WO2017214996A1 - 一种自发光阵列显示控制方法及装置、设备 - Google Patents

一种自发光阵列显示控制方法及装置、设备 Download PDF

Info

Publication number
WO2017214996A1
WO2017214996A1 PCT/CN2016/086286 CN2016086286W WO2017214996A1 WO 2017214996 A1 WO2017214996 A1 WO 2017214996A1 CN 2016086286 W CN2016086286 W CN 2016086286W WO 2017214996 A1 WO2017214996 A1 WO 2017214996A1
Authority
WO
WIPO (PCT)
Prior art keywords
white light
light emitting
emitting diode
white
point
Prior art date
Application number
PCT/CN2016/086286
Other languages
English (en)
French (fr)
Inventor
龚树强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187015627A priority Critical patent/KR102079616B1/ko
Priority to CN201680008089.3A priority patent/CN107851418A/zh
Priority to PCT/CN2016/086286 priority patent/WO2017214996A1/zh
Priority to JP2018530591A priority patent/JP2019507364A/ja
Publication of WO2017214996A1 publication Critical patent/WO2017214996A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to the field of screen display technologies, and in particular, to a self-lighting array display control method, apparatus, and device.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • LCD is based on backlight Illuminating, and selectively outputting the color pattern through the required light through the display panel, so the power consumption is unchanged regardless of the content in the picture
  • OLED is based on the principle of self-illumination, each pixel is a self-illuminating light source, so The more black pixels in the display, the less the number of light-emitting points that are turned on, and the lower the power consumption.
  • OLED is a common self-luminous array, and the self-luminous array is composed of a plurality of light-emitting diodes (English: Light-Emitting Diode, referred to as LED).
  • self-illuminating arrays are generally divided into red, green, and blue arrays (English: RGB Pentile) and red, green, blue, and white arrays (English: RGBW Pentile), that is, red, green,
  • the blue and white arrays add white LEDs to the red, green, and blue arrays.
  • the red, green, blue, and white arrays are generally used for outdoor large screens. When used, there is no low power requirement, white.
  • Light-emitting diodes are generally used to increase picture brightness.
  • the OLED screen In addition to the conventional full-color display mode, the OLED screen often adopts a method of reducing the number of illuminating pixels to achieve power consumption reduction.
  • the purpose is to use a low power display mode.
  • Figure 1 shows the conventional display mode and low-power display mode of the wearable device OLED screen.
  • the conventional display is RGB 400x400 resolution image, and the low power mode displays 256 grayscale 400x400 resolution. Image, and set the background to black, greatly reducing the number of light points, to achieve the purpose of reducing power consumption.
  • Embodiments of the present invention provide a self-luminous array display control method, apparatus, and device, such that The self-illuminating array display consumes less power when operating in low power mode.
  • a self-luminous array display control method comprising a plurality of pixel points, each pixel point comprising a non-white light emitting point and a white light emitting point, the non-white light emitting point and the white light emitting point
  • the lower side is respectively arranged with a non-white light emitting diode and a white light emitting diode, and the method includes:
  • the white light emitting diode corresponding to the white light emitting point is controlled to emit light.
  • the white light-emitting point illumination is achieved by using a white light-emitting diode instead of a plurality of non-white light-emitting diode combinations of different colors, so that the self-light-emitting array display screen consumes less power when operating in a low power consumption mode.
  • controlling the white LED emitting light corresponding to the white light emitting point includes:
  • the white light emitting diode that controls the number and position of the white light emitting points is controlled to emit light.
  • the white light-emitting diodes that control the number and position of the white light-emitting points are controlled to emit light, and compared with the non-white light-emitting diodes of three different colors to realize the white light-emitting point light emission, only 1/3 is required.
  • Light-emitting diodes greatly reduce the power consumption of the self-illuminating array display when operating in low power mode.
  • controlling the white LED emitting light corresponding to the white light emitting point includes:
  • the white light emitting diode that controls the combination emits light.
  • two or more pixel points adjacent to the white light-emitting point are combined with one white light-emitting diode, and the white light-emitting point light is required to be combined with a plurality of non-white light-emitting diodes of different colors.
  • the small number of LEDs greatly reduces the power consumption of the self-illuminating array display when operating in low power mode.
  • the method further includes:
  • the brightness of the white light emitting diodes can be adjusted to achieve different grayscale levels.
  • the method further includes:
  • black pixel points can be added, effectively reducing the number of pixels that need to be illuminated, thereby further reducing power consumption when the self-lighting array display screen operates in a low power mode.
  • a self-luminous array display control device comprising a plurality of pixel points, each pixel point comprising a non-white light emitting point and a white light emitting point, the non-white light emitting point and the white light emitting point
  • the lower side is respectively arranged with a non-white light emitting diode and a white light emitting diode, and the device comprises:
  • a control unit configured to control, when receiving the gray scale display instruction of the image, the white light emitting diode corresponding to the white light emitting point to emit light.
  • the principle and the beneficial effects of the device can be referred to the first aspect and the possible implementation manners of the first aspect and the beneficial effects. Therefore, the implementation of the device can be referred to the implementation of the method. The repetitions are not repeated here.
  • a self-luminous array display control device comprising a plurality of pixel points, each pixel point comprising a non-white light emitting point and a white light emitting point, the non-white light emitting point and the white light emitting point
  • a non-white light emitting diode and a white light emitting diode are arranged respectively, and the device comprises: an input device, an output device, a memory and a processor;
  • the memory is for storing instructions
  • the processor is configured to execute the instructions to:
  • the white light emitting diode corresponding to the white light emitting point is controlled to emit light.
  • the processor invokes instructions stored in the memory to implement the solution in the method design of the above first aspect.
  • the implementation of the problem and the beneficial effects of the server reference may be made to the first aspect and the possibilities of the first aspect.
  • the implementation of the server and the beneficial effects therefore, the implementation of the server can refer to the implementation of the method, and the repeated description will not be repeated.
  • a self-luminous array includes a plurality of pixel points, each pixel point includes a white light-emitting point and a non-white light-emitting point, and each of the non-white light-emitting points and the white light-emitting point are respectively arranged There are non-white light emitting diodes and white light emitting diodes.
  • white light emitting points of at least two pixel points are adjacent to each other, and white light emitting points of the at least two pixel points are combined with one white light emitting diode.
  • the number of white light-emitting diodes can be reduced by using a white light-emitting diode with a plurality of pixel points and a white light-emitting diode.
  • the self-luminous array is configured to emit white light-emitting diodes of the at least two pixel points when the gray scale display instruction is received.
  • the number of white light emitting diodes is reduced by using a white light emitting diode with a plurality of pixel dots, thereby reducing the power consumption of the display.
  • the white light-emitting points of two or four pixel points are adjacent to each other, and the white light-emitting points of the two or four pixel points are combined with a white light-emitting diode.
  • the combined self-luminous arrays are arranged in a variety of ways, so that the power consumption of the display screen can be reduced to different extents.
  • a self-luminous array display control method, device and device are provided by using an embodiment of the present invention, and a white light-emitting diode is used instead of a plurality of non-white light-emitting diodes of different colors to realize white light-emitting point illumination, so that the self-luminous array display screen works.
  • the embodiments of the present invention can be used in various electronic devices, and the electronic device can include a mobile phone, a wearable device (such as a smart watch, a smart wristband, etc.), a tablet computer, a personal computer (PC, Personal Computer), and a PDA (Personal Digital Assistant, Personal digital assistant), POS (Point of Sales), on-board computer, etc.
  • a mobile phone such as a smart watch, a smart wristband, etc.
  • a tablet computer such as a smart watch, a smart wristband, etc.
  • PC Personal Computer
  • PDA Personal Digital Assistant, Personal digital assistant
  • POS Point of Sales
  • on-board computer etc.
  • FIG. 1 is a schematic diagram of a conventional display mode and a low power consumption display mode of a wearable device OLED screen
  • FIG. 2 is a schematic view showing white light emitted by using existing red, green, and blue light emitting diodes
  • FIG. 3 is a schematic flowchart diagram of a self-lighting array display control method according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing an arrangement of a self-luminous array
  • FIG. 5 is a schematic flowchart diagram of another self-luminous array display control method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic view showing an arrangement of a self-luminous array of a combined white light emitting diode
  • FIG. 7 is a schematic structural diagram of a self-luminous array display control device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another self-luminous array display control device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a self-luminous array display control device according to an embodiment of the present invention.
  • the screen When the self-luminous array operates in the low-power display mode, the screen emits white light.
  • the existing red, green, and blue light-emitting diodes emit white light
  • the existing self-luminous array is used to emit white light.
  • setting the background to black can increase the black pixel points, effectively reducing the number of pixels that need to be illuminated, but each pixel that emits white light needs to be simultaneously
  • the three LEDs of red, green and blue are lit, so that the power consumption of each pixel of white light is higher than that of the conventional display of pixels.
