WO2020151414A1 - 显示面板及其驱动方法、显示装置 - Google Patents

显示面板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2020151414A1
WO2020151414A1 PCT/CN2019/126088 CN2019126088W WO2020151414A1 WO 2020151414 A1 WO2020151414 A1 WO 2020151414A1 CN 2019126088 W CN2019126088 W CN 2019126088W WO 2020151414 A1 WO2020151414 A1 WO 2020151414A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
color
pixel unit
pixels
Prior art date
Application number
PCT/CN2019/126088
Other languages
English (en)
French (fr)
Inventor
朱健超
冯宇
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/967,186 priority Critical patent/US11164502B2/en
Publication of WO2020151414A1 publication Critical patent/WO2020151414A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0457Improvement of perceived resolution by subpixel rendering

Definitions

  • the application relates to a display panel, a driving method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • An OLED display panel that can achieve partial transparent display includes a transparent area and a non-transparent area.
  • the PPI (English: Pixels Per Inch; Chinese: the number of pixels per inch, also called pixel density) of the transparent area is smaller than the PPI of the non-transparent area.
  • the display of the OLED display panel is mainly driven by a gamma (English: gamma) curve, and before the OLED display panel is shipped from the factory, the OLED display panel needs to be gamma corrected (that is, to adjust the gamma curve of the OLED display panel).
  • a gamma English: gamma
  • the PPI of the transparent area and the PPI of the non-transparent area of the OLED display panel are different, which makes it necessary to drive the transparent area and the non-transparent area to display through different gamma curves. Therefore, when performing gamma correction on the OLED display panel, it is necessary to correct The gamma curve corresponding to the transparent area and the gamma curve corresponding to the non-transparent area are adjusted separately, resulting in a complicated process of performing gamma correction on the OLED display panel.
  • the application provides a display panel, a driving method thereof, and a display device.
  • the technical solutions are as follows:
  • a display panel in a first aspect, includes: a plurality of first pixel units and at least one second pixel unit, each of the first pixel unit and the second pixel unit includes Multiple sub-pixels,
  • Each of the sub-pixels in the first pixel unit is located in a sub-pixel area, and the light-emitting color of the two sub-pixels in the first pixel unit is a first color;
  • a plurality of the sub-pixels in the second pixel unit are located in a plurality of sub-pixel regions arranged in an array, and there are two adjacent sub-pixels in the second pixel unit whose light-emitting color is the first Color, the two adjacent sub-pixels are located in the same sub-pixel area;
  • the emission current of the sub-pixel whose emission color is the second color and the emission current of the sub-pixel whose emission color is the third color Equal
  • the luminescence current of the sub-pixels whose luminescence color is the second color is twice the luminescence current of the sub-pixels whose luminescence color is the first color
  • the luminescence currents of the sub-pixels with the same luminescence color If they are equal, the first color, the second color, and the third color are different from each other.
  • the light-emitting surfaces of the plurality of sub-pixels in the first pixel unit have the same area
  • the light-emitting surfaces of the multiple sub-pixels in the second pixel unit have the same area
  • the display panel has a transparent area and a non-transparent area, the first pixel unit is located in the non-transparent area, and the second pixel unit is located in the transparent area.
  • the first pixel unit includes a plurality of the sub-pixels arranged in a sub-pixel rendering SPR manner.
  • the first pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel that are sequentially arranged along the scanning direction of the data line, and the light-emitting color of the second sub-pixel is the same as
  • the light-emitting color of the fourth sub-pixel is the first color
  • the light-emitting color of the first sub-pixel is the second color
  • the light-emitting color of the third sub-pixel is the third color.
  • the second pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel that are sequentially arranged along the scanning direction of the data line, and the light-emitting color of the first sub-pixel is The second color, the emission color of the second sub-pixel, and the emission color of the third sub-pixel are all the first color, and the emission color of the fourth sub-pixel is the third color.
  • the first color is green
  • the second color is red
  • the third color is blue
  • the display panel is an electroluminescence display panel.
  • a method for driving a display panel for the display panel according to the first aspect or any one of the optional modes of the first aspect, the display panel including a plurality of first pixel units and at least one second pixel unit A pixel unit, each of the first pixel unit and the second pixel unit includes a plurality of sub-pixels, and the method includes:
  • the group of gamma curves including gamma curves corresponding to the sub-pixels of each color in the first pixel unit, the gamma curve Indicating the correlation between the gamma voltage and the light-emitting current of the corresponding sub-pixel;
  • the sub-pixels in the first pixel unit and the second pixel unit are driven to emit light through a set of adjusted gamma curves.
  • a display device including the display panel described in the first aspect or any optional manner of the first aspect.
  • FIG. 1 is a front view of a display panel involved in an embodiment of the present application
  • FIG. 2 is a front view of a display panel provided by an embodiment of the present application.
  • FIG. 3 is a method flowchart of a method for driving a display panel provided by an embodiment of the present application.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • OLED Organic LED
  • TFT-LCD display devices transparent display can be achieved by removing the backlight module and adding external light sources, but its transparent display effect is poor, and it is difficult to achieve full-color display and high-brightness display. Therefore, the current transparent display device is usually an OLED display device.
  • the main display component of the OLED display device is the OLED display panel.
  • the optical sensor and other structures are usually arranged on the side of the OLED display panel away from its light-emitting surface. Therefore, the area on the OLED display panel corresponding to the optical sensor is required. It is set as a transparent area to facilitate the photosensitivity of the optical sensor.
  • the PPI of the area corresponding to the optical sensor on the OLED display panel is mainly reduced to realize the area as a transparent area.
  • the sub-pixels are usually arranged in a sub-pixel rendering (English: Subpixel Rendering; abbreviated as: SPR). If the sub-pixels in the transparent area are arranged in SPR, because The PPI of the transparent area is low, so the transparent area will have problems such as rough image quality and color fringing of the display screen.
  • FIG. 1 shows a front view of an OLED display panel 0 according to an embodiment of the present application.
  • the OLED display panel 0 has a non-transparent area a and a transparent area b.
  • the PPI of the transparent area b is less than PPI of non-transparent area a.
  • a plurality of first pixel units 01 are provided in the non-transparent area a, the first pixel unit 01 includes a red sub-pixel 011, a green sub-pixel 012, a blue sub-pixel 013, and a green sub-pixel 014, and a transparent area b is provided with At least one second pixel unit 02.
  • the second pixel unit 02 includes a red sub-pixel 021, a green sub-pixel 022, and a blue sub-pixel 023.
  • the sub-pixels in the non-transparent area a are arranged in an SPR manner, and the sub-pixels in the transparent area b
  • the pixels are arranged in a conventional manner, where the areas of the light-emitting surfaces of the red sub-pixel 011, the green sub-pixel 012, the blue sub-pixel 013, and the green sub-pixel 014 are equal, and the red sub-pixel 021, the green sub-pixel 022 and the blue sub-pixel
  • the areas of the light-emitting surfaces of the three color sub-pixels 023 are equal.
  • the OLED display panel 0 is mainly driven by a set of gamma curves.
  • the OLED display panel is a current-type display panel.
  • the operating voltage of the TFT driving the sub-pixels is located in the linear region of the transfer characteristic, and the operating voltage range is narrow. Display panels are very sensitive to changes in input voltage, and differences as small as a few millivolts will also be reflected in the display effect. However, the current production processes of OLED display panels and driver chips are difficult to limit the differences in product characteristics to millivolts. Therefore, before the OLED display panel 0 is shipped from the factory, the OLED display panel 0 usually needs to be gamma corrected.
  • a set of gamma curves includes three gamma curves, and the three gamma curves correspond to the red sub-pixel, green sub-pixel and blue sub-pixel of the OLED display panel 0 one-to-one.
  • it can be adjusted by adjusting the opacity
  • the gamma voltage of the sub-pixels of each color in the area a is adjusted to adjust the corresponding gamma curve, so as to adjust the set of gamma curves to perform gamma correction on the OLED display panel 0.
  • each adjusted gamma curve is used to drive the sub-pixel of the corresponding color to emit light, which represents the gamma voltage (referring to the voltage input to the TFT of the sub-pixel) and the light-emitting current (referring to the sub-pixel of the corresponding color). Is the relationship between the output current of the TFT of the sub-pixel.
  • the light-emitting current of the sub-pixel is the current on the gamma curve corresponding to the gamma voltage.
  • the first pixel unit 01 in the non-transparent area a includes a red sub-pixel, a blue sub-pixel and two green sub-pixels, in order to ensure the red light (light emitted by the red sub-pixel) of the first pixel unit 01,
  • the brightness of the green light (light emitted by the green sub-pixel) and blue light (light emitted by the blue sub-pixel) is balanced, and the gamma voltage of each color sub-pixel in the non-transparent area a is adjusted to the above group of gamma
  • the light-emitting current of the red sub-pixel is equal to that of the blue sub-pixel
  • the light-emitting current of the green sub-pixel is that of the red sub-pixel.
  • the process of driving the display of the OLED display panel 0 through the set of gamma curves may include: inputting the same gamma to the sub-pixels of the same color in the non-transparent area a and the transparent area b through the adjusted set of gamma curves. Voltage.
