WO2017215285A1 - 一种热响应红外全反射器件及其制备方法 - Google Patents

一种热响应红外全反射器件及其制备方法 Download PDF

Info

Publication number
WO2017215285A1
WO2017215285A1 PCT/CN2017/074690 CN2017074690W WO2017215285A1 WO 2017215285 A1 WO2017215285 A1 WO 2017215285A1 CN 2017074690 W CN2017074690 W CN 2017074690W WO 2017215285 A1 WO2017215285 A1 WO 2017215285A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal material
mixed liquid
total reflection
thermally responsive
Prior art date
Application number
PCT/CN2017/074690
Other languages
English (en)
French (fr)
Inventor
周国富
袁冬
李楠
Original Assignee
深圳市国华光电科技有限公司
深圳市国华光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市国华光电科技有限公司, 深圳市国华光电研究院 filed Critical 深圳市国华光电科技有限公司
Publication of WO2017215285A1 publication Critical patent/WO2017215285A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13478Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells based on selective reflection

Definitions

  • the present invention relates to the field of optical device technologies, and in particular, to a thermally responsive infrared total reflection device and a method of fabricating the same.
  • the technical problem to be solved by the present invention is to provide a thermally responsive infrared total reflection device and a preparation method thereof.
  • a thermally responsive infrared total reflection device comprising: three light transmissive substrates, wherein two adjacent light transmissive substrates are respectively packaged to form a first adjustment zone and a second a conditioning region, the first conditioning region and the second conditioning region are each filled with a liquid crystal layer, the liquid crystal layer comprising a mixed liquid crystal material and a spacer for controlling the thickness of the liquid crystal layer, the mixed liquid crystal material comprising a thermally responsive liquid crystal material and a chiral additive, the spacer being dispersed in the mixed liquid crystal material, wherein the mixed liquid crystal material exhibits a chiral nematic phase within a temperature range of use of the infrared reflective film, the first adjustment The spiral direction of the mixed liquid crystal material of the region is opposite to the spiral direction of the mixed liquid crystal material of the second adjustment region, and the pitch of the mixed liquid crystal material changes as the temperature changes.
  • a surface of the light transmissive substrate opposite to another adjacent light transmissive substrate is provided with a parallel alignment layer, and the thermally responsive liquid crystal material is formed by the parallel alignment layer. Arranged parallel to the orientation of the light transmissive substrate.
  • the pitch of the mixed liquid crystal material of the first conditioning region is the same as the pitch of the mixed liquid crystal material of the second conditioning region.
  • the mixed liquid crystal material of the first adjustment zone comprises 70 to 100 parts by mass of a thermally responsive liquid crystal material and 0.5 to 3 parts by mass of a right-handed chiral additive
  • the second adjustment zone The mixed liquid crystal material comprises 70 to 100 parts by mass of the thermally responsive liquid crystal material and 0.5 to 3 parts by mass of the left-handed chiral additive.
  • the height of the spacer is equal to the thickness of the liquid crystal layer.
  • the material of the spacer is any one of acrylic resin, glass, and silicone resin.
  • a protective film is attached to an outer surface of at least one of the light transmissive substrates disposed on an outer side of the thermally responsive infrared total reflection device.
  • a self-adhesive is provided between the light transmissive substrate outside the thermally responsive infrared total reflection device and the protective film.
  • the invention also provides a method for preparing a thermally responsive infrared total reflection device as described above, comprising the steps of:
  • S3 placing a plurality of spacers on a surface of the first transparent substrate provided with an alignment layer, and placing the second transparent substrate on the spacer, the first transparent substrate And the second transparent substrate is packaged into a first layer of liquid crystal cells, and then a plurality of spacers are placed on the second transparent substrate, and the third transparent substrate is placed on the spacer.
  • the surface of the third transparent substrate provided with the alignment layer is disposed toward the second transparent substrate, and the second transparent substrate and the third transparent substrate are packaged into a second liquid crystal cell.
  • the alignment layer prepared by the S2 is a parallel alignment layer.
  • the helical structure of the chiral nematic liquid crystal in the direction of the helical axis is periodically arranged, and the pitch at which the director of the chiral nematic liquid crystal is rotated by 2 ⁇ in the direction of the helical axis is called a pitch, which is denoted by P.
  • the ratio of the liquid phase material of the nematic phase makes the pitch of the mixed liquid crystal material change, thereby adjusting the reflection band of the infrared reflective film to meet the requirements of light reflection and transmission.
  • a chiral nematic liquid crystal of a chiral direction can only emit its corresponding polarized light, and polarized light of another polarization rotation direction is completely transparent, for ordinary natural light, a single spiral direction is mixed.
  • the reflectivity of the infrared light of the liquid crystal material can only reach up to 50%, and the present invention passes the infrared total reflection device
  • the first adjustment zone and the second adjustment zone are respectively disposed in the chiral nematic mixed liquid crystal material with opposite spiral directions, thereby realizing reflection of infrared light in different polarization rotation directions, that is, realizing infrared total reflection, and reflecting ratio Increased from 50% to 100%.
  • Figure 1 is a plan view of an infrared total reflection device
  • Figure 2 is a cross-sectional view of the infrared total reflection device
  • Figure 3 is a partial cross-sectional view of the infrared total reflection device at a higher use temperature
  • Figure 4 is a partial cross-sectional view of the infrared total reflection device at a lower use temperature
  • Figure 5 is a partial cross-sectional view of the infrared total reflection device below the use temperature
  • Figure 6 is a graph showing the reflection of infrared total reflection devices at different operating temperatures.
  • FIG. 1 is a plan view of an infrared total reflection device
  • FIG. 2 is a cross-sectional view of the infrared total reflection device
  • FIGS. 1 and 2 are not drawn according to actual scales, and are only schematic views, and the present invention provides a heat.
  • the infrared total reflection device comprising three transparent substrates, respectively being a first transparent substrate 1, a second transparent substrate 2 and a third transparent substrate 3, wherein the three transparent substrates are in phase
