WO2017215305A1 - 一种固态电解质材料、电解质、锂电池及其制备方法 - Google Patents

一种固态电解质材料、电解质、锂电池及其制备方法 Download PDF

Info

Publication number
WO2017215305A1
WO2017215305A1 PCT/CN2017/077781 CN2017077781W WO2017215305A1 WO 2017215305 A1 WO2017215305 A1 WO 2017215305A1 CN 2017077781 W CN2017077781 W CN 2017077781W WO 2017215305 A1 WO2017215305 A1 WO 2017215305A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
carbon
based conductor
inorganic ceramic
coated
Prior art date
Application number
PCT/CN2017/077781
Other languages
English (en)
French (fr)
Inventor
李慧
夏圣安
王平华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017215305A1 publication Critical patent/WO2017215305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of lithium batteries, in particular to a solid electrolyte material, an electrolyte, a lithium battery and a preparation method thereof.
  • lithium batteries as their power sources are increasingly subject to the advantages of light weight, small size, high operating voltage, high energy density, large output power, high charging efficiency and no memory effect. Pay attention to it. And in the field of power tools, electric vehicles and large-scale energy storage, there is an increasing demand for the safety and performance of lithium batteries.
  • lithium batteries are generally composed of a positive electrode sheet, a negative electrode sheet, a separator, an electrolyte, and an outer casing.
  • the electrolyte is often an organic electrolyte using a flammable organic solvent as a solvent. Therefore, various protective measures are required to reduce the risk of fire and explosion of the battery, but the essential properties of the organic solvent flammability cannot be completely changed. At the same time, the liquid electrolyte cannot limit the production of lithium dendrites and corrode the lithium metal electrodes.
  • the electrolyte material in the prior art can only use a material that conducts ions and does not conduct electricity, which limits the selection range of the electrolyte material, and is difficult to find a material that has high ion mobility, non-conducting, and stable in air.
  • Embodiments of the present invention provide a solid electrolyte material, an electrolyte, a lithium battery, and a preparation method thereof.
  • the introduction of a carbon-based material having a high ion mobility into a solid electrolyte improves the ion mobility of the solid electrolyte, limits the generation of lithium dendrites, and increases the stability of the electrolyte in air.
  • an embodiment of the present invention provides an electrolyte material comprising: a core, the core is a carbon-based conductor material; a cladding layer, the cladding layer is coated on a surface of the core, and the cladding layer is Inorganic ceramic materials.
  • the carbon-based conductor material includes one or more of graphene, doped graphene, graphene oxide, carbon nanotubes, and doped carbon nanotubes.
  • the doped element of the doped graphene and the doped carbon nanotube includes one or more of N, P, B, O, S, F, Cl, and H.
  • the inorganic ceramic-based material comprises alumina, zirconia, lithium fluoride, silicon oxide, calcium oxide, magnesium oxide, titanium oxide, cerium oxide, silicon nitride, cubic boron nitride, One or more of aluminum nitride, chromium nitride, titanium nitride, silicon carbide, boron carbide, titanium carbide, and chromium carbide.
  • the electrolyte material has a spherical structure, and the spherical structure has a diameter of 0.1 to 20 ⁇ m.
  • the spherical structure has a diameter of 0.1 ⁇ m.
  • the spherical structure has a diameter of 0.5 ⁇ m.
  • the spherical structure has a diameter of 0.8 ⁇ m.
  • the spherical structure has a diameter of 2 ⁇ m.
  • the spherical structure has a diameter of 6 ⁇ m.
  • the spherical structure has a diameter of 13 ⁇ m.
  • the spherical structure has a diameter of 19 ⁇ m.
  • the coating layer has a thickness of 10 to 1000 nm.
  • the cladding layer has a thickness of 10 nm.
  • the cladding layer has a thickness of 23 nm.
  • the cladding layer has a thickness of 50 nm.
  • the cladding layer has a thickness of 120 nm.
  • the cladding layer has a thickness of 480 nm.
  • the cladding layer has a thickness of 950 nm.
  • an embodiment of the invention provides an electrolyte comprising: a lithium salt; the electrolyte material.
  • the electrolyte further includes a film polymer including polyacrylonitrile, polymethyl methacrylate, polyvinylidene chloride, polyvinyl sulfone, polydiacrylate B.
  • a film polymer including polyacrylonitrile, polymethyl methacrylate, polyvinylidene chloride, polyvinyl sulfone, polydiacrylate B.
  • a glycol ester, polyvinylpyrrolidone, and polyvinylidene fluoride One or more of a glycol ester, polyvinylpyrrolidone, and polyvinylidene fluoride.
  • the lithium salt comprises LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiTFSI, LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 One or more of them.
  • the electrolyte is a layered solid film, and the layered solid film has a thickness of 0.1 to 50 ⁇ m.
  • an embodiment of the present invention provides a method for preparing an electrolyte material, comprising the steps of: coating a carbon-based conductor material with a particulate polymer to obtain carbon-based conductor polymer particles; and coating the carbon with an inorganic ceramic material.
  • a base conductor polymer particle, an ion conductor polymer particle coated with an inorganic ceramic material; and a carbon-based conductor polymer particle coated with the inorganic ceramic material The particulate polymer.
  • the particulate polymer-coated carbon-based conductor material comprises the steps of: dispersing a carbon-based conductor material into a particulate polymer monomer liquid, adding an aqueous phase, stirring and emulsification, adding an initiator, A carbon-based conductor microsphere emulsion coated with a particulate polymer is obtained; filtered by demulsification and dried to obtain carbon-based conductor polymer particles.
  • the inorganic ceramic-based material coating the carbon-based conductor polymer particles includes the steps of: dispersing the carbon-based conductor polymer particles in a liquid; and adding an inorganic ceramic to the liquid a precursor material-like solution; filtered to obtain carbon-based conductor polymer particles coated with an inorganic ceramic-based material.
  • the removing the particulate polymer in the carbon-based conductor polymer particles coated by the inorganic ceramic-based material comprises the steps of: polymerizing the carbon-based conductor coated with the inorganic ceramic-based material The particles are added to the particulate polymer solvent to dissolve and remove the particulate polymer; or the inorganic ceramic-based material-coated carbon-based conductive polymer particles are sintered to remove the particulate polymer.
  • an embodiment of the present invention provides a method for preparing another electrolyte material, comprising the steps of: adding a carbon-based conductor material to an alcohol solution of an inorganic ceramic-based material precursor, stirring, and drying to obtain the inorganic a carbon-based conductor material coated with a precursor of a ceramic material precursor alkoxide; a carbon-based conductor material coated with a precursor alkoxide of the inorganic ceramic-based material.
  • an embodiment of the present invention provides a method for preparing an electrolyte, comprising the steps of: adding a lithium salt and the electrolyte material to a liquid, stirring and mixing to obtain a slurry; and coating the slurry on a flat plate, and placing the slurry Drying in an inert gas or vacuum gives the electrolyte.
  • the method of preparation further comprises adding a membrane polymer to the liquid.
  • an embodiment of the present invention provides an all-solid lithium battery including a positive electrode, a negative electrode, an outer casing, and the above electrolyte.
  • an embodiment of the present invention provides a method for preparing an all-solid lithium battery, including The following steps: preparing a positive electrode and a negative electrode of a lithium battery; preparing a lithium battery cell using the positive electrode, the negative electrode and the above electrolyte; and packaging the lithium battery into a lithium battery and forming the same.
  • the electrolyte material provided by the embodiment of the invention has a coating layer prepared from an inorganic ceramic material, shielding the conductive element characteristics of the core material, thereby drawing graphene, graphene oxide, doped graphene, carbon nanotubes, doped carbon nanometer.
  • the introduction of carbon-based materials such as tubes into the solid electrolyte material increases the ion mobility of the solid electrolyte, limits the generation of lithium dendrites, and increases the stability of the electrolyte in air.
  • FIG. 1 is a schematic view of an electrolyte material according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for preparing an electrolyte material according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for preparing an all-solid lithium battery according to an embodiment of the present invention.
  • Natural materials have high ion mobility, such as graphene oxide, doped graphene, carbon nanotubes, doped carbon nanotubes and other carbon-based materials, but because these materials also have conductive properties, it is not suitable for use.
