探头,所述探头滑块上具有齿轮,所述齿轮与滑槽内部的齿条相啮合。
  6. 根据权利要求5所述的实桥焊缝扫描仪,其特征在于:所述探头包括固定套筒、磁铁、磁致阻传感器和摄像头,所述磁铁安装在固定套筒内,所述磁致阻传感器安装在磁铁的端,所述摄像头固定安装在套筒外壁上。
  7. 根据权利要求1所述的实桥焊缝扫描仪,其特征在于:所述行走部分的车轮包裹有橡胶垫,所述扫描仪机箱壁设有一个导线通过孔,所述扫描仪机箱与探头滑块上具有USB接口,扫描仪机箱滑槽端部设有可拆卸的固定挡板。
  8. 根据权利要求1所述的实桥焊缝扫描仪的扫描方法,其特征在于:
    焊缝扫描仪沿焊缝方向进行扫描,并将各部件的信号汇集到控制装置;
    控制装置对行走部分及扫描部分进行控制,并将信号发送到客户端;
    客户端对信号进行分析处理,根据初始设定的坐标位置可进一步获得疑似缺陷位置的坐标、宏观图像,且通过对焊缝扫描仪变频器的控制实现对焊缝扫描仪前进速度的控制,使焊缝扫描仪在检测到磁场变化时可对疑似缺陷位置进行更加细致的扫描。
PCT/CN2017/082558 2016-06-13 2017-04-28 实桥焊缝扫描仪及其扫描方法 WO2017215359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/309,174 US10788432B2 (en) 2016-06-13 2017-04-28 Weld scanner for real-life bridge and scanning method thereof
AU2017284540A AU2017284540B2 (en) 2016-06-13 2017-04-28 Weld scanner for real-life bridge and scanning method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610412408.9 2016-06-13
CN201610412408.9A CN106053592B (zh) 2016-06-13 2016-06-13 实桥焊缝扫描仪及其扫描方法

Publications (1)

Publication Number Publication Date
WO2017215359A1 true WO2017215359A1 (zh) 2017-12-21

Family

ID=57171151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082558 WO2017215359A1 (zh) 2016-06-13 2017-04-28 实桥焊缝扫描仪及其扫描方法

Country Status (4)

Country Link
US (1) US10788432B2 (zh)
CN (1) CN106053592B (zh)
AU (1) AU2017284540B2 (zh)
WO (1) WO2017215359A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426449A (zh) * 2019-08-01 2019-11-08 捷航设备制造股份有限公司 一种同时在线探伤双制动梁磁粉探伤机
CN113984768A (zh) * 2021-12-24 2022-01-28 佛山隆深机器人有限公司 一种焊缝焊接视觉追踪检测装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053592B (zh) 2016-06-13 2018-04-20 河海大学 实桥焊缝扫描仪及其扫描方法
CN107238602A (zh) * 2017-06-12 2017-10-10 鲁东大学 一种用于检测混凝土裂缝和钢筋锈蚀的检测机器人
WO2019050550A2 (en) * 2017-09-11 2019-03-14 Methode Electronics, Inc. CONNECTABLE MODULE WITH COAXIAL CONNECTOR INTERFACE
CN109596799B (zh) * 2018-12-12 2023-11-10 四川纽赛特工业机器人制造有限公司 一种焊缝检测装置
CN110044925B (zh) * 2019-05-21 2024-08-06 上海黑塞智能科技有限公司 一种正交异性钢箱梁过焊孔裂纹长期监测装置
CN110865600B (zh) * 2019-11-29 2024-08-23 成都建筑材料工业设计研究院有限公司 一种大跨距转体桥精确控制系统及方法
CN112084561B (zh) * 2020-09-11 2022-09-13 重庆交通大学 一种顶推施工大跨轨道钢箱叠合梁桥施工控制方法
CN113406088A (zh) * 2021-05-10 2021-09-17 同济大学 一种定点式钢箱梁裂纹发展观测装置
CN113267503A (zh) * 2021-05-12 2021-08-17 同济大学 一种吸附式钢结构线性扫描装置
CN113894457B (zh) * 2021-10-27 2023-06-27 湖南恒岳重钢钢结构工程有限公司 一种钢结构桥梁节点焊接设备及其方法
CN116794048B (zh) * 2023-06-26 2024-05-28 中国公路工程咨询集团有限公司 一种桥梁裂缝检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128189A (ja) * 1989-10-13 1991-05-31 Kawasaki Heavy Ind Ltd 溶接継手検査台車
CN102139398A (zh) * 2011-04-15 2011-08-03 中铁山桥集团有限公司 正交异性板u形肋角焊缝双面焊技术
CN104391033A (zh) * 2014-11-18 2015-03-04 浙江大学 金属磁记忆钢轨焊缝检测装置
CN204228622U (zh) * 2014-11-20 2015-03-25 九江银星造船股份有限公司 一种焊缝无损检测装置
CN104977351A (zh) * 2015-07-29 2015-10-14 高兴 一种焊缝的检测系统和检测方法
CN106053592A (zh) * 2016-06-13 2016-10-26 河海大学 实桥焊缝扫描仪及其扫描方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2585229Y (zh) * 2002-12-19 2003-11-05 林俊明 涡流/视频一体化检测装置
US7292029B2 (en) * 2004-10-28 2007-11-06 The Boeing Company Method for detecting substructure
CN201056237Y (zh) * 2007-04-17 2008-05-07 中国石油天然气管道局 大型储罐相控阵超声波检测的磁吸附爬行装置
US20090161212A1 (en) * 2007-12-21 2009-06-25 Gough Yuma E Weld viewing
GB2457496B (en) * 2008-02-15 2010-10-20 Ge Inspection Technologies Ltd A method and apparatus for phase sensitive detection of eddy current measurements
CN201429588Y (zh) * 2009-07-15 2010-03-24 北京欧宁航宇检测技术有限公司 大型工件焊缝自动超声扫查器
CN102507727A (zh) * 2011-10-19 2012-06-20 合肥工业大学 一种基于巨磁效应的金属磁记忆检测实验平台及其应用
CN102879458B (zh) * 2012-08-07 2014-12-31 包胜 一种基于压磁效应的损伤检测仪
US9962785B2 (en) * 2013-12-12 2018-05-08 Lincoln Global, Inc. System and method for true electrode speed
CN103698391A (zh) * 2014-01-09 2014-04-02 重庆交通大学 钢筋混凝土桥梁钢筋锈蚀无损检测装置及方法
CN104155363B (zh) * 2014-08-11 2017-01-18 绵阳创智机电科技有限公司 一种多功能轨道焊缝探伤扫查仪
CN105527978B (zh) * 2014-09-29 2019-01-11 宝山钢铁股份有限公司 提离值控制装置及控制方法
CN104698074A (zh) * 2015-03-25 2015-06-10 西南石油大学 一种储罐罐壁缺陷的漏磁检测爬壁装置及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128189A (ja) * 1989-10-13 1991-05-31 Kawasaki Heavy Ind Ltd 溶接継手検査台車
CN102139398A (zh) * 2011-04-15 2011-08-03 中铁山桥集团有限公司 正交异性板u形肋角焊缝双面焊技术
CN104391033A (zh) * 2014-11-18 2015-03-04 浙江大学 金属磁记忆钢轨焊缝检测装置
CN204228622U (zh) * 2014-11-20 2015-03-25 九江银星造船股份有限公司 一种焊缝无损检测装置
CN104977351A (zh) * 2015-07-29 2015-10-14 高兴 一种焊缝的检测系统和检测方法
CN106053592A (zh) * 2016-06-13 2016-10-26 河海大学 实桥焊缝扫描仪及其扫描方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426449A (zh) * 2019-08-01 2019-11-08 捷航设备制造股份有限公司 一种同时在线探伤双制动梁磁粉探伤机
CN113984768A (zh) * 2021-12-24 2022-01-28 佛山隆深机器人有限公司 一种焊缝焊接视觉追踪检测装置