  • the first adjustment zone 4 and the second adjustment zone 5 are respectively formed by encapsulating the two adjacent light-transmitting substrates through the package frame 8.
  • the first adjustment zone 4 and the second adjustment zone 5 are filled with a liquid crystal layer.
  • the liquid crystal layer comprises a mixed liquid crystal material comprising a thermally responsive liquid crystal material and a chiral additive, and a spacer 6 for dispersing the thickness of the liquid crystal layer, wherein the spacer 6 is dispersed in the mixed liquid crystal material
  • the mixed liquid crystal material has a chiral nematic phase in a temperature range of use of the infrared reflective film, the mixed liquid crystal material has a spiral structure, and a spiral direction of the mixed liquid crystal material of the first adjustment region 4
  • the mixed liquid crystal of the second adjustment zone 5 The spiral direction of the material is reversed, and as the temperature changes, the pitch of the mixed liquid crystal material changes.
  • the surface of the light transmissive substrate opposite to the adjacent other light transmissive substrate is provided with a parallel alignment layer 7 , and the thermally responsive liquid crystal material is formed parallel to the light transmission under the action of the parallel alignment layer 7 Orientation of the substrate.
  • the pitch of the mixed liquid crystal material of the first conditioning zone 4 is the same as the pitch of the mixed liquid crystal material of the second conditioning zone 5.
  • the mixed liquid crystal material of the first adjustment zone 4 comprises 70 to 100 parts by mass of a thermally responsive liquid crystal material and 0.5 to 3 parts by mass of a right-handed chiral additive
  • the mixed liquid crystal material of the second conditioning zone 5 It contains 70 to 100 parts by mass of a thermally responsive liquid crystal material and 0.5 to 3 parts by mass of a left-handed chiral additive.
  • the thermally responsive liquid crystal material may be CSV14190S of Xi'an Liquid Crystal Optoelectronics Co., Ltd.
  • the right-handed chiral additive material may be a liquid crystal material of the formula (I).
  • the left-handed chiral additive material may be a liquid crystal material of the formula (II).
  • the thickness of the spacer 6 is equal to the thickness of the liquid crystal layer, and the material of the spacer 6 should not affect the liquid crystal properties.
  • the material of the spacer 6 may be acrylic resin, glass, Any one of the silicone resins, the spacer 6 may be in the shape of a micro-ball or other shape, and the thickness may vary from a thickness of several micrometers to several tens of micrometers depending on the thickness of the infrared reflective film to be formed, and the spacer 6 It is used to control the thickness of the liquid crystal layer to prevent the liquid crystal layer from changing in thickness as a function of temperature.
  • the infrared light of a single spiral direction mixed liquid crystal material can reflect up to 50%, and the present invention is set in an infrared total reflection device.
  • the first adjustment zone 4 and the second adjustment zone 5 respectively fill the chiral nematic mixed liquid crystal material with opposite spiral directions, and can achieve the purpose of reflecting left-handed and right-handed circularly polarized light, thereby realizing infrared light with different polarization rotation directions.
  • the reflection which achieves infrared total reflection, increases the reflectivity from 50% to 100%.
  • the infrared total reflection device is used in a temperature range of -20 ° C to 50 ° C.
  • a partial cross-sectional view thereof is shown in FIG. 3 .
  • the mixed liquid crystal material has a chiral nematic phase, and the pitch of the mixed liquid crystal material is small.
  • the mixed liquid crystal material when the infrared total reflection device is lower than the use temperature, that is, lower than -20 ° C, the mixed liquid crystal material is all converted into a smectic phase arrangement, and both infrared light and visible light can be transmitted from the infrared total reflection device.
  • the infrared total reflection device is above the use temperature, i.e., above 50 ° C, the mixed liquid crystal material is converted into a liquid state.
  • the mixed liquid crystal material changes from a smectic phase-chiral nematic phase-liquid state as the temperature changes, and the pitch of the mixed liquid crystal material changes within a temperature range of use, and the above changes are reversible changes, so Changing the pitch of the mixed liquid crystal material by adjusting the temperature, The adjustment of the reflection band of the infrared reflective film is achieved.
  • a protective film is attached to the outer surface of at least one of the light transmissive substrates disposed on the outer side of the thermally responsive infrared total reflection device for placement
  • the infrared reflecting device is worn or damaged.
  • a self-adhesive is disposed between the transparent substrate disposed on the outer side of the thermally responsive infrared total reflection device and the protective film. After the protective film is removed, the infrared reflective device may be pasted by a self-adhesive. It is more convenient to use.
  • the present invention also provides a method for preparing a thermally responsive infrared total reflection device as described above, comprising the steps of: S1: preparing three light transmissive substrates; S2: respectively on a surface of the first light transmissive substrate 1 and third a parallel alignment layer 7 is prepared on one surface of the light-transmitting substrate 3, and a parallel alignment layer 7 is prepared on both surfaces of the second light-transmitting substrate 2; S3: a plurality of spacers 6 are placed on the first through-layer The light substrate 1 is disposed on the surface of the parallel alignment layer 7, and the second light-transmitting substrate 2 is placed on the spacer 6, and the first light-transmitting substrate 1 and the second light-transmitting layer are disposed.
  • the substrate 2 is packaged into a first layer of liquid crystal cells, and a plurality of spacers 6 are placed on the second light-transmissive substrate 2, and a third transparent substrate 3 is placed on the spacers 6,
  • the surface of the three transparent substrate 3 provided with the parallel alignment layer 7 is disposed toward the second transparent substrate 2, and the second transparent substrate 2 and the third transparent substrate 3 are encapsulated into a second Layer liquid crystal cell;
  • S4 70 to 100 parts by mass of a thermally responsive liquid crystal material and 0.5 to 3 parts by mass of a right-handed chiral additive are mixed to obtain a mixed liquid crystal material A, which is 70 to 100 parts by mass.