  • Embodiments of the present invention provide a self-luminous array display control method, apparatus, and device, which realize white light-emitting point illumination by using a white light-emitting diode instead of a plurality of non-white light-emitting diode combinations of different colors, so that the self-luminous array display screen works in low power The power consumption is lower in the consumption mode.
  • the self-luminous array display control scheme according to the embodiment of the invention is mainly applied to display control of various terminal devices.
  • Various types of terminal devices may include mobile phones, wearable devices (such as smart watches, smart bracelets, etc.), tablet computers, personal computers, personal digital assistants, sales terminals, and on-board computers.
  • FIG. 3 is a schematic flowchart diagram of a self-luminous array display control method according to an embodiment of the present invention.
  • the self-luminous array includes a plurality of pixel points, and each pixel point includes a non-white light-emitting point and A white light-emitting point, a non-white light-emitting diode and a white light-emitting diode are respectively arranged under the non-white light-emitting point and the white light-emitting point, and the non-white light-emitting diode is, for example, a red, green and blue light-emitting diode.
  • the non-white light-emitting point of one pixel is composed of three different color LEDs, but not necessarily each pixel is composed of three different color LEDs, possibly adjacent
  • a non-white LED is used in combination with a pixel, for example, a combination of two non-white LEDs (ie, two red, two green, and one blue).
  • a self-luminous array of RGBW arrays is used, that is, a white light-emitting point is added, and white light-emitting points are illuminated by white light-emitting diodes.
  • the white light-emitting diodes can be used to increase the brightness of the screen in the normal display mode. It can also be used to reduce the power consumption of the display when the display is operating in low power mode.
  • the method shown in Figure 3 includes the following steps:
  • the user sets the display screen of the terminal device to work in the low power mode, thereby transmitting a gray scale display instruction to the display control module, and the display screen of the terminal device adopts a self-lighting array, and when the display screen displays gray scale In the image, there are only two black and white pixels, the white pixel only emits white light, and the non-white light does not emit light.
  • the gray scale display instruction of the image is received, the control and the white light point are controlled. The corresponding white LED emits light.
  • the OLED display with 400x400x24bit display Take the OLED display with 400x400x24bit display as an example.
  • the image In the normal mode, the image is 400x400x24bit.
  • the actual number of pixels is M
  • the actual number of LEDs is 3M
  • M is a positive integer
  • the display image is a 256-gray image of 400 ⁇ 400
  • the actual light-emitting pixel number is reduced to N by setting the background image to all black
  • the actual light-emitting LED is Decrease to 3N, where N is a positive integer and N ⁇ M, that is, the background of the image is set to all black, the background is set to black to increase the black pixel point, and the LED where the black pixel is located does not emit light, which can effectively reduce the pixels that need to be illuminated.
  • the self-luminous array operates in a low-power mode, and the low-power mode displays a gray-scale image, and only the white light-emitting point is illuminated, and the gray light-emitting image is implemented by the white light-emitting diode in this embodiment. That is, the white light emitting diode corresponding to the white light emitting point is controlled to emit light.
  • the white LEDs that are in one-to-one correspondence with the number and position of the white light-emitting points are controlled to emit light.
  • the white LEDs that are in one-to-one correspondence with the number and position of the white light-emitting points are controlled to emit light, and the actual light-emitting point is N white light diodes, which is more than a plurality of different colors.
  • N white light diodes which is more than a plurality of different colors.
  • the display power consumption is reduced by nearly 2/3, ignoring other factors.
  • a white light emitting diode that controls one-to-one correspondence with the number and position of the white light-emitting points is controlled to emit light.
  • a white LED is disposed under each pixel to determine the number and position of pixels that need to emit white light (ie, the pixel includes white light points to be lit), and control the number of white light points.
  • FIG. 4 a schematic diagram of a self-luminous array arrangement is illustrated.
  • one pixel includes four red, blue, green, and white light-emitting points, and four red, blue, green, and white light-emitting points are below.
  • four light-emitting LEDs are provided, such as red, blue, green, and white.
  • the gray-scale image is displayed, only the white light-emitting point is illuminated.
  • the white color corresponding to the number and position of the white light-emitting points that need to be illuminated is controlled. LED lighting.
  • the color resolution is L x K
  • the white resolution is also L x K.
  • the white light-emitting diodes corresponding to the white light-emitting points are controlled to be different from the white light-emitting diodes of the self-luminous array, and may be other implementations, which are not limited herein.
  • a self-luminous array display control method provides a white light-emitting point illumination by using a white light-emitting diode instead of a plurality of non-white light-emitting diode combinations of different colors, so that the self-luminous array display screen operates in a low power consumption mode.
  • the power consumption is lower when it is down.
  • FIG. 5 is a schematic flowchart of another self-luminous array display control method according to an embodiment of the present invention, where the method includes the following steps:
  • S201 When receiving the gray scale display instruction of the image, determining at least two pixel points adjacent to the white light emitting point position among the plurality of pixel points, wherein the white light emitting point of the at least two pixel points is combined with a white light emitting diode.
  • One pixel of the self-luminous array includes a plurality of non-white light-emitting points and white light-emitting points.
  • white light-emitting points of two or more pixel points may be disposed adjacent to each other.
  • FIG. 6 a schematic diagram of a self-luminous array of a white LED is used. The red, blue, green, and white light-emitting points constitute one pixel. In the left image of FIG. 6 , the white light of the pixel A and the pixel B are illuminated. The point positions are adjacent to each other, and a corresponding one is set under the white light-emitting points of the pixel point A and the pixel point B.
  • a white light-emitting diode that is, a white light-emitting point of pixel point A and pixel point B, is combined with a white light-emitting diode to control the combined white light-emitting diode to emit light.
  • the color resolution is L ⁇ K
  • the white resolution is L. /2 ⁇ K
  • the white light-emitting points of the pixel points A, B, C, and D are adjacent to each other, and a white light is correspondingly disposed under the white light-emitting points of the pixel points A, B, C, and D.
  • the diode that is, the white light-emitting point of the pixel points A, B, C, and D, uses a white light-emitting diode to control the combined white light-emitting diode to emit light.
  • the color resolution is L ⁇ K
  • the white resolution is L/. 2 x K/2.
  • the OLED display with 400x400x24bit display Take the OLED display with 400x400x24bit display as an example.
  • the image In the normal mode, the image is 400x400x24bit.
  • the actual number of pixels is M
  • the actual number of LEDs is 3M
  • M is a positive integer
  • the display image is a 256-gray image of 400 ⁇ 400
  • the actual light-emitting pixel number is reduced to N by setting the background image to all black
  • the actual light-emitting LED is Decrease to 3N, where N is a positive integer and N ⁇ M; and in this embodiment, a low power consumption mode and controlling a plurality of pixel points adjacent to the position of the white light-emitting point to be combined with one white light-emitting diode, such as a white light-emitting point
  • a white LED is used in the adjacent four pixel points.
  • the actual light-emitting diode is N. /4 LEDs, compared to the original technology, only 1 / 12 of the LEDs, reducing the number of LEDs, further reducing the display Screen power consumption.
  • FIG. 6 in order to achieve different degrees of power consumption reduction, it is possible to reduce to different white resolutions, and different self-illuminating array arrangements are adopted depending on the reduced white resolution.
  • the grayscale images are divided into different levels according to the brightness of the light, and generally have 256 levels. Therefore, the brightness of the white light emitting diodes can be adjusted to achieve different grayscale levels.
  • the display screen displays a gray-scale image
  • setting the background of the image to all-black refers to controlling the pixel points in addition to the white-light-emitting point illumination that needs to be illuminated, and controlling the pixel points.
  • Other non-white LEDs do not emit light.
  • black pixels can be added.
  • the self-luminous array the number of pixels that need to be illuminated can be effectively reduced, thereby further reducing the power consumption of the display.
  • a self-luminous array display control method by using white hair
  • the photodiode replaces a plurality of non-white light-emitting diodes of different colors to realize white light-emitting point illumination, so that the power consumption of the self-light-emitting array display screen when operating in a low power consumption mode is low; and by controlling the position of the white light-emitting point adjacent to each other
  • the combination of a white LED with a single pixel reduces the number of LEDs and further reduces the power consumption of the display.
  • FIG. 7 is a schematic structural diagram of a self-luminous array display control device according to an embodiment of the present invention.
  • the self-luminous array includes a plurality of pixel points, and each pixel includes a non-white light emitting point and a white light emitting point.
  • the non-white light-emitting point and the white light-emitting point are respectively arranged with a non-white light-emitting diode and a white light-emitting diode, and the non-white light-emitting diode is, for example, a red, green and blue light-emitting diode.
  • the non-white light-emitting point of one pixel is composed of three different color LEDs, but not necessarily each pixel is composed of three different color LEDs, possibly adjacent
  • a non-white LED is used in combination with a pixel, for example, a combination of two non-white LEDs (ie, two red, two green, and one blue).
  • a self-luminous array of RGBW arrays is used, that is, a white light-emitting point is added, and white light-emitting points are illuminated by white light-emitting diodes.
  • the white light-emitting diodes can be used to increase the brightness of the screen in the normal display mode. It can also be used to reduce the power consumption of the display when the display is operating in low power mode.
  • the apparatus 1000 shown in Figure 7 includes:
