WO2020042777A1 - 一种智能化的支架构配件质量检测评估系统及方法 - Google Patents

一种智能化的支架构配件质量检测评估系统及方法 Download PDF

Info

Publication number
WO2020042777A1
WO2020042777A1 PCT/CN2019/095578 CN2019095578W WO2020042777A1 WO 2020042777 A1 WO2020042777 A1 WO 2020042777A1 CN 2019095578 W CN2019095578 W CN 2019095578W WO 2020042777 A1 WO2020042777 A1 WO 2020042777A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
evaluation
target object
laser
track
Prior art date
Application number
PCT/CN2019/095578
Other languages
English (en)
French (fr)
Inventor
冯晓楠
张建东
刘朵
桂志敬
田俊峰
Original Assignee
苏交科集团检测认证有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏交科集团检测认证有限公司 filed Critical 苏交科集团检测认证有限公司
Publication of WO2020042777A1 publication Critical patent/WO2020042777A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present disclosure relates to the technology for detecting and evaluating the geometrical quality of scaffolding accessories, and in particular, to an intelligent system and method for detecting and evaluating the quality of supporting structure accessories.
  • scaffolding or full-frame load-bearing brackets are an important temporary support structure in civil engineering.
  • most of the scaffolding structure parts have been used repeatedly for many times, and the majority of their geometric dimensions will not meet the requirements due to deformation.
  • the current detection methods are more traditional and are only limited to the use of tape measures, vernier calipers, thickness gauges, etc. This detection method is extremely inefficient, and the errors caused by subjective factors are extremely large, which cannot meet the current construction requirements. Security risks.
  • At least part of the embodiments of the present disclosure provide an intelligent system and method for quality inspection and evaluation of support structure accessories, so as to improve the efficiency and accuracy of geometrical quality detection of scaffold structure accessories.
  • an intelligent support structure component quality detection and evaluation system including:
  • Scaffolding accessories model database set to store standard 3D models of scaffolding
  • 3D laser scanning system set to scan the scaffold to be evaluated
  • a 3D model system configured to convert a scanning result of the 3D laser scanning system into a 3D stereo model of a target object
  • the data comparison and analysis unit is configured to compare and analyze the 3D solid model of the target object and the corresponding standard 3D model in the scaffold architecture accessory model database for further evaluation;
  • the evaluation result output unit is configured to output an evaluation result.
  • the 3D laser scanning system includes a plurality of laser emitters arranged in a matrix and having a unique number.
  • the 3D laser scanning system includes a laser emitter, and the laser emitter moves along a track in a horizontal direction driven by a servo motor;
  • the two ends of the track are respectively fixed on the two screw nut structures, and the screw nut structure drives the track to move up and down during the rotation of the screw rod.
  • the laser transmitter moves along a track in a horizontal direction driven by a servo motor.
  • the laser transmitter is mounted on a transport trolley, and the transport trolley includes two symmetrical two Conical rollers are respectively attached to the orbits of the trapezoidal cross section.
  • Four of the conical rollers are provided to support the laser emitter, and one of the conical rollers is connected to a servo motor;
  • the track is an iron structure
  • the tapered roller wheel body is an electromagnet structure
  • the servo motor is energized while supplying power to the tapered roller, so that the tapered roller is magnetically attached to the surface of the track.
  • the outer wall of the tapered roller is covered with a rubber structure.
  • an intelligent quality inspection and evaluation of a branch structure accessory including the following steps:
  • the scan data is transmitted to the 3D model system to generate a 3D model of the target object;
  • the data comparison and analysis unit performs a comparative analysis on the 3D model of the target object and the standard 3D model, and outputs the evaluation result, thereby completing the geometric dimension quality evaluation of the scaffold.
  • the 3D laser scanning system obtains data of each structural point of the scaffold to be evaluated through scanning, and the 3D model system generates the data by performing desalination, repair, optimization, and coordinate conversion processing on the data. 3D model of the target object.
  • the data comparison and analysis unit uses MATLAB software for data processing.
  • the above technical solutions are based on the scaffold architecture accessory model database, 3D laser scanning system, 3D model system, data comparison analysis unit, and evaluation result output unit, which realizes rapid transmission of model data, comparison analysis, and result output, which is fast, convenient, and efficient.
  • the analysis of the geometric dimension quality based on the database of the scaffolding accessories model is also more comprehensive, and problems can be found in time, which greatly improves the efficiency of geometrical quality detection of the scaffolding accessories.
  • FIG. 1 is a flowchart of an intelligent branch structure component quality detection and evaluation system according to one embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a 3D laser scanning system according to one embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a 3D laser scanning system according to another embodiment of the present disclosure.