  • the thermally responsive liquid crystal material is mixed with 0.5 to 3 parts by mass of a left-handed chiral additive to obtain a mixed liquid crystal material B, and the mixed liquid crystal material A and the mixed liquid crystal material B are respectively injected into the first layer liquid crystal cell and the second Layer liquid crystal cell.
  • Preparing a thermally responsive infrared total reflectance device according to the following steps: preparing three light transmissive substrates; preparing a parallel alignment layer on one surface of the first light transmissive substrate and one surface of the third light transmissive substrate, respectively, in the second Parallel alignment layers are prepared on both surfaces of the light transmissive substrate; a plurality of spacers are placed on the surface of the first light transmissive substrate provided with the parallel alignment layer, and the second transparent substrate is placed on Disposing the first transparent substrate and the second transparent substrate into a first layer of liquid crystal cells, and placing a plurality of spacers on the second transparent substrate, a third light transmissive substrate is disposed on the spacer, the third light transmissive substrate is provided with a surface of the parallel alignment layer disposed toward the second light transmissive substrate, and the second light transmissive substrate and The third transparent substrate is packaged into a second layer liquid crystal cell; 70 parts by mass of the thermally responsive liquid crystal material and 0.5 parts by mass of the chiral additive A1 are mixed
  • the thermally responsive liquid crystal material may be CSV14190S of Xi'an Liquid Crystal Optoelectronics Co., Ltd.
  • the chiral additive B1 material has the following structural formula: material:
  • a mixed liquid crystal material B was obtained.
  • the mixed liquid crystal material A and the mixed liquid crystal material B are injected into the first layer liquid crystal cell and the second layer liquid crystal cell, respectively, but are sealed into a sealed liquid crystal cell by a frame.
  • Preparing a thermally responsive infrared total reflectance device according to the following steps: preparing three light transmissive substrates; preparing a parallel alignment layer on one surface of the first light transmissive substrate and one surface of the third light transmissive substrate, respectively, in the second Parallel alignment layers are prepared on both surfaces of the light transmissive substrate; a plurality of spacers are placed on the surface of the first light transmissive substrate provided with the parallel alignment layer, and the second transparent substrate is placed on Disposing the first transparent substrate and the second transparent substrate into a first layer of liquid crystal cells, and placing a plurality of spacers on the second transparent substrate, a third light transmissive substrate is disposed on the spacer, the third light transmissive substrate is provided with a surface of the parallel alignment layer disposed toward the second light transmissive substrate, and the second light transmissive substrate and The third light-transmitting substrate is packaged into a second layer liquid crystal cell; 100 parts by mass of the thermally responsive liquid crystal material and 3 parts by mass of the chiral additive A
  • the thermally responsive liquid crystal material may be CSV14190S of Xi'an Liquid Crystal Optoelectronics Co., Ltd.
  • the chiral additive B1 material is a material of the following structural formula. :
  • a mixed liquid crystal material B was obtained.
  • the mixed liquid crystal material A and the mixed liquid crystal material B are injected into the first layer liquid crystal cell and the second layer liquid crystal cell, respectively, but are sealed into a sealed liquid crystal cell by a frame.
  • a thermally responsive infrared total reflectance device Prepare a thermally responsive infrared total reflectance device according to the following steps: preparing three light transmissive substrates; respectively, in the first light transmissive substrate Preparing a parallel alignment layer on one surface of one surface and the third transparent substrate, and preparing a parallel alignment layer on both surfaces of the second transparent substrate; placing a plurality of spacers on the first light transmission
  • the substrate is provided with a surface of the parallel alignment layer, the second transparent substrate is placed on the spacer, and the first transparent substrate and the second transparent substrate are packaged into the first Layered liquid crystal cell, wherein a plurality of spacers are placed on the second transparent substrate, and a third transparent substrate is placed on the spacer, and the third transparent substrate is provided with a parallel alignment layer
  • the surface is disposed toward the second transparent substrate, and the second transparent substrate and the third transparent substrate are packaged into a second layer liquid crystal cell; and 85 parts by mass of the thermally responsive liquid crystal material and 1.5 mass are taken
  • the thermally responsive liquid crystal material 85 parts by mass of the thermally responsive liquid crystal material is mixed with 1.5 parts by mass of the chiral additive B1, which may be CSV14190S of Xi'an Liquid Crystal Optoelectronics Co., Ltd., and the chiral additive B1 material is a material of the following structural formula :
  • a mixed liquid crystal material B was obtained.
  • the mixed liquid crystal material A and the mixed liquid crystal material B are injected into the first layer liquid crystal cell and the second layer liquid crystal cell, respectively, but are sealed into a sealed liquid crystal cell by a frame.
  • the thermally responsive infrared total reflectance device prepared in Preparation Example 3 was placed at -20 ° C, 20 ° C, and 50 ° C, respectively, and an infrared reflection experiment was performed to measure the reflection spectrum, and the experimental results were obtained as shown in Fig. 6.
  • the reflection bandwidth of the infrared reflective film at -20 ° C is 1200 nm - 1350 nm
  • the thermal response infrared total reflectance device at 20 ° C The reflection bandwidth is from 900 nm to 1050 nm
  • the reflection bandwidth of the thermally responsive infrared total reflectance device at 50 ° C is 770 nm to 850 nm.
  • the thermal response infrared is reduced with the temperature in the temperature range of the thermal response infrared total reflectance device.
  • the total reflectance reflection band migrates from the near-infrared to the far-infrared band, and the reflectance is close to 100%.
  • Mixed liquid crystal materials formed by mixing different ratios of chiral additives and thermally responsive liquid crystal materials have different reflection bands and different responses to temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种热响应红外全反射器件及其制备方法,热响应红外全反射器件包括三块透光基材(1,2,3),三块透光基材(1,2,3)中相邻两块之间分别封装形成第一调节区(4)和第二调节区(5),第一调节区(4)和第二调节区(5)均填充有液晶层,液晶层包括混合液晶材料和用于控制液晶层厚度的间隔子(6),混合液晶材料中包含热响应液晶材料和手性添加剂,间隔子(6)分散在混合液晶材料中,在红外反射薄膜的使用温度范围内,混合液晶材料呈手性向列相,第一调节区(4)的混合液晶材料的螺旋方向与第二调节区(5)的混合液晶材料的螺旋方向相反,随着温度改变,混合液晶材料的螺距发生变化。通过在红外全反射器件中相对设置螺旋方向相反的手性向列相混合液晶材料,从而实现不同偏振旋转方向的红外光的反射。