  • the second pixel unit 02 in the transparent area b includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel
  • the adjustment of the gamma curve to the same second pixel unit 02 When the red sub-pixel 021, green sub-pixel 022, and blue sub-pixel 023 input the same gamma voltage, in the second pixel unit 02, the light-emitting current of the red sub-pixel 021 is equal to the light-emitting current of the blue sub-pixel 023, and the green sub-pixel 023
  • the light-emitting current of the pixel 022 is half of the light-emitting current of the red sub-pixel 021, resulting in the light-emitting brightness of the red sub-pixel 021 being equal to the light-emitting brightness of the blue sub-pixel 023, and the light-emitting brightness of the green sub-pixel 022 is the light-emitting brightness of the red sub-pixel 021
  • the brightness is half, so the second pixel unit 02 has a color shift.
  • a set of gamma curves can be set for the non-transparent area a and the transparent area b.
  • the display of the non-transparent area a and the transparent area b is driven by different sets of gamma curves.
  • two sets of gamma curves need to be adjusted separately, which results in a complicated process of performing gamma correction on the OLED display panel.
  • the display panel since there are two sub-pixels in the first pixel unit of the display panel whose light-emitting color is the first color, there are two adjacent sub-pixels in the second pixel unit.
  • the color is a first color, and the two adjacent sub-pixels are located in the same sub-pixel area.
  • Both the first pixel unit and the second pixel unit include sub-pixels with a second color and a third color with a light-emitting color.
  • the gamma correction process of the display panel can be simplified.
  • FIG. 2 shows a front view of a display panel 1 provided by an embodiment of the present application.
  • the display panel 1 includes: a plurality of first pixel units 11 and at least one second pixel unit 12;
  • Each of the pixel units 11 and the second pixel unit 12 includes a plurality of sub-pixels.
  • Each sub-pixel in the first pixel unit 11 is located in a sub-pixel area, there are two sub-pixels in the first pixel unit 11 whose light-emitting color is the first color, and a plurality of sub-pixels in the second pixel unit 12 are located in an array arrangement.
  • there are two adjacent sub-pixels in the second pixel unit 12 whose light-emitting colors are the first color, and the two adjacent sub-pixels are located in the same sub-pixel area.
  • the light-emitting current of the sub-pixel whose light-emitting color is the second color is equal to the light-emitting current of the sub-pixel whose light-emitting color is the third color.
  • the emission current of the sub-pixel with the second color is twice the emission current of the sub-pixel with the emission color of the first color, and the emission current of the sub-pixels with the same emission color is the same.
  • the first color, the second color, and the third color are each Not the same.
  • the white balance state refers to the state in which the pixel unit emits white light, that is, the state in which the pixel unit displays white. For example, when the first pixel unit 11 is in a white balance state, the first pixel unit 11 emits white light.
  • the emission color of two sub-pixels in the first pixel unit 11 is the first color
  • the emission color of two adjacent sub-pixels in the second pixel unit 12 is the first color
  • the two adjacent sub-pixels are located in the same sub-pixel area
  • the first pixel unit 11 and the second pixel unit 12 both include sub-pixels with a second color and a sub-pixel with a third color.
  • the light-emitting color is the second
  • the emission current of the sub-pixel of the color is equal to the emission current of the sub-pixel of the third color, and the emission current of the sub-pixel of the second color is twice the emission current of the sub-pixel of the first color.
  • the brightness of the second color is equal to the brightness of the third color
  • the total brightness of the first color is equal to the brightness of the second color
  • the display panel provided by the embodiments of the present application can drive the first pixel unit and the second pixel unit to be in a white balance state through the same set of gamma curves, so driving the second pixel unit through the same set of gamma curves can be reduced.
  • the display panel 1 has a non-transparent area c and a transparent area d, the first pixel unit 11 is located in the non-transparent area c, and the second pixel unit 12 is located in the transparent area d.
  • the first pixel unit 11 includes a plurality of sub-pixels arranged in an SPR manner. As shown in FIG. 2, the first pixel unit 11 includes a first sub-pixel 111, a second sub-pixel 112, a third sub-pixel 113, and a fourth sub-pixel 114 sequentially arranged along the data line scanning direction x.
  • the second sub-pixel The emission color of 112 and the emission color of the fourth sub-pixel 114 are both the first color, the emission color of the first sub-pixel 111 is the second color, and the emission color of the third sub-pixel 113 is the third color.
  • the second pixel unit 12 includes a first sub-pixel 121, a second sub-pixel 122, a third sub-pixel 123, and a fourth sub-pixel 124 that are sequentially arranged along the data line scanning direction x.
  • the light-emitting colors of the three sub-pixels 123 are all the first color
  • the light-emitting color of the first sub-pixel 121 is the second color
  • the light-emitting color of the fourth sub-pixel 124 is the third color
  • the second sub-pixel 122 and the third sub-pixel 123 Located in a sub-pixel area.
  • the first color may be green
  • the second color may be red
  • the third color may be blue.
  • the first pixel unit 11 includes red sub-pixels and green sub-pixels sequentially arranged along the scanning direction x of the data line. , Blue sub-pixels and green sub-pixels, the second pixel unit 12 includes red sub-pixels, green sub-pixels, green sub-pixels, and blue sub-pixels sequentially arranged along the data line scanning direction x.
  • Fig. 2 is an example in which the first color is green, the second color is red, and the third color is blue.
  • the first color, the second color and the third color can be exchanged, for example , The first color is blue, the second color is red, the third color is green, or the first color is red, the second color is green, the third color is blue, etc.
  • the light emission color of two sub-pixels in the first pixel unit 11 is the first color
  • the light emission of two adjacent sub-pixels in the second pixel unit 12 The color is the first color
  • two sub-pixels with the same emission color are located in the same sub-pixel area.
  • the areas of the light-emitting surfaces of the multiple sub-pixels in the first pixel unit 11 are the same, and the areas of the light-emitting surfaces of the multiple sub-pixels in the second pixel unit 12 are the same.
  • the area of the light emitting surface may also be equal to the area of the light emitting surface of each sub-pixel in the second pixel unit 12.
  • each sub-pixel in the first pixel unit 11 may be 2t 2
  • the area of the light-emitting surface of each sub-pixel in the second pixel unit 12 may be n 2
  • 2t 2 may be equal to n 2
  • Each sub-pixel in the first pixel unit 11 and each sub-pixel in the second pixel unit 12 has a rectangular shape.
  • the length of each sub-pixel in the first pixel unit 11 in the data line scanning direction x may be t, and the length in the gate line scanning direction y may be 2t, so that the sub-pixel in the first pixel unit 11
  • the area of the light-emitting surface of each sub-pixel is 2t 2
  • the length of each sub-pixel in the second pixel unit 12 in the data line scanning direction x and the length in the gate line scanning direction y may both be n, so that The area of the light-emitting surface of each sub-pixel in the two-pixel unit 12 is n 2 .
  • the sub-pixel usually includes TFT. Therefore, the area of the light-emitting surface of the sub-pixel is usually the area of the sub-pixel divided by the TFT. The area outside the area, that is, the light-emitting surface of the sub-pixel is usually not rectangular. Since the area of the TFT is smaller than the area of the light-emitting surface of the sub-pixel, the light-emitting surface of the sub-pixel can be described as an example.
  • the display panel 1 may be an electroluminescent display panel.
  • the display panel 1 may be an OLED display panel or a quantum dot light-emitting diode (English: Quantum Dot Light Emitting Diodes; abbreviation: QLED) display panel
  • the OLED display panel may be an active matrix organic electroluminescent diode (English: Active Matrix Organic Light Emitting Diode; Abbreviation: AMOLED) display panel or Passive Matrix Organic Light Emitting Diode (English: Passive Matrix Organic Light Emitting Diode; Abbreviation: PMOLED) display panel, or the display panel 1 can also be other electrical
  • the embodiments of the present application will not be repeated here.
  • the pixel unit (including the first pixel unit and the second pixel unit) involved in the embodiments of this application refers to the smallest unit that can emit white light, not the smallest display unit.
  • the smallest display unit is usually a pixel.
  • one pixel unit includes at least one pixel, and one pixel includes at least one sub-pixel described in the embodiment of the present application.
  • the first pixel unit 11 includes a first pixel composed of a first sub-pixel 111 and a second sub-pixel 112, and a second pixel composed of a third sub-pixel 113 and a fourth sub-pixel 114.
  • the first pixel The three-primary color display is realized by sharing the third sub-pixel 113 of the second pixel.
  • the second pixel realizes the three-primary color display by sharing the first sub-pixel 111 adjacent to the fourth sub-pixel 114. Therefore, in each first In the pixel unit 11, the area of the light-emitting area of the first sub-pixel 111 and the area of the light-emitting area of the third sub-pixel 113 are both equal to the area of the light-emitting surface of the first pixel unit 11, and the area of the light-emitting area of the second sub-pixel 112 is sum
  • the area of the light-emitting area of the fourth sub-pixel 114 is equal to half of the area of the light-emitting surface of the first pixel unit 11.
  • the area of the light-emitting region of the sub-pixel refers to the area that needs to be illuminated by the light emitted by the sub-pixel.
  • the display panel 1 provided by the embodiment of the present application is an OLED display panel below.
  • the first color is green
  • the second color is red
  • the third color is blue as an example.
  • S1 S2 ⁇ target aperture ratio
