WO2018090858A1 - 一种波段可调谐的红外反射器件及其制备方法 - Google Patents

一种波段可调谐的红外反射器件及其制备方法 Download PDF

Info

Publication number
WO2018090858A1
WO2018090858A1 PCT/CN2017/109809 CN2017109809W WO2018090858A1 WO 2018090858 A1 WO2018090858 A1 WO 2018090858A1 CN 2017109809 W CN2017109809 W CN 2017109809W WO 2018090858 A1 WO2018090858 A1 WO 2018090858A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
transparent substrate
polymer network
negative
reflecting device
Prior art date
Application number
PCT/CN2017/109809
Other languages
English (en)
French (fr)
Inventor
周国富
胡小文
李楠
Original Assignee
深圳市国华光电科技有限公司
华南师范大学
深圳市国华光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市国华光电科技有限公司, 华南师范大学, 深圳市国华光电研究院 filed Critical 深圳市国华光电科技有限公司
Publication of WO2018090858A1 publication Critical patent/WO2018090858A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels

Definitions

  • the invention relates to an infrared reflecting device, in particular to a band tunable infrared reflecting device and a preparation method thereof.
  • Modern architecture creates an indoor environment for office, study, and living.
  • the comfort of the indoor environment is closely related to the health of people.
  • Refrigeration or heating devices are widely used in buildings and automobiles to maintain environmental comfort.
  • the harmful effects of harmful gas emissions on humans and the environment are incalculable.
  • traditional mechanical insulation and refrigeration methods such as blinds and air-conditioning equipment, cannot achieve intelligent regulation as people's needs and climate change.
  • the technical problem to be solved by the present invention is to provide a band tunable infrared reflection device and a preparation method thereof.
  • a band tunable infrared reflecting device comprising a first transparent substrate and a second transparent substrate and a power component, wherein the first transparent substrate is electrically connected to a positive electrode of the power component, The transparent substrate is electrically connected to the negative electrode of the power module, and the adjustment region is formed between the first transparent substrate and the second transparent substrate, and the adjustment region is filled with a liquid crystal mixture, and the liquid crystal
  • the mixture includes a negative liquid crystal, a chiral dopant, a photoinitiator, and a polymer network, and the polymer network is a network polymer obtained by polymerizing the photopolymerizable liquid crystal monomer by the photoinitiator.
  • the negative liquid crystal is dispersed in the polymer network, and the negative liquid crystal is a cholesteric phase having a single pitch in a state where the first transparent substrate and the second transparent substrate are not energized.
  • a liquid crystal, the polymer network capable of capturing impurity cations in the liquid crystal mixture, and in a state where the first transparent substrate and the second transparent substrate are energized, the cation is directed to the first Two light transmission Move, and the drive of the second polymer network is moved to the transparent substrate, such that the cholesteric liquid crystal pitch is changed.
  • the cation moves to the second transparent substrate under an electric field to drive the polymerization.
  • the object network moves toward the second transparent substrate, the pitch of the cholesteric liquid crystal near the first transparent substrate becomes larger, and the pitch of the cholesteric liquid crystal near the second transparent substrate becomes smaller.
  • the opposite surfaces of the two transparent substrates are provided with parallel alignment layers.
  • the photopolymerizable monomer is RM82 or RM257.
  • the negative liquid crystal is LC-2079 or BL109.
  • the chiral dopant is S811 or S1011.
  • the photoinitiator is Irgacure-369 or Irgacure-651.
  • the invention also provides a method for preparing a band tunable infrared reflecting device, comprising the following steps:
  • S1 preparing a first transparent substrate and a second transparent substrate, wherein the first transparent substrate and the second transparent substrate are oppositely disposed;
  • the first transparent substrate is electrically connected to a positive electrode of the power component, and the second transparent substrate is electrically connected to a negative electrode of the power component.
  • the liquid crystal cell is illuminated with ultraviolet light that initiates polymerization of the photopolymerizable liquid crystal monomer to form a polymer network.
  • the alignment layer is a parallel alignment layer.
  • the mass ratio of the negative liquid crystal, the chiral dopant, the photopolymerizable liquid crystal monomer, and the photoinitiator in the liquid crystal mixture is (80-90): (3-13) :(5-15): (0.1-0.8).
  • the invention mixes a chiral dopant, a photopolymerizable liquid crystal monomer, a photoinitiator and a negative liquid crystal to obtain a liquid crystal mixture, and fills the liquid crystal mixture into two transparent substrates which can be connected to a voltage, and the photoinitiator Initiating polymerization of the photopolymerizable liquid crystal monomer into a polymer network under the action of ultraviolet light, the chiral dopant causing the negative liquid crystal to form a spiral structure of cholesteric liquid crystal, and the cholesteric liquid crystal has a single Pitch, a specific pitch structure that reflects the wavelength band of infrared light of a particular wavelength.