Description

一种热响应红外全反射器件及其制备方法 技术领域
本发明涉及光学器件技术领域,尤其涉及一种热响应红外全反射器件及其制备方法。
背景技术
为了实现阳光的透射和反射,通常的作法是在玻璃上镀膜,使得光线中某段波长的光可以被玻璃窗反射或透射。可以根据不同的反光和透光需求,采用不同材质的膜,比如需要隔热保温的效果时,可以选用对远红外辐射热有较高反射率的膜。但是采用这种方式调节阳光的反射和透射只能实现某一固定波段的反射,因为镀膜玻璃形成后,其光学性能不能够随着需求改变而调整,但是随着季节、天气的变化、个人喜好的变化,人们的需求会不断的发生改变,而镀膜玻璃难以适应人们需求的变化,无法实现冬暖夏凉。
开发一种红外反射波段可调节的红外反射薄膜,能够更好地适应人们的需求的变化,将能够更好地在市场上推广使用。
发明内容
本发明所要解决的技术问题是提供一种热响应红外全反射器件及其制备方法。
本发明所采取的技术方案是:
一种热响应红外全反射器件,其特征在于,包括三块透光基材,所述三块透光基材中相邻两块透光基材之间分别封装形成第一调节区和第二调节区,所述第一调节区和所述第二调节区均填充有液晶层,所述液晶层包括混合液晶材料和用于控制所述液晶层厚度的间隔子,所述混合液晶材料中包含热响应液晶材料和手性添加剂,所述间隔子分散在所述混合液晶材料中,在所述红外反射薄膜的使用温度范围内,所述混合液晶材料呈手性向列相,所述第一调节区的所述混合液晶材料的螺旋方向与所述第二调节区的所述混合液晶材料的螺旋方向相反,随着温度改变,所述混合液晶材料的螺距发生变化。
在一些具体的实施方式中,所述透光基材与相邻的另一透光基材相对的表面上设有平行配向层,所述热响应液晶材料在所述平行配向层的作用下形成平行于所述透光基材的定向排列。
在一些具体的实施方式中,所述第一调节区的所述混合液晶材料的螺距与所述第二调节区的所述混合液晶材料的螺距相同。
在一些具体的实施方式中,所述第一调节区的所述混合液晶材料包含70~100质量份的热响应液晶材料和0.5~3质量份的右旋手性添加剂,所述第二调节区的所述混合液晶材料包含 70~100质量份的热响应液晶材料和0.5~3质量份的左旋手性添加剂。
在一些具体的实施方式中,所述间隔子的高度等于所述液晶层的厚度。
在进一步优选的实施方式中,所述间隔子的材料为压克力树脂、玻璃、硅氧树脂中的任一种。
在一些具体的实施方式中,设于所述热响应红外全反射器件的外侧的所述透光基材中至少一个所述透光基材的外表面上贴附有保护膜。
在进一步优选的实施方式中,在所述热响应红外全反射器件的外侧的所述透光基材与所述保护膜之间设有一层自黏胶。
本发明还提供了一种如上所述的热响应红外全反射器件的制备方法,包括以下步骤:
S1:制备三块透光基材;
S2:分别在第一透光基材的一个表面和第三透光基材的一个表面上制备配向层,在第二透光基材的两个表面上均制备配向层;
S3:取多个间隔子放置于所述第一透光基材设有配向层的表面上,将所述第二透光基材放置在所述间隔子上,将所述第一透光基材和所述第二透光基材封装成第一层液晶盒,再在所述第二透光基材上放置多个间隔子,将第三透光基材放置在所述间隔子上,所述第三透光基材设有配向层的表面朝向所述第二透光基材设置,将所述第二透光基材和所述第三透光基材封装成第二层液晶盒;
S4:取热响应液晶材料和右旋手性添加剂混合,得到混合液晶材料A,取热响应液晶材料和左旋手性添加剂混合,得到混合液晶材料B,将所述混合液晶材料A和所述混合液晶材料B分别注入所述第一层液晶盒和所述第二层液晶盒。
在一些具体的实施方式中,所述S2制备的配向层为平行配向层。
本发明的有益效果是:
手性向列相液晶在螺旋轴方向上的螺旋结构呈周期性排列,手性向列相液晶的指向矢在螺旋轴方向上旋转2π的间距称为一个螺距,用P表示。根据以下公式:λ=P×n,其中,λ为单一螺距的手性向列相液晶反射波长,n为液晶的平均光折射率;Δλ=(ne-no)×P=Δn×P,其中,Δλ为反射光谱带宽,Δn为双折射率之差;当P值改变时,液晶所反射的波长以及反射的频宽也会随之改变,故我们可以通过调节温度,调节混合液晶材料中呈手性向列相的液晶材料的比例,使得混合液晶材料的螺距发生改变,从而调节红外反射薄膜的反射波段,以适应光反射和透射的需求。由于一种手性方向的手性向列相液晶只能发射与其相应的偏振光,对于另一种偏振旋转方向的偏振光具有完全透过性,所以对于普通的自然光来说,单一螺旋方向的混合液晶材料的红外光的反射率最高只能达到50%,而本发明通过在红外全反射器件 中设置将第一调节区和第二调节区,分别在其中填充螺旋方向相反的手性向列相混合液晶材料,从而实现不同偏振旋转方向的红外光的反射,即实现红外全反射,将反射率从50%提升至100%。
附图说明
图1为红外全反射器件的俯视图;
图2为红外全反射器件的截面图;
图3为红外全反射器件处于较高的使用温度时的部分截面图;
图4为红外全反射器件处于较低的使用温度时的部分截面图;
图5为红外全反射器件低于使用温度时的部分截面图;
图6为红外全反射器件在不同工作温度的反射曲线图。
具体实施方式