  • the control unit 11 is configured to control the white light emitting diode corresponding to the white light emitting point to emit light when receiving the gray scale display instruction of the image.
  • the user sets the display screen of the terminal device to work in the low power mode, thereby transmitting a gray scale display instruction to the display control module, and the display screen of the terminal device adopts a self-lighting array, and when the display screen displays gray scale In the image, there are only two black and white pixels, the white pixel only emits white light, and the non-white light does not emit light.
  • the gray scale display instruction of the image is received, the control and the white light point are controlled. The corresponding white LED emits light.
  • the OLED display with 400x400x24bit display As an example. In normal mode, display the image. For a 400x400x24bit image, the actual number of illuminating pixels is M, the actual number of illuminating LEDs is 3M, and M is a positive integer; and in the low power mode, when a plurality of non-white LEDs of different colors are used to realize white illuminating point illuminating , the display image is a 256 grayscale image of 400x400, and by setting the background image to all black, the actual number of pixels of the illuminating pixel is reduced to N, and the actual illuminating LED is reduced to 3N, where N is a positive integer and N ⁇ M, that is, an image
  • the background is set to all black, the background is set to black to increase the black pixel point, and the LED where the black pixel is located does not emit light, which can effectively reduce the number of pixels that need to be illuminated.
  • the self-luminous array operates in a low-power mode, and the low-power mode displays a gray-scale image, and only the white light-emitting point is illuminated, and the gray light-emitting image is implemented by the white light-emitting diode in this embodiment. That is, the white light emitting diode corresponding to the white light emitting point is controlled to emit light.
  • the white LEDs that are in one-to-one correspondence with the number and position of the white light-emitting points are controlled to emit light.
  • the white LEDs that are in one-to-one correspondence with the number and position of the white light-emitting points are controlled to emit light, and the actual light-emitting point is N white light diodes, which is different than using a plurality of different colors.
  • the white light-emitting diode combination uses only N light-emitting diodes, and the display power consumption is reduced by nearly 2/3, ignoring other factors.
  • control unit 11 is specifically configured to, when receiving the gray scale display instruction of the image, control the white light emitting diode that is in one-to-one correspondence with the number and position of the white light emitting points.
  • a white LED is disposed under each pixel to determine the number and position of pixels that need to emit white light (ie, the pixel includes white light points to be lit), and control the number of white light points.
  • FIG. 4 a schematic diagram of a self-luminous array arrangement is illustrated.
  • one pixel includes four red, blue, green, and white light-emitting points, and four red, blue, green, and white light-emitting points are below.
  • four light-emitting LEDs are provided, such as red, blue, green, and white.
  • the gray-scale image is displayed, only the white light-emitting point is illuminated.
  • the white color corresponding to the number and position of the white light-emitting points that need to be illuminated is controlled. LED lighting.
  • the color resolution is L x K
  • the white resolution is also L x K.
  • the white light-emitting diodes corresponding to the white light-emitting points are controlled to be different from the white light-emitting diodes of the self-luminous array, and may be other implementations, which are not limited herein.
  • a self-luminous array display control device realizes white light-emitting point illumination by using a white light-emitting diode instead of a plurality of non-white light-emitting diode combinations of different colors, so that the self-light-emitting array display screen operates in a low power consumption mode.
  • the power consumption is lower when it is down.
  • FIG. 8 is a schematic structural diagram of another self-luminous array display control device according to an embodiment of the present invention.
  • the device 2000 includes a control unit 21, an adjustment unit 22, and a setting unit 23. specifically:
  • the control unit 21 is configured to: when receiving the gray scale display instruction of the image, determine at least two pixel points adjacent to the white light emitting point position of the plurality of pixel points, and the white light emitting points of the at least two pixel points are combined White LED.
  • the control unit 21 is also used to control the combined use of the white LED to emit light.
  • One pixel of the self-luminous array includes a plurality of non-white light-emitting points and white light-emitting points.
  • white light-emitting points of two or more pixel points may be disposed adjacent to each other.
  • FIG. 6 a schematic diagram of a self-luminous array of a white LED is used. The red, blue, green, and white light-emitting points constitute one pixel. In the left image of FIG. 6 , the white light of the pixel A and the pixel B are illuminated.
  • the point positions are adjacent to each other, and a white light emitting diode is disposed correspondingly under the white light emitting points of the pixel point A and the pixel point B, that is, the white light emitting point of the pixel point A and the pixel point B is combined with a white light emitting diode, and the combined white light emitting diode is controlled.
  • the color resolution is L ⁇ K
  • the white resolution is L/2 ⁇ K
  • the white light-emitting points of the pixel points A, B, C, and D are adjacent to each other.
  • a white light-emitting diode is arranged correspondingly under the white light-emitting points of the pixel points A, B, C, and D, that is, the white light-emitting points of the pixel points A, B, C, and D are combined with a white light-emitting diode to control the combined white light-emitting diode to emit light.
  • the color resolution is L ⁇ K
  • the white resolution is L/2 ⁇ K/2.
  • the OLED display with 400x400x24bit display Take the OLED display with 400x400x24bit display as an example.
  • the image In the normal mode, the image is 400x400x24bit.
  • the actual number of pixels is M
  • the actual number of LEDs is 3M
  • M is a positive integer
  • the display image is a 256-gray image of 400 ⁇ 400
  • the actual light-emitting pixel number is reduced to N by setting the background image to all black
  • the actual light-emitting LED is Decrease to 3N, where N is a positive integer and N ⁇ M; and in this embodiment, a low power consumption mode and controlling a plurality of pixel points adjacent to the position of the white light-emitting point to be combined with one white light-emitting diode, such as a white light-emitting point
  • a white LED is used in the adjacent four pixel points.
  • the actual light-emitting diode is N. /4 LEDs, compared to the original technology, only 1 / 12 of the LEDs, reducing the number of LEDs, further reducing the display Screen power consumption.
  • the adjusting unit 22 is configured to adjust the brightness of the white LED to achieve a gray scale.
  • the grayscale images are divided into different levels according to the brightness of the light, and generally have 256 levels. Therefore, the brightness of the white light emitting diodes can be adjusted to achieve different grayscale levels.
  • the setting unit 23 is configured to set the background of the image to be all black.
  • the display screen displays a gray-scale image
  • setting the background of the image to all-black refers to controlling the pixel points in addition to the white-light-emitting point illumination that needs to be illuminated, and controlling the pixel points.
  • Other non-white LEDs do not emit light.
  • black pixels can be added.
  • the self-luminous array the number of pixels that need to be illuminated can be effectively reduced, thereby further reducing the power consumption of the display.
  • a self-luminous array display control device realizes white light-emitting point illumination by using a white light-emitting diode instead of a plurality of non-white light-emitting diode combinations of different colors, so that the self-light-emitting array display screen operates in a low power consumption mode.
  • the power consumption is lower when the bottom is lower; and by controlling a plurality of pixel points adjacent to the white light-emitting point to use a white light-emitting diode, the number of light-emitting diodes is reduced, and the power consumption of the display is further reduced.
  • FIG. 9 is a schematic structural diagram of a self-luminous array display control device according to an embodiment of the present disclosure, where the self-luminous array includes a plurality of pixel points, each pixel point includes a non-white light emitting point and a white light emitting point, and the non- A non-white light emitting diode and a white light emitting diode are respectively arranged under the white light emitting point and the white light emitting point, and the non white light emitting diode is, for example, a red, green and blue light emitting diode.
  • the device 3000 can include:
  • the input device 31, the output device 32, the memory 33, and the processor 34 (the number of the processors 34 in the self-luminous array display control device may be one or more, and one processor is exemplified in Fig. 9).
  • the input device 31, the output device 32, the memory 33, and the processor 34 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the memory 33 is used to store an instruction
  • the processor 34 is configured to execute the instructions to:
  • the white light emitting diode corresponding to the white light emitting point is controlled to emit light.
  • the processor 34 is specifically configured to:
  • the white light emitting diode that controls the number and position of the white light emitting points is controlled to emit light.
  • processor 34 is specifically configured to:
  • the white light emitting diode that controls the combination emits light.
  • processor 34 is further configured to:
  • processor 34 is further configured to:
  • a self-luminous array display control device realizes white light-emitting point illumination by using a white light-emitting diode instead of a plurality of non-white light-emitting diode combinations of different colors, so that the self-light-emitting array display screen operates in a low power consumption mode.
  • the power consumption is lower when the bottom is lower; and by controlling a plurality of pixel points adjacent to the white light-emitting point to use a white light-emitting diode, the number of light-emitting diodes is reduced, and the power consumption of the display is further reduced.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the readable medium may include a random access memory (RAM), a read-only memory (ROM), an electrically erasable programmable read-only memory (EEPROM), and only Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, disk storage media or other magnetic storage device, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed. Also. Any connection may suitably be a computer readable medium.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM Compact Disc Read-Only Memory
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