  • the ester group on the polymer network is capable of capturing impurity cations in the liquid crystal hybrid material, and the polymer network adsorbs the mixed liquid crystal in a state where the first light transmissive substrate and the second light transmissive substrate are energized
  • the impurity cation in the material moves to the second transparent substrate electrically connected to the negative electrode of the power source under the action of the electric field, and the polymer network near the negative electrode of the power source drives the pitch of the cholesteric liquid crystal to be small, and the polymer network near the positive electrode of the power source drives
  • the pitch of the cholesteric liquid crystal becomes large, thereby generating a certain pitch gradient, so that the infrared reflection bandwidth is narrowed and narrowed.
  • the pitch gradient can be adjusted to adjust the infrared reflection bandwidth.
  • FIG. 1 is a schematic cross-sectional view of a band tunable infrared reflecting device.
  • FIG. 2 is a partial cross-sectional view of a band tunable infrared reflecting device in an unpowered state.
  • FIG. 3 is a partial cross-sectional view of a band tunable infrared reflecting device in an energized state.
  • Figure 4 is an infrared reflectance spectrum of a band tunable infrared reflecting device at different voltages.
  • the present invention provides a first transparent substrate 1 and a second transparent substrate 2 and a power supply assembly 3 including opposite arrangements, characterized in that The first transparent substrate 1 is electrically connected to the positive electrode of the power module 3, and the second transparent substrate 2 is electrically connected to the negative electrode of the power module 3, the first transparent substrate 1 and The second transparent substrate 2 is encapsulated by the encapsulation frame 6 to form an adjustment region 4, the adjustment region 4 is filled with a liquid crystal mixture, and the adjustment region 4 is further provided with a thickness for supporting the infrared reflection device.
  • the spacer 5 has a height equal to the thickness of the adjustment zone 4.
  • a parallel alignment layer 7 is disposed on the opposite surfaces of the first transparent substrate 1 and the second transparent substrate 2 .
  • FIG. 2 is a partial cross-sectional view of a band tunable infrared reflecting device including a negative liquid crystal, a chiral dopant, a photoinitiator and a polymer network 9 in an unpowered state.
  • the material network 9 is a network polymer obtained by polymerizing the photopolymerizable liquid crystal monomer by the photoinitiator, and the first transparent substrate 1 and the second transparent substrate 2 are not energized.
  • the negative liquid crystal is a cholesteric liquid crystal having a spiral structure 10 having a single pitch, and the liquid crystal mixture contains an impurity cation 11 and an impurity anion 8, and the polymer network 3 can capture An impurity cation 11 in the liquid crystal mixture.
  • FIG. 3 is a partial cross-sectional view of the band tunable infrared reflecting device in an energized state.
  • the cation 11 is Moving to the second transparent substrate 2 under the action of an electric field, the polymer network 9 is moved to the second transparent substrate 2, so that the pitch of the cholesteric liquid crystal changes, close to the first through
  • the pitch of the cholesteric liquid crystal of the optical substrate 1 becomes large, and the pitch of the cholesteric liquid crystal close to the second transparent substrate 2 becomes small.
  • P ⁇ n
  • P represents the pitch of the director of the chiral nematic liquid crystal rotated by 2 ⁇ in the direction of the helical axis, that is, a pitch
  • is the single-pitch cholesteric liquid crystal reflection wavelength
  • n is The average refractive index of the liquid crystal
  • (ne-no)
  • ⁇ P ⁇ n ⁇ P, where ⁇ is the reflection spectrum bandwidth, ⁇ n is the birefringence; when the P value is changed from a single value to a range, the liquid crystal mixture
  • the wavelength of the reflection and the bandwidth of the reflection will also widen.
  • the above-mentioned band tunable infrared reflecting device is prepared by: preparing a first transparent substrate and a second transparent substrate, wherein the first transparent substrate and the second transparent substrate are oppositely disposed; a parallel alignment layer is spin-coated on the opposite surface of the transparent substrate and the second transparent substrate, and is rubbed and oriented; the first transparent substrate and the second transparent substrate are prepared into a liquid crystal cell; and the liquid crystal mixture is prepared.
  • This embodiment is basically the same as Embodiment 1, except that the photopolymerizable monomer is RM257, and its structural formula is
  • the photoinitiator is Irgacure-369, and its structural formula is