  • the electrolyte material provided by the embodiment of the invention has a coating layer prepared by ion-conducting non-conducting material, which can shield the conductive sub-characteristics of the core material. Therefore, the core can select a material having high ion mobility and electron mobility, such as carbon. Base material.
  • Embodiment 1 of the present invention provides an electrolyte material.
  • the electrolyte material includes: an inner core, the inner core is a carbon-based conductor material; a cladding layer, the cladding layer is coated on the On the surface of the core, the coating layer is an inorganic ceramic-based material.
  • Carbon-based materials are a class of materials that have both high ion mobility and high electron mobility.
  • the inorganic ceramic material is a kind of material capable of conducting ions without conducting electrons, controlling the thickness of the inorganic ceramic coating layer in a suitable range, shielding the conductivity of the carbon-based material, thereby introducing the carbon-based material into the electrolyte.
  • the carbon-based conductor material comprises one or more of graphene, doped graphene, graphene oxide, carbon nanotubes, and doped carbon nanotubes.
  • the doped elements of the doped graphene and the doped carbon nanotubes include one or more of N, P, B, O, S, F, Cl, and H.
  • the inorganic ceramic-based material comprises alumina, zirconia, lithium fluoride, silicon oxide, calcium oxide, magnesium oxide, titanium oxide, cerium oxide, silicon nitride, cubic boron nitride, and nitriding.
  • alumina, zirconia, lithium fluoride silicon oxide, calcium oxide, magnesium oxide, titanium oxide, cerium oxide, silicon nitride, cubic boron nitride, and nitriding.
  • aluminum, chromium nitride, titanium nitride, silicon carbide, boron carbide, titanium carbide, and chromium carbide is chromium carbide.
  • the electrolyte material has a spherical structure, and the spherical structure has a diameter of 0.1 to 20 ⁇ m.
  • the spherical structure has a diameter of 0.1 ⁇ m.
  • the spherical structure has a diameter of 0.5 ⁇ m.
  • the spherical structure has a diameter of 0.8 ⁇ m.
  • the spherical structure has a diameter of 2 ⁇ m.
  • the spherical structure has a diameter of 6 ⁇ m.
  • the spherical structure has a diameter of 13 ⁇ m.
  • the spherical structure has a diameter of 19 ⁇ m.
  • the coating layer has a thickness of 10 to 1000 nm.
  • the cladding layer has a thickness of 10 nm.
  • the cladding layer has a thickness of 23 nm.
  • the cladding layer has a thickness of 50 nm.
  • the cladding layer has a thickness of 120 nm.
  • the cladding layer has a thickness of 480 nm.
  • the cladding layer has a thickness of 950 nm.
  • Embodiment 2 of the present invention provides an electrolyte comprising: a lithium salt; and the electrolyte material provided in Embodiment 1.
  • the electrolyte further includes a film polymer including polyacrylonitrile, polymethyl methacrylate, polyvinylidene chloride, polyvinyl sulfone, polydiacrylate B.
  • a film polymer including polyacrylonitrile, polymethyl methacrylate, polyvinylidene chloride, polyvinyl sulfone, polydiacrylate B.
  • a glycol ester, polyvinylpyrrolidone, and polyvinylidene fluoride One or more of a glycol ester, polyvinylpyrrolidone, and polyvinylidene fluoride.
  • the lithium salt comprises LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiTFSI, LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 One or more of them.
  • the electrolyte is a layered solid film, and the layered solid film has a thickness of 10 ⁇ m.
  • Embodiment 3 of the present invention provides a method for preparing an electrolyte material. As shown in FIG. 2, the method includes the following steps:
  • the particulate polymer is coated with a carbon-based conductor material to obtain carbon-based conductor polymer particles;
  • the particulate polymer coated carbon-based conductor material comprises the following steps:
  • Dispersing the carbon-based conductor material into the granular polymer monomer liquid adding the water phase, stirring and emulsification, adding an initiator to obtain a particulate polymer-coated carbon-based conductor microsphere emulsion; demulsification filtration, drying to obtain a carbon-based conductor polymerization Particles.
  • the inorganic ceramic-based material coating the carbon-based conductor polymer particles comprises the following steps:
  • Dispersing the carbon-based conductor polymer particles in a liquid adding inorganic ceramics to the liquid a precursor material-like solution; filtered to obtain carbon-based conductor polymer particles coated with an inorganic ceramic-based material.
  • the removing the particulate polymer in the carbon-based conductor polymer particles coated with the inorganic ceramic-based material comprises the following steps: carbon-based conductor polymer particles coated with the inorganic ceramic-based material Adding to the particulate polymer solvent, dissolving and removing the particulate polymer; or sintering the inorganic ceramic-based material-coated carbon-based conductive polymer particles to remove the particulate polymer.
  • Embodiment 4 of the present invention provides another method for preparing an electrolyte material, comprising the steps of: adding a carbon-based conductor material to an alcohol solution of an inorganic ceramic-based material precursor, stirring, and drying to obtain the inorganic ceramic-based material. a precursor alkoxide coated carbon-based conductor material; a sintered carbon-based conductor material coated with the inorganic ceramic-based material precursor alkoxide.
  • the fifth embodiment of the present invention provides a method for preparing an electrolyte, comprising the steps of: adding a lithium salt and the electrolyte material provided in the first embodiment to a liquid, stirring and mixing to obtain a slurry; and the slurry is coated on the flat plate. It is placed in an inert gas or dried in a vacuum to obtain the electrolyte.
  • the method of preparation further comprises adding a film polymer to the liquid.
  • Embodiment 6 of the present invention provides an all-solid lithium battery comprising a positive electrode, a negative electrode, an outer casing, and an electrolyte provided in the second embodiment.
  • Embodiment 7 of the present invention provides a method for preparing an all-solid lithium battery. As shown in FIG. 3, the method includes the following steps:
  • the electrolyte material provided by the embodiment of the invention has a coating layer prepared from an inorganic ceramic material, so that graphene, graphene oxide, doped graphene, carbon nanotubes, and doped carbon nanotubes can be used.
  • the introduction of isoconductive ion electronic materials into the solid electrolyte material increases the ion mobility of the solid electrolyte, limits the generation of lithium dendrites, and increases the stability of the electrolyte in air.
  • Embodiment 8 of the present invention provides an electrolyte material.
  • the electrolyte material comprises an inner core and a cladding layer, the core material is graphene, and the cladding material is titanium dioxide, and the cladding layer has a thickness of 10 nm.
  • the core and the cladding layer constitute a spherical structure having a diameter of 1 ⁇ m.
  • Embodiment 8 of the present invention further provides an electrolyte comprising the above electrolyte material, a film polymer, a lithium salt, wherein the film polymer is polyacrylonitrile, and the lithium salt is lithium bistrifluoromethanesulfonimide (LiTFSI) ).
  • the electrolyte membrane was a layered solid film having a thickness of 20 ⁇ m.
  • Embodiment 8 of the present invention also provides an all-solid lithium battery including the above electrolyte.
  • the lithium battery further includes a positive electrode active electrode and a negative electrode active electrode; the electrolyte and the positive electrode active electrode and the negative electrode active electrode are assembled into an all-solid secondary lithium battery, and are packaged into a battery by using an aluminum plastic film.
  • Embodiment 8 of the present invention also provides a method for preparing the above electrolyte material, which is specifically as follows:
  • styrene-coated graphene microspheres 1 g of nano-scale graphene was dispersed in 20 ml of styrene liquid, and styrene was added to vigorously stirred 250 ml of deionized water, and 0.9 g of dodecylbenzenesulfonic acid was added to the water. Sodium and 10g of aluminum oxide were dissolved, stirred and emulsified, then 0.5 g of potassium persulfate was added, the temperature was raised to 70 ° C, and the reaction was stirred. After 14 hours, the reaction was stopped to obtain a polystyrene nano-sized microsphere emulsion containing graphene. A small amount of 50% lithium chloride solution was demulsified and filtered, and washed and dried to obtain 6.5 g of nanopolystyrene microspheres containing graphene for use.
  • Coating Titanium Dioxide 3 g of polyethylene microspheres coated with graphene were dispersed in 30 ml of ethanol, and 0.6 g of KH550 was added and stirred uniformly. A solution of 0.6 ml of tetrabutyl titanate in 6 ml of ethanol was slowly added to the above solution and stirred vigorously for 2 h. After filtering. Obtaining a stone coated with dense titanium dioxide Methene-polystyrene core-shell particles.