参照图1-2,图1为红外全反射器件的俯视图;图2为红外全反射器件的截面图;图1和图2均未按照实际比例绘制,仅为示意图,本发明提供了一种热响应红外全反射器件,包括三块透光基材,分别为第一透光基材1、第二透光基材2和第三透光基材3,所述三块透光基材中相邻两块透光基材之间分别通过封装边框8封装形成第一调节区4和第二调节区5,所述第一调节区4和所述第二调节区5均填充有液晶层,所述液晶层包括混合液晶材料和用于控制所述液晶层厚度的间隔子6,所述混合液晶材料中包含热响应液晶材料和手性添加剂,所述间隔子6分散在所述混合液晶材料中,在所述红外反射薄膜的使用温度范围内,所述混合液晶材料呈手性向列相,所述混合液晶材料具有螺旋结构,所述第一调节区4的所述混合液晶材料的螺旋方向与所述第二调节区5的所述混合液晶材料的螺旋方向相反,随着温度改变,所述混合液晶材料的螺距发生变化。所述透光基材与相邻的另一透光基材相对的表面上设有平行配向层7,所述热响应液晶材料在所述平行配向层7的作用下形成平行于所述透光基材的定向排列。在优选的实施例中,所述第一调节区4的所述混合液晶材料的螺距与所述第二调节区5的所述混合液晶材料的螺距相同。所述第一调节区4的所述混合液晶材料包含70~100质量份的热响应液晶材料和0.5~3质量份的右旋手性添加剂,所述第二调节区5的所述混合液晶材料包含70~100质量份的热响应液晶材料和0.5~3质量份的左旋手性添加剂。在优选的实施方式中,所述热响应液晶材料可为西安液晶光电科技股份有限公司的CSV14190S,右旋手性添加剂材料可为结构式如式(I)所示的液晶材料,
Figure PCTCN2017074690-appb-000001
左旋手性添加剂材料可为结构式如式(II)所示的液晶材料,
Figure PCTCN2017074690-appb-000002
参照图2,所述间隔子6的厚度等于所述液晶层的厚度,所述间隔子6的材料应不影响液晶性质,比如,所述间隔子6的材料可为压克力树脂、玻璃、硅氧树脂中的任一种,所述间隔子6的形状可为微型小球或者其他形状,厚度根据红外反射薄膜需要制成的厚度改变,可以为数微米到数十微米,所述间隔子6用于控制所述液晶层的厚度,防止所述液晶层随着温度变化发生厚度的变化。
由于一种手性方向只能反射一种偏振方向的圆偏振光,单一螺旋方向的混合液晶材料的红外光的反射率最高只能达到50%,而本发明通过在红外全反射器件中设置将第一调节区4和第二调节区5,分别在其中填充螺旋方向相反的手性向列相混合液晶材料,可以达到反射左旋以及右旋圆偏振光的目的,从而实现不同偏振旋转方向的红外光的反射,即实现红外全反射,将反射率从50%提升至100%。
参照图3,所述红外全反射器件的使用温度范围为-20℃~50℃,当红外全反射器件处于较高的使用温度时,即20℃~50℃时,其部分截面图如图3,所述混合液晶材料呈手性向列相,所述混合液晶材料的螺距较小。根据以下公式:λ=P×n,其中,λ为单一螺距的手性向列相液晶反射波长,n为液晶的平均光折射率;Δλ=(ne-no)×P=Δn×P,其中,Δλ为反射光谱带宽,Δn为双折射率之差,在处于较高的使用温度时,所述红外全反射器件的反射波段处于近红外波段,且发射光谱带宽较窄,远红外波段和可见光可以透过所述红外反射薄膜。
参照图4,当红外全反射器件处于较低的使用温度时,即-20℃~20℃时,其部分截面图如图4,部分混合液晶材料由手性向列相向近晶相转变,使得所述混合液晶材料的螺距增大,同样根据λ=P×n和Δλ=(ne-no)×P=Δn×P,在处于较低的使用温度时,所述红外全反射器件的反射波段处于远红外波段,且发射光谱带宽较宽,近红外波段和可见光可以透过所述红外反射薄膜。
参照图5,当红外全反射器件低于使用温度时,即低于-20℃时,所述混合液晶材料全部转变为近晶相排列,红外光和可见光均可从红外全反射器件透射。当红外全反射器件高于使用温度时,即高于50℃时,所述混合液晶材料转变为液态。所述混合液晶材料随着温度改变,发生从近晶相-手性向列相-液态的改变,以及在使用温度范围内,所述混合液晶材料的螺距改变,上述改变均为可逆改变,所以可以通过调节温度,改变所述混合液晶材料的螺距,从 而实现所述红外反射薄膜的反射波段的调节。
在优选的实施例中,在进一步优选的实施例中,设于热响应红外全反射器件的外侧的透光基材中至少一个透光基材的外表面上贴附有保护膜,用于放置红外反射器件磨伤或受损。设于热响应红外全反射器件的外侧的透光基材与所述保护膜之间设有一层自黏胶,将所述保护膜撕除后,可以通过自黏胶将红外反射器件粘贴在某处使用,更加方便使用。
本发明还提供了如上所述的热响应红外全反射器件的制备方法,包括以下步骤:S1:制备三块透光基材;S2:分别在第一透光基材1的一个表面和第三透光基材3的一个表面上制备平行配向层7,在第二透光基材2的两个表面上均制备平行配向层7;S3:取多个间隔子6放置于所述第一透光基材1设有平行配向层7的表面上,将所述第二透光基材2放置在所述间隔子6上,将所述第一透光基材1和所述第二透光基材2封装成第一层液晶盒,再在所述第二透光基材2上放置多个间隔子6,将第三透光基材3放置在所述间隔子6上,所述第三透光基材3设有平行配向层7的表面朝向所述第二透光基材2设置,将所述第二透光基材2和所述第三透光基材3封装成第二层液晶盒;S4:取70~100质量份的热响应液晶材料和0.5~3质量份右旋手性添加剂混合,得到混合液晶材料A,取70~100质量份的热响应液晶材料和0.5~3质量份左旋手性添加剂混合,得到混合液晶材料B,将所述混合液晶材料A和所述混合液晶材料B分别注入所述第一层液晶盒和所述第二层液晶盒。