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种波段可调谐的红外反射器件及其制备方法,将手性掺杂剂、可光聚合液晶单体、光引发剂与负性液晶混合,得到了液晶混合物,将液晶混合物填充至两块可接入电压的透光基板(1,2)中,光引发剂在紫外光的作用下引发可光聚合液晶单体聚合成聚合物网络(9),手性掺杂剂使得负性液晶形成螺旋结构(10)的胆甾相液晶,胆甾相液晶具有单一的螺距,特定的螺距结构反应特定波长的红外光的波段,聚合物网络(9)能捕捉杂质阳离子,在透光基板(1,2)通电的状态下,杂质阳离子(11)向与电源(3)负极电连接的透光基板(1,2)移动,聚合物网络(9)带动胆甾相液晶移动,使得胆甾相液晶螺距变化,使得红外反射带宽由窄变宽。

Description

一种波段可调谐的红外反射器件及其制备方法 技术领域
本发明涉及红外反射器件,具体涉及一种波段可调谐的红外反射器件及其制备方法。
背景技术
现代建筑给人类创造了办公、学习、生活的室内环境,室内环境的舒适度和人们的生活健康息息相关。建筑、汽车广泛采用制冷或者制热装置来保持环境的舒适度,与此同时,有害气体的排放对于人类和环境带来的伤害是无法估量的。随着气候的变化、人们的需求不断地发生改变,而传统的机械式的隔热,制冷方式,例如:百叶窗、空调设备不能达到随着人们需求和气候的变化的智能调控。
发明内容
本发明所要解决的技术问题是提供一种波段可调谐的红外反射器件及其制备方法。
本发明所采取的技术方案是:
一种波段可调谐的红外反射器件,包括相对设置的第一透光基板和第二透光基板以及电源组件,所述第一透光基板与所述电源组件的正极电性连接,所述第二透光基板与所述电源组件的负极电性连接,所述第一透光基板和所述第二透光基板之间封装形成调节区,所述调节区内填充有液晶混合物,所述液晶混合物中包括负性液晶、手性掺杂剂、光引发剂和聚合物网络,所述聚合物网络是由所述光引发剂引发所述可光聚合液晶单体聚合而成的网络状聚合物,所述负性液晶分散于所述聚合物网络中,在所述第一透光基板和所述第二透光基板未通电的状态下,所述负性液晶为具有单一螺距的胆甾相液晶,所述聚合物网络能捕获所述液晶混合物中的杂质阳离子,在所述第一透光基板和所述第二透光基板通电的状态下,所述阳离子在电场作用下向所述第二透光基板移动,带动所述聚合物网络向所述第二透光基板移动,使得所述胆甾相液晶的螺距发生改变。
在一些具体的实施方式中,在所述第一透光基板和所述第二透光基板通电的状态下,所述阳离子在电场作用下向所述第二透光基板移动,带动所述聚合物网络向所述第二透光基板移动,靠近所述第一透光基板的胆甾相液晶的螺距变大,靠近所述第二透光基板的胆甾相液晶的螺距变小。
在一些具体的实施方式中,两块所述透光基板相对的表面上设有平行配向层。
在一些具体的实施方式中,所述可光聚合单体为RM82或RM257。
在一些具体的实施方式中,所述负性液晶为LC-2079或BL109。
在一些具体的实施方式中,所述手性掺杂剂为S811或S1011。
在一些具体的实施方式中,所述光引发剂为Irgacure-369或Irgacure-651。
本发明还提供了一种波段可调谐的红外反射器件的制备方法,包括以下步骤:
S1:制备第一透光基板和第二透光基板,所述第一透光基板和所述第二透光基板相对设置;
S2:在所述第一透光基板和所述第二透光基板相对的表面上旋涂配向层,并摩擦取向;
S3:将所述第一透光基板和所述第二透光基板制备成液晶盒;
S4:称取负性液晶、手性掺杂剂、可光聚合液晶单体、光引发剂混合,加热使液晶转变为各向同性的液态,得到液晶混合物;
S5:将所述液晶混合物注入所述液晶盒,所述手性单体和所述手性掺杂剂使得所述负性液晶形成胆甾型螺旋结构;
S6:所述第一透光基板与所述电源组件的正极电性连接,所述第二透光基板与所述电源组件的负极电性连接。
在一些具体的实施方式中,用紫外光照射所述液晶盒,所述光引发剂引发所述可光聚合液晶单体聚合形成聚合物网络。
在一些具体的实施方式中,所述配向层为平行配向层。
在一些具体的实施方式中,所述液晶混合物中所述负性液晶、手性掺杂剂、可光聚合液晶单体、光引发剂的质量比为(80-90):(3-13):(5-15):(0.1-0.8)。
本发明的有益效果是:
本发明将手性掺杂剂、可光聚合液晶单体、光引发剂与负性液晶混合,得到了液晶混合物,将液晶混合物填充至两块可接入电压的透光基板中,光引发剂在紫外光的作用下引发所述可光聚合液晶单体聚合成聚合物网络,所述手性掺杂剂使得所述负性液晶形成螺旋结构的胆甾相液晶,胆甾相液晶具有单一的螺距,特定的螺距结构反应特定波长的红外光的波段。聚合物网络上的酯基基团能够捕捉液晶混合材料中的杂质阳离子,在所述第一透光基板和所述第二透光基板通电的状态下,所述聚合物网络吸附所述混合液晶材料中的杂质阳离子在电场作用下向与电源负极电连接的所述第二透光基板移动,电源负极附近的聚合物网络带动胆甾相液晶的螺距变小,电源正极附近的聚合物网络带动胆甾相液晶的螺距变大,从而产生一定的螺距梯度,从而使得红外反射带宽由窄变宽。通过调节两块透光导电基板之间的电压大小,可以调控螺距梯度大小,从而调节红外反射带宽的大小。