一种自发光阵列显示控制方法及装置、设备。其中,自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,所述方法包括:当接收到图像的灰阶显示指令时,控制与所述白色发光点对应的白色发光二极管发光(S101)。还公开了对应的装置、设备。通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时功耗较低。

Description

一种自发光阵列显示控制方法及装置、设备 技术领域
本发明涉及屏幕显示技术领域,尤其涉及一种自发光阵列显示控制方法及装置、设备。
背景技术
常用的显示屏技术主要采用液晶显示器(英文:Liquid Crystal Display,简称:LCD)和有机发光二极管(英文:Organic Light-Emitting Diode,简称:OLED),它们最主要的差别是:LCD是基于背光板发光,并通过显示面板选择性通过需要的光线,实现彩色图案输出,所以画面中无论内容如何,功耗都不变;而OLED是基于自发光原理,每个像素点都是自发光光源,所以显示画面中黑色像素越多,则开启的发光点越少,功耗越低。OLED是一种常见的自发光阵列,自发光阵列由多个发光二极管(英文:Light-Emitting Diode,简称:LED)构成。
根据排列和包含的发光二极管的不同,自发光阵列一般又分为红、绿、蓝排列(英文:RGB Pentile)与红、绿、蓝、白排列(英文:RGBW Pentile),即红、绿、蓝、白排列相比红、绿、蓝排列增加了白色发光二极管,但是,采用红、绿、蓝、白排列的显示屏一般用于室外大屏幕,在使用时,没有低功耗要求,白色发光二极管一般用于增加画面亮度。
而对于终端设备,则要求尽量降低屏幕的功耗,以提高其续航能力,例如,OLED屏幕除了常规的全彩色显示模式以外,终端设备上常采用减少发光像素点数量的方法达成降功耗的目的,即采用低功耗显示模式。如图1所示的穿戴式设备OLED屏幕常规显示模式和低功耗显示模式示意图,常规显示的时候是RGB 400x400分辨率的图像,在低功耗模式时显示的是256灰阶400x400分辨率的图像,并把背景设为黑色,大幅减少发光点数量,达到降低功耗的目的。
但是,现有技术中的低功耗模式下功耗还是不够低,业界渴求着一种使得自发光阵列显示屏工作在低功耗模式下时功耗较低的方案。
发明内容
本发明实施例提供了一种自发光阵列显示控制方法及装置、设备,以使得 自发光阵列显示屏工作在低功耗模式下时功耗较低。
第一方面,提供了一种自发光阵列显示控制方法,所述自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,所述方法包括:
当接收到图像的灰阶显示指令时,控制与所述白光发光点对应的白色发光二极管发光。
在该实施方式中,通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时功耗较低。
结合第一方面,在一种可能的实施方式中,所述当接收到图像的灰阶显示指令时,控制与白色发光点对应的白色发光二极管发光,包括:
当接收到图像的灰阶显示指令时,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。
在该实施方式中,控制与白色发光点的数量和位置一一对应的白色发光二极管发光,与采用三个不同颜色的非白色发光二极管组合实现白色发光点发光相比,只需1/3的发光二极管,大大降低了自发光阵列显示屏工作在低功耗模式下时的功耗。
结合第一方面,在另一种可能的实施方式中,所述当接收到图像的灰阶显示指令时,控制与白色发光点对应的白色发光二极管发光,包括:
当接收到图像的灰阶显示指令时,确定所述多个像素点中所述白色发光点位置相邻的至少两个像素点,所述至少两个像素点中的白色发光点合用一个白色发光二极管;
控制合用的所述白色发光二极管发光。
在该实施方式中,白色发光点位置相邻的两个或两个以上的像素点合用一个白色发光二极管,与采用多个不同颜色的非白色发光二极管组合实现白色发光点发光相比,需要更少的发光二极管,大大降低了自发光阵列显示屏工作在低功耗模式下时的功耗。
结合第一方面,在又一种可能的实施方式中,所述方法还包括:
调节所述白色发光二极管的亮度实现设定灰阶等级。
在该实施方式中,可以调节白色发光二极管的亮度以实现不同的灰阶等级。
结合第一方面,在又一种可能的实施方式中,所述方法还包括:
将所述图像的背景设置为全黑。
在该实施方式中,通过将图像的背景设置为全黑,可以增加黑色像素点,有效减少需要发光的像素点数量,从而进一步降低自发光阵列显示屏工作在低功耗模式下时的功耗。
第二方面,提供了一种自发光阵列显示控制装置,所述自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,所述装置包括:
控制单元,用于当接收到图像的灰阶显示指令时,控制与所述白光发光点对应的白色发光二极管发光。
基于同一发明构思,由于该装置解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及所带来的有益效果,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
第三方面,提供了一种自发光阵列显示控制设备,所述自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,所述设备包括:输入装置、输出装置、存储器和处理器;
所述存储器用于存储指令;
所述处理器用于执行所述指令以实现:
当接收到图像的灰阶显示指令时,控制与所述白光发光点对应的白色发光二极管发光。
所述处理器调用存储在所述存储器中的指令以实现上述第一方面的方法设计中的方案,由于该服务器解决问题的实施方式以及有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及有益效果,因此该服务器的实施可以参见方法的实施,重复之处不再赘述。
第四方面,提供了一种自发光阵列,所述自发光阵列包括多个像素点,每个像素点包括白色发光点和非白色发光点,每个非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,在所述自发光阵列中,至少两个像素点的白色发光点位置相邻,且所述至少两个像素点的白色发光点合用一个白色发光二极管。
在该实施方式中,采用多个像素点的白色发光点合用一个白色发光二极管,可以减少白色发光二极管的数量。
结合第四方面,在一种可能的实施方式中,所述自发光阵列用于当接收到灰阶显示指令时,所述至少两个像素点的白色发光点合用的白色发光二极管发光。
在该实施方式中,通过采用多个像素点的白色发光点合用一个白色发光二极管,减少白色发光二极管的数量,从而可以降低显示屏的功耗。
结合第四方面,在另一种可能的实施方式中,两个或四个像素点的白色发光点位置相邻,所述两个或四个像素点的白色发光点合用一个白色发光二极管。
在该实施方式中,合用的自发光阵列的排列方式多样,从而可以达到不同程度的降低显示屏的功耗。
实施本发明实施例提供的一种自发光阵列显示控制方法及装置、设备,通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时功耗较低。
本发明实施例可以用于多种电子设备,电子设备可以包括手机、可穿戴设备(如智能手表、智能手环等)、平板电脑、个人电脑(PC,Personal Computer)、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为穿戴式设备OLED屏幕常规显示模式和低功耗显示模式示意图;
图2为采用现有的红、绿、蓝发光二极管发白光的示意图;
图3为本发明实施例提供的一种自发光阵列显示控制方法的流程示意图;