  • S2 represents the area of the light-emitting area of the sub-pixel (that is, the area of the light-emitting surface of the pixel where the sub-pixel is located)
  • the target aperture ratio represents the sub-pixel in the pixel
  • the aperture ratio is equal to the ratio of the area of the light-emitting surface of the sub-pixel to the area of the light-emitting surface of the pixel where the sub-pixel is located.
  • the area of the light-emitting area of the red sub-pixel 011 and the area of the light-emitting area of the blue sub-pixel 013 are equal to the area of the light-emitting surface of the first pixel unit 01, and the green sub-pixel 012
  • the area of the light-emitting area and the area of the light-emitting area of the green sub-pixel 014 are both equal to half of the area of the light-emitting surface of the first pixel unit 01.
  • the area of the light-emitting area of each sub-pixel in the second pixel unit 02 is equal to the area of the light-emitting surface of the second pixel unit 02.
  • the lengths of the red sub-pixel 011, the green sub-pixel 012, the blue sub-pixel 013, and the green sub-pixel 014 in the data line scanning direction x are all t
  • the length in the gate line scanning direction y are all 2t
  • the red sub-pixel 021 The length of the green sub-pixel 022 and the blue sub-pixel 023 in the data line scanning direction x and the length in the gate line scanning direction y are both n.
  • the light-emitting current I R1 of the red sub-pixel 011, the light-emitting current I G1 of the green sub-pixel 012, the light-emitting current I B1 of the blue sub-pixel 013, and the light-emitting current of the green sub-pixel 014 can be determined I G1 are:
  • the light-emitting current I R2 of the red sub-pixel 021, the light-emitting current I G2 of the green sub-pixel 022, and the light-emitting current I B2 of the blue sub-pixel 023 can be determined as:
  • the brightness L R2 of the red sub-pixel 021, the brightness L G2 of the green sub-pixel 022, and the brightness L B2 of the blue sub-pixel 023 can be obtained as:
  • L G2 I G2 ⁇ /3n 2 ;
  • L B2 I B2 ⁇ /3n 2 ;
  • the adjusted set of gamma curves drive the first pixel unit 01 in the non-transparent area a and the second pixel unit 02 in the transparent area b to emit light, it will send light to the first pixel unit 01 and the second pixel unit 02 of the same color.
  • the sub-pixels input the same gamma voltage, and the light-emitting currents of the sub-pixels of the same color are all currents corresponding to the gamma voltage on the corresponding gamma curve (that is, the gamma curve corresponding to the same color).
  • the area of the light-emitting area of the first sub-pixel (red sub-pixel) 111 and the area of the light-emitting area of the third sub-pixel (blue sub-pixel) 113 Both are equal to the area of the light-emitting surface of the first pixel unit 11, and the area of the light-emitting area of the second sub-pixel (green sub-pixel) 112 and the area of the light-emitting area of the fourth sub-pixel (green sub-pixel) 114 are both equal to that of the first pixel unit Half of the area of the light-emitting surface of 11, the area of the light-emitting area of the first sub-pixel 121 (red sub-pixel), the area of the light-emitting area of the second sub-pixel (green sub-pixel) 122, and the third sub-pixel (green sub-pixel)
  • the lengths of the first sub-pixel 111, the second sub-pixel 112, the third sub-pixel 113, and the fourth sub-pixel 114 in the data line scanning direction x are all t
  • the length in the gate line scanning direction y are all 2t
  • the first The length of the sub-pixel 121, the second sub-pixel 122, the third sub-pixel 123, and the fourth sub-pixel 124 in the data line scanning direction x and the length in the gate line scanning direction y are all n.
  • the light-emitting current I R1 ′ of the first sub-pixel 111, the light-emitting current I G1 ′ of the second sub-pixel 112, the light-emitting current I B1 ′ of the third sub-pixel 113, and the fourth sub-pixel 111 can be determined.
  • the light-emitting current I G1 ′ of the sub-pixel 114 are respectively:
  • I L / ⁇ ⁇ S2 may determine a first sub-pixel 121 of the light emission current I R2 ', the second sub-pixel 122 of the light emission current I G2', the third sub-pixel 123 of the light emission current I G2 'and the fourth sub
  • the light-emitting current I B2 ′ of the pixel 124 are respectively:
  • gamma correction is performed on the display panel 1 to obtain a set of adjusted gamma curves.
  • the light-emitting currents of the sub-pixels of the same color are all corresponding gamma curves (that is, corresponding to the same color). The current corresponding to the gamma voltage on the gamma curve).
  • the light-emitting brightness is equal and equal to the sum of the light-emitting brightness of the second sub-pixel (green sub-pixel) 122 and the light-emitting brightness of the third sub-pixel (green sub-pixel) 123.
  • the light-emitting brightness of the red sub-pixel is equal to blue.
  • the light-emitting brightness of the color sub-pixels is equal to the total light-emitting brightness of the green sub-pixels. Therefore, the second pixel unit 12 has no color shift.
  • the display panel 1 is gamma corrected by adjusting the gamma voltage of the sub-pixels of each color (including the sub-pixels of the first pixel unit 11) in the non-transparent region c, a set of adjusted gamma curves is obtained. Therefore, when the first pixel unit 11 is driven to emit light by the adjusted set of gamma curves, there is no color shift in the first pixel unit 11. According to the above description, it can be seen that the adjusted set of gamma curves is driven When the second pixel unit 12 emits light, there is no color shift in the second pixel unit 12.
  • the embodiment of the present application can reduce the color shift of the second pixel unit when the first pixel unit and the second pixel unit are driven to emit light through the same set of gamma curves.
  • the display panel provided by the embodiments of the present application can drive the first pixel unit and the second pixel unit to be in a white balance state through the same set of gamma curves, so driving the second pixel unit through the same set of gamma curves can be reduced.
  • FIG. 3 shows a method flowchart of a method for driving a display panel provided by an embodiment of the present application.
  • the method can be used for the display panel 1 provided by the above embodiment.
  • the driving device of the display panel may be a driving circuit, a driving chip or an integrated circuit (English: Integrated Circuit; IC for short).
  • the method may include the following steps:
  • a group of gamma curves corresponding to the first pixel unit is determined, the group of gamma curves includes gamma curves corresponding to the sub-pixels of each color in the first pixel unit, and the gamma curves indicate the corresponding sub-pixels.
  • the relationship between the gamma voltage and the luminous current is determined, the group of gamma curves includes gamma curves corresponding to the sub-pixels of each color in the first pixel unit, and the gamma curves indicate the corresponding sub-pixels.
  • the driving device of the display panel may store at least one set of gamma curves, the at least one set of gamma curves includes a set of gamma curves corresponding to the first pixel unit, and a set of gamma curves corresponding to the first pixel unit
  • the gamma curve includes the gamma curve corresponding to the sub-pixels of each color in the first pixel unit.
  • the first pixel unit includes red sub-pixels, green sub-pixels, and blue sub-pixels, so the first pixel unit corresponds to
  • the set of gamma curves includes the gamma curve corresponding to the red sub-pixel (e.g.
  • the driving device of the display panel can determine a group of gamma curves corresponding to the first pixel unit from the gamma curves stored by itself.
  • step 302 for any gamma curve, the gamma curve is adjusted according to the target light-emitting current of the sub-pixel of the corresponding color to obtain the adjusted gamma curve.
  • a target light-emitting current can be determined first.
  • the gamma voltage of the corresponding color sub-pixel can be adjusted to make the light-emitting current of the sub-pixel equal to the target light-emitting current, and then the sub-pixel
  • the gamma voltage of the sub-pixel is determined as the target gamma voltage
  • the gamma curve is adjusted according to the target gamma voltage and the target light-emitting current to obtain an adjusted gamma curve.
  • step 302 is described by adjusting a gamma curve as an example.
  • a group of gamma curves corresponding to the first pixel unit may include multiple gamma curves, and each gamma curve
  • the curve adjustment process can refer to this step 302, and a group of gamma curves can be adjusted by executing this step 302 multiple times, which will not be repeated in this embodiment of the application.
  • step 303 the sub-pixels in the first pixel unit and the second pixel unit are driven to emit light through a set of adjusted gamma curves.
  • a gamma voltage can be input to the sub-pixels of the corresponding color in the first pixel unit and the second pixel unit to drive the corresponding sub-pixels to emit light, That is, the sub-pixels in the first pixel unit and the second pixel unit are driven to emit light.
  • the process of driving the sub-pixels to emit light according to the gamma curve reference may be made to related technologies, and details are not described in the embodiment of the present application.
  • the driving method for the display panel can drive both the first pixel unit and the second pixel unit to be in a white balance state through the same set of gamma curves, and therefore can reduce the use of the same set of gamma curves.
  • the curve drives the color shift of the second pixel unit when the first pixel unit and the second pixel unit emit light, and when performing gamma correction on the display panel, only a set of gamma curves need to be adjusted, which simplifies the gamma of the display panel Calibration process.
  • the embodiments of the present application also provide a display device, which includes the display panel provided in the above-mentioned embodiments.
  • the display device may be an electroluminescent display device, and may be a flexible display device, for example,
  • the display device can be any product or component with display function, such as electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, wearable device or virtual display device.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium mentioned can be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板(1)及驱动方法、显示装置。显示面板(1)包括:多个第一像素单元(11)和至少一个第二像素单元(12),第一像素单元(11)和第二像素单元(12)中的每个像素单元包括多个子像素,第一像素单元(11)中的每个子像素位于一个子像素区中,第一像素单元(11)中存在两个子像素的发光颜色为第一颜色;第二像素单元(12)中的多个子像素位于阵列排布的多个子像素区中,第二像素单元(12)中存在两个相邻的子像素的发光颜色为第一颜色,两个相邻的子像素位于同一子像素区。第一像素单元(11)和第二像素单元(12)的设置简化了显示面板(1)的伽马校正过程。