附图说明
图1为波段可调谐的红外反射器件的截面图示意图。
图2为波段可调谐的红外反射器件在未通电状态下局部截面示意图。
图3为波段可调谐的红外反射器件在通电状态下局部截面示意图。
图4为波段可调谐的红外反射器件在不同电压下的红外反射光谱图。
具体实施方式
实施例1:
参照图1,图1为波段可调谐的红外反射器件的截面图示意图,本发明提供了一种包括相对设置的第一透光基板1和第二透光基板2以及电源组件3,其特征在于,所述第一透光基板1与所述电源组件3的正极电性连接,所述第二透光基板2与所述电源组件3的负极电性连接,所述第一透光基板1和所述第二透光基板2之间通过封装胶框6封装形成调节区4,所述调节区4内填充有液晶混合物,所述调节区4内还设有用于支撑所述红外反射器件厚度的间隔子5,所述间隔子5的高度等于所述调节区4的厚度。所述第一透光基板1和所述第二透光基板2相对的表面上均设有平行配向层7。
参照图2,图2为波段可调谐的红外反射器件在未通电状态下局部截面示意图,所述液晶混合物中包括负性液晶、手性掺杂剂、光引发剂和聚合物网络9,述聚合物网络9是由所述光引发剂引发所述可光聚合液晶单体聚合而成的网络状聚合物,在所述第一透光基板1和所述第二透光基板2未通电的状态下,所述负性液晶为呈螺旋结构10的胆甾相液晶,所述胆甾相液晶具有单一螺距,所述液晶混合物中含有杂质阳离子11和杂质阴离子8,所述聚合物网络3能捕获所述液晶混合物中的杂质阳离子11。
参照图3,图3为波段可调谐的红外反射器件在通电状态下局部截面示意图,在所述第一透光基板1和所述第二透光基板2通电的状态下,所述阳离子11在电场作用下向所述第二透光基板2移动,带动所述聚合物网络9向所述第二透光基板2移动,使得所述胆甾相液晶的螺距发生改变,靠近所述第一透光基板1的胆甾相液晶的螺距变大,靠近所述第二透光基板2的胆甾相液晶的螺距变小。根据以下公式:λ=P×n,其中,P表示手性向列相液晶的指向矢在螺旋轴方向上旋转2π的间距,即一个螺距,λ为单一螺距的胆甾相液晶反射波长,n为液晶的平均光折射率;Δλ=(ne-no)×P=Δn×P,其中,Δλ为反射光谱带宽,Δn为双折射率;当P值由单一值变成一个范围时,液晶混合物所反射的波长以及反射的频宽也会随之变宽。
上述波段可调谐的红外反射器件通过以下步骤制备得到:制备第一透光基板和第二透光基板,所述第一透光基板和所述第二透光基板相对设置;在所述第一透光基板和所述第二透光基板相对的表面上旋涂平行配向层,并摩擦取向;将所述第一透光基板和所述第二透光基板制备成液晶盒;配制液晶混合物,称取81.4质量份的负性液晶LC-2079、12.6质量份的手性掺杂剂S811、5质量份的可光聚合液晶单体RM82、1质量份的光引发剂Irgacure-651混合, 所述负性液晶LC-2079,其介电常数Δε=—6.7,双折射率Δn=0.15,手性掺杂剂S811的结构式为
Figure PCTCN2017109809-appb-000001
所述液晶单体RM82的结构式为
Figure PCTCN2017109809-appb-000002
所述光引发剂Irgacure-651的结构式为
Figure PCTCN2017109809-appb-000003
然后在热台以50r/s、60℃搅拌5min,待其混合均匀,得到液晶混合材料;在黄光条件下,将混合液晶材料加热到60℃,使液晶混合材料转变为胆甾相液晶混合物;将所述液晶混合物注入所述液晶盒,所述手性单体和所述手性掺杂剂使得所述负性液晶形成胆甾型螺旋结构;所述第一透光基板与所述电源组件的正极电性连接,所述第二透光基板与所述电源组件的负极电性连接;用紫外光照射所述液晶盒,所述光引发剂引发所述可光聚合液晶单体聚合形成聚合物网络。
实施例2:
本实施例与实施例1基本相同,不同之处在于:所述可光聚合单体为RM257,其结构式为
Figure PCTCN2017109809-appb-000004
所述负性液晶为BL109,其介电常数Δε=—6~—14,双折射率Δn=0.1~0.15,所述手性掺杂剂为S1011,其结构式为
Figure PCTCN2017109809-appb-000005
所述光引发剂为 Irgacure-369,其结构式为
Figure PCTCN2017109809-appb-000006