Also Published As

Publication number Publication date
US10788432B2 (en) 2020-09-29
CN106053592A (zh) 2016-10-26
AU2017284540B2 (en) 2019-09-19
AU2017284540A1 (en) 2019-01-31
US20190331610A1 (en) 2019-10-31
CN106053592B (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2017215359A1 (zh) 实桥焊缝扫描仪及其扫描方法
Huang et al. Inspection equipment study for subway tunnel defects by grey-scale image processing
CN108657223B (zh) 一种城市轨道交通自动巡检系统及隧道形变检测方法
CN102901772B (zh) 焊缝智能跟踪超声检测机器人及其软件分析系统
JP3600230B2 (ja) 建築および土木構造物計測・解析システム
WO2020093436A1 (zh) 管道内壁的三维重建方法
JP6633454B2 (ja) 変状部の検出方法
JP2018128278A (ja) 打音検査装置及び打撃検査システム
JPWO2017169516A1 (ja) 無人飛行装置制御システム、無人飛行装置制御方法および検査装置
CN101750022B (zh) 烧结铺料厚度在线检测方法
CN101294917A (zh) 一种采用水下机器人对于输水道井内检测的方法
JPWO2016139929A1 (ja) 欠陥検査装置、欠陥検査方法及びプログラム
WO2008061365A1 (en) System and method for inspecting the interior surface of a pipeline
JP2018081076A (ja) 試験体の非破壊評価のためのシステム及び方法
CN103674963A (zh) 一种基于数字全景摄像的隧道检测装置及其检测方法
KR102083129B1 (ko) 자기 위치 추종 기능을 가진 배관 내부 검사용 주행체
CN110296689B (zh) 一种航空成像相机中摆扫图像重叠率测试装置及方法
CN101183151A (zh) 一种井底落物超声成像探测方法及装置
JPH10281927A (ja) 風洞試験模型の位置・姿勢角計測装置
JP2020016667A (ja) 変状部の検査装置
CN209961692U (zh) 一种正交异性钢箱梁焊缝表观图像采集装置
KR102421133B1 (ko) 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템
JP5330778B2 (ja) 管路内作業装置モニタシステム
JP2019082403A (ja) 検査装置および検査方法
WO2020042777A1 (zh) 一种智能化的支架构配件质量检测评估系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017284540

Country of ref document: AU

Date of ref document: 20170428

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17812471

Country of ref document: EP

Kind code of ref document: A1