图4为示例的一种自发光阵列排列示意图;
图5为本发明实施例提供的另一种自发光阵列显示控制方法的流程示意图;
图6为示例的合用白色发光二极管的自发光阵列排列示意图;
图7为本发明实施例提供的一种自发光阵列显示控制装置的结构示意图;
图8为本发明实施例提供的另一种自发光阵列显示控制装置的结构示意图;
图9为本发明实施例提供的一种自发光阵列显示控制设备的结构示意图。
具体实施方式
对于自发光阵列工作在低功耗显示模式下时,画面发白光,如图2所示的采用现有的红、绿、蓝发光二极管发白光的示意图,使用现有自发光阵列,发出白光要同时点亮像素点的三个LED,例如红、绿、蓝LED,虽然把背景设为黑色可以增加黑色像素点,有效减少需要发光的像素点数量,但每个发白光的像素点由于需要同时点亮红、绿、蓝三个LED,使得每个发白光的像素点功耗比像素点常规显示时功耗更高。
本发明实施例提供一种自发光阵列显示控制方法及装置、设备,通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时的功耗较低。本发明实施例涉及的自发光阵列显示控制方案主要应用于各类终端设备显示控制。各类终端设备可以包括手机、可穿戴设备(如智能手表、智能手环等)、平板电脑、个人电脑、个人数字助理、销售终端、车载电脑等。
图3为本发明实施例提供的一种自发光阵列显示控制方法的流程示意图,在本实施例中,自发光阵列包括多个像素点,每个像素点包括非白色发光点和 白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,非白色发光二极管例如是红、绿、蓝发光二极管。
对于RGB排列的自发光阵列,在图像常规显示时,一个像素点的非白色发光点由三种不同颜色LED组成,但不一定每个像素点都由三个不同颜色LED组成,有可能相邻像素点合用一个非白色LED,例如两个像素点用5个非白色LED组成(即2个红色,2个绿色,1个蓝色)的组合。本实施例采用RGBW排列的自发光阵列,即增加了一个白色发光点,白色发光点通过白色发光二极管发光,且在本实施例中,白色发光二极管可以在普通显示模式下用于增加画面亮度,也可以用于显示屏工作在低功耗模式下时降低显示屏的功耗。
图3所示的方法包括以下步骤:
S101,当接收到图像的灰阶显示指令时,控制与白色发光点对应的白色发光二极管发光。
为了节省终端设备的功耗,用户设置终端设备的显示屏工作在低功耗模式下,从而向显示控制模块发送灰阶显示指令,终端设备的显示屏采用自发光阵列,当显示屏显示灰阶图像时,只有黑色和白色两种像素点,白色像素点仅白色发光点发光,非白色发光点不发光,且本实施例中,当接收到图像的灰阶显示指令时,控制与白色发光点对应的白色发光二极管发光。
以400x400x24bit显示规格的OLED显示屏为例,常规模式下,显示图像为400x400x24bit的图像,实际的发光像素点数为M,实际发光LED数为3M,M为正整数;而在低功耗模式下且采用多个不同颜色的非白色发光二极管组合实现白色发光点发光时,显示图像为400x400的256灰阶图像,并通过把背景图设为全黑,把实际发光像素点数降低为N,实际发光LED降低为3N,其中N为正整数且N<M,即将图像的背景设置为全黑,将背景设为黑色可以增加黑色像素点,黑色像素点所在的LED不发光,可以有效减少需要发光的像素点数量。而本实施例中,自发光阵列工作在低功耗模式下,低功耗模式下显示屏显示灰阶图像,仅白色发光点被点亮,且本实施例利用白色发光二极管实现灰阶图像,即控制与白色发光点对应的白色发光二极管发光。可选地,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。仍以前面示例为例,低功耗模式下,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光,实际发光点为N个白光二极管,比采用多个不同颜色的 非白色发光二极管组合实现白色发光点发光相比,只用了N个发光二极管,在忽略其它因素的情况下,显示屏功耗降低了将近2/3。
作为S101的一种实现方式,当接收到图像的灰阶显示指令时,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。本实施例中,每个像素点下面布置有一个白色LED,确定需要发白光的像素点(即该像素点包括需要点亮的白色发光点)的数量和位置,控制与该白色发光点的数量和位置一一对应的白色发光二极管发光。如图4所示,为示例的一种自发光阵列排列示意图,在该排列中,一个像素点包括红、蓝、绿、白四个发光点,红、蓝、绿、白四个发光点下面对应设置有红、蓝、绿、白四个发光LED,在显示灰阶图像时,仅白色发光点发光,本实施例中,控制与需要发光的白色发光点的数量和位置一一对应的白色LED发光。在图4中,彩色分辨率为L×K,白色分辨率也为L×K。
当然,控制与白光发光点对应的白色发光二极管发光,对于自发光阵列的白色发光二极管采用的排列方式不同,还可以是其它的实现方式,在此不作限制。
根据本发明实施例提供的一种自发光阵列显示控制方法,通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时的功耗较低。
图5为本发明实施例提供的另一种自发光阵列显示控制方法的流程示意图,该方法包括以下步骤:
S201,当接收到图像的灰阶显示指令时,确定多个像素点中白色发光点位置相邻的至少两个像素点,所述至少两个像素点中的白色发光点合用一个白色发光二极管。
S202,控制合用的所述白色发光二极管发光。
自发光阵列的一个像素点包括多个非白色发光点和白色发光点,本实施例中,在排列自发光阵列时,可以设置两个或两个以上像素点的白色发光点位置相邻。如图6示例的合用白色发光二极管的自发光阵列排列示意图,红、蓝、绿、白四个发光点构成一个像素点,在图6的左图中,像素点A和像素点B的白色发光点位置相邻,在像素点A和像素点B的白色发光点下对应设置一 个白色发光二极管,即像素点A和像素点B的白色发光点合用一个白色发光二极管,控制该合用的白色发光二极管发光,在左图中,彩色分辨率为L×K,白色分辨率为L/2×K;在图6的右图中,像素点A、B、C、D的白色发光点位置相邻,在像素点A、B、C、D的白色发光点下对应设置一个白色发光二极管,即像素点A、B、C、D的白色发光点合用一个白色发光二极管,控制该合用的白色发光二极管发光,在右图中,彩色分辨率为L×K,白色分辨率为L/2×K/2。
以400x400x24bit显示规格的OLED显示屏为例,常规模式下,显示图像为400x400x24bit的图像,实际的发光像素点数为M,实际发光LED数为3M,M为正整数;而在低功耗模式下且采用多个不同颜色的非白色发光二极管组合实现白色发光点发光时,显示图像为400x400的256灰阶图像,并通过把背景图设为全黑,把实际发光像素点数降低为N,实际发光LED降低为3N,其中N为正整数且N<M;而在本实施例中,即低功耗模式且控制白色发光点位置相邻的多个像素点合用一个白色发光二极管发光,例如白色发光点相邻的四个像素点合用一个白色发光二极管,若整个自发光阵列中每四个像素点的白色发光点都相邻,相邻的白色发光点合用一个白色发光二极管,则实际发光二极管为N/4个发光二极管,比原有技术相比,只用了1/12的发光二极管,减少了发光二极管数量,进一步降低了显示屏功耗。
仍以图6为例,为了达到不同程度的功耗的降低,可以降低到不同的白色分辨率,根据降低的白色分辨率的不同,采用不同的自发光阵列的排列。
S203,调节所述白色发光二极管的亮度实现设定灰阶等级。
灰阶图像按照发光亮度不同划分为不同的等级,一般有256个等级,因此,可以调节白色发光二极管的亮度以实现设定不同的灰阶等级。
S204,将所述图像的背景设置为全黑。