Claims (10)

  1. 一种波段可调谐的红外反射器件,包括相对设置的第一透光基板和第二透光基板以及电源组件,其特征在于,所述第一透光基板与所述电源组件的正极电性连接,所述第二透光基板与所述电源组件的负极电性连接,所述第一透光基板和所述第二透光基板之间封装形成调节区,所述调节区内填充有液晶混合物,所述液晶混合物中包括负性液晶、手性掺杂剂、光引发剂和聚合物网络,所述聚合物网络是由所述光引发剂引发所述可光聚合液晶单体聚合而成的网络状聚合物,所述负性液晶分散于所述聚合物网络中,在所述第一透光基板和所述第二透光基板未通电的状态下,所述负性液晶为具有单一螺距的胆甾相液晶,所述聚合物网络能捕获所述液晶混合物中的杂质阳离子,在所述第一透光基板和所述第二透光基板通电的状态下,所述阳离子在电场作用下向所述第二透光基板移动,带动所述聚合物网络向所述第二透光基板移动,使得所述胆甾相液晶的螺距发生改变。
  2. 根据权利要求1所述的波段可调谐的红外反射器件,其特征在于,在所述第一透光基板和所述第二透光基板通电的状态下,所述阳离子在电场作用下向所述第二透光基板移动,带动所述聚合物网络向所述第二透光基板移动,靠近所述第一透光基板的胆甾相液晶的螺距变大,靠近所述第二透光基板的胆甾相液晶的螺距变小。
  3. 根据权利要求1所述的波段可调谐的红外反射器件,其特征在于,两块所述透光基板相对的表面上设有平行配向层。
  4. 根据权利要求1所述的波段可调谐的红外反射器件,其特征在于,所述可光聚合单体为RM82或RM257。
  5. 根据权利要求1所述的波段可调谐的红外反射器件,其特征在于,所述负性液晶为LC-2079或BL109。
  6. 根据权利要求1所述的波段可调谐的红外反射器件,其特征在于,所述手性掺杂剂为S811或S1011。
  7. 根据权利要求1所述的波段可调谐的红外反射器件,其特征在于,所述光引发剂为Irgacure-369或Irgacure-651。
  8. 一种波段可调谐的红外反射器件的制备方法,其特征在于,包括以下步骤:
    S1:制备第一透光基板和第二透光基板,所述第一透光基板和所述第二透光基板相对设置;
    S2:在所述第一透光基板和所述第二透光基板相对的表面上旋涂配向层,并摩擦取向;
    S3:将所述第一透光基板和所述第二透光基板制备成液晶盒;
    S4:称取负性液晶、手性掺杂剂、可光聚合液晶单体、光引发剂混合,加热使液晶转变 为各向同性的液态,得到液晶混合物;
    S5:将所述液晶混合物注入所述液晶盒,所述手性单体和所述手性掺杂剂使得所述负性液晶形成胆甾型螺旋结构;
    S6:所述第一透光基板与所述电源组件的正极电性连接,所述第二透光基板与所述电源组件的负极电性连接。
  9. 根据权利要求8所述的制备方法,其特征在于,用紫外光照射所述液晶盒,所述光引发剂引发所述可光聚合液晶单体聚合形成聚合物网络。
  10. 根据权利要求8所述的制备方法,其特征在于,所述配向层为平行配向层。
PCT/CN2017/109809 2016-11-16 2017-11-08 一种波段可调谐的红外反射器件及其制备方法 WO2018090858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611008519.XA CN106646985B (zh) 2016-11-16 2016-11-16 一种波段可调谐的红外反射器件及其制备方法
CN201611008519.X 2016-11-16

Publications (1)

Publication Number Publication Date
WO2018090858A1 true WO2018090858A1 (zh) 2018-05-24

Family

ID=58805634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109809 WO2018090858A1 (zh) 2016-11-16 2017-11-08 一种波段可调谐的红外反射器件及其制备方法

Country Status (2)