  • FIG. 4 is a left side view of the 3D laser scanning system shown in FIG. 3 according to one embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a transport cart according to one embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a tapered roller according to one embodiment of the present disclosure.
  • an intelligent support structure component quality detection and evaluation system which includes: a scaffolding architecture component model database 1 configured to store a standard 3D model of a scaffolding; a 3D laser scanning system 2, It is set to use 3D laser scanning technology to realize the 3D stereo scanning of the scaffold to be evaluated; 3D model system 3 is set to form the scanning result of the 3D laser scanning system 2 into a 3D stereo model of the target object, and its error can be controlled within 0.005mm ;
  • the data comparison and analysis unit 4 is configured to compare and analyze the 3D stereoscopic model of the target object and the corresponding standard 3D model in the scaffold architecture accessory model database 1 for further evaluation.
  • the main comparison parameters include length, thickness, diameter, and deformation. , Distance, etc .; the evaluation result output unit 5 is configured to output the evaluation result.
  • the 3D laser scanning system 2 includes a plurality of laser emitters 21 arranged in a matrix and having a unique number; the structure of the scaffold is determined by the reflection of the scaffold to the laser light.
  • the accuracy of the scanning result can be controlled by adjusting the density of the laser transmitter 21, wherein the laser transmitter 21 can determine the distance between a measured point on the scaffold to be evaluated and the emitting end of the laser transmitter 21 through the stroke of the laser. The distance between them, thus determining a structural point.
  • the depth measurement of scaffolding points in one direction can be achieved by several laser emitters 21 arranged in a matrix. The information obtained in this direction can be compared with the direction information of the standard model in the scaffolding architecture model database 1 to complete the scaffolding.
  • the 3D laser scanning system 2 includes a laser emitter 21, The laser transmitter 21 is driven by the servo motor to move laterally along the track 22; the two ends of the track 22 are respectively fixed to the two screw nut structures 23, and the screw nut structure 23 drives the track 22 to move up and down during the rotation of the screw rod.
  • the point-by-point scanning of the scaffold to be evaluated can be realized in the form of pulses, so as to interact with multiple laser transmitters. 21 for the same purpose.
  • the laser transmitter 21 moves laterally along the track 22 driven by a servo motor.
  • the laser transmitter 21 is mounted on a transport cart, and the transport cart includes four tapered rollers 24 symmetrical to each other.
  • the four tapered rollers 24 are connected to the bracket 25 for supporting the laser transmitter 21, and one of the tapered rollers 24 is connected to the servo motor 26.
  • the track 22 is an iron structure and has a tapered shape.
  • the roller body of the roller 24 is an electromagnet structure.
  • the servo motor 26 is energized while supplying power to the tapered roller 24, so that the tapered roller 24 is magnetically attached to the surface of the track 22, and the transportation trolley is placed along the track by the setting of the tapered roller 24.
  • the cone body is set to The electromagnet structure guarantees the smoothness of the operation through the electromagnetic absorption after the car is started, thereby ensuring the quality evaluation result.
  • the outer wall of the tapered roller 24 is covered with a rubber structure 27.
  • the arrangement of the rubber structure 27 can make the attachment of the tapered roller 24 and the track 22 more flexible, avoid noise caused by hard friction, and also overcome bumps caused by unevenness of the surface of the track 22.
  • an intelligent method for detecting and evaluating the quality of accessory components of a supporting structure including the following steps:
  • Step S1 the 3D laser scanning system 2 performs a three-dimensional scanning on the scaffold to be evaluated;
  • Step S2 the scan data is transmitted to the 3D model system 3 to generate a 3D model of the target object;
  • Step S3 the 3D model of the target object and the standard 3D model of the target object in the scaffolding architecture model database 1 are transmitted to the data comparison and analysis unit 4;
  • step S4 the data comparison and analysis unit 4 performs a comparative analysis on the 3D model of the target object and the standard 3D model, and outputs the evaluation result, thereby completing the quality evaluation of the scaffold.
  • the 3D laser scanning system 2 obtains the data of each structural point of the scaffold to be evaluated through scanning work
  • the 3D model system 3 obtains the data by de-drying, repairing, optimizing, and processing the coordinate conversion data. Generate a 3D model of the target object.
  • the data comparison and analysis unit 4 uses MATLAB software for data processing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种智能化的支架构配件质量检测评估系统及方法,系统包括:脚手架构配件模型数据库(1),设置为对标准的脚手架3D模型进行储存;3D激光扫描系统(2),设置为对待评估的脚手架进行扫描;3D模型系统(3),设置为将3D激光扫描系统(2)的扫描结果形成目标对象的3D立体模型;数据对比分析单元(4),设置为对比分析目标对象的3D立体模型和脚手架构配件模型数据库(1)中相应的标准3D模型,进而进行评估;评估结果输出单元(5),设置为对评估结果进行输出。该系统基于脚手架构配件模型数据库(1),对几何尺寸质量的分析也更加全面,可以及时发现问题,极大程度提高脚手架构配件几何尺寸质量检测的效率。