  • Preparation of electrolyte material 10 mL of the core-shell particle mixture prepared in the above step was placed in 20 mL of tetrahydrofuran, and magnetically stirred for 2 hours to dissolve and remove the polystyrene in the graphene-polystyrene core-shell particles, and filtered to obtain a coating.
  • the layer is an electrolyte material of titanium dioxide and a core of graphene particles.
  • Embodiment 8 of the present invention also provides a method for preparing an electrolyte, which is specifically as follows:
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • Embodiment 8 of the present invention also provides a method for preparing an all-solid lithium battery, which is specifically as follows:
  • the positive and negative electrodes of the battery were prepared.
  • the positive electrode, the negative electrode and the above electrolyte are assembled into an all-solid secondary lithium battery, and then encapsulated into a battery by an aluminum plastic film and formed into a battery.
  • Embodiment 9 of the present invention provides an electrolyte material.
  • the electrolyte comprises a core and a cladding layer, the core material is nitrogen-doped graphene, the cladding material is titanium dioxide, and the cladding layer has a thickness of 10 nm.
  • the core and the cladding layer constitute a spherical structure having a diameter of 0.5 ⁇ m.
  • Embodiment 9 of the present invention further provides an electrolyte comprising the above electrolyte material, a film polymer, a lithium salt, wherein the film polymer is polyacrylonitrile, and the lithium salt is lithium bistrifluoromethanesulfonimide (LiTFSI) ).
  • the electrolyte was a layered solid film having a thickness of 15 ⁇ m.
  • Embodiment 9 of the present invention also provides an all-solid lithium battery including the above electrolyte.
  • the lithium battery further includes a positive electrode active electrode and a negative electrode active electrode; the electrolyte and the positive electrode active electrode and the negative electrode active electrode are assembled into an all-solid secondary lithium battery, and are packaged into a battery by using an aluminum plastic film.
  • Embodiment 9 of the present invention further provides a method for preparing the above electrolyte material, which is specifically as follows:
  • Preparation of styrene-coated graphene microspheres Disperse 1 g of nano-scale nitrogen-doped graphene in 20 ml of styrene liquid, and then add styrene to vigorously stirred 250 ml of deionized water. 0.9 g of dodecyl group has been added to the water. Sodium benzenesulfonate and 3 g of sodium hydroxide were dissolved, stirred and emulsified, then 0.5 g of ammonium persulfate was added, the temperature was raised to 80 ° C, and the reaction was stirred.
  • the reaction was stopped to obtain a polystyrene nanometer containing nitrogen-doped graphene.
  • the microsphere emulsion was filtered by demulsification with a small amount of 50% lithium chloride solution, and washed and dried to obtain 6.8 g of nano-polystyrene microspheres containing nitrogen-doped graphene for use.
  • Coating titanium dioxide 3 g of polyethylene microspheres coated with nitrogen-doped graphene were dispersed in 30 ml of ethanol, and 0.6 g of KH550 was added and stirred uniformly. A solution of 0.6 ml of tetrabutyl titanate in 6 ml of ethanol was slowly added to the above solution and stirred vigorously for 2 h. After filtering. Nitrogen-doped graphene-polystyrene core-shell particles coated with dense titanium dioxide were obtained.
  • Preparation of electrolyte material 10 mL of the core-shell particle mixture prepared in the above step was placed in 20 mL of tetrahydrofuran, and magnetically stirred for 2 hours to dissolve and remove the polystyrene in the graphene-polystyrene core-shell particles, and filtered to obtain a coating.
  • the layer is titanium dioxide and the core is an electrolyte material doped with graphene particles.
  • Embodiment 9 of the present invention also provides a method for preparing an electrolyte, which is specifically as follows:
  • the above electrolyte material polyacrylonitrile, lithium bistrifluoromethanesulfonimide (LiTFSI), was added to acetone in a ratio of 10:10:3, and mixed and stirred.
  • the mixture was coated on a Teflon plate, and the coating was allowed to stand at room temperature for 16 hours under an argon atmosphere, and then dried in a vacuum oven at 90 ° C for 36 hours to obtain an electrolyte.
  • Embodiment 9 of the present invention further provides a method for preparing an all-solid lithium battery, which is specifically as follows:
  • the positive and negative electrodes of the battery were prepared.
  • the positive electrode, the negative electrode, and the electrolyte containing the above electrolyte are assembled into an all-solid secondary lithium battery cell, and then packaged into a battery by an aluminum plastic film and formed into a battery.
  • Embodiment 10 of the present invention provides an electrolyte material.
  • the electrolyte material comprises a core and a cladding layer, the core material is graphene oxide, the cladding material is alumina, and the cladding layer has a thickness of 23 nm.
  • the core and the cladding layer constitute a spherical structure having a core-shell structure having a diameter of 0.8 ⁇ m.
  • the tenth embodiment of the present invention further provides an electrolyte comprising the above electrolyte material, a film polymer, a lithium salt, wherein the film polymer is polyacrylonitrile, and the lithium salt is lithium bistrifluoromethanesulfonimide (LiTFSI) ).
  • the electrolyte was a layered solid film having a thickness of 13 ⁇ m.
  • Embodiment 10 of the present invention also provides an all-solid lithium battery including the above electrolyte.
  • the lithium battery further includes a positive electrode active electrode and a negative electrode active electrode; the electrolyte and the positive electrode active electrode and the negative electrode active electrode are assembled into an all-solid secondary lithium battery, and are packaged into a battery by using an aluminum plastic film.
  • Embodiment 10 of the present invention further provides a method for preparing the above electrolyte material, which is specifically as follows:
  • Embodiment 10 of the present invention also provides a method for preparing an electrolyte, which is specifically as follows:
  • the above-mentioned core-shell structured electrolyte material polyacrylonitrile, lithium bistrifluoromethanesulfonimide (LiTFSI), was added to acetone in a ratio of 10:10:3, and mixed and stirred.
  • the mixture was coated on a Teflon plate, and the coating was allowed to stand at room temperature for 16 hours under an argon atmosphere, and then dried in a vacuum oven at 90 ° C for 36 hours to obtain an electrolyte.
  • Embodiment 10 of the present invention further provides a method for preparing an all-solid lithium battery, which is specifically as follows:
  • the positive and negative electrodes of the battery were prepared.
  • the positive electrode, the negative electrode and the above electrolyte are assembled into an all-solid secondary lithium battery, and then encapsulated into a battery by an aluminum plastic film and formed into a battery.
  • the electrolyte material is prepared by the preparation method provided in the third embodiment.
  • the prepared electrolyte material comprises a core and a coating layer, the core material is graphene oxide, the coating material is titanium dioxide, and the coating layer has a thickness of 10 nm.
  • the core and the cladding form a core-shell structure with a diameter of 0.1 ⁇ m Spherical structure.
  • the electrolyte material is prepared by the preparation method provided in the third embodiment.
  • the prepared electrolyte material comprises a core and a coating layer, the core material is graphene, the coating material is titanium dioxide, and the coating layer has a thickness of 50 nm.
  • the core and the cladding layer constitute a spherical structure having a core-shell structure of 2 ⁇ m in diameter.
  • the electrolyte material is prepared by the preparation method provided in the third embodiment.
  • the prepared electrolyte material comprises a core and a coating layer.
  • the core material is doped graphene
  • the coating material is titanium dioxide
  • the coating layer has a thickness of 120 nm.
  • the core and the cladding layer constitute a spherical structure having a core-shell structure of 6 ⁇ m in diameter.
  • the electrolyte material is prepared by the preparation method provided in the fourth embodiment.
  • the prepared electrolyte material comprises a core and a coating layer, the core material is graphene, the coating material is alumina, and the coating layer has a thickness of 480 nm.
  • the core and the cladding layer constitute a spherical structure having a core-shell structure diameter of 13 ⁇ m.
  • the electrolyte material is prepared by the preparation method provided in the fourth embodiment.
  • the prepared electrolyte material comprises a core and a coating layer, the core material is doped graphene, the cladding material is alumina, and the coating layer has a thickness of 950 nm.
  • the core and the cladding layer constitute a spherical structure having a core-shell structure diameter of 19 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种固态电解质材料、电解质、锂电池及其制备方法,所述电解质材料包括内核和包覆层,所述内核为碳基导体材料,所述包覆层包覆在所述内核表面,所述包覆层为无机陶瓷类材料。所述电解质材料具有包覆层,屏蔽了碳基导体材料的导电子特性,将碳基导体材料引入到固态电解质材料中,提高了固态电解质的离子迁移率,限制了锂枝晶的产生,增加电解质在空气中的稳定性。