Description

显示面板及其驱动方法、显示装置
本申请要求于2019年01月24日提交的申请号为201910069202.4、发明名称为“显示面板及其驱动方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种显示面板及其驱动方法、显示装置。
背景技术
随着显示技术的发展,有机发光二极管(英文:Organic Light Emitting Diode;简称:OLED)显示面板能够实现局部透明显示。能够实现局部透明显示的OLED显示面板包括透明区域和非透明区域,透明区域的PPI(英文:Pixels Per Inch;中文:每英寸像素数量,也称为像素密度)小于非透明区域的PPI。
目前,主要通过伽马(英文:gamma)曲线驱动OLED显示面板显示,且在OLED显示面板出厂之前,需要对OLED显示面板进行伽马校正(也即是调节OLED显示面板的伽马曲线)。
但是,OLED显示面板的透明区域的PPI和非透明区域的PPI不同,这使得需要通过不同的伽马曲线驱动透明区域和非透明区域显示,因此在对OLED显示面板进行伽马校正时,需要对透明区域对应的伽马曲线和非透明区域对应的伽马曲线分别进行调节,导致对OLED显示面板进行伽马校正的过程复杂。
发明内容
本申请提供了一种显示面板及其驱动方法、显示装置。技术方案如下:
第一方面,提供一种显示面板,所述显示面板包括:多个第一像素单元和至少一个第二像素单元,所述第一像素单元和所述第二像素单元中的每个像素单元包括多个子像素,
所述第一像素单元中的每个所述子像素位于一个子像素区中,所述第一像素单元中存在两个所述子像素的发光颜色为第一颜色;
所述第二像素单元中的多个所述子像素位于阵列排布的多个子像素区中, 所述第二像素单元中存在两个相邻的所述子像素的发光颜色为所述第一颜色,所述两个相邻的所述子像素位于同一所述子像素区中;
在所述第一像素单元和所述第二像素单元均处于白平衡状态时,发光颜色为第二颜色的所述子像素的发光电流与发光颜色为第三颜色的所述子像素的发光电流相等,发光颜色为所述第二颜色的所述子像素的发光电流为发光颜色为所述第一颜色的所述子像素的发光电流的二倍,发光颜色相同的所述子像素的发光电流相等,所述第一颜色、所述第二颜色和所述第三颜色各不相同。
可选地,所述第一像素单元中的多个所述子像素的发光面的面积相等,所述第二像素单元中的多个所述子像素的发光面的面积相等。
可选地,所述显示面板具有透明区域和非透明区域,所述第一像素单元位于所述非透明区域中,所述第二像素单元位于所述透明区域中。
可选地,所述第一像素单元包括以子像素渲染SPR方式排布的多个所述子像素。
可选地,所述第一像素单元包括沿数据线扫描方向依次排布的第一子像素、第二子像素、第三子像素和第四子像素,所述第二子像素的发光颜色与所述第四子像素的发光颜色均为所述第一颜色,所述第一子像素的发光颜色为所述第二颜色,所述第三子像素的发光颜色为所述第三颜色。
可选地,所述第二像素单元包括沿数据线扫描方向依次排布的第一子像素、第二子像素、第三子像素和第四子像素,所述第一子像素的发光颜色为所述第二颜色,所述第二子像素的发光颜色和所述第三子像素的发光颜色均为所述第一颜色,所述第四子像素的发光颜色为所述第三颜色。
可选地,所述第一颜色为绿色,所述第二颜色为红色,所述第三颜色为蓝色。
可选地,所述显示面板为电致发光显示面板。
第二方面,提供一种显示面板的驱动方法,用于第一方面或第一方面的任一可选方式所述的显示面板,所述显示面板包括多个第一像素单元和至少一个第二像素单元,所述第一像素单元和所述第二像素单元中的每个像素包括多个子像素,所述方法包括:
确定所述第一像素单元对应的一组伽马曲线,所述一组伽马曲线包括与所述第一像素单元中的各个颜色的所述子像素对应的伽马曲线,所述伽马曲线指示相应的所述子像素的伽马电压与发光电流的关联关系;
对于所述一组伽马曲线中的任一伽马曲线,根据相应颜色的所述子像素的目标发光电流调节所述伽马曲线,得到调节后的伽马曲线;
通过调节后的一组伽马曲线驱动所述第一像素单元和所述第二像素单元中的所述子像素发光。
第三方面,提供一种显示装置,包括第一方面或第一方面的任一可选方式所述的显示面板。
附图说明
为了更清楚地说明本申请的实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例所涉及的一种显示面板的正视图;
图2是本申请实施例提供的一种显示面板的正视图;
图3是本申请实施例提供的一种显示面板的驱动方法的方法流程图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了使本申请的原理、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
随着显示技术的发展,透明显示和虚拟现实等概念已经逐步进入人们的生活。目前的显示装置包括:薄膜晶体管液晶显示器(英文:Thin Film Transistor Liquid Crystal display;简称:TFT-LCD)显示装置和OLED显示装置。对于TFT-LCD显示装置,可以通过拆除背光模组并增加外界光源的方式实现透明显示,但是其透明显示效果较差,且难以实现全彩显示和高亮度显示。因此目前的透明显示装置通常为OLED显示装置。
OLED显示装置的主要显示部件为OLED显示面板,在OLED显示装置中,通常将光学传感器等结构设置在OLED显示面板背离其出光面的一侧,因此需 要将OLED显示面板上与光学传感器对应的区域设置为透明区域,以便于光学传感器感光,目前主要通过降低OLED显示面板上与光学传感器对应的区域的PPI来实现该区域为透明区域。但是在OLED显示面板中,为了提高OLED显示面板的分辨率,子像素通常以子像素渲染(英文:Subpixel Rendering;简称:SPR)方式排布,如果透明区域的子像素以SPR方式排布,由于透明区域的PPI较低,因此透明区域会存在显示画面的画质粗糙和彩边等问题。
为了解决透明区域的显示画面的画质粗糙和彩边等问题,目前,透明区域的子像素通常以常规方式(RGB排布方式)排布。示例地,请参考图1,其示出了本申请实施例所涉及的一种OLED显示面板0的正视图,该OLED显示面板0具有非透明区域a和透明区域b,透明区域b的PPI小于非透明区域a的PPI。其中,非透明区域a中设置有多个第一像素单元01,第一像素单元01包括红色子像素011、绿色子像素012、蓝色子像素013和绿色子像素014,透明区域b中设置有至少一个第二像素单元02,第二像素单元02包括红色子像素021、绿色子像素022和蓝色子像素023,非透明区域a中的子像素以SPR方式排布,透明区域b中的子像素以常规方式排布,其中,红色子像素011、绿色子像素012、蓝色子像素013和绿色子像素014这四者的发光面的面积相等,红色子像素021、绿色子像素022和蓝色子像素023这三者的发光面的面积相等。
目前,主要通过一组伽马曲线驱动上述OLED显示面板0显示,OLED显示面板为电流型显示面板,其驱动子像素的TFT的工作电压位于转移特性的线性区域,工作电压范围较窄,所以OLED显示面板对输入电压的变化非常敏感,小到几个毫伏的差异也会体现在显示效果上,但是目前的OLED显示面板和驱动芯片的生产工艺均难以将产品特性的差异限制在毫伏级,因此,在OLED显示面板0出厂之前,通常需要对该OLED显示面板0进行伽马校正。其中,一组伽马曲线包括3条伽马曲线,该3条伽马曲线与该OLED显示面板0的红色子像素、绿色子像素和蓝色子像素一一对应,目前,可以通过调整非透明区域a中的每种颜色的子像素的伽马电压,来对相应的伽马曲线进行调节,从而对该一组伽马曲线进行调节,以对该OLED显示面板0进行伽马校正。其中,调节后的每条伽马曲线用于驱动相应颜色的子像素发光,其表征相应颜色的子像素的伽马电压(指的是输入该子像素的TFT的电压)与发光电流(指的是子像素的TFT的输出电流)的关系。当对某一颜色的子像素输入对应的伽马曲线上的一伽马电压时,该子像素的发光电流为该伽马曲线上与该伽马电压对应的电流。 其中,非透明区域a中的第一像素单元01包括一个红色子像素、一个蓝色子像素和两个绿色子像素,为了保证第一像素单元01的红色光线(红色子像素发出的光线)、绿色光线(绿色子像素发出的光线)和蓝色光线(蓝色子像素发出的光线)的亮度均衡,通过调整非透明区域a中的每种颜色的子像素的伽马电压对上述一组伽马曲线进行调节得到的调节后的一组伽马曲线中,在相同伽马电压下,红色子像素的发光电流与蓝色子像素的发光电流相等,绿色子像素的发光电流为红色子像素的发光电流的一半,使得在第一像素单元01处于白平衡状态(第一像素单元01发出白色光线的状态)时,红色子像素的发光亮度等于蓝色子像素的发光亮度,且红色子像素的发光亮度等于两个绿色子像素的发光亮度之和。其中,通过上述一组伽马曲线驱动上述OLED显示面板0显示的过程可以包括:通过调节后的该组伽马曲线,向非透明区域a和透明区域b相同颜色的子像素输入相同的伽马电压。