Description

一种智能化的支架构配件质量检测评估系统及方法
交叉援引
本公开基于申请号为201811013364.8、申请日为2018-08-31的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及脚手架构配件几何尺寸质量检测与评估技术,具体涉及一种智能化的支架构配件质量检测评估系统及方法。
背景技术
目前,在土木工程中脚手架或满堂承重支架是一种重要的临时支撑结构,但大多数脚手架构配件被经过多次重复周转使用,其几何尺寸绝大多数会因变形而不满足要求。而目前的检测方法比较传统,还仅仅限于使用卷尺、游标卡尺、测厚仪等,此种检测方法效率极低,而且由于主观因素导致的误差极大,不能满足现在的施工要求,存在极大的安全隐患。
发明内容
本公开至少部分实施例提供了一种智能化的支架构配件质量检测评估系统及方法,以提高脚手架构配件几何尺寸质量检测的效率和准确度。
在本公开其中一实施例中,提供了一种智能化的支架构配件质量检测评估系统,包括:
脚手架构配件模型数据库,设置为对标准的脚手架3D模型进行储存;
3D激光扫描系统,设置为对待评估的脚手架进行扫描;
3D模型系统,设置为将所述3D激光扫描系统的扫描结果转化成目标对象的3D立体模型;
数据对比分析单元,设置为对比分析目标对象的3D立体模型和所述脚手架构配件模型数据库中相应的标准3D模型,进而进行评估;
评估结果输出单元,设置为对评估结果进行输出。
在一个可选实施例中,所述3D激光扫描系统包括成矩阵设置,且具有唯一编号的若干激光发射器。
在一个可选实施例中,所述3D激光扫描系统包括一激光发射器,所述激光发射器在伺服电机的带动下沿轨道沿水平方向移动;
所述轨道的两端分别固定于两丝杠螺母结构上,所述丝杠螺母结构在丝杆转动的过程中带动所述轨道上下运动。
在一个可选实施例中,所述激光发射器在伺服电机的带动下沿轨道沿水平方向移动具体为,所述激光发射器安装于运输小车上,所述运输小车包括两两对称的四个锥形滚轮,分别与梯形截面的所述轨道贴合,四个所述锥形滚轮设置为对所述激光发射器进行支撑的支架连接,其中一所述锥形滚轮与伺服电机连接;
所述轨道为铁结构,所述锥形滚轮轮体为电磁铁结构,所述伺服电机通电同时对所述锥形滚轮供电,从而使得所述锥形滚轮因磁性贴紧于所述轨道表面。
在一个可选实施例中,所述锥形滚轮外壁包覆橡胶结构。
在本公开其中一实施例中,还提供了一种智能化的支架构配件质量检测评估,包括如下步骤:
3D激光扫描系统立体扫描待评估的脚手架;
扫描数据传输给3D模型系统,生成目标对象的3D模型;
将目标对象的3D模型及脚手架构配件模型数据库中目标对象的标准3D模型传输给数据对比分析单元;
数据对比分析单元针对目标对象的3D模型和标准3D模型进行对比分析,并将评估结果输出,从而完成脚手架的几何尺寸质量评估。
在一个可选实施例中,所述3D激光扫描系统通过扫描工作得到待评估脚手架各结构点的数据,所述3D模型系统通过对所述数据进行去燥、修补、 优化和坐标转换处理后生成目标对象的3D模型。
在一个可选实施例中,所述数据对比分析单元采用MATLAB软件进行数据处理。
通常上述技术方案,基于脚手架构配件模型数据库、3D激光扫描系统、3D模型系统、数据对比分析单元、评估结果输出单元,实现模型数据的快速传输、对比分析以及结果输出,快速、方便、高效,基于脚手架构配件模型数据库对几何尺寸质量的分析也更加全面,可以及时发现问题,极大程度提高脚手架构配件几何尺寸质量检测的效率。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,并可依照说明书的内容予以实施,以下以本公开的较佳实施例并配合附图详细说明如后。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开其中一实施例的智能化的支架构配件质量检测评估系统的流程图。
图2是根据本公开其中一实施例的3D激光扫描系统的结构示意图。
图3是根据本公开另一实施例的3D激光扫描系统的结构示意图。
图4是根据本公开其中一实施例的图3所示的3D激光扫描系统的左视图。
图5是根据本公开其中一实施例的运输小车的结构示意图。
图6是根据本公开其中一实施例的锥形滚轮的剖视图。
图中标记含义:脚手架构配件模型数据库1、3D激光扫描系统2、激光发射器21、轨道22、丝杠螺母结构23、锥形滚轮24、支架25、伺服电 机26、3D模型系统3、数据对比分析单元4、评估结果输出单元5。