这里,自发光阵列工作在低功耗模式下时,显示屏显示灰阶图像,将图像的背景设置为全黑是指控制像素点中除需要发光的白色发光点发光外,控制像素点中的其它非白色发光二极管不发光。把图像的背景设置为全黑,可以增加黑色像素点,对于自发光阵列来说,可以有效减少需要发光的像素点数量,从而进一步降低显示屏的功耗。
根据本发明实施例提供的一种自发光阵列显示控制方法,通过使用白色发 光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时的功耗较低;且通过控制白色发光点位置相邻的多个像素点合用一个白色发光二极管,减少了发光二极管的数量,进一步降低了显示屏的功耗。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为根据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
图7为本发明实施例提供的一种自发光阵列显示控制装置的结构示意图,在本实施例中,自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,非白色发光二极管例如是红、绿、蓝发光二极管。
对于RGB排列的自发光阵列,在图像常规显示时,一个像素点的非白色发光点由三种不同颜色LED组成,但不一定每个像素点都由三个不同颜色LED组成,有可能相邻像素点合用一个非白色LED,例如两个像素点用5个非白色LED组成(即2个红色,2个绿色,1个蓝色)的组合。本实施例采用RGBW排列的自发光阵列,即增加了一个白色发光点,白色发光点通过白色发光二极管发光,且在本实施例中,白色发光二极管可以在普通显示模式下用于增加画面亮度,也可以用于显示屏工作在低功耗模式下时降低显示屏的功耗。
图7所示的装置1000包括:
控制单元11,用于当接收到图像的灰阶显示指令时,控制与白色发光点对应的白色发光二极管发光。
为了节省终端设备的功耗,用户设置终端设备的显示屏工作在低功耗模式下,从而向显示控制模块发送灰阶显示指令,终端设备的显示屏采用自发光阵列,当显示屏显示灰阶图像时,只有黑色和白色两种像素点,白色像素点仅白色发光点发光,非白色发光点不发光,且本实施例中,当接收到图像的灰阶显示指令时,控制与白色发光点对应的白色发光二极管发光。
以400x400x24bit显示规格的OLED显示屏为例,常规模式下,显示图像 为400x400x24bit的图像,实际的发光像素点数为M,实际发光LED数为3M,M为正整数;而在低功耗模式下且采用多个不同颜色的非白色发光二极管组合实现白色发光点发光时,显示图像为400x400的256灰阶图像,并通过把背景图设为全黑,把实际发光像素点数降低为N,实际发光LED降低为3N,其中N为正整数且N<M,即将图像的背景设置为全黑,将背景设为黑色可以增加黑色像素点,黑色像素点所在的LED不发光,可以有效减少需要发光的像素点数量。而本实施例中,自发光阵列工作在低功耗模式下,低功耗模式下显示屏显示灰阶图像,仅白色发光点被点亮,且本实施例利用白色发光二极管实现灰阶图像,即控制与白色发光点对应的白色发光二极管发光。可选地,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。仍以前面示例为例,低功耗模式下,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光,实际发光点为N个白光二极管,比采用多个不同颜色的非白色发光二极管组合实现白色发光点发光相比,只用了N个发光二极管,在忽略其它因素的情况下,显示屏功耗降低了将近2/3。
作为一种实现方式,控制单元11具体用于当接收到图像的灰阶显示指令时,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。本实施例中,每个像素点下面布置有一个白色LED,确定需要发白光的像素点(即该像素点包括需要点亮的白色发光点)的数量和位置,控制与该白色发光点的数量和位置一一对应的白色发光二极管发光。如图4所示,为示例的一种自发光阵列排列示意图,在该排列中,一个像素点包括红、蓝、绿、白四个发光点,红、蓝、绿、白四个发光点下面对应设置有红、蓝、绿、白四个发光LED,在显示灰阶图像时,仅白色发光点发光,本实施例中,控制与需要发光的白色发光点的数量和位置一一对应的白色LED发光。在图4中,彩色分辨率为L×K,白色分辨率也为L×K。
当然,控制与白光发光点对应的白色发光二极管发光,对于自发光阵列的白色发光二极管采用的排列方式不同,还可以是其它的实现方式,在此不作限制。
根据本发明实施例提供的一种自发光阵列显示控制装置,通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时的功耗较低。
图8为本发明实施例提供的另一种自发光阵列显示控制装置的结构示意图,该装置2000包括:控制单元21、调节单元22和设置单元23。具体地:
控制单元21,用于当接收到图像的灰阶显示指令时,确定多个像素点中白色发光点位置相邻的至少两个像素点,所述至少两个像素点中的白色发光点合用一个白色发光二极管。
控制单元21还用于控制合用的所述白色发光二极管发光。
自发光阵列的一个像素点包括多个非白色发光点和白色发光点,本实施例中,在排列自发光阵列时,可以设置两个或两个以上像素点的白色发光点位置相邻。如图6示例的合用白色发光二极管的自发光阵列排列示意图,红、蓝、绿、白四个发光点构成一个像素点,在图6的左图中,像素点A和像素点B的白色发光点位置相邻,在像素点A和像素点B的白色发光点下对应设置一个白色发光二极管,即像素点A和像素点B的白色发光点合用一个白色发光二极管,控制该合用的白色发光二极管发光,在左图中,彩色分辨率为L×K,白色分辨率为L/2×K;在图6的右图中,像素点A、B、C、D的白色发光点位置相邻,在像素点A、B、C、D的白色发光点下对应设置一个白色发光二极管,即像素点A、B、C、D的白色发光点合用一个白色发光二极管,控制该合用的白色发光二极管发光,在右图中,彩色分辨率为L×K,白色分辨率为L/2×K/2。
以400x400x24bit显示规格的OLED显示屏为例,常规模式下,显示图像为400x400x24bit的图像,实际的发光像素点数为M,实际发光LED数为3M,M为正整数;而在低功耗模式下且采用多个不同颜色的非白色发光二极管组合实现白色发光点发光时,显示图像为400x400的256灰阶图像,并通过把背景图设为全黑,把实际发光像素点数降低为N,实际发光LED降低为3N,其中N为正整数且N<M;而在本实施例中,即低功耗模式且控制白色发光点位置相邻的多个像素点合用一个白色发光二极管发光,例如白色发光点相邻的四个像素点合用一个白色发光二极管,若整个自发光阵列中每四个像素点的白色发光点都相邻,相邻的白色发光点合用一个白色发光二极管,则实际发光二极管为N/4个发光二极管,比原有技术相比,只用了1/12的发光二极管,减少了发光二极管数量,进一步降低了显示屏功耗。
仍以图6为例,为了达到不同程度的功耗的降低,可以降低到不同的白色 分辨率,根据降低的白色分辨率的不同,采用不同的自发光阵列的排列。
调节单元22,用于调节所述白色发光二极管的亮度实现设定灰阶等级。
灰阶图像按照发光亮度不同划分为不同的等级,一般有256个等级,因此,可以调节白色发光二极管的亮度以实现设定不同的灰阶等级。
设置单元23,用于将所述图像的背景设置为全黑。
这里,自发光阵列工作在低功耗模式下时,显示屏显示灰阶图像,将图像的背景设置为全黑是指控制像素点中除需要发光的白色发光点发光外,控制像素点中的其它非白色发光二极管不发光。把图像的背景设置为全黑,可以增加黑色像素点,对于自发光阵列来说,可以有效减少需要发光的像素点数量,从而进一步降低显示屏的功耗。