但是,由于透明区域b中的第二像素单元02包括一个红色子像素、一个绿色子像素和一个蓝色子像素,因此,在通过调节后的该组伽马曲线向同一第二像素单元02的红色子像素021、绿色子像素022和蓝色子像素023输入相同伽马电压时,该第二像素单元02中,红色子像素021的发光电流与蓝色子像素023的发光电流相等,绿色子像素022的发光电流为红色子像素021的发光电流的一半,导致红色子像素021的发光亮度与蓝色子像素023的发光亮度相等,而绿色子像素022的发光亮度为红色子像素021的发光亮度的一半,因此第二像素单元02存在色偏。
为了避免第二像素单元02存在色偏,目前可以针对非透明区域a和透明区域b分别设置一组伽马曲线,非透明区域a和透明区域b的显示通过不同组伽马曲线驱动,但是,这样一来,在对OLED显示面板进行伽马校正时,需要对两组伽马曲线分别进行调节,导致对OLED显示面板进行伽马校正的过程复杂。
本申请提供的显示面板及其驱动方法、显示装置,由于显示面板的第一像素单元中存在两个子像素的发光颜色为第一颜色,第二像素单元中存在两个相邻的子像素的发光颜色为第一颜色,该两个相邻的子像素位于同一个子像素区中,该第一像素单元和第二像素单元均包括发光颜色为第二颜色的子像素和发光颜色为第三颜色的子像素,因此,在向第一像素单元和第二像素单元中相同颜色的子像素输入相同的伽马电压时,无论是在第一像素单元还是在第二像素单元中,第二颜色的亮度等于第三颜色的亮度,第一颜色的总亮度等于第二颜 色的亮度,因此减小了通过同一组伽马曲线驱动第一像素单元和第二像素单元时第二像素单元的色偏,并且可以简化显示面板的伽马校正过程。
请参考图2,其示出了本申请实施例提供的一种显示面板1的正视图,该显示面板1包括:多个第一像素单元11和至少一个第二像素单元12,第一像素单元11和第二像素单元12中的每个像素单元包括多个子像素。第一像素单元11中的每个子像素位于一个子像素区中,第一像素单元11中存在两个子像素的发光颜色为第一颜色,第二像素单元12中的多个子像素位于阵列排布的多个子像素区中,第二像素单元12中存在两个相邻的子像素的发光颜色为第一颜色,两个相邻的子像素位于同一子像素区中。
其中,在第一像素单元11和第二像素单元12均处于白平衡状态时,发光颜色为第二颜色的子像素的发光电流与发光颜色为第三颜色的子像素的发光电流相等,发光颜色为第二颜色的子像素的发光电流为发光颜色为第一颜色的子像素的发光电流的二倍,发光颜色相同的子像素的发光电流相等,第一颜色、第二颜色和第三颜色各不相同。白平衡状态指的是像素单元发出白色光线的状态,也即是像素单元显示白色的状态。例如,在第一像素单元11处于白平衡状态时,第一像素单元11发出白色光线。
本申请实施例提供的显示面板1中,第一像素单元11中存在两个子像素的发光颜色为第一颜色,第二像素单元12中存在两个相邻的子像素的发光颜色为第一颜色,该两个相邻的子像素位于同一个子像素区中,第一像素单元11和第二像素单元12均包括发光颜色为第二颜色的子像素和发光颜色为第三颜色的子像素,因此,在向第一像素单元11和第二像素单元12中相同颜色的子像素输入相同的伽马电压时,无论是在第一像素单元11还是在第二像素单元12中,发光颜色为第二颜色的子像素的发光电流与发光颜色为第三颜色的子像素的发光电流相等,发光颜色为第二颜色的子像素的发光电流为发光颜色为第一颜色的子像素的发光电流的二倍,使得无论是在第一像素单元11还是在第二像素单元12中,第二颜色的亮度等于第三颜色的亮度,第一颜色的总亮度等于第二颜色的亮度,从而在向第一像素单元11和第二像素单元12中的相同颜色的子像素输入相同的伽马电压时,第一像素单元11和第二像素单元12均处于白平衡状态,第一像素单元11和第二像素单元12均不存在色偏,因此可以通过同一组伽马曲线驱动第一像素单元11和第二像素单元12发光。
综上所述,本申请实施例提供的显示面板,由于可以通过同一组伽马曲线驱动第一像素单元和第二像素单元均处于白平衡状态,因此可以减小通过同一组伽马曲线驱动第一像素单元和第二像素单元发光时第二像素单元的色偏,并且在对显示面板进行伽马校正时,仅需对一组伽马曲线进行调节,简化了显示面板的伽马校正过程。
可选地,如图2所示,该显示面板1具有非透明区域c和透明区域d,第一像素单元11位于非透明区域c中,第二像素单元12位于透明区域d中。
可选地,第一像素单元11包括以SPR方式排布的多个子像素。如图2所示,第一像素单元11包括沿数据线扫描方向x依次排布的第一子像素111、第二子像素112、第三子像素113和第四子像素114,第二子像素112的发光颜色和第四子像素114的发光颜色均为第一颜色,第一子像素111的发光颜色为第二颜色,第三子像素113的发光颜色为第三颜色。第二像素单元12包括沿数据线扫描方向x依次排布的第一子像素121、第二子像素122、第三子像素123和第四子像素124,第二子像素122的发光颜色和第三子像素123的发光颜色均为第一颜色,第一子像素121的发光颜色为第二颜色,第四子像素124的发光颜色为第三颜色,第二子像素122和第三子像素123位于一个子像素区中。可选地,第一颜色可以为绿色,第二颜色可以为红色,第三颜色可以为蓝色,因此第一像素单元11包括沿数据线扫描方向x依次排布的红色子像素、绿色子像素、蓝色子像素和绿色子像素,第二像素单元12包括沿数据线扫描方向x依次排布的红色子像素、绿色子像素、绿色子像素和蓝色子像素。容易理解,图2是以第一颜色为绿色,第二颜色为红色,第三颜色为蓝色为例进行说明的,实际应用中,第一颜色、第二颜色和第三颜色可以调换,例如,第一颜色为蓝色、第二颜色为红色,第三颜色为绿色,或者,第一颜色为红色、第二颜色为绿色,第三颜色为蓝色等,本申请实施例对此不做限定。但是无论如何调换第一颜色、第二颜色和第三颜色,第一像素单元11中存在两个子像素的发光颜色为第一颜色,第二像素单元12中存在两个相邻的子像素的发光颜色为第一颜色,且在第二像素单元12中,发光颜色相同的两个子像素位于同一子像素区中。
可选地,第一像素单元11中的多个子像素的发光面的面积相等,第二像素单元12中的多个子像素的发光面的面积相等,该第一像素单元11中的每个子像素的发光面的面积也可以等于第二像素单元12中的每个子像素的发光面的面积。示例地,第一像素单元11中的每个子像素的发光面的面积可以为2t 2,第二 像素单元12中的每个子像素的发光面的面积可以为n 2,2t 2可以等于n 2,第一像素单元11中的每个子像素和第二像素单元12中的每个子像素呈矩形。可选地,第一像素单元11中的每个子像素的在数据线扫描方向x上的长度可以为t,在栅线扫描方向y上的长度可以为2t,以使得第一像素单元11中的每个子像素的发光面的面积为2t 2,第二像素单元12中的每个子像素的在数据线扫描方向x上的长度和在栅线扫描方向y上的长度均可以为n,以使得第二像素单元12中的每个子像素的发光面的面积为n 2。本领域技术人员容易理解,本申请实施例是以子像素的发光面是矩形为例进行说明的,子像素通常包括TFT,因此子像素的发光面的面积通常为子像素的面积中除TFT的面积之外的面积,也即是,子像素的发光面通常不是矩形。由于TFT的面积相对子像素的发光面的面积较小,因此可以以子像素的发光面是矩形为例进行说明。
可选地,在本申请实施例中,显示面板1可以为电致发光显示面板。例如,该显示面板1可以为OLED显示面板或者量子点发光二极管(英文:Quantum Dot Light Emitting Diodes;简称:QLED)显示面板,该OLED显示面板可以为有源矩阵有机电致发光二极管(英文:Active Matrix Organic Light Emitting Diode;简称:AMOLED)显示面板或者无源矩阵有机电致发光二极管(英文:Passive Matrix Organic Light Emitting Diode;简称:PMOLED)显示面板,或者,该显示面板1还可以为其他的电致发光显示面板,本申请实施例在此不再赘述。
需要指出的是,本申请实施例所涉及的像素单元(包括第一像素单元和第二像素单元)是指能够发出白光的最小单元,并不是最小的显示单元,最小显示单元通常是像素,在本申请实施例中,一个像素单元包含至少一个所述像素,一个像素包含至少一个本申请实施例所述的子像素。示例地,第一像素单元11包括由第一子像素111和第二子像素112组成的第一像素,以及由第三子像素113和第四子像素114组成的第二像素,该第一像素通过共用第二像素的第三子像素113来实现三基色显示,第二像素通过共用与该第四子像素114相邻的第一子像素111来实现三基色显示,因此,在每个第一像素单元11中,第一子像素111的发光区域的面积和第三子像素113的发光区域的面积均等于第一像素单元11的发光面的面积,第二子像素112的发光区域的面积和第四子像素114的发光区域的面积均等于第一像素单元11的发光面的面积的一半。其中,子像素的发光区域的面积指的是该子像素发出的光线需要照射的面积。