具体实施方式
为更进一步阐述本公开为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本公开的具体实施方式详细说明如后。
在本公开其中一实施例中,提供了一种智能化的支架构配件质量检测评估系统,包括:脚手架构配件模型数据库1,设置为对标准的脚手架3D模型进行储存;3D激光扫描系统2,设置为采用3D激光扫描技术实现待评估脚手架的三维立体扫描;3D模型系统3,设置为将3D激光扫描系统2的扫描结果形成目标对象的3D立体模型,其误差目前可控制在0.005mm之内;数据对比分析单元4,设置为对比分析目标对象的3D立体模型和所述脚手架构配件模型数据库1中相应的标准3D模型,进而进行评估,其中,主要对比参数包括长度、厚度、直径、变形、距离等;评估结果输出单元5,设置为对评估结果进行输出。
在一个可选实施例中,3D激光扫描系统2包括成矩阵设置,且具有唯一编号的若干激光发射器21;通过待评估的脚手架对激光的反射来确定所述脚手架的结构。本优选方案中,通过调整激光发射器21的密度,可控制扫描结果的精度,其中,激光发射器21可通过激光的行程确定待评价的脚手架上某被测量点与激光发射器21发射端之间的距离,从而确定一个结构点。通过成矩阵设置的若干激光发射器21可实现在一个方向上脚手架各点的深度测量,将该方向获得的信息,与脚手架构配件模型数据库1中的标准模型的该方向信息进行对比可完成脚手架几何尺寸的质量评估系统。若为了的提高评估的准确度,可对上述方法进行重复实施,从而获得脚手架各个方向上各点的深度信息,从而实现多方位的几何尺寸质量评估。但是本技术方案在实施的过程中,由于激光发射器21的数量过多,导致零部件成本和控制成本较高,以下优化方案,解决上述问题,3D激光扫描系统2包括一激光发射器21,激光发射器21在伺服电机的带动下沿轨道22横向移动;轨道22的两端分别固定于两丝杠螺母结构23上,丝杠螺母结构23 在丝杆转动的过程中带动轨道22上下运动,通过上述方式,可在激光发射器21横向往复和纵向自下而上或自上而下运动的过程中,通过脉冲的形式实现对待评估脚手架逐点的扫描,从而起到与多个激光发射器21同样的目的。
在一个可选实施例中,激光发射器21在伺服电机的带动下沿轨道22横向移动具体为,激光发射器21安装于运输小车上,运输小车包括两两对称的四个锥形滚轮24,分别与梯形截面的轨道22贴合,四个锥形滚轮24设置为对激光发射器21进行支撑的支架25连接,其中一锥形滚轮24与伺服电机26连接;轨道22为铁结构,锥形滚轮24轮体为电磁铁结构,伺服电机26通电同时对锥形滚轮24供电,从而使得锥形滚轮24因磁性贴紧于轨道22表面,通过锥形滚轮24的设置,在放置运输小车沿轨道22左右晃动的同时,保证了滚动接触的有效性,其中,因为激光发射器21的发射和对激光的接收精度影响到整个待评估脚手架的尺寸扫描精度,因此通过将锥形轮体主体设置为电磁铁结构,在小车启动后通过电磁的吸附作用保证运行的平稳性,从而保证质量评估的结果。
在一个可选实施例中,锥形滚轮24外壁包覆橡胶结构27。橡胶结构27的设置,可使得锥形滚轮24与轨道22的贴个更加柔性化,避免硬性摩擦引起的噪音,同时也可克服因轨道22表面不平整而造成的颠簸。
在本公开其中一实施例中,还提供了一种智能化的支架构配件质量检测评估方法,包括如下步骤:
步骤S1,3D激光扫描系统2立体扫描待评估的脚手架;
步骤S2,扫描数据传输给3D模型系统3,生成目标对象的3D模型;
步骤S3,目标对象的3D模型及脚手架构配件模型数据库1中目标对象的标准3D模型传输给数据对比分析单元4;
步骤S4,数据对比分析单元4针对目标对象的3D模型和标准3D模型进行对比分析,并将评估结果输出,从而完成脚手架的质量评估。
在一个可选实施例中,3D激光扫描系统2通过扫描工作得到待评估脚手架各结构点的数据,3D模型系统3通过对所述数据进行去燥、修补,优 化,坐标转换数据处处理后得到生成目标对象的3D模型。
在一个可选实施例中,数据对比分析单元4采用MATLAB软件进行数据处理。
以上所述,仅是本公开的较佳实施例而已,并非对本公开作任何形式上的限制,虽然本公开已以较佳实施例揭露如上,然而并非用以限定本公开,任何熟悉本专业的技术人员,在不脱离本公开技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本公开技术方案的范围内。