实施例1:
按照以下步骤制备热响应红外全反射率器件:制备三块透光基材;分别在第一透光基材的一个表面和第三透光基材的一个表面上制备平行配向层,在第二透光基材的两个表面上均制备平行配向层;取多个间隔子放置于所述第一透光基材设有平行配向层的表面上,将所述第二透光基材放置在所述间隔子上,将所述第一透光基材和所述第二透光基材封装成第一层液晶盒,再在所述第二透光基材上放置多个间隔子,将第三透光基材放置在所述间隔子上,所述第三透光基材设有平行配向层的表面朝向所述第二透光基材设置,将所述第二透光基材和所述第三透光基材封装成第二层液晶盒;取70质量份的热响应液晶材料和0.5质量份的手性添加剂A1混合,得到混合液晶材料A,所述热响应液晶材料可为西安液晶光电科技股份有限公司的CSV14190S,所述手性添加剂A1为结构式如下的材料:
Figure PCTCN2017074690-appb-000003
取70质量份的热响应液晶材料和0.5质量份的手性添加剂B1混合,所述热响应液晶材料可为西安液晶光电科技股份有限公司的CSV14190S,所述手性添加剂B1材料为结构式如下的 材料:
Figure PCTCN2017074690-appb-000004
得到混合液晶材料B。将所述混合液晶材料A和所述混合液晶材料B分别注入所述第一层液晶盒和所述第二层液晶盒,然而通过边框封装成密闭的液晶盒。
实施例2:
按照以下步骤制备热响应红外全反射率器件:制备三块透光基材;分别在第一透光基材的一个表面和第三透光基材的一个表面上制备平行配向层,在第二透光基材的两个表面上均制备平行配向层;取多个间隔子放置于所述第一透光基材设有平行配向层的表面上,将所述第二透光基材放置在所述间隔子上,将所述第一透光基材和所述第二透光基材封装成第一层液晶盒,再在所述第二透光基材上放置多个间隔子,将第三透光基材放置在所述间隔子上,所述第三透光基材设有平行配向层的表面朝向所述第二透光基材设置,将所述第二透光基材和所述第三透光基材封装成第二层液晶盒;取100质量份的热响应液晶材料和3质量份的手性添加剂A1混合,得到混合液晶材料A,所述热响应液晶材料可为西安液晶光电科技股份有限公司的CSV14190S,所述手性添加剂A1为结构式如下的材料:
Figure PCTCN2017074690-appb-000005
取100质量份的热响应液晶材料和3质量份的手性添加剂B1混合,所述热响应液晶材料可为西安液晶光电科技股份有限公司的CSV14190S,所述手性添加剂B1材料为结构式如下的材料:
Figure PCTCN2017074690-appb-000006
得到混合液晶材料B。将所述混合液晶材料A和所述混合液晶材料B分别注入所述第一层液晶盒和所述第二层液晶盒,然而通过边框封装成密闭的液晶盒。
实施例3:
按照以下步骤制备热响应红外全反射率器件:制备三块透光基材;分别在第一透光基材 的一个表面和第三透光基材的一个表面上制备平行配向层,在第二透光基材的两个表面上均制备平行配向层;取多个间隔子放置于所述第一透光基材设有平行配向层的表面上,将所述第二透光基材放置在所述间隔子上,将所述第一透光基材和所述第二透光基材封装成第一层液晶盒,再在所述第二透光基材上放置多个间隔子,将第三透光基材放置在所述间隔子上,所述第三透光基材设有平行配向层的表面朝向所述第二透光基材设置,将所述第二透光基材和所述第三透光基材封装成第二层液晶盒;取85质量份的热响应液晶材料和1.5质量份的手性添加剂A1混合,得到混合液晶材料A,所述热响应液晶材料可为西安液晶光电科技股份有限公司的CSV14190S,所述手性添加剂A1为结构式如下的材料:
Figure PCTCN2017074690-appb-000007
取85质量份的热响应液晶材料和1.5质量份的手性添加剂B1混合,所述热响应液晶材料可为西安液晶光电科技股份有限公司的CSV14190S,所述手性添加剂B1材料为结构式如下的材料:
Figure PCTCN2017074690-appb-000008
得到混合液晶材料B。将所述混合液晶材料A和所述混合液晶材料B分别注入所述第一层液晶盒和所述第二层液晶盒,然而通过边框封装成密闭的液晶盒。
将制备实施例3制备得到的热响应红外全反射率器件,分别置于-20℃、20℃、50℃下,进行红外反射实验,测量其反射光谱,得到实验结果如图6,图中A、B、C分别为50℃、20℃、-20℃下的红外反射曲线,可以看到-20℃下红外反射薄膜的反射带宽为1200nm-1350nm,20℃下热响应红外全反射率器件的反射带宽为900nm-1050nm,50℃下热响应红外全反射率器件的反射带宽为770nm-850nm,在热响应红外全反射率器件的使用温度范围内,随着温度的降低,所述热响应红外全反射率的反射波段自近红外波段向远红外波段迁移,且反射率接近100%。手性添加剂和热响应液晶材料的不同比例混合形成的混合液晶材料反射波段不同且对温度的响应不同。