根据本发明实施例提供的一种自发光阵列显示控制装置,通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时的功耗较低;且通过控制白色发光点位置相邻的多个像素点合用一个白色发光二极管,减少了发光二极管的数量,进一步降低了显示屏的功耗。
图9为本发明实施例提供的一种自发光阵列显示控制设备的结构示意图,所述自发光阵列包括包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,非白色发光二极管例如是红、绿、蓝发光二极管。如图9所示,该设备3000可包括:
输入装置31、输出装置32、存储器33和处理器34(自发光阵列显示控制设备中的处理器34的数量可以一个或多个,图9中以一个处理器为例)。在本发明的一些实施例中,输入装置31、输出装置32、存储器33和处理器34可通过总线或其它方式连接,其中,图9中以通过总线连接为例。
其中,存储器33用于存储指令;
处理器34用于执行所述指令以实现:
当接收到图像的灰阶显示指令时,控制与所述白光发光点对应的白色发光二极管发光。
在一种实施方式中,所述处理器34具体用于:
当接收到图像的灰阶显示指令时,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。
在另一种实施方式中,所述处理器34具体用于:
当接收到图像的灰阶显示指令时,确定所述多个像素点中所述白色发光点位置相邻的至少两个像素点,所述至少两个像素点中的白色发光点合用一个白色发光二极管;
控制合用的所述白色发光二极管发光。
在又一种实施方式中,所述处理器34还用于:
调节所述白色发光二极管的亮度实现设定灰阶等级。
在又一种实施方式中,所述处理器34还用于:
将所述图像的背景设置为全黑。
根据本发明实施例提供的一种自发光阵列显示控制设备,通过使用白色发光二极管替代多个不同颜色的非白色发光二极管组合实现白色发光点发光,使得自发光阵列显示屏工作在低功耗模式下时的功耗较低;且通过控制白色发光点位置相邻的多个像素点合用一个白色发光二极管,减少了发光二极管的数量,进一步降低了显示屏的功耗。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。本领域的技术人员可以将本说明书中描述的不同实施例以及不同实施例的特征进行结合或组合。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机 可读介质可以包括随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(Digital Subscriber Line,DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种自发光阵列显示控制方法,所述自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,其特征在于,所述方法包括:
    当接收到图像的灰阶显示指令时,控制与所述白光发光点对应的白色发光二极管发光。
  2. 如权利要求1所述的方法,其特征在于,所述当接收到图像的灰阶显示指令时,控制与所述白色发光点对应的白色发光二极管发光,包括:
    当接收到图像的灰阶显示指令时,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。
  3. 如权利要求1所述的方法,其特征在于,所述当接收到图像的灰阶显示指令时,控制与所述白色发光点对应的白色发光二极管发光,包括:
    当接收到图像的灰阶显示指令时,确定所述多个像素点中所述白色发光点位置相邻的至少两个像素点,所述至少两个像素点中的白色发光点合用一个白色发光二极管;
    控制合用的所述白色发光二极管发光。
  4. 如权利要求1-3任意一项所述的方法,其特征在于,所述方法还包括:
    调节所述白色发光二极管的亮度实现设定灰阶等级。
  5. 如权利要求1-4任意一项所述的方法,其特征在于,所述方法还包括:
    将所述图像的背景设置为全黑。
  6. 一种自发光阵列显示控制装置,所述自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,其特征在于,所述装置包括:
    控制单元,用于当接收到图像的灰阶显示指令时,控制与所述白光发光点对应的白色发光二极管发光。
  7. 如权利要求6所述的装置,其特征在于,所述控制单元具体用于:
    当接收到图像的灰阶显示指令时,控制与所述白色发光点的数量和位置一一对应的白色发光二极管发光。
  8. 如权利要求6所述的装置,其特征在于,所述控制单元具体用于:
    当接收到图像的灰阶显示指令时,确定所述多个像素点中所述白色发光点位置相邻的至少两个像素点,所述至少两个像素点中的白色发光点合用一个白色发光二极管;
    控制合用的所述白色发光二极管发光。
  9. 如权利要求6-8任意一项所述的装置,其特征在于,所述装置还包括:
    调节单元,用于调节所述白色发光二极管的亮度实现设定灰阶等级。
  10. 如权利要求6-9任意一项所述的装置,其特征在于,所述装置还包括:
    设置单元,用于将所述图像的背景设置为全黑。
  11. 一种自发光阵列显示控制设备,所述自发光阵列包括多个像素点,每个像素点包括非白色发光点和白色发光点,所述非白色发光点和白色发光点下分别排列有非白色发光二极管和白色发光二极管,其特征在于,所述设备包括:输入装置、输出装置、存储器和处理器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令以实现:
    当接收到图像的灰阶显示指令时,控制与所述白光发光点对应的白色发光二极管发光。
  12. 如权利要求11所述的设备,其特征在于,所述处理器具体用于:
    当接收到图像的灰阶显示指令时,控制与所述白色发光点的数量和位置一 一对应的白色发光二极管发光。
  13. 如权利要求11所述的设备,其特征在于,所述处理器具体用于:
    当接收到图像的灰阶显示指令时,确定所述多个像素点中所述白色发光点位置相邻的至少两个像素点,所述至少两个像素点中的白色发光点合用一个白色发光二极管;
    控制合用的所述白色发光二极管发光。
  14. 如权利要求11-13任意一项所述的设备,其特征在于,所述处理器还用于:
    调节所述白色发光二极管的亮度实现设定灰阶等级。
  15. 如权利要求11-14任意一项所述的设备,其特征在于,所述处理器还用于:
    将所述图像的背景设置为全黑。
PCT/CN2016/086286 2016-06-17 2016-06-17 一种自发光阵列显示控制方法及装置、设备 WO2017214996A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187015627A KR102079616B1 (ko) 2016-06-17 2016-06-17 자발광 어레이 표시 제어 방법, 장치, 및 디바이스
CN201680008089.3A CN107851418A (zh) 2016-06-17 2016-06-17 一种自发光阵列显示控制方法及装置、设备
PCT/CN2016/086286 WO2017214996A1 (zh) 2016-06-17 2016-06-17 一种自发光阵列显示控制方法及装置、设备
JP2018530591A JP2019507364A (ja) 2016-06-17 2016-06-17 自己発光アレイ表示制御方法、装置及びデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/086286 WO2017214996A1 (zh) 2016-06-17 2016-06-17 一种自发光阵列显示控制方法及装置、设备