Country Link
CN (1) CN106646985B (zh)
WO (1) WO2018090858A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879399A (zh) * 2022-04-28 2022-08-09 合肥工业大学 一种聚合物稳定胆甾相液晶变色玻璃及其制备方法和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646985B (zh) * 2016-11-16 2021-06-22 深圳市国华光电科技有限公司 一种波段可调谐的红外反射器件及其制备方法
CN106997133A (zh) * 2017-05-17 2017-08-01 华南师范大学 一种红外反射器件的制备方法
CN107272277A (zh) * 2017-06-15 2017-10-20 华南师范大学 一种反射比例可调节的红外反射器件
CN107346084B (zh) * 2017-07-21 2020-10-16 华南师范大学 一种全反射红外反射器件及其制备方法
CN108319059B (zh) * 2018-01-25 2020-01-07 华南师范大学 一种电响应的红外反射器件
CN108398825A (zh) * 2018-03-06 2018-08-14 合肥工业大学 一种红外可调谐的液晶调光器件及其制备工艺
CN108363237B (zh) * 2018-03-15 2021-03-05 京东方科技集团股份有限公司 反射膜及其制备方法、反射组件及显示装置
CN109001930B (zh) * 2018-07-13 2021-11-02 华南师范大学 一种电响应红外反射器件及其制备方法
CN109143623B (zh) * 2018-08-27 2021-08-10 华南师范大学 一种红外反射器件及其制备方法
CN110373016B (zh) * 2019-06-25 2021-03-19 东南大学 一种液晶聚丙烯酸酯-液晶聚氨酯互穿网络液晶弹性体
CN112909719A (zh) * 2020-12-31 2021-06-04 华南师范大学 聚合物稳定液晶激光器及其制备方法和设备
CN113311625A (zh) * 2021-03-16 2021-08-27 合肥工业大学 一种聚合物稳定胆甾相液晶变色玻璃及其制备方法和应用
CN113655653A (zh) * 2021-07-29 2021-11-16 华南师范大学 一种液晶调光器件及其制备方法与应用
CN113641015A (zh) * 2021-07-30 2021-11-12 华南师范大学 一种红外反射器及其制备方法和应用
CN113759612A (zh) * 2021-08-19 2021-12-07 华南师范大学 一种基于胆甾相液晶的反射式滤光片及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081644A1 (en) * 2010-10-05 2012-04-05 Industry-University Cooperation Foundation Hanyang University Cholesteric Liquid Crystal Display Devices And Methods Of Manufacturing The Same
CN102722053A (zh) * 2012-06-15 2012-10-10 合肥工业大学 一种反射带宽可调的胆甾相液晶显示装置
KR20140127967A (ko) * 2013-04-26 2014-11-05 성균관대학교산학협력단 디스플레이 장치용 반사판 및 디스플레이 장치.
CN105676489A (zh) * 2015-12-17 2016-06-15 深圳市国华光电科技有限公司 一种基于电响应的红外反射器件
CN106646985A (zh) * 2016-11-16 2017-05-10 深圳市国华光电科技有限公司 一种波段可调谐的红外反射器件及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731728B2 (ja) * 2001-06-01 2011-07-27 独立行政法人科学技術振興機構 赤外線調光素子
CN106019754A (zh) * 2016-06-14 2016-10-12 深圳市国华光电科技有限公司 一种热响应红外全反射器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081644A1 (en) * 2010-10-05 2012-04-05 Industry-University Cooperation Foundation Hanyang University Cholesteric Liquid Crystal Display Devices And Methods Of Manufacturing The Same