Claims (8)

  1. 一种智能化的支架构配件质量检测评估系统,包括:
    脚手架构配件模型数据库(1),设置为对标准的脚手架3D模型进行储存;
    3D激光扫描系统(2),设置为对待评估的脚手架进行扫描;
    3D模型系统(3),设置为将所述3D激光扫描系统(2)的扫描结果转化成目标对象的3D立体模型;
    数据对比分析单元(4),设置为对比分析目标对象的3D立体模型和所述脚手架构配件模型数据库(1)中相应的标准3D模型,进而进行评估;
    评估结果输出单元(5),设置为对评估结果进行输出。
  2. 根据权利要求1所述智能化的支架构配件质量检测评估系统,其中,所述3D激光扫描系统(2)包括成矩阵设置,且具有唯一编号的若干激光发射器(21)。
  3. 根据权利要求1所述智能化的支架构配件质量检测评估系统,其中,所述3D激光扫描系统(2)包括一激光发射器(21),所述激光发射器(21)在伺服电机的带动下沿轨道(22)沿水平方向移动;
    所述轨道(22)的两端分别固定于两丝杠螺母结构(23)上,所述丝杠螺母结构(23)在丝杆转动的过程中带动所述轨道(22)上下运动。
  4. 根据权利要求3所述的智能化的支架构配件质量检测评估系统,其中,所述激光发射器(21)在伺服电机的带动下沿轨道(22)沿水平方向移动具体为,所述激光发射器(21)安装于运输小车上,所述运输小车包括两两对称的四个锥形滚轮(24),分别与梯形截面的所述轨道(22)贴合,四个所述锥形滚轮(24)设置为对所述激光发射器(21)进行支撑的支架(25)连接,其中一所述锥形滚轮(24)与伺服电机(26)连接;
    所述轨道(22)为铁结构,所述锥形滚轮(24)轮体为电磁铁结构,所述伺服电机(26)通电同时对所述锥形滚轮(24)供电,从而使得所述锥形滚轮(24)因磁性贴紧于所述轨道(22)表面。
  5. 根据权利要求4所述的智能化的支架构配件质量检测评估系统, 其中,所述锥形滚轮(24)外壁包覆橡胶结构(27)。
  6. 一种智能化的支架构配件质量检测评估方法,包括如下步骤:
    3D激光扫描系统(2)立体扫描待评估的脚手架;
    扫描数据传输给3D模型系统(3),生成目标对象的3D模型;
    将目标对象的3D模型及脚手架构配件模型数据库(1)中目标对象的标准3D模型传输给数据对比分析单元(4);
    数据对比分析单元(4)针对目标对象的3D模型和标准3D模型进行对比分析,并将评估结果输出,从而完成脚手架的几何尺寸质量评估。
  7. 根据权利要求6所述的智能化的支架构配件质量检测评估方法,其中,所述3D激光扫描系统(2)通过扫描工作得到待评估脚手架各结构点的数据,所述3D模型系统(3)通过对所述数据进行去燥、修补、优化和坐标转换处理后生成目标对象的3D模型。
  8. 根据权利要求6所述的智能化的支架构配件质量检测评估方法,其中,所述数据对比分析单元(4)采用MATLAB软件进行数据处理。
PCT/CN2019/095578 2018-08-31 2019-07-11 一种智能化的支架构配件质量检测评估系统及方法 WO2020042777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811013364.8 2018-08-31
CN201811013364.8A CN108931208A (zh) 2018-08-31 2018-08-31 一种智能化的支架构配件质量检测评估系统及方法