Description

一种固态电解质材料、电解质、锂电池及其制备方法 技术领域
本发明涉及锂电池领域,尤其涉及一种固态电解质材料、电解质、锂电池及其制备方法。
背景技术
随着近年来电子产品的普及,作为其电源的锂电池,因具有质量轻、体积小、工作电压高、能量密度高、输出功率大、充电效率高和无记忆效应等优点,越来越受到重视。并且在电动工具、电动汽车以及大型储能等领域,对锂电池的安全性和性能也有越来越高的要求。
目前市售的锂电池通常由正极片、负极片、隔膜、电解液和外壳组成。其中,电解液多采用以可燃性的有机溶剂作为溶媒的有机电解液,因此,需要各种保护措施来降低电池起火爆炸的危险,但无法彻底改变有机溶媒易燃的本质属性。同时,液态电解质无法限制锂枝晶的产生,并对锂金属电极有腐蚀。而使用固态电解质取代液态电解质,由于电池内不存在可燃性的有机溶媒,可以完全杜绝电池燃烧爆炸的危险,同时固态电解质可以限制锂枝晶的产生,因此保证锂电池的安全使用。
固态电解质种类繁多,常用的有硫磷无机化合物材料,或者聚合物包覆材料。前者的离子迁移率虽然可以达到液态电解液的水平(10-2S/cm),但是无机物弹性差,与锂金属无法紧密接触,导致离子传输受阻,且这些硫磷无机化合物材料化学性质不稳定,对空气中的氧气和水蒸气敏感,影响电池的充放电循环次数。虽然聚合物包覆材料虽然有良好的弹性,可以与锂金属紧密接触,但是,其离子迁移率低下,严重限制了锂电池的使用。现阶段的解决方案,多为将含有快离子导体的无机陶瓷类化合物掺入到聚合物中,结合 了聚合物的弹性和快离子导体的离子高迁移率两种特性,但对迁移率的提升还是有限,始终不能达到液态电解液的水平。
现有技术中的电解质材料只能选用导离子不导电子的材料,限制了电解质材料的选择范围,较难找到即具有高离子迁移率、不导电子,又能在空气中稳定存在的材料。
发明内容
本发明实施例提供了一种固态电解质材料、电解质、锂电池及其制备方法。将具有高离子迁移率的碳基材料引入到固态电解质中,提高了固态电解质的离子迁移率,限制了锂枝晶的产生,增加了电解质在空气中的稳定性。
一方面,本发明实施例提供了一种电解质材料,包括:内核,所述内核为碳基导体材料;包覆层,所述包覆层包覆在所述内核表面,所述包覆层为无机陶瓷类材料。
在一种可能的实现方式中,所述碳基导体材料包括石墨烯、掺杂石墨烯、氧化石墨烯、碳纳米管、掺杂碳纳米管中的一种或多种。
在一种可能的实现方式中,所述掺杂石墨烯和掺杂碳纳米管的掺杂元素包括N、P、B、O、S、F、Cl、H中的一种或多种。
在一种可能的实现方式中,所述无机陶瓷类材料包括氧化铝、氧化锆、氟化锂、氧化硅、氧化钙、氧化镁、氧化钛、氧化钽、氮化硅、立方氮化硼、氮化铝、氮化铬、氮化钛、碳化硅、碳化硼、碳化钛、碳化铬中的一种或多种。
在一种可能的实现方式中,所述电解质材料具有球状结构,所述球状结构的直径为0.1~20μm。
在一种可能的实现方式中,所述球状结构的直径为0.1μm。
在一种可能的实现方式中,所述球状结构的直径为0.5μm。
在一种可能的实现方式中,所述球状结构的直径为0.8μm。
在一种可能的实现方式中,所述球状结构的直径为2μm。
在一种可能的实现方式中,所述球状结构的直径为6μm。
在一种可能的实现方式中,所述球状结构的直径为13μm。
在一种可能的实现方式中,所述球状结构的直径为19μm。
在一种可能的实现方式中,所述包覆层的厚度为10~1000nm。
在一种可能的实现方式中,所述包覆层的厚度为10nm。
在一种可能的实现方式中,所述包覆层的厚度为23nm。
在一种可能的实现方式中,所述包覆层的厚度为50nm。
在一种可能的实现方式中,所述包覆层的厚度为120nm。
在一种可能的实现方式中,所述包覆层的厚度为480nm。
在一种可能的实现方式中,所述包覆层的厚度为950nm。
再一方面,本发明实施例提供了一种电解质,包括:锂盐;上述电解质材料。
在一种可能的实现方式中,所述电解质进一步包括膜聚合物,所述膜聚合物包括聚丙烯腈、聚甲基丙烯酸甲酯、聚偏二氯乙烯、聚乙烯基砜、聚二丙烯酸乙二醇酯、聚乙烯吡咯烷酮、聚偏二氟乙烯中的一种或多种。
在一种可能的实现方式中,所述锂盐包括LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiTFSI、LiN(CF3SO2)2、LiC(CF3SO2)3中的一种或多种。
在一种可能的实现方式中,所述电解质为层状固体薄膜,所述层状固体薄膜的厚度为0.1~50μm。
再一方面,本发明实施例提供了一种电解质材料的制备方法,包括以下步骤:颗粒聚合物包覆碳基导体材料,制得碳基导体聚合物颗粒;无机陶瓷类材料包覆所述碳基导体聚合物颗粒,制得无机陶瓷类材料包覆的离子导体聚合物颗粒;去除所述无机陶瓷类材料包覆的碳基导体聚合物颗粒 中的颗粒聚合物。
在一种可能的实现方式中,所述颗粒聚合物包覆碳基导体材料包括以下步骤:将碳基导体材料分散到颗粒聚合物单体液体中,加入水相,搅拌乳化,加入引发剂,得到颗粒聚合物包覆的碳基导体微球乳液;破乳过滤,干燥得到碳基导体聚合物颗粒。
在一种可能的实现方式中,所述无机陶瓷类材料包覆所述碳基导体聚合物颗粒包括以下步骤:将所述碳基导体聚合物颗粒分散在液体中;向所述液体加入无机陶瓷类材料前体溶液;过滤,得到无机陶瓷类材料包覆的碳基导体聚合物颗粒。
在一种可能的实现方式中,所述去除所述无机陶瓷类材料包覆的碳基导体聚合物颗粒中的颗粒聚合物包括以下步骤:将所述无机陶瓷类材料包覆的碳基导体聚合物颗粒加入到颗粒聚合物溶剂中,溶解去除所述颗粒聚合物;或者,烧结所述无机陶瓷类材料包覆的碳基导体聚合物颗粒,以去除所述颗粒聚合物。
再一方面,本发明实施例提供了另一种电解质材料的制备方法,包括以下步骤:将碳基导体材料加入到无机陶瓷类材料前体的醇溶液中,搅拌,干燥后,得到所述无机陶瓷类材料前体醇盐包覆的碳基导体材料;烧结所述无机陶瓷类材料前体醇盐包覆的碳基导体材料。
再一方面,本发明实施例提供了一种电解质的制备方法,包括以下步骤:将锂盐、上述电解质材料加入到液体中,搅拌混合,得到浆料;所述浆料涂在平板上,放置在惰性气体或真空中干燥,得到所述电解质。
在一种可能的实现方式中,所述制备方法进一步包括将膜聚合物加入到所述液体中。
再一方面,本发明实施例提供了一种全固态锂电池,包括正极、负极、外壳、上述电解质。
再一方面,本发明实施例提供了一种全固态锂电池的制备方法,包括 以下步骤:制备锂电池正极和负极;使用所述正极、负极和上述电解质制备锂电池电芯;使用外壳封装成锂电池并经过化成。
本发明实施例提供的电解质材料具有无机陶瓷类材料制备的包覆层,屏蔽了内核材料的导电子特性,从而将石墨烯、氧化石墨烯、掺杂石墨烯、碳纳米管、掺杂碳纳米管等碳基材料引入到固态电解质材料中,提高了固态电解质的离子迁移率,限制了锂枝晶的产生,增加了电解质在空气中的稳定性。
附图说明
图1为本发明实施例提供的电解质材料的示意图;
图2为本发明实施例提供的电解质材料制备方法流程图;
图3为本发明实施例提供的全固态锂电池制备方法流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
自然界存在有高离子迁移率的材料,例如氧化石墨烯、掺杂石墨烯、碳纳米管、掺杂碳纳米管等碳基材料,但因这些材料同时也具有导电子特性,因此,不适合用作电解质材料。本发明实施例提供的电解质材料具有导离子不导电子材料制备的包覆层,可以屏蔽内核材料的导电子特性,因此,内核可以选择同时具有高离子迁移率和电子迁移率的材料,例如碳基材料。
本发明实施例一提供了一种电解质材料。如图1所示,所述电解质材料包括:内核,所述内核为碳基导体材料;包覆层,所述包覆层包覆在所述 内核表面,所述包覆层为无机陶瓷类材料。
碳基材料是一类同时具有高离子迁移率和高电子迁移率的材料。无机陶瓷类材料是一类能够传导离子而不传导电子的材料,控制无机陶瓷类包覆层厚度在适合范围,屏蔽碳基材料的导电子能力,从而将碳基材料引入到电解质中。
在一优选实施方式中,所述碳基导体材料包括石墨烯、掺杂石墨烯、氧化石墨烯、碳纳米管、掺杂碳纳米管中的一种或多种。
在一优选实施方式中,所述掺杂石墨烯和掺杂碳纳米管的掺杂元素包括N、P、B、O、S、F、Cl、H中的一种或多种。
在一优选实施方式中,所述无机陶瓷类材料包括氧化铝、氧化锆、氟化锂、氧化硅、氧化钙、氧化镁、氧化钛、氧化钽、氮化硅、立方氮化硼、氮化铝、氮化铬、氮化钛、碳化硅、碳化硼、碳化钛、碳化铬中的一种或多种。