根据以上描述容易理解,本申请实施例提供的方案可以在简化显示面板的 伽马校正过程的同时,改善第二像素单元的色偏,下面以本申请实施例提供的显示面板1为OLED显示面板,第一颜色为绿色,第二颜色为红色,第三颜色为蓝色为例,结合图1和图2对本申请实施例提供的方案改善色偏的过程进行说明如下:
OLED显示面板在进行显示时,任一子像素的发光电流所满足的公式为:I=J×S1,J=L1/η,I表示该子像素的发光电流,单位为A(安培),J表示该发光电流的电流密度,单位为A/m 2(安培每平方米),S1表示该子像素的发光面的面积(在一些场景中可以称为开口面积),单位为m 2(平方米),L1表示在该子像素的发光电流为I时该子像素的发光亮度,单位为cd/m 2(坎德拉每平方米),η表示该子像素的发光效率,单位为cd/A(坎德拉每安培),η为一恒定值ε。S1=S2×目标开口率,S2表示该子像素的发光区域的面积(也即是该子像素所处像素的发光面的面积),单位为m 2,目标开口率表示子像素在像素中的开口率,其等于子像素的发光面的面积与该子像素所处像素的发光面的面积的比值。将J=L1/η和S1=S2×目标开口率代入I=J×S1可以得到I=L1/η×S2×目标开口率。从而可以得到I=L/η×S2,L=L1×目标开口率,L表示子像素在所处像素中实际的发光亮度,单位为cd/m 2
目前,如图1所示,在显示面板0中,红色子像素011的发光区域的面积和蓝色子像素013的发光区域的面积等于第一像素单元01的发光面的面积,绿色子像素012的发光区域的面积和绿色子像素014的发光区域的面积均等于第一像素单元01的发光面的面积的一半。第二像素单元02中的各个子像素的发光区域的面积均等于该第二像素单元02的发光面的面积。假设红色子像素011、绿色子像素012、蓝色子像素013和绿色子像素014在数据线扫描方向x的长度均为t,在栅线扫描方向y的长度均为2t,红色子像素021、绿色子像素022和蓝色子像素023在数据线扫描方向x的长度和在栅线扫描方向y的长度均为n。则根据公式I=L/η×S2可以确定红色子像素011的发光电流I R1、绿色子像素012的发光电流I G1、蓝色子像素013的发光电流I B1和绿色子像素014的发光电流I G1分别为:
I R1=L R1/ε×(2t×4t)=L R1/ε×(8t 2);
I G1=L G1/ε×(2t×2t)=L G1/ε×(4t 2);
I B1=L B1/ε×(2t×4t)=L B1/ε×(8t 2);
I G1=L G1/ε×(2t×2t)=L G1/ε×(4t 2);
根据公式I=L/η×S2可以确定红色子像素021的发光电流I R2、绿色子像素022的发光电流I G2和蓝色子像素023的发光电流I B2分别为:
I R2=L R2/ε×(3n×n)=L R2/ε×(3n 2);
I G2=L G2/ε×(3n×n)=L G2/ε×(3n 2);
I B2=L B2/ε×(3n×n)=L B2/ε×(3n 2);
从而,可以得到红色子像素021的亮度L R2、绿色子像素022的亮度L G2和蓝色子像素023的亮度L B2分别为:
L R2=I R2×ε/3n 2
L G2=I G2×ε/3n 2
L B2=I B2×ε/3n 2
调整非透明区域a中的每种颜色的子像素(包含第一像素单元01的子像素)的伽马电压对该显示面板0进行伽马校正得到调节后的一组伽马曲线后,在通过调节后的该组伽马曲线驱动非透明区域a中的第一像素单元01和透明区域b中的第二像素单元02发光时,向第一像素单元01和第二像素单元02中相同颜色的子像素输入相同的伽马电压,该相同颜色的子像素的发光电流均为相应的伽马曲线(也即是与该相同颜色对应的伽马曲线)上与该伽马电压对应的电流,因此,第二像素单元02与第一像素单元01中,该相同颜色的子像素的发光电流相等,也即是:I R2=I R1,I G2=I G1,I B2=I B1,则将I R1=L R1/ε×(8t 2)、I G1=L G1/ε×(4t 2)和I B1=L B1/ε×(8t 2)分别代入L R2=I R2×ε/3n 2、L G2=I G2×ε/3n 2和L B2=I B2×ε/3n 2中,可以得到第二像素单元02中,红色子像素021的亮度L R2、绿色子像素022的亮度L G2和蓝色子像素023的亮度L B2分别为:
L R2=L R1/ε×(8t 2)×ε/3n 2=L R1×(8t 2)/3n 2
L G2=L G1/ε×(4t 2)×ε/3n 2=L G1×(4t 2)/3n 2
L B2=L B1/ε×(8t 2)×ε/3n 2=L B1×(8t 2)/3n 2
可以看出,L R2=L B2=2L G2,也即是,红色子像素021的发光亮度与蓝色子像素023的发光亮度相等,绿色子像素022的发光亮度为红色子像素021的发光亮度的一半,因此第二像素单元02存在色偏。
本申请实施例中,如图2所示,在显示面板1中,第一子像素(红色子像素)111的发光区域的面积和第三子像素(蓝色子像素)113的发光区域的面积均等于第一像素单元11的发光面的面积,第二子像素(绿色子像素)112的发光区域的面积和第四子像素(绿色子像素)114的发光区域的面积均等于第一像 素单元11的发光面的面积的一半,第一子像素121(红色子像素)的发光区域的面积、第二子像素(绿色子像素)122的发光区域的面积、第三子像素(绿色子像素)123的发光区域的面积和第四子像素(蓝色子像素)124的发光区域的面积均等于第二像素单元12的发光面的面积。假设第一子像素111、第二子像素112、第三子像素113和第四子像素114在数据线扫描方向x的长度均为t,在栅线扫描方向y的长度均为2t,第一子像素121、第二子像素122、第三子像素123和第四子像素124在数据线扫描方向x的长度和在栅线扫描方向y的长度均为n。则根据公式I=L/η×S2可以确定第一子像素111的发光电流I R1'、第二子像素112的发光电流I G1'、第三子像素113的发光电流I B1'和第四子像素114的发光电流I G1'分别为:
I R1'=L R1'/ε×(2t×4t)=L R1'/ε×(8t 2);
I G1'=L G1'/ε×(2t×2t)=L G1'/ε×(4t 2);
I B1'=L B1'/ε×(2t×4t)=L B1'/ε×(8t 2);
I G1'=L G1'/ε×(2t×2t)=L G1'/ε×(4t 2);
根据公式I=L/η×S2可以确定第一子像素121的发光电流I R2'、第二子像素122的发光电流I G2'、第三子像素123的发光电流I G2'和第四子像素124的发光电流I B2'分别为:
I R2'=L R2'/ε×(4nⅹn)=L R2'/ε×(4n 2);
I G2'=L G2'/ε×(4nⅹn)=L G2'/ε×(4n 2);
I G2'=L G2'/ε×(4nⅹn)=L G2'/ε×(4n 2);
I B2'=L B2'/ε×(4nⅹn)=L B2'/ε×(4n 2);
从而可以得到第一子像素121的亮度L R2'、第二子像素122的亮度L G2'、第三子像素123的亮度L G2'和第四子像素124的亮度L B2'分别为:
L R2'=I R2'×ε/4n 2
L G2'=I G2'×ε/4n 2
L G2'=I G2'×ε/4n 2
L B2'=I B2'×ε/4n 2
调整非透明区域c中的每种颜色的子像素(包含第一像素单元11的子像素)的伽马电压对该显示面板1进行伽马校正得到调节后的一组伽马曲线后,在向第一像素单元11和第二像素单元12中相同颜色的子像素输入相同的伽马电压时,该相同颜色的子像素的发光电流均为相应的伽马曲线(也即是与该相同颜 色对应的伽马曲线)上与该伽马电压对应的电流,因此,第二像素单元12与第一像素单元11中,相同颜色的子像素的发光电流相等,也即是:I R2'=I R1',I G2'=I G1',I B2'=I B1',则将I R1'=L R1'/ε×(8t 2)、I G1'=L G1'/ε×(4t 2)和I B1'=L B1'/ε×(8t 2)分别代入L R2'=I R2'×ε/4n 2、L G2'=I G2'×ε/4n 2和L B2'=I B2'×ε/4n 2中,可以得到第二像素单元12中,第一子像素121的亮度L R2'、第二子像素122的亮度L G2'、第三子像素123的亮度L G2'和第四子像素124的亮度L B2'分别为:
L R2'=L R1'×(8t 2)/4n 2
L G2'=L G1'×(4t 2)/4n 2
L G2'=L G1'×(4t 2)/4n 2
L B2'=L B1'×(8t 2)/4n 2