Claims (10)

  1. 一种热响应红外全反射器件,其特征在于,包括三块透光基材,所述三块透光基材中相邻两块透光基材之间分别封装形成第一调节区和第二调节区,所述第一调节区和所述第二调节区均填充有液晶层,所述液晶层包括混合液晶材料和用于控制所述液晶层厚度的间隔子,所述混合液晶材料中包含热响应液晶材料和手性添加剂,所述间隔子分散在所述混合液晶材料中,在所述红外反射薄膜的使用温度范围内,所述混合液晶材料呈手性向列相,所述第一调节区的所述混合液晶材料的螺旋方向与所述第二调节区的所述混合液晶材料的螺旋方向相反,随着温度改变,所述混合液晶材料的螺距发生变化。
  2. 根据权利要求1所述的热响应红外全反射器件,其特征在于,所述透光基材与相邻的另一透光基材相对的表面上设有平行配向层。
  3. 根据权利要求1所述的热响应红外全反射器件,其特征在于,所述第一调节区的所述混合液晶材料的螺距与所述第二调节区的所述混合液晶材料的螺距相同。
  4. 根据权利要求1所述的热响应红外全反射器件,其特征在于,所述第一调节区的所述混合液晶材料包含70~100质量份的热响应液晶材料和0.5~3质量份的右旋手性添加剂,所述第二调节区的所述混合液晶材料包含70~100质量份的热响应液晶材料和0.5~3质量份的左旋手性添加剂。
  5. 根据权利要求1所述的热响应红外全反射器件,其特征在于,所述间隔子的高度等于所述液晶层的厚度。
  6. 根据权利要求5所述的热响应红外全反射器件,其特征在于,所述间隔子的材料为压克力树脂、玻璃、硅氧树脂中的任一种。
  7. 根据权利要求1所述的热响应红外全反射器件,其特征在于,设于所述热响应红外全反射器件的外侧的所述透光基材中至少一个所述透光基材的外表面上贴附有保护膜。
  8. 根据权利要求7所述的热响应红外全反射器件,其特征在于,在所述热响应红外全反射器件的外侧的所述透光基材与所述保护膜之间设有一层自黏胶。
  9. 一种权利要求1-8任一项所述的热响应红外全反射器件的制备方法,其特征在于,包括以下步骤:
    S1:制备三块透光基材;
    S2:分别在第一透光基材的一个表面和第三透光基材的一个表面上制备配向层,在第二透光基材的两个表面上均制备配向层;
    S3:取多个间隔子放置于所述第一透光基材设有配向层的表面上,将所述第二透光基材放置在所述间隔子上,将所述第一透光基材和所述第二透光基材封装成第一层液晶盒,再在所述第二透光基材上放置多个间隔子,将第三透光基材放置在所述间隔子上,所述 第三透光基材设有配向层的表面朝向所述第二透光基材设置,将所述第二透光基材和所述第三透光基材封装成第二层液晶盒;
    S4:取热响应液晶材料和右旋手性添加剂混合,得到混合液晶材料A,取热响应液晶材料和左旋手性添加剂混合,得到混合液晶材料B,将所述混合液晶材料A和所述混合液晶材料B分别注入所述第一层液晶盒和所述第二层液晶盒。
  10. 根据权利要求9所述的热响应红外全反射器件的制备方法,其特征在于,所述S2制备的配向层为平行配向层。
PCT/CN2017/074690 2016-06-14 2017-02-24 一种热响应红外全反射器件及其制备方法 WO2017215285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610415276.5A CN106019754A (zh) 2016-06-14 2016-06-14 一种热响应红外全反射器件及其制备方法
CN201610415276.5 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017215285A1 true WO2017215285A1 (zh) 2017-12-21

Family

ID=57089011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074690 WO2017215285A1 (zh) 2016-06-14 2017-02-24 一种热响应红外全反射器件及其制备方法

Country Status (2)