在一优选实施方式中,所述电解质材料具有球状结构,所述球状结构的直径为0.1~20μm。
在一优选实施方式中,所述球状结构的直径为0.1μm。
在一优选实施方式中,所述球状结构的直径为0.5μm。
在一优选实施方式中,所述球状结构的直径为0.8μm。
在一优选实施方式中,所述球状结构的直径为2μm。
在一优选实施方式中,所述球状结构的直径为6μm。
在一优选实施方式中,所述球状结构的直径为13μm。
在一优选实施方式中,所述球状结构的直径为19μm。
在一优选实施方式中,所述包覆层的厚度为10~1000nm。
在一优选实施方式中,所述包覆层的厚度为10nm。
在一优选实施方式中,所述包覆层的厚度为23nm。
在一优选实施方式中,所述包覆层的厚度为50nm。
在一优选实施方式中,所述包覆层的厚度为120nm。
在一优选实施方式中,所述包覆层的厚度为480nm。
在一优选实施方式中,所述包覆层的厚度为950nm。
本发明实施例二提供了一种电解质,包括:锂盐;实施例一提供的电解质材料。
在一种可能的实现方式中,所述电解质进一步包括膜聚合物,所述膜聚合物包括聚丙烯腈、聚甲基丙烯酸甲酯、聚偏二氯乙烯、聚乙烯基砜、聚二丙烯酸乙二醇酯、聚乙烯吡咯烷酮、聚偏二氟乙烯中的一种或多种。
在一种可能的实现方式中,所述锂盐包括LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiTFSI、LiN(CF3SO2)2、LiC(CF3SO2)3中的一种或多种。
在一种可能的实现方式中,所述电解质为层状固体薄膜,所述层状固体薄膜的厚度为10μm。
本发明实施例三提供了一种电解质材料的制备方法,如图2所示,所述方法包括以下步骤:
S201、颗粒聚合物包覆碳基导体材料,制得碳基导体聚合物颗粒;
在一优选实施方式中,所述颗粒聚合物包覆碳基导体材料包括以下步骤:
将碳基导体材料分散到颗粒聚合物单体液体中,加入水相,搅拌乳化,加入引发剂,得到颗粒聚合物包覆的碳基导体微球乳液;破乳过滤,干燥得到碳基导体聚合物颗粒。
S202、无机陶瓷类材料包覆所述碳基导体聚合物颗粒,制得无机陶瓷类材料包覆的碳基导体聚合物颗粒;
在一优选实施方式中,所述无机陶瓷类材料包覆所述碳基导体聚合物颗粒包括以下步骤:
将所述碳基导体聚合物颗粒分散在液体中;向所述液体加入无机陶瓷 类材料前体溶液;过滤,得到无机陶瓷类材料包覆的碳基导体聚合物颗粒。
S203、去除所述无机陶瓷类材料包覆的碳基导体聚合物颗粒中的颗粒聚合物。
在一优选实施方式中,所述去除所述无机陶瓷类材料包覆的碳基导体聚合物颗粒中的颗粒聚合物包括以下步骤:将所述无机陶瓷类材料包覆的碳基导体聚合物颗粒加入到颗粒聚合物溶剂中,溶解去除所述颗粒聚合物;或者,烧结所述无机陶瓷类材料包覆的碳基导体聚合物颗粒,以去除所述颗粒聚合物。
本发明实施例四提供了另一种电解质材料的制备方法,包括以下步骤:将碳基导体材料加入到无机陶瓷类材料前体的醇溶液中,搅拌,干燥后,得到所述无机陶瓷类材料前体醇盐包覆的碳基导体材料;烧结所述无机陶瓷类材料前体醇盐包覆的碳基导体材料。
本发明实施例五提供了一种电解质的制备方法,包括以下步骤:将锂盐、实施例一提供的电解质材料加入到液体中,搅拌混合,得到浆料;所述浆料涂在平板上,放置在惰性气体或真空中干燥,得到所述电解质。
在一优选实现方式中,所述制备方法进一步包括将膜聚合物加入到所述液体中。
本发明实施例六提供了一种全固态锂电池,包括正极、负极、外壳、实施例二提供的电解质。
本发明实施例七提供了一种全固态锂电池的制备方法,如图3所示,所述方法包括以下步骤:
S301、制备锂电池正极和负极;
S302、使用所述正极、负极和实施例二提供的电解质制备锂电池电芯;
S303、使用外壳封装成锂电池并经过化成。
本发明实施例提供的电解质材料具有无机陶瓷类材料制备的包覆层,从而可以将石墨烯、氧化石墨烯、掺杂石墨烯、碳纳米管、掺杂碳纳米管 等导离子电子材料引入到固态电解质材料中,提高了固态电解质的离子迁移率,限制了锂枝晶的产生,增加了电解质在空气中的稳定性。
以下现在将参照具体实施例更详细地描述本发明上述实施例提供的电解质材料及其制备方法、电解质及其制备方法、全固态锂电池及其制备方法。这些实施例不意图限制本发明上述实施例的范围。
实施例八
本发明实施例八提供了一种电解质材料。该电解质材料包括内核和包覆层,该内核材料为石墨烯,包覆层材料为二氧化钛,该包覆层厚度为10nm。内核和包覆层构成直径为1μm的球状结构。
本发明实施例八还提供了一种电解质,该电解质包括上述电解质材料、膜聚合物、锂盐,其中,膜聚合物为聚丙烯腈,锂盐为双三氟甲烷磺酰亚胺锂(LiTFSI)。该电解质膜为层状固体薄膜,厚度为20μm。
本发明实施例八还提供了一种包括上述电解质的全固态锂电池。该锂电池还包括正极活性电极和负极活性电极;上述电解质和正极活性电极、负极活性电极组装成全固态二次锂电芯,用铝塑膜封装成电池。
本发明实施例八还提供了一种制备上述电解质材料的方法,该方法具体如下:
制备苯乙烯包覆石墨烯微球:将1g纳米级石墨烯分散于20ml苯乙烯液体中,再将苯乙烯加入到剧烈搅拌的250ml去离子水中,水中已加入0.9g十二烷基苯磺酸钠和10g三氧化二铝溶解,搅拌乳化,然后加入过硫酸钾0.5g,升温到70℃,搅拌反应,14小时后停止反应,得到包含有石墨烯的聚苯乙烯纳米级微球乳液,加入少量50%氯化锂溶液破乳过滤,洗涤干燥得到6.5g包含有石墨烯的纳米聚苯乙烯微球待用。
包覆二氧化钛:取3g包覆有石墨烯的聚乙烯微球分散在30ml乙醇中,加入0.6g KH550搅拌均匀。将分散有0.6ml钛酸四丁酯的6ml乙醇溶液缓慢加入上述溶液,并剧烈搅拌2h。后过滤。得到包覆有致密二氧化钛的石 墨烯-聚苯乙烯核壳状粒子。
电解质材料的制备:取10mL上述步骤中制备的核壳状粒子混合液置于20mL四氢呋喃中,磁力搅拌2h以溶解去除石墨烯-聚苯乙烯核壳状粒子中的聚苯乙烯,过滤得到包覆层为二氧化钛、内核为石墨烯颗粒的电解质材料。
本发明实施例八还提供了一种制备电解质的方法,该方法具体如下:
取上述电解质材料、聚丙烯腈、双三氟甲烷磺酰亚胺锂(LiTFSI),按照10:10:3的比例,加至丙酮中,混合搅拌。将混合物涂在聚四氟乙烯板上,将涂层放置在氩气氛下室温干燥16小时,然后再真空烘箱中90℃干燥36h,得到电解质。
本发明实施例八还提供了一种制备全固态锂电池的方法,该方法具体如下:
制备电池正极和负极。将电池正极、负极和上述电解质组装成全固态二次锂电芯,然后用铝塑膜封装成电池并经过化成。
实施例九
本发明实施例九提供了一种电解质材料。该电解质包括内核和包覆层,内核材料为氮掺杂石墨烯,包覆层材料为二氧化钛,包覆层厚度为10nm。内核和包覆层构成直径为0.5μm的球状结构。
本发明实施例九还提供了一种电解质,该电解质包括上述电解质材料、膜聚合物、锂盐,其中,膜聚合物为聚丙烯腈,锂盐为双三氟甲烷磺酰亚胺锂(LiTFSI)。该电解质为层状固体薄膜,厚度为15μm。
本发明实施例九还提供了一种包括上述电解质的全固态锂电池。该锂电池还包括正极活性电极和负极活性电极;上述电解质和正极活性电极、负极活性电极组装成全固态二次锂电芯,用铝塑膜封装成电池。
本发明实施例九还提供了一种制备上述电解质材料的方法,该方法具体如下:
制备苯乙烯包覆石墨烯微球:将1g纳米级氮掺杂石墨烯分散于20ml苯乙烯液体中,再将苯乙烯加入到剧烈搅拌的250ml去离子水中,水中已加入0.9g十二烷基苯磺酸钠和3g氢氧化钠溶解,搅拌乳化,然后加入过硫酸胺0.5g,升温到80℃,搅拌反应,24小时后停止反应,得到包含有氮掺杂石墨烯的聚苯乙烯纳米级微球乳液,加入少量50%氯化锂溶液破乳过滤,洗涤干燥得到6.8g包含有氮掺杂石墨烯的纳米聚苯乙烯微球待用。
包覆二氧化钛:取3g包覆有氮掺杂石墨烯的聚乙烯微球分散在30ml乙醇中,加入0.6g KH550搅拌均匀。将分散有0.6ml钛酸四丁酯的6ml乙醇溶液缓慢加入上述溶液,并剧烈搅拌2h。后过滤。得到包覆有致密二氧化钛的氮掺杂石墨烯-聚苯乙烯核壳状粒子。
电解质材料的制备:取10mL上述步骤中制备的核壳状粒子混合液置于20mL四氢呋喃中,磁力搅拌2h以溶解去除石墨烯-聚苯乙烯核壳状粒子中的聚苯乙烯,过滤得到包覆层为二氧化钛、内核为掺杂石墨烯颗粒的电解质材料。