可以看出,L R2'=L B2'=L G2'+L G2',也即是,第一子像素(红色子像素)121的发光亮度与第四子像素(蓝色子像素)124的发光亮度相等,且等于第二子像素(绿色子像素)122的发光亮度和第三子像素(绿色子像素)123的发光亮度之和,换句话来讲,红色子像素的发光亮度等于蓝色子像素的发光亮度,且等于绿色子像素的总发光亮度,因此,第二像素单元12不存在色偏。
由于是通过调整非透明区域c中的每种颜色的子像素(包含第一像素单元11的子像素)的伽马电压对该显示面板1进行伽马校正得到调节后的一组伽马曲线的,因此在通过该调节后的一组伽马曲线驱动第一像素单元11发光时,第一像素单元11不存在色偏,而根据以上描述可知,在通过该调节后的一组伽马曲线驱动第二像素单元12发光时,第二像素单元12也不存在色偏,因此,在向第一像素单元11和第二像素单元12中的相同颜色的子像素输入相同的伽马电压时,第一像素单元11和第二像素单元12均处于白平衡状态,因此本申请实施例可以减小通过同一组伽马曲线驱动第一像素单元和第二像素单元发光时第二像素单元的色偏。
综上所述,本申请实施例提供的显示面板,由于可以通过同一组伽马曲线驱动第一像素单元和第二像素单元均处于白平衡状态,因此可以减小通过同一组伽马曲线驱动第一像素单元和第二像素单元发光时第二像素单元的色偏,并且在对显示面板进行伽马校正时,仅需对一组伽马曲线进行调节,简化了显示面板的伽马校正过程。
请参考图3,其示出了本申请实施例提供的一种显示面板的驱动方法的方法 流程图,该方法可以用于上述实施例提供的显示面板1,该方法可以由显示面板的驱动装置来执行,该显示面板的驱动装置可以为驱动电路,驱动芯片或集成电路(英文:Integrated Circuit;简称:IC)。参见图3,该方法可以包括如下步骤:
在步骤301中、确定第一像素单元对应的一组伽马曲线,一组伽马曲线包括与第一像素单元中的各个颜色的子像素对应的伽马曲线,伽马曲线指示相应的子像素的伽马电压与发光电流的关联关系。
可选地,显示面板的驱动装置中可以存储有至少一组伽马曲线,该至少一组伽马曲线包括与第一像素单元对应的一组伽马曲线,该第一像素单元对应的一组伽马曲线包括与第一像素单元中的各个颜色的子像素对应的伽马曲线,示例地,第一像素单元包括红色子像素、绿色子像素和蓝色子像素,因此该第一像素单元对应的一组伽马曲线包括与红色子像素对应的伽马曲线(例如伽马曲线1),绿色子像素对应的伽马曲线(例如伽马曲线2)和蓝色子像素对应的伽马曲线(例如伽马曲线3)。显示面板的驱动装置可以从自身存储的伽马曲线中确定第一像素单元对应的一组伽马曲线。
在步骤302中、对于任一伽马曲线,根据相应颜色的子像素的目标发光电流调节伽马曲线,得到调节后的伽马曲线。
可选地,可以先确定一目标发光电流,对于任一伽马曲线,可以调节相应颜色的子像素的伽马电压,使该子像素的发光电流等于该目标发光电流,然后将该子像素的发光电流等于该目标发光电流时,该子像素的伽马电压确定为目标伽马电压,根据该目标伽马电压和该目标发光电流调节该伽马曲线,得到调节后的伽马曲线。
本领域技术人员容易理解,该步骤302是以调节一个伽马曲线为例进行说明的,实际应用中,第一像素单元对应的一组伽马曲线可以包括多个伽马曲线,每个伽马曲线的调节过程可以参考该步骤302,可以通过多次执行该步骤302来对一组伽马曲线进行调节,本申请实施例在此不再赘述。
在步骤303中、通过调节后的一组伽马曲线驱动第一像素单元和第二像素单元中的子像素发光。
可选地,可以根据调节后的一组伽马曲线中的每个伽马曲线,向第一像素单元和第二像素单元中相应颜色的子像素输入伽马电压,驱动相应的子像素发光,也即是,驱动第一像素单元和第二像素单元中的子像素发光。根据伽马曲 线驱动子像素发光的过程可以参考相关技术,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的显示面板的驱动方法,由于可以通过同一组伽马曲线驱动第一像素单元和第二像素单元均处于白平衡状态,因此可以减小通过同一组伽马曲线驱动第一像素单元和第二像素单元发光时第二像素单元的色偏,并且在对显示面板进行伽马校正时,仅需对一组伽马曲线进行调节,简化了显示面板的伽马校正过程。
基于同样的发明构思,本申请实施例还提供了一种显示装置,该显示装置包括上述实施例提供的显示面板,该显示装置可以为电致发光显示装置,且可以是柔性显示装置,例如,该显示装置可以为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、可穿戴设备或虚拟显示设备等任何具有显示功能的产品或部件。
在本申请中,术语“第一”、“第二”、“第三”和“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”表示一个或多个,多个指两个或两个以上,除非另有明确的限定。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种显示面板,所述显示面板包括:多个第一像素单元和至少一个第二像素单元,所述第一像素单元和所述第二像素单元中的每个像素单元包括多个子像素,
    所述第一像素单元中的每个所述子像素位于一个子像素区中,所述第一像素单元中存在两个所述子像素的发光颜色为第一颜色;
    所述第二像素单元中的多个所述子像素位于阵列排布的多个子像素区中,所述第二像素单元中存在两个相邻的所述子像素的发光颜色为所述第一颜色,所述两个相邻的所述子像素位于同一所述子像素区中;
    在所述第一像素单元和所述第二像素单元均处于白平衡状态时,发光颜色为第二颜色的所述子像素的发光电流与发光颜色为第三颜色的所述子像素的发光电流相等,发光颜色为所述第二颜色的所述子像素的发光电流为发光颜色为所述第一颜色的所述子像素的发光电流的二倍,发光颜色相同的所述子像素的发光电流相等,所述第一颜色、所述第二颜色和所述第三颜色各不相同。
  2. 根据权利要求1所述的显示面板,其中,
    所述第一像素单元中的多个所述子像素的发光面的面积相等,所述第二像素单元中的多个所述子像素的发光面的面积相等。
  3. 根据权利要求1所述的显示面板,其中,所述显示面板具有透明区域和非透明区域,所述第一像素单元位于所述非透明区域中,所述第二像素单元位于所述透明区域中。
  4. 根据权利要求1所述的显示面板,其中,所述第一像素单元包括以子像素渲染SPR方式排布的多个所述子像素。
  5. 根据权利要求4所述的显示面板,其中,所述第一像素单元包括沿数据线扫描方向依次排布的第一子像素、第二子像素、第三子像素和第四子像素,所述第二子像素的发光颜色与所述第四子像素的发光颜色均为所述第一颜色, 所述第一子像素的发光颜色为所述第二颜色,所述第三子像素的发光颜色为所述第三颜色。
  6. 根据权利要求5所述的显示面板,其中,
    所述第二像素单元包括沿数据线扫描方向依次排布的第一子像素、第二子像素、第三子像素和第四子像素,所述第一子像素的发光颜色为所述第二颜色,所述第二子像素的发光颜色和所述第三子像素的发光颜色均为所述第一颜色,所述第四子像素的发光颜色为所述第三颜色。
  7. 根据权利要求6所述的显示面板,其中,所述第一颜色为绿色,所述第二颜色为红色,所述第三颜色为蓝色。
  8. 根据权利要求1至7任一项所述的显示面板,其中,所述显示面板为电致发光显示面板。
  9. 一种显示面板的驱动方法,用于权利要求1至8任一项所述的显示面板,所述显示面板包括多个第一像素单元和至少一个第二像素单元,所述第一像素单元和所述第二像素单元中的每个像素包括多个子像素,所述方法包括:
    确定所述第一像素单元对应的一组伽马曲线,所述一组伽马曲线包括与所述第一像素单元中的各个颜色的所述子像素对应的伽马曲线,所述伽马曲线指示相应的所述子像素的伽马电压与发光电流的关联关系;
    对于所述一组伽马曲线中的任一伽马曲线,根据相应颜色的所述子像素的目标发光电流调节所述伽马曲线,得到调节后的伽马曲线;
    通过调节后的一组伽马曲线驱动所述第一像素单元和所述第二像素单元中的所述子像素发光。
  10. 一种显示装置,包括权利要求1至8任一项所述的显示面板。
PCT/CN2019/126088 2019-01-24 2019-12-17 显示面板及其驱动方法、显示装置 WO2020151414A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/967,186 US11164502B2 (en) 2019-01-24 2019-12-17 Display panel and driving method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910069202.4A CN109637452B (zh) 2019-01-24 2019-01-24 显示面板及其驱动方法、显示装置
CN201910069202.4 2019-01-24