Publications (1)

Publication Number Publication Date
WO2020042777A1 true WO2020042777A1 (zh) 2020-03-05

Family

ID=64443323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095578 WO2020042777A1 (zh) 2018-08-31 2019-07-11 一种智能化的支架构配件质量检测评估系统及方法

Country Status (2)

Country Link
CN (1) CN108931208A (zh)
WO (1) WO2020042777A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931208A (zh) * 2018-08-31 2018-12-04 苏交科集团股份有限公司 一种智能化的支架构配件质量检测评估系统及方法
CN113358068B (zh) * 2021-04-26 2023-06-20 福建数博讯信息科技有限公司 一种落地式脚手架的校正方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644861A (zh) * 2013-12-09 2014-03-19 中联重科股份有限公司 工程机械设备的臂架成型精度的分析系统及分析方法
CN103983192A (zh) * 2014-06-03 2014-08-13 齐鲁工业大学 一种零件质量缺陷检测仪及利用该检测仪进行检测的方法
CN104048624A (zh) * 2014-07-04 2014-09-17 中国二十二冶集团有限公司 脚手架垂直度激光检测设备及检测方法
CN105806219A (zh) * 2016-03-23 2016-07-27 铁道第三勘察设计院集团有限公司 检测crtsⅲ型轨道板外观尺寸偏差的方法
CN106055820A (zh) * 2016-06-07 2016-10-26 铁道第三勘察设计院集团有限公司 Crtsⅲ型轨道板加工偏差检测方法及其检测结果的信息化方法
CN106370670A (zh) * 2016-10-12 2017-02-01 上海建工集团股份有限公司 基于3d激光扫描的建筑预制构件质量检测系统及方法
US20170205534A1 (en) * 2014-07-15 2017-07-20 R.O.G. S.R.O. Method of measurement, processing and use of the data of the digital terrain model for objective evaluation of geometric parameters of measured object surfaces of the constructional parts and measuring device for performing the method
CN108931208A (zh) * 2018-08-31 2018-12-04 苏交科集团股份有限公司 一种智能化的支架构配件质量检测评估系统及方法
CN208606725U (zh) * 2018-08-31 2019-03-15 苏交科集团股份有限公司 基于激光扫描的支架构配件远程验收装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520319B (zh) * 2008-02-27 2012-02-22 邹小平 复合式三维激光测量系统及测量方法
JP2010145374A (ja) * 2008-12-22 2010-07-01 Bridgestone Corp 測定検査装置及び方法
CN102410834B (zh) * 2011-07-29 2013-05-29 北京航空航天大学 三维激光扫描尾矿坝体动态监测系统装置
CN103115581B (zh) * 2013-01-23 2015-11-25 爱佩仪中测(成都)精密仪器有限公司 多功能轨道测量系统及方法
KR101387589B1 (ko) * 2013-02-04 2014-04-23 (주)다인조형공사 레이저 스캐닝 기술을 활용한 저장 설비의 변형 검사 시스템
CN104816229B (zh) * 2015-04-22 2017-05-17 陈雪琴 柔性轨道批磨机
CN105761305B (zh) * 2016-02-05 2017-08-25 北京铁道工程机电技术研究所有限公司 一种车辆行驶检测方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644861A (zh) * 2013-12-09 2014-03-19 中联重科股份有限公司 工程机械设备的臂架成型精度的分析系统及分析方法
CN103983192A (zh) * 2014-06-03 2014-08-13 齐鲁工业大学 一种零件质量缺陷检测仪及利用该检测仪进行检测的方法
CN104048624A (zh) * 2014-07-04 2014-09-17 中国二十二冶集团有限公司 脚手架垂直度激光检测设备及检测方法
US20170205534A1 (en) * 2014-07-15 2017-07-20 R.O.G. S.R.O. Method of measurement, processing and use of the data of the digital terrain model for objective evaluation of geometric parameters of measured object surfaces of the constructional parts and measuring device for performing the method
CN105806219A (zh) * 2016-03-23 2016-07-27 铁道第三勘察设计院集团有限公司 检测crtsⅲ型轨道板外观尺寸偏差的方法
CN106055820A (zh) * 2016-06-07 2016-10-26 铁道第三勘察设计院集团有限公司 Crtsⅲ型轨道板加工偏差检测方法及其检测结果的信息化方法
CN106370670A (zh) * 2016-10-12 2017-02-01 上海建工集团股份有限公司 基于3d激光扫描的建筑预制构件质量检测系统及方法
CN108931208A (zh) * 2018-08-31 2018-12-04 苏交科集团股份有限公司 一种智能化的支架构配件质量检测评估系统及方法
CN208606725U (zh) * 2018-08-31 2019-03-15 苏交科集团股份有限公司 基于激光扫描的支架构配件远程验收装置