本发明实施例九还提供了一种制备电解质的方法,该方法具体如下:
取上述电解质材料,聚丙烯腈,双三氟甲烷磺酰亚胺锂(LiTFSI),按照10:10:3的比例,加至丙酮中,混合搅拌。将混合物涂在聚四氟乙烯板上,将涂层放置在氩气氛下室温干燥16小时,然后再真空烘箱中90℃干燥36h,得到电解质。
本发明实施例九还提供了一种制备全固态锂电池的方法,该方法具体如下:
制备电池正极和负极。将电池正极、负极和含有上述电解质组装成全固态二次锂电芯,然后用铝塑膜封装成电池并经过化成。
实施例十
本发明实施例十提供了一种电解质材料。该电解质材料包括内核和包覆层,内核材料为氧化石墨烯,包覆层材料为氧化铝,包覆层厚度为23nm。 内核和包覆层构成核壳结构直径为0.8μm球状结构。
本发明实施例十还提供了一种电解质,该电解质包括上述电解质材料、膜聚合物、锂盐,其中,膜聚合物为聚丙烯腈,锂盐为双三氟甲烷磺酰亚胺锂(LiTFSI)。该电解质为层状固体薄膜,厚度为13μm。
本发明实施例十还提供了一种包括上述电解质的全固态锂电池。该锂电池还包括正极活性电极和负极活性电极;上述电解质和正极活性电极、负极活性电极组装成全固态二次锂电芯,用铝塑膜封装成电池。
本发明实施例十还提供了一种制备上述电解质材料的方法,该方法具体如下:
将5g Al(OOC8H15)2(OC3H7)2溶解在异丙醇中,加入1g纳米氧化石墨烯,搅拌20h,在130℃下干燥得到包覆有Al醇盐的氧化石墨烯,随后将其在700℃下烧结4h,得到包覆层为氧化铝、内核为氧化石墨烯颗粒的电解质材料。
本发明实施例十还提供了一种制备电解质的方法,该方法具体如下:
取上述核壳结构电解质材料,聚丙烯腈,双三氟甲烷磺酰亚胺锂(LiTFSI),按照10:10:3的比例,加至丙酮中,混合搅拌。将混合物涂在聚四氟乙烯板上,将涂层放置在氩气氛下室温干燥16小时,然后再真空烘箱中90℃干燥36h,得到电解质。
本发明实施例十还提供了一种制备全固态锂电池的方法,该方法具体如下:
制备电池正极和负极。将电池正极、负极和上述电解质组装成全固态二次锂电芯,然后用铝塑膜封装成电池并经过化成。
实施例十一
本实施例采用实施例三提供的制备方法制备电解质材料,制备得到的电解质材料包括内核和包覆层,内核材料为氧化石墨烯,包覆层材料为二氧化钛,包覆层厚度为10nm。内核和包覆层构成核壳结构直径为0.1μm 球状结构。
实施例十二
本实施例采用实施例三提供的制备方法制备电解质材料,制备得到的电解质材料包括内核和包覆层,内核材料为石墨烯,包覆层材料为二氧化钛,包覆层厚度为50nm。内核和包覆层构成核壳结构直径为2μm球状结构。
实施例十三
本实施例采用实施例三提供的制备方法制备电解质材料,制备得到的电解质材料包括内核和包覆层,内核材料为掺杂石墨烯,包覆层材料为二氧化钛,包覆层厚度为120nm。内核和包覆层构成核壳结构直径为6μm球状结构。
实施例十四
本实施例采用实施例四提供的制备方法制备电解质材料,制备得到的电解质材料包括内核和包覆层,内核材料为石墨烯,包覆层材料为氧化铝,包覆层厚度为480nm。内核和包覆层构成核壳结构直径为13μm球状结构。
实施例十五
本实施例采用实施例四提供的制备方法制备电解质材料,制备得到的电解质材料包括内核和包覆层,内核材料为掺杂石墨烯,包覆层材料为氧化铝,包覆层厚度为950nm。内核和包覆层构成核壳结构直径为19μm球状结构。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种电解质材料,其特征在于,包括:
    内核,所述内核为碳基导体材料;
    包覆层,所述包覆层包覆在所述内核表面,所述包覆层为无机陶瓷类材料。
  2. 根据权利要求1所述的电解质材料,其特征在于,所述碳基导体材料包括石墨烯、掺杂石墨烯、氧化石墨烯、碳纳米管、掺杂碳纳米管中的一种或多种。
  3. 根据权利要求2所述的电解质材料,其特征在于,所述掺杂石墨烯和掺杂碳纳米管的掺杂元素包括N、P、B、O、S、F、Cl、H中的一种或多种。
  4. 根据权利要求1所述的电解质材料,其特征在于,所述无机陶瓷类材料包括氧化铝、氧化锆、氟化锂、氧化硅、氧化钙、氧化镁、氧化钛、氧化钽、氮化硅、立方氮化硼、氮化铝、氮化铬、氮化钛、碳化硅、碳化硼、碳化钛、碳化铬中的一种或多种。
  5. 根据权利要求1所述的电解质材料,其特征在于,所述电解质材料具有球状结构,所述球状结构的直径为0.1~20μm。
  6. 根据权利要求1所述的电解质材料,其特征在于,所述包覆层的厚度为10~1000nm。
  7. 一种电解质,其特征在于,包括:
    锂盐;
    权利要求1-6任一项所述的电解质材料。
  8. 根据权利要求7所述的电解质,其特征在于,进一步包括膜聚合物,所述膜聚合物包括聚丙烯腈、聚甲基丙烯酸甲酯、聚偏二氯乙烯、聚乙烯基砜、聚二丙烯酸乙二醇酯、聚乙烯吡咯烷酮、聚偏二氟乙烯中的一种或多种。
  9. 根据权利要求7所述的电解质,其特征在于,所述锂盐包括LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiTFSI、LiN(CF3SO2)2、LiC(CF3SO2)3中的一种或多种。
  10. 根据权利要求7所述的电解质,其特征在于,所述电解质为层状固体薄膜,所述层状固体薄膜的厚度为0.1~50μm。
  11. 一种电解质材料的制备方法,其特征在于,包括以下步骤:
    颗粒聚合物包覆碳基导体材料,制得碳基导体聚合物颗粒;
    无机陶瓷类材料包覆所述碳基导体聚合物颗粒,制得无机陶瓷类材料包覆的离子导体聚合物颗粒;
    去除所述无机陶瓷类材料包覆的碳基导体聚合物颗粒中的颗粒聚合物。
  12. 根据权利要求11所述的方法,其特征在于,所述颗粒聚合物包覆碳基导体材料包括以下步骤:
    将碳基导体材料分散到颗粒聚合物单体液体中,加入水相,搅拌乳化,加入引发剂,得到颗粒聚合物包覆的碳基导体微球乳液;
    破乳过滤,干燥得到碳基导体聚合物颗粒。
  13. 根据权利要求11所述的方法,其特征在于,所述无机陶瓷类材料包覆所述碳基导体聚合物颗粒包括以下步骤:
    将所述碳基导体聚合物颗粒分散在液体中;
    向所述液体加入无机陶瓷类材料前体溶液;
    过滤,得到无机陶瓷类材料包覆的碳基导体聚合物颗粒。
  14. 根据权利要求11所述的方法,其特征在于,所述去除所述无机陶瓷类材料包覆的碳基导体聚合物颗粒中的颗粒聚合物包括以下步骤:
    将所述无机陶瓷类材料包覆的碳基导体聚合物颗粒加入到颗粒聚合物溶剂中,溶解去除所述颗粒聚合物;
    或者,烧结所述无机陶瓷类材料包覆的碳基导体聚合物颗粒,以去除 所述颗粒聚合物。
  15. 一种电解质材料的制备方法,其特征在于,包括以下步骤:
    将碳基导体材料加入到无机陶瓷类材料前体的醇溶液中,搅拌,干燥后,得到所述无机陶瓷类材料前体醇盐包覆的碳基导体材料;
    烧结所述无机陶瓷类材料前体醇盐包覆的碳基导体材料。
  16. 一种电解质的制备方法,其特征在于,包括以下步骤:
    将锂盐、权利要求1-6任一项所述的电解质材料加入到液体中,搅拌混合,得到浆料;
    所述浆料涂在平板上,放置在惰性气体或真空中干燥,得到所述电解质膜。
  17. 根据权利要求16所述的方法,其特征在于,进一步包括将膜聚合物加入到所述液体中。
  18. 一种全固态锂电池,其特征在于,包括正极、负极、外壳、权利要求7-10任一项所述的电解质。
  19. 一种全固态锂电池的制备方法,其特征在于,包括以下步骤:
    制备锂电池正极和负极;
    使用所述正极、负极和权利要求7-10任一项所述的电解质制备锂电池电芯;
    使用外壳封装成锂电池并经过化成。
PCT/CN2017/077781 2016-06-16 2017-03-23 一种固态电解质材料、电解质、锂电池及其制备方法 WO2017215305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610431034.5A CN107516744B (zh) 2016-06-16 2016-06-16 一种固态电解质材料、电解质、锂电池及其制备方法
CN201610431034.5 2016-06-16