Publications (1)

Publication Number Publication Date
WO2020151414A1 true WO2020151414A1 (zh) 2020-07-30

Family

ID=66063533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126088 WO2020151414A1 (zh) 2019-01-24 2019-12-17 显示面板及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US11164502B2 (zh)
CN (1) CN109637452B (zh)
WO (1) WO2020151414A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637452B (zh) * 2019-01-24 2020-07-07 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN110767716B (zh) * 2019-04-30 2023-05-02 昆山国显光电有限公司 显示面板和显示装置
CN110364116B (zh) * 2019-07-15 2021-06-15 云谷(固安)科技有限公司 灰阶补偿方法、灰阶补偿装置及显示模组
CN110648620B (zh) * 2019-10-30 2022-07-19 武汉天马微电子有限公司 一种显示面板的渲染方法、显示面板和显示装置
CN111192902B (zh) * 2019-12-16 2021-05-07 昆山国显光电有限公司 显示面板及其驱动方法、显示装置
CN115171547B (zh) * 2022-05-16 2023-11-28 昆山国显光电有限公司 显示基板及其驱动方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174730A1 (en) * 2008-01-09 2009-07-09 Chunghwa Picture Tubes, Ltd. Data driving apparatus and method thereof
US20090309813A1 (en) * 2008-06-11 2009-12-17 Mitsubishi Electric Corporation Display device
CN103345887A (zh) * 2013-07-10 2013-10-09 上海和辉光电有限公司 像素阵列及具有该像素阵列的显示器
CN108596147A (zh) * 2018-05-09 2018-09-28 上海中航光电子有限公司 显示面板和显示装置
CN109147644A (zh) * 2018-10-12 2019-01-04 京东方科技集团股份有限公司 显示面板及显示方法
CN109637452A (zh) * 2019-01-24 2019-04-16 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018476B2 (en) * 2006-08-28 2011-09-13 Samsung Electronics Co., Ltd. Subpixel layouts for high brightness displays and systems
CN101529496B (zh) * 2006-10-19 2012-01-11 皇家飞利浦电子股份有限公司 颜色映射方法、系统和显示器设备
KR101146988B1 (ko) * 2010-05-04 2012-05-22 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR101330485B1 (ko) * 2010-05-27 2013-11-20 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그의 색좌표 보상방법
KR101845332B1 (ko) * 2011-06-13 2018-05-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN102411914B (zh) * 2011-11-24 2013-07-10 深圳市华星光电技术有限公司 彩色平面显示面板及相应的彩色平面显示装置
US20140111115A1 (en) * 2012-10-22 2014-04-24 Motorola Mobility Llc Display devices having non-uniform sub-pixel spacing and methods therefor
KR102023184B1 (ko) * 2013-02-20 2019-09-20 삼성디스플레이 주식회사 표시장치, 데이터 처리장치 및 그 방법
CN103366680A (zh) * 2013-07-15 2013-10-23 惠州市兆光光电科技有限公司 Led显示屏白平衡校正技术
TWI539206B (zh) * 2014-08-25 2016-06-21 友達光電股份有限公司 顯示裝置
JP2016075868A (ja) * 2014-10-09 2016-05-12 Nltテクノロジー株式会社 画素アレイ及び電気光学装置並びに電気機器並びに画素レンダリング方法
KR102348682B1 (ko) * 2014-12-05 2022-01-06 엘지디스플레이 주식회사 투명 유기 발광 표시 장치 및 투명 유기 발광 표시 장치 제조 방법
CN204904727U (zh) * 2015-08-28 2015-12-23 厦门天马微电子有限公司 一种像素结构及显示装置
CN106652899B (zh) * 2015-10-29 2019-03-12 上海和辉光电有限公司 显示装置及显示面板的图像显示修正方法
KR20180075958A (ko) * 2016-12-27 2018-07-05 엘지디스플레이 주식회사 유기 발광 표시 장치
TWI606275B (zh) * 2016-12-29 2017-11-21 友達光電股份有限公司 畫素矩陣及其顯示方法
CN106652874B (zh) * 2017-01-04 2020-02-14 京东方科技集团股份有限公司 组合像素的灰阶补偿装置、方法以及显示装置
US10210826B2 (en) * 2017-02-22 2019-02-19 Himax Technologies Limited Sub-pixel rendering method for delta RGBW panel and delta RGBW panel with sub-pixel rendering function
CN107633802B (zh) * 2017-10-31 2021-09-14 武汉天马微电子有限公司 一种显示面板及显示装置
CN110097862B (zh) * 2018-01-31 2022-09-13 天马日本株式会社 显示装置及相对亮度数据的转换方法
US11574960B2 (en) * 2018-02-09 2023-02-07 Boe Technology Group Co., Ltd. Pixel arrangement structure, display substrate, display device and mask plate group
CN108227292A (zh) * 2018-02-11 2018-06-29 惠州市华星光电技术有限公司 液晶面板以及液晶显示器、产品展示装置
JP7117158B2 (ja) * 2018-06-01 2022-08-12 Tianma Japan株式会社 表示装置及びその制御方法
WO2019242510A1 (zh) * 2018-06-20 2019-12-26 京东方科技集团股份有限公司 显示基板及其驱动方法和显示装置
CN114256322A (zh) * 2018-06-28 2022-03-29 厦门天马微电子有限公司 一种有机发光显示面板、显示装置及其显示方法
US10714001B2 (en) * 2018-07-11 2020-07-14 X Display Company Technology Limited Micro-light-emitting-diode displays
CN109036245B (zh) * 2018-07-26 2022-04-15 京东方科技集团股份有限公司 一种显示处理的方法、装置、集成电路及计算机存储介质
CN109036257B (zh) * 2018-10-24 2022-04-29 上海天马微电子有限公司 一种显示面板及其驱动方法和显示装置
CN109192076B (zh) * 2018-11-02 2021-01-26 京东方科技集团股份有限公司 一种显示面板和显示装置
US11195882B2 (en) * 2019-01-11 2021-12-07 Boe Technology Group Co., Ltd. Pixel arrangement structure, display substrate and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174730A1 (en) * 2008-01-09 2009-07-09 Chunghwa Picture Tubes, Ltd. Data driving apparatus and method thereof
US20090309813A1 (en) * 2008-06-11 2009-12-17 Mitsubishi Electric Corporation Display device
CN103345887A (zh) * 2013-07-10 2013-10-09 上海和辉光电有限公司 像素阵列及具有该像素阵列的显示器
CN108596147A (zh) * 2018-05-09 2018-09-28 上海中航光电子有限公司 显示面板和显示装置
CN109147644A (zh) * 2018-10-12 2019-01-04 京东方科技集团股份有限公司 显示面板及显示方法
CN109637452A (zh) * 2019-01-24 2019-04-16 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US20210082333A1 (en) 2021-03-18
CN109637452B (zh) 2020-07-07
US11164502B2 (en) 2021-11-02
CN109637452A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020151414A1 (zh) 显示面板及其驱动方法、显示装置
JP4295768B2 (ja) 有機発光ディスプレイ装置およびその画像を表示する方法
CN109659334B (zh) 显示装置和电子设备
TWI286728B (en) Electro-optical device and electronic apparatus
JP4915143B2 (ja) 表示装置及びその駆動方法
US20190236997A1 (en) Display driving method and organic light-emitting display device thereof
CN108538245B (zh) 一种显示面板的驱动方法、显示面板及显示装置
US20060221014A1 (en) Organic light emitting display and method of driving the same
TW558693B (en) Driving circuit design for display device
TW201320040A (zh) 對三角式結構的彩色顯示器呈現子像素的方法與驅動器
WO2021027514A1 (zh) 像素电路及其驱动方法以及显示面板
JP2011203610A (ja) 画像表示装置
JP2013058323A (ja) 発光パネル、表示装置および電子機器
JP2007149640A (ja) 有機発光ダイオードの画素構造を組み込んだ発光システム
CN212230037U (zh) 一种显示面板及显示装置
WO2020155975A1 (zh) 显示面板及其发光控制电路、驱动方法、显示装置
US8400394B2 (en) Backlight unit assembly, liquid crystal display having the same, and dimming method thereof
KR20190050170A (ko) 유기발광 표시장치
US9001099B2 (en) Image display and image display method
KR102369825B1 (ko) 표시 장치
JP2014212080A (ja) 表示装置
WO2022226754A1 (zh) 像素结构及其驱动方法、显示面板及显示装置
KR20150059270A (ko) 유기전계발광 표시장치
KR102079616B1 (ko) 자발광 어레이 표시 제어 방법, 장치, 및 디바이스
CN116649011A (zh) 显示装置及其驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911105

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19911105

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.02.22)

122 Ep: pct application non-entry in european phase

Ref document number: 19911105

Country of ref document: EP

Kind code of ref document: A1