CN102722053A (zh) * 2012-06-15 2012-10-10 合肥工业大学 一种反射带宽可调的胆甾相液晶显示装置
KR20140127967A (ko) * 2013-04-26 2014-11-05 성균관대학교산학협력단 디스플레이 장치용 반사판 및 디스플레이 장치.
CN105676489A (zh) * 2015-12-17 2016-06-15 深圳市国华光电科技有限公司 一种基于电响应的红外反射器件
CN106646985A (zh) * 2016-11-16 2017-05-10 深圳市国华光电科技有限公司 一种波段可调谐的红外反射器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879399A (zh) * 2022-04-28 2022-08-09 合肥工业大学 一种聚合物稳定胆甾相液晶变色玻璃及其制备方法和应用

Also Published As

Publication number Publication date
CN106646985B (zh) 2021-06-22
CN106646985A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018090858A1 (zh) 一种波段可调谐的红外反射器件及其制备方法
US11143902B2 (en) Total-reflection infrared reflection device and preparation method thereof
Li et al. Versatile energy-saving smart glass based on tristable cholesteric liquid crystals
CN1083579C (zh) 交联液晶单体各向异性层的制备方法、光学部件及用途
TWI648378B (zh) 液晶介質及液晶裝置
US6965420B2 (en) Spectrum-controllable reflective polarizers having electrically-switchable modes of operation
US10048505B2 (en) Grating, display device, and manufacturing method of grating
CN105676489B (zh) 一种基于电响应的红外反射器件
WO2018209910A9 (zh) 一种红外反射器件的制备方法
US10942402B2 (en) Electric response infrared reflection device and preparation method thereof
TWI579370B (zh) 含有液晶介質之切換元件
US9869887B2 (en) Adaptive liquid crystal structural interface
TW201116916A (en) Liquid crystal device
WO2017215285A1 (zh) 一种热响应红外全反射器件及其制备方法
US10901278B2 (en) Electroresponsive liquid crystal dimming device
Deng et al. Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation
CN109828403B (zh) 一种电响应反射器件及其制备方法
TW201736579A (zh) 用於調節光之進入的裝置
JP2002357815A (ja) 赤外線調光素子
WO2017148329A1 (zh) 一种红外反射薄膜、其制备方法及其红外反射方法
Ghosh et al. Electrical switching of nematic plasmonic nanocolloids for infrared solar gain control
CN113311625A (zh) 一种聚合物稳定胆甾相液晶变色玻璃及其制备方法和应用
CN109085712B (zh) 一种温度响应型液晶材料、光调节器及其制作方法
JP2009300629A (ja) 感温型光制御素子及びその作製方法
CN109143623B (zh) 一种红外反射器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872394

Country of ref document: EP

Kind code of ref document: A1