Publications (1)

Publication Number Publication Date
WO2017215305A1 true WO2017215305A1 (zh) 2017-12-21

Family

ID=60664248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077781 WO2017215305A1 (zh) 2016-06-16 2017-03-23 一种固态电解质材料、电解质、锂电池及其制备方法

Country Status (2)

Country Link
CN (1) CN107516744B (zh)
WO (1) WO2017215305A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247030A (zh) * 2019-05-23 2019-09-17 天津大学 制备内嵌金属/碳蛋黄壳结构的氮/硫共掺杂碳纳米片围成的三维多孔微球的方法
CN112054181A (zh) * 2020-09-28 2020-12-08 珠海冠宇电池股份有限公司 一种补锂剂及其应用
CN113594405A (zh) * 2020-04-30 2021-11-02 通用汽车环球科技运作有限责任公司 将陶瓷颗粒并入电化学电池部件中的无溶剂干燥粉末方法
CN113782823A (zh) * 2021-08-12 2021-12-10 浙江锋锂新能源科技有限公司 一种用于固态锂电池的补锂功能电解质膜的制备方法
CN114784276A (zh) * 2022-04-13 2022-07-22 北京理工大学 一种具有电子、离子导电性的复合材料、制备方法及其应用
US11605851B1 (en) * 2021-09-21 2023-03-14 Knoetik Solutions, Inc. Systems, methods and apparatus for improving rechargeable energy storage devices and integrated circuits