Publications (1)

Publication Number Publication Date
WO2017214996A1 true WO2017214996A1 (zh) 2017-12-21

Family

ID=60662855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086286 WO2017214996A1 (zh) 2016-06-17 2016-06-17 一种自发光阵列显示控制方法及装置、设备

Country Status (4)

Country Link
JP (1) JP2019507364A (zh)
KR (1) KR102079616B1 (zh)
CN (1) CN107851418A (zh)
WO (1) WO2017214996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038874A (zh) * 2021-07-27 2022-02-11 重庆康佳光电技术研究院有限公司 显示面板及显示屏

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144976B2 (ja) * 2018-06-07 2022-09-30 シャープ株式会社 制御装置、プログラム、電子機器および制御方法
CN113053964B (zh) 2021-03-09 2023-10-13 云南创视界光电科技有限公司 显示装置、显示面板及其驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126868A (zh) * 2007-09-21 2008-02-20 友达光电股份有限公司 液晶显示装置及其驱动方法
CN101551979A (zh) * 2008-04-03 2009-10-07 上海天马微电子有限公司 户外可读液晶显示装置
CN201489800U (zh) * 2009-07-24 2010-05-26 福建华映显示科技有限公司 提供多种运作模式的显示装置
CN203013157U (zh) * 2012-11-05 2013-06-19 深圳市赫尔诺电子技术有限公司 Led显示设备
US20150380470A1 (en) * 2014-06-26 2015-12-31 Apple Inc. Organic Light-Emitting Diode Display With White and Blue Diodes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012588B2 (en) * 2001-06-05 2006-03-14 Eastman Kodak Company Method for saving power in an organic electroluminescent display using white light emitting elements
US7714831B2 (en) * 2003-07-16 2010-05-11 Honeywood Technologies, Llc Background plateau manipulation for display device power conservation
JP2007072455A (ja) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd 表示装置
KR100760943B1 (ko) * 2006-01-25 2007-09-21 엘지.필립스 엘시디 주식회사 모바일용 표시장치의 구동장치 및 구동방법
JP4302172B2 (ja) 2006-02-02 2009-07-22 シャープ株式会社 表示装置
US7524226B2 (en) * 2006-10-10 2009-04-28 Eastman Kodak Company OLED display device with adjusted filter array
KR101617257B1 (ko) * 2008-10-08 2016-05-18 엘지전자 주식회사 이동 디스플레이 기기의 소비전력 저감장치 및 방법
KR20100081030A (ko) * 2009-01-05 2010-07-14 삼성전자주식회사 유기 발광 표시 장치를 구비한 휴대 단말기 및 그의 전력 제어 방법
JP5662010B2 (ja) * 2009-06-30 2015-01-28 エルジー ディスプレイ カンパニー リミテッド 表示装置
CN102142210A (zh) * 2011-03-28 2011-08-03 深圳市宏啟光电有限公司 发光二极管显示装置及其显示面板
EP3561876B1 (en) * 2011-11-30 2022-02-16 Novaled GmbH Display
KR101862793B1 (ko) * 2012-08-08 2018-05-31 삼성디스플레이 주식회사 화소 배열 구조 및 이를 포함한 유기전계발광 표시장치
TWI522992B (zh) * 2013-10-30 2016-02-21 友達光電股份有限公司 彩色顯示面板之畫素陣列結構
JP6223210B2 (ja) 2014-01-30 2017-11-01 株式会社ジャパンディスプレイ 表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126868A (zh) * 2007-09-21 2008-02-20 友达光电股份有限公司 液晶显示装置及其驱动方法
CN101551979A (zh) * 2008-04-03 2009-10-07 上海天马微电子有限公司 户外可读液晶显示装置
CN201489800U (zh) * 2009-07-24 2010-05-26 福建华映显示科技有限公司 提供多种运作模式的显示装置
CN203013157U (zh) * 2012-11-05 2013-06-19 深圳市赫尔诺电子技术有限公司 Led显示设备
US20150380470A1 (en) * 2014-06-26 2015-12-31 Apple Inc. Organic Light-Emitting Diode Display With White and Blue Diodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038874A (zh) * 2021-07-27 2022-02-11 重庆康佳光电技术研究院有限公司 显示面板及显示屏

Also Published As

Publication number Publication date
KR102079616B1 (ko) 2020-02-20
JP2019507364A (ja) 2019-03-14
KR20180077268A (ko) 2018-07-06
CN107851418A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
TWI389077B (zh) 有機發光二極體顯示裝置及其驅動方法
TWI415097B (zh) 液晶顯示裝置及其驅動方法
CN109346009B (zh) 有机发光显示面板和显示装置
WO2019071781A1 (zh) 显示驱动方法及显示装置
CN108538245B (zh) 一种显示面板的驱动方法、显示面板及显示装置
US20090135108A1 (en) Sample-and-Hold Display with Impulse Backlight
JP2009510527A (ja) ハイブリッド画像化技術を用いたフラットパネルディスプレイ
TWI620166B (zh) 控制方法
KR102156270B1 (ko) 동일한 픽셀 메모리를 이용하여 저화질 모드와 고화질 모드로 동작이 가능한 서브 픽셀 구동 회로 및 이를 포함하는 디스플레이 장치
WO2020151414A1 (zh) 显示面板及其驱动方法、显示装置
US7916112B2 (en) Systems for controlling pixels
CN104637449B (zh) 驱动有源矩阵有机发光二极管面板的方法
WO2017214996A1 (zh) 一种自发光阵列显示控制方法及装置、设备
JP2005049362A (ja) 液晶表示装置
JP4981108B2 (ja) 表示装置及びその駆動方法
TWI662535B (zh) 畫素驅動電路及具有畫素驅動電路的顯示裝置
TWI415070B (zh) 源極驅動器及電子系統
JP2009294282A (ja) バックライトおよび液晶ディスプレイ
KR102413473B1 (ko) 표시 장치의 구동 방법
US20130257916A1 (en) Display device and display method and encoding method using the same
CN108711396B (zh) 像素数据的处理方法及处理装置、显示装置及显示方法
JP2010102022A (ja) Oled表示装置
CN113963658A (zh) 亮度补偿方法及亮度数据确定方法、装置、芯片
KR101035625B1 (ko) 표시 장치 및 그 구동 방법
EP1777688A1 (en) Systems for controlling pixels

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187015627

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018530591

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905110

Country of ref document: EP

Kind code of ref document: A1