Also Published As

Publication number Publication date
CN108931208A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
AU2017284540B2 (en) Weld scanner for real-life bridge and scanning method thereof
WO2020042777A1 (zh) 一种智能化的支架构配件质量检测评估系统及方法
WO2016078502A1 (zh) 轨道车辆限界检测系统
CN108981580B (zh) 一种起重机轨道在线检测装置及方法
CN107091616B (zh) 异形隧道衬砌变形监测方法
CN102901772A (zh) 焊缝智能跟踪超声检测机器人及其软件分析系统
CN207215086U (zh) 一种便携非接触式轨道交通隧道限界检测系统
US20190225287A1 (en) Device and method for periodically inspecting rigid guide
CN204788276U (zh) 一种基于激光扫描的直缝焊管焊缝噘嘴检测系统
CN108502729B (zh) 起重机械高空轨道智能检测小车、检测系统及检测方法
CN211877797U (zh) 混凝土轨枕外形质量自动检测装置
CN101231157A (zh) 铁路工务起拨道激光测量仪
CN108819980B (zh) 一种列车车轮几何参数在线动态测量的装置和方法
CN109900239A (zh) 一种超高层建筑层间位移角的监测装置及方法
CN114719792B (zh) 预制构件拼装面智能扫描和误差自动标识系统及方法
CN204944427U (zh) 一种接触网几何参数动态检测小车
CN102506804B (zh) 试验管中部2d长度横截面的转角测量装置及其测量方法
CN108253896A (zh) 一种基于激光传感器的轿车尺寸测量装置
CN209919895U (zh) 一种基于钢结构超声波探伤的机器人检测系统
CN206464802U (zh) 用于管桩模具合模的自动风炮装置
CN213923653U (zh) 用于电梯轨道综合检测的机器人装置
CN1632461A (zh) 对称闭合激光拱坝变形监测方法
CN205027325U (zh) 一种轮对轴颈自动测量机
CN204435440U (zh) 运营铁路路基旁侧钻孔桩基检测结构
CN208606725U (zh) 基于激光扫描的支架构配件远程验收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855725

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19855725

Country of ref document: EP

Kind code of ref document: A1