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176627B (zh) * 2019-06-18 2023-02-28 济宁克莱泰格新能源科技有限公司 可抑制锂枝晶的锂镧锆氧基固体电解质材料及其制备方法和应用
CN110336074B (zh) * 2019-07-16 2021-07-16 广州天赐高新材料股份有限公司 一种氧氮化物固态电解质及其制备方法和用途
CN111740107B (zh) * 2019-08-23 2022-10-11 杭州众达新能源材料有限公司 一种无机固态电解质-正极材料界面用缓冲层及其制备方法和应用
CN111625149B (zh) * 2020-06-03 2024-04-16 上海天马微电子有限公司 一种导电屏蔽模组及其制作方法和显示装置
CN112939459B (zh) * 2021-02-21 2022-07-22 潮州市祥发陶瓷有限公司 一种耐磨耐腐蚀陶瓷釉料及其制备方法和应用
CN114388881A (zh) * 2022-01-19 2022-04-22 溧阳天目先导电池材料科技有限公司 表面改性混合离子导体固态电解质材料及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425580A (zh) * 2007-10-29 2009-05-06 比亚迪股份有限公司 锂离子电池负极活性物质及其制备方法以及负极和电池
WO2010001993A1 (ja) * 2008-07-04 2010-01-07 シャープ株式会社 リチウム二次電池
CN102066243A (zh) * 2008-06-20 2011-05-18 大阪瓦斯株式会社 钛氧化物包覆的碳纤维和多孔钛氧化物包覆的碳材料组合物
CN102561007A (zh) * 2011-12-14 2012-07-11 天津大学 金属氧化物与碳纳米管复合纤维及其制备方法
CN104117349A (zh) * 2014-07-15 2014-10-29 温州大学 借助雾化乙醇辅助渗透高温热解制备碳纳米管阵列/过渡金属氧化物同轴结构材料的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107486110B (zh) * 2015-07-20 2019-01-22 重庆文理学院 一种高效降解亚甲基蓝的方法
CN107452941B (zh) * 2016-05-31 2020-04-28 华为技术有限公司 一种电池电极保护材料及其制备方法、电池电极极片及制备方法和锂电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425580A (zh) * 2007-10-29 2009-05-06 比亚迪股份有限公司 锂离子电池负极活性物质及其制备方法以及负极和电池
CN102066243A (zh) * 2008-06-20 2011-05-18 大阪瓦斯株式会社 钛氧化物包覆的碳纤维和多孔钛氧化物包覆的碳材料组合物
WO2010001993A1 (ja) * 2008-07-04 2010-01-07 シャープ株式会社 リチウム二次電池
CN102561007A (zh) * 2011-12-14 2012-07-11 天津大学 金属氧化物与碳纳米管复合纤维及其制备方法
CN104117349A (zh) * 2014-07-15 2014-10-29 温州大学 借助雾化乙醇辅助渗透高温热解制备碳纳米管阵列/过渡金属氧化物同轴结构材料的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247030A (zh) * 2019-05-23 2019-09-17 天津大学 制备内嵌金属/碳蛋黄壳结构的氮/硫共掺杂碳纳米片围成的三维多孔微球的方法
CN110247030B (zh) * 2019-05-23 2022-05-10 天津大学 制备内嵌金属/碳蛋黄壳结构的氮/硫共掺杂碳纳米片围成的三维多孔微球的方法
CN113594405A (zh) * 2020-04-30 2021-11-02 通用汽车环球科技运作有限责任公司 将陶瓷颗粒并入电化学电池部件中的无溶剂干燥粉末方法
CN112054181A (zh) * 2020-09-28 2020-12-08 珠海冠宇电池股份有限公司 一种补锂剂及其应用
CN113782823A (zh) * 2021-08-12 2021-12-10 浙江锋锂新能源科技有限公司 一种用于固态锂电池的补锂功能电解质膜的制备方法
US11605851B1 (en) * 2021-09-21 2023-03-14 Knoetik Solutions, Inc. Systems, methods and apparatus for improving rechargeable energy storage devices and integrated circuits
US20230092765A1 (en) * 2021-09-21 2023-03-23 Knoetik Solutions, Inc. Systems, methods and apparatus for improving rechargeable energy storage devices and integrated circuits
CN114784276A (zh) * 2022-04-13 2022-07-22 北京理工大学 一种具有电子、离子导电性的复合材料、制备方法及其应用
CN114784276B (zh) * 2022-04-13 2023-10-27 北京理工大学 一种具有电子、离子导电性的复合材料、制备方法及其应用

Also Published As

Publication number Publication date
CN107516744A (zh) 2017-12-26
CN107516744B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2017215305A1 (zh) 一种固态电解质材料、电解质、锂电池及其制备方法
Wang et al. A quasi‐solid‐state Li‐ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets
Le et al. Composite gel polymer electrolyte based on poly (vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries
US10797303B2 (en) Silicon-based anode active material and preparation method therefor
Guo et al. A flexible polymer-based Li–air battery using a reduced graphene oxide/Li composite anode
KR101614016B1 (ko) 실리콘계 음극 활물질 및 이의 제조 방법
CN110299516B (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
CN105470515B (zh) 一种安全型锂离子动力电池正极及含有该正极的锂离子电池
WO2014032595A1 (zh) 负极材料及其制备方法、负极、具有该负极的电池
CN107452941B (zh) 一种电池电极保护材料及其制备方法、电池电极极片及制备方法和锂电池
TWI807628B (zh) 電解質組成物、二次電池、及電解質片的製造方法
Zhao et al. Preparation and performance of the polyethylene-supported polyvinylidene fluoride/cellulose acetate butyrate/nano-SiO 2 particles blended gel polymer electrolyte
Song et al. Applications of Carbon Dots in Next‐generation Lithium‐Ion Batteries
Yang et al. Dendrite-free solid-state Li–O2 batteries enabled by organic–inorganic interaction reinforced gel polymer electrolyte
Liu et al. Lithium/graphene composite anode with 3D structural LiF protection layer for high-performance lithium metal batteries
Liu et al. Fiber-supported alumina separator for achieving high rate of high-temperature lithium-ion batteries
WO2023082245A1 (zh) 电极及其制作方法、电化学装置和电子装置
Gan et al. Flame‐Retardant Crosslinked Polymer Stabilizes Graphite–Silicon Composite Anode for Self‐Extinguishing Lithium‐Ion Batteries
KR102105658B1 (ko) 콜로이드 무기질 바인더를 이용한 열전지용 박막 전극과 박막 전해질의 제조 방법, 이에 의해 제조된 열전지용 박막 전극과 박막 전해질, 및 이를 포함하는 열전지
Muchakayala et al. Modified ceramic coated polyethylene separator–A strategy for using lithium metal as anode with superior electrochemical performance and thermal stability
KR20210017657A (ko) 황화물계 고체 전해질 제조 방법 및 이로부터 제조된 황화물계 고체 전해질
Liu et al. Close‐packed storage of potassium metallic clusters achieved through nanostructure engineering of ultrafine hollow nanoparticles‐based carbon nanoclusters
Liu et al. Mass Loading‐Independent Lithium Storage of Transitional Metal Compounds Achieved by Multi‐Dimensional Synergistic Nanoarchitecture
KR101664624B1 (ko) 전고체 리튬-황 배터리용 양극의 제조방법, 이에 의해 제조된 전고체 리튬-황 배터리용 양극
WO2023016047A1 (zh) 负极材料及其制备方法、锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812419

Country of ref document: EP

Kind code of ref document: A1