Country Link
CN (1) CN106019754A (zh)
WO (1) WO2017215285A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019754A (zh) * 2016-06-14 2016-10-12 深圳市国华光电科技有限公司 一种热响应红外全反射器件及其制备方法
CN106646985B (zh) * 2016-11-16 2021-06-22 深圳市国华光电科技有限公司 一种波段可调谐的红外反射器件及其制备方法
CN106646986A (zh) * 2017-02-10 2017-05-10 华南师范大学 一种电响应红外反射器件及其制备方法
CN106773433A (zh) * 2017-02-27 2017-05-31 南方科技大学 一种液晶显示面板及其制作方法
CN106997133A (zh) * 2017-05-17 2017-08-01 华南师范大学 一种红外反射器件的制备方法
CN109856830B (zh) * 2019-01-03 2022-03-08 京东方科技集团股份有限公司 反射式显示面板及其制作方法、驱动方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028767A1 (fr) * 2005-09-08 2007-03-15 Centre National De La Recherche Scientifique (Cnrs) Procédé d'élaboration d'un matériau à cristaux liquides réfléchissant plus de 50% d'une lumière incidente non polarisée
CN102804003A (zh) * 2009-06-11 2012-11-28 富士胶片株式会社 红外光反射板和红外光反射性夹层玻璃
CN102981308A (zh) * 2012-11-30 2013-03-20 京东方科技集团股份有限公司 透明显示器
CN103781878A (zh) * 2011-09-12 2014-05-07 富士胶片株式会社 胆甾型液晶混合物、膜、选择性反射板、层叠体和层叠玻璃
KR20150090701A (ko) * 2014-01-29 2015-08-06 호서대학교 산학협력단 적외선 반사필름 및 그 제조방법
CN104829785A (zh) * 2015-03-16 2015-08-12 华南师范大学 红外反射液晶高分子薄膜及其制备方法
CN105431290A (zh) * 2013-05-30 2016-03-23 日本化药株式会社 红外反射膜以及使用其的层合玻璃
CN106019754A (zh) * 2016-06-14 2016-10-12 深圳市国华光电科技有限公司 一种热响应红外全反射器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382717B (zh) * 2008-09-16 2010-07-28 北京科技大学 一种智能化屏蔽入射光的薄膜材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028767A1 (fr) * 2005-09-08 2007-03-15 Centre National De La Recherche Scientifique (Cnrs) Procédé d'élaboration d'un matériau à cristaux liquides réfléchissant plus de 50% d'une lumière incidente non polarisée
CN102804003A (zh) * 2009-06-11 2012-11-28 富士胶片株式会社 红外光反射板和红外光反射性夹层玻璃
CN103781878A (zh) * 2011-09-12 2014-05-07 富士胶片株式会社 胆甾型液晶混合物、膜、选择性反射板、层叠体和层叠玻璃
CN102981308A (zh) * 2012-11-30 2013-03-20 京东方科技集团股份有限公司 透明显示器
CN105431290A (zh) * 2013-05-30 2016-03-23 日本化药株式会社 红外反射膜以及使用其的层合玻璃
KR20150090701A (ko) * 2014-01-29 2015-08-06 호서대학교 산학협력단 적외선 반사필름 및 그 제조방법
CN104829785A (zh) * 2015-03-16 2015-08-12 华南师范大学 红外反射液晶高分子薄膜及其制备方法
CN106019754A (zh) * 2016-06-14 2016-10-12 深圳市国华光电科技有限公司 一种热响应红外全反射器件及其制备方法

Also Published As

Publication number Publication date
CN106019754A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2017215285A1 (zh) 一种热响应红外全反射器件及其制备方法
WO2018090858A1 (zh) 一种波段可调谐的红外反射器件及其制备方法
Sol et al. Multistate luminescent solar concentrator “smart” windows
US7973998B2 (en) Temperature activated optical films
JP6073395B2 (ja) 屈折性光学構造を組み込んだ温度応答切換型光学フィルタ
WO2017148329A1 (zh) 一种红外反射薄膜、其制备方法及其红外反射方法
JP6527471B2 (ja) エネルギーの通過を調節するためのデバイス
US10942402B2 (en) Electric response infrared reflection device and preparation method thereof
TWI648378B (zh) 液晶介質及液晶裝置
WO2018209910A1 (zh) 一种红外反射器件的制备方法
US20200041827A1 (en) Total-reflection infrared reflection device and preparation method thereof
KR20120005027A (ko) 게스트-호스트 아키텍처를 포함하는 열적으로 스위칭되는 광학 필터
US20110096253A1 (en) Thermal tuning glazing structures comprising a cholesteric liquid crystal
TWI534251B (zh) 包含液晶介質之光學轉換元件
CN108603116B (zh) 用于调节光入射的装置
WO2013017084A1 (zh) 胆甾液晶显示器及其制备方法
JP2002357815A (ja) 赤外線調光素子
Hu et al. Cell thickness dependence of electrically tunable infrared reflectors based on polymer stabilized cholesteric liquid crystals
CN109828403B (zh) 一种电响应反射器件及其制备方法
Li et al. Dynamic Refractive Index‐Matching for Adaptive Thermoresponsive Smart Windows
JPH0929882A (ja) 調光材料
WO2019076220A1 (zh) 一种液晶混合物及一种温度响应型红外反射器件
CN109085712A (zh) 一种温度响应型液晶材料、光调节器及其制作方法
Zhang et al. Tunable reflectance of an inverse opal–chiral nematic liquid crystal multilayer device by electric-or thermal-control
Ha et al. Polarization-independent multiple selective reflections from bichiral liquid crystal films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812403

Country of ref document: EP

Kind code of